]> Git Repo - linux.git/blob - fs/btrfs/super.c
net: ethtool: Fix RSS setting
[linux.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "props.h"
38 #include "xattr.h"
39 #include "bio.h"
40 #include "export.h"
41 #include "compression.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #include "ioctl.h"
58 #include "scrub.h"
59 #include "verity.h"
60 #include "super.h"
61 #include "extent-tree.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/btrfs.h>
64
65 static const struct super_operations btrfs_super_ops;
66 static struct file_system_type btrfs_fs_type;
67
68 static void btrfs_put_super(struct super_block *sb)
69 {
70         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
71
72         btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
73         close_ctree(fs_info);
74 }
75
76 /* Store the mount options related information. */
77 struct btrfs_fs_context {
78         char *subvol_name;
79         u64 subvol_objectid;
80         u64 max_inline;
81         u32 commit_interval;
82         u32 metadata_ratio;
83         u32 thread_pool_size;
84         unsigned long mount_opt;
85         unsigned long compress_type:4;
86         unsigned int compress_level;
87         refcount_t refs;
88 };
89
90 enum {
91         Opt_acl,
92         Opt_clear_cache,
93         Opt_commit_interval,
94         Opt_compress,
95         Opt_compress_force,
96         Opt_compress_force_type,
97         Opt_compress_type,
98         Opt_degraded,
99         Opt_device,
100         Opt_fatal_errors,
101         Opt_flushoncommit,
102         Opt_max_inline,
103         Opt_barrier,
104         Opt_datacow,
105         Opt_datasum,
106         Opt_defrag,
107         Opt_discard,
108         Opt_discard_mode,
109         Opt_ratio,
110         Opt_rescan_uuid_tree,
111         Opt_skip_balance,
112         Opt_space_cache,
113         Opt_space_cache_version,
114         Opt_ssd,
115         Opt_ssd_spread,
116         Opt_subvol,
117         Opt_subvol_empty,
118         Opt_subvolid,
119         Opt_thread_pool,
120         Opt_treelog,
121         Opt_user_subvol_rm_allowed,
122         Opt_norecovery,
123
124         /* Rescue options */
125         Opt_rescue,
126         Opt_usebackuproot,
127         Opt_nologreplay,
128         Opt_ignorebadroots,
129         Opt_ignoredatacsums,
130         Opt_rescue_all,
131
132         /* Debugging options */
133         Opt_enospc_debug,
134 #ifdef CONFIG_BTRFS_DEBUG
135         Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
136 #endif
137 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
138         Opt_ref_verify,
139 #endif
140         Opt_err,
141 };
142
143 enum {
144         Opt_fatal_errors_panic,
145         Opt_fatal_errors_bug,
146 };
147
148 static const struct constant_table btrfs_parameter_fatal_errors[] = {
149         { "panic", Opt_fatal_errors_panic },
150         { "bug", Opt_fatal_errors_bug },
151         {}
152 };
153
154 enum {
155         Opt_discard_sync,
156         Opt_discard_async,
157 };
158
159 static const struct constant_table btrfs_parameter_discard[] = {
160         { "sync", Opt_discard_sync },
161         { "async", Opt_discard_async },
162         {}
163 };
164
165 enum {
166         Opt_space_cache_v1,
167         Opt_space_cache_v2,
168 };
169
170 static const struct constant_table btrfs_parameter_space_cache[] = {
171         { "v1", Opt_space_cache_v1 },
172         { "v2", Opt_space_cache_v2 },
173         {}
174 };
175
176 enum {
177         Opt_rescue_usebackuproot,
178         Opt_rescue_nologreplay,
179         Opt_rescue_ignorebadroots,
180         Opt_rescue_ignoredatacsums,
181         Opt_rescue_parameter_all,
182 };
183
184 static const struct constant_table btrfs_parameter_rescue[] = {
185         { "usebackuproot", Opt_rescue_usebackuproot },
186         { "nologreplay", Opt_rescue_nologreplay },
187         { "ignorebadroots", Opt_rescue_ignorebadroots },
188         { "ibadroots", Opt_rescue_ignorebadroots },
189         { "ignoredatacsums", Opt_rescue_ignoredatacsums },
190         { "idatacsums", Opt_rescue_ignoredatacsums },
191         { "all", Opt_rescue_parameter_all },
192         {}
193 };
194
195 #ifdef CONFIG_BTRFS_DEBUG
196 enum {
197         Opt_fragment_parameter_data,
198         Opt_fragment_parameter_metadata,
199         Opt_fragment_parameter_all,
200 };
201
202 static const struct constant_table btrfs_parameter_fragment[] = {
203         { "data", Opt_fragment_parameter_data },
204         { "metadata", Opt_fragment_parameter_metadata },
205         { "all", Opt_fragment_parameter_all },
206         {}
207 };
208 #endif
209
210 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
211         fsparam_flag_no("acl", Opt_acl),
212         fsparam_flag_no("autodefrag", Opt_defrag),
213         fsparam_flag_no("barrier", Opt_barrier),
214         fsparam_flag("clear_cache", Opt_clear_cache),
215         fsparam_u32("commit", Opt_commit_interval),
216         fsparam_flag("compress", Opt_compress),
217         fsparam_string("compress", Opt_compress_type),
218         fsparam_flag("compress-force", Opt_compress_force),
219         fsparam_string("compress-force", Opt_compress_force_type),
220         fsparam_flag_no("datacow", Opt_datacow),
221         fsparam_flag_no("datasum", Opt_datasum),
222         fsparam_flag("degraded", Opt_degraded),
223         fsparam_string("device", Opt_device),
224         fsparam_flag_no("discard", Opt_discard),
225         fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
226         fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
227         fsparam_flag_no("flushoncommit", Opt_flushoncommit),
228         fsparam_string("max_inline", Opt_max_inline),
229         fsparam_u32("metadata_ratio", Opt_ratio),
230         fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
231         fsparam_flag("skip_balance", Opt_skip_balance),
232         fsparam_flag_no("space_cache", Opt_space_cache),
233         fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
234         fsparam_flag_no("ssd", Opt_ssd),
235         fsparam_flag_no("ssd_spread", Opt_ssd_spread),
236         fsparam_string("subvol", Opt_subvol),
237         fsparam_flag("subvol=", Opt_subvol_empty),
238         fsparam_u64("subvolid", Opt_subvolid),
239         fsparam_u32("thread_pool", Opt_thread_pool),
240         fsparam_flag_no("treelog", Opt_treelog),
241         fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
242
243         /* Rescue options. */
244         fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
245         /* Deprecated, with alias rescue=nologreplay */
246         __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
247         /* Deprecated, with alias rescue=usebackuproot */
248         __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
249         /* For compatibility only, alias for "rescue=nologreplay". */
250         fsparam_flag("norecovery", Opt_norecovery),
251
252         /* Debugging options. */
253         fsparam_flag_no("enospc_debug", Opt_enospc_debug),
254 #ifdef CONFIG_BTRFS_DEBUG
255         fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
256 #endif
257 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
258         fsparam_flag("ref_verify", Opt_ref_verify),
259 #endif
260         {}
261 };
262
263 /* No support for restricting writes to btrfs devices yet... */
264 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
265 {
266         return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
267 }
268
269 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
270 {
271         struct btrfs_fs_context *ctx = fc->fs_private;
272         struct fs_parse_result result;
273         int opt;
274
275         opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
276         if (opt < 0)
277                 return opt;
278
279         switch (opt) {
280         case Opt_degraded:
281                 btrfs_set_opt(ctx->mount_opt, DEGRADED);
282                 break;
283         case Opt_subvol_empty:
284                 /*
285                  * This exists because we used to allow it on accident, so we're
286                  * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
287                  * empty subvol= again").
