2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
15 return container_of(rt_se, struct task_struct, rt);
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
34 return container_of(rt_se, struct task_struct, rt);
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
39 return container_of(rt_rq, struct rq, rt);
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq *rq)
56 return atomic_read(&rq->rd->rto_count);
59 static inline void rt_set_overload(struct rq *rq)
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq->rd->rto_count);
76 static inline void rt_clear_overload(struct rq *rq)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
86 static void update_rt_migration(struct rt_rq *rt_rq)
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
101 if (!rt_entity_is_task(rt_se))
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
110 update_rt_migration(rt_rq);
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
115 if (!rt_entity_is_task(rt_se))
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
124 update_rt_migration(rt_rq);
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
139 static inline int has_pushable_tasks(struct rq *rq)
141 return !plist_head_empty(&rq->rt.pushable_tasks);
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
164 #endif /* CONFIG_SMP */
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
168 return !list_empty(&rt_se->run_list);
171 #ifdef CONFIG_RT_GROUP_SCHED
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
178 return rt_rq->rt_runtime;
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
186 typedef struct task_group *rt_rq_iter_t;
188 #define for_each_rt_rq(rt_rq, iter, rq) \
189 for (iter = list_entry_rcu(task_groups.next, typeof(*iter), list); \
190 (&iter->list != &task_groups) && \
191 (rt_rq = iter->rt_rq[cpu_of(rq)]); \
192 iter = list_entry_rcu(iter->list.next, typeof(*iter), list))
194 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
196 list_add_rcu(&rt_rq->leaf_rt_rq_list,
197 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
200 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
202 list_del_rcu(&rt_rq->leaf_rt_rq_list);
205 #define for_each_leaf_rt_rq(rt_rq, rq) \
206 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
208 #define for_each_sched_rt_entity(rt_se) \
209 for (; rt_se; rt_se = rt_se->parent)
211 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
216 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
217 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
219 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
221 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
222 struct sched_rt_entity *rt_se;
224 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
226 rt_se = rt_rq->tg->rt_se[cpu];
228 if (rt_rq->rt_nr_running) {
229 if (rt_se && !on_rt_rq(rt_se))
230 enqueue_rt_entity(rt_se, false);
231 if (rt_rq->highest_prio.curr < curr->prio)
236 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
238 struct sched_rt_entity *rt_se;
239 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
241 rt_se = rt_rq->tg->rt_se[cpu];
243 if (rt_se && on_rt_rq(rt_se))
244 dequeue_rt_entity(rt_se);
247 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
249 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
252 static int rt_se_boosted(struct sched_rt_entity *rt_se)
254 struct rt_rq *rt_rq = group_rt_rq(rt_se);
255 struct task_struct *p;
258 return !!rt_rq->rt_nr_boosted;
260 p = rt_task_of(rt_se);
261 return p->prio != p->normal_prio;
265 static inline const struct cpumask *sched_rt_period_mask(void)
267 return cpu_rq(smp_processor_id())->rd->span;
270 static inline const struct cpumask *sched_rt_period_mask(void)
272 return cpu_online_mask;
277 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
279 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
282 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
284 return &rt_rq->tg->rt_bandwidth;
287 #else /* !CONFIG_RT_GROUP_SCHED */
289 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
291 return rt_rq->rt_runtime;
294 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
296 return ktime_to_ns(def_rt_bandwidth.rt_period);
299 typedef struct rt_rq *rt_rq_iter_t;
301 #define for_each_rt_rq(rt_rq, iter, rq) \
302 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
304 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
308 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
312 #define for_each_leaf_rt_rq(rt_rq, rq) \
313 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
315 #define for_each_sched_rt_entity(rt_se) \
316 for (; rt_se; rt_se = NULL)
318 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
323 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
325 if (rt_rq->rt_nr_running)
326 resched_task(rq_of_rt_rq(rt_rq)->curr);
329 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
333 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
335 return rt_rq->rt_throttled;
338 static inline const struct cpumask *sched_rt_period_mask(void)
340 return cpu_online_mask;
344 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
346 return &cpu_rq(cpu)->rt;
349 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
351 return &def_rt_bandwidth;
354 #endif /* CONFIG_RT_GROUP_SCHED */
358 * We ran out of runtime, see if we can borrow some from our neighbours.
360 static int do_balance_runtime(struct rt_rq *rt_rq)
362 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
363 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
364 int i, weight, more = 0;
367 weight = cpumask_weight(rd->span);
369 raw_spin_lock(&rt_b->rt_runtime_lock);
370 rt_period = ktime_to_ns(rt_b->rt_period);
371 for_each_cpu(i, rd->span) {
372 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
378 raw_spin_lock(&iter->rt_runtime_lock);
380 * Either all rqs have inf runtime and there's nothing to steal
381 * or __disable_runtime() below sets a specific rq to inf to
382 * indicate its been disabled and disalow stealing.
