]> Git Repo - linux.git/blob - fs/btrfs/ctree.c
net: ethtool: Fix RSS setting
[linux.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
33                       int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42         u16             size;
43         const char      name[10];
44         const char      driver[12];
45 } btrfs_csums[] = {
46         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50                                      .driver = "blake2b-256" },
51 };
52
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59         u32 nr = btrfs_header_nritems(leaf);
60
61         if (nr == 0)
62                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63         return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:       leaf that we're doing a memmove on
70  * @dst_offset: item data offset we're moving to
71  * @src_offset: item data offset were' moving from
72  * @len:        length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80                                      unsigned long dst_offset,
81                                      unsigned long src_offset,
82                                      unsigned long len)
83 {
84         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:        destination leaf that we're copying into
92  * @src:        source leaf that we're copying from
93  * @dst_offset: item data offset we're copying to
94  * @src_offset: item data offset were' copying from
95  * @len:        length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103                                   const struct extent_buffer *src,
104                                   unsigned long dst_offset,
105                                   unsigned long src_offset, unsigned long len)
106 {
107         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108                            btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:        destination leaf for the items
115  * @dst_item:   the item nr we're copying into
116  * @src_item:   the item nr we're copying from
117  * @nr_items:   the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123                                       int dst_item, int src_item, int nr_items)
124 {
125         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126                               btrfs_item_nr_offset(leaf, src_item),
127                               nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:        destination leaf for the items
134  * @src:        source leaf for the items
135  * @dst_item:   the item nr we're copying into
136  * @src_item:   the item nr we're copying from
137  * @nr_items:   the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143                                    const struct extent_buffer *src,
144                                    int dst_item, int src_item, int nr_items)
145 {
146         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147                               btrfs_item_nr_offset(src, src_item),
148                               nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154         return btrfs_csums[type].size;
155 }
156
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159         u16 t = btrfs_super_csum_type(s);
160         /*
161          * csum type is validated at mount time
162          */
163         return btrfs_csum_type_size(t);
164 }
165
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168         /* csum type is validated at mount time */
169         return btrfs_csums[csum_type].name;
170 }
171
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178         /* csum type is validated at mount time */
179         return btrfs_csums[csum_type].driver[0] ?
180                 btrfs_csums[csum_type].driver :
181                 btrfs_csums[csum_type].name;
182 }
183
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186         return ARRAY_SIZE(btrfs_csums);
187 }
188
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191         might_sleep();
192
193         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199         if (!p)
200                 return;
201         btrfs_release_path(p);
202         kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213         int i;
214
215         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216                 p->slots[i] = 0;
217                 if (!p->nodes[i])
218                         continue;
219                 if (p->locks[i]) {
220                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221                         p->locks[i] = 0;
222                 }
223                 free_extent_buffer(p->nodes[i]);
224                 p->nodes[i] = NULL;
225         }
226 }
227
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int error)
234 {
235         switch (error) {
236         case -EIO:
237         case -EROFS:
238         case -ENOMEM:
239                 return false;
240         }
241         return true;
242 }
243
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256         struct extent_buffer *eb;
257
258         while (1) {
259                 rcu_read_lock();
260                 eb = rcu_dereference(root->node);
261
262                 /*
263                  * RCU really hurts here, we could free up the root node because
264                  * it was COWed but we may not get the new root node yet so do
265                  * the inc_not_zero dance and if it doesn't work then
266                  * synchronize_rcu and try again.
267                  */
268                 if (atomic_inc_not_zero(&eb->refs)) {
269                         rcu_read_unlock();
270                         break;
271                 }
272                 rcu_read_unlock();
273                 synchronize_rcu();
274         }
275         return eb;
276 }
277
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285         struct btrfs_fs_info *fs_info = root->fs_info;
286
287         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289                 return;
290
291         spin_lock(&fs_info->trans_lock);
292         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293                 /* Want the extent tree to be the last on the list */
294                 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295                         list_move_tail(&root->dirty_list,
296                                        &fs_info->dirty_cowonly_roots);
297                 else
298                         list_move(&root->dirty_list,
299                                   &fs_info->dirty_cowonly_roots);
300         }
301         spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310                       struct btrfs_root *root,
311                       struct extent_buffer *buf,
312                       struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314         struct btrfs_fs_info *fs_info = root->fs_info;
315         struct extent_buffer *cow;
316         int ret = 0;
317         int level;
318         struct btrfs_disk_key disk_key;
319         u64 reloc_src_root = 0;
320
321         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322                 trans->transid != fs_info->running_transaction->transid);
323         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324                 trans->transid != root->last_trans);
325
326         level = btrfs_header_level(buf);
327         if (level == 0)
328                 btrfs_item_key(buf, &disk_key, 0);
329         else
330                 btrfs_node_key(buf, &disk_key, 0);
331
332         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333                 reloc_src_root = btrfs_header_owner(buf);
334         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335                                      &disk_key, level, buf->start, 0,
336                                      reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337         if (IS_ERR(cow))
338                 return PTR_ERR(cow);
339
340         copy_extent_buffer_full(cow, buf);
341         btrfs_set_header_bytenr(cow, cow->start);
342         btrfs_set_header_generation(cow, trans->transid);
343         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345                                      BTRFS_HEADER_FLAG_RELOC);
346         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348         else
349                 btrfs_set_header_owner(cow, new_root_objectid);
350
351         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352
353         WARN_ON(btrfs_header_generation(buf) > trans->transid);
354         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355                 ret = btrfs_inc_ref(trans, root, cow, 1);
356         else
357                 ret = btrfs_inc_ref(trans, root, cow, 0);
358         if (ret) {
359                 btrfs_tree_unlock(cow);
360                 free_extent_buffer(cow);
361                 btrfs_abort_transaction(trans, ret);
362                 return ret;
363         }
364
365         btrfs_mark_buffer_dirty(trans, cow);
366         *cow_ret = cow;
367         return 0;
368 }
369
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374                                struct btrfs_root *root,
375                                struct extent_buffer *buf)
376 {
377         const u64 buf_gen = btrfs_header_generation(buf);
378
379         /*
380          * Tree blocks not in shareable trees and tree roots are never shared.
381          * If a block was allocated after the last snapshot and the block was
382          * not allocated by tree relocation, we know the block is not shared.
383          */
384
385         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386                 return false;
387
388         if (buf == root->node)
389                 return false;
390
391         if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393                 return false;
394
395         if (buf != root->commit_root)
396                 return true;
397
398         /*
399          * An extent buffer that used to be the commit root may still be shared
400          * because the tree height may have increased and it became a child of a
401          * higher level root. This can happen when snapshotting a subvolume
402          * created in the current transaction.
403          */
404         if (buf_gen == trans->transid)
405                 return true;
406
407         return false;
408 }
409
410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411                                        struct btrfs_root *root,
412                                        struct extent_buffer *buf,
413                                        struct extent_buffer *cow,
414                                        int *last_ref)
415 {
416         struct btrfs_fs_info *fs_info = root->fs_info;
417         u64 refs;
418         u64 owner;
419         u64 flags;
420         u64 new_flags = 0;
421         int ret;
422
423         /*
424          * Backrefs update rules:
425          *
426          * Always use full backrefs for extent pointers in tree block
427          * allocated by tree relocation.
428          *
429          * If a shared tree block is no longer referenced by its owner
430          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
431          * use full backrefs for extent pointers in tree block.
432          *
433          * If a tree block is been relocating
434          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
435          * use full backrefs for extent pointers in tree block.
436          * The reason for this is some operations (such as drop tree)
437          * are only allowed for blocks use full backrefs.
438          */
439
440         if (btrfs_block_can_be_shared(trans, root, buf)) {
441                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
442                                                btrfs_header_level(buf), 1,
443                                                &refs, &flags, NULL);
444                 if (ret)
445                         return ret;
446                 if (unlikely(refs == 0)) {
447                         btrfs_crit(fs_info,
448                 "found 0 references for tree block at bytenr %llu level %d root %llu",
449                                    buf->start, btrfs_header_level(buf),
450                                    btrfs_root_id(root));
451                         ret = -EUCLEAN;
452                         btrfs_abort_transaction(trans, ret);
453                         return ret;
454                 }
455         } else {
456                 refs = 1;
457                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
458                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
460                 else
461                         flags = 0;
462         }
463
464         owner = btrfs_header_owner(buf);
465         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
466                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
467
468         if (refs > 1) {
469                 if ((owner == btrfs_root_id(root) ||
470                      btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
471                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
472                         ret = btrfs_inc_ref(trans, root, buf, 1);
473                         if (ret)
474                                 return ret;
475
476                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
477                                 ret = btrfs_dec_ref(trans, root, buf, 0);
478                                 if (ret)
479                                         return ret;
480                                 ret = btrfs_inc_ref(trans, root, cow, 1);
481                                 if (ret)
482                                         return ret;
483                         }
484                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
485                 } else {
486
487                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
488                                 ret = btrfs_inc_ref(trans, root, cow, 1);
489                         else
490                                 ret = btrfs_inc_ref(trans, root, cow, 0);
491                         if (ret)
492                                 return ret;
493                 }
494                 if (new_flags != 0) {
495                         ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
496                         if (ret)
497                                 return ret;
498                 }
499         } else {
500                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
501                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
502                                 ret = btrfs_inc_ref(trans, root, cow, 1);
503                         else
504                                 ret = btrfs_inc_ref(trans, root, cow, 0);
505                         if (ret)
506                                 return ret;
507                         ret = btrfs_dec_ref(trans, root, buf, 1);
508                         if (ret)
509                                 return ret;
510                 }
511                 btrfs_clear_buffer_dirty(trans, buf);
512                 *last_ref = 1;
513         }
514         return 0;
515 }
516
517 /*
518  * does the dirty work in cow of a single block.  The parent block (if
519  * supplied) is updated to point to the new cow copy.  The new buffer is marked
520  * dirty and returned locked.  If you modify the block it needs to be marked
521  * dirty again.
522  *
523  * search_start -- an allocation hint for the new block
524  *
525  * empty_size -- a hint that you plan on doing more cow.  This is the size in
526  * bytes the allocator should try to find free next to the block it returns.
527  * This is just a hint and may be ignored by the allocator.
528  */
529 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
530                           struct btrfs_root *root,
531                           struct extent_buffer *buf,
532                           struct extent_buffer *parent, int parent_slot,
533                           struct extent_buffer **cow_ret,
534                           u64 search_start, u64 empty_size,
535                           enum btrfs_lock_nesting nest)
536 {
537         struct btrfs_fs_info *fs_info = root->fs_info;
538         struct btrfs_disk_key disk_key;
539         struct extent_buffer *cow;
540         int level, ret;
541         int last_ref = 0;
542         int unlock_orig = 0;
543         u64 parent_start = 0;
544         u64 reloc_src_root = 0;
545
546         if (*cow_ret == buf)
547                 unlock_orig = 1;
548
549         btrfs_assert_tree_write_locked(buf);
550
551         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
552                 trans->transid != fs_info->running_transaction->transid);
553         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
554                 trans->transid != root->last_trans);
555
556         level = btrfs_header_level(buf);
557
558         if (level == 0)
559                 btrfs_item_key(buf, &disk_key, 0);
560         else
561                 btrfs_node_key(buf, &disk_key, 0);
562
563         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
564                 if (parent)
565                         parent_start = parent->start;
566                 reloc_src_root = btrfs_header_owner(buf);
567         }
568         cow = btrfs_alloc_tree_block(trans, root, parent_start,
569                                      btrfs_root_id(root), &disk_key, level,
570                                      search_start, empty_size, reloc_src_root, nest);
571         if (IS_ERR(cow))
572                 return PTR_ERR(cow);
573
574         /* cow is set to blocking by btrfs_init_new_buffer */
575
576         copy_extent_buffer_full(cow, buf);
577         btrfs_set_header_bytenr(cow, cow->start);
578         btrfs_set_header_generation(cow, trans->transid);
579         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
580         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
581                                      BTRFS_HEADER_FLAG_RELOC);
582         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
583                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
584         else
585                 btrfs_set_header_owner(cow, btrfs_root_id(root));
586
587         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
588
589         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
590         if (ret) {
591                 btrfs_tree_unlock(cow);
592                 free_extent_buffer(cow);
593                 btrfs_abort_transaction(trans, ret);
594                 return ret;
595         }
596
597         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
598                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
599                 if (ret) {
600                         btrfs_tree_unlock(cow);
601                         free_extent_buffer(cow);
602                         btrfs_abort_transaction(trans, ret);
603                         return ret;
604                 }
605         }
606
607         if (buf == root->node) {
608                 WARN_ON(parent && parent != buf);
609                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
610                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
611                         parent_start = buf->start;
612
613                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
614                 if (ret < 0) {
615                         btrfs_tree_unlock(cow);
616                         free_extent_buffer(cow);
617                         btrfs_abort_transaction(trans, ret);
618                         return ret;
619                 }
620                 atomic_inc(&cow->refs);
621                 rcu_assign_pointer(root->node, cow);
622
623                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
624                                       parent_start, last_ref);
625                 free_extent_buffer(buf);
626                 add_root_to_dirty_list(root);
627         } else {
628                 WARN_ON(trans->transid != btrfs_header_generation(parent));
629                 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
630                                                     BTRFS_MOD_LOG_KEY_REPLACE);
631                 if (ret) {
632                         btrfs_tree_unlock(cow);
633                         free_extent_buffer(cow);
634                         btrfs_abort_transaction(trans, ret);
635                         return ret;
636                 }
637                 btrfs_set_node_blockptr(parent, parent_slot,
638                                         cow->start);
639                 btrfs_set_node_ptr_generation(parent, parent_slot,
640                                               trans->transid);
641                 btrfs_mark_buffer_dirty(trans, parent);
642                 if (last_ref) {
643                         ret = btrfs_tree_mod_log_free_eb(buf);
644                         if (ret) {
645                                 btrfs_tree_unlock(cow);
646                                 free_extent_buffer(cow);
647                                 btrfs_abort_transaction(trans, ret);
648                                 return ret;
649                         }
650                 }
651                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
652                                       parent_start, last_ref);
653         }
654         if (unlock_orig)
655                 btrfs_tree_unlock(buf);
656         free_extent_buffer_stale(buf);
657         btrfs_mark_buffer_dirty(trans, cow);
658         *cow_ret = cow;
659         return 0;
660 }
661
662 static inline int should_cow_block(struct btrfs_trans_handle *trans,
663                                    struct btrfs_root *root,
664                                    struct extent_buffer *buf)
665 {
666         if (btrfs_is_testing(root->fs_info))
667                 return 0;
668
669         /* Ensure we can see the FORCE_COW bit */
670         smp_mb__before_atomic();
671
672         /*
673          * We do not need to cow a block if
674          * 1) this block is not created or changed in this transaction;
675          * 2) this block does not belong to TREE_RELOC tree;
676          * 3) the root is not forced COW.
