1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
36 #define PAGE_ALLOC_COSTLY_ORDER 3
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
77 static inline bool is_migrate_movable(int mt)
79 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
82 #define for_each_migratetype_order(order, type) \
83 for (order = 0; order < MAX_ORDER; order++) \
84 for (type = 0; type < MIGRATE_TYPES; type++)
86 extern int page_group_by_mobility_disabled;
88 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91 #define get_pageblock_migratetype(page) \
92 get_pfnblock_flags_mask(page, page_to_pfn(page), \
93 PB_migrate_end, MIGRATETYPE_MASK)
96 struct list_head free_list[MIGRATE_TYPES];
97 unsigned long nr_free;
103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name) struct zone_padding name;
114 #define ZONE_PADDING(name)
118 enum numa_stat_item {
119 NUMA_HIT, /* allocated in intended node */
120 NUMA_MISS, /* allocated in non intended node */
121 NUMA_FOREIGN, /* was intended here, hit elsewhere */
122 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
123 NUMA_LOCAL, /* allocation from local node */
124 NUMA_OTHER, /* allocation from other node */
125 NR_VM_NUMA_STAT_ITEMS
128 #define NR_VM_NUMA_STAT_ITEMS 0
131 enum zone_stat_item {
132 /* First 128 byte cacheline (assuming 64 bit words) */
134 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
135 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_INACTIVE_FILE,
140 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
141 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
142 NR_PAGETABLE, /* used for pagetables */
143 NR_KERNEL_STACK_KB, /* measured in KiB */
144 /* Second 128 byte cacheline */
146 #if IS_ENABLED(CONFIG_ZSMALLOC)
147 NR_ZSPAGES, /* allocated in zsmalloc */
150 NR_VM_ZONE_STAT_ITEMS };
152 enum node_stat_item {
154 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
155 NR_ACTIVE_ANON, /* " " " " " */
156 NR_INACTIVE_FILE, /* " " " " " */
157 NR_ACTIVE_FILE, /* " " " " " */
158 NR_UNEVICTABLE, /* " " " " " */
160 NR_SLAB_UNRECLAIMABLE,
161 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
162 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
165 WORKINGSET_NODERECLAIM,
166 NR_ANON_MAPPED, /* Mapped anonymous pages */
167 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
168 only modified from process context */
172 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
173 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
177 NR_UNSTABLE_NFS, /* NFS unstable pages */
179 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
180 NR_DIRTIED, /* page dirtyings since bootup */
181 NR_WRITTEN, /* page writings since bootup */
182 NR_VM_NODE_STAT_ITEMS
186 * We do arithmetic on the LRU lists in various places in the code,
187 * so it is important to keep the active lists LRU_ACTIVE higher in
188 * the array than the corresponding inactive lists, and to keep
189 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
191 * This has to be kept in sync with the statistics in zone_stat_item
192 * above and the descriptions in vmstat_text in mm/vmstat.c
199 LRU_INACTIVE_ANON = LRU_BASE,
200 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
201 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
202 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
207 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
209 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
211 static inline int is_file_lru(enum lru_list lru)
213 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
216 static inline int is_active_lru(enum lru_list lru)
218 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
221 struct zone_reclaim_stat {
223 * The pageout code in vmscan.c keeps track of how many of the
224 * mem/swap backed and file backed pages are referenced.
225 * The higher the rotated/scanned ratio, the more valuable
228 * The anon LRU stats live in [0], file LRU stats in [1]
230 unsigned long recent_rotated[2];
231 unsigned long recent_scanned[2];
235 struct list_head lists[NR_LRU_LISTS];
236 struct zone_reclaim_stat reclaim_stat;
237 /* Evictions & activations on the inactive file list */
238 atomic_long_t inactive_age;
239 /* Refaults at the time of last reclaim cycle */
240 unsigned long refaults;
242 struct pglist_data *pgdat;
246 /* Mask used at gathering information at once (see memcontrol.c) */
247 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
248 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
249 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
251 /* Isolate unmapped file */
252 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
253 /* Isolate for asynchronous migration */
254 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
255 /* Isolate unevictable pages */
256 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
258 /* LRU Isolation modes. */
259 typedef unsigned __bitwise isolate_mode_t;
261 enum zone_watermarks {
268 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
269 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
270 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
272 struct per_cpu_pages {
273 int count; /* number of pages in the list */
274 int high; /* high watermark, emptying needed */
275 int batch; /* chunk size for buddy add/remove */
277 /* Lists of pages, one per migrate type stored on the pcp-lists */
278 struct list_head lists[MIGRATE_PCPTYPES];
281 struct per_cpu_pageset {
282 struct per_cpu_pages pcp;
285 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
289 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
293 struct per_cpu_nodestat {
295 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
298 #endif /* !__GENERATING_BOUNDS.H */
301 #ifdef CONFIG_ZONE_DMA
303 * ZONE_DMA is used when there are devices that are not able
304 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
305 * carve out the portion of memory that is needed for these devices.