384 if (iter->rt_runtime == RUNTIME_INF)
388 * From runqueues with spare time, take 1/n part of their
389 * spare time, but no more than our period.
391 diff = iter->rt_runtime - iter->rt_time;
393 diff = div_u64((u64)diff, weight);
394 if (rt_rq->rt_runtime + diff > rt_period)
395 diff = rt_period - rt_rq->rt_runtime;
396 iter->rt_runtime -= diff;
397 rt_rq->rt_runtime += diff;
399 if (rt_rq->rt_runtime == rt_period) {
400 raw_spin_unlock(&iter->rt_runtime_lock);
405 raw_spin_unlock(&iter->rt_runtime_lock);
407 raw_spin_unlock(&rt_b->rt_runtime_lock);
413 * Ensure this RQ takes back all the runtime it lend to its neighbours.
415 static void __disable_runtime(struct rq *rq)
417 struct root_domain *rd = rq->rd;
421 if (unlikely(!scheduler_running))
424 for_each_rt_rq(rt_rq, iter, rq) {
425 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
429 raw_spin_lock(&rt_b->rt_runtime_lock);
430 raw_spin_lock(&rt_rq->rt_runtime_lock);
432 * Either we're all inf and nobody needs to borrow, or we're
433 * already disabled and thus have nothing to do, or we have
434 * exactly the right amount of runtime to take out.
436 if (rt_rq->rt_runtime == RUNTIME_INF ||
437 rt_rq->rt_runtime == rt_b->rt_runtime)
439 raw_spin_unlock(&rt_rq->rt_runtime_lock);
442 * Calculate the difference between what we started out with
443 * and what we current have, that's the amount of runtime
444 * we lend and now have to reclaim.
446 want = rt_b->rt_runtime - rt_rq->rt_runtime;
449 * Greedy reclaim, take back as much as we can.
451 for_each_cpu(i, rd->span) {
452 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
456 * Can't reclaim from ourselves or disabled runqueues.
458 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
461 raw_spin_lock(&iter->rt_runtime_lock);
463 diff = min_t(s64, iter->rt_runtime, want);
464 iter->rt_runtime -= diff;
467 iter->rt_runtime -= want;
470 raw_spin_unlock(&iter->rt_runtime_lock);
476 raw_spin_lock(&rt_rq->rt_runtime_lock);
478 * We cannot be left wanting - that would mean some runtime
479 * leaked out of the system.
484 * Disable all the borrow logic by pretending we have inf
485 * runtime - in which case borrowing doesn't make sense.
487 rt_rq->rt_runtime = RUNTIME_INF;
488 raw_spin_unlock(&rt_rq->rt_runtime_lock);
489 raw_spin_unlock(&rt_b->rt_runtime_lock);
493 static void disable_runtime(struct rq *rq)
497 raw_spin_lock_irqsave(&rq->lock, flags);
498 __disable_runtime(rq);
499 raw_spin_unlock_irqrestore(&rq->lock, flags);
502 static void __enable_runtime(struct rq *rq)
507 if (unlikely(!scheduler_running))
511 * Reset each runqueue's bandwidth settings
513 for_each_rt_rq(rt_rq, iter, rq) {
514 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
516 raw_spin_lock(&rt_b->rt_runtime_lock);
517 raw_spin_lock(&rt_rq->rt_runtime_lock);
518 rt_rq->rt_runtime = rt_b->rt_runtime;
520 rt_rq->rt_throttled = 0;
521 raw_spin_unlock(&rt_rq->rt_runtime_lock);
522 raw_spin_unlock(&rt_b->rt_runtime_lock);
526 static void enable_runtime(struct rq *rq)
530 raw_spin_lock_irqsave(&rq->lock, flags);
531 __enable_runtime(rq);
532 raw_spin_unlock_irqrestore(&rq->lock, flags);
535 static int balance_runtime(struct rt_rq *rt_rq)
539 if (rt_rq->rt_time > rt_rq->rt_runtime) {
540 raw_spin_unlock(&rt_rq->rt_runtime_lock);
541 more = do_balance_runtime(rt_rq);
542 raw_spin_lock(&rt_rq->rt_runtime_lock);
547 #else /* !CONFIG_SMP */
548 static inline int balance_runtime(struct rt_rq *rt_rq)
552 #endif /* CONFIG_SMP */
554 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
557 const struct cpumask *span;
559 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
562 span = sched_rt_period_mask();
563 for_each_cpu(i, span) {
565 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
566 struct rq *rq = rq_of_rt_rq(rt_rq);
568 raw_spin_lock(&rq->lock);
569 if (rt_rq->rt_time) {
572 raw_spin_lock(&rt_rq->rt_runtime_lock);
573 if (rt_rq->rt_throttled)
574 balance_runtime(rt_rq);
575 runtime = rt_rq->rt_runtime;
576 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
577 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
578 rt_rq->rt_throttled = 0;
582 * Force a clock update if the CPU was idle,
583 * lest wakeup -> unthrottle time accumulate.