677          *
678          * What is forced COW:
679          *    when we create snapshot during committing the transaction,
680          *    after we've finished copying src root, we must COW the shared
681          *    block to ensure the metadata consistency.
682          */
683         if (btrfs_header_generation(buf) == trans->transid &&
684             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
685             !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
686               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
687             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
688                 return 0;
689         return 1;
690 }
691
692 /*
693  * COWs a single block, see btrfs_force_cow_block() for the real work.
694  * This version of it has extra checks so that a block isn't COWed more than
695  * once per transaction, as long as it hasn't been written yet
696  */
697 int btrfs_cow_block(struct btrfs_trans_handle *trans,
698                     struct btrfs_root *root, struct extent_buffer *buf,
699                     struct extent_buffer *parent, int parent_slot,
700                     struct extent_buffer **cow_ret,
701                     enum btrfs_lock_nesting nest)
702 {
703         struct btrfs_fs_info *fs_info = root->fs_info;
704         u64 search_start;
705         int ret;
706
707         if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
708                 btrfs_abort_transaction(trans, -EUCLEAN);
709                 btrfs_crit(fs_info,
710                    "attempt to COW block %llu on root %llu that is being deleted",
711                            buf->start, btrfs_root_id(root));
712                 return -EUCLEAN;
713         }
714
715         /*
716          * COWing must happen through a running transaction, which always
717          * matches the current fs generation (it's a transaction with a state
718          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
719          * into error state to prevent the commit of any transaction.
720          */
721         if (unlikely(trans->transaction != fs_info->running_transaction ||
722                      trans->transid != fs_info->generation)) {
723                 btrfs_abort_transaction(trans, -EUCLEAN);
724                 btrfs_crit(fs_info,
725 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
726                            buf->start, btrfs_root_id(root), trans->transid,
727                            fs_info->running_transaction->transid,
728                            fs_info->generation);
729                 return -EUCLEAN;
730         }
731
732         if (!should_cow_block(trans, root, buf)) {
733                 *cow_ret = buf;
734                 return 0;
735         }
736
737         search_start = round_down(buf->start, SZ_1G);
738
739         /*
740          * Before CoWing this block for later modification, check if it's
741          * the subtree root and do the delayed subtree trace if needed.
742          *
743          * Also We don't care about the error, as it's handled internally.
744          */
745         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
746         ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
747                                     cow_ret, search_start, 0, nest);
748
749         trace_btrfs_cow_block(root, buf, *cow_ret);
750
751         return ret;
752 }
753 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
754
755 /*
756  * same as comp_keys only with two btrfs_key's
757  */
758 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
759 {
760         if (k1->objectid > k2->objectid)
761                 return 1;
762         if (k1->objectid < k2->objectid)
763                 return -1;
764         if (k1->type > k2->type)
765                 return 1;
766         if (k1->type < k2->type)
767                 return -1;
768         if (k1->offset > k2->offset)
769                 return 1;
770         if (k1->offset < k2->offset)
771                 return -1;
772         return 0;
773 }
774
775 /*
776  * Search for a key in the given extent_buffer.
777  *
778  * The lower boundary for the search is specified by the slot number @first_slot.
779  * Use a value of 0 to search over the whole extent buffer. Works for both
780  * leaves and nodes.
781  *
782  * The slot in the extent buffer is returned via @slot. If the key exists in the
783  * extent buffer, then @slot will point to the slot where the key is, otherwise
784  * it points to the slot where you would insert the key.
785  *
786  * Slot may point to the total number of items (i.e. one position beyond the last
787  * key) if the key is bigger than the last key in the extent buffer.
788  */
789 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
790                      const struct btrfs_key *key, int *slot)
791 {
792         unsigned long p;
793         int item_size;
794         /*
795          * Use unsigned types for the low and high slots, so that we get a more
796          * efficient division in the search loop below.
797          */
798         u32 low = first_slot;
799         u32 high = btrfs_header_nritems(eb);
800         int ret;
801         const int key_size = sizeof(struct btrfs_disk_key);
802
803         if (unlikely(low > high)) {
804                 btrfs_err(eb->fs_info,
805                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
806                           __func__, low, high, eb->start,
807                           btrfs_header_owner(eb), btrfs_header_level(eb));
808                 return -EINVAL;
809         }
810
811         if (btrfs_header_level(eb) == 0) {
812                 p = offsetof(struct btrfs_leaf, items);
813                 item_size = sizeof(struct btrfs_item);
814         } else {
815                 p = offsetof(struct btrfs_node, ptrs);
816                 item_size = sizeof(struct btrfs_key_ptr);
817         }
818
819         while (low < high) {
820                 const int unit_size = eb->folio_size;
821                 unsigned long oil;
822                 unsigned long offset;
823                 struct btrfs_disk_key *tmp;
824                 struct btrfs_disk_key unaligned;
825                 int mid;
826
827                 mid = (low + high) / 2;
828                 offset = p + mid * item_size;
829                 oil = get_eb_offset_in_folio(eb, offset);
830
831                 if (oil + key_size <= unit_size) {
832                         const unsigned long idx = get_eb_folio_index(eb, offset);
833                         char *kaddr = folio_address(eb->folios[idx]);
834
835                         oil = get_eb_offset_in_folio(eb, offset);
836                         tmp = (struct btrfs_disk_key *)(kaddr + oil);
837                 } else {
838                         read_extent_buffer(eb, &unaligned, offset, key_size);
839                         tmp = &unaligned;
840                 }
841
842                 ret = btrfs_comp_keys(tmp, key);
843
844                 if (ret < 0)
845                         low = mid + 1;
846                 else if (ret > 0)
847                         high = mid;
848                 else {
849                         *slot = mid;
850                         return 0;
851                 }
852         }
853         *slot = low;
854         return 1;
855 }
856
857 static void root_add_used_bytes(struct btrfs_root *root)
858 {
859         spin_lock(&root->accounting_lock);
860         btrfs_set_root_used(&root->root_item,
861                 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
862         spin_unlock(&root->accounting_lock);
863 }
864
865 static void root_sub_used_bytes(struct btrfs_root *root)
866 {
867         spin_lock(&root->accounting_lock);
868         btrfs_set_root_used(&root->root_item,
869                 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
870         spin_unlock(&root->accounting_lock);
871 }
872
873 /* given a node and slot number, this reads the blocks it points to.  The
874  * extent buffer is returned with a reference taken (but unlocked).
875  */
876 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
877                                            int slot)
878 {
879         int level = btrfs_header_level(parent);
880         struct btrfs_tree_parent_check check = { 0 };
881         struct extent_buffer *eb;
882
883         if (slot < 0 || slot >= btrfs_header_nritems(parent))
884                 return ERR_PTR(-ENOENT);
885
886         ASSERT(level);
887
888         check.level = level - 1;
889         check.transid = btrfs_node_ptr_generation(parent, slot);
890         check.owner_root = btrfs_header_owner(parent);
891         check.has_first_key = true;
892         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
893
894         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
895                              &check);
896         if (IS_ERR(eb))
897                 return eb;
898         if (!extent_buffer_uptodate(eb)) {
899                 free_extent_buffer(eb);
900                 return ERR_PTR(-EIO);
901         }
902
903         return eb;
904 }
905
906 /*
907  * node level balancing, used to make sure nodes are in proper order for
908  * item deletion.  We balance from the top down, so we have to make sure
909  * that a deletion won't leave an node completely empty later on.
910  */
911 static noinline int balance_level(struct btrfs_trans_handle *trans,
912                          struct btrfs_root *root,
913                          struct btrfs_path *path, int level)
914 {
915         struct btrfs_fs_info *fs_info = root->fs_info;
916         struct extent_buffer *right = NULL;
917         struct extent_buffer *mid;
918         struct extent_buffer *left = NULL;
919         struct extent_buffer *parent = NULL;
920         int ret = 0;
921         int wret;
922         int pslot;
923         int orig_slot = path->slots[level];
924         u64 orig_ptr;
925
926         ASSERT(level > 0);
927
928         mid = path->nodes[level];
929
930         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
931         WARN_ON(btrfs_header_generation(mid) != trans->transid);
932
933         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
934
935         if (level < BTRFS_MAX_LEVEL - 1) {
936                 parent = path->nodes[level + 1];
937                 pslot = path->slots[level + 1];
938         }
939
940         /*
941          * deal with the case where there is only one pointer in the root
942          * by promoting the node below to a root
943          */
944         if (!parent) {
945                 struct extent_buffer *child;
946
947                 if (btrfs_header_nritems(mid) != 1)
948                         return 0;
949
950                 /* promote the child to a root */
951                 child = btrfs_read_node_slot(mid, 0);
952                 if (IS_ERR(child)) {
953                         ret = PTR_ERR(child);
954                         goto out;
955                 }
956
957                 btrfs_tree_lock(child);
958                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
959                                       BTRFS_NESTING_COW);
960                 if (ret) {
961                         btrfs_tree_unlock(child);
962                         free_extent_buffer(child);
963                         goto out;
964                 }
965
966                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
967                 if (ret < 0) {
968                         btrfs_tree_unlock(child);
969                         free_extent_buffer(child);
970                         btrfs_abort_transaction(trans, ret);
971                         goto out;
972                 }
973                 rcu_assign_pointer(root->node, child);
974
975                 add_root_to_dirty_list(root);
976                 btrfs_tree_unlock(child);
977
978                 path->locks[level] = 0;
979                 path->nodes[level] = NULL;
980                 btrfs_clear_buffer_dirty(trans, mid);
981                 btrfs_tree_unlock(mid);
982                 /* once for the path */
983                 free_extent_buffer(mid);
984
985                 root_sub_used_bytes(root);
986                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
987                 /* once for the root ptr */
988                 free_extent_buffer_stale(mid);
989                 return 0;
990         }
991         if (btrfs_header_nritems(mid) >
992             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
993                 return 0;
994
995         if (pslot) {
996                 left = btrfs_read_node_slot(parent, pslot - 1);
997                 if (IS_ERR(left)) {
998                         ret = PTR_ERR(left);
999                         left = NULL;
1000                         goto out;
1001                 }
1002
1003                 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1004                 wret = btrfs_cow_block(trans, root, left,
1005                                        parent, pslot - 1, &left,
1006                                        BTRFS_NESTING_LEFT_COW);
1007                 if (wret) {
1008                         ret = wret;
1009                         goto out;
1010                 }
1011         }
1012
1013         if (pslot + 1 < btrfs_header_nritems(parent)) {
1014                 right = btrfs_read_node_slot(parent, pslot + 1);
1015                 if (IS_ERR(right)) {
1016                         ret = PTR_ERR(right);
1017                         right = NULL;
1018                         goto out;
1019                 }
1020
1021                 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1022                 wret = btrfs_cow_block(trans, root, right,
1023                                        parent, pslot + 1, &right,
1024                                        BTRFS_NESTING_RIGHT_COW);
1025                 if (wret) {
1026                         ret = wret;
1027                         goto out;
1028                 }
1029         }
1030
1031         /* first, try to make some room in the middle buffer */
1032         if (left) {
1033                 orig_slot += btrfs_header_nritems(left);
1034                 wret = push_node_left(trans, left, mid, 1);
1035                 if (wret < 0)
1036                         ret = wret;
1037         }
1038
1039         /*
1040          * then try to empty the right most buffer into the middle
1041          */
1042         if (right) {
1043                 wret = push_node_left(trans, mid, right, 1);
1044                 if (wret < 0 && wret != -ENOSPC)
1045                         ret = wret;
1046                 if (btrfs_header_nritems(right) == 0) {
1047                         btrfs_clear_buffer_dirty(trans, right);
1048                         btrfs_tree_unlock(right);
1049                         ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1050                         if (ret < 0) {
1051                                 free_extent_buffer_stale(right);
1052                                 right = NULL;
1053                                 goto out;
1054                         }
1055                         root_sub_used_bytes(root);
1056                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1057                                               0, 1);
1058                         free_extent_buffer_stale(right);
1059                         right = NULL;
1060                 } else {
1061                         struct btrfs_disk_key right_key;
1062                         btrfs_node_key(right, &right_key, 0);
1063                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1064                                         BTRFS_MOD_LOG_KEY_REPLACE);
1065                         if (ret < 0) {
1066                                 btrfs_abort_transaction(trans, ret);
1067                                 goto out;
1068                         }
1069                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1070                         btrfs_mark_buffer_dirty(trans, parent);
1071                 }
1072         }
1073         if (btrfs_header_nritems(mid) == 1) {
1074                 /*
1075                  * we're not allowed to leave a node with one item in the
1076                  * tree during a delete.  A deletion from lower in the tree
1077                  * could try to delete the only pointer in this node.
1078                  * So, pull some keys from the left.
