1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 * when auto defrag is enabled we
36 * queue up these defrag structs to remember which
37 * inodes need defragging passes
40 struct rb_node rb_node;
44 * transid where the defrag was added, we search for
45 * extents newer than this
52 /* last offset we were able to defrag */
55 /* if we've wrapped around back to zero once already */
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60 struct inode_defrag *defrag2)
62 if (defrag1->root > defrag2->root)
64 else if (defrag1->root < defrag2->root)
66 else if (defrag1->ino > defrag2->ino)
68 else if (defrag1->ino < defrag2->ino)
74 /* pop a record for an inode into the defrag tree. The lock
75 * must be held already
77 * If you're inserting a record for an older transid than an
78 * existing record, the transid already in the tree is lowered
80 * If an existing record is found the defrag item you
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84 struct inode_defrag *defrag)
86 struct btrfs_fs_info *fs_info = inode->root->fs_info;
87 struct inode_defrag *entry;
89 struct rb_node *parent = NULL;
92 p = &fs_info->defrag_inodes.rb_node;
95 entry = rb_entry(parent, struct inode_defrag, rb_node);
97 ret = __compare_inode_defrag(defrag, entry);
101 p = &parent->rb_right;
103 /* if we're reinserting an entry for
104 * an old defrag run, make sure to
105 * lower the transid of our existing record
107 if (defrag->transid < entry->transid)
108 entry->transid = defrag->transid;
109 if (defrag->last_offset > entry->last_offset)
110 entry->last_offset = defrag->last_offset;
114 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115 rb_link_node(&defrag->rb_node, parent, p);
116 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
125 if (btrfs_fs_closing(fs_info))
132 * insert a defrag record for this inode if auto defrag is
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136 struct btrfs_inode *inode)
138 struct btrfs_root *root = inode->root;
139 struct btrfs_fs_info *fs_info = root->fs_info;
140 struct inode_defrag *defrag;
144 if (!__need_auto_defrag(fs_info))
147 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
151 transid = trans->transid;
153 transid = inode->root->last_trans;
155 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
159 defrag->ino = btrfs_ino(inode);
160 defrag->transid = transid;
161 defrag->root = root->root_key.objectid;
163 spin_lock(&fs_info->defrag_inodes_lock);
164 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 * If we set IN_DEFRAG flag and evict the inode from memory,
167 * and then re-read this inode, this new inode doesn't have
168 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 ret = __btrfs_add_inode_defrag(inode, defrag);
172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 spin_unlock(&fs_info->defrag_inodes_lock);
181 * Requeue the defrag object. If there is a defrag object that points to
182 * the same inode in the tree, we will merge them together (by
183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186 struct inode_defrag *defrag)
188 struct btrfs_fs_info *fs_info = inode->root->fs_info;
191 if (!__need_auto_defrag(fs_info))
195 * Here we don't check the IN_DEFRAG flag, because we need merge
198 spin_lock(&fs_info->defrag_inodes_lock);
199 ret = __btrfs_add_inode_defrag(inode, defrag);
200 spin_unlock(&fs_info->defrag_inodes_lock);
205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
209 * pick the defragable inode that we want, if it doesn't exist, we will get
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 struct inode_defrag *entry = NULL;
216 struct inode_defrag tmp;
218 struct rb_node *parent = NULL;
224 spin_lock(&fs_info->defrag_inodes_lock);
225 p = fs_info->defrag_inodes.rb_node;
228 entry = rb_entry(parent, struct inode_defrag, rb_node);
230 ret = __compare_inode_defrag(&tmp, entry);
234 p = parent->rb_right;
239 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240 parent = rb_next(parent);
242 entry = rb_entry(parent, struct inode_defrag, rb_node);
248 rb_erase(parent, &fs_info->defrag_inodes);
249 spin_unlock(&fs_info->defrag_inodes_lock);
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 struct inode_defrag *defrag;
256 struct rb_node *node;
258 spin_lock(&fs_info->defrag_inodes_lock);
259 node = rb_first(&fs_info->defrag_inodes);
261 rb_erase(node, &fs_info->defrag_inodes);
262 defrag = rb_entry(node, struct inode_defrag, rb_node);
263 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265 cond_resched_lock(&fs_info->defrag_inodes_lock);
267 node = rb_first(&fs_info->defrag_inodes);
269 spin_unlock(&fs_info->defrag_inodes_lock);
272 #define BTRFS_DEFRAG_BATCH 1024
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275 struct inode_defrag *defrag)
277 struct btrfs_root *inode_root;
279 struct btrfs_ioctl_defrag_range_args range;
284 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
285 if (IS_ERR(inode_root)) {
286 ret = PTR_ERR(inode_root);
290 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
291 btrfs_put_root(inode_root);
293 ret = PTR_ERR(inode);
297 /* do a chunk of defrag */
298 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
299 memset(&range, 0, sizeof(range));
301 range.start = defrag->last_offset;
303 sb_start_write(fs_info->sb);
304 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306 sb_end_write(fs_info->sb);
308 * if we filled the whole defrag batch, there
309 * must be more work to do. Queue this defrag
312 if (num_defrag == BTRFS_DEFRAG_BATCH) {
313 defrag->last_offset = range.start;
314 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
315 } else if (defrag->last_offset && !defrag->cycled) {
317 * we didn't fill our defrag batch, but
318 * we didn't start at zero. Make sure we loop
319 * around to the start of the file.
321 defrag->last_offset = 0;
323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
336 * run through the list of inodes in the FS that need
339 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 struct inode_defrag *defrag;
343 u64 root_objectid = 0;
345 atomic_inc(&fs_info->defrag_running);
347 /* Pause the auto defragger. */
348 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
352 if (!__need_auto_defrag(fs_info))
355 /* find an inode to defrag */
356 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
359 if (root_objectid || first_ino) {
368 first_ino = defrag->ino + 1;
369 root_objectid = defrag->root;
371 __btrfs_run_defrag_inode(fs_info, defrag);
373 atomic_dec(&fs_info->defrag_running);
376 * during unmount, we use the transaction_wait queue to
377 * wait for the defragger to stop
379 wake_up(&fs_info->transaction_wait);
383 /* simple helper to fault in pages and copy. This should go away
384 * and be replaced with calls into generic code.
386 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
387 struct page **prepared_pages,
391 size_t total_copied = 0;
393 int offset = offset_in_page(pos);
395 while (write_bytes > 0) {
396 size_t count = min_t(size_t,
397 PAGE_SIZE - offset, write_bytes);
398 struct page *page = prepared_pages[pg];
400 * Copy data from userspace to the current page
402 copied = copy_page_from_iter_atomic(page, offset, count, i);
404 /* Flush processor's dcache for this page */
405 flush_dcache_page(page);
408 * if we get a partial write, we can end up with
409 * partially up to date pages. These add
410 * a lot of complexity, so make sure they don't
411 * happen by forcing this copy to be retried.
413 * The rest of the btrfs_file_write code will fall
414 * back to page at a time copies after we return 0.
416 if (unlikely(copied < count)) {
417 if (!PageUptodate(page)) {
418 iov_iter_revert(i, copied);
425 write_bytes -= copied;
426 total_copied += copied;
428 if (offset == PAGE_SIZE) {
437 * unlocks pages after btrfs_file_write is done with them
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
442 for (i = 0; i < num_pages; i++) {
443 /* page checked is some magic around finding pages that
444 * have been modified without going through btrfs_set_page_dirty
445 * clear it here. There should be no need to mark the pages
446 * accessed as prepare_pages should have marked them accessed
447 * in prepare_pages via find_or_create_page()
449 ClearPageChecked(pages[i]);
450 unlock_page(pages[i]);
456 * After btrfs_copy_from_user(), update the following things for delalloc:
457 * - Mark newly dirtied pages as DELALLOC in the io tree.
458 * Used to advise which range is to be written back.
459 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
460 * - Update inode size for past EOF write
462 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
463 size_t num_pages, loff_t pos, size_t write_bytes,
464 struct extent_state **cached, bool noreserve)
466 struct btrfs_fs_info *fs_info = inode->root->fs_info;
471 u64 end_of_last_block;
472 u64 end_pos = pos + write_bytes;
473 loff_t isize = i_size_read(&inode->vfs_inode);
474 unsigned int extra_bits = 0;
476 if (write_bytes == 0)
480 extra_bits |= EXTENT_NORESERVE;
482 start_pos = round_down(pos, fs_info->sectorsize);
483 num_bytes = round_up(write_bytes + pos - start_pos,
484 fs_info->sectorsize);
485 ASSERT(num_bytes <= U32_MAX);
487 end_of_last_block = start_pos + num_bytes - 1;
490 * The pages may have already been dirty, clear out old accounting so
491 * we can set things up properly
493 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
494 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
497 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
502 for (i = 0; i < num_pages; i++) {
503 struct page *p = pages[i];
505 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
507 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
511 * we've only changed i_size in ram, and we haven't updated
512 * the disk i_size. There is no need to log the inode
516 i_size_write(&inode->vfs_inode, end_pos);
521 * this drops all the extents in the cache that intersect the range
522 * [start, end]. Existing extents are split as required.