585 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
586 rq->skip_clock_update = -1;
588 if (rt_rq->rt_time || rt_rq->rt_nr_running)
590 raw_spin_unlock(&rt_rq->rt_runtime_lock);
591 } else if (rt_rq->rt_nr_running) {
593 if (!rt_rq_throttled(rt_rq))
598 sched_rt_rq_enqueue(rt_rq);
599 raw_spin_unlock(&rq->lock);
605 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
607 #ifdef CONFIG_RT_GROUP_SCHED
608 struct rt_rq *rt_rq = group_rt_rq(rt_se);
611 return rt_rq->highest_prio.curr;
614 return rt_task_of(rt_se)->prio;
617 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
619 u64 runtime = sched_rt_runtime(rt_rq);
621 if (rt_rq->rt_throttled)
622 return rt_rq_throttled(rt_rq);
624 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
627 balance_runtime(rt_rq);
628 runtime = sched_rt_runtime(rt_rq);
629 if (runtime == RUNTIME_INF)
632 if (rt_rq->rt_time > runtime) {
633 rt_rq->rt_throttled = 1;
634 if (rt_rq_throttled(rt_rq)) {
635 sched_rt_rq_dequeue(rt_rq);
644 * Update the current task's runtime statistics. Skip current tasks that
645 * are not in our scheduling class.
647 static void update_curr_rt(struct rq *rq)
649 struct task_struct *curr = rq->curr;
650 struct sched_rt_entity *rt_se = &curr->rt;
651 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
654 if (curr->sched_class != &rt_sched_class)
657 delta_exec = rq->clock_task - curr->se.exec_start;
658 if (unlikely((s64)delta_exec < 0))
661 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
663 curr->se.sum_exec_runtime += delta_exec;
664 account_group_exec_runtime(curr, delta_exec);
666 curr->se.exec_start = rq->clock_task;
667 cpuacct_charge(curr, delta_exec);
669 sched_rt_avg_update(rq, delta_exec);
671 if (!rt_bandwidth_enabled())
674 for_each_sched_rt_entity(rt_se) {
675 rt_rq = rt_rq_of_se(rt_se);
677 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
678 raw_spin_lock(&rt_rq->rt_runtime_lock);
679 rt_rq->rt_time += delta_exec;
680 if (sched_rt_runtime_exceeded(rt_rq))
682 raw_spin_unlock(&rt_rq->rt_runtime_lock);
687 #if defined CONFIG_SMP
689 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
691 static inline int next_prio(struct rq *rq)
693 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
695 if (next && rt_prio(next->prio))
702 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
704 struct rq *rq = rq_of_rt_rq(rt_rq);
706 if (prio < prev_prio) {
709 * If the new task is higher in priority than anything on the
710 * run-queue, we know that the previous high becomes our
713 rt_rq->highest_prio.next = prev_prio;
716 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
718 } else if (prio == rt_rq->highest_prio.curr)
720 * If the next task is equal in priority to the highest on
721 * the run-queue, then we implicitly know that the next highest
722 * task cannot be any lower than current
724 rt_rq->highest_prio.next = prio;
725 else if (prio < rt_rq->highest_prio.next)
727 * Otherwise, we need to recompute next-highest
729 rt_rq->highest_prio.next = next_prio(rq);
733 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
735 struct rq *rq = rq_of_rt_rq(rt_rq);
737 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
738 rt_rq->highest_prio.next = next_prio(rq);
740 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
741 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
744 #else /* CONFIG_SMP */
747 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
749 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
751 #endif /* CONFIG_SMP */
753 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
755 inc_rt_prio(struct rt_rq *rt_rq, int prio)
757 int prev_prio = rt_rq->highest_prio.curr;
759 if (prio < prev_prio)
760 rt_rq->highest_prio.curr = prio;
762 inc_rt_prio_smp(rt_rq, prio, prev_prio);
766 dec_rt_prio(struct rt_rq *rt_rq, int prio)
768 int prev_prio = rt_rq->highest_prio.curr;
770 if (rt_rq->rt_nr_running) {
772 WARN_ON(prio < prev_prio);
775 * This may have been our highest task, and therefore
776 * we may have some recomputation to do
778 if (prio == prev_prio) {
779 struct rt_prio_array *array = &rt_rq->active;
781 rt_rq->highest_prio.curr =
782 sched_find_first_bit(array->bitmap);
786 rt_rq->highest_prio.curr = MAX_RT_PRIO;
788 dec_rt_prio_smp(rt_rq, prio, prev_prio);
793 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
794 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
796 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
798 #ifdef CONFIG_RT_GROUP_SCHED
801 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
803 if (rt_se_boosted(rt_se))
804 rt_rq->rt_nr_boosted++;