306 * The range is arch specific.
311 * ---------------------------
312 * parisc, ia64, sparc <4G
315 * alpha Unlimited or 0-16MB.
317 * i386, x86_64 and multiple other arches
322 #ifdef CONFIG_ZONE_DMA32
324 * x86_64 needs two ZONE_DMAs because it supports devices that are
325 * only able to do DMA to the lower 16M but also 32 bit devices that
326 * can only do DMA areas below 4G.
331 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
332 * performed on pages in ZONE_NORMAL if the DMA devices support
333 * transfers to all addressable memory.
336 #ifdef CONFIG_HIGHMEM
338 * A memory area that is only addressable by the kernel through
339 * mapping portions into its own address space. This is for example
340 * used by i386 to allow the kernel to address the memory beyond
341 * 900MB. The kernel will set up special mappings (page
342 * table entries on i386) for each page that the kernel needs to
348 #ifdef CONFIG_ZONE_DEVICE
355 #ifndef __GENERATING_BOUNDS_H
358 /* Read-mostly fields */
360 /* zone watermarks, access with *_wmark_pages(zone) macros */
361 unsigned long watermark[NR_WMARK];
363 unsigned long nr_reserved_highatomic;
366 * We don't know if the memory that we're going to allocate will be
367 * freeable or/and it will be released eventually, so to avoid totally
368 * wasting several GB of ram we must reserve some of the lower zone
369 * memory (otherwise we risk to run OOM on the lower zones despite
370 * there being tons of freeable ram on the higher zones). This array is
371 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
374 long lowmem_reserve[MAX_NR_ZONES];
379 struct pglist_data *zone_pgdat;
380 struct per_cpu_pageset __percpu *pageset;
382 #ifndef CONFIG_SPARSEMEM
384 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
385 * In SPARSEMEM, this map is stored in struct mem_section
387 unsigned long *pageblock_flags;
388 #endif /* CONFIG_SPARSEMEM */
390 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
391 unsigned long zone_start_pfn;
394 * spanned_pages is the total pages spanned by the zone, including
395 * holes, which is calculated as:
396 * spanned_pages = zone_end_pfn - zone_start_pfn;
398 * present_pages is physical pages existing within the zone, which
400 * present_pages = spanned_pages - absent_pages(pages in holes);
402 * managed_pages is present pages managed by the buddy system, which
403 * is calculated as (reserved_pages includes pages allocated by the
404 * bootmem allocator):
405 * managed_pages = present_pages - reserved_pages;
407 * So present_pages may be used by memory hotplug or memory power
408 * management logic to figure out unmanaged pages by checking
409 * (present_pages - managed_pages). And managed_pages should be used
410 * by page allocator and vm scanner to calculate all kinds of watermarks
415 * zone_start_pfn and spanned_pages are protected by span_seqlock.
416 * It is a seqlock because it has to be read outside of zone->lock,
417 * and it is done in the main allocator path. But, it is written
418 * quite infrequently.
420 * The span_seq lock is declared along with zone->lock because it is
421 * frequently read in proximity to zone->lock. It's good to
422 * give them a chance of being in the same cacheline.
424 * Write access to present_pages at runtime should be protected by
425 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
426 * present_pages should get_online_mems() to get a stable value.
428 * Read access to managed_pages should be safe because it's unsigned
429 * long. Write access to zone->managed_pages and totalram_pages are
430 * protected by managed_page_count_lock at runtime. Idealy only
431 * adjust_managed_page_count() should be used instead of directly
432 * touching zone->managed_pages and totalram_pages.