524 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
527 struct extent_map *em;
528 struct extent_map *split = NULL;
529 struct extent_map *split2 = NULL;
530 struct extent_map_tree *em_tree = &inode->extent_tree;
531 u64 len = end - start + 1;
539 WARN_ON(end < start);
540 if (end == (u64)-1) {
549 split = alloc_extent_map();
551 split2 = alloc_extent_map();
552 if (!split || !split2)
555 write_lock(&em_tree->lock);
556 em = lookup_extent_mapping(em_tree, start, len);
558 write_unlock(&em_tree->lock);
562 gen = em->generation;
563 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
564 if (testend && em->start + em->len >= start + len) {
566 write_unlock(&em_tree->lock);
569 start = em->start + em->len;
571 len = start + len - (em->start + em->len);
573 write_unlock(&em_tree->lock);
576 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
577 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
578 clear_bit(EXTENT_FLAG_LOGGING, &flags);
579 modified = !list_empty(&em->list);
583 if (em->start < start) {
584 split->start = em->start;
585 split->len = start - em->start;
587 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
588 split->orig_start = em->orig_start;
589 split->block_start = em->block_start;
592 split->block_len = em->block_len;
594 split->block_len = split->len;
595 split->orig_block_len = max(split->block_len,
597 split->ram_bytes = em->ram_bytes;
599 split->orig_start = split->start;
600 split->block_len = 0;
601 split->block_start = em->block_start;
602 split->orig_block_len = 0;
603 split->ram_bytes = split->len;
606 split->generation = gen;
607 split->flags = flags;
608 split->compress_type = em->compress_type;
609 replace_extent_mapping(em_tree, em, split, modified);
610 free_extent_map(split);
614 if (testend && em->start + em->len > start + len) {
615 u64 diff = start + len - em->start;
617 split->start = start + len;
618 split->len = em->start + em->len - (start + len);
619 split->flags = flags;
620 split->compress_type = em->compress_type;
621 split->generation = gen;
623 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
624 split->orig_block_len = max(em->block_len,
627 split->ram_bytes = em->ram_bytes;
629 split->block_len = em->block_len;
630 split->block_start = em->block_start;
631 split->orig_start = em->orig_start;
633 split->block_len = split->len;
634 split->block_start = em->block_start
636 split->orig_start = em->orig_start;
639 split->ram_bytes = split->len;
640 split->orig_start = split->start;
641 split->block_len = 0;
642 split->block_start = em->block_start;
643 split->orig_block_len = 0;
646 if (extent_map_in_tree(em)) {
647 replace_extent_mapping(em_tree, em, split,
650 ret = add_extent_mapping(em_tree, split,
652 ASSERT(ret == 0); /* Logic error */
654 free_extent_map(split);
658 if (extent_map_in_tree(em))
659 remove_extent_mapping(em_tree, em);
660 write_unlock(&em_tree->lock);
664 /* once for the tree*/
668 free_extent_map(split);
670 free_extent_map(split2);
674 * this is very complex, but the basic idea is to drop all extents
675 * in the range start - end. hint_block is filled in with a block number
676 * that would be a good hint to the block allocator for this file.
678 * If an extent intersects the range but is not entirely inside the range
679 * it is either truncated or split. Anything entirely inside the range
680 * is deleted from the tree.
682 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
683 * to deal with that. We set the field 'bytes_found' of the arguments structure
684 * with the number of allocated bytes found in the target range, so that the
685 * caller can update the inode's number of bytes in an atomic way when
686 * replacing extents in a range to avoid races with stat(2).
688 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
689 struct btrfs_root *root, struct btrfs_inode *inode,
690 struct btrfs_drop_extents_args *args)
692 struct btrfs_fs_info *fs_info = root->fs_info;
693 struct extent_buffer *leaf;
694 struct btrfs_file_extent_item *fi;
695 struct btrfs_ref ref = { 0 };
696 struct btrfs_key key;
697 struct btrfs_key new_key;
698 u64 ino = btrfs_ino(inode);
699 u64 search_start = args->start;
702 u64 extent_offset = 0;
704 u64 last_end = args->start;
710 int modify_tree = -1;
713 int leafs_visited = 0;
714 struct btrfs_path *path = args->path;
716 args->bytes_found = 0;
717 args->extent_inserted = false;
719 /* Must always have a path if ->replace_extent is true */
720 ASSERT(!(args->replace_extent && !args->path));
723 path = btrfs_alloc_path();
730 if (args->drop_cache)
731 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
733 if (args->start >= inode->disk_i_size && !args->replace_extent)
736 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
737 root == fs_info->tree_root);
740 ret = btrfs_lookup_file_extent(trans, root, path, ino,
741 search_start, modify_tree);
744 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
745 leaf = path->nodes[0];
746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
747 if (key.objectid == ino &&
748 key.type == BTRFS_EXTENT_DATA_KEY)
754 leaf = path->nodes[0];
755 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
757 ret = btrfs_next_leaf(root, path);
765 leaf = path->nodes[0];
769 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
771 if (key.objectid > ino)
773 if (WARN_ON_ONCE(key.objectid < ino) ||
774 key.type < BTRFS_EXTENT_DATA_KEY) {
779 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
782 fi = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_file_extent_item);
784 extent_type = btrfs_file_extent_type(leaf, fi);
786 if (extent_type == BTRFS_FILE_EXTENT_REG ||
787 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
788 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
789 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
790 extent_offset = btrfs_file_extent_offset(leaf, fi);
791 extent_end = key.offset +
792 btrfs_file_extent_num_bytes(leaf, fi);
793 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
794 extent_end = key.offset +
795 btrfs_file_extent_ram_bytes(leaf, fi);
802 * Don't skip extent items representing 0 byte lengths. They
803 * used to be created (bug) if while punching holes we hit
804 * -ENOSPC condition. So if we find one here, just ensure we
805 * delete it, otherwise we would insert a new file extent item
806 * with the same key (offset) as that 0 bytes length file
807 * extent item in the call to setup_items_for_insert() later
810 if (extent_end == key.offset && extent_end >= search_start) {
811 last_end = extent_end;
812 goto delete_extent_item;
815 if (extent_end <= search_start) {
821 search_start = max(key.offset, args->start);
822 if (recow || !modify_tree) {
824 btrfs_release_path(path);
829 * | - range to drop - |
830 * | -------- extent -------- |
832 if (args->start > key.offset && args->end < extent_end) {
834 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
839 memcpy(&new_key, &key, sizeof(new_key));
840 new_key.offset = args->start;
841 ret = btrfs_duplicate_item(trans, root, path,
843 if (ret == -EAGAIN) {
844 btrfs_release_path(path);
850 leaf = path->nodes[0];
851 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
852 struct btrfs_file_extent_item);
853 btrfs_set_file_extent_num_bytes(leaf, fi,
854 args->start - key.offset);
856 fi = btrfs_item_ptr(leaf, path->slots[0],
857 struct btrfs_file_extent_item);
859 extent_offset += args->start - key.offset;
860 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
861 btrfs_set_file_extent_num_bytes(leaf, fi,
862 extent_end - args->start);
863 btrfs_mark_buffer_dirty(leaf);
865 if (update_refs && disk_bytenr > 0) {
866 btrfs_init_generic_ref(&ref,
867 BTRFS_ADD_DELAYED_REF,
868 disk_bytenr, num_bytes, 0);
869 btrfs_init_data_ref(&ref,
870 root->root_key.objectid,
872 args->start - extent_offset);
873 ret = btrfs_inc_extent_ref(trans, &ref);
874 BUG_ON(ret); /* -ENOMEM */
876 key.offset = args->start;
879 * From here on out we will have actually dropped something, so
880 * last_end can be updated.
882 last_end = extent_end;
885 * | ---- range to drop ----- |
886 * | -------- extent -------- |
888 if (args->start <= key.offset && args->end < extent_end) {
889 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
894 memcpy(&new_key, &key, sizeof(new_key));
895 new_key.offset = args->end;
896 btrfs_set_item_key_safe(fs_info, path, &new_key);
898 extent_offset += args->end - key.offset;
899 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
900 btrfs_set_file_extent_num_bytes(leaf, fi,
901 extent_end - args->end);
902 btrfs_mark_buffer_dirty(leaf);
903 if (update_refs && disk_bytenr > 0)
904 args->bytes_found += args->end - key.offset;
908 search_start = extent_end;
910 * | ---- range to drop ----- |
911 * | -------- extent -------- |
913 if (args->start > key.offset && args->end >= extent_end) {
915 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
920 btrfs_set_file_extent_num_bytes(leaf, fi,
921 args->start - key.offset);
922 btrfs_mark_buffer_dirty(leaf);
923 if (update_refs && disk_bytenr > 0)
924 args->bytes_found += extent_end - args->start;
925 if (args->end == extent_end)
933 * | ---- range to drop ----- |
934 * | ------ extent ------ |
936 if (args->start <= key.offset && args->end >= extent_end) {
939 del_slot = path->slots[0];
942 BUG_ON(del_slot + del_nr != path->slots[0]);
947 extent_type == BTRFS_FILE_EXTENT_INLINE) {
948 args->bytes_found += extent_end - key.offset;
949 extent_end = ALIGN(extent_end,
950 fs_info->sectorsize);
951 } else if (update_refs && disk_bytenr > 0) {
952 btrfs_init_generic_ref(&ref,
953 BTRFS_DROP_DELAYED_REF,
954 disk_bytenr, num_bytes, 0);
955 btrfs_init_data_ref(&ref,
956 root->root_key.objectid,
958 key.offset - extent_offset);
959 ret = btrfs_free_extent(trans, &ref);
960 BUG_ON(ret); /* -ENOMEM */
961 args->bytes_found += extent_end - key.offset;
964 if (args->end == extent_end)
967 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
972 ret = btrfs_del_items(trans, root, path, del_slot,
975 btrfs_abort_transaction(trans, ret);
982 btrfs_release_path(path);
989 if (!ret && del_nr > 0) {
991 * Set path->slots[0] to first slot, so that after the delete
992 * if items are move off from our leaf to its immediate left or
993 * right neighbor leafs, we end up with a correct and adjusted
994 * path->slots[0] for our insertion (if args->replace_extent).