807 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
811 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
813 if (rt_se_boosted(rt_se))
814 rt_rq->rt_nr_boosted--;
816 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
819 #else /* CONFIG_RT_GROUP_SCHED */
822 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
824 start_rt_bandwidth(&def_rt_bandwidth);
828 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
830 #endif /* CONFIG_RT_GROUP_SCHED */
833 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
835 int prio = rt_se_prio(rt_se);
837 WARN_ON(!rt_prio(prio));
838 rt_rq->rt_nr_running++;
840 inc_rt_prio(rt_rq, prio);
841 inc_rt_migration(rt_se, rt_rq);
842 inc_rt_group(rt_se, rt_rq);
846 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
848 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
849 WARN_ON(!rt_rq->rt_nr_running);
850 rt_rq->rt_nr_running--;
852 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
853 dec_rt_migration(rt_se, rt_rq);
854 dec_rt_group(rt_se, rt_rq);
857 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
859 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
860 struct rt_prio_array *array = &rt_rq->active;
861 struct rt_rq *group_rq = group_rt_rq(rt_se);
862 struct list_head *queue = array->queue + rt_se_prio(rt_se);
865 * Don't enqueue the group if its throttled, or when empty.
866 * The latter is a consequence of the former when a child group
867 * get throttled and the current group doesn't have any other
870 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
873 if (!rt_rq->rt_nr_running)
874 list_add_leaf_rt_rq(rt_rq);
877 list_add(&rt_se->run_list, queue);
879 list_add_tail(&rt_se->run_list, queue);
880 __set_bit(rt_se_prio(rt_se), array->bitmap);
882 inc_rt_tasks(rt_se, rt_rq);
885 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
887 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
888 struct rt_prio_array *array = &rt_rq->active;
890 list_del_init(&rt_se->run_list);
891 if (list_empty(array->queue + rt_se_prio(rt_se)))
892 __clear_bit(rt_se_prio(rt_se), array->bitmap);
894 dec_rt_tasks(rt_se, rt_rq);
895 if (!rt_rq->rt_nr_running)
896 list_del_leaf_rt_rq(rt_rq);
900 * Because the prio of an upper entry depends on the lower
901 * entries, we must remove entries top - down.
903 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
905 struct sched_rt_entity *back = NULL;
907 for_each_sched_rt_entity(rt_se) {
912 for (rt_se = back; rt_se; rt_se = rt_se->back) {
914 __dequeue_rt_entity(rt_se);
918 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
920 dequeue_rt_stack(rt_se);
921 for_each_sched_rt_entity(rt_se)
922 __enqueue_rt_entity(rt_se, head);
925 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
927 dequeue_rt_stack(rt_se);
929 for_each_sched_rt_entity(rt_se) {
930 struct rt_rq *rt_rq = group_rt_rq(rt_se);
932 if (rt_rq && rt_rq->rt_nr_running)
933 __enqueue_rt_entity(rt_se, false);
938 * Adding/removing a task to/from a priority array:
941 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
943 struct sched_rt_entity *rt_se = &p->rt;
945 if (flags & ENQUEUE_WAKEUP)
948 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
950 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
951 enqueue_pushable_task(rq, p);
954 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
956 struct sched_rt_entity *rt_se = &p->rt;
959 dequeue_rt_entity(rt_se);
961 dequeue_pushable_task(rq, p);
965 * Put task to the end of the run list without the overhead of dequeue
966 * followed by enqueue.
969 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
971 if (on_rt_rq(rt_se)) {
972 struct rt_prio_array *array = &rt_rq->active;
973 struct list_head *queue = array->queue + rt_se_prio(rt_se);
976 list_move(&rt_se->run_list, queue);
978 list_move_tail(&rt_se->run_list, queue);
982 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
984 struct sched_rt_entity *rt_se = &p->rt;
987 for_each_sched_rt_entity(rt_se) {
988 rt_rq = rt_rq_of_se(rt_se);
989 requeue_rt_entity(rt_rq, rt_se, head);
993 static void yield_task_rt(struct rq *rq)
995 requeue_task_rt(rq, rq->curr, 0);
999 static int find_lowest_rq(struct task_struct *task);
1002 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1004 struct task_struct *curr;
1008 if (sd_flag != SD_BALANCE_WAKE)
1009 return smp_processor_id();
1015 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1018 * If the current task on @p's runqueue is an RT task, then
1019 * try to see if we can wake this RT task up on another
1020 * runqueue. Otherwise simply start this RT task
1021 * on its current runqueue.