434 unsigned long managed_pages;
435 unsigned long spanned_pages;
436 unsigned long present_pages;
440 #ifdef CONFIG_MEMORY_ISOLATION
442 * Number of isolated pageblock. It is used to solve incorrect
443 * freepage counting problem due to racy retrieving migratetype
444 * of pageblock. Protected by zone->lock.
446 unsigned long nr_isolate_pageblock;
449 #ifdef CONFIG_MEMORY_HOTPLUG
450 /* see spanned/present_pages for more description */
451 seqlock_t span_seqlock;
456 /* Write-intensive fields used from the page allocator */
459 /* free areas of different sizes */
460 struct free_area free_area[MAX_ORDER];
462 /* zone flags, see below */
465 /* Primarily protects free_area */
468 /* Write-intensive fields used by compaction and vmstats. */
472 * When free pages are below this point, additional steps are taken
473 * when reading the number of free pages to avoid per-cpu counter
474 * drift allowing watermarks to be breached
476 unsigned long percpu_drift_mark;
478 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
479 /* pfn where compaction free scanner should start */
480 unsigned long compact_cached_free_pfn;
481 /* pfn where async and sync compaction migration scanner should start */
482 unsigned long compact_cached_migrate_pfn[2];
485 #ifdef CONFIG_COMPACTION
487 * On compaction failure, 1<<compact_defer_shift compactions
488 * are skipped before trying again. The number attempted since
489 * last failure is tracked with compact_considered.
491 unsigned int compact_considered;
492 unsigned int compact_defer_shift;
493 int compact_order_failed;
496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 /* Set to true when the PG_migrate_skip bits should be cleared */
498 bool compact_blockskip_flush;
504 /* Zone statistics */
505 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
506 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
507 } ____cacheline_internodealigned_in_smp;
510 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
513 PGDAT_DIRTY, /* reclaim scanning has recently found
514 * many dirty file pages at the tail
517 PGDAT_WRITEBACK, /* reclaim scanning has recently found
518 * many pages under writeback
520 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
523 static inline unsigned long zone_end_pfn(const struct zone *zone)
525 return zone->zone_start_pfn + zone->spanned_pages;
528 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
530 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
533 static inline bool zone_is_initialized(struct zone *zone)
535 return zone->initialized;
538 static inline bool zone_is_empty(struct zone *zone)
540 return zone->spanned_pages == 0;
544 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
545 * intersection with the given zone
547 static inline bool zone_intersects(struct zone *zone,
548 unsigned long start_pfn, unsigned long nr_pages)
550 if (zone_is_empty(zone))
552 if (start_pfn >= zone_end_pfn(zone) ||
553 start_pfn + nr_pages <= zone->zone_start_pfn)
560 * The "priority" of VM scanning is how much of the queues we will scan in one
561 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
562 * queues ("queue_length >> 12") during an aging round.
564 #define DEF_PRIORITY 12
566 /* Maximum number of zones on a zonelist */
567 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
570 ZONELIST_FALLBACK, /* zonelist with fallback */
573 * The NUMA zonelists are doubled because we need zonelists that
574 * restrict the allocations to a single node for __GFP_THISNODE.
576 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
582 * This struct contains information about a zone in a zonelist. It is stored
583 * here to avoid dereferences into large structures and lookups of tables
586 struct zone *zone; /* Pointer to actual zone */
587 int zone_idx; /* zone_idx(zoneref->zone) */
591 * One allocation request operates on a zonelist. A zonelist
592 * is a list of zones, the first one is the 'goal' of the
593 * allocation, the other zones are fallback zones, in decreasing
596 * To speed the reading of the zonelist, the zonerefs contain the zone index
597 * of the entry being read. Helper functions to access information given
598 * a struct zoneref are
600 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
601 * zonelist_zone_idx() - Return the index of the zone for an entry
602 * zonelist_node_idx() - Return the index of the node for an entry
605 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
608 #ifndef CONFIG_DISCONTIGMEM
609 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
610 extern struct page *mem_map;
614 * On NUMA machines, each NUMA node would have a pg_data_t to describe
615 * it's memory layout. On UMA machines there is a single pglist_data which
616 * describes the whole memory.