996 path->slots[0] = del_slot;
997 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
999 btrfs_abort_transaction(trans, ret);
1002 leaf = path->nodes[0];
1004 * If btrfs_del_items() was called, it might have deleted a leaf, in
1005 * which case it unlocked our path, so check path->locks[0] matches a
1008 if (!ret && args->replace_extent && leafs_visited == 1 &&
1009 path->locks[0] == BTRFS_WRITE_LOCK &&
1010 btrfs_leaf_free_space(leaf) >=
1011 sizeof(struct btrfs_item) + args->extent_item_size) {
1014 key.type = BTRFS_EXTENT_DATA_KEY;
1015 key.offset = args->start;
1016 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1017 struct btrfs_key slot_key;
1019 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1020 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1023 setup_items_for_insert(root, path, &key,
1024 &args->extent_item_size, 1);
1025 args->extent_inserted = true;
1029 btrfs_free_path(path);
1030 else if (!args->extent_inserted)
1031 btrfs_release_path(path);
1033 args->drop_end = found ? min(args->end, last_end) : args->end;
1038 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1039 u64 objectid, u64 bytenr, u64 orig_offset,
1040 u64 *start, u64 *end)
1042 struct btrfs_file_extent_item *fi;
1043 struct btrfs_key key;
1046 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1049 btrfs_item_key_to_cpu(leaf, &key, slot);
1050 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1053 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1054 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1055 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1056 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1057 btrfs_file_extent_compression(leaf, fi) ||
1058 btrfs_file_extent_encryption(leaf, fi) ||
1059 btrfs_file_extent_other_encoding(leaf, fi))
1062 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1063 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1066 *start = key.offset;
1072 * Mark extent in the range start - end as written.
1074 * This changes extent type from 'pre-allocated' to 'regular'. If only
1075 * part of extent is marked as written, the extent will be split into
1078 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1079 struct btrfs_inode *inode, u64 start, u64 end)
1081 struct btrfs_fs_info *fs_info = trans->fs_info;
1082 struct btrfs_root *root = inode->root;
1083 struct extent_buffer *leaf;
1084 struct btrfs_path *path;
1085 struct btrfs_file_extent_item *fi;
1086 struct btrfs_ref ref = { 0 };
1087 struct btrfs_key key;
1088 struct btrfs_key new_key;
1100 u64 ino = btrfs_ino(inode);
1102 path = btrfs_alloc_path();
1109 key.type = BTRFS_EXTENT_DATA_KEY;
1112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1115 if (ret > 0 && path->slots[0] > 0)
1118 leaf = path->nodes[0];
1119 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1120 if (key.objectid != ino ||
1121 key.type != BTRFS_EXTENT_DATA_KEY) {
1123 btrfs_abort_transaction(trans, ret);
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1130 btrfs_abort_transaction(trans, ret);
1133 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134 if (key.offset > start || extent_end < end) {
1136 btrfs_abort_transaction(trans, ret);
1140 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1141 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1142 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1143 memcpy(&new_key, &key, sizeof(new_key));
1145 if (start == key.offset && end < extent_end) {
1148 if (extent_mergeable(leaf, path->slots[0] - 1,
1149 ino, bytenr, orig_offset,
1150 &other_start, &other_end)) {
1151 new_key.offset = end;
1152 btrfs_set_item_key_safe(fs_info, path, &new_key);
1153 fi = btrfs_item_ptr(leaf, path->slots[0],
1154 struct btrfs_file_extent_item);
1155 btrfs_set_file_extent_generation(leaf, fi,
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1159 btrfs_set_file_extent_offset(leaf, fi,
1161 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1162 struct btrfs_file_extent_item);
1163 btrfs_set_file_extent_generation(leaf, fi,
1165 btrfs_set_file_extent_num_bytes(leaf, fi,
1167 btrfs_mark_buffer_dirty(leaf);
1172 if (start > key.offset && end == extent_end) {
1175 if (extent_mergeable(leaf, path->slots[0] + 1,
1176 ino, bytenr, orig_offset,
1177 &other_start, &other_end)) {
1178 fi = btrfs_item_ptr(leaf, path->slots[0],
1179 struct btrfs_file_extent_item);
1180 btrfs_set_file_extent_num_bytes(leaf, fi,
1181 start - key.offset);
1182 btrfs_set_file_extent_generation(leaf, fi,
1185 new_key.offset = start;
1186 btrfs_set_item_key_safe(fs_info, path, &new_key);
1188 fi = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_file_extent_item);
1190 btrfs_set_file_extent_generation(leaf, fi,
1192 btrfs_set_file_extent_num_bytes(leaf, fi,
1194 btrfs_set_file_extent_offset(leaf, fi,
1195 start - orig_offset);
1196 btrfs_mark_buffer_dirty(leaf);
1201 while (start > key.offset || end < extent_end) {
1202 if (key.offset == start)
1205 new_key.offset = split;
1206 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1207 if (ret == -EAGAIN) {
1208 btrfs_release_path(path);
1212 btrfs_abort_transaction(trans, ret);
1216 leaf = path->nodes[0];
1217 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1218 struct btrfs_file_extent_item);
1219 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220 btrfs_set_file_extent_num_bytes(leaf, fi,
1221 split - key.offset);
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1226 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1227 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1228 btrfs_set_file_extent_num_bytes(leaf, fi,
1229 extent_end - split);
1230 btrfs_mark_buffer_dirty(leaf);
1232 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1234 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1236 ret = btrfs_inc_extent_ref(trans, &ref);
1238 btrfs_abort_transaction(trans, ret);
1242 if (split == start) {
1245 if (start != key.offset) {
1247 btrfs_abort_transaction(trans, ret);
1258 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1260 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1261 if (extent_mergeable(leaf, path->slots[0] + 1,
1262 ino, bytenr, orig_offset,
1263 &other_start, &other_end)) {
1265 btrfs_release_path(path);
1268 extent_end = other_end;
1269 del_slot = path->slots[0] + 1;
1271 ret = btrfs_free_extent(trans, &ref);
1273 btrfs_abort_transaction(trans, ret);
1279 if (extent_mergeable(leaf, path->slots[0] - 1,
1280 ino, bytenr, orig_offset,
1281 &other_start, &other_end)) {
1283 btrfs_release_path(path);
1286 key.offset = other_start;
1287 del_slot = path->slots[0];
1289 ret = btrfs_free_extent(trans, &ref);
1291 btrfs_abort_transaction(trans, ret);
1296 fi = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_file_extent_item);
1298 btrfs_set_file_extent_type(leaf, fi,
1299 BTRFS_FILE_EXTENT_REG);
1300 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301 btrfs_mark_buffer_dirty(leaf);
1303 fi = btrfs_item_ptr(leaf, del_slot - 1,
1304 struct btrfs_file_extent_item);
1305 btrfs_set_file_extent_type(leaf, fi,
1306 BTRFS_FILE_EXTENT_REG);
1307 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1308 btrfs_set_file_extent_num_bytes(leaf, fi,
1309 extent_end - key.offset);
1310 btrfs_mark_buffer_dirty(leaf);
1312 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1314 btrfs_abort_transaction(trans, ret);
1319 btrfs_free_path(path);
1324 * on error we return an unlocked page and the error value
1325 * on success we return a locked page and 0
1327 static int prepare_uptodate_page(struct inode *inode,
1328 struct page *page, u64 pos,
1329 bool force_uptodate)
1333 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1334 !PageUptodate(page)) {
1335 ret = btrfs_readpage(NULL, page);
1339 if (!PageUptodate(page)) {
1343 if (page->mapping != inode->i_mapping) {
1352 * this just gets pages into the page cache and locks them down.
1354 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1355 size_t num_pages, loff_t pos,
1356 size_t write_bytes, bool force_uptodate)
1359 unsigned long index = pos >> PAGE_SHIFT;
1360 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1364 for (i = 0; i < num_pages; i++) {
1366 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1367 mask | __GFP_WRITE);
1374 err = set_page_extent_mapped(pages[i]);
1381 err = prepare_uptodate_page(inode, pages[i], pos,
1383 if (!err && i == num_pages - 1)
1384 err = prepare_uptodate_page(inode, pages[i],
1385 pos + write_bytes, false);
1388 if (err == -EAGAIN) {
1395 wait_on_page_writeback(pages[i]);
1400 while (faili >= 0) {
1401 unlock_page(pages[faili]);
1402 put_page(pages[faili]);
1410 * This function locks the extent and properly waits for data=ordered extents
1411 * to finish before allowing the pages to be modified if need.
1414 * 1 - the extent is locked
1415 * 0 - the extent is not locked, and everything is OK
1416 * -EAGAIN - need re-prepare the pages
1417 * the other < 0 number - Something wrong happens
1420 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1421 size_t num_pages, loff_t pos,
1423 u64 *lockstart, u64 *lockend,
1424 struct extent_state **cached_state)
1426 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432 start_pos = round_down(pos, fs_info->sectorsize);
1433 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1435 if (start_pos < inode->vfs_inode.i_size) {
1436 struct btrfs_ordered_extent *ordered;
1438 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1440 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1441 last_pos - start_pos + 1);
1443 ordered->file_offset + ordered->num_bytes > start_pos &&
1444 ordered->file_offset <= last_pos) {
1445 unlock_extent_cached(&inode->io_tree, start_pos,
1446 last_pos, cached_state);
1447 for (i = 0; i < num_pages; i++) {
1448 unlock_page(pages[i]);
1451 btrfs_start_ordered_extent(ordered, 1);
1452 btrfs_put_ordered_extent(ordered);
1456 btrfs_put_ordered_extent(ordered);
1458 *lockstart = start_pos;
1459 *lockend = last_pos;
1464 * We should be called after prepare_pages() which should have locked
1465 * all pages in the range.