1023 * We want to avoid overloading runqueues. If the woken
1024 * task is a higher priority, then it will stay on this CPU
1025 * and the lower prio task should be moved to another CPU.
1026 * Even though this will probably make the lower prio task
1027 * lose its cache, we do not want to bounce a higher task
1028 * around just because it gave up its CPU, perhaps for a
1031 * For equal prio tasks, we just let the scheduler sort it out.
1033 * Otherwise, just let it ride on the affined RQ and the
1034 * post-schedule router will push the preempted task away
1036 * This test is optimistic, if we get it wrong the load-balancer
1037 * will have to sort it out.
1039 if (curr && unlikely(rt_task(curr)) &&
1040 (curr->rt.nr_cpus_allowed < 2 ||
1041 curr->prio < p->prio) &&
1042 (p->rt.nr_cpus_allowed > 1)) {
1043 int target = find_lowest_rq(p);
1053 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1055 if (rq->curr->rt.nr_cpus_allowed == 1)
1058 if (p->rt.nr_cpus_allowed != 1
1059 && cpupri_find(&rq->rd->cpupri, p, NULL))
1062 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1066 * There appears to be other cpus that can accept
1067 * current and none to run 'p', so lets reschedule
1068 * to try and push current away:
1070 requeue_task_rt(rq, p, 1);
1071 resched_task(rq->curr);
1074 #endif /* CONFIG_SMP */
1077 * Preempt the current task with a newly woken task if needed:
1079 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1081 if (p->prio < rq->curr->prio) {
1082 resched_task(rq->curr);
1090 * - the newly woken task is of equal priority to the current task
1091 * - the newly woken task is non-migratable while current is migratable
1092 * - current will be preempted on the next reschedule
1094 * we should check to see if current can readily move to a different
1095 * cpu. If so, we will reschedule to allow the push logic to try
1096 * to move current somewhere else, making room for our non-migratable
1099 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1100 check_preempt_equal_prio(rq, p);
1104 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1105 struct rt_rq *rt_rq)
1107 struct rt_prio_array *array = &rt_rq->active;
1108 struct sched_rt_entity *next = NULL;
1109 struct list_head *queue;
1112 idx = sched_find_first_bit(array->bitmap);
1113 BUG_ON(idx >= MAX_RT_PRIO);
1115 queue = array->queue + idx;
1116 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1121 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1123 struct sched_rt_entity *rt_se;
1124 struct task_struct *p;
1125 struct rt_rq *rt_rq;
1129 if (unlikely(!rt_rq->rt_nr_running))
1132 if (rt_rq_throttled(rt_rq))
1136 rt_se = pick_next_rt_entity(rq, rt_rq);
1138 rt_rq = group_rt_rq(rt_se);
1141 p = rt_task_of(rt_se);
1142 p->se.exec_start = rq->clock_task;
1147 static struct task_struct *pick_next_task_rt(struct rq *rq)
1149 struct task_struct *p = _pick_next_task_rt(rq);
1151 /* The running task is never eligible for pushing */
1153 dequeue_pushable_task(rq, p);
1157 * We detect this state here so that we can avoid taking the RQ
1158 * lock again later if there is no need to push
1160 rq->post_schedule = has_pushable_tasks(rq);
1166 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1169 p->se.exec_start = 0;
1172 * The previous task needs to be made eligible for pushing
1173 * if it is still active
1175 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1176 enqueue_pushable_task(rq, p);
1181 /* Only try algorithms three times */
1182 #define RT_MAX_TRIES 3
1184 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1186 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1188 if (!task_running(rq, p) &&
1189 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1190 (p->rt.nr_cpus_allowed > 1))
1195 /* Return the second highest RT task, NULL otherwise */
1196 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1198 struct task_struct *next = NULL;
1199 struct sched_rt_entity *rt_se;
1200 struct rt_prio_array *array;
1201 struct rt_rq *rt_rq;
1204 for_each_leaf_rt_rq(rt_rq, rq) {
1205 array = &rt_rq->active;
1206 idx = sched_find_first_bit(array->bitmap);
1208 if (idx >= MAX_RT_PRIO)
1210 if (next && next->prio < idx)
1212 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1213 struct task_struct *p;
1215 if (!rt_entity_is_task(rt_se))
1218 p = rt_task_of(rt_se);
1219 if (pick_rt_task(rq, p, cpu)) {
1225 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1233 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1235 static int find_lowest_rq(struct task_struct *task)
1237 struct sched_domain *sd;
1238 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1239 int this_cpu = smp_processor_id();
1240 int cpu = task_cpu(task);
1242 /* Make sure the mask is initialized first */
1243 if (unlikely(!lowest_mask))
1246 if (task->rt.nr_cpus_allowed == 1)
1247 return -1; /* No other targets possible */
1249 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1250 return -1; /* No targets found */
1253 * At this point we have built a mask of cpus representing the
1254 * lowest priority tasks in the system. Now we want to elect
1255 * the best one based on our affinity and topology.