1079                  * There has to be a left pointer at this point because
1080                  * otherwise we would have pulled some pointers from the
1081                  * right
1082                  */
1083                 if (unlikely(!left)) {
1084                         btrfs_crit(fs_info,
1085 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1086                                    parent->start, btrfs_header_level(parent),
1087                                    mid->start, btrfs_root_id(root));
1088                         ret = -EUCLEAN;
1089                         btrfs_abort_transaction(trans, ret);
1090                         goto out;
1091                 }
1092                 wret = balance_node_right(trans, mid, left);
1093                 if (wret < 0) {
1094                         ret = wret;
1095                         goto out;
1096                 }
1097                 if (wret == 1) {
1098                         wret = push_node_left(trans, left, mid, 1);
1099                         if (wret < 0)
1100                                 ret = wret;
1101                 }
1102                 BUG_ON(wret == 1);
1103         }
1104         if (btrfs_header_nritems(mid) == 0) {
1105                 btrfs_clear_buffer_dirty(trans, mid);
1106                 btrfs_tree_unlock(mid);
1107                 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1108                 if (ret < 0) {
1109                         free_extent_buffer_stale(mid);
1110                         mid = NULL;
1111                         goto out;
1112                 }
1113                 root_sub_used_bytes(root);
1114                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1115                 free_extent_buffer_stale(mid);
1116                 mid = NULL;
1117         } else {
1118                 /* update the parent key to reflect our changes */
1119                 struct btrfs_disk_key mid_key;
1120                 btrfs_node_key(mid, &mid_key, 0);
1121                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1122                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1123                 if (ret < 0) {
1124                         btrfs_abort_transaction(trans, ret);
1125                         goto out;
1126                 }
1127                 btrfs_set_node_key(parent, &mid_key, pslot);
1128                 btrfs_mark_buffer_dirty(trans, parent);
1129         }
1130
1131         /* update the path */
1132         if (left) {
1133                 if (btrfs_header_nritems(left) > orig_slot) {
1134                         atomic_inc(&left->refs);
1135                         /* left was locked after cow */
1136                         path->nodes[level] = left;
1137                         path->slots[level + 1] -= 1;
1138                         path->slots[level] = orig_slot;
1139                         if (mid) {
1140                                 btrfs_tree_unlock(mid);
1141                                 free_extent_buffer(mid);
1142                         }
1143                 } else {
1144                         orig_slot -= btrfs_header_nritems(left);
1145                         path->slots[level] = orig_slot;
1146                 }
1147         }
1148         /* double check we haven't messed things up */
1149         if (orig_ptr !=
1150             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1151                 BUG();
1152 out:
1153         if (right) {
1154                 btrfs_tree_unlock(right);
1155                 free_extent_buffer(right);
1156         }
1157         if (left) {
1158                 if (path->nodes[level] != left)
1159                         btrfs_tree_unlock(left);
1160                 free_extent_buffer(left);
1161         }
1162         return ret;
1163 }
1164
1165 /* Node balancing for insertion.  Here we only split or push nodes around
1166  * when they are completely full.  This is also done top down, so we
1167  * have to be pessimistic.
1168  */
1169 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1170                                           struct btrfs_root *root,
1171                                           struct btrfs_path *path, int level)
1172 {
1173         struct btrfs_fs_info *fs_info = root->fs_info;
1174         struct extent_buffer *right = NULL;
1175         struct extent_buffer *mid;
1176         struct extent_buffer *left = NULL;
1177         struct extent_buffer *parent = NULL;
1178         int ret = 0;
1179         int wret;
1180         int pslot;
1181         int orig_slot = path->slots[level];
1182
1183         if (level == 0)
1184                 return 1;
1185
1186         mid = path->nodes[level];
1187         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1188
1189         if (level < BTRFS_MAX_LEVEL - 1) {
1190                 parent = path->nodes[level + 1];
1191                 pslot = path->slots[level + 1];
1192         }
1193
1194         if (!parent)
1195                 return 1;
1196
1197         /* first, try to make some room in the middle buffer */
1198         if (pslot) {
1199                 u32 left_nr;
1200
1201                 left = btrfs_read_node_slot(parent, pslot - 1);
1202                 if (IS_ERR(left))
1203                         return PTR_ERR(left);
1204
1205                 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1206
1207                 left_nr = btrfs_header_nritems(left);
1208                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1209                         wret = 1;
1210                 } else {
1211                         ret = btrfs_cow_block(trans, root, left, parent,
1212                                               pslot - 1, &left,
1213                                               BTRFS_NESTING_LEFT_COW);
1214                         if (ret)
1215                                 wret = 1;
1216                         else {
1217                                 wret = push_node_left(trans, left, mid, 0);
1218                         }
1219                 }
1220                 if (wret < 0)
1221                         ret = wret;
1222                 if (wret == 0) {
1223                         struct btrfs_disk_key disk_key;
1224                         orig_slot += left_nr;
1225                         btrfs_node_key(mid, &disk_key, 0);
1226                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1227                                         BTRFS_MOD_LOG_KEY_REPLACE);
1228                         if (ret < 0) {
1229                                 btrfs_tree_unlock(left);
1230                                 free_extent_buffer(left);
1231                                 btrfs_abort_transaction(trans, ret);
1232                                 return ret;
1233                         }
1234                         btrfs_set_node_key(parent, &disk_key, pslot);
1235                         btrfs_mark_buffer_dirty(trans, parent);
1236                         if (btrfs_header_nritems(left) > orig_slot) {
1237                                 path->nodes[level] = left;
1238                                 path->slots[level + 1] -= 1;
1239                                 path->slots[level] = orig_slot;
1240                                 btrfs_tree_unlock(mid);
1241                                 free_extent_buffer(mid);
1242                         } else {
1243                                 orig_slot -=
1244                                         btrfs_header_nritems(left);
1245                                 path->slots[level] = orig_slot;
1246                                 btrfs_tree_unlock(left);
1247                                 free_extent_buffer(left);
1248                         }
1249                         return 0;
1250                 }
1251                 btrfs_tree_unlock(left);
1252                 free_extent_buffer(left);
1253         }
1254
1255         /*
1256          * then try to empty the right most buffer into the middle
1257          */
1258         if (pslot + 1 < btrfs_header_nritems(parent)) {
1259                 u32 right_nr;
1260
1261                 right = btrfs_read_node_slot(parent, pslot + 1);
1262                 if (IS_ERR(right))
1263                         return PTR_ERR(right);
1264
1265                 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1266
1267                 right_nr = btrfs_header_nritems(right);
1268                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1269                         wret = 1;
1270                 } else {
1271                         ret = btrfs_cow_block(trans, root, right,
1272                                               parent, pslot + 1,
1273                                               &right, BTRFS_NESTING_RIGHT_COW);
1274                         if (ret)
1275                                 wret = 1;
1276                         else {
1277                                 wret = balance_node_right(trans, right, mid);
1278                         }
1279                 }
1280                 if (wret < 0)
1281                         ret = wret;
1282                 if (wret == 0) {
1283                         struct btrfs_disk_key disk_key;
1284
1285                         btrfs_node_key(right, &disk_key, 0);
1286                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1287                                         BTRFS_MOD_LOG_KEY_REPLACE);
1288                         if (ret < 0) {
1289                                 btrfs_tree_unlock(right);
1290                                 free_extent_buffer(right);
1291                                 btrfs_abort_transaction(trans, ret);
1292                                 return ret;
1293                         }
1294                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1295                         btrfs_mark_buffer_dirty(trans, parent);
1296
1297                         if (btrfs_header_nritems(mid) <= orig_slot) {
1298                                 path->nodes[level] = right;
1299                                 path->slots[level + 1] += 1;
1300                                 path->slots[level] = orig_slot -
1301                                         btrfs_header_nritems(mid);
1302                                 btrfs_tree_unlock(mid);
1303                                 free_extent_buffer(mid);
1304                         } else {
1305                                 btrfs_tree_unlock(right);
1306                                 free_extent_buffer(right);
1307                         }
1308                         return 0;
1309                 }
1310                 btrfs_tree_unlock(right);
1311                 free_extent_buffer(right);
1312         }
1313         return 1;
1314 }
1315
1316 /*
1317  * readahead one full node of leaves, finding things that are close
1318  * to the block in 'slot', and triggering ra on them.
1319  */
1320 static void reada_for_search(struct btrfs_fs_info *fs_info,
1321                              struct btrfs_path *path,
1322                              int level, int slot, u64 objectid)
1323 {
1324         struct extent_buffer *node;
1325         struct btrfs_disk_key disk_key;
1326         u32 nritems;
1327         u64 search;
1328         u64 target;
1329         u64 nread = 0;
1330         u64 nread_max;
1331         u32 nr;
1332         u32 blocksize;
1333         u32 nscan = 0;
1334
1335         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1336                 return;
1337
1338         if (!path->nodes[level])
1339                 return;
1340
1341         node = path->nodes[level];
1342
1343         /*
1344          * Since the time between visiting leaves is much shorter than the time
1345          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1346          * much IO at once (possibly random).
1347          */
1348         if (path->reada == READA_FORWARD_ALWAYS) {
1349                 if (level > 1)
1350                         nread_max = node->fs_info->nodesize;
1351                 else
1352                         nread_max = SZ_128K;
1353         } else {
1354                 nread_max = SZ_64K;
1355         }
1356
1357         search = btrfs_node_blockptr(node, slot);
1358         blocksize = fs_info->nodesize;
1359         if (path->reada != READA_FORWARD_ALWAYS) {
1360                 struct extent_buffer *eb;
1361
1362                 eb = find_extent_buffer(fs_info, search);
1363                 if (eb) {
1364                         free_extent_buffer(eb);
1365                         return;
1366                 }
1367         }
1368
1369         target = search;
1370
1371         nritems = btrfs_header_nritems(node);
1372         nr = slot;
1373
1374         while (1) {
1375                 if (path->reada == READA_BACK) {
1376                         if (nr == 0)
1377                                 break;
1378                         nr--;
1379                 } else if (path->reada == READA_FORWARD ||
1380                            path->reada == READA_FORWARD_ALWAYS) {
1381                         nr++;
1382                         if (nr >= nritems)
1383                                 break;
1384                 }
1385                 if (path->reada == READA_BACK && objectid) {
1386                         btrfs_node_key(node, &disk_key, nr);
1387                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1388                                 break;
1389                 }
1390                 search = btrfs_node_blockptr(node, nr);
1391                 if (path->reada == READA_FORWARD_ALWAYS ||
1392                     (search <= target && target - search <= 65536) ||
1393                     (search > target && search - target <= 65536)) {
1394                         btrfs_readahead_node_child(node, nr);
1395                         nread += blocksize;
1396                 }
1397                 nscan++;
1398                 if (nread > nread_max || nscan > 32)
1399                         break;
1400         }
1401 }
1402
1403 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1404 {
1405         struct extent_buffer *parent;
1406         int slot;
1407         int nritems;
1408
1409         parent = path->nodes[level + 1];
1410         if (!parent)
1411                 return;
1412
1413         nritems = btrfs_header_nritems(parent);
1414         slot = path->slots[level + 1];
1415
1416         if (slot > 0)
1417                 btrfs_readahead_node_child(parent, slot - 1);
1418         if (slot + 1 < nritems)
1419                 btrfs_readahead_node_child(parent, slot + 1);
1420 }
1421
1422
1423 /*
1424  * when we walk down the tree, it is usually safe to unlock the higher layers
1425  * in the tree.  The exceptions are when our path goes through slot 0, because
1426  * operations on the tree might require changing key pointers higher up in the
1427  * tree.
1428  *
1429  * callers might also have set path->keep_locks, which tells this code to keep
1430  * the lock if the path points to the last slot in the block.  This is part of
1431  * walking through the tree, and selecting the next slot in the higher block.
1432  *
1433  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1434  * if lowest_unlock is 1, level 0 won't be unlocked
1435  */
1436 static noinline void unlock_up(struct btrfs_path *path, int level,
1437                                int lowest_unlock, int min_write_lock_level,
1438                                int *write_lock_level)
1439 {
1440         int i;
1441         int skip_level = level;
1442         bool check_skip = true;
1443
1444         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1445                 if (!path->nodes[i])
1446                         break;
1447                 if (!path->locks[i])
1448                         break;
1449
1450                 if (check_skip) {
1451                         if (path->slots[i] == 0) {
1452                                 skip_level = i + 1;
1453                                 continue;
1454                         }
1455
1456                         if (path->keep_locks) {
1457                                 u32 nritems;
1458
1459                                 nritems = btrfs_header_nritems(path->nodes[i]);
1460                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1461                                         skip_level = i + 1;
1462                                         continue;
1463                                 }
1464                         }
1465                 }
1466
1467                 if (i >= lowest_unlock && i > skip_level) {
1468                         check_skip = false;
1469                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1470                         path->locks[i] = 0;
1471                         if (write_lock_level &&
1472                             i > min_write_lock_level &&
1473                             i <= *write_lock_level) {
1474                                 *write_lock_level = i - 1;
1475                         }
1476                 }
1477         }
1478 }
1479
1480 /*
1481  * Helper function for btrfs_search_slot() and other functions that do a search
1482  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1483  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1484  * its pages from disk.
1485  *
1486  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1487  * whole btree search, starting again from the current root node.
1488  */
1489 static int
1490 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1491                       struct extent_buffer **eb_ret, int level, int slot,
1492                       const struct btrfs_key *key)
1493 {
1494         struct btrfs_fs_info *fs_info = root->fs_info;
1495         struct btrfs_tree_parent_check check = { 0 };
1496         u64 blocknr;
1497         u64 gen;
1498         struct extent_buffer *tmp;
1499         int ret;
1500         int parent_level;
1501         bool unlock_up;
1502
1503         unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1504         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1505         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1506         parent_level = btrfs_header_level(*eb_ret);
1507         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1508         check.has_first_key = true;
1509         check.level = parent_level - 1;
1510         check.transid = gen;
1511         check.owner_root = btrfs_root_id(root);
1512
1513         /*
1514          * If we need to read an extent buffer from disk and we are holding locks
1515          * on upper level nodes, we unlock all the upper nodes before reading the
1516          * extent buffer, and then return -EAGAIN to the caller as it needs to
1517          * restart the search. We don't release the lock on the current level
1518          * because we need to walk this node to figure out which blocks to read.