1467 for (i = 0; i < num_pages; i++)
1468 WARN_ON(!PageLocked(pages[i]));
1473 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1474 size_t *write_bytes, bool nowait)
1476 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1477 struct btrfs_root *root = inode->root;
1478 u64 lockstart, lockend;
1482 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1485 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1488 lockstart = round_down(pos, fs_info->sectorsize);
1489 lockend = round_up(pos + *write_bytes,
1490 fs_info->sectorsize) - 1;
1491 num_bytes = lockend - lockstart + 1;
1494 struct btrfs_ordered_extent *ordered;
1496 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1499 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1502 btrfs_put_ordered_extent(ordered);
1507 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1511 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1512 NULL, NULL, NULL, false);
1516 btrfs_drew_write_unlock(&root->snapshot_lock);
1518 *write_bytes = min_t(size_t, *write_bytes ,
1519 num_bytes - pos + lockstart);
1522 unlock_extent(&inode->io_tree, lockstart, lockend);
1527 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1528 size_t *write_bytes)
1530 return check_can_nocow(inode, pos, write_bytes, true);
1534 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1537 * @write_bytes: The length to write, will be updated to the nocow writeable
1540 * This function will flush ordered extents in the range to ensure proper
1544 * >0 and update @write_bytes if we can do nocow write
1545 * 0 if we can't do nocow write
1546 * -EAGAIN if we can't get the needed lock or there are ordered extents
1547 * for * (nowait == true) case
1548 * <0 if other error happened
1550 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1552 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1553 size_t *write_bytes)
1555 return check_can_nocow(inode, pos, write_bytes, false);
1558 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1560 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1563 static void update_time_for_write(struct inode *inode)
1565 struct timespec64 now;
1567 if (IS_NOCMTIME(inode))
1570 now = current_time(inode);
1571 if (!timespec64_equal(&inode->i_mtime, &now))
1572 inode->i_mtime = now;
1574 if (!timespec64_equal(&inode->i_ctime, &now))
1575 inode->i_ctime = now;
1577 if (IS_I_VERSION(inode))
1578 inode_inc_iversion(inode);
1581 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1584 struct file *file = iocb->ki_filp;
1585 struct inode *inode = file_inode(file);
1586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1587 loff_t pos = iocb->ki_pos;
1592 if (iocb->ki_flags & IOCB_NOWAIT) {
1593 size_t nocow_bytes = count;
1595 /* We will allocate space in case nodatacow is not set, so bail */
1596 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1599 * There are holes in the range or parts of the range that must
1600 * be COWed (shared extents, RO block groups, etc), so just bail
1603 if (nocow_bytes < count)
1607 current->backing_dev_info = inode_to_bdi(inode);
1608 ret = file_remove_privs(file);
1613 * We reserve space for updating the inode when we reserve space for the
1614 * extent we are going to write, so we will enospc out there. We don't
1615 * need to start yet another transaction to update the inode as we will
1616 * update the inode when we finish writing whatever data we write.
1618 update_time_for_write(inode);
1620 start_pos = round_down(pos, fs_info->sectorsize);
1621 oldsize = i_size_read(inode);
1622 if (start_pos > oldsize) {
1623 /* Expand hole size to cover write data, preventing empty gap */
1624 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1626 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1628 current->backing_dev_info = NULL;
1636 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1639 struct file *file = iocb->ki_filp;
1641 struct inode *inode = file_inode(file);
1642 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1643 struct page **pages = NULL;
1644 struct extent_changeset *data_reserved = NULL;
1645 u64 release_bytes = 0;
1648 size_t num_written = 0;
1651 bool only_release_metadata = false;
1652 bool force_page_uptodate = false;
1653 loff_t old_isize = i_size_read(inode);
1654 unsigned int ilock_flags = 0;
1656 if (iocb->ki_flags & IOCB_NOWAIT)
1657 ilock_flags |= BTRFS_ILOCK_TRY;
1659 ret = btrfs_inode_lock(inode, ilock_flags);
1663 ret = generic_write_checks(iocb, i);
1667 ret = btrfs_write_check(iocb, i, ret);
1672 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1673 PAGE_SIZE / (sizeof(struct page *)));
1674 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1675 nrptrs = max(nrptrs, 8);
1676 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1682 while (iov_iter_count(i) > 0) {
1683 struct extent_state *cached_state = NULL;
1684 size_t offset = offset_in_page(pos);
1685 size_t sector_offset;
1686 size_t write_bytes = min(iov_iter_count(i),
1687 nrptrs * (size_t)PAGE_SIZE -
1690 size_t reserve_bytes;
1693 size_t dirty_sectors;
1698 * Fault pages before locking them in prepare_pages
1699 * to avoid recursive lock
1701 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1706 only_release_metadata = false;
1707 sector_offset = pos & (fs_info->sectorsize - 1);
1709 extent_changeset_release(data_reserved);
1710 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1711 &data_reserved, pos,
1715 * If we don't have to COW at the offset, reserve
1716 * metadata only. write_bytes may get smaller than
1719 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1721 only_release_metadata = true;
1726 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1727 WARN_ON(num_pages > nrptrs);
1728 reserve_bytes = round_up(write_bytes + sector_offset,
1729 fs_info->sectorsize);
1730 WARN_ON(reserve_bytes == 0);
1731 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1734 if (!only_release_metadata)
1735 btrfs_free_reserved_data_space(BTRFS_I(inode),
1739 btrfs_check_nocow_unlock(BTRFS_I(inode));
1743 release_bytes = reserve_bytes;
1746 * This is going to setup the pages array with the number of
1747 * pages we want, so we don't really need to worry about the
1748 * contents of pages from loop to loop
1750 ret = prepare_pages(inode, pages, num_pages,
1752 force_page_uptodate);
1754 btrfs_delalloc_release_extents(BTRFS_I(inode),
1759 extents_locked = lock_and_cleanup_extent_if_need(
1760 BTRFS_I(inode), pages,
1761 num_pages, pos, write_bytes, &lockstart,
1762 &lockend, &cached_state);
1763 if (extents_locked < 0) {
1764 if (extents_locked == -EAGAIN)
1766 btrfs_delalloc_release_extents(BTRFS_I(inode),
1768 ret = extents_locked;
1772 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1774 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1775 dirty_sectors = round_up(copied + sector_offset,
1776 fs_info->sectorsize);
1777 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1780 * if we have trouble faulting in the pages, fall
1781 * back to one page at a time
1783 if (copied < write_bytes)
1787 force_page_uptodate = true;
1791 force_page_uptodate = false;
1792 dirty_pages = DIV_ROUND_UP(copied + offset,
1796 if (num_sectors > dirty_sectors) {
1797 /* release everything except the sectors we dirtied */
1798 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1799 if (only_release_metadata) {
1800 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1801 release_bytes, true);
1805 __pos = round_down(pos,
1806 fs_info->sectorsize) +
1807 (dirty_pages << PAGE_SHIFT);
1808 btrfs_delalloc_release_space(BTRFS_I(inode),
1809 data_reserved, __pos,
1810 release_bytes, true);
1814 release_bytes = round_up(copied + sector_offset,
1815 fs_info->sectorsize);
1817 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1818 dirty_pages, pos, copied,
1819 &cached_state, only_release_metadata);
1822 * If we have not locked the extent range, because the range's
1823 * start offset is >= i_size, we might still have a non-NULL
1824 * cached extent state, acquired while marking the extent range
1825 * as delalloc through btrfs_dirty_pages(). Therefore free any
1826 * possible cached extent state to avoid a memory leak.
1829 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1830 lockstart, lockend, &cached_state);
1832 free_extent_state(cached_state);
1834 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1836 btrfs_drop_pages(pages, num_pages);
1841 if (only_release_metadata)
1842 btrfs_check_nocow_unlock(BTRFS_I(inode));
1844 btrfs_drop_pages(pages, num_pages);
1848 balance_dirty_pages_ratelimited(inode->i_mapping);
1851 num_written += copied;
1856 if (release_bytes) {
1857 if (only_release_metadata) {
1858 btrfs_check_nocow_unlock(BTRFS_I(inode));
1859 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1860 release_bytes, true);
1862 btrfs_delalloc_release_space(BTRFS_I(inode),
1864 round_down(pos, fs_info->sectorsize),
1865 release_bytes, true);
1869 extent_changeset_free(data_reserved);
1870 if (num_written > 0) {
1871 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1872 iocb->ki_pos += num_written;
1875 btrfs_inode_unlock(inode, ilock_flags);
1876 return num_written ? num_written : ret;
1879 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1880 const struct iov_iter *iter, loff_t offset)
1882 const u32 blocksize_mask = fs_info->sectorsize - 1;
1884 if (offset & blocksize_mask)
1887 if (iov_iter_alignment(iter) & blocksize_mask)
1893 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1895 struct file *file = iocb->ki_filp;
1896 struct inode *inode = file_inode(file);
1897 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1899 ssize_t written = 0;
1900 ssize_t written_buffered;
1903 unsigned int ilock_flags = 0;
1904 struct iomap_dio *dio = NULL;
1906 if (iocb->ki_flags & IOCB_NOWAIT)
1907 ilock_flags |= BTRFS_ILOCK_TRY;
1909 /* If the write DIO is within EOF, use a shared lock */
1910 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1911 ilock_flags |= BTRFS_ILOCK_SHARED;
1914 err = btrfs_inode_lock(inode, ilock_flags);
1918 err = generic_write_checks(iocb, from);
1920 btrfs_inode_unlock(inode, ilock_flags);
1924 err = btrfs_write_check(iocb, from, err);
1926 btrfs_inode_unlock(inode, ilock_flags);
1932 * Re-check since file size may have changed just before taking the
1933 * lock or pos may have changed because of O_APPEND in generic_write_check()
1935 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1936 pos + iov_iter_count(from) > i_size_read(inode)) {
1937 btrfs_inode_unlock(inode, ilock_flags);
1938 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1942 if (check_direct_IO(fs_info, from, pos)) {
1943 btrfs_inode_unlock(inode, ilock_flags);
1947 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1950 btrfs_inode_unlock(inode, ilock_flags);
1952 if (IS_ERR_OR_NULL(dio)) {
1953 err = PTR_ERR_OR_ZERO(dio);
1954 if (err < 0 && err != -ENOTBLK)
1957 written = iomap_dio_complete(dio);
1960 if (written < 0 || !iov_iter_count(from)) {
1967 written_buffered = btrfs_buffered_write(iocb, from);
1968 if (written_buffered < 0) {
1969 err = written_buffered;
1973 * Ensure all data is persisted. We want the next direct IO read to be
1974 * able to read what was just written.