1257 * We prioritize the last cpu that the task executed on since
1258 * it is most likely cache-hot in that location.
1260 if (cpumask_test_cpu(cpu, lowest_mask))
1264 * Otherwise, we consult the sched_domains span maps to figure
1265 * out which cpu is logically closest to our hot cache data.
1267 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1268 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1271 for_each_domain(cpu, sd) {
1272 if (sd->flags & SD_WAKE_AFFINE) {
1276 * "this_cpu" is cheaper to preempt than a
1279 if (this_cpu != -1 &&
1280 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1285 best_cpu = cpumask_first_and(lowest_mask,
1286 sched_domain_span(sd));
1287 if (best_cpu < nr_cpu_ids) {
1296 * And finally, if there were no matches within the domains
1297 * just give the caller *something* to work with from the compatible
1303 cpu = cpumask_any(lowest_mask);
1304 if (cpu < nr_cpu_ids)
1309 /* Will lock the rq it finds */
1310 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1312 struct rq *lowest_rq = NULL;
1316 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1317 cpu = find_lowest_rq(task);
1319 if ((cpu == -1) || (cpu == rq->cpu))
1322 lowest_rq = cpu_rq(cpu);
1324 /* if the prio of this runqueue changed, try again */
1325 if (double_lock_balance(rq, lowest_rq)) {
1327 * We had to unlock the run queue. In
1328 * the mean time, task could have
1329 * migrated already or had its affinity changed.
1330 * Also make sure that it wasn't scheduled on its rq.
1332 if (unlikely(task_rq(task) != rq ||
1333 !cpumask_test_cpu(lowest_rq->cpu,
1334 &task->cpus_allowed) ||
1335 task_running(rq, task) ||
1338 raw_spin_unlock(&lowest_rq->lock);
1344 /* If this rq is still suitable use it. */
1345 if (lowest_rq->rt.highest_prio.curr > task->prio)
1349 double_unlock_balance(rq, lowest_rq);
1356 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1358 struct task_struct *p;
1360 if (!has_pushable_tasks(rq))
1363 p = plist_first_entry(&rq->rt.pushable_tasks,
1364 struct task_struct, pushable_tasks);
1366 BUG_ON(rq->cpu != task_cpu(p));
1367 BUG_ON(task_current(rq, p));
1368 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1371 BUG_ON(!rt_task(p));
1377 * If the current CPU has more than one RT task, see if the non
1378 * running task can migrate over to a CPU that is running a task
1379 * of lesser priority.
1381 static int push_rt_task(struct rq *rq)
1383 struct task_struct *next_task;
1384 struct rq *lowest_rq;
1386 if (!rq->rt.overloaded)
1389 next_task = pick_next_pushable_task(rq);
1394 if (unlikely(next_task == rq->curr)) {
1400 * It's possible that the next_task slipped in of
1401 * higher priority than current. If that's the case
1402 * just reschedule current.
1404 if (unlikely(next_task->prio < rq->curr->prio)) {
1405 resched_task(rq->curr);
1409 /* We might release rq lock */
1410 get_task_struct(next_task);
1412 /* find_lock_lowest_rq locks the rq if found */
1413 lowest_rq = find_lock_lowest_rq(next_task, rq);
1415 struct task_struct *task;
1417 * find lock_lowest_rq releases rq->lock
1418 * so it is possible that next_task has migrated.
1420 * We need to make sure that the task is still on the same
1421 * run-queue and is also still the next task eligible for
1424 task = pick_next_pushable_task(rq);
1425 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1427 * If we get here, the task hasn't moved at all, but
1428 * it has failed to push. We will not try again,
1429 * since the other cpus will pull from us when they
1432 dequeue_pushable_task(rq, next_task);
1437 /* No more tasks, just exit */
1441 * Something has shifted, try again.