618 * Memory statistics and page replacement data structures are maintained on a
622 typedef struct pglist_data {
623 struct zone node_zones[MAX_NR_ZONES];
624 struct zonelist node_zonelists[MAX_ZONELISTS];
626 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
627 struct page *node_mem_map;
628 #ifdef CONFIG_PAGE_EXTENSION
629 struct page_ext *node_page_ext;
632 #ifndef CONFIG_NO_BOOTMEM
633 struct bootmem_data *bdata;
635 #ifdef CONFIG_MEMORY_HOTPLUG
637 * Must be held any time you expect node_start_pfn, node_present_pages
638 * or node_spanned_pages stay constant. Holding this will also
639 * guarantee that any pfn_valid() stays that way.
641 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
642 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
644 * Nests above zone->lock and zone->span_seqlock
646 spinlock_t node_size_lock;
648 unsigned long node_start_pfn;
649 unsigned long node_present_pages; /* total number of physical pages */
650 unsigned long node_spanned_pages; /* total size of physical page
651 range, including holes */
653 wait_queue_head_t kswapd_wait;
654 wait_queue_head_t pfmemalloc_wait;
655 struct task_struct *kswapd; /* Protected by
656 mem_hotplug_begin/end() */
658 enum zone_type kswapd_classzone_idx;
660 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
662 #ifdef CONFIG_COMPACTION
663 int kcompactd_max_order;
664 enum zone_type kcompactd_classzone_idx;
665 wait_queue_head_t kcompactd_wait;
666 struct task_struct *kcompactd;
668 #ifdef CONFIG_NUMA_BALANCING
669 /* Lock serializing the migrate rate limiting window */
670 spinlock_t numabalancing_migrate_lock;
672 /* Rate limiting time interval */
673 unsigned long numabalancing_migrate_next_window;
675 /* Number of pages migrated during the rate limiting time interval */
676 unsigned long numabalancing_migrate_nr_pages;
679 * This is a per-node reserve of pages that are not available
680 * to userspace allocations.
682 unsigned long totalreserve_pages;
686 * zone reclaim becomes active if more unmapped pages exist.
688 unsigned long min_unmapped_pages;
689 unsigned long min_slab_pages;
690 #endif /* CONFIG_NUMA */
692 /* Write-intensive fields used by page reclaim */
696 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
698 * If memory initialisation on large machines is deferred then this
699 * is the first PFN that needs to be initialised.
701 unsigned long first_deferred_pfn;
702 unsigned long static_init_size;
703 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
705 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
706 spinlock_t split_queue_lock;
707 struct list_head split_queue;
708 unsigned long split_queue_len;
711 /* Fields commonly accessed by the page reclaim scanner */
712 struct lruvec lruvec;
715 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
716 * this node's LRU. Maintained by the pageout code.
718 unsigned int inactive_ratio;
724 /* Per-node vmstats */
725 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
726 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
729 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
730 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
731 #ifdef CONFIG_FLAT_NODE_MEM_MAP
732 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
734 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
736 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
738 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
739 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
740 static inline spinlock_t *zone_lru_lock(struct zone *zone)
742 return &zone->zone_pgdat->lru_lock;
745 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
747 return &pgdat->lruvec;
750 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
752 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
755 static inline bool pgdat_is_empty(pg_data_t *pgdat)
757 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
760 static inline int zone_id(const struct zone *zone)
762 struct pglist_data *pgdat = zone->zone_pgdat;
764 return zone - pgdat->node_zones;
767 #ifdef CONFIG_ZONE_DEVICE
768 static inline bool is_dev_zone(const struct zone *zone)
770 return zone_id(zone) == ZONE_DEVICE;
773 static inline bool is_dev_zone(const struct zone *zone)
779 #include <linux/memory_hotplug.h>
781 void build_all_zonelists(pg_data_t *pgdat);
782 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
783 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
784 int classzone_idx, unsigned int alloc_flags,
786 bool zone_watermark_ok(struct zone *z, unsigned int order,
787 unsigned long mark, int classzone_idx,
788 unsigned int alloc_flags);
789 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
790 unsigned long mark, int classzone_idx);
791 enum memmap_context {
795 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
798 extern void lruvec_init(struct lruvec *lruvec);
800 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
803 return lruvec->pgdat;
805 return container_of(lruvec, struct pglist_data, lruvec);
809 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
811 #ifdef CONFIG_HAVE_MEMORY_PRESENT
812 void memory_present(int nid, unsigned long start, unsigned long end);
814 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
817 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
818 int local_memory_node(int node_id);
820 static inline int local_memory_node(int node_id) { return node_id; };
823 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
824 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
828 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
830 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
833 * Returns true if a zone has pages managed by the buddy allocator.