1976 endbyte = pos + written_buffered - 1;
1977 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1980 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1983 written += written_buffered;
1984 iocb->ki_pos = pos + written_buffered;
1985 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1986 endbyte >> PAGE_SHIFT);
1988 return written ? written : err;
1991 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1992 struct iov_iter *from)
1994 struct file *file = iocb->ki_filp;
1995 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1996 ssize_t num_written = 0;
1997 const bool sync = iocb->ki_flags & IOCB_DSYNC;
2000 * If the fs flips readonly due to some impossible error, although we
2001 * have opened a file as writable, we have to stop this write operation
2002 * to ensure consistency.
2004 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2007 if (!(iocb->ki_flags & IOCB_DIRECT) &&
2008 (iocb->ki_flags & IOCB_NOWAIT))
2012 atomic_inc(&inode->sync_writers);
2014 if (iocb->ki_flags & IOCB_DIRECT)
2015 num_written = btrfs_direct_write(iocb, from);
2017 num_written = btrfs_buffered_write(iocb, from);
2019 btrfs_set_inode_last_sub_trans(inode);
2021 if (num_written > 0)
2022 num_written = generic_write_sync(iocb, num_written);
2025 atomic_dec(&inode->sync_writers);
2027 current->backing_dev_info = NULL;
2031 int btrfs_release_file(struct inode *inode, struct file *filp)
2033 struct btrfs_file_private *private = filp->private_data;
2035 if (private && private->filldir_buf)
2036 kfree(private->filldir_buf);
2038 filp->private_data = NULL;
2041 * Set by setattr when we are about to truncate a file from a non-zero
2042 * size to a zero size. This tries to flush down new bytes that may
2043 * have been written if the application were using truncate to replace
2046 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2047 &BTRFS_I(inode)->runtime_flags))
2048 filemap_flush(inode->i_mapping);
2052 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2055 struct blk_plug plug;
2058 * This is only called in fsync, which would do synchronous writes, so
2059 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2060 * multiple disks using raid profile, a large IO can be split to
2061 * several segments of stripe length (currently 64K).
2063 blk_start_plug(&plug);
2064 atomic_inc(&BTRFS_I(inode)->sync_writers);
2065 ret = btrfs_fdatawrite_range(inode, start, end);
2066 atomic_dec(&BTRFS_I(inode)->sync_writers);
2067 blk_finish_plug(&plug);
2072 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2074 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2075 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2077 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2078 list_empty(&ctx->ordered_extents))
2082 * If we are doing a fast fsync we can not bail out if the inode's
2083 * last_trans is <= then the last committed transaction, because we only
2084 * update the last_trans of the inode during ordered extent completion,
2085 * and for a fast fsync we don't wait for that, we only wait for the
2086 * writeback to complete.
2088 if (inode->last_trans <= fs_info->last_trans_committed &&
2089 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2090 list_empty(&ctx->ordered_extents)))
2097 * fsync call for both files and directories. This logs the inode into
2098 * the tree log instead of forcing full commits whenever possible.
2100 * It needs to call filemap_fdatawait so that all ordered extent updates are
2101 * in the metadata btree are up to date for copying to the log.
2103 * It drops the inode mutex before doing the tree log commit. This is an
2104 * important optimization for directories because holding the mutex prevents
2105 * new operations on the dir while we write to disk.
2107 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2109 struct dentry *dentry = file_dentry(file);
2110 struct inode *inode = d_inode(dentry);
2111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2112 struct btrfs_root *root = BTRFS_I(inode)->root;
2113 struct btrfs_trans_handle *trans;
2114 struct btrfs_log_ctx ctx;
2119 trace_btrfs_sync_file(file, datasync);
2121 btrfs_init_log_ctx(&ctx, inode);
2124 * Always set the range to a full range, otherwise we can get into
2125 * several problems, from missing file extent items to represent holes
2126 * when not using the NO_HOLES feature, to log tree corruption due to
2127 * races between hole detection during logging and completion of ordered
2128 * extents outside the range, to missing checksums due to ordered extents
2129 * for which we flushed only a subset of their pages.
2133 len = (u64)LLONG_MAX + 1;
2136 * We write the dirty pages in the range and wait until they complete
2137 * out of the ->i_mutex. If so, we can flush the dirty pages by
2138 * multi-task, and make the performance up. See
2139 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2141 ret = start_ordered_ops(inode, start, end);
2145 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2147 atomic_inc(&root->log_batch);
2150 * Always check for the full sync flag while holding the inode's lock,
2151 * to avoid races with other tasks. The flag must be either set all the
2152 * time during logging or always off all the time while logging.
2154 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2155 &BTRFS_I(inode)->runtime_flags);
2158 * Before we acquired the inode's lock and the mmap lock, someone may
2159 * have dirtied more pages in the target range. We need to make sure
2160 * that writeback for any such pages does not start while we are logging
2161 * the inode, because if it does, any of the following might happen when
2162 * we are not doing a full inode sync:
2164 * 1) We log an extent after its writeback finishes but before its
2165 * checksums are added to the csum tree, leading to -EIO errors
2166 * when attempting to read the extent after a log replay.
2168 * 2) We can end up logging an extent before its writeback finishes.
2169 * Therefore after the log replay we will have a file extent item
2170 * pointing to an unwritten extent (and no data checksums as well).
2172 * So trigger writeback for any eventual new dirty pages and then we
2173 * wait for all ordered extents to complete below.
2175 ret = start_ordered_ops(inode, start, end);
2177 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2182 * We have to do this here to avoid the priority inversion of waiting on
2183 * IO of a lower priority task while holding a transaction open.
2185 * For a full fsync we wait for the ordered extents to complete while
2186 * for a fast fsync we wait just for writeback to complete, and then
2187 * attach the ordered extents to the transaction so that a transaction
2188 * commit waits for their completion, to avoid data loss if we fsync,
2189 * the current transaction commits before the ordered extents complete
2190 * and a power failure happens right after that.
2192 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2193 * logical address recorded in the ordered extent may change. We need
2194 * to wait for the IO to stabilize the logical address.
2196 if (full_sync || btrfs_is_zoned(fs_info)) {
2197 ret = btrfs_wait_ordered_range(inode, start, len);
2200 * Get our ordered extents as soon as possible to avoid doing
2201 * checksum lookups in the csum tree, and use instead the
2202 * checksums attached to the ordered extents.
2204 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2205 &ctx.ordered_extents);
2206 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2210 goto out_release_extents;
2212 atomic_inc(&root->log_batch);
2215 if (skip_inode_logging(&ctx)) {
2217 * We've had everything committed since the last time we were
2218 * modified so clear this flag in case it was set for whatever
2219 * reason, it's no longer relevant.
2221 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2222 &BTRFS_I(inode)->runtime_flags);
2224 * An ordered extent might have started before and completed
2225 * already with io errors, in which case the inode was not
2226 * updated and we end up here. So check the inode's mapping
2227 * for any errors that might have happened since we last
2228 * checked called fsync.
2230 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2231 goto out_release_extents;
2235 * We use start here because we will need to wait on the IO to complete
2236 * in btrfs_sync_log, which could require joining a transaction (for
2237 * example checking cross references in the nocow path). If we use join
2238 * here we could get into a situation where we're waiting on IO to
2239 * happen that is blocked on a transaction trying to commit. With start
2240 * we inc the extwriter counter, so we wait for all extwriters to exit
2241 * before we start blocking joiners. This comment is to keep somebody
2242 * from thinking they are super smart and changing this to
2243 * btrfs_join_transaction *cough*Josef*cough*.
2245 trans = btrfs_start_transaction(root, 0);
2246 if (IS_ERR(trans)) {
2247 ret = PTR_ERR(trans);
2248 goto out_release_extents;
2250 trans->in_fsync = true;
2252 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2253 btrfs_release_log_ctx_extents(&ctx);
2255 /* Fallthrough and commit/free transaction. */
2259 /* we've logged all the items and now have a consistent
2260 * version of the file in the log. It is possible that
2261 * someone will come in and modify the file, but that's
2262 * fine because the log is consistent on disk, and we
2263 * have references to all of the file's extents
2265 * It is possible that someone will come in and log the
2266 * file again, but that will end up using the synchronization
2267 * inside btrfs_sync_log to keep things safe.
2269 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2271 if (ret != BTRFS_NO_LOG_SYNC) {
2273 ret = btrfs_sync_log(trans, root, &ctx);
2275 ret = btrfs_end_transaction(trans);
2280 ret = btrfs_wait_ordered_range(inode, start, len);
2282 btrfs_end_transaction(trans);
2286 ret = btrfs_commit_transaction(trans);
2288 ret = btrfs_end_transaction(trans);
2291 ASSERT(list_empty(&ctx.list));
2292 err = file_check_and_advance_wb_err(file);
2295 return ret > 0 ? -EIO : ret;
2297 out_release_extents:
2298 btrfs_release_log_ctx_extents(&ctx);
2299 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2303 static const struct vm_operations_struct btrfs_file_vm_ops = {
2304 .fault = filemap_fault,
2305 .map_pages = filemap_map_pages,
2306 .page_mkwrite = btrfs_page_mkwrite,
2309 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2311 struct address_space *mapping = filp->f_mapping;
2313 if (!mapping->a_ops->readpage)
2316 file_accessed(filp);
2317 vma->vm_ops = &btrfs_file_vm_ops;
2322 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2323 int slot, u64 start, u64 end)
2325 struct btrfs_file_extent_item *fi;
2326 struct btrfs_key key;
2328 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2331 btrfs_item_key_to_cpu(leaf, &key, slot);
2332 if (key.objectid != btrfs_ino(inode) ||
2333 key.type != BTRFS_EXTENT_DATA_KEY)
2336 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2338 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2341 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2344 if (key.offset == end)
2346 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2351 static int fill_holes(struct btrfs_trans_handle *trans,
2352 struct btrfs_inode *inode,
2353 struct btrfs_path *path, u64 offset, u64 end)
2355 struct btrfs_fs_info *fs_info = trans->fs_info;
2356 struct btrfs_root *root = inode->root;
2357 struct extent_buffer *leaf;
2358 struct btrfs_file_extent_item *fi;
2359 struct extent_map *hole_em;
2360 struct extent_map_tree *em_tree = &inode->extent_tree;
2361 struct btrfs_key key;
2364 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2367 key.objectid = btrfs_ino(inode);
2368 key.type = BTRFS_EXTENT_DATA_KEY;
2369 key.offset = offset;
2371 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2374 * We should have dropped this offset, so if we find it then
2375 * something has gone horribly wrong.