1519          */
1520         tmp = find_extent_buffer(fs_info, blocknr);
1521         if (tmp) {
1522                 if (p->reada == READA_FORWARD_ALWAYS)
1523                         reada_for_search(fs_info, p, level, slot, key->objectid);
1524
1525                 /* first we do an atomic uptodate check */
1526                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1527                         /*
1528                          * Do extra check for first_key, eb can be stale due to
1529                          * being cached, read from scrub, or have multiple
1530                          * parents (shared tree blocks).
1531                          */
1532                         if (btrfs_verify_level_key(tmp,
1533                                         parent_level - 1, &check.first_key, gen)) {
1534                                 free_extent_buffer(tmp);
1535                                 return -EUCLEAN;
1536                         }
1537                         *eb_ret = tmp;
1538                         return 0;
1539                 }
1540
1541                 if (p->nowait) {
1542                         free_extent_buffer(tmp);
1543                         return -EAGAIN;
1544                 }
1545
1546                 if (unlock_up)
1547                         btrfs_unlock_up_safe(p, level + 1);
1548
1549                 /* now we're allowed to do a blocking uptodate check */
1550                 ret = btrfs_read_extent_buffer(tmp, &check);
1551                 if (ret) {
1552                         free_extent_buffer(tmp);
1553                         btrfs_release_path(p);
1554                         return -EIO;
1555                 }
1556                 if (btrfs_check_eb_owner(tmp, btrfs_root_id(root))) {
1557                         free_extent_buffer(tmp);
1558                         btrfs_release_path(p);
1559                         return -EUCLEAN;
1560                 }
1561
1562                 if (unlock_up)
1563                         ret = -EAGAIN;
1564
1565                 goto out;
1566         } else if (p->nowait) {
1567                 return -EAGAIN;
1568         }
1569
1570         if (unlock_up) {
1571                 btrfs_unlock_up_safe(p, level + 1);
1572                 ret = -EAGAIN;
1573         } else {
1574                 ret = 0;
1575         }
1576
1577         if (p->reada != READA_NONE)
1578                 reada_for_search(fs_info, p, level, slot, key->objectid);
1579
1580         tmp = read_tree_block(fs_info, blocknr, &check);
1581         if (IS_ERR(tmp)) {
1582                 btrfs_release_path(p);
1583                 return PTR_ERR(tmp);
1584         }
1585         /*
1586          * If the read above didn't mark this buffer up to date,
1587          * it will never end up being up to date.  Set ret to EIO now
1588          * and give up so that our caller doesn't loop forever
1589          * on our EAGAINs.
1590          */
1591         if (!extent_buffer_uptodate(tmp))
1592                 ret = -EIO;
1593
1594 out:
1595         if (ret == 0) {
1596                 *eb_ret = tmp;
1597         } else {
1598                 free_extent_buffer(tmp);
1599                 btrfs_release_path(p);
1600         }
1601
1602         return ret;
1603 }
1604
1605 /*
1606  * helper function for btrfs_search_slot.  This does all of the checks
1607  * for node-level blocks and does any balancing required based on
1608  * the ins_len.
1609  *
1610  * If no extra work was required, zero is returned.  If we had to
1611  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1612  * start over
1613  */
1614 static int
1615 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1616                        struct btrfs_root *root, struct btrfs_path *p,
1617                        struct extent_buffer *b, int level, int ins_len,
1618                        int *write_lock_level)
1619 {
1620         struct btrfs_fs_info *fs_info = root->fs_info;
1621         int ret = 0;
1622
1623         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1624             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1625
1626                 if (*write_lock_level < level + 1) {
1627                         *write_lock_level = level + 1;
1628                         btrfs_release_path(p);
1629                         return -EAGAIN;
1630                 }
1631
1632                 reada_for_balance(p, level);
1633                 ret = split_node(trans, root, p, level);
1634
1635                 b = p->nodes[level];
1636         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1637                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1638
1639                 if (*write_lock_level < level + 1) {
1640                         *write_lock_level = level + 1;
1641                         btrfs_release_path(p);
1642                         return -EAGAIN;
1643                 }
1644
1645                 reada_for_balance(p, level);
1646                 ret = balance_level(trans, root, p, level);
1647                 if (ret)
1648                         return ret;
1649
1650                 b = p->nodes[level];
1651                 if (!b) {
1652                         btrfs_release_path(p);
1653                         return -EAGAIN;
1654                 }
1655                 BUG_ON(btrfs_header_nritems(b) == 1);
1656         }
1657         return ret;
1658 }
1659
1660 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1661                 u64 iobjectid, u64 ioff, u8 key_type,
1662                 struct btrfs_key *found_key)
1663 {
1664         int ret;
1665         struct btrfs_key key;
1666         struct extent_buffer *eb;
1667
1668         ASSERT(path);
1669         ASSERT(found_key);
1670
1671         key.type = key_type;
1672         key.objectid = iobjectid;
1673         key.offset = ioff;
1674
1675         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1676         if (ret < 0)
1677                 return ret;
1678
1679         eb = path->nodes[0];
1680         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1681                 ret = btrfs_next_leaf(fs_root, path);
1682                 if (ret)
1683                         return ret;
1684                 eb = path->nodes[0];
1685         }
1686
1687         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1688         if (found_key->type != key.type ||
1689                         found_key->objectid != key.objectid)
1690                 return 1;
1691
1692         return 0;
1693 }
1694
1695 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1696                                                         struct btrfs_path *p,
1697                                                         int write_lock_level)
1698 {
1699         struct extent_buffer *b;
1700         int root_lock = 0;
1701         int level = 0;
1702
1703         if (p->search_commit_root) {
1704                 b = root->commit_root;
1705                 atomic_inc(&b->refs);
1706                 level = btrfs_header_level(b);
1707                 /*
1708                  * Ensure that all callers have set skip_locking when
1709                  * p->search_commit_root = 1.
1710                  */
1711                 ASSERT(p->skip_locking == 1);
1712
1713                 goto out;
1714         }
1715
1716         if (p->skip_locking) {
1717                 b = btrfs_root_node(root);
1718                 level = btrfs_header_level(b);
1719                 goto out;
1720         }
1721
1722         /* We try very hard to do read locks on the root */
1723         root_lock = BTRFS_READ_LOCK;
1724
1725         /*
1726          * If the level is set to maximum, we can skip trying to get the read
1727          * lock.
1728          */
1729         if (write_lock_level < BTRFS_MAX_LEVEL) {
1730                 /*
1731                  * We don't know the level of the root node until we actually
1732                  * have it read locked
1733                  */
1734                 if (p->nowait) {
1735                         b = btrfs_try_read_lock_root_node(root);
1736                         if (IS_ERR(b))
1737                                 return b;
1738                 } else {
1739                         b = btrfs_read_lock_root_node(root);
1740                 }
1741                 level = btrfs_header_level(b);
1742                 if (level > write_lock_level)
1743                         goto out;
1744
1745                 /* Whoops, must trade for write lock */
1746                 btrfs_tree_read_unlock(b);
1747                 free_extent_buffer(b);
1748         }
1749
1750         b = btrfs_lock_root_node(root);
1751         root_lock = BTRFS_WRITE_LOCK;
1752
1753         /* The level might have changed, check again */
1754         level = btrfs_header_level(b);
1755
1756 out:
1757         /*
1758          * The root may have failed to write out at some point, and thus is no
1759          * longer valid, return an error in this case.
1760          */
1761         if (!extent_buffer_uptodate(b)) {
1762                 if (root_lock)
1763                         btrfs_tree_unlock_rw(b, root_lock);
1764                 free_extent_buffer(b);
1765                 return ERR_PTR(-EIO);
1766         }
1767
1768         p->nodes[level] = b;
1769         if (!p->skip_locking)
1770                 p->locks[level] = root_lock;
1771         /*
1772          * Callers are responsible for dropping b's references.
1773          */
1774         return b;
1775 }
1776
1777 /*
1778  * Replace the extent buffer at the lowest level of the path with a cloned
1779  * version. The purpose is to be able to use it safely, after releasing the
1780  * commit root semaphore, even if relocation is happening in parallel, the
1781  * transaction used for relocation is committed and the extent buffer is
1782  * reallocated in the next transaction.
1783  *
1784  * This is used in a context where the caller does not prevent transaction
1785  * commits from happening, either by holding a transaction handle or holding
1786  * some lock, while it's doing searches through a commit root.
1787  * At the moment it's only used for send operations.
1788  */
1789 static int finish_need_commit_sem_search(struct btrfs_path *path)
1790 {
1791         const int i = path->lowest_level;
1792         const int slot = path->slots[i];
1793         struct extent_buffer *lowest = path->nodes[i];
1794         struct extent_buffer *clone;
1795
1796         ASSERT(path->need_commit_sem);
1797
1798         if (!lowest)
1799                 return 0;
1800
1801         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1802
1803         clone = btrfs_clone_extent_buffer(lowest);
1804         if (!clone)
1805                 return -ENOMEM;
1806
1807         btrfs_release_path(path);
1808         path->nodes[i] = clone;
1809         path->slots[i] = slot;
1810
1811         return 0;
1812 }
1813
1814 static inline int search_for_key_slot(struct extent_buffer *eb,
1815                                       int search_low_slot,
1816                                       const struct btrfs_key *key,
1817                                       int prev_cmp,
1818                                       int *slot)
1819 {
1820         /*
1821          * If a previous call to btrfs_bin_search() on a parent node returned an
1822          * exact match (prev_cmp == 0), we can safely assume the target key will
1823          * always be at slot 0 on lower levels, since each key pointer
1824          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1825          * subtree it points to. Thus we can skip searching lower levels.
1826          */
1827         if (prev_cmp == 0) {
1828                 *slot = 0;
1829                 return 0;
1830         }
1831
1832         return btrfs_bin_search(eb, search_low_slot, key, slot);
1833 }
1834
1835 static int search_leaf(struct btrfs_trans_handle *trans,
1836                        struct btrfs_root *root,
1837                        const struct btrfs_key *key,
1838                        struct btrfs_path *path,
1839                        int ins_len,
1840                        int prev_cmp)
1841 {
1842         struct extent_buffer *leaf = path->nodes[0];
1843         int leaf_free_space = -1;
1844         int search_low_slot = 0;
1845         int ret;
1846         bool do_bin_search = true;
1847
1848         /*
1849          * If we are doing an insertion, the leaf has enough free space and the
1850          * destination slot for the key is not slot 0, then we can unlock our
1851          * write lock on the parent, and any other upper nodes, before doing the
1852          * binary search on the leaf (with search_for_key_slot()), allowing other
1853          * tasks to lock the parent and any other upper nodes.
1854          */
1855         if (ins_len > 0) {
1856                 /*
1857                  * Cache the leaf free space, since we will need it later and it
1858                  * will not change until then.
1859                  */
1860                 leaf_free_space = btrfs_leaf_free_space(leaf);
1861
1862                 /*
1863                  * !path->locks[1] means we have a single node tree, the leaf is
1864                  * the root of the tree.
1865                  */
1866                 if (path->locks[1] && leaf_free_space >= ins_len) {
1867                         struct btrfs_disk_key first_key;
1868
1869                         ASSERT(btrfs_header_nritems(leaf) > 0);
1870                         btrfs_item_key(leaf, &first_key, 0);
1871
1872                         /*
1873                          * Doing the extra comparison with the first key is cheap,
1874                          * taking into account that the first key is very likely
1875                          * already in a cache line because it immediately follows
1876                          * the extent buffer's header and we have recently accessed
1877                          * the header's level field.
1878                          */
1879                         ret = btrfs_comp_keys(&first_key, key);
1880                         if (ret < 0) {
1881                                 /*
1882                                  * The first key is smaller than the key we want
1883                                  * to insert, so we are safe to unlock all upper
1884                                  * nodes and we have to do the binary search.
1885                                  *
1886                                  * We do use btrfs_unlock_up_safe() and not
1887                                  * unlock_up() because the later does not unlock
1888                                  * nodes with a slot of 0 - we can safely unlock
1889                                  * any node even if its slot is 0 since in this
1890                                  * case the key does not end up at slot 0 of the
1891                                  * leaf and there's no need to split the leaf.
1892                                  */
1893                                 btrfs_unlock_up_safe(path, 1);
1894                                 search_low_slot = 1;
1895                         } else {
1896                                 /*
1897                                  * The first key is >= then the key we want to
1898                                  * insert, so we can skip the binary search as
1899                                  * the target key will be at slot 0.
1900                                  *
1901                                  * We can not unlock upper nodes when the key is
1902                                  * less than the first key, because we will need
1903                                  * to update the key at slot 0 of the parent node
1904                                  * and possibly of other upper nodes too.
1905                                  * If the key matches the first key, then we can
1906                                  * unlock all the upper nodes, using
1907                                  * btrfs_unlock_up_safe() instead of unlock_up()
1908                                  * as stated above.
1909                                  */
1910                                 if (ret == 0)
1911                                         btrfs_unlock_up_safe(path, 1);
1912                                 /*
1913                                  * ret is already 0 or 1, matching the result of
1914                                  * a btrfs_bin_search() call, so there is no need
1915                                  * to adjust it.