288                  */
289                 break;
290         case Opt_subvol:
291                 kfree(ctx->subvol_name);
292                 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
293                 if (!ctx->subvol_name)
294                         return -ENOMEM;
295                 break;
296         case Opt_subvolid:
297                 ctx->subvol_objectid = result.uint_64;
298
299                 /* subvolid=0 means give me the original fs_tree. */
300                 if (!ctx->subvol_objectid)
301                         ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
302                 break;
303         case Opt_device: {
304                 struct btrfs_device *device;
305                 blk_mode_t mode = btrfs_open_mode(fc);
306
307                 mutex_lock(&uuid_mutex);
308                 device = btrfs_scan_one_device(param->string, mode, false);
309                 mutex_unlock(&uuid_mutex);
310                 if (IS_ERR(device))
311                         return PTR_ERR(device);
312                 break;
313         }
314         case Opt_datasum:
315                 if (result.negated) {
316                         btrfs_set_opt(ctx->mount_opt, NODATASUM);
317                 } else {
318                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
319                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
320                 }
321                 break;
322         case Opt_datacow:
323                 if (result.negated) {
324                         btrfs_clear_opt(ctx->mount_opt, COMPRESS);
325                         btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
326                         btrfs_set_opt(ctx->mount_opt, NODATACOW);
327                         btrfs_set_opt(ctx->mount_opt, NODATASUM);
328                 } else {
329                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
330                 }
331                 break;
332         case Opt_compress_force:
333         case Opt_compress_force_type:
334                 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
335                 fallthrough;
336         case Opt_compress:
337         case Opt_compress_type:
338                 if (opt == Opt_compress || opt == Opt_compress_force) {
339                         ctx->compress_type = BTRFS_COMPRESS_ZLIB;
340                         ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
341                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
342                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
343                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
344                 } else if (strncmp(param->string, "zlib", 4) == 0) {
345                         ctx->compress_type = BTRFS_COMPRESS_ZLIB;
346                         ctx->compress_level =
347                                 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
348                                                          param->string + 4);
349                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
350                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
351                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
352                 } else if (strncmp(param->string, "lzo", 3) == 0) {
353                         ctx->compress_type = BTRFS_COMPRESS_LZO;
354                         ctx->compress_level = 0;
355                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
356                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
357                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
358                 } else if (strncmp(param->string, "zstd", 4) == 0) {
359                         ctx->compress_type = BTRFS_COMPRESS_ZSTD;
360                         ctx->compress_level =
361                                 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
362                                                          param->string + 4);
363                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
364                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
365                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
366                 } else if (strncmp(param->string, "no", 2) == 0) {
367                         ctx->compress_level = 0;
368                         ctx->compress_type = 0;
369                         btrfs_clear_opt(ctx->mount_opt, COMPRESS);
370                         btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
371                 } else {
372                         btrfs_err(NULL, "unrecognized compression value %s",
373                                   param->string);
374                         return -EINVAL;
375                 }
376                 break;
377         case Opt_ssd:
378                 if (result.negated) {
379                         btrfs_set_opt(ctx->mount_opt, NOSSD);
380                         btrfs_clear_opt(ctx->mount_opt, SSD);
381                         btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
382                 } else {
383                         btrfs_set_opt(ctx->mount_opt, SSD);
384                         btrfs_clear_opt(ctx->mount_opt, NOSSD);
385                 }
386                 break;
387         case Opt_ssd_spread:
388                 if (result.negated) {
389                         btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
390                 } else {
391                         btrfs_set_opt(ctx->mount_opt, SSD);
392                         btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
393                         btrfs_clear_opt(ctx->mount_opt, NOSSD);
394                 }
395                 break;
396         case Opt_barrier:
397                 if (result.negated)
398                         btrfs_set_opt(ctx->mount_opt, NOBARRIER);
399                 else
400                         btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
401                 break;
402         case Opt_thread_pool:
403                 if (result.uint_32 == 0) {
404                         btrfs_err(NULL, "invalid value 0 for thread_pool");
405                         return -EINVAL;
406                 }
407                 ctx->thread_pool_size = result.uint_32;
408                 break;
409         case Opt_max_inline:
410                 ctx->max_inline = memparse(param->string, NULL);
411                 break;
412         case Opt_acl:
413                 if (result.negated) {
414                         fc->sb_flags &= ~SB_POSIXACL;
415                 } else {
416 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
417                         fc->sb_flags |= SB_POSIXACL;
418 #else
419                         btrfs_err(NULL, "support for ACL not compiled in");
420                         return -EINVAL;
421 #endif
422                 }
423                 /*
424                  * VFS limits the ability to toggle ACL on and off via remount,
425                  * despite every file system allowing this.  This seems to be
426                  * an oversight since we all do, but it'll fail if we're
427                  * remounting.  So don't set the mask here, we'll check it in
428                  * btrfs_reconfigure and do the toggling ourselves.
429                  */
430                 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
431                         fc->sb_flags_mask |= SB_POSIXACL;
432                 break;
433         case Opt_treelog:
434                 if (result.negated)
435                         btrfs_set_opt(ctx->mount_opt, NOTREELOG);
436                 else
437                         btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
438                 break;
439         case Opt_nologreplay:
440                 btrfs_warn(NULL,
441                 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
442                 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
443                 break;
444         case Opt_norecovery:
445                 btrfs_info(NULL,
446 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
447                 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
448                 break;
449         case Opt_flushoncommit:
450                 if (result.negated)
451                         btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
452                 else
453                         btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
454                 break;
455         case Opt_ratio:
456                 ctx->metadata_ratio = result.uint_32;
457                 break;
458         case Opt_discard:
459                 if (result.negated) {
460                         btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
461                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
462                         btrfs_set_opt(ctx->mount_opt, NODISCARD);
463                 } else {
464                         btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
465                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
466                 }
467                 break;
468         case Opt_discard_mode:
469                 switch (result.uint_32) {
470                 case Opt_discard_sync:
471                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
472                         btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
473                         break;
474                 case Opt_discard_async:
475                         btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
476                         btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
477                         break;
478                 default:
479                         btrfs_err(NULL, "unrecognized discard mode value %s",
480                                   param->key);
481                         return -EINVAL;
482                 }
483                 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
484                 break;
485         case Opt_space_cache:
486                 if (result.negated) {
487                         btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
488                         btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
489                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
490                 } else {
491                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
492                         btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
493                 }
494                 break;
495         case Opt_space_cache_version:
496                 switch (result.uint_32) {
497                 case Opt_space_cache_v1:
498                         btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
499                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
500                         break;
501                 case Opt_space_cache_v2:
502                         btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
503                         btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
504                         break;
505                 default:
506                         btrfs_err(NULL, "unrecognized space_cache value %s",
507                                   param->key);
508                         return -EINVAL;
509                 }
510                 break;
511         case Opt_rescan_uuid_tree:
512                 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
513                 break;
514         case Opt_clear_cache:
515                 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
516                 break;
517         case Opt_user_subvol_rm_allowed:
518                 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
519                 break;
520         case Opt_enospc_debug:
521                 if (result.negated)
522                         btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
523                 else
524                         btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
525                 break;
526         case Opt_defrag:
527                 if (result.negated)
528                         btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
529                 else
530                         btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
531                 break;
532         case Opt_usebackuproot:
533                 btrfs_warn(NULL,
534                            "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
535                 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
536
537                 /* If we're loading the backup roots we can't trust the space cache. */
538                 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
539                 break;
540         case Opt_skip_balance:
541                 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
542                 break;
543         case Opt_fatal_errors:
544                 switch (result.uint_32) {
545                 case Opt_fatal_errors_panic:
546                         btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
547                         break;
548                 case Opt_fatal_errors_bug:
549                         btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
550                         break;
551                 default:
552                         btrfs_err(NULL, "unrecognized fatal_errors value %s",
553                                   param->key);
554                         return -EINVAL;
555                 }
556                 break;
557         case Opt_commit_interval:
558                 ctx->commit_interval = result.uint_32;
559                 if (ctx->commit_interval == 0)
560                         ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
561                 break;
562         case Opt_rescue:
563                 switch (result.uint_32) {
564                 case Opt_rescue_usebackuproot:
565                         btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
566                         break;
567                 case Opt_rescue_nologreplay:
568                         btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
569                         break;
570                 case Opt_rescue_ignorebadroots:
571                         btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
572                         break;
573                 case Opt_rescue_ignoredatacsums:
574                         btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
575                         break;
576                 case Opt_rescue_parameter_all:
577                         btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
578                         btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
579                         btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
580                         break;
581                 default:
582                         btrfs_info(NULL, "unrecognized rescue option '%s'",
583                                    param->key);
584                         return -EINVAL;
585                 }
586                 break;
587 #ifdef CONFIG_BTRFS_DEBUG
588         case Opt_fragment:
589                 switch (result.uint_32) {
590                 case Opt_fragment_parameter_all:
591                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
592                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
593                         break;
594                 case Opt_fragment_parameter_metadata:
595                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
596                         break;
597                 case Opt_fragment_parameter_data:
598                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
599                         break;
600                 default:
601                         btrfs_info(NULL, "unrecognized fragment option '%s'",
602                                    param->key);
603                         return -EINVAL;
604                 }
605                 break;
606 #endif
607 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
608         case Opt_ref_verify:
609                 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
610                 break;
611 #endif
612         default:
613                 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
614                 return -EINVAL;
615         }
616
617         return 0;
618 }
619
620 /*
621  * Some options only have meaning at mount time and shouldn't persist across
622  * remounts, or be displayed. Clear these at the end of mount and remount code
623  * paths.
624  */
625 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
626 {
627         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
628         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
629         btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
630 }
631
632 static bool check_ro_option(struct btrfs_fs_info *fs_info,
633                             unsigned long mount_opt, unsigned long opt,
634                             const char *opt_name)
635 {
636         if (mount_opt & opt) {
637                 btrfs_err(fs_info, "%s must be used with ro mount option",
638                           opt_name);
639                 return true;
640         }
641         return false;
642 }
643
644 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
645                          unsigned long flags)
646 {
647         bool ret = true;
648
649         if (!(flags & SB_RDONLY) &&
650             (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
651              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
652              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
653                 ret = false;
654
655         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
656             !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
657             !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
658                 btrfs_err(info, "cannot disable free-space-tree");
659                 ret = false;
660         }
661         if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
662              !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
663                 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
664                 ret = false;
665         }
666
667         if (btrfs_check_mountopts_zoned(info, mount_opt))
668                 ret = false;
669
670         if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
671                 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
672                         btrfs_info(info, "disk space caching is enabled");
673                 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
674                         btrfs_info(info, "using free-space-tree");
675         }
676
677         return ret;
678 }
679
680 /*
681  * This is subtle, we only call this during open_ctree().  We need to pre-load
682  * the mount options with the on-disk settings.  Before the new mount API took
683  * effect we would do this on mount and remount.  With the new mount API we'll
684  * only do this on the initial mount.
685  *
686  * This isn't a change in behavior, because we're using the current state of the
687  * file system to set the current mount options.  If you mounted with special
688  * options to disable these features and then remounted we wouldn't revert the
689  * settings, because mounting without these features cleared the on-disk
690  * settings, so this being called on re-mount is not needed.
691  */
692 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
693 {
694         if (fs_info->sectorsize < PAGE_SIZE) {
695                 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
696                 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
697                         btrfs_info(fs_info,
698                                    "forcing free space tree for sector size %u with page size %lu",
699                                    fs_info->sectorsize, PAGE_SIZE);
700                         btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
701                 }
702         }
703
704         /*
705          * At this point our mount options are populated, so we only mess with
706          * these settings if we don't have any settings already.
707          */
708         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
709                 return;
710
711         if (btrfs_is_zoned(fs_info) &&
712             btrfs_free_space_cache_v1_active(fs_info)) {
713                 btrfs_info(fs_info, "zoned: clearing existing space cache");
714                 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
715                 return;
716         }
717
718         if (btrfs_test_opt(fs_info, SPACE_CACHE))
719                 return;
720
721         if (btrfs_test_opt(fs_info, NOSPACECACHE))
722                 return;
723
724         /*
725          * At this point we don't have explicit options set by the user, set
726          * them ourselves based on the state of the file system.