1443 put_task_struct(next_task);
1448 deactivate_task(rq, next_task, 0);
1449 set_task_cpu(next_task, lowest_rq->cpu);
1450 activate_task(lowest_rq, next_task, 0);
1452 resched_task(lowest_rq->curr);
1454 double_unlock_balance(rq, lowest_rq);
1457 put_task_struct(next_task);
1462 static void push_rt_tasks(struct rq *rq)
1464 /* push_rt_task will return true if it moved an RT */
1465 while (push_rt_task(rq))
1469 static int pull_rt_task(struct rq *this_rq)
1471 int this_cpu = this_rq->cpu, ret = 0, cpu;
1472 struct task_struct *p;
1475 if (likely(!rt_overloaded(this_rq)))
1478 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1479 if (this_cpu == cpu)
1482 src_rq = cpu_rq(cpu);
1485 * Don't bother taking the src_rq->lock if the next highest
1486 * task is known to be lower-priority than our current task.
1487 * This may look racy, but if this value is about to go
1488 * logically higher, the src_rq will push this task away.
1489 * And if its going logically lower, we do not care
1491 if (src_rq->rt.highest_prio.next >=
1492 this_rq->rt.highest_prio.curr)
1496 * We can potentially drop this_rq's lock in
1497 * double_lock_balance, and another CPU could
1500 double_lock_balance(this_rq, src_rq);
1503 * Are there still pullable RT tasks?
1505 if (src_rq->rt.rt_nr_running <= 1)
1508 p = pick_next_highest_task_rt(src_rq, this_cpu);
1511 * Do we have an RT task that preempts
1512 * the to-be-scheduled task?
1514 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1515 WARN_ON(p == src_rq->curr);
1519 * There's a chance that p is higher in priority
1520 * than what's currently running on its cpu.
1521 * This is just that p is wakeing up and hasn't
1522 * had a chance to schedule. We only pull
1523 * p if it is lower in priority than the
1524 * current task on the run queue
1526 if (p->prio < src_rq->curr->prio)
1531 deactivate_task(src_rq, p, 0);
1532 set_task_cpu(p, this_cpu);
1533 activate_task(this_rq, p, 0);
1535 * We continue with the search, just in
1536 * case there's an even higher prio task
1537 * in another runqueue. (low likelihood
1542 double_unlock_balance(this_rq, src_rq);
1548 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1550 /* Try to pull RT tasks here if we lower this rq's prio */
1551 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1555 static void post_schedule_rt(struct rq *rq)
1561 * If we are not running and we are not going to reschedule soon, we should
1562 * try to push tasks away now
1564 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1566 if (!task_running(rq, p) &&
1567 !test_tsk_need_resched(rq->curr) &&
1568 has_pushable_tasks(rq) &&
1569 p->rt.nr_cpus_allowed > 1 &&
1570 rt_task(rq->curr) &&
1571 (rq->curr->rt.nr_cpus_allowed < 2 ||
1572 rq->curr->prio < p->prio))
1576 static void set_cpus_allowed_rt(struct task_struct *p,
1577 const struct cpumask *new_mask)
1579 int weight = cpumask_weight(new_mask);
1581 BUG_ON(!rt_task(p));
1584 * Update the migration status of the RQ if we have an RT task
1585 * which is running AND changing its weight value.
1587 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1588 struct rq *rq = task_rq(p);
1590 if (!task_current(rq, p)) {
1592 * Make sure we dequeue this task from the pushable list
1593 * before going further. It will either remain off of
1594 * the list because we are no longer pushable, or it
1597 if (p->rt.nr_cpus_allowed > 1)
1598 dequeue_pushable_task(rq, p);
1601 * Requeue if our weight is changing and still > 1
1604 enqueue_pushable_task(rq, p);
1608 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1609 rq->rt.rt_nr_migratory++;
1610 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1611 BUG_ON(!rq->rt.rt_nr_migratory);
1612 rq->rt.rt_nr_migratory--;
1615 update_rt_migration(&rq->rt);
1618 cpumask_copy(&p->cpus_allowed, new_mask);
1619 p->rt.nr_cpus_allowed = weight;
1622 /* Assumes rq->lock is held */
1623 static void rq_online_rt(struct rq *rq)
1625 if (rq->rt.overloaded)
1626 rt_set_overload(rq);
1628 __enable_runtime(rq);
1630 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1633 /* Assumes rq->lock is held */
1634 static void rq_offline_rt(struct rq *rq)
1636 if (rq->rt.overloaded)
1637 rt_clear_overload(rq);
1639 __disable_runtime(rq);
1641 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1645 * When switch from the rt queue, we bring ourselves to a position
1646 * that we might want to pull RT tasks from other runqueues.