1916                                  */
1917                                 do_bin_search = false;
1918                                 path->slots[0] = 0;
1919                         }
1920                 }
1921         }
1922
1923         if (do_bin_search) {
1924                 ret = search_for_key_slot(leaf, search_low_slot, key,
1925                                           prev_cmp, &path->slots[0]);
1926                 if (ret < 0)
1927                         return ret;
1928         }
1929
1930         if (ins_len > 0) {
1931                 /*
1932                  * Item key already exists. In this case, if we are allowed to
1933                  * insert the item (for example, in dir_item case, item key
1934                  * collision is allowed), it will be merged with the original
1935                  * item. Only the item size grows, no new btrfs item will be
1936                  * added. If search_for_extension is not set, ins_len already
1937                  * accounts the size btrfs_item, deduct it here so leaf space
1938                  * check will be correct.
1939                  */
1940                 if (ret == 0 && !path->search_for_extension) {
1941                         ASSERT(ins_len >= sizeof(struct btrfs_item));
1942                         ins_len -= sizeof(struct btrfs_item);
1943                 }
1944
1945                 ASSERT(leaf_free_space >= 0);
1946
1947                 if (leaf_free_space < ins_len) {
1948                         int err;
1949
1950                         err = split_leaf(trans, root, key, path, ins_len,
1951                                          (ret == 0));
1952                         ASSERT(err <= 0);
1953                         if (WARN_ON(err > 0))
1954                                 err = -EUCLEAN;
1955                         if (err)
1956                                 ret = err;
1957                 }
1958         }
1959
1960         return ret;
1961 }
1962
1963 /*
1964  * Look for a key in a tree and perform necessary modifications to preserve
1965  * tree invariants.
1966  *
1967  * @trans:      Handle of transaction, used when modifying the tree
1968  * @p:          Holds all btree nodes along the search path
1969  * @root:       The root node of the tree
1970  * @key:        The key we are looking for
1971  * @ins_len:    Indicates purpose of search:
1972  *              >0  for inserts it's size of item inserted (*)
1973  *              <0  for deletions
1974  *               0  for plain searches, not modifying the tree
1975  *
1976  *              (*) If size of item inserted doesn't include
1977  *              sizeof(struct btrfs_item), then p->search_for_extension must
1978  *              be set.
1979  * @cow:        boolean should CoW operations be performed. Must always be 1
1980  *              when modifying the tree.
1981  *
1982  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1983  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1984  *
1985  * If @key is found, 0 is returned and you can find the item in the leaf level
1986  * of the path (level 0)
1987  *
1988  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1989  * points to the slot where it should be inserted
1990  *
1991  * If an error is encountered while searching the tree a negative error number
1992  * is returned
1993  */
1994 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1995                       const struct btrfs_key *key, struct btrfs_path *p,
1996                       int ins_len, int cow)
1997 {
1998         struct btrfs_fs_info *fs_info = root->fs_info;
1999         struct extent_buffer *b;
2000         int slot;
2001         int ret;
2002         int err;
2003         int level;
2004         int lowest_unlock = 1;
2005         /* everything at write_lock_level or lower must be write locked */
2006         int write_lock_level = 0;
2007         u8 lowest_level = 0;
2008         int min_write_lock_level;
2009         int prev_cmp;
2010
2011         might_sleep();
2012
2013         lowest_level = p->lowest_level;
2014         WARN_ON(lowest_level && ins_len > 0);
2015         WARN_ON(p->nodes[0] != NULL);
2016         BUG_ON(!cow && ins_len);
2017
2018         /*
2019          * For now only allow nowait for read only operations.  There's no
2020          * strict reason why we can't, we just only need it for reads so it's
2021          * only implemented for reads.
2022          */
2023         ASSERT(!p->nowait || !cow);
2024
2025         if (ins_len < 0) {
2026                 lowest_unlock = 2;
2027
2028                 /* when we are removing items, we might have to go up to level
2029                  * two as we update tree pointers  Make sure we keep write
2030                  * for those levels as well
2031                  */
2032                 write_lock_level = 2;
2033         } else if (ins_len > 0) {
2034                 /*
2035                  * for inserting items, make sure we have a write lock on
2036                  * level 1 so we can update keys
2037                  */
2038                 write_lock_level = 1;
2039         }
2040
2041         if (!cow)
2042                 write_lock_level = -1;
2043
2044         if (cow && (p->keep_locks || p->lowest_level))
2045                 write_lock_level = BTRFS_MAX_LEVEL;
2046
2047         min_write_lock_level = write_lock_level;
2048
2049         if (p->need_commit_sem) {
2050                 ASSERT(p->search_commit_root);
2051                 if (p->nowait) {
2052                         if (!down_read_trylock(&fs_info->commit_root_sem))
2053                                 return -EAGAIN;
2054                 } else {
2055                         down_read(&fs_info->commit_root_sem);
2056                 }
2057         }
2058
2059 again:
2060         prev_cmp = -1;
2061         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2062         if (IS_ERR(b)) {
2063                 ret = PTR_ERR(b);
2064                 goto done;
2065         }
2066
2067         while (b) {
2068                 int dec = 0;
2069
2070                 level = btrfs_header_level(b);
2071
2072                 if (cow) {
2073                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2074
2075                         /*
2076                          * if we don't really need to cow this block
2077                          * then we don't want to set the path blocking,
2078                          * so we test it here
2079                          */
2080                         if (!should_cow_block(trans, root, b))
2081                                 goto cow_done;
2082
2083                         /*
2084                          * must have write locks on this node and the
2085                          * parent
2086                          */
2087                         if (level > write_lock_level ||
2088                             (level + 1 > write_lock_level &&
2089                             level + 1 < BTRFS_MAX_LEVEL &&
2090                             p->nodes[level + 1])) {
2091                                 write_lock_level = level + 1;
2092                                 btrfs_release_path(p);
2093                                 goto again;
2094                         }
2095
2096                         if (last_level)
2097                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2098                                                       &b,
2099                                                       BTRFS_NESTING_COW);
2100                         else
2101                                 err = btrfs_cow_block(trans, root, b,
2102                                                       p->nodes[level + 1],
2103                                                       p->slots[level + 1], &b,
2104                                                       BTRFS_NESTING_COW);
2105                         if (err) {
2106                                 ret = err;
2107                                 goto done;
2108                         }
2109                 }
2110 cow_done:
2111                 p->nodes[level] = b;
2112
2113                 /*
2114                  * we have a lock on b and as long as we aren't changing
2115                  * the tree, there is no way to for the items in b to change.
2116                  * It is safe to drop the lock on our parent before we
2117                  * go through the expensive btree search on b.
2118                  *
2119                  * If we're inserting or deleting (ins_len != 0), then we might
2120                  * be changing slot zero, which may require changing the parent.
2121                  * So, we can't drop the lock until after we know which slot
2122                  * we're operating on.
2123                  */
2124                 if (!ins_len && !p->keep_locks) {
2125                         int u = level + 1;
2126
2127                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2128                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2129                                 p->locks[u] = 0;
2130                         }
2131                 }
2132
2133                 if (level == 0) {
2134                         if (ins_len > 0)
2135                                 ASSERT(write_lock_level >= 1);
2136
2137                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2138                         if (!p->search_for_split)
2139                                 unlock_up(p, level, lowest_unlock,
2140                                           min_write_lock_level, NULL);
2141                         goto done;
2142                 }
2143
2144                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2145                 if (ret < 0)
2146                         goto done;
2147                 prev_cmp = ret;
2148
2149                 if (ret && slot > 0) {
2150                         dec = 1;
2151                         slot--;
2152                 }
2153                 p->slots[level] = slot;
2154                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2155                                              &write_lock_level);
2156                 if (err == -EAGAIN)
2157                         goto again;
2158                 if (err) {
2159                         ret = err;
2160                         goto done;
2161                 }
2162                 b = p->nodes[level];
2163                 slot = p->slots[level];
2164
2165                 /*
2166                  * Slot 0 is special, if we change the key we have to update
2167                  * the parent pointer which means we must have a write lock on
2168                  * the parent
2169                  */
2170                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2171                         write_lock_level = level + 1;
2172                         btrfs_release_path(p);
2173                         goto again;
2174                 }
2175
2176                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2177                           &write_lock_level);
2178
2179                 if (level == lowest_level) {
2180                         if (dec)
2181                                 p->slots[level]++;
2182                         goto done;
2183                 }
2184
2185                 err = read_block_for_search(root, p, &b, level, slot, key);
2186                 if (err == -EAGAIN)
2187                         goto again;
2188                 if (err) {
2189                         ret = err;
2190                         goto done;
2191                 }
2192
2193                 if (!p->skip_locking) {
2194                         level = btrfs_header_level(b);
2195
2196                         btrfs_maybe_reset_lockdep_class(root, b);
2197
2198                         if (level <= write_lock_level) {
2199                                 btrfs_tree_lock(b);
2200                                 p->locks[level] = BTRFS_WRITE_LOCK;
2201                         } else {
2202                                 if (p->nowait) {
2203                                         if (!btrfs_try_tree_read_lock(b)) {
2204                                                 free_extent_buffer(b);
2205                                                 ret = -EAGAIN;
2206                                                 goto done;
2207                                         }
2208                                 } else {
2209                                         btrfs_tree_read_lock(b);
2210                                 }
2211                                 p->locks[level] = BTRFS_READ_LOCK;
2212                         }
2213                         p->nodes[level] = b;
2214                 }
2215         }
2216         ret = 1;
2217 done:
2218         if (ret < 0 && !p->skip_release_on_error)
2219                 btrfs_release_path(p);
2220
2221         if (p->need_commit_sem) {
2222                 int ret2;
2223
2224                 ret2 = finish_need_commit_sem_search(p);
2225                 up_read(&fs_info->commit_root_sem);
2226                 if (ret2)
2227                         ret = ret2;
2228         }
2229
2230         return ret;
2231 }
2232 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2233
2234 /*
2235  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2236  * current state of the tree together with the operations recorded in the tree
2237  * modification log to search for the key in a previous version of this tree, as
2238  * denoted by the time_seq parameter.
2239  *
2240  * Naturally, there is no support for insert, delete or cow operations.
2241  *
2242  * The resulting path and return value will be set up as if we called
2243  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2244  */
2245 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2246                           struct btrfs_path *p, u64 time_seq)
2247 {
2248         struct btrfs_fs_info *fs_info = root->fs_info;
2249         struct extent_buffer *b;
2250         int slot;
2251         int ret;
2252         int err;
2253         int level;
2254         int lowest_unlock = 1;
2255         u8 lowest_level = 0;
2256
2257         lowest_level = p->lowest_level;
2258         WARN_ON(p->nodes[0] != NULL);
2259         ASSERT(!p->nowait);
2260
2261         if (p->search_commit_root) {
2262                 BUG_ON(time_seq);
2263                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2264         }
2265
2266 again:
2267         b = btrfs_get_old_root(root, time_seq);
2268         if (!b) {
2269                 ret = -EIO;
2270                 goto done;
2271         }
2272         level = btrfs_header_level(b);
2273         p->locks[level] = BTRFS_READ_LOCK;
2274
2275         while (b) {
2276                 int dec = 0;
2277
2278                 level = btrfs_header_level(b);
2279                 p->nodes[level] = b;
2280
2281                 /*
2282                  * we have a lock on b and as long as we aren't changing
2283                  * the tree, there is no way to for the items in b to change.
2284                  * It is safe to drop the lock on our parent before we
2285                  * go through the expensive btree search on b.
2286                  */
2287                 btrfs_unlock_up_safe(p, level + 1);
2288
2289                 ret = btrfs_bin_search(b, 0, key, &slot);
2290                 if (ret < 0)
2291                         goto done;
2292
2293                 if (level == 0) {
2294                         p->slots[level] = slot;
2295                         unlock_up(p, level, lowest_unlock, 0, NULL);
2296                         goto done;
2297                 }
2298
2299                 if (ret && slot > 0) {
2300                         dec = 1;
2301                         slot--;
2302                 }
2303                 p->slots[level] = slot;
2304                 unlock_up(p, level, lowest_unlock, 0, NULL);
2305
2306                 if (level == lowest_level) {
2307                         if (dec)
2308                                 p->slots[level]++;
2309                         goto done;
2310                 }
2311
2312                 err = read_block_for_search(root, p, &b, level, slot, key);
2313                 if (err == -EAGAIN)
2314                         goto again;
2315                 if (err) {
2316                         ret = err;
2317                         goto done;
2318                 }
2319
2320                 level = btrfs_header_level(b);
2321                 btrfs_tree_read_lock(b);
2322                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2323                 if (!b) {
2324                         ret = -ENOMEM;
2325                         goto done;
2326                 }
2327                 p->locks[level] = BTRFS_READ_LOCK;
2328                 p->nodes[level] = b;
2329         }
2330         ret = 1;
2331 done:
2332         if (ret < 0)
2333                 btrfs_release_path(p);
2334
2335         return ret;
2336 }
2337
2338 /*
2339  * Search the tree again to find a leaf with smaller keys.
2340  * Returns 0 if it found something.
2341  * Returns 1 if there are no smaller keys.
2342  * Returns < 0 on error.
2343  *
2344  * This may release the path, and so you may lose any locks held at the
2345  * time you call it.
2346  */
2347 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2348 {
2349         struct btrfs_key key;
2350         struct btrfs_key orig_key;
2351         struct btrfs_disk_key found_key;
2352         int ret;
2353
2354         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2355         orig_key = key;
2356
2357         if (key.offset > 0) {
2358                 key.offset--;
2359         } else if (key.type > 0) {
2360                 key.type--;
2361                 key.offset = (u64)-1;
2362         } else if (key.objectid > 0) {
2363                 key.objectid--;
2364                 key.type = (u8)-1;
2365                 key.offset = (u64)-1;
2366         } else {
2367                 return 1;
2368         }
2369
2370         btrfs_release_path(path);
2371         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2372         if (ret <= 0)
2373                 return ret;
2374
2375         /*
2376          * Previous key not found. Even if we were at slot 0 of the leaf we had
2377          * before releasing the path and calling btrfs_search_slot(), we now may
2378          * be in a slot pointing to the same original key - this can happen if
2379          * after we released the path, one of more items were moved from a
2380          * sibling leaf into the front of the leaf we had due to an insertion
2381          * (see push_leaf_right()).