727          */
728         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
729                 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
730         else if (btrfs_free_space_cache_v1_active(fs_info))
731                 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
732 }
733
734 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
735 {
736         if (!btrfs_test_opt(fs_info, NOSSD) &&
737             !fs_info->fs_devices->rotating)
738                 btrfs_set_opt(fs_info->mount_opt, SSD);
739
740         /*
741          * For devices supporting discard turn on discard=async automatically,
742          * unless it's already set or disabled. This could be turned off by
743          * nodiscard for the same mount.
744          *
745          * The zoned mode piggy backs on the discard functionality for
746          * resetting a zone. There is no reason to delay the zone reset as it is
747          * fast enough. So, do not enable async discard for zoned mode.
748          */
749         if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
750               btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
751               btrfs_test_opt(fs_info, NODISCARD)) &&
752             fs_info->fs_devices->discardable &&
753             !btrfs_is_zoned(fs_info))
754                 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
755 }
756
757 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
758                                           u64 subvol_objectid)
759 {
760         struct btrfs_root *root = fs_info->tree_root;
761         struct btrfs_root *fs_root = NULL;
762         struct btrfs_root_ref *root_ref;
763         struct btrfs_inode_ref *inode_ref;
764         struct btrfs_key key;
765         struct btrfs_path *path = NULL;
766         char *name = NULL, *ptr;
767         u64 dirid;
768         int len;
769         int ret;
770
771         path = btrfs_alloc_path();
772         if (!path) {
773                 ret = -ENOMEM;
774                 goto err;
775         }
776
777         name = kmalloc(PATH_MAX, GFP_KERNEL);
778         if (!name) {
779                 ret = -ENOMEM;
780                 goto err;
781         }
782         ptr = name + PATH_MAX - 1;
783         ptr[0] = '\0';
784
785         /*
786          * Walk up the subvolume trees in the tree of tree roots by root
787          * backrefs until we hit the top-level subvolume.
788          */
789         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
790                 key.objectid = subvol_objectid;
791                 key.type = BTRFS_ROOT_BACKREF_KEY;
792                 key.offset = (u64)-1;
793
794                 ret = btrfs_search_backwards(root, &key, path);
795                 if (ret < 0) {
796                         goto err;
797                 } else if (ret > 0) {
798                         ret = -ENOENT;
799                         goto err;
800                 }
801
802                 subvol_objectid = key.offset;
803
804                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
805                                           struct btrfs_root_ref);
806                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
807                 ptr -= len + 1;
808                 if (ptr < name) {
809                         ret = -ENAMETOOLONG;
810                         goto err;
811                 }
812                 read_extent_buffer(path->nodes[0], ptr + 1,
813                                    (unsigned long)(root_ref + 1), len);
814                 ptr[0] = '/';
815                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
816                 btrfs_release_path(path);
817
818                 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
819                 if (IS_ERR(fs_root)) {
820                         ret = PTR_ERR(fs_root);
821                         fs_root = NULL;
822                         goto err;
823                 }
824
825                 /*
826                  * Walk up the filesystem tree by inode refs until we hit the
827                  * root directory.
828                  */
829                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
830                         key.objectid = dirid;
831                         key.type = BTRFS_INODE_REF_KEY;
832                         key.offset = (u64)-1;
833
834                         ret = btrfs_search_backwards(fs_root, &key, path);
835                         if (ret < 0) {
836                                 goto err;
837                         } else if (ret > 0) {
838                                 ret = -ENOENT;
839                                 goto err;
840                         }
841
842                         dirid = key.offset;
843
844                         inode_ref = btrfs_item_ptr(path->nodes[0],
845                                                    path->slots[0],
846                                                    struct btrfs_inode_ref);
847                         len = btrfs_inode_ref_name_len(path->nodes[0],
848                                                        inode_ref);
849                         ptr -= len + 1;
850                         if (ptr < name) {
851                                 ret = -ENAMETOOLONG;
852                                 goto err;
853                         }
854                         read_extent_buffer(path->nodes[0], ptr + 1,
855                                            (unsigned long)(inode_ref + 1), len);
856                         ptr[0] = '/';
857                         btrfs_release_path(path);
858                 }
859                 btrfs_put_root(fs_root);
860                 fs_root = NULL;
861         }
862
863         btrfs_free_path(path);
864         if (ptr == name + PATH_MAX - 1) {
865                 name[0] = '/';
866                 name[1] = '\0';
867         } else {
868                 memmove(name, ptr, name + PATH_MAX - ptr);
869         }
870         return name;
871
872 err:
873         btrfs_put_root(fs_root);
874         btrfs_free_path(path);
875         kfree(name);
876         return ERR_PTR(ret);
877 }
878
879 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
880 {
881         struct btrfs_root *root = fs_info->tree_root;
882         struct btrfs_dir_item *di;
883         struct btrfs_path *path;
884         struct btrfs_key location;
885         struct fscrypt_str name = FSTR_INIT("default", 7);
886         u64 dir_id;
887
888         path = btrfs_alloc_path();
889         if (!path)
890                 return -ENOMEM;
891
892         /*
893          * Find the "default" dir item which points to the root item that we
894          * will mount by default if we haven't been given a specific subvolume
895          * to mount.
896          */
897         dir_id = btrfs_super_root_dir(fs_info->super_copy);
898         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
899         if (IS_ERR(di)) {
900                 btrfs_free_path(path);
901                 return PTR_ERR(di);
902         }
903         if (!di) {
904                 /*
905                  * Ok the default dir item isn't there.  This is weird since
906                  * it's always been there, but don't freak out, just try and
907                  * mount the top-level subvolume.
908                  */
909                 btrfs_free_path(path);
910                 *objectid = BTRFS_FS_TREE_OBJECTID;
911                 return 0;
912         }
913
914         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
915         btrfs_free_path(path);
916         *objectid = location.objectid;
917         return 0;
918 }
919
920 static int btrfs_fill_super(struct super_block *sb,
921                             struct btrfs_fs_devices *fs_devices,
922                             void *data)
923 {
924         struct inode *inode;
925         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
926         int err;
927
928         sb->s_maxbytes = MAX_LFS_FILESIZE;
929         sb->s_magic = BTRFS_SUPER_MAGIC;
930         sb->s_op = &btrfs_super_ops;
931         sb->s_d_op = &btrfs_dentry_operations;
932         sb->s_export_op = &btrfs_export_ops;
933 #ifdef CONFIG_FS_VERITY
934         sb->s_vop = &btrfs_verityops;
935 #endif
936         sb->s_xattr = btrfs_xattr_handlers;
937         sb->s_time_gran = 1;
938         sb->s_iflags |= SB_I_CGROUPWB;
939
940         err = super_setup_bdi(sb);
941         if (err) {
942                 btrfs_err(fs_info, "super_setup_bdi failed");
943                 return err;
944         }
945
946         err = open_ctree(sb, fs_devices, (char *)data);
947         if (err) {
948                 btrfs_err(fs_info, "open_ctree failed");
949                 return err;
950         }
951
952         inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
953         if (IS_ERR(inode)) {
954                 err = PTR_ERR(inode);
955                 btrfs_handle_fs_error(fs_info, err, NULL);
956                 goto fail_close;
957         }
958
959         sb->s_root = d_make_root(inode);
960         if (!sb->s_root) {
961                 err = -ENOMEM;
962                 goto fail_close;
963         }
964
965         sb->s_flags |= SB_ACTIVE;
966         return 0;
967
968 fail_close:
969         close_ctree(fs_info);
970         return err;
971 }
972
973 int btrfs_sync_fs(struct super_block *sb, int wait)
974 {
975         struct btrfs_trans_handle *trans;
976         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
977         struct btrfs_root *root = fs_info->tree_root;
978
979         trace_btrfs_sync_fs(fs_info, wait);
980
981         if (!wait) {
982                 filemap_flush(fs_info->btree_inode->i_mapping);
983                 return 0;
984         }
985
986         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
987
988         trans = btrfs_attach_transaction_barrier(root);
989         if (IS_ERR(trans)) {
990                 /* no transaction, don't bother */
991                 if (PTR_ERR(trans) == -ENOENT) {
992                         /*
993                          * Exit unless we have some pending changes
994                          * that need to go through commit
995                          */
996                         if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
997                                       &fs_info->flags))
998                                 return 0;
999                         /*
1000                          * A non-blocking test if the fs is frozen. We must not
1001                          * start a new transaction here otherwise a deadlock
1002                          * happens. The pending operations are delayed to the
1003                          * next commit after thawing.