834 * All the reclaim decisions have to use this function rather than
835 * populated_zone(). If the whole zone is reserved then we can easily
836 * end up with populated_zone() && !managed_zone().
838 static inline bool managed_zone(struct zone *zone)
840 return zone->managed_pages;
843 /* Returns true if a zone has memory */
844 static inline bool populated_zone(struct zone *zone)
846 return zone->present_pages;
849 extern int movable_zone;
851 #ifdef CONFIG_HIGHMEM
852 static inline int zone_movable_is_highmem(void)
854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
855 return movable_zone == ZONE_HIGHMEM;
857 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
862 static inline int is_highmem_idx(enum zone_type idx)
864 #ifdef CONFIG_HIGHMEM
865 return (idx == ZONE_HIGHMEM ||
866 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
873 * is_highmem - helper function to quickly check if a struct zone is a
874 * highmem zone or not. This is an attempt to keep references
875 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
876 * @zone - pointer to struct zone variable
878 static inline int is_highmem(struct zone *zone)
880 #ifdef CONFIG_HIGHMEM
881 return is_highmem_idx(zone_idx(zone));
887 /* These two functions are used to setup the per zone pages min values */
889 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
890 void __user *, size_t *, loff_t *);
891 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
892 void __user *, size_t *, loff_t *);
893 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
894 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
895 void __user *, size_t *, loff_t *);
896 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
897 void __user *, size_t *, loff_t *);
898 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
899 void __user *, size_t *, loff_t *);
900 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
901 void __user *, size_t *, loff_t *);
903 extern int numa_zonelist_order_handler(struct ctl_table *, int,
904 void __user *, size_t *, loff_t *);
905 extern char numa_zonelist_order[];
906 #define NUMA_ZONELIST_ORDER_LEN 16
908 #ifndef CONFIG_NEED_MULTIPLE_NODES
910 extern struct pglist_data contig_page_data;
911 #define NODE_DATA(nid) (&contig_page_data)
912 #define NODE_MEM_MAP(nid) mem_map
914 #else /* CONFIG_NEED_MULTIPLE_NODES */
916 #include <asm/mmzone.h>
918 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
920 extern struct pglist_data *first_online_pgdat(void);
921 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
922 extern struct zone *next_zone(struct zone *zone);
925 * for_each_online_pgdat - helper macro to iterate over all online nodes
926 * @pgdat - pointer to a pg_data_t variable
928 #define for_each_online_pgdat(pgdat) \
929 for (pgdat = first_online_pgdat(); \
931 pgdat = next_online_pgdat(pgdat))
933 * for_each_zone - helper macro to iterate over all memory zones
934 * @zone - pointer to struct zone variable
936 * The user only needs to declare the zone variable, for_each_zone
939 #define for_each_zone(zone) \
940 for (zone = (first_online_pgdat())->node_zones; \
942 zone = next_zone(zone))
944 #define for_each_populated_zone(zone) \
945 for (zone = (first_online_pgdat())->node_zones; \
947 zone = next_zone(zone)) \
948 if (!populated_zone(zone)) \
952 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
954 return zoneref->zone;
957 static inline int zonelist_zone_idx(struct zoneref *zoneref)
959 return zoneref->zone_idx;
962 static inline int zonelist_node_idx(struct zoneref *zoneref)
965 /* zone_to_nid not available in this context */
966 return zoneref->zone->node;
969 #endif /* CONFIG_NUMA */
972 struct zoneref *__next_zones_zonelist(struct zoneref *z,
973 enum zone_type highest_zoneidx,
977 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
978 * @z - The cursor used as a starting point for the search
979 * @highest_zoneidx - The zone index of the highest zone to return
980 * @nodes - An optional nodemask to filter the zonelist with
982 * This function returns the next zone at or below a given zone index that is
983 * within the allowed nodemask using a cursor as the starting point for the
984 * search. The zoneref returned is a cursor that represents the current zone
985 * being examined. It should be advanced by one before calling
986 * next_zones_zonelist again.