1648 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1651 * If there are other RT tasks then we will reschedule
1652 * and the scheduling of the other RT tasks will handle
1653 * the balancing. But if we are the last RT task
1654 * we may need to handle the pulling of RT tasks
1657 if (p->on_rq && !rq->rt.rt_nr_running)
1661 static inline void init_sched_rt_class(void)
1665 for_each_possible_cpu(i)
1666 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1667 GFP_KERNEL, cpu_to_node(i));
1669 #endif /* CONFIG_SMP */
1672 * When switching a task to RT, we may overload the runqueue
1673 * with RT tasks. In this case we try to push them off to
1676 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1678 int check_resched = 1;
1681 * If we are already running, then there's nothing
1682 * that needs to be done. But if we are not running
1683 * we may need to preempt the current running task.
1684 * If that current running task is also an RT task
1685 * then see if we can move to another run queue.
1687 if (p->on_rq && rq->curr != p) {
1689 if (rq->rt.overloaded && push_rt_task(rq) &&
1690 /* Don't resched if we changed runqueues */
1693 #endif /* CONFIG_SMP */
1694 if (check_resched && p->prio < rq->curr->prio)
1695 resched_task(rq->curr);
1700 * Priority of the task has changed. This may cause
1701 * us to initiate a push or pull.
1704 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1709 if (rq->curr == p) {
1712 * If our priority decreases while running, we
1713 * may need to pull tasks to this runqueue.
1715 if (oldprio < p->prio)
1718 * If there's a higher priority task waiting to run
1719 * then reschedule. Note, the above pull_rt_task
1720 * can release the rq lock and p could migrate.
1721 * Only reschedule if p is still on the same runqueue.
1723 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1726 /* For UP simply resched on drop of prio */
1727 if (oldprio < p->prio)
1729 #endif /* CONFIG_SMP */
1732 * This task is not running, but if it is
1733 * greater than the current running task
1736 if (p->prio < rq->curr->prio)
1737 resched_task(rq->curr);
1741 static void watchdog(struct rq *rq, struct task_struct *p)
1743 unsigned long soft, hard;
1745 /* max may change after cur was read, this will be fixed next tick */
1746 soft = task_rlimit(p, RLIMIT_RTTIME);
1747 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1749 if (soft != RLIM_INFINITY) {
1753 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1754 if (p->rt.timeout > next)
1755 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1759 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1766 * RR tasks need a special form of timeslice management.
1767 * FIFO tasks have no timeslices.
1769 if (p->policy != SCHED_RR)
1772 if (--p->rt.time_slice)
1775 p->rt.time_slice = DEF_TIMESLICE;
1778 * Requeue to the end of queue if we are not the only element
1781 if (p->rt.run_list.prev != p->rt.run_list.next) {
1782 requeue_task_rt(rq, p, 0);
1783 set_tsk_need_resched(p);
1787 static void set_curr_task_rt(struct rq *rq)
1789 struct task_struct *p = rq->curr;
1791 p->se.exec_start = rq->clock_task;
1793 /* The running task is never eligible for pushing */
1794 dequeue_pushable_task(rq, p);
1797 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1800 * Time slice is 0 for SCHED_FIFO tasks
1802 if (task->policy == SCHED_RR)
1803 return DEF_TIMESLICE;
1808 static const struct sched_class rt_sched_class = {
1809 .next = &fair_sched_class,
1810 .enqueue_task = enqueue_task_rt,
1811 .dequeue_task = dequeue_task_rt,
1812 .yield_task = yield_task_rt,
1814 .check_preempt_curr = check_preempt_curr_rt,
1816 .pick_next_task = pick_next_task_rt,
1817 .put_prev_task = put_prev_task_rt,
1820 .select_task_rq = select_task_rq_rt,
1822 .set_cpus_allowed = set_cpus_allowed_rt,
1823 .rq_online = rq_online_rt,
1824 .rq_offline = rq_offline_rt,
1825 .pre_schedule = pre_schedule_rt,
1826 .post_schedule = post_schedule_rt,
1827 .task_woken = task_woken_rt,
1828 .switched_from = switched_from_rt,
1831 .set_curr_task = set_curr_task_rt,
1832 .task_tick = task_tick_rt,
1834 .get_rr_interval = get_rr_interval_rt,
1836 .prio_changed = prio_changed_rt,
1837 .switched_to = switched_to_rt,
1840 #ifdef CONFIG_SCHED_DEBUG
1841 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1843 static void print_rt_stats(struct seq_file *m, int cpu)
1846 struct rt_rq *rt_rq;
1849 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1850 print_rt_rq(m, cpu, rt_rq);
1853 #endif /* CONFIG_SCHED_DEBUG */