1004                          */
1005                         if (sb_start_write_trylock(sb))
1006                                 sb_end_write(sb);
1007                         else
1008                                 return 0;
1009                         trans = btrfs_start_transaction(root, 0);
1010                 }
1011                 if (IS_ERR(trans))
1012                         return PTR_ERR(trans);
1013         }
1014         return btrfs_commit_transaction(trans);
1015 }
1016
1017 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1018 {
1019         seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1020         *printed = true;
1021 }
1022
1023 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1024 {
1025         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1026         const char *compress_type;
1027         const char *subvol_name;
1028         bool printed = false;
1029
1030         if (btrfs_test_opt(info, DEGRADED))
1031                 seq_puts(seq, ",degraded");
1032         if (btrfs_test_opt(info, NODATASUM))
1033                 seq_puts(seq, ",nodatasum");
1034         if (btrfs_test_opt(info, NODATACOW))
1035                 seq_puts(seq, ",nodatacow");
1036         if (btrfs_test_opt(info, NOBARRIER))
1037                 seq_puts(seq, ",nobarrier");
1038         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1039                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1040         if (info->thread_pool_size !=  min_t(unsigned long,
1041                                              num_online_cpus() + 2, 8))
1042                 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1043         if (btrfs_test_opt(info, COMPRESS)) {
1044                 compress_type = btrfs_compress_type2str(info->compress_type);
1045                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1046                         seq_printf(seq, ",compress-force=%s", compress_type);
1047                 else
1048                         seq_printf(seq, ",compress=%s", compress_type);
1049                 if (info->compress_level)
1050                         seq_printf(seq, ":%d", info->compress_level);
1051         }
1052         if (btrfs_test_opt(info, NOSSD))
1053                 seq_puts(seq, ",nossd");
1054         if (btrfs_test_opt(info, SSD_SPREAD))
1055                 seq_puts(seq, ",ssd_spread");
1056         else if (btrfs_test_opt(info, SSD))
1057                 seq_puts(seq, ",ssd");
1058         if (btrfs_test_opt(info, NOTREELOG))
1059                 seq_puts(seq, ",notreelog");
1060         if (btrfs_test_opt(info, NOLOGREPLAY))
1061                 print_rescue_option(seq, "nologreplay", &printed);
1062         if (btrfs_test_opt(info, USEBACKUPROOT))
1063                 print_rescue_option(seq, "usebackuproot", &printed);
1064         if (btrfs_test_opt(info, IGNOREBADROOTS))
1065                 print_rescue_option(seq, "ignorebadroots", &printed);
1066         if (btrfs_test_opt(info, IGNOREDATACSUMS))
1067                 print_rescue_option(seq, "ignoredatacsums", &printed);
1068         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1069                 seq_puts(seq, ",flushoncommit");
1070         if (btrfs_test_opt(info, DISCARD_SYNC))
1071                 seq_puts(seq, ",discard");
1072         if (btrfs_test_opt(info, DISCARD_ASYNC))
1073                 seq_puts(seq, ",discard=async");
1074         if (!(info->sb->s_flags & SB_POSIXACL))
1075                 seq_puts(seq, ",noacl");
1076         if (btrfs_free_space_cache_v1_active(info))
1077                 seq_puts(seq, ",space_cache");
1078         else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1079                 seq_puts(seq, ",space_cache=v2");
1080         else
1081                 seq_puts(seq, ",nospace_cache");
1082         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1083                 seq_puts(seq, ",rescan_uuid_tree");
1084         if (btrfs_test_opt(info, CLEAR_CACHE))
1085                 seq_puts(seq, ",clear_cache");
1086         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1087                 seq_puts(seq, ",user_subvol_rm_allowed");
1088         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1089                 seq_puts(seq, ",enospc_debug");
1090         if (btrfs_test_opt(info, AUTO_DEFRAG))
1091                 seq_puts(seq, ",autodefrag");
1092         if (btrfs_test_opt(info, SKIP_BALANCE))
1093                 seq_puts(seq, ",skip_balance");
1094         if (info->metadata_ratio)
1095                 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1096         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1097                 seq_puts(seq, ",fatal_errors=panic");
1098         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1099                 seq_printf(seq, ",commit=%u", info->commit_interval);
1100 #ifdef CONFIG_BTRFS_DEBUG
1101         if (btrfs_test_opt(info, FRAGMENT_DATA))
1102                 seq_puts(seq, ",fragment=data");
1103         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1104                 seq_puts(seq, ",fragment=metadata");
1105 #endif
1106         if (btrfs_test_opt(info, REF_VERIFY))
1107                 seq_puts(seq, ",ref_verify");
1108         seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1109         subvol_name = btrfs_get_subvol_name_from_objectid(info,
1110                         btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1111         if (!IS_ERR(subvol_name)) {
1112                 seq_puts(seq, ",subvol=");
1113                 seq_escape(seq, subvol_name, " \t\n\\");
1114                 kfree(subvol_name);
1115         }
1116         return 0;
1117 }
1118
1119 /*
1120  * subvolumes are identified by ino 256
1121  */
1122 static inline int is_subvolume_inode(struct inode *inode)
1123 {
1124         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1125                 return 1;
1126         return 0;
1127 }
1128
1129 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1130                                    struct vfsmount *mnt)
1131 {
1132         struct dentry *root;
1133         int ret;
1134
1135         if (!subvol_name) {
1136                 if (!subvol_objectid) {
1137                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1138                                                           &subvol_objectid);
1139                         if (ret) {
1140                                 root = ERR_PTR(ret);
1141                                 goto out;
1142                         }
1143                 }
1144                 subvol_name = btrfs_get_subvol_name_from_objectid(
1145                                         btrfs_sb(mnt->mnt_sb), subvol_objectid);
1146                 if (IS_ERR(subvol_name)) {
1147                         root = ERR_CAST(subvol_name);
1148                         subvol_name = NULL;
1149                         goto out;
1150                 }
1151
1152         }
1153
1154         root = mount_subtree(mnt, subvol_name);
1155         /* mount_subtree() drops our reference on the vfsmount. */
1156         mnt = NULL;
1157
1158         if (!IS_ERR(root)) {
1159                 struct super_block *s = root->d_sb;
1160                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1161                 struct inode *root_inode = d_inode(root);
1162                 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1163
1164                 ret = 0;
1165                 if (!is_subvolume_inode(root_inode)) {
1166                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1167                                subvol_name);
1168                         ret = -EINVAL;
1169                 }
1170                 if (subvol_objectid && root_objectid != subvol_objectid) {
1171                         /*
1172                          * This will also catch a race condition where a
1173                          * subvolume which was passed by ID is renamed and
1174                          * another subvolume is renamed over the old location.
1175                          */
1176                         btrfs_err(fs_info,
1177                                   "subvol '%s' does not match subvolid %llu",
1178                                   subvol_name, subvol_objectid);
1179                         ret = -EINVAL;
1180                 }
1181                 if (ret) {
1182                         dput(root);
1183                         root = ERR_PTR(ret);
1184                         deactivate_locked_super(s);
1185                 }
1186         }
1187
1188 out:
1189         mntput(mnt);
1190         kfree(subvol_name);
1191         return root;
1192 }
1193
1194 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1195                                      u32 new_pool_size, u32 old_pool_size)
1196 {
1197         if (new_pool_size == old_pool_size)
1198                 return;
1199
1200         fs_info->thread_pool_size = new_pool_size;
1201
1202         btrfs_info(fs_info, "resize thread pool %d -> %d",
1203                old_pool_size, new_pool_size);
1204
1205         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1206         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1207         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1208         workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1209         workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1210         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1211         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1212         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1213 }
1214
1215 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1216                                        unsigned long old_opts, int flags)
1217 {
1218         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1219             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1220              (flags & SB_RDONLY))) {
1221                 /* wait for any defraggers to finish */
1222                 wait_event(fs_info->transaction_wait,
1223                            (atomic_read(&fs_info->defrag_running) == 0));
1224                 if (flags & SB_RDONLY)
1225                         sync_filesystem(fs_info->sb);
1226         }
1227 }
1228
1229 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1230                                          unsigned long old_opts)
1231 {
1232         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1233
1234         /*
1235          * We need to cleanup all defragable inodes if the autodefragment is
1236          * close or the filesystem is read only.
1237          */
1238         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1239             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1240                 btrfs_cleanup_defrag_inodes(fs_info);
1241         }
1242
1243         /* If we toggled discard async */
1244         if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1245             btrfs_test_opt(fs_info, DISCARD_ASYNC))
1246                 btrfs_discard_resume(fs_info);
1247         else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1248                  !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1249                 btrfs_discard_cleanup(fs_info);
1250
1251         /* If we toggled space cache */
1252         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1253                 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1254 }
1255
1256 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1257 {
1258         int ret;
1259
1260         if (BTRFS_FS_ERROR(fs_info)) {
1261                 btrfs_err(fs_info,
1262                           "remounting read-write after error is not allowed");
1263                 return -EINVAL;
1264         }
1265
1266         if (fs_info->fs_devices->rw_devices == 0)
1267                 return -EACCES;
1268
1269         if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1270                 btrfs_warn(fs_info,
1271                            "too many missing devices, writable remount is not allowed");
1272                 return -EACCES;
1273         }
1274
1275         if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1276                 btrfs_warn(fs_info,
1277                            "mount required to replay tree-log, cannot remount read-write");
1278                 return -EINVAL;
1279         }
1280
1281         /*
1282          * NOTE: when remounting with a change that does writes, don't put it
1283          * anywhere above this point, as we are not sure to be safe to write
1284          * until we pass the above checks.
1285          */
1286         ret = btrfs_start_pre_rw_mount(fs_info);
1287         if (ret)
1288                 return ret;
1289
1290         btrfs_clear_sb_rdonly(fs_info->sb);
1291
1292         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1293
1294         /*
1295          * If we've gone from readonly -> read-write, we need to get our
1296          * sync/async discard lists in the right state.
1297          */
1298         btrfs_discard_resume(fs_info);
1299
1300         return 0;
1301 }
1302
1303 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1304 {
1305         /*
1306          * This also happens on 'umount -rf' or on shutdown, when the
1307          * filesystem is busy.
1308          */
1309         cancel_work_sync(&fs_info->async_reclaim_work);
1310         cancel_work_sync(&fs_info->async_data_reclaim_work);
1311
1312         btrfs_discard_cleanup(fs_info);
1313
1314         /* Wait for the uuid_scan task to finish */
1315         down(&fs_info->uuid_tree_rescan_sem);
1316         /* Avoid complains from lockdep et al. */
1317         up(&fs_info->uuid_tree_rescan_sem);
1318
1319         btrfs_set_sb_rdonly(fs_info->sb);
1320
1321         /*
1322          * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1323          * loop if it's already active.  If it's already asleep, we'll leave
1324          * unused block groups on disk until we're mounted read-write again
1325          * unless we clean them up here.
1326          */
1327         btrfs_delete_unused_bgs(fs_info);
1328
1329         /*
1330          * The cleaner task could be already running before we set the flag
1331          * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1332          * sure that after we finish the remount, i.e. after we call
1333          * btrfs_commit_super(), the cleaner can no longer start a transaction
1334          * - either because it was dropping a dead root, running delayed iputs
1335          *   or deleting an unused block group (the cleaner picked a block
1336          *   group from the list of unused block groups before we were able to
1337          *   in the previous call to btrfs_delete_unused_bgs()).
1338          */
1339         wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1340
1341         /*
1342          * We've set the superblock to RO mode, so we might have made the
1343          * cleaner task sleep without running all pending delayed iputs. Go
1344          * through all the delayed iputs here, so that if an unmount happens
1345          * without remounting RW we don't end up at finishing close_ctree()
1346          * with a non-empty list of delayed iputs.