2382          * If we hit this case and our slot is > 0 and just decrement the slot
2383          * so that the caller does not process the same key again, which may or
2384          * may not break the caller, depending on its logic.
2385          */
2386         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2387                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2388                 ret = btrfs_comp_keys(&found_key, &orig_key);
2389                 if (ret == 0) {
2390                         if (path->slots[0] > 0) {
2391                                 path->slots[0]--;
2392                                 return 0;
2393                         }
2394                         /*
2395                          * At slot 0, same key as before, it means orig_key is
2396                          * the lowest, leftmost, key in the tree. We're done.
2397                          */
2398                         return 1;
2399                 }
2400         }
2401
2402         btrfs_item_key(path->nodes[0], &found_key, 0);
2403         ret = btrfs_comp_keys(&found_key, &key);
2404         /*
2405          * We might have had an item with the previous key in the tree right
2406          * before we released our path. And after we released our path, that
2407          * item might have been pushed to the first slot (0) of the leaf we
2408          * were holding due to a tree balance. Alternatively, an item with the
2409          * previous key can exist as the only element of a leaf (big fat item).
2410          * Therefore account for these 2 cases, so that our callers (like
2411          * btrfs_previous_item) don't miss an existing item with a key matching
2412          * the previous key we computed above.
2413          */
2414         if (ret <= 0)
2415                 return 0;
2416         return 1;
2417 }
2418
2419 /*
2420  * helper to use instead of search slot if no exact match is needed but
2421  * instead the next or previous item should be returned.
2422  * When find_higher is true, the next higher item is returned, the next lower
2423  * otherwise.
2424  * When return_any and find_higher are both true, and no higher item is found,
2425  * return the next lower instead.
2426  * When return_any is true and find_higher is false, and no lower item is found,
2427  * return the next higher instead.
2428  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2429  * < 0 on error
2430  */
2431 int btrfs_search_slot_for_read(struct btrfs_root *root,
2432                                const struct btrfs_key *key,
2433                                struct btrfs_path *p, int find_higher,
2434                                int return_any)
2435 {
2436         int ret;
2437         struct extent_buffer *leaf;
2438
2439 again:
2440         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2441         if (ret <= 0)
2442                 return ret;
2443         /*
2444          * a return value of 1 means the path is at the position where the
2445          * item should be inserted. Normally this is the next bigger item,
2446          * but in case the previous item is the last in a leaf, path points
2447          * to the first free slot in the previous leaf, i.e. at an invalid
2448          * item.
2449          */
2450         leaf = p->nodes[0];
2451
2452         if (find_higher) {
2453                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2454                         ret = btrfs_next_leaf(root, p);
2455                         if (ret <= 0)
2456                                 return ret;
2457                         if (!return_any)
2458                                 return 1;
2459                         /*
2460                          * no higher item found, return the next
2461                          * lower instead
2462                          */
2463                         return_any = 0;
2464                         find_higher = 0;
2465                         btrfs_release_path(p);
2466                         goto again;
2467                 }
2468         } else {
2469                 if (p->slots[0] == 0) {
2470                         ret = btrfs_prev_leaf(root, p);
2471                         if (ret < 0)
2472                                 return ret;
2473                         if (!ret) {
2474                                 leaf = p->nodes[0];
2475                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2476                                         p->slots[0]--;
2477                                 return 0;
2478                         }
2479                         if (!return_any)
2480                                 return 1;
2481                         /*
2482                          * no lower item found, return the next
2483                          * higher instead
2484                          */
2485                         return_any = 0;
2486                         find_higher = 1;
2487                         btrfs_release_path(p);
2488                         goto again;
2489                 } else {
2490                         --p->slots[0];
2491                 }
2492         }
2493         return 0;
2494 }
2495
2496 /*
2497  * Execute search and call btrfs_previous_item to traverse backwards if the item
2498  * was not found.
2499  *
2500  * Return 0 if found, 1 if not found and < 0 if error.
2501  */
2502 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2503                            struct btrfs_path *path)
2504 {
2505         int ret;
2506
2507         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2508         if (ret > 0)
2509                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2510
2511         if (ret == 0)
2512                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2513
2514         return ret;
2515 }
2516
2517 /*
2518  * Search for a valid slot for the given path.
2519  *
2520  * @root:       The root node of the tree.
2521  * @key:        Will contain a valid item if found.
2522  * @path:       The starting point to validate the slot.
2523  *
2524  * Return: 0  if the item is valid
2525  *         1  if not found
2526  *         <0 if error.
2527  */
2528 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2529                               struct btrfs_path *path)
2530 {
2531         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2532                 int ret;
2533
2534                 ret = btrfs_next_leaf(root, path);
2535                 if (ret)
2536                         return ret;
2537         }
2538
2539         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2540         return 0;
2541 }
2542
2543 /*
2544  * adjust the pointers going up the tree, starting at level
2545  * making sure the right key of each node is points to 'key'.
2546  * This is used after shifting pointers to the left, so it stops
2547  * fixing up pointers when a given leaf/node is not in slot 0 of the
2548  * higher levels
2549  *
2550  */
2551 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2552                            struct btrfs_path *path,
2553                            struct btrfs_disk_key *key, int level)
2554 {
2555         int i;
2556         struct extent_buffer *t;
2557         int ret;
2558
2559         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2560                 int tslot = path->slots[i];
2561
2562                 if (!path->nodes[i])
2563                         break;
2564                 t = path->nodes[i];
2565                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2566                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2567                 BUG_ON(ret < 0);
2568                 btrfs_set_node_key(t, key, tslot);
2569                 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2570                 if (tslot != 0)
2571                         break;
2572         }
2573 }
2574
2575 /*
2576  * update item key.
2577  *
2578  * This function isn't completely safe. It's the caller's responsibility
2579  * that the new key won't break the order
2580  */
2581 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2582                              struct btrfs_path *path,
2583                              const struct btrfs_key *new_key)
2584 {
2585         struct btrfs_fs_info *fs_info = trans->fs_info;
2586         struct btrfs_disk_key disk_key;
2587         struct extent_buffer *eb;
2588         int slot;
2589
2590         eb = path->nodes[0];
2591         slot = path->slots[0];
2592         if (slot > 0) {
2593                 btrfs_item_key(eb, &disk_key, slot - 1);
2594                 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2595                         btrfs_print_leaf(eb);
2596                         btrfs_crit(fs_info,
2597                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2598                                    slot, btrfs_disk_key_objectid(&disk_key),
2599                                    btrfs_disk_key_type(&disk_key),
2600                                    btrfs_disk_key_offset(&disk_key),
2601                                    new_key->objectid, new_key->type,
2602                                    new_key->offset);
2603                         BUG();
2604                 }
2605         }
2606         if (slot < btrfs_header_nritems(eb) - 1) {
2607                 btrfs_item_key(eb, &disk_key, slot + 1);
2608                 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2609                         btrfs_print_leaf(eb);
2610                         btrfs_crit(fs_info,
2611                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2612                                    slot, btrfs_disk_key_objectid(&disk_key),
2613                                    btrfs_disk_key_type(&disk_key),
2614                                    btrfs_disk_key_offset(&disk_key),
2615                                    new_key->objectid, new_key->type,
2616                                    new_key->offset);
2617                         BUG();
2618                 }
2619         }
2620
2621         btrfs_cpu_key_to_disk(&disk_key, new_key);
2622         btrfs_set_item_key(eb, &disk_key, slot);
2623         btrfs_mark_buffer_dirty(trans, eb);
2624         if (slot == 0)
2625                 fixup_low_keys(trans, path, &disk_key, 1);
2626 }
2627
2628 /*
2629  * Check key order of two sibling extent buffers.
2630  *
2631  * Return true if something is wrong.
2632  * Return false if everything is fine.
2633  *
2634  * Tree-checker only works inside one tree block, thus the following
2635  * corruption can not be detected by tree-checker:
2636  *
2637  * Leaf @left                   | Leaf @right
2638  * --------------------------------------------------------------
2639  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2640  *
2641  * Key f6 in leaf @left itself is valid, but not valid when the next
2642  * key in leaf @right is 7.
2643  * This can only be checked at tree block merge time.
2644  * And since tree checker has ensured all key order in each tree block
2645  * is correct, we only need to bother the last key of @left and the first
2646  * key of @right.
2647  */
2648 static bool check_sibling_keys(struct extent_buffer *left,
2649                                struct extent_buffer *right)
2650 {
2651         struct btrfs_key left_last;
2652         struct btrfs_key right_first;
2653         int level = btrfs_header_level(left);
2654         int nr_left = btrfs_header_nritems(left);
2655         int nr_right = btrfs_header_nritems(right);
2656
2657         /* No key to check in one of the tree blocks */
2658         if (!nr_left || !nr_right)
2659                 return false;
2660
2661         if (level) {
2662                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2663                 btrfs_node_key_to_cpu(right, &right_first, 0);
2664         } else {
2665                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2666                 btrfs_item_key_to_cpu(right, &right_first, 0);
2667         }
2668
2669         if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2670                 btrfs_crit(left->fs_info, "left extent buffer:");
2671                 btrfs_print_tree(left, false);
2672                 btrfs_crit(left->fs_info, "right extent buffer:");
2673                 btrfs_print_tree(right, false);
2674                 btrfs_crit(left->fs_info,
2675 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2676                            left_last.objectid, left_last.type,
2677                            left_last.offset, right_first.objectid,
2678                            right_first.type, right_first.offset);
2679                 return true;
2680         }
2681         return false;
2682 }
2683
2684 /*
2685  * try to push data from one node into the next node left in the
2686  * tree.
2687  *
2688  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2689  * error, and > 0 if there was no room in the left hand block.
2690  */
2691 static int push_node_left(struct btrfs_trans_handle *trans,
2692                           struct extent_buffer *dst,
2693                           struct extent_buffer *src, int empty)
2694 {
2695         struct btrfs_fs_info *fs_info = trans->fs_info;
2696         int push_items = 0;
2697         int src_nritems;
2698         int dst_nritems;
2699         int ret = 0;
2700
2701         src_nritems = btrfs_header_nritems(src);
2702         dst_nritems = btrfs_header_nritems(dst);
2703         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2704         WARN_ON(btrfs_header_generation(src) != trans->transid);
2705         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2706
2707         if (!empty && src_nritems <= 8)
2708                 return 1;
2709
2710         if (push_items <= 0)
2711                 return 1;
2712
2713         if (empty) {
2714                 push_items = min(src_nritems, push_items);
2715                 if (push_items < src_nritems) {
2716                         /* leave at least 8 pointers in the node if
2717                          * we aren't going to empty it
2718                          */
2719                         if (src_nritems - push_items < 8) {
2720                                 if (push_items <= 8)
2721                                         return 1;
2722                                 push_items -= 8;
2723                         }
2724                 }
2725         } else
2726                 push_items = min(src_nritems - 8, push_items);
2727
2728         /* dst is the left eb, src is the middle eb */
2729         if (check_sibling_keys(dst, src)) {
2730                 ret = -EUCLEAN;
2731                 btrfs_abort_transaction(trans, ret);
2732                 return ret;
2733         }
2734         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2735         if (ret) {
2736                 btrfs_abort_transaction(trans, ret);
2737                 return ret;
2738         }
2739         copy_extent_buffer(dst, src,
2740                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2741                            btrfs_node_key_ptr_offset(src, 0),
2742                            push_items * sizeof(struct btrfs_key_ptr));
2743
2744         if (push_items < src_nritems) {
2745                 /*
2746                  * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2747                  * don't need to do an explicit tree mod log operation for it.
2748                  */
2749                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2750                                       btrfs_node_key_ptr_offset(src, push_items),
2751                                       (src_nritems - push_items) *
2752                                       sizeof(struct btrfs_key_ptr));
2753         }
2754         btrfs_set_header_nritems(src, src_nritems - push_items);
2755         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2756         btrfs_mark_buffer_dirty(trans, src);
2757         btrfs_mark_buffer_dirty(trans, dst);
2758
2759         return ret;
2760 }
2761
2762 /*
2763  * try to push data from one node into the next node right in the
2764  * tree.
2765  *
2766  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2767  * error, and > 0 if there was no room in the right hand block.
2768  *
2769  * this will  only push up to 1/2 the contents of the left node over
2770  */
2771 static int balance_node_right(struct btrfs_trans_handle *trans,
2772                               struct extent_buffer *dst,
2773                               struct extent_buffer *src)
2774 {
2775         struct btrfs_fs_info *fs_info = trans->fs_info;
2776         int push_items = 0;
2777         int max_push;
2778         int src_nritems;
2779         int dst_nritems;
2780         int ret = 0;
2781
2782         WARN_ON(btrfs_header_generation(src) != trans->transid);
2783         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2784
2785         src_nritems = btrfs_header_nritems(src);
2786         dst_nritems = btrfs_header_nritems(dst);
2787         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2788         if (push_items <= 0)
2789                 return 1;
2790
2791         if (src_nritems < 4)
2792                 return 1;
2793
2794         max_push = src_nritems / 2 + 1;
2795         /* don't try to empty the node */
2796         if (max_push >= src_nritems)
2797                 return 1;
2798
2799         if (max_push < push_items)
2800                 push_items = max_push;
2801
2802         /* dst is the right eb, src is the middle eb */
2803         if (check_sibling_keys(src, dst)) {
2804                 ret = -EUCLEAN;
2805                 btrfs_abort_transaction(trans, ret);
2806                 return ret;
2807         }
2808
2809         /*
2810          * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2811          * need to do an explicit tree mod log operation for it.