988 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
989 enum zone_type highest_zoneidx,
992 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
994 return __next_zones_zonelist(z, highest_zoneidx, nodes);
998 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
999 * @zonelist - The zonelist to search for a suitable zone
1000 * @highest_zoneidx - The zone index of the highest zone to return
1001 * @nodes - An optional nodemask to filter the zonelist with
1002 * @return - Zoneref pointer for the first suitable zone found (see below)
1004 * This function returns the first zone at or below a given zone index that is
1005 * within the allowed nodemask. The zoneref returned is a cursor that can be
1006 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1007 * one before calling.
1009 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1010 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1011 * update due to cpuset modification.
1013 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1014 enum zone_type highest_zoneidx,
1017 return next_zones_zonelist(zonelist->_zonerefs,
1018 highest_zoneidx, nodes);
1022 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1023 * @zone - The current zone in the iterator
1024 * @z - The current pointer within zonelist->zones being iterated
1025 * @zlist - The zonelist being iterated
1026 * @highidx - The zone index of the highest zone to return
1027 * @nodemask - Nodemask allowed by the allocator
1029 * This iterator iterates though all zones at or below a given zone index and
1030 * within a given nodemask
1032 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1033 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1035 z = next_zones_zonelist(++z, highidx, nodemask), \
1036 zone = zonelist_zone(z))
1038 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1039 for (zone = z->zone; \
1041 z = next_zones_zonelist(++z, highidx, nodemask), \
1042 zone = zonelist_zone(z))
1046 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1047 * @zone - The current zone in the iterator
1048 * @z - The current pointer within zonelist->zones being iterated
1049 * @zlist - The zonelist being iterated
1050 * @highidx - The zone index of the highest zone to return
1052 * This iterator iterates though all zones at or below a given zone index.
1054 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1055 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1057 #ifdef CONFIG_SPARSEMEM
1058 #include <asm/sparsemem.h>
1061 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1062 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1063 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1065 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1070 #ifdef CONFIG_FLATMEM
1071 #define pfn_to_nid(pfn) (0)
1074 #ifdef CONFIG_SPARSEMEM
1077 * SECTION_SHIFT #bits space required to store a section #
1079 * PA_SECTION_SHIFT physical address to/from section number
1080 * PFN_SECTION_SHIFT pfn to/from section number
1082 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1083 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1085 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1087 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1088 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1090 #define SECTION_BLOCKFLAGS_BITS \
1091 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1093 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1094 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1097 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1098 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1100 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1101 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1105 struct mem_section {
1107 * This is, logically, a pointer to an array of struct
1108 * pages. However, it is stored with some other magic.
1109 * (see sparse.c::sparse_init_one_section())
1111 * Additionally during early boot we encode node id of
1112 * the location of the section here to guide allocation.
1113 * (see sparse.c::memory_present())
1115 * Making it a UL at least makes someone do a cast
1116 * before using it wrong.
1118 unsigned long section_mem_map;
1120 /* See declaration of similar field in struct zone */
1121 unsigned long *pageblock_flags;
1122 #ifdef CONFIG_PAGE_EXTENSION
1124 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1125 * section. (see page_ext.h about this.)
1127 struct page_ext *page_ext;
1131 * WARNING: mem_section must be a power-of-2 in size for the
1132 * calculation and use of SECTION_ROOT_MASK to make sense.
1136 #ifdef CONFIG_SPARSEMEM_EXTREME
1137 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1139 #define SECTIONS_PER_ROOT 1
1142 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1143 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1144 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1146 #ifdef CONFIG_SPARSEMEM_EXTREME
1147 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1149 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1152 static inline struct mem_section *__nr_to_section(unsigned long nr)
1154 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1156 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1158 extern int __section_nr(struct mem_section* ms);
1159 extern unsigned long usemap_size(void);
1162 * We use the lower bits of the mem_map pointer to store
1163 * a little bit of information. There should be at least
1164 * 3 bits here due to 32-bit alignment.