1347          */
1348         btrfs_run_delayed_iputs(fs_info);
1349
1350         btrfs_dev_replace_suspend_for_unmount(fs_info);
1351         btrfs_scrub_cancel(fs_info);
1352         btrfs_pause_balance(fs_info);
1353
1354         /*
1355          * Pause the qgroup rescan worker if it is running. We don't want it to
1356          * be still running after we are in RO mode, as after that, by the time
1357          * we unmount, it might have left a transaction open, so we would leak
1358          * the transaction and/or crash.
1359          */
1360         btrfs_qgroup_wait_for_completion(fs_info, false);
1361
1362         return btrfs_commit_super(fs_info);
1363 }
1364
1365 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1366 {
1367         fs_info->max_inline = ctx->max_inline;
1368         fs_info->commit_interval = ctx->commit_interval;
1369         fs_info->metadata_ratio = ctx->metadata_ratio;
1370         fs_info->thread_pool_size = ctx->thread_pool_size;
1371         fs_info->mount_opt = ctx->mount_opt;
1372         fs_info->compress_type = ctx->compress_type;
1373         fs_info->compress_level = ctx->compress_level;
1374 }
1375
1376 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1377 {
1378         ctx->max_inline = fs_info->max_inline;
1379         ctx->commit_interval = fs_info->commit_interval;
1380         ctx->metadata_ratio = fs_info->metadata_ratio;
1381         ctx->thread_pool_size = fs_info->thread_pool_size;
1382         ctx->mount_opt = fs_info->mount_opt;
1383         ctx->compress_type = fs_info->compress_type;
1384         ctx->compress_level = fs_info->compress_level;
1385 }
1386
1387 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)                  \
1388 do {                                                                            \
1389         if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&       \
1390             btrfs_raw_test_opt(fs_info->mount_opt, opt))                        \
1391                 btrfs_info(fs_info, fmt, ##args);                               \
1392 } while (0)
1393
1394 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)        \
1395 do {                                                                    \
1396         if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1397             !btrfs_raw_test_opt(fs_info->mount_opt, opt))               \
1398                 btrfs_info(fs_info, fmt, ##args);                       \
1399 } while (0)
1400
1401 static void btrfs_emit_options(struct btrfs_fs_info *info,
1402                                struct btrfs_fs_context *old)
1403 {
1404         btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1405         btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1406         btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1407         btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1408         btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1409         btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1410         btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1411         btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1412         btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1413         btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1414         btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1415         btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1416         btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1417         btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1418         btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1419         btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1420         btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1421         btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1422         btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1423         btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1424         btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1425
1426         btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1427         btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1428         btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1429         btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1430         btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1431         btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1432         btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1433         btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1434         btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1435
1436         /* Did the compression settings change? */
1437         if (btrfs_test_opt(info, COMPRESS) &&
1438             (!old ||
1439              old->compress_type != info->compress_type ||
1440              old->compress_level != info->compress_level ||
1441              (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1442               btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1443                 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1444
1445                 btrfs_info(info, "%s %s compression, level %d",
1446                            btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1447                            compress_type, info->compress_level);
1448         }
1449
1450         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1451                 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1452 }
1453
1454 static int btrfs_reconfigure(struct fs_context *fc)
1455 {
1456         struct super_block *sb = fc->root->d_sb;
1457         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1458         struct btrfs_fs_context *ctx = fc->fs_private;
1459         struct btrfs_fs_context old_ctx;
1460         int ret = 0;
1461         bool mount_reconfigure = (fc->s_fs_info != NULL);
1462
1463         btrfs_info_to_ctx(fs_info, &old_ctx);
1464
1465         /*
1466          * This is our "bind mount" trick, we don't want to allow the user to do
1467          * anything other than mount a different ro/rw and a different subvol,
1468          * all of the mount options should be maintained.
1469          */
1470         if (mount_reconfigure)
1471                 ctx->mount_opt = old_ctx.mount_opt;
1472
1473         sync_filesystem(sb);
1474         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1475
1476         if (!mount_reconfigure &&
1477             !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1478                 return -EINVAL;
1479
1480         ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1481         if (ret < 0)
1482                 return ret;
1483
1484         btrfs_ctx_to_info(fs_info, ctx);
1485         btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1486         btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1487                                  old_ctx.thread_pool_size);
1488
1489         if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1490             (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1491             (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1492                 btrfs_warn(fs_info,
1493                 "remount supports changing free space tree only from RO to RW");
1494                 /* Make sure free space cache options match the state on disk. */
1495                 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1496                         btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1497                         btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1498                 }
1499                 if (btrfs_free_space_cache_v1_active(fs_info)) {
1500                         btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1501                         btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1502                 }
1503         }
1504
1505         ret = 0;
1506         if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1507                 ret = btrfs_remount_ro(fs_info);
1508         else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1509                 ret = btrfs_remount_rw(fs_info);
1510         if (ret)
1511                 goto restore;
1512
1513         /*
1514          * If we set the mask during the parameter parsing VFS would reject the
1515          * remount.  Here we can set the mask and the value will be updated
1516          * appropriately.
1517          */
1518         if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1519                 fc->sb_flags_mask |= SB_POSIXACL;
1520
1521         btrfs_emit_options(fs_info, &old_ctx);
1522         wake_up_process(fs_info->transaction_kthread);
1523         btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1524         btrfs_clear_oneshot_options(fs_info);
1525         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1526
1527         return 0;
1528 restore:
1529         btrfs_ctx_to_info(fs_info, &old_ctx);
1530         btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1531         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1532         return ret;
1533 }
1534
1535 /* Used to sort the devices by max_avail(descending sort) */
1536 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1537 {
1538         const struct btrfs_device_info *dev_info1 = a;
1539         const struct btrfs_device_info *dev_info2 = b;
1540
1541         if (dev_info1->max_avail > dev_info2->max_avail)
1542                 return -1;
1543         else if (dev_info1->max_avail < dev_info2->max_avail)
1544                 return 1;
1545         return 0;
1546 }
1547
1548 /*
1549  * sort the devices by max_avail, in which max free extent size of each device
1550  * is stored.(Descending Sort)
1551  */
1552 static inline void btrfs_descending_sort_devices(
1553                                         struct btrfs_device_info *devices,
1554                                         size_t nr_devices)
1555 {
1556         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1557              btrfs_cmp_device_free_bytes, NULL);
1558 }
1559
1560 /*
1561  * The helper to calc the free space on the devices that can be used to store
1562  * file data.
1563  */
1564 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1565                                               u64 *free_bytes)
1566 {
1567         struct btrfs_device_info *devices_info;
1568         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1569         struct btrfs_device *device;
1570         u64 type;
1571         u64 avail_space;
1572         u64 min_stripe_size;
1573         int num_stripes = 1;
1574         int i = 0, nr_devices;
1575         const struct btrfs_raid_attr *rattr;
1576
1577         /*
1578          * We aren't under the device list lock, so this is racy-ish, but good
1579          * enough for our purposes.
1580          */
1581         nr_devices = fs_info->fs_devices->open_devices;
1582         if (!nr_devices) {
1583                 smp_mb();
1584                 nr_devices = fs_info->fs_devices->open_devices;
1585                 ASSERT(nr_devices);
1586                 if (!nr_devices) {
1587                         *free_bytes = 0;
1588                         return 0;
1589                 }
1590         }
1591
1592         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1593                                GFP_KERNEL);
1594         if (!devices_info)
1595                 return -ENOMEM;
1596
1597         /* calc min stripe number for data space allocation */
1598         type = btrfs_data_alloc_profile(fs_info);
1599         rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1600
1601         if (type & BTRFS_BLOCK_GROUP_RAID0)
1602                 num_stripes = nr_devices;
1603         else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1604                 num_stripes = rattr->ncopies;
1605         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1606                 num_stripes = 4;
1607
1608         /* Adjust for more than 1 stripe per device */
1609         min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1610
1611         rcu_read_lock();
1612         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1613                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1614                                                 &device->dev_state) ||
1615                     !device->bdev ||
1616                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1617                         continue;
1618
1619                 if (i >= nr_devices)
1620                         break;
1621
1622                 avail_space = device->total_bytes - device->bytes_used;
1623
1624                 /* align with stripe_len */
1625                 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1626
1627                 /*
1628                  * Ensure we have at least min_stripe_size on top of the
1629                  * reserved space on the device.
1630                  */
1631                 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1632                         continue;
1633
1634                 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1635
1636                 devices_info[i].dev = device;
1637                 devices_info[i].max_avail = avail_space;
1638
1639                 i++;
1640         }
1641         rcu_read_unlock();
1642
1643         nr_devices = i;
1644
1645         btrfs_descending_sort_devices(devices_info, nr_devices);
1646
1647         i = nr_devices - 1;
1648         avail_space = 0;
1649         while (nr_devices >= rattr->devs_min) {
1650                 num_stripes = min(num_stripes, nr_devices);
1651
1652                 if (devices_info[i].max_avail >= min_stripe_size) {
1653                         int j;
1654                         u64 alloc_size;
1655
1656                         avail_space += devices_info[i].max_avail * num_stripes;
1657                         alloc_size = devices_info[i].max_avail;
1658                         for (j = i + 1 - num_stripes; j <= i; j++)
1659                                 devices_info[j].max_avail -= alloc_size;
1660                 }
1661                 i--;
1662                 nr_devices--;
1663         }
1664
1665         kfree(devices_info);
1666         *free_bytes = avail_space;
1667         return 0;
1668 }
1669
1670 /*
1671  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1672  *
1673  * If there's a redundant raid level at DATA block groups, use the respective
1674  * multiplier to scale the sizes.
1675  *
1676  * Unused device space usage is based on simulating the chunk allocator
1677  * algorithm that respects the device sizes and order of allocations.  This is
1678  * a close approximation of the actual use but there are other factors that may
1679  * change the result (like a new metadata chunk).
1680  *
1681  * If metadata is exhausted, f_bavail will be 0.