2382 leaf = path->nodes[0];
2383 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2387 fi = btrfs_item_ptr(leaf, path->slots[0],
2388 struct btrfs_file_extent_item);
2389 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2391 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2392 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2393 btrfs_set_file_extent_offset(leaf, fi, 0);
2394 btrfs_mark_buffer_dirty(leaf);
2398 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2401 key.offset = offset;
2402 btrfs_set_item_key_safe(fs_info, path, &key);
2403 fi = btrfs_item_ptr(leaf, path->slots[0],
2404 struct btrfs_file_extent_item);
2405 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2407 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2408 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2409 btrfs_set_file_extent_offset(leaf, fi, 0);
2410 btrfs_mark_buffer_dirty(leaf);
2413 btrfs_release_path(path);
2415 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2416 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2421 btrfs_release_path(path);
2423 hole_em = alloc_extent_map();
2425 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2428 hole_em->start = offset;
2429 hole_em->len = end - offset;
2430 hole_em->ram_bytes = hole_em->len;
2431 hole_em->orig_start = offset;
2433 hole_em->block_start = EXTENT_MAP_HOLE;
2434 hole_em->block_len = 0;
2435 hole_em->orig_block_len = 0;
2436 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2437 hole_em->generation = trans->transid;
2440 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2441 write_lock(&em_tree->lock);
2442 ret = add_extent_mapping(em_tree, hole_em, 1);
2443 write_unlock(&em_tree->lock);
2444 } while (ret == -EEXIST);
2445 free_extent_map(hole_em);
2447 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2448 &inode->runtime_flags);
2455 * Find a hole extent on given inode and change start/len to the end of hole
2456 * extent.(hole/vacuum extent whose em->start <= start &&
2457 * em->start + em->len > start)
2458 * When a hole extent is found, return 1 and modify start/len.
2460 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2462 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2463 struct extent_map *em;
2466 em = btrfs_get_extent(inode, NULL, 0,
2467 round_down(*start, fs_info->sectorsize),
2468 round_up(*len, fs_info->sectorsize));
2472 /* Hole or vacuum extent(only exists in no-hole mode) */
2473 if (em->block_start == EXTENT_MAP_HOLE) {
2475 *len = em->start + em->len > *start + *len ?
2476 0 : *start + *len - em->start - em->len;
2477 *start = em->start + em->len;
2479 free_extent_map(em);
2483 static int btrfs_punch_hole_lock_range(struct inode *inode,
2484 const u64 lockstart,
2486 struct extent_state **cached_state)
2489 * For subpage case, if the range is not at page boundary, we could
2490 * have pages at the leading/tailing part of the range.
2491 * This could lead to dead loop since filemap_range_has_page()
2492 * will always return true.
2493 * So here we need to do extra page alignment for
2494 * filemap_range_has_page().
2496 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2497 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2500 struct btrfs_ordered_extent *ordered;
2503 truncate_pagecache_range(inode, lockstart, lockend);
2505 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2507 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2511 * We need to make sure we have no ordered extents in this range
2512 * and nobody raced in and read a page in this range, if we did
2513 * we need to try again.
2516 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2517 ordered->file_offset > lockend)) &&
2518 !filemap_range_has_page(inode->i_mapping,
2519 page_lockstart, page_lockend)) {
2521 btrfs_put_ordered_extent(ordered);
2525 btrfs_put_ordered_extent(ordered);
2526 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2527 lockend, cached_state);
2528 ret = btrfs_wait_ordered_range(inode, lockstart,
2529 lockend - lockstart + 1);
2536 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2537 struct btrfs_inode *inode,
2538 struct btrfs_path *path,
2539 struct btrfs_replace_extent_info *extent_info,
2540 const u64 replace_len,
2541 const u64 bytes_to_drop)
2543 struct btrfs_fs_info *fs_info = trans->fs_info;
2544 struct btrfs_root *root = inode->root;
2545 struct btrfs_file_extent_item *extent;
2546 struct extent_buffer *leaf;
2547 struct btrfs_key key;
2549 struct btrfs_ref ref = { 0 };
2552 if (replace_len == 0)
2555 if (extent_info->disk_offset == 0 &&
2556 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2557 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2561 key.objectid = btrfs_ino(inode);
2562 key.type = BTRFS_EXTENT_DATA_KEY;
2563 key.offset = extent_info->file_offset;
2564 ret = btrfs_insert_empty_item(trans, root, path, &key,
2565 sizeof(struct btrfs_file_extent_item));
2568 leaf = path->nodes[0];
2569 slot = path->slots[0];
2570 write_extent_buffer(leaf, extent_info->extent_buf,
2571 btrfs_item_ptr_offset(leaf, slot),
2572 sizeof(struct btrfs_file_extent_item));
2573 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2574 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2575 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2576 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2577 if (extent_info->is_new_extent)
2578 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2579 btrfs_mark_buffer_dirty(leaf);
2580 btrfs_release_path(path);
2582 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2587 /* If it's a hole, nothing more needs to be done. */
2588 if (extent_info->disk_offset == 0) {
2589 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2593 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2595 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2596 key.objectid = extent_info->disk_offset;
2597 key.type = BTRFS_EXTENT_ITEM_KEY;
2598 key.offset = extent_info->disk_len;
2599 ret = btrfs_alloc_reserved_file_extent(trans, root,
2601 extent_info->file_offset,
2602 extent_info->qgroup_reserved,
2607 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2608 extent_info->disk_offset,
2609 extent_info->disk_len, 0);
2610 ref_offset = extent_info->file_offset - extent_info->data_offset;
2611 btrfs_init_data_ref(&ref, root->root_key.objectid,
2612 btrfs_ino(inode), ref_offset);
2613 ret = btrfs_inc_extent_ref(trans, &ref);
2616 extent_info->insertions++;
2622 * The respective range must have been previously locked, as well as the inode.
2623 * The end offset is inclusive (last byte of the range).
2624 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2625 * the file range with an extent.
2626 * When not punching a hole, we don't want to end up in a state where we dropped
2627 * extents without inserting a new one, so we must abort the transaction to avoid
2630 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2631 struct btrfs_path *path, const u64 start,
2633 struct btrfs_replace_extent_info *extent_info,
2634 struct btrfs_trans_handle **trans_out)
2636 struct btrfs_drop_extents_args drop_args = { 0 };
2637 struct btrfs_root *root = inode->root;
2638 struct btrfs_fs_info *fs_info = root->fs_info;
2639 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2640 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2641 struct btrfs_trans_handle *trans = NULL;
2642 struct btrfs_block_rsv *rsv;
2643 unsigned int rsv_count;
2645 u64 len = end - start;
2651 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2656 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2660 * 1 - update the inode
2661 * 1 - removing the extents in the range
2662 * 1 - adding the hole extent if no_holes isn't set or if we are
2663 * replacing the range with a new extent
2665 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2670 trans = btrfs_start_transaction(root, rsv_count);
2671 if (IS_ERR(trans)) {
2672 ret = PTR_ERR(trans);
2677 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2680 trans->block_rsv = rsv;
2683 drop_args.path = path;
2684 drop_args.end = end + 1;
2685 drop_args.drop_cache = true;
2686 while (cur_offset < end) {
2687 drop_args.start = cur_offset;
2688 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2689 /* If we are punching a hole decrement the inode's byte count */
2691 btrfs_update_inode_bytes(inode, 0,
2692 drop_args.bytes_found);
2693 if (ret != -ENOSPC) {
2695 * When cloning we want to avoid transaction aborts when
2696 * nothing was done and we are attempting to clone parts
2697 * of inline extents, in such cases -EOPNOTSUPP is
2698 * returned by __btrfs_drop_extents() without having
2699 * changed anything in the file.
2701 if (extent_info && !extent_info->is_new_extent &&
2702 ret && ret != -EOPNOTSUPP)
2703 btrfs_abort_transaction(trans, ret);
2707 trans->block_rsv = &fs_info->trans_block_rsv;
2709 if (!extent_info && cur_offset < drop_args.drop_end &&
2710 cur_offset < ino_size) {
2711 ret = fill_holes(trans, inode, path, cur_offset,
2712 drop_args.drop_end);
2715 * If we failed then we didn't insert our hole
2716 * entries for the area we dropped, so now the
2717 * fs is corrupted, so we must abort the
2720 btrfs_abort_transaction(trans, ret);
2723 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2725 * We are past the i_size here, but since we didn't
2726 * insert holes we need to clear the mapped area so we
2727 * know to not set disk_i_size in this area until a new
2728 * file extent is inserted here.