2812          */
2813         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2814                                       btrfs_node_key_ptr_offset(dst, 0),
2815                                       (dst_nritems) *
2816                                       sizeof(struct btrfs_key_ptr));
2817
2818         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2819                                          push_items);
2820         if (ret) {
2821                 btrfs_abort_transaction(trans, ret);
2822                 return ret;
2823         }
2824         copy_extent_buffer(dst, src,
2825                            btrfs_node_key_ptr_offset(dst, 0),
2826                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2827                            push_items * sizeof(struct btrfs_key_ptr));
2828
2829         btrfs_set_header_nritems(src, src_nritems - push_items);
2830         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2831
2832         btrfs_mark_buffer_dirty(trans, src);
2833         btrfs_mark_buffer_dirty(trans, dst);
2834
2835         return ret;
2836 }
2837
2838 /*
2839  * helper function to insert a new root level in the tree.
2840  * A new node is allocated, and a single item is inserted to
2841  * point to the existing root
2842  *
2843  * returns zero on success or < 0 on failure.
2844  */
2845 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2846                            struct btrfs_root *root,
2847                            struct btrfs_path *path, int level)
2848 {
2849         u64 lower_gen;
2850         struct extent_buffer *lower;
2851         struct extent_buffer *c;
2852         struct extent_buffer *old;
2853         struct btrfs_disk_key lower_key;
2854         int ret;
2855
2856         BUG_ON(path->nodes[level]);
2857         BUG_ON(path->nodes[level-1] != root->node);
2858
2859         lower = path->nodes[level-1];
2860         if (level == 1)
2861                 btrfs_item_key(lower, &lower_key, 0);
2862         else
2863                 btrfs_node_key(lower, &lower_key, 0);
2864
2865         c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2866                                    &lower_key, level, root->node->start, 0,
2867                                    0, BTRFS_NESTING_NEW_ROOT);
2868         if (IS_ERR(c))
2869                 return PTR_ERR(c);
2870
2871         root_add_used_bytes(root);
2872
2873         btrfs_set_header_nritems(c, 1);
2874         btrfs_set_node_key(c, &lower_key, 0);
2875         btrfs_set_node_blockptr(c, 0, lower->start);
2876         lower_gen = btrfs_header_generation(lower);
2877         WARN_ON(lower_gen != trans->transid);
2878
2879         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2880
2881         btrfs_mark_buffer_dirty(trans, c);
2882
2883         old = root->node;
2884         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2885         if (ret < 0) {
2886                 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2887                 btrfs_tree_unlock(c);
2888                 free_extent_buffer(c);
2889                 return ret;
2890         }
2891         rcu_assign_pointer(root->node, c);
2892
2893         /* the super has an extra ref to root->node */
2894         free_extent_buffer(old);
2895
2896         add_root_to_dirty_list(root);
2897         atomic_inc(&c->refs);
2898         path->nodes[level] = c;
2899         path->locks[level] = BTRFS_WRITE_LOCK;
2900         path->slots[level] = 0;
2901         return 0;
2902 }
2903
2904 /*
2905  * worker function to insert a single pointer in a node.
2906  * the node should have enough room for the pointer already
2907  *
2908  * slot and level indicate where you want the key to go, and
2909  * blocknr is the block the key points to.
2910  */
2911 static int insert_ptr(struct btrfs_trans_handle *trans,
2912                       struct btrfs_path *path,
2913                       struct btrfs_disk_key *key, u64 bytenr,
2914                       int slot, int level)
2915 {
2916         struct extent_buffer *lower;
2917         int nritems;
2918         int ret;
2919
2920         BUG_ON(!path->nodes[level]);
2921         btrfs_assert_tree_write_locked(path->nodes[level]);
2922         lower = path->nodes[level];
2923         nritems = btrfs_header_nritems(lower);
2924         BUG_ON(slot > nritems);
2925         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2926         if (slot != nritems) {
2927                 if (level) {
2928                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2929                                         slot, nritems - slot);
2930                         if (ret < 0) {
2931                                 btrfs_abort_transaction(trans, ret);
2932                                 return ret;
2933                         }
2934                 }
2935                 memmove_extent_buffer(lower,
2936                               btrfs_node_key_ptr_offset(lower, slot + 1),
2937                               btrfs_node_key_ptr_offset(lower, slot),
2938                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2939         }
2940         if (level) {
2941                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2942                                                     BTRFS_MOD_LOG_KEY_ADD);
2943                 if (ret < 0) {
2944                         btrfs_abort_transaction(trans, ret);
2945                         return ret;
2946                 }
2947         }
2948         btrfs_set_node_key(lower, key, slot);
2949         btrfs_set_node_blockptr(lower, slot, bytenr);
2950         WARN_ON(trans->transid == 0);
2951         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2952         btrfs_set_header_nritems(lower, nritems + 1);
2953         btrfs_mark_buffer_dirty(trans, lower);
2954
2955         return 0;
2956 }
2957
2958 /*
2959  * split the node at the specified level in path in two.
2960  * The path is corrected to point to the appropriate node after the split
2961  *
2962  * Before splitting this tries to make some room in the node by pushing
2963  * left and right, if either one works, it returns right away.
2964  *
2965  * returns 0 on success and < 0 on failure
2966  */
2967 static noinline int split_node(struct btrfs_trans_handle *trans,
2968                                struct btrfs_root *root,
2969                                struct btrfs_path *path, int level)
2970 {
2971         struct btrfs_fs_info *fs_info = root->fs_info;
2972         struct extent_buffer *c;
2973         struct extent_buffer *split;
2974         struct btrfs_disk_key disk_key;
2975         int mid;
2976         int ret;
2977         u32 c_nritems;
2978
2979         c = path->nodes[level];
2980         WARN_ON(btrfs_header_generation(c) != trans->transid);
2981         if (c == root->node) {
2982                 /*
2983                  * trying to split the root, lets make a new one
2984                  *
2985                  * tree mod log: We don't log_removal old root in
2986                  * insert_new_root, because that root buffer will be kept as a
2987                  * normal node. We are going to log removal of half of the
2988                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
2989                  * holding a tree lock on the buffer, which is why we cannot
2990                  * race with other tree_mod_log users.
2991                  */
2992                 ret = insert_new_root(trans, root, path, level + 1);
2993                 if (ret)
2994                         return ret;
2995         } else {
2996                 ret = push_nodes_for_insert(trans, root, path, level);
2997                 c = path->nodes[level];
2998                 if (!ret && btrfs_header_nritems(c) <
2999                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3000                         return 0;
3001                 if (ret < 0)
3002                         return ret;
3003         }
3004
3005         c_nritems = btrfs_header_nritems(c);
3006         mid = (c_nritems + 1) / 2;
3007         btrfs_node_key(c, &disk_key, mid);
3008
3009         split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3010                                        &disk_key, level, c->start, 0,
3011                                        0, BTRFS_NESTING_SPLIT);
3012         if (IS_ERR(split))
3013                 return PTR_ERR(split);
3014
3015         root_add_used_bytes(root);
3016         ASSERT(btrfs_header_level(c) == level);
3017
3018         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3019         if (ret) {
3020                 btrfs_tree_unlock(split);
3021                 free_extent_buffer(split);
3022                 btrfs_abort_transaction(trans, ret);
3023                 return ret;
3024         }
3025         copy_extent_buffer(split, c,
3026                            btrfs_node_key_ptr_offset(split, 0),
3027                            btrfs_node_key_ptr_offset(c, mid),
3028                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3029         btrfs_set_header_nritems(split, c_nritems - mid);
3030         btrfs_set_header_nritems(c, mid);
3031
3032         btrfs_mark_buffer_dirty(trans, c);
3033         btrfs_mark_buffer_dirty(trans, split);
3034
3035         ret = insert_ptr(trans, path, &disk_key, split->start,
3036                          path->slots[level + 1] + 1, level + 1);
3037         if (ret < 0) {
3038                 btrfs_tree_unlock(split);
3039                 free_extent_buffer(split);
3040                 return ret;
3041         }
3042
3043         if (path->slots[level] >= mid) {
3044                 path->slots[level] -= mid;
3045                 btrfs_tree_unlock(c);
3046                 free_extent_buffer(c);
3047                 path->nodes[level] = split;
3048                 path->slots[level + 1] += 1;
3049         } else {
3050                 btrfs_tree_unlock(split);
3051                 free_extent_buffer(split);
3052         }
3053         return 0;
3054 }
3055
3056 /*
3057  * how many bytes are required to store the items in a leaf.  start
3058  * and nr indicate which items in the leaf to check.  This totals up the
3059  * space used both by the item structs and the item data
3060  */
3061 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3062 {
3063         int data_len;
3064         int nritems = btrfs_header_nritems(l);
3065         int end = min(nritems, start + nr) - 1;
3066
3067         if (!nr)
3068                 return 0;
3069         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3070         data_len = data_len - btrfs_item_offset(l, end);
3071         data_len += sizeof(struct btrfs_item) * nr;
3072         WARN_ON(data_len < 0);
3073         return data_len;
3074 }
3075
3076 /*
3077  * The space between the end of the leaf items and
3078  * the start of the leaf data.  IOW, how much room
3079  * the leaf has left for both items and data
3080  */
3081 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3082 {
3083         struct btrfs_fs_info *fs_info = leaf->fs_info;
3084         int nritems = btrfs_header_nritems(leaf);
3085         int ret;
3086
3087         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3088         if (ret < 0) {
3089                 btrfs_crit(fs_info,
3090                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3091                            ret,
3092                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3093                            leaf_space_used(leaf, 0, nritems), nritems);
3094         }
3095         return ret;
3096 }
3097
3098 /*
3099  * min slot controls the lowest index we're willing to push to the
3100  * right.  We'll push up to and including min_slot, but no lower
3101  */
3102 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3103                                       struct btrfs_path *path,
3104                                       int data_size, int empty,
3105                                       struct extent_buffer *right,
3106                                       int free_space, u32 left_nritems,
3107                                       u32 min_slot)
3108 {
3109         struct btrfs_fs_info *fs_info = right->fs_info;
3110         struct extent_buffer *left = path->nodes[0];
3111         struct extent_buffer *upper = path->nodes[1];
3112         struct btrfs_map_token token;
3113         struct btrfs_disk_key disk_key;
3114         int slot;
3115         u32 i;
3116         int push_space = 0;
3117         int push_items = 0;
3118         u32 nr;
3119         u32 right_nritems;
3120         u32 data_end;
3121         u32 this_item_size;
3122
3123         if (empty)
3124                 nr = 0;
3125         else
3126                 nr = max_t(u32, 1, min_slot);
3127
3128         if (path->slots[0] >= left_nritems)
3129                 push_space += data_size;
3130
3131         slot = path->slots[1];
3132         i = left_nritems - 1;
3133         while (i >= nr) {
3134                 if (!empty && push_items > 0) {
3135                         if (path->slots[0] > i)
3136                                 break;
3137                         if (path->slots[0] == i) {
3138                                 int space = btrfs_leaf_free_space(left);
3139
3140                                 if (space + push_space * 2 > free_space)
3141                                         break;
3142                         }
3143                 }
3144
3145                 if (path->slots[0] == i)
3146                         push_space += data_size;
3147
3148                 this_item_size = btrfs_item_size(left, i);
3149                 if (this_item_size + sizeof(struct btrfs_item) +
3150                     push_space > free_space)
3151                         break;
3152
3153                 push_items++;
3154                 push_space += this_item_size + sizeof(struct btrfs_item);
3155                 if (i == 0)
3156                         break;
3157                 i--;
3158         }
3159
3160         if (push_items == 0)
3161                 goto out_unlock;
3162
3163         WARN_ON(!empty && push_items == left_nritems);
3164
3165         /* push left to right */
3166         right_nritems = btrfs_header_nritems(right);
3167
3168         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3169         push_space -= leaf_data_end(left);
3170
3171         /* make room in the right data area */
3172         data_end = leaf_data_end(right);
3173         memmove_leaf_data(right, data_end - push_space, data_end,
3174                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3175
3176         /* copy from the left data area */
3177         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3178                        leaf_data_end(left), push_space);
3179
3180         memmove_leaf_items(right, push_items, 0, right_nritems);
3181
3182         /* copy the items from left to right */
3183         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3184
3185         /* update the item pointers */
3186         btrfs_init_map_token(&token, right);
3187         right_nritems += push_items;
3188         btrfs_set_header_nritems(right, right_nritems);
3189         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3190         for (i = 0; i < right_nritems; i++) {
3191                 push_space -= btrfs_token_item_size(&token, i);
3192                 btrfs_set_token_item_offset(&token, i, push_space);
3193         }
3194
3195         left_nritems -= push_items;
3196         btrfs_set_header_nritems(left, left_nritems);
3197
3198         if (left_nritems)
3199                 btrfs_mark_buffer_dirty(trans, left);
3200         else
3201                 btrfs_clear_buffer_dirty(trans, left);
3202
3203         btrfs_mark_buffer_dirty(trans, right);
3204
3205         btrfs_item_key(right, &disk_key, 0);
3206         btrfs_set_node_key(upper, &disk_key, slot + 1);
3207         btrfs_mark_buffer_dirty(trans, upper);
3208
3209         /* then fixup the leaf pointer in the path */
3210         if (path->slots[0] >= left_nritems) {
3211                 path->slots[0] -= left_nritems;
3212                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3213                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3214                 btrfs_tree_unlock(path->nodes[0]);
3215                 free_extent_buffer(path->nodes[0]);
3216                 path->nodes[0] = right;
3217                 path->slots[1] += 1;
3218         } else {
3219                 btrfs_tree_unlock(right);
3220                 free_extent_buffer(right);
3221         }
3222         return 0;
3223
3224 out_unlock:
3225         btrfs_tree_unlock(right);
3226         free_extent_buffer(right);
3227         return 1;
3228 }
3229
3230 /*
3231  * push some data in the path leaf to the right, trying to free up at
3232  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3233  *
3234  * returns 1 if the push failed because the other node didn't have enough
3235  * room, 0 if everything worked out and < 0 if there were major errors.