1682  */
1683 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1684 {
1685         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1686         struct btrfs_super_block *disk_super = fs_info->super_copy;
1687         struct btrfs_space_info *found;
1688         u64 total_used = 0;
1689         u64 total_free_data = 0;
1690         u64 total_free_meta = 0;
1691         u32 bits = fs_info->sectorsize_bits;
1692         __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1693         unsigned factor = 1;
1694         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1695         int ret;
1696         u64 thresh = 0;
1697         int mixed = 0;
1698
1699         list_for_each_entry(found, &fs_info->space_info, list) {
1700                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1701                         int i;
1702
1703                         total_free_data += found->disk_total - found->disk_used;
1704                         total_free_data -=
1705                                 btrfs_account_ro_block_groups_free_space(found);
1706
1707                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1708                                 if (!list_empty(&found->block_groups[i]))
1709                                         factor = btrfs_bg_type_to_factor(
1710                                                 btrfs_raid_array[i].bg_flag);
1711                         }
1712                 }
1713
1714                 /*
1715                  * Metadata in mixed block group profiles are accounted in data
1716                  */
1717                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1718                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1719                                 mixed = 1;
1720                         else
1721                                 total_free_meta += found->disk_total -
1722                                         found->disk_used;
1723                 }
1724
1725                 total_used += found->disk_used;
1726         }
1727
1728         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1729         buf->f_blocks >>= bits;
1730         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1731
1732         /* Account global block reserve as used, it's in logical size already */
1733         spin_lock(&block_rsv->lock);
1734         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1735         if (buf->f_bfree >= block_rsv->size >> bits)
1736                 buf->f_bfree -= block_rsv->size >> bits;
1737         else
1738                 buf->f_bfree = 0;
1739         spin_unlock(&block_rsv->lock);
1740
1741         buf->f_bavail = div_u64(total_free_data, factor);
1742         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1743         if (ret)
1744                 return ret;
1745         buf->f_bavail += div_u64(total_free_data, factor);
1746         buf->f_bavail = buf->f_bavail >> bits;
1747
1748         /*
1749          * We calculate the remaining metadata space minus global reserve. If
1750          * this is (supposedly) smaller than zero, there's no space. But this
1751          * does not hold in practice, the exhausted state happens where's still
1752          * some positive delta. So we apply some guesswork and compare the
1753          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1754          *
1755          * We probably cannot calculate the exact threshold value because this
1756          * depends on the internal reservations requested by various
1757          * operations, so some operations that consume a few metadata will
1758          * succeed even if the Avail is zero. But this is better than the other
1759          * way around.
1760          */
1761         thresh = SZ_4M;
1762
1763         /*
1764          * We only want to claim there's no available space if we can no longer
1765          * allocate chunks for our metadata profile and our global reserve will
1766          * not fit in the free metadata space.  If we aren't ->full then we
1767          * still can allocate chunks and thus are fine using the currently
1768          * calculated f_bavail.
1769          */
1770         if (!mixed && block_rsv->space_info->full &&
1771             (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1772                 buf->f_bavail = 0;
1773
1774         buf->f_type = BTRFS_SUPER_MAGIC;
1775         buf->f_bsize = fs_info->sectorsize;
1776         buf->f_namelen = BTRFS_NAME_LEN;
1777
1778         /* We treat it as constant endianness (it doesn't matter _which_)
1779            because we want the fsid to come out the same whether mounted
1780            on a big-endian or little-endian host */
1781         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1782         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1783         /* Mask in the root object ID too, to disambiguate subvols */
1784         buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1785         buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1786
1787         return 0;
1788 }
1789
1790 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1791 {
1792         struct btrfs_fs_info *p = fc->s_fs_info;
1793         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1794
1795         return fs_info->fs_devices == p->fs_devices;
1796 }
1797
1798 static int btrfs_get_tree_super(struct fs_context *fc)
1799 {
1800         struct btrfs_fs_info *fs_info = fc->s_fs_info;
1801         struct btrfs_fs_context *ctx = fc->fs_private;
1802         struct btrfs_fs_devices *fs_devices = NULL;
1803         struct block_device *bdev;
1804         struct btrfs_device *device;
1805         struct super_block *sb;
1806         blk_mode_t mode = btrfs_open_mode(fc);
1807         int ret;
1808
1809         btrfs_ctx_to_info(fs_info, ctx);
1810         mutex_lock(&uuid_mutex);
1811
1812         /*
1813          * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1814          * either a valid device or an error.
1815          */
1816         device = btrfs_scan_one_device(fc->source, mode, true);
1817         ASSERT(device != NULL);
1818         if (IS_ERR(device)) {
1819                 mutex_unlock(&uuid_mutex);
1820                 return PTR_ERR(device);
1821         }
1822
1823         fs_devices = device->fs_devices;
1824         fs_info->fs_devices = fs_devices;
1825
1826         ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1827         mutex_unlock(&uuid_mutex);
1828         if (ret)
1829                 return ret;
1830
1831         if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1832                 ret = -EACCES;
1833                 goto error;
1834         }
1835
1836         bdev = fs_devices->latest_dev->bdev;
1837
1838         /*
1839          * From now on the error handling is not straightforward.
1840          *
1841          * If successful, this will transfer the fs_info into the super block,
1842          * and fc->s_fs_info will be NULL.  However if there's an existing
1843          * super, we'll still have fc->s_fs_info populated.  If we error
1844          * completely out it'll be cleaned up when we drop the fs_context,
1845          * otherwise it's tied to the lifetime of the super_block.
1846          */
1847         sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1848         if (IS_ERR(sb)) {
1849                 ret = PTR_ERR(sb);
1850                 goto error;
1851         }
1852
1853         set_device_specific_options(fs_info);
1854
1855         if (sb->s_root) {
1856                 btrfs_close_devices(fs_devices);
1857                 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1858                         ret = -EBUSY;
1859         } else {
1860                 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1861                 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1862                 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1863                 ret = btrfs_fill_super(sb, fs_devices, NULL);
1864         }
1865
1866         if (ret) {
1867                 deactivate_locked_super(sb);
1868                 return ret;
1869         }
1870
1871         btrfs_clear_oneshot_options(fs_info);
1872
1873         fc->root = dget(sb->s_root);
1874         return 0;
1875
1876 error:
1877         btrfs_close_devices(fs_devices);
1878         return ret;
1879 }
1880
1881 /*
1882  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1883  * with different ro/rw options") the following works:
1884  *
1885  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1886  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1887  *
1888  * which looks nice and innocent but is actually pretty intricate and deserves
1889  * a long comment.
1890  *
1891  * On another filesystem a subvolume mount is close to something like:
1892  *
1893  *      (iii) # create rw superblock + initial mount
1894  *            mount -t xfs /dev/sdb /opt/
1895  *
1896  *            # create ro bind mount
1897  *            mount --bind -o ro /opt/foo /mnt/foo
1898  *
1899  *            # unmount initial mount
1900  *            umount /opt
1901  *
1902  * Of course, there's some special subvolume sauce and there's the fact that the
1903  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1904  * it's very close and will help us understand the issue.
1905  *
1906  * The old mount API didn't cleanly distinguish between a mount being made ro
1907  * and a superblock being made ro.  The only way to change the ro state of
1908  * either object was by passing ms_rdonly. If a new mount was created via
1909  * mount(2) such as:
1910  *
1911  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1912  *
1913  * the MS_RDONLY flag being specified had two effects:
1914  *
1915  * (1) MNT_READONLY was raised -> the resulting mount got
1916  *     @mnt->mnt_flags |= MNT_READONLY raised.
1917  *
1918  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1919  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1920  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1921  *
1922  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1923  * subtree mounted ro.
1924  *
1925  * But consider the effect on the old mount API on btrfs subvolume mounting
1926  * which combines the distinct step in (iii) into a single step.
1927  *
1928  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1929  * is issued the superblock is ro and thus even if the mount created for (ii) is
1930  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1931  * to rw for (ii) which it did using an internal remount call.
1932  *
1933  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1934  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1935  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1936  * passed by mount(8) to mount(2).
1937  *
1938  * Enter the new mount API. The new mount API disambiguates making a mount ro
1939  * and making a superblock ro.
1940  *
1941  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1942  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1943  *     specific mount or mount tree that is never seen by the filesystem itself.
1944  *
1945  * (4) To turn a superblock ro the "ro" flag must be used with
1946  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1947  *     in fc->sb_flags.
1948  *
1949  * This disambiguation has rather positive consequences.  Mounting a subvolume
1950  * ro will not also turn the superblock ro. Only the mount for the subvolume
1951  * will become ro.
1952  *
1953  * So, if the superblock creation request comes from the new mount API the
1954  * caller must have explicitly done:
1955  *
1956  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1957  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1958  *
1959  * IOW, at some point the caller must have explicitly turned the whole
1960  * superblock ro and we shouldn't just undo it like we did for the old mount
1961  * API. In any case, it lets us avoid the hack in the new mount API.
1962  *
1963  * Consequently, the remounting hack must only be used for requests originating
1964  * from the old mount API and should be marked for full deprecation so it can be
1965  * turned off in a couple of years.
1966  *
1967  * The new mount API has no reason to support this hack.
1968  */
1969 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1970 {
1971         struct vfsmount *mnt;
1972         int ret;
1973         const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1974
1975         /*
1976          * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1977          * super block, so invert our setting here and retry the mount so we
1978          * can get our vfsmount.