2730 ret = btrfs_inode_clear_file_extent_range(inode,
2732 drop_args.drop_end - cur_offset);
2735 * We couldn't clear our area, so we could
2736 * presumably adjust up and corrupt the fs, so
2739 btrfs_abort_transaction(trans, ret);
2745 drop_args.drop_end > extent_info->file_offset) {
2746 u64 replace_len = drop_args.drop_end -
2747 extent_info->file_offset;
2749 ret = btrfs_insert_replace_extent(trans, inode, path,
2750 extent_info, replace_len,
2751 drop_args.bytes_found);
2753 btrfs_abort_transaction(trans, ret);
2756 extent_info->data_len -= replace_len;
2757 extent_info->data_offset += replace_len;
2758 extent_info->file_offset += replace_len;
2761 ret = btrfs_update_inode(trans, root, inode);
2765 btrfs_end_transaction(trans);
2766 btrfs_btree_balance_dirty(fs_info);
2768 trans = btrfs_start_transaction(root, rsv_count);
2769 if (IS_ERR(trans)) {
2770 ret = PTR_ERR(trans);
2775 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2776 rsv, min_size, false);
2777 BUG_ON(ret); /* shouldn't happen */
2778 trans->block_rsv = rsv;
2780 cur_offset = drop_args.drop_end;
2781 len = end - cur_offset;
2782 if (!extent_info && len) {
2783 ret = find_first_non_hole(inode, &cur_offset, &len);
2784 if (unlikely(ret < 0))
2794 * If we were cloning, force the next fsync to be a full one since we
2795 * we replaced (or just dropped in the case of cloning holes when
2796 * NO_HOLES is enabled) file extent items and did not setup new extent
2797 * maps for the replacement extents (or holes).
2799 if (extent_info && !extent_info->is_new_extent)
2800 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2805 trans->block_rsv = &fs_info->trans_block_rsv;
2807 * If we are using the NO_HOLES feature we might have had already an
2808 * hole that overlaps a part of the region [lockstart, lockend] and
2809 * ends at (or beyond) lockend. Since we have no file extent items to
2810 * represent holes, drop_end can be less than lockend and so we must
2811 * make sure we have an extent map representing the existing hole (the
2812 * call to __btrfs_drop_extents() might have dropped the existing extent
2813 * map representing the existing hole), otherwise the fast fsync path
2814 * will not record the existence of the hole region
2815 * [existing_hole_start, lockend].
2817 if (drop_args.drop_end <= end)
2818 drop_args.drop_end = end + 1;
2820 * Don't insert file hole extent item if it's for a range beyond eof
2821 * (because it's useless) or if it represents a 0 bytes range (when
2822 * cur_offset == drop_end).
2824 if (!extent_info && cur_offset < ino_size &&
2825 cur_offset < drop_args.drop_end) {
2826 ret = fill_holes(trans, inode, path, cur_offset,
2827 drop_args.drop_end);
2829 /* Same comment as above. */
2830 btrfs_abort_transaction(trans, ret);
2833 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2834 /* See the comment in the loop above for the reasoning here. */
2835 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2836 drop_args.drop_end - cur_offset);
2838 btrfs_abort_transaction(trans, ret);
2844 ret = btrfs_insert_replace_extent(trans, inode, path,
2845 extent_info, extent_info->data_len,
2846 drop_args.bytes_found);
2848 btrfs_abort_transaction(trans, ret);
2857 trans->block_rsv = &fs_info->trans_block_rsv;
2859 btrfs_end_transaction(trans);
2863 btrfs_free_block_rsv(fs_info, rsv);
2868 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2871 struct btrfs_root *root = BTRFS_I(inode)->root;
2872 struct extent_state *cached_state = NULL;
2873 struct btrfs_path *path;
2874 struct btrfs_trans_handle *trans = NULL;
2879 u64 orig_start = offset;
2883 bool truncated_block = false;
2884 bool updated_inode = false;
2886 ret = btrfs_wait_ordered_range(inode, offset, len);
2890 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2891 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2892 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2894 goto out_only_mutex;
2896 /* Already in a large hole */
2898 goto out_only_mutex;
2901 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2902 lockend = round_down(offset + len,
2903 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2904 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2905 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2907 * We needn't truncate any block which is beyond the end of the file
2908 * because we are sure there is no data there.
2911 * Only do this if we are in the same block and we aren't doing the
2914 if (same_block && len < fs_info->sectorsize) {
2915 if (offset < ino_size) {
2916 truncated_block = true;
2917 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2922 goto out_only_mutex;
2925 /* zero back part of the first block */
2926 if (offset < ino_size) {
2927 truncated_block = true;
2928 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2930 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2935 /* Check the aligned pages after the first unaligned page,
2936 * if offset != orig_start, which means the first unaligned page
2937 * including several following pages are already in holes,
2938 * the extra check can be skipped */
2939 if (offset == orig_start) {
2940 /* after truncate page, check hole again */
2941 len = offset + len - lockstart;
2943 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2945 goto out_only_mutex;
2948 goto out_only_mutex;
2953 /* Check the tail unaligned part is in a hole */
2954 tail_start = lockend + 1;
2955 tail_len = offset + len - tail_start;
2957 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2958 if (unlikely(ret < 0))
2959 goto out_only_mutex;
2961 /* zero the front end of the last page */
2962 if (tail_start + tail_len < ino_size) {
2963 truncated_block = true;
2964 ret = btrfs_truncate_block(BTRFS_I(inode),
2965 tail_start + tail_len,
2968 goto out_only_mutex;
2973 if (lockend < lockstart) {
2975 goto out_only_mutex;
2978 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2981 goto out_only_mutex;
2983 path = btrfs_alloc_path();
2989 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2990 lockend, NULL, &trans);
2991 btrfs_free_path(path);
2995 ASSERT(trans != NULL);
2996 inode_inc_iversion(inode);
2997 inode->i_mtime = inode->i_ctime = current_time(inode);
2998 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2999 updated_inode = true;
3000 btrfs_end_transaction(trans);
3001 btrfs_btree_balance_dirty(fs_info);
3003 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3006 if (!updated_inode && truncated_block && !ret) {
3008 * If we only end up zeroing part of a page, we still need to
3009 * update the inode item, so that all the time fields are
3010 * updated as well as the necessary btrfs inode in memory fields
3011 * for detecting, at fsync time, if the inode isn't yet in the
3012 * log tree or it's there but not up to date.
3014 struct timespec64 now = current_time(inode);
3016 inode_inc_iversion(inode);
3017 inode->i_mtime = now;
3018 inode->i_ctime = now;
3019 trans = btrfs_start_transaction(root, 1);
3020 if (IS_ERR(trans)) {
3021 ret = PTR_ERR(trans);
3025 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3026 ret2 = btrfs_end_transaction(trans);
3031 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3035 /* Helper structure to record which range is already reserved */
3036 struct falloc_range {
3037 struct list_head list;
3043 * Helper function to add falloc range
3045 * Caller should have locked the larger range of extent containing
3048 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3050 struct falloc_range *range = NULL;
3052 if (!list_empty(head)) {
3054 * As fallocate iterates by bytenr order, we only need to check
3057 range = list_last_entry(head, struct falloc_range, list);
3058 if (range->start + range->len == start) {
3064 range = kmalloc(sizeof(*range), GFP_KERNEL);
3067 range->start = start;
3069 list_add_tail(&range->list, head);
3073 static int btrfs_fallocate_update_isize(struct inode *inode,
3077 struct btrfs_trans_handle *trans;
3078 struct btrfs_root *root = BTRFS_I(inode)->root;
3082 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3085 trans = btrfs_start_transaction(root, 1);
3087 return PTR_ERR(trans);
3089 inode->i_ctime = current_time(inode);
3090 i_size_write(inode, end);
3091 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3092 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3093 ret2 = btrfs_end_transaction(trans);
3095 return ret ? ret : ret2;
3099 RANGE_BOUNDARY_WRITTEN_EXTENT,
3100 RANGE_BOUNDARY_PREALLOC_EXTENT,
3101 RANGE_BOUNDARY_HOLE,
3104 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3107 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3108 struct extent_map *em;
3111 offset = round_down(offset, sectorsize);
3112 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3116 if (em->block_start == EXTENT_MAP_HOLE)
3117 ret = RANGE_BOUNDARY_HOLE;
3118 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3119 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3121 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3123 free_extent_map(em);
3127 static int btrfs_zero_range(struct inode *inode,
3132 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3133 struct extent_map *em;
3134 struct extent_changeset *data_reserved = NULL;
3137 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3138 u64 alloc_start = round_down(offset, sectorsize);
3139 u64 alloc_end = round_up(offset + len, sectorsize);
3140 u64 bytes_to_reserve = 0;
3141 bool space_reserved = false;
3143 inode_dio_wait(inode);
3145 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3146 alloc_end - alloc_start);
3153 * Avoid hole punching and extent allocation for some cases. More cases
3154 * could be considered, but these are unlikely common and we keep things
3155 * as simple as possible for now. Also, intentionally, if the target
3156 * range contains one or more prealloc extents together with regular
3157 * extents and holes, we drop all the existing extents and allocate a
3158 * new prealloc extent, so that we get a larger contiguous disk extent.
3160 if (em->start <= alloc_start &&
3161 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3162 const u64 em_end = em->start + em->len;
3164 if (em_end >= offset + len) {
3166 * The whole range is already a prealloc extent,
3167 * do nothing except updating the inode's i_size if
3170 free_extent_map(em);
3171 ret = btrfs_fallocate_update_isize(inode, offset + len,
3176 * Part of the range is already a prealloc extent, so operate
3177 * only on the remaining part of the range.