1166 #define SECTION_MARKED_PRESENT (1UL<<0)
1167 #define SECTION_HAS_MEM_MAP (1UL<<1)
1168 #define SECTION_IS_ONLINE (1UL<<2)
1169 #define SECTION_MAP_LAST_BIT (1UL<<3)
1170 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1171 #define SECTION_NID_SHIFT 3
1173 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1175 unsigned long map = section->section_mem_map;
1176 map &= SECTION_MAP_MASK;
1177 return (struct page *)map;
1180 static inline int present_section(struct mem_section *section)
1182 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1185 static inline int present_section_nr(unsigned long nr)
1187 return present_section(__nr_to_section(nr));
1190 static inline int valid_section(struct mem_section *section)
1192 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1195 static inline int valid_section_nr(unsigned long nr)
1197 return valid_section(__nr_to_section(nr));
1200 static inline int online_section(struct mem_section *section)
1202 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1205 static inline int online_section_nr(unsigned long nr)
1207 return online_section(__nr_to_section(nr));
1210 #ifdef CONFIG_MEMORY_HOTPLUG
1211 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1212 #ifdef CONFIG_MEMORY_HOTREMOVE
1213 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1217 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1219 return __nr_to_section(pfn_to_section_nr(pfn));
1222 extern int __highest_present_section_nr;
1224 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1225 static inline int pfn_valid(unsigned long pfn)
1227 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1229 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1233 static inline int pfn_present(unsigned long pfn)
1235 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1237 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1241 * These are _only_ used during initialisation, therefore they
1242 * can use __initdata ... They could have names to indicate
1246 #define pfn_to_nid(pfn) \
1248 unsigned long __pfn_to_nid_pfn = (pfn); \
1249 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1252 #define pfn_to_nid(pfn) (0)
1255 #define early_pfn_valid(pfn) pfn_valid(pfn)
1256 void sparse_init(void);
1258 #define sparse_init() do {} while (0)
1259 #define sparse_index_init(_sec, _nid) do {} while (0)
1260 #endif /* CONFIG_SPARSEMEM */
1263 * During memory init memblocks map pfns to nids. The search is expensive and
1264 * this caches recent lookups. The implementation of __early_pfn_to_nid
1265 * may treat start/end as pfns or sections.
1267 struct mminit_pfnnid_cache {
1268 unsigned long last_start;
1269 unsigned long last_end;
1273 #ifndef early_pfn_valid
1274 #define early_pfn_valid(pfn) (1)
1277 void memory_present(int nid, unsigned long start, unsigned long end);
1278 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1281 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1282 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1283 * pfn_valid_within() should be used in this case; we optimise this away
1284 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1286 #ifdef CONFIG_HOLES_IN_ZONE
1287 #define pfn_valid_within(pfn) pfn_valid(pfn)
1289 #define pfn_valid_within(pfn) (1)
1292 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1294 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1295 * associated with it or not. This means that a struct page exists for this
1296 * pfn. The caller cannot assume the page is fully initialized in general.
1297 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1298 * will ensure the struct page is fully online and initialized. Special pages
1299 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1301 * In FLATMEM, it is expected that holes always have valid memmap as long as
1302 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1303 * that a valid section has a memmap for the entire section.
1305 * However, an ARM, and maybe other embedded architectures in the future
1306 * free memmap backing holes to save memory on the assumption the memmap is
1307 * never used. The page_zone linkages are then broken even though pfn_valid()
1308 * returns true. A walker of the full memmap must then do this additional
1309 * check to ensure the memmap they are looking at is sane by making sure
1310 * the zone and PFN linkages are still valid. This is expensive, but walkers
1311 * of the full memmap are extremely rare.
1313 bool memmap_valid_within(unsigned long pfn,
1314 struct page *page, struct zone *zone);
1316 static inline bool memmap_valid_within(unsigned long pfn,
1317 struct page *page, struct zone *zone)
1321 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1323 #endif /* !__GENERATING_BOUNDS.H */
1324 #endif /* !__ASSEMBLY__ */
1325 #endif /* _LINUX_MMZONE_H */