1979          */
1980         if (ro2rw)
1981                 fc->sb_flags |= SB_RDONLY;
1982         else
1983                 fc->sb_flags &= ~SB_RDONLY;
1984
1985         mnt = fc_mount(fc);
1986         if (IS_ERR(mnt))
1987                 return mnt;
1988
1989         if (!fc->oldapi || !ro2rw)
1990                 return mnt;
1991
1992         /* We need to convert to rw, call reconfigure. */
1993         fc->sb_flags &= ~SB_RDONLY;
1994         down_write(&mnt->mnt_sb->s_umount);
1995         ret = btrfs_reconfigure(fc);
1996         up_write(&mnt->mnt_sb->s_umount);
1997         if (ret) {
1998                 mntput(mnt);
1999                 return ERR_PTR(ret);
2000         }
2001         return mnt;
2002 }
2003
2004 static int btrfs_get_tree_subvol(struct fs_context *fc)
2005 {
2006         struct btrfs_fs_info *fs_info = NULL;
2007         struct btrfs_fs_context *ctx = fc->fs_private;
2008         struct fs_context *dup_fc;
2009         struct dentry *dentry;
2010         struct vfsmount *mnt;
2011
2012         /*
2013          * Setup a dummy root and fs_info for test/set super.  This is because
2014          * we don't actually fill this stuff out until open_ctree, but we need
2015          * then open_ctree will properly initialize the file system specific
2016          * settings later.  btrfs_init_fs_info initializes the static elements
2017          * of the fs_info (locks and such) to make cleanup easier if we find a
2018          * superblock with our given fs_devices later on at sget() time.
2019          */
2020         fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2021         if (!fs_info)
2022                 return -ENOMEM;
2023
2024         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2025         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2026         if (!fs_info->super_copy || !fs_info->super_for_commit) {
2027                 btrfs_free_fs_info(fs_info);
2028                 return -ENOMEM;
2029         }
2030         btrfs_init_fs_info(fs_info);
2031
2032         dup_fc = vfs_dup_fs_context(fc);
2033         if (IS_ERR(dup_fc)) {
2034                 btrfs_free_fs_info(fs_info);
2035                 return PTR_ERR(dup_fc);
2036         }
2037
2038         /*
2039          * When we do the sget_fc this gets transferred to the sb, so we only
2040          * need to set it on the dup_fc as this is what creates the super block.
2041          */
2042         dup_fc->s_fs_info = fs_info;
2043
2044         /*
2045          * We'll do the security settings in our btrfs_get_tree_super() mount
2046          * loop, they were duplicated into dup_fc, we can drop the originals
2047          * here.
2048          */
2049         security_free_mnt_opts(&fc->security);
2050         fc->security = NULL;
2051
2052         mnt = fc_mount(dup_fc);
2053         if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2054                 mnt = btrfs_reconfigure_for_mount(dup_fc);
2055         put_fs_context(dup_fc);
2056         if (IS_ERR(mnt))
2057                 return PTR_ERR(mnt);
2058
2059         /*
2060          * This free's ->subvol_name, because if it isn't set we have to
2061          * allocate a buffer to hold the subvol_name, so we just drop our
2062          * reference to it here.
2063          */
2064         dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2065         ctx->subvol_name = NULL;
2066         if (IS_ERR(dentry))
2067                 return PTR_ERR(dentry);
2068
2069         fc->root = dentry;
2070         return 0;
2071 }
2072
2073 static int btrfs_get_tree(struct fs_context *fc)
2074 {
2075         /*
2076          * Since we use mount_subtree to mount the default/specified subvol, we
2077          * have to do mounts in two steps.
2078          *
2079          * First pass through we call btrfs_get_tree_subvol(), this is just a
2080          * wrapper around fc_mount() to call back into here again, and this time
2081          * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2082          * everything to open the devices and file system.  Then we return back
2083          * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2084          * from there we can do our mount_subvol() call, which will lookup
2085          * whichever subvol we're mounting and setup this fc with the
2086          * appropriate dentry for the subvol.
2087          */
2088         if (fc->s_fs_info)
2089                 return btrfs_get_tree_super(fc);
2090         return btrfs_get_tree_subvol(fc);
2091 }
2092
2093 static void btrfs_kill_super(struct super_block *sb)
2094 {
2095         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2096         kill_anon_super(sb);
2097         btrfs_free_fs_info(fs_info);
2098 }
2099
2100 static void btrfs_free_fs_context(struct fs_context *fc)
2101 {
2102         struct btrfs_fs_context *ctx = fc->fs_private;
2103         struct btrfs_fs_info *fs_info = fc->s_fs_info;
2104
2105         if (fs_info)
2106                 btrfs_free_fs_info(fs_info);
2107
2108         if (ctx && refcount_dec_and_test(&ctx->refs)) {
2109                 kfree(ctx->subvol_name);
2110                 kfree(ctx);
2111         }
2112 }
2113
2114 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2115 {
2116         struct btrfs_fs_context *ctx = src_fc->fs_private;
2117
2118         /*
2119          * Give a ref to our ctx to this dup, as we want to keep it around for
2120          * our original fc so we can have the subvolume name or objectid.
2121          *
2122          * We unset ->source in the original fc because the dup needs it for
2123          * mounting, and then once we free the dup it'll free ->source, so we
2124          * need to make sure we're only pointing to it in one fc.
2125          */
2126         refcount_inc(&ctx->refs);
2127         fc->fs_private = ctx;
2128         fc->source = src_fc->source;
2129         src_fc->source = NULL;
2130         return 0;
2131 }
2132
2133 static const struct fs_context_operations btrfs_fs_context_ops = {
2134         .parse_param    = btrfs_parse_param,
2135         .reconfigure    = btrfs_reconfigure,
2136         .get_tree       = btrfs_get_tree,
2137         .dup            = btrfs_dup_fs_context,
2138         .free           = btrfs_free_fs_context,
2139 };
2140
2141 static int btrfs_init_fs_context(struct fs_context *fc)
2142 {
2143         struct btrfs_fs_context *ctx;
2144
2145         ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2146         if (!ctx)
2147                 return -ENOMEM;
2148
2149         refcount_set(&ctx->refs, 1);
2150         fc->fs_private = ctx;
2151         fc->ops = &btrfs_fs_context_ops;
2152
2153         if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2154                 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2155         } else {
2156                 ctx->thread_pool_size =
2157                         min_t(unsigned long, num_online_cpus() + 2, 8);
2158                 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2159                 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2160         }
2161
2162 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2163         fc->sb_flags |= SB_POSIXACL;
2164 #endif
2165         fc->sb_flags |= SB_I_VERSION;
2166
2167         return 0;
2168 }
2169
2170 static struct file_system_type btrfs_fs_type = {
2171         .owner                  = THIS_MODULE,
2172         .name                   = "btrfs",
2173         .init_fs_context        = btrfs_init_fs_context,
2174         .parameters             = btrfs_fs_parameters,
2175         .kill_sb                = btrfs_kill_super,
2176         .fs_flags               = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2177  };
2178
2179 MODULE_ALIAS_FS("btrfs");
2180
2181 static int btrfs_control_open(struct inode *inode, struct file *file)
2182 {
2183         /*
2184          * The control file's private_data is used to hold the
2185          * transaction when it is started and is used to keep
2186          * track of whether a transaction is already in progress.
2187          */
2188         file->private_data = NULL;
2189         return 0;
2190 }
2191
2192 /*
2193  * Used by /dev/btrfs-control for devices ioctls.
2194  */
2195 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2196                                 unsigned long arg)
2197 {
2198         struct btrfs_ioctl_vol_args *vol;
2199         struct btrfs_device *device = NULL;
2200         dev_t devt = 0;
2201         int ret = -ENOTTY;
2202
2203         if (!capable(CAP_SYS_ADMIN))
2204                 return -EPERM;
2205
2206         vol = memdup_user((void __user *)arg, sizeof(*vol));
2207         if (IS_ERR(vol))
2208                 return PTR_ERR(vol);
2209         ret = btrfs_check_ioctl_vol_args_path(vol);
2210         if (ret < 0)
2211                 goto out;
2212
2213         switch (cmd) {
2214         case BTRFS_IOC_SCAN_DEV:
2215                 mutex_lock(&uuid_mutex);
2216                 /*
2217                  * Scanning outside of mount can return NULL which would turn
2218                  * into 0 error code.
2219                  */
2220                 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2221                 ret = PTR_ERR_OR_ZERO(device);
2222                 mutex_unlock(&uuid_mutex);
2223                 break;
2224         case BTRFS_IOC_FORGET_DEV:
2225                 if (vol->name[0] != 0) {
2226                         ret = lookup_bdev(vol->name, &devt);
2227                         if (ret)
2228                                 break;
2229                 }
2230                 ret = btrfs_forget_devices(devt);
2231                 break;
2232         case BTRFS_IOC_DEVICES_READY:
2233                 mutex_lock(&uuid_mutex);
2234                 /*
2235                  * Scanning outside of mount can return NULL which would turn
2236                  * into 0 error code.
2237                  */
2238                 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2239                 if (IS_ERR_OR_NULL(device)) {
2240                         mutex_unlock(&uuid_mutex);
2241                         ret = PTR_ERR(device);
2242                         break;
2243                 }
2244                 ret = !(device->fs_devices->num_devices ==
2245                         device->fs_devices->total_devices);
2246                 mutex_unlock(&uuid_mutex);
2247                 break;
2248         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2249                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2250                 break;
2251         }
2252
2253 out:
2254         kfree(vol);
2255         return ret;
2256 }
2257
2258 static int btrfs_freeze(struct super_block *sb)
2259 {
2260         struct btrfs_trans_handle *trans;
2261         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2262         struct btrfs_root *root = fs_info->tree_root;
2263
2264         set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2265         /*
2266          * We don't need a barrier here, we'll wait for any transaction that
2267          * could be in progress on other threads (and do delayed iputs that
2268          * we want to avoid on a frozen filesystem), or do the commit
2269          * ourselves.