3179 alloc_start = em_end;
3180 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3181 len = offset + len - alloc_start;
3182 offset = alloc_start;
3183 alloc_hint = em->block_start + em->len;
3185 free_extent_map(em);
3187 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3188 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3189 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3196 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3197 free_extent_map(em);
3198 ret = btrfs_fallocate_update_isize(inode, offset + len,
3202 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3203 free_extent_map(em);
3204 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3207 ret = btrfs_fallocate_update_isize(inode,
3212 free_extent_map(em);
3213 alloc_start = round_down(offset, sectorsize);
3214 alloc_end = alloc_start + sectorsize;
3218 alloc_start = round_up(offset, sectorsize);
3219 alloc_end = round_down(offset + len, sectorsize);
3222 * For unaligned ranges, check the pages at the boundaries, they might
3223 * map to an extent, in which case we need to partially zero them, or
3224 * they might map to a hole, in which case we need our allocation range
3227 if (!IS_ALIGNED(offset, sectorsize)) {
3228 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3232 if (ret == RANGE_BOUNDARY_HOLE) {
3233 alloc_start = round_down(offset, sectorsize);
3235 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3236 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3244 if (!IS_ALIGNED(offset + len, sectorsize)) {
3245 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3249 if (ret == RANGE_BOUNDARY_HOLE) {
3250 alloc_end = round_up(offset + len, sectorsize);
3252 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3253 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3263 if (alloc_start < alloc_end) {
3264 struct extent_state *cached_state = NULL;
3265 const u64 lockstart = alloc_start;
3266 const u64 lockend = alloc_end - 1;
3268 bytes_to_reserve = alloc_end - alloc_start;
3269 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3273 space_reserved = true;
3274 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3278 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3279 alloc_start, bytes_to_reserve);
3281 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3282 lockend, &cached_state);
3285 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3286 alloc_end - alloc_start,
3288 offset + len, &alloc_hint);
3289 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3290 lockend, &cached_state);
3291 /* btrfs_prealloc_file_range releases reserved space on error */
3293 space_reserved = false;
3297 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3299 if (ret && space_reserved)
3300 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3301 alloc_start, bytes_to_reserve);
3302 extent_changeset_free(data_reserved);
3307 static long btrfs_fallocate(struct file *file, int mode,
3308 loff_t offset, loff_t len)
3310 struct inode *inode = file_inode(file);
3311 struct extent_state *cached_state = NULL;
3312 struct extent_changeset *data_reserved = NULL;
3313 struct falloc_range *range;
3314 struct falloc_range *tmp;
3315 struct list_head reserve_list;
3323 struct extent_map *em;
3324 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3327 /* Do not allow fallocate in ZONED mode */
3328 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3331 alloc_start = round_down(offset, blocksize);
3332 alloc_end = round_up(offset + len, blocksize);
3333 cur_offset = alloc_start;
3335 /* Make sure we aren't being give some crap mode */
3336 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3337 FALLOC_FL_ZERO_RANGE))
3340 if (mode & FALLOC_FL_PUNCH_HOLE)
3341 return btrfs_punch_hole(inode, offset, len);
3344 * Only trigger disk allocation, don't trigger qgroup reserve
3346 * For qgroup space, it will be checked later.
3348 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3349 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3350 alloc_end - alloc_start);
3355 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3357 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3358 ret = inode_newsize_ok(inode, offset + len);
3364 * TODO: Move these two operations after we have checked
3365 * accurate reserved space, or fallocate can still fail but
3366 * with page truncated or size expanded.
3368 * But that's a minor problem and won't do much harm BTW.
3370 if (alloc_start > inode->i_size) {
3371 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3375 } else if (offset + len > inode->i_size) {
3377 * If we are fallocating from the end of the file onward we
3378 * need to zero out the end of the block if i_size lands in the
3379 * middle of a block.
3381 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3387 * wait for ordered IO before we have any locks. We'll loop again
3388 * below with the locks held.
3390 ret = btrfs_wait_ordered_range(inode, alloc_start,
3391 alloc_end - alloc_start);
3395 if (mode & FALLOC_FL_ZERO_RANGE) {
3396 ret = btrfs_zero_range(inode, offset, len, mode);
3397 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3401 locked_end = alloc_end - 1;
3403 struct btrfs_ordered_extent *ordered;
3405 /* the extent lock is ordered inside the running
3408 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3409 locked_end, &cached_state);
3410 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3414 ordered->file_offset + ordered->num_bytes > alloc_start &&
3415 ordered->file_offset < alloc_end) {
3416 btrfs_put_ordered_extent(ordered);
3417 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3418 alloc_start, locked_end,
3421 * we can't wait on the range with the transaction
3422 * running or with the extent lock held
3424 ret = btrfs_wait_ordered_range(inode, alloc_start,
3425 alloc_end - alloc_start);
3430 btrfs_put_ordered_extent(ordered);
3435 /* First, check if we exceed the qgroup limit */
3436 INIT_LIST_HEAD(&reserve_list);
3437 while (cur_offset < alloc_end) {
3438 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3439 alloc_end - cur_offset);
3444 last_byte = min(extent_map_end(em), alloc_end);
3445 actual_end = min_t(u64, extent_map_end(em), offset + len);
3446 last_byte = ALIGN(last_byte, blocksize);
3447 if (em->block_start == EXTENT_MAP_HOLE ||
3448 (cur_offset >= inode->i_size &&
3449 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3450 ret = add_falloc_range(&reserve_list, cur_offset,
3451 last_byte - cur_offset);
3453 free_extent_map(em);
3456 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3457 &data_reserved, cur_offset,
3458 last_byte - cur_offset);
3460 cur_offset = last_byte;
3461 free_extent_map(em);
3466 * Do not need to reserve unwritten extent for this
3467 * range, free reserved data space first, otherwise
3468 * it'll result in false ENOSPC error.
3470 btrfs_free_reserved_data_space(BTRFS_I(inode),
3471 data_reserved, cur_offset,
3472 last_byte - cur_offset);
3474 free_extent_map(em);
3475 cur_offset = last_byte;
3479 * If ret is still 0, means we're OK to fallocate.
3480 * Or just cleanup the list and exit.
3482 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3484 ret = btrfs_prealloc_file_range(inode, mode,
3486 range->len, i_blocksize(inode),
3487 offset + len, &alloc_hint);
3489 btrfs_free_reserved_data_space(BTRFS_I(inode),
3490 data_reserved, range->start,
3492 list_del(&range->list);
3499 * We didn't need to allocate any more space, but we still extended the
3500 * size of the file so we need to update i_size and the inode item.
3502 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3504 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3507 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3508 /* Let go of our reservation. */
3509 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3510 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3511 cur_offset, alloc_end - cur_offset);
3512 extent_changeset_free(data_reserved);
3516 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3519 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3520 struct extent_map *em = NULL;
3521 struct extent_state *cached_state = NULL;
3522 loff_t i_size = inode->vfs_inode.i_size;
3529 if (i_size == 0 || offset >= i_size)
3533 * offset can be negative, in this case we start finding DATA/HOLE from
3534 * the very start of the file.
3536 start = max_t(loff_t, 0, offset);
3538 lockstart = round_down(start, fs_info->sectorsize);
3539 lockend = round_up(i_size, fs_info->sectorsize);
3540 if (lockend <= lockstart)
3541 lockend = lockstart + fs_info->sectorsize;
3543 len = lockend - lockstart + 1;
3545 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3547 while (start < i_size) {
3548 em = btrfs_get_extent_fiemap(inode, start, len);
3555 if (whence == SEEK_HOLE &&
3556 (em->block_start == EXTENT_MAP_HOLE ||
3557 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3559 else if (whence == SEEK_DATA &&
3560 (em->block_start != EXTENT_MAP_HOLE &&
3561 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3564 start = em->start + em->len;
3565 free_extent_map(em);
3569 free_extent_map(em);
3570 unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3575 if (whence == SEEK_DATA && start >= i_size)
3578 offset = min_t(loff_t, start, i_size);
3584 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3586 struct inode *inode = file->f_mapping->host;
3590 return generic_file_llseek(file, offset, whence);
3593 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3594 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3595 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3602 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3605 static int btrfs_file_open(struct inode *inode, struct file *filp)
3607 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3608 return generic_file_open(inode, filp);
3611 static int check_direct_read(struct btrfs_fs_info *fs_info,
3612 const struct iov_iter *iter, loff_t offset)
3617 ret = check_direct_IO(fs_info, iter, offset);
3621 if (!iter_is_iovec(iter))
3624 for (seg = 0; seg < iter->nr_segs; seg++)
3625 for (i = seg + 1; i < iter->nr_segs; i++)
3626 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3631 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3633 struct inode *inode = file_inode(iocb->ki_filp);
3636 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3639 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3640 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3641 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3645 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3649 if (iocb->ki_flags & IOCB_DIRECT) {
3650 ret = btrfs_direct_read(iocb, to);
3651 if (ret < 0 || !iov_iter_count(to) ||
3652 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3656 return filemap_read(iocb, to, ret);
3659 const struct file_operations btrfs_file_operations = {
3660 .llseek = btrfs_file_llseek,
3661 .read_iter = btrfs_file_read_iter,
3662 .splice_read = generic_file_splice_read,
3663 .write_iter = btrfs_file_write_iter,
3664 .splice_write = iter_file_splice_write,
3665 .mmap = btrfs_file_mmap,
3666 .open = btrfs_file_open,
3667 .release = btrfs_release_file,
3668 .fsync = btrfs_sync_file,
3669 .fallocate = btrfs_fallocate,
3670 .unlocked_ioctl = btrfs_ioctl,
3671 #ifdef CONFIG_COMPAT
3672 .compat_ioctl = btrfs_compat_ioctl,
3674 .remap_file_range = btrfs_remap_file_range,
3677 void __cold btrfs_auto_defrag_exit(void)
3679 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3682 int __init btrfs_auto_defrag_init(void)
3684 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3685 sizeof(struct inode_defrag), 0,
3688 if (!btrfs_inode_defrag_cachep)
3694 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3699 * So with compression we will find and lock a dirty page and clear the
3700 * first one as dirty, setup an async extent, and immediately return
3701 * with the entire range locked but with nobody actually marked with
3702 * writeback. So we can't just filemap_write_and_wait_range() and
3703 * expect it to work since it will just kick off a thread to do the
3704 * actual work. So we need to call filemap_fdatawrite_range _again_
3705 * since it will wait on the page lock, which won't be unlocked until
3706 * after the pages have been marked as writeback and so we're good to go
3707 * from there. We have to do this otherwise we'll miss the ordered
3708 * extents and that results in badness. Please Josef, do not think you
3709 * know better and pull this out at some point in the future, it is
3710 * right and you are wrong.
3712 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3713 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3714 &BTRFS_I(inode)->runtime_flags))
3715 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);