2270          */
2271         trans = btrfs_attach_transaction_barrier(root);
2272         if (IS_ERR(trans)) {
2273                 /* no transaction, don't bother */
2274                 if (PTR_ERR(trans) == -ENOENT)
2275                         return 0;
2276                 return PTR_ERR(trans);
2277         }
2278         return btrfs_commit_transaction(trans);
2279 }
2280
2281 static int check_dev_super(struct btrfs_device *dev)
2282 {
2283         struct btrfs_fs_info *fs_info = dev->fs_info;
2284         struct btrfs_super_block *sb;
2285         u64 last_trans;
2286         u16 csum_type;
2287         int ret = 0;
2288
2289         /* This should be called with fs still frozen. */
2290         ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2291
2292         /* Missing dev, no need to check. */
2293         if (!dev->bdev)
2294                 return 0;
2295
2296         /* Only need to check the primary super block. */
2297         sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2298         if (IS_ERR(sb))
2299                 return PTR_ERR(sb);
2300
2301         /* Verify the checksum. */
2302         csum_type = btrfs_super_csum_type(sb);
2303         if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2304                 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2305                           csum_type, btrfs_super_csum_type(fs_info->super_copy));
2306                 ret = -EUCLEAN;
2307                 goto out;
2308         }
2309
2310         if (btrfs_check_super_csum(fs_info, sb)) {
2311                 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2312                 ret = -EUCLEAN;
2313                 goto out;
2314         }
2315
2316         /* Btrfs_validate_super() includes fsid check against super->fsid. */
2317         ret = btrfs_validate_super(fs_info, sb, 0);
2318         if (ret < 0)
2319                 goto out;
2320
2321         last_trans = btrfs_get_last_trans_committed(fs_info);
2322         if (btrfs_super_generation(sb) != last_trans) {
2323                 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2324                           btrfs_super_generation(sb), last_trans);
2325                 ret = -EUCLEAN;
2326                 goto out;
2327         }
2328 out:
2329         btrfs_release_disk_super(sb);
2330         return ret;
2331 }
2332
2333 static int btrfs_unfreeze(struct super_block *sb)
2334 {
2335         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2336         struct btrfs_device *device;
2337         int ret = 0;
2338
2339         /*
2340          * Make sure the fs is not changed by accident (like hibernation then
2341          * modified by other OS).
2342          * If we found anything wrong, we mark the fs error immediately.
2343          *
2344          * And since the fs is frozen, no one can modify the fs yet, thus
2345          * we don't need to hold device_list_mutex.
2346          */
2347         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2348                 ret = check_dev_super(device);
2349                 if (ret < 0) {
2350                         btrfs_handle_fs_error(fs_info, ret,
2351                                 "super block on devid %llu got modified unexpectedly",
2352                                 device->devid);
2353                         break;
2354                 }
2355         }
2356         clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2357
2358         /*
2359          * We still return 0, to allow VFS layer to unfreeze the fs even the
2360          * above checks failed. Since the fs is either fine or read-only, we're
2361          * safe to continue, without causing further damage.
2362          */
2363         return 0;
2364 }
2365
2366 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2367 {
2368         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2369
2370         /*
2371          * There should be always a valid pointer in latest_dev, it may be stale
2372          * for a short moment in case it's being deleted but still valid until
2373          * the end of RCU grace period.
2374          */
2375         rcu_read_lock();
2376         seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2377         rcu_read_unlock();
2378
2379         return 0;
2380 }
2381
2382 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2383 {
2384         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2385         const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2386
2387         trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2388
2389         return nr;
2390 }
2391
2392 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2393 {
2394         const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2395         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2396
2397         return btrfs_free_extent_maps(fs_info, nr_to_scan);
2398 }
2399
2400 static const struct super_operations btrfs_super_ops = {
2401         .drop_inode     = btrfs_drop_inode,
2402         .evict_inode    = btrfs_evict_inode,
2403         .put_super      = btrfs_put_super,
2404         .sync_fs        = btrfs_sync_fs,
2405         .show_options   = btrfs_show_options,
2406         .show_devname   = btrfs_show_devname,
2407         .alloc_inode    = btrfs_alloc_inode,
2408         .destroy_inode  = btrfs_destroy_inode,
2409         .free_inode     = btrfs_free_inode,
2410         .statfs         = btrfs_statfs,
2411         .freeze_fs      = btrfs_freeze,
2412         .unfreeze_fs    = btrfs_unfreeze,
2413         .nr_cached_objects = btrfs_nr_cached_objects,
2414         .free_cached_objects = btrfs_free_cached_objects,
2415 };
2416
2417 static const struct file_operations btrfs_ctl_fops = {
2418         .open = btrfs_control_open,
2419         .unlocked_ioctl  = btrfs_control_ioctl,
2420         .compat_ioctl = compat_ptr_ioctl,
2421         .owner   = THIS_MODULE,
2422         .llseek = noop_llseek,
2423 };
2424
2425 static struct miscdevice btrfs_misc = {
2426         .minor          = BTRFS_MINOR,
2427         .name           = "btrfs-control",
2428         .fops           = &btrfs_ctl_fops
2429 };
2430
2431 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2432 MODULE_ALIAS("devname:btrfs-control");
2433
2434 static int __init btrfs_interface_init(void)
2435 {
2436         return misc_register(&btrfs_misc);
2437 }
2438
2439 static __cold void btrfs_interface_exit(void)
2440 {
2441         misc_deregister(&btrfs_misc);
2442 }
2443
2444 static int __init btrfs_print_mod_info(void)
2445 {
2446         static const char options[] = ""
2447 #ifdef CONFIG_BTRFS_DEBUG
2448                         ", debug=on"
2449 #endif
2450 #ifdef CONFIG_BTRFS_ASSERT
2451                         ", assert=on"
2452 #endif
2453 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2454                         ", ref-verify=on"
2455 #endif
2456 #ifdef CONFIG_BLK_DEV_ZONED
2457                         ", zoned=yes"
2458 #else
2459                         ", zoned=no"
2460 #endif
2461 #ifdef CONFIG_FS_VERITY
2462                         ", fsverity=yes"
2463 #else
2464                         ", fsverity=no"
2465 #endif
2466                         ;
2467         pr_info("Btrfs loaded%s\n", options);
2468         return 0;
2469 }
2470
2471 static int register_btrfs(void)
2472 {
2473         return register_filesystem(&btrfs_fs_type);
2474 }
2475
2476 static void unregister_btrfs(void)
2477 {
2478         unregister_filesystem(&btrfs_fs_type);
2479 }
2480
2481 /* Helper structure for long init/exit functions. */
2482 struct init_sequence {
2483         int (*init_func)(void);
2484         /* Can be NULL if the init_func doesn't need cleanup. */
2485         void (*exit_func)(void);
2486 };
2487
2488 static const struct init_sequence mod_init_seq[] = {
2489         {
2490                 .init_func = btrfs_props_init,
2491                 .exit_func = NULL,
2492         }, {
2493                 .init_func = btrfs_init_sysfs,
2494                 .exit_func = btrfs_exit_sysfs,
2495         }, {
2496                 .init_func = btrfs_init_compress,
2497                 .exit_func = btrfs_exit_compress,
2498         }, {
2499                 .init_func = btrfs_init_cachep,
2500                 .exit_func = btrfs_destroy_cachep,
2501         }, {
2502                 .init_func = btrfs_transaction_init,
2503                 .exit_func = btrfs_transaction_exit,
2504         }, {
2505                 .init_func = btrfs_ctree_init,
2506                 .exit_func = btrfs_ctree_exit,
2507         }, {
2508                 .init_func = btrfs_free_space_init,
2509                 .exit_func = btrfs_free_space_exit,
2510         }, {
2511                 .init_func = extent_state_init_cachep,
2512                 .exit_func = extent_state_free_cachep,
2513         }, {
2514                 .init_func = extent_buffer_init_cachep,
2515                 .exit_func = extent_buffer_free_cachep,
2516         }, {
2517                 .init_func = btrfs_bioset_init,
2518                 .exit_func = btrfs_bioset_exit,
2519         }, {
2520                 .init_func = extent_map_init,
2521                 .exit_func = extent_map_exit,
2522         }, {
2523                 .init_func = ordered_data_init,
2524                 .exit_func = ordered_data_exit,
2525         }, {
2526                 .init_func = btrfs_delayed_inode_init,
2527                 .exit_func = btrfs_delayed_inode_exit,
2528         }, {
2529                 .init_func = btrfs_auto_defrag_init,
2530                 .exit_func = btrfs_auto_defrag_exit,
2531         }, {
2532                 .init_func = btrfs_delayed_ref_init,
2533                 .exit_func = btrfs_delayed_ref_exit,
2534         }, {
2535                 .init_func = btrfs_prelim_ref_init,
2536                 .exit_func = btrfs_prelim_ref_exit,
2537         }, {
2538                 .init_func = btrfs_interface_init,
2539                 .exit_func = btrfs_interface_exit,
2540         }, {
2541                 .init_func = btrfs_print_mod_info,
2542                 .exit_func = NULL,
2543         }, {
2544                 .init_func = btrfs_run_sanity_tests,
2545                 .exit_func = NULL,
2546         }, {
2547                 .init_func = register_btrfs,
2548                 .exit_func = unregister_btrfs,
2549         }
2550 };
2551
2552 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2553
2554 static __always_inline void btrfs_exit_btrfs_fs(void)
2555 {
2556         int i;
2557
2558         for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2559                 if (!mod_init_result[i])
2560                         continue;
2561                 if (mod_init_seq[i].exit_func)
2562                         mod_init_seq[i].exit_func();
2563                 mod_init_result[i] = false;
2564         }
2565 }
2566
2567 static void __exit exit_btrfs_fs(void)
2568 {
2569         btrfs_exit_btrfs_fs();
2570         btrfs_cleanup_fs_uuids();
2571 }
2572
2573 static int __init init_btrfs_fs(void)
2574 {
2575         int ret;
2576         int i;
2577
2578         for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2579                 ASSERT(!mod_init_result[i]);
2580                 ret = mod_init_seq[i].init_func();
2581                 if (ret < 0) {
2582                         btrfs_exit_btrfs_fs();
2583                         return ret;
2584                 }
2585                 mod_init_result[i] = true;
2586         }
2587         return 0;
2588 }
2589
2590 late_initcall(init_btrfs_fs);
2591 module_exit(exit_btrfs_fs)
2592
2593 MODULE_LICENSE("GPL");
2594 MODULE_SOFTDEP("pre: crc32c");
2595 MODULE_SOFTDEP("pre: xxhash64");
2596 MODULE_SOFTDEP("pre: sha256");
2597 MODULE_SOFTDEP("pre: blake2b-256");
This page took 0.184783 seconds and 4 git commands to generate.