3236  *
3237  * this will push starting from min_slot to the end of the leaf.  It won't
3238  * push any slot lower than min_slot
3239  */
3240 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3241                            *root, struct btrfs_path *path,
3242                            int min_data_size, int data_size,
3243                            int empty, u32 min_slot)
3244 {
3245         struct extent_buffer *left = path->nodes[0];
3246         struct extent_buffer *right;
3247         struct extent_buffer *upper;
3248         int slot;
3249         int free_space;
3250         u32 left_nritems;
3251         int ret;
3252
3253         if (!path->nodes[1])
3254                 return 1;
3255
3256         slot = path->slots[1];
3257         upper = path->nodes[1];
3258         if (slot >= btrfs_header_nritems(upper) - 1)
3259                 return 1;
3260
3261         btrfs_assert_tree_write_locked(path->nodes[1]);
3262
3263         right = btrfs_read_node_slot(upper, slot + 1);
3264         if (IS_ERR(right))
3265                 return PTR_ERR(right);
3266
3267         btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3268
3269         free_space = btrfs_leaf_free_space(right);
3270         if (free_space < data_size)
3271                 goto out_unlock;
3272
3273         ret = btrfs_cow_block(trans, root, right, upper,
3274                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3275         if (ret)
3276                 goto out_unlock;
3277
3278         left_nritems = btrfs_header_nritems(left);
3279         if (left_nritems == 0)
3280                 goto out_unlock;
3281
3282         if (check_sibling_keys(left, right)) {
3283                 ret = -EUCLEAN;
3284                 btrfs_abort_transaction(trans, ret);
3285                 btrfs_tree_unlock(right);
3286                 free_extent_buffer(right);
3287                 return ret;
3288         }
3289         if (path->slots[0] == left_nritems && !empty) {
3290                 /* Key greater than all keys in the leaf, right neighbor has
3291                  * enough room for it and we're not emptying our leaf to delete
3292                  * it, therefore use right neighbor to insert the new item and
3293                  * no need to touch/dirty our left leaf. */
3294                 btrfs_tree_unlock(left);
3295                 free_extent_buffer(left);
3296                 path->nodes[0] = right;
3297                 path->slots[0] = 0;
3298                 path->slots[1]++;
3299                 return 0;
3300         }
3301
3302         return __push_leaf_right(trans, path, min_data_size, empty, right,
3303                                  free_space, left_nritems, min_slot);
3304 out_unlock:
3305         btrfs_tree_unlock(right);
3306         free_extent_buffer(right);
3307         return 1;
3308 }
3309
3310 /*
3311  * push some data in the path leaf to the left, trying to free up at
3312  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3313  *
3314  * max_slot can put a limit on how far into the leaf we'll push items.  The
3315  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3316  * items
3317  */
3318 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3319                                      struct btrfs_path *path, int data_size,
3320                                      int empty, struct extent_buffer *left,
3321                                      int free_space, u32 right_nritems,
3322                                      u32 max_slot)
3323 {
3324         struct btrfs_fs_info *fs_info = left->fs_info;
3325         struct btrfs_disk_key disk_key;
3326         struct extent_buffer *right = path->nodes[0];
3327         int i;
3328         int push_space = 0;
3329         int push_items = 0;
3330         u32 old_left_nritems;
3331         u32 nr;
3332         int ret = 0;
3333         u32 this_item_size;
3334         u32 old_left_item_size;
3335         struct btrfs_map_token token;
3336
3337         if (empty)
3338                 nr = min(right_nritems, max_slot);
3339         else
3340                 nr = min(right_nritems - 1, max_slot);
3341
3342         for (i = 0; i < nr; i++) {
3343                 if (!empty && push_items > 0) {
3344                         if (path->slots[0] < i)
3345                                 break;
3346                         if (path->slots[0] == i) {
3347                                 int space = btrfs_leaf_free_space(right);
3348
3349                                 if (space + push_space * 2 > free_space)
3350                                         break;
3351                         }
3352                 }
3353
3354                 if (path->slots[0] == i)
3355                         push_space += data_size;
3356
3357                 this_item_size = btrfs_item_size(right, i);
3358                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3359                     free_space)
3360                         break;
3361
3362                 push_items++;
3363                 push_space += this_item_size + sizeof(struct btrfs_item);
3364         }
3365
3366         if (push_items == 0) {
3367                 ret = 1;
3368                 goto out;
3369         }
3370         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3371
3372         /* push data from right to left */
3373         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3374
3375         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3376                      btrfs_item_offset(right, push_items - 1);
3377
3378         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3379                        btrfs_item_offset(right, push_items - 1), push_space);
3380         old_left_nritems = btrfs_header_nritems(left);
3381         BUG_ON(old_left_nritems <= 0);
3382
3383         btrfs_init_map_token(&token, left);
3384         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3385         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3386                 u32 ioff;
3387
3388                 ioff = btrfs_token_item_offset(&token, i);
3389                 btrfs_set_token_item_offset(&token, i,
3390                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3391         }
3392         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3393
3394         /* fixup right node */
3395         if (push_items > right_nritems)
3396                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3397                        right_nritems);
3398
3399         if (push_items < right_nritems) {
3400                 push_space = btrfs_item_offset(right, push_items - 1) -
3401                                                   leaf_data_end(right);
3402                 memmove_leaf_data(right,
3403                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3404                                   leaf_data_end(right), push_space);
3405
3406                 memmove_leaf_items(right, 0, push_items,
3407                                    btrfs_header_nritems(right) - push_items);
3408         }
3409
3410         btrfs_init_map_token(&token, right);
3411         right_nritems -= push_items;
3412         btrfs_set_header_nritems(right, right_nritems);
3413         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3414         for (i = 0; i < right_nritems; i++) {
3415                 push_space = push_space - btrfs_token_item_size(&token, i);
3416                 btrfs_set_token_item_offset(&token, i, push_space);
3417         }
3418
3419         btrfs_mark_buffer_dirty(trans, left);
3420         if (right_nritems)
3421                 btrfs_mark_buffer_dirty(trans, right);
3422         else
3423                 btrfs_clear_buffer_dirty(trans, right);
3424
3425         btrfs_item_key(right, &disk_key, 0);
3426         fixup_low_keys(trans, path, &disk_key, 1);
3427
3428         /* then fixup the leaf pointer in the path */
3429         if (path->slots[0] < push_items) {
3430                 path->slots[0] += old_left_nritems;
3431                 btrfs_tree_unlock(path->nodes[0]);
3432                 free_extent_buffer(path->nodes[0]);
3433                 path->nodes[0] = left;
3434                 path->slots[1] -= 1;
3435         } else {
3436                 btrfs_tree_unlock(left);
3437                 free_extent_buffer(left);
3438                 path->slots[0] -= push_items;
3439         }
3440         BUG_ON(path->slots[0] < 0);
3441         return ret;
3442 out:
3443         btrfs_tree_unlock(left);
3444         free_extent_buffer(left);
3445         return ret;
3446 }
3447
3448 /*
3449  * push some data in the path leaf to the left, trying to free up at
3450  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3451  *
3452  * max_slot can put a limit on how far into the leaf we'll push items.  The
3453  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3454  * items
3455  */
3456 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3457                           *root, struct btrfs_path *path, int min_data_size,
3458                           int data_size, int empty, u32 max_slot)
3459 {
3460         struct extent_buffer *right = path->nodes[0];
3461         struct extent_buffer *left;
3462         int slot;
3463         int free_space;
3464         u32 right_nritems;
3465         int ret = 0;
3466
3467         slot = path->slots[1];
3468         if (slot == 0)
3469                 return 1;
3470         if (!path->nodes[1])
3471                 return 1;
3472
3473         right_nritems = btrfs_header_nritems(right);
3474         if (right_nritems == 0)
3475                 return 1;
3476
3477         btrfs_assert_tree_write_locked(path->nodes[1]);
3478
3479         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3480         if (IS_ERR(left))
3481                 return PTR_ERR(left);
3482
3483         btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3484
3485         free_space = btrfs_leaf_free_space(left);
3486         if (free_space < data_size) {
3487                 ret = 1;
3488                 goto out;
3489         }
3490
3491         ret = btrfs_cow_block(trans, root, left,
3492                               path->nodes[1], slot - 1, &left,
3493                               BTRFS_NESTING_LEFT_COW);
3494         if (ret) {
3495                 /* we hit -ENOSPC, but it isn't fatal here */
3496                 if (ret == -ENOSPC)
3497                         ret = 1;
3498                 goto out;
3499         }
3500
3501         if (check_sibling_keys(left, right)) {
3502                 ret = -EUCLEAN;
3503                 btrfs_abort_transaction(trans, ret);
3504                 goto out;
3505         }
3506         return __push_leaf_left(trans, path, min_data_size, empty, left,
3507                                 free_space, right_nritems, max_slot);
3508 out:
3509         btrfs_tree_unlock(left);
3510         free_extent_buffer(left);
3511         return ret;
3512 }
3513
3514 /*
3515  * split the path's leaf in two, making sure there is at least data_size
3516  * available for the resulting leaf level of the path.
3517  */
3518 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3519                                    struct btrfs_path *path,
3520                                    struct extent_buffer *l,
3521                                    struct extent_buffer *right,
3522                                    int slot, int mid, int nritems)
3523 {
3524         struct btrfs_fs_info *fs_info = trans->fs_info;
3525         int data_copy_size;
3526         int rt_data_off;
3527         int i;
3528         int ret;
3529         struct btrfs_disk_key disk_key;
3530         struct btrfs_map_token token;
3531
3532         nritems = nritems - mid;
3533         btrfs_set_header_nritems(right, nritems);
3534         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3535
3536         copy_leaf_items(right, l, 0, mid, nritems);
3537
3538         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3539                        leaf_data_end(l), data_copy_size);
3540
3541         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3542
3543         btrfs_init_map_token(&token, right);
3544         for (i = 0; i < nritems; i++) {
3545                 u32 ioff;
3546
3547                 ioff = btrfs_token_item_offset(&token, i);
3548                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3549         }
3550
3551         btrfs_set_header_nritems(l, mid);
3552         btrfs_item_key(right, &disk_key, 0);
3553         ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3554         if (ret < 0)
3555                 return ret;
3556
3557         btrfs_mark_buffer_dirty(trans, right);
3558         btrfs_mark_buffer_dirty(trans, l);
3559         BUG_ON(path->slots[0] != slot);
3560
3561         if (mid <= slot) {
3562                 btrfs_tree_unlock(path->nodes[0]);
3563                 free_extent_buffer(path->nodes[0]);
3564                 path->nodes[0] = right;
3565                 path->slots[0] -= mid;
3566                 path->slots[1] += 1;
3567         } else {
3568                 btrfs_tree_unlock(right);
3569                 free_extent_buffer(right);
3570         }
3571
3572         BUG_ON(path->slots[0] < 0);
3573
3574         return 0;
3575 }
3576
3577 /*
3578  * double splits happen when we need to insert a big item in the middle
3579  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3580  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3581  *          A                 B                 C
3582  *
3583  * We avoid this by trying to push the items on either side of our target
3584  * into the adjacent leaves.  If all goes well we can avoid the double split
3585  * completely.
3586  */
3587 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3588                                           struct btrfs_root *root,
3589                                           struct btrfs_path *path,
3590                                           int data_size)
3591 {
3592         int ret;
3593         int progress = 0;
3594         int slot;
3595         u32 nritems;
3596         int space_needed = data_size;
3597
3598         slot = path->slots[0];
3599         if (slot < btrfs_header_nritems(path->nodes[0]))
3600                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3601
3602         /*
3603          * try to push all the items after our slot into the
3604          * right leaf
3605          */
3606         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3607         if (ret < 0)
3608                 return ret;
3609
3610         if (ret == 0)
3611                 progress++;
3612
3613         nritems = btrfs_header_nritems(path->nodes[0]);
3614         /*
3615          * our goal is to get our slot at the start or end of a leaf.  If
3616          * we've done so we're done
3617          */
3618         if (path->slots[0] == 0 || path->slots[0] == nritems)
3619                 return 0;
3620
3621         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3622                 return 0;
3623
3624         /* try to push all the items before our slot into the next leaf */
3625         slot = path->slots[0];
3626         space_needed = data_size;
3627         if (slot > 0)
3628                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3629         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3630         if (ret < 0)
3631                 return ret;
3632
3633         if (ret == 0)
3634                 progress++;
3635
3636         if (progress)
3637                 return 0;
3638         return 1;
3639 }
3640
3641 /*
3642  * split the path's leaf in two, making sure there is at least data_size
3643  * available for the resulting leaf level of the path.
3644  *
3645  * returns 0 if all went well and < 0 on failure.
3646  */
3647 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3648                                struct btrfs_root *root,
3649                                const struct btrfs_key *ins_key,
3650                                struct btrfs_path *path, int data_size,
3651                                int extend)
3652 {
3653         struct btrfs_disk_key disk_key;
3654         struct extent_buffer *l;
3655         u32 nritems;
3656         int mid;
3657         int slot;
3658         struct extent_buffer *right;
3659         struct btrfs_fs_info *fs_info = root->fs_info;
3660         int ret = 0;
3661         int wret;
3662         int split;
3663         int num_doubles = 0;
3664         int tried_avoid_double = 0;
3665
3666         l = path->nodes[0];
3667         slot = path->slots[0];
3668         if (extend && data_size + btrfs_item_size(l, slot) +
3669             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3670                 return -EOVERFLOW;
3671
3672         /* first try to make some room by pushing left and right */
3673         if (data_size && path->nodes[1]) {
3674                 int space_needed = data_size;
3675
3676                 if (slot < btrfs_header_nritems(l))
3677                         space_needed -= btrfs_leaf_free_space(l);
3678
3679                 wret = push_leaf_right(trans, root, path, space_needed,
3680                                        space_needed, 0, 0);
3681                 if (wret < 0)
3682                         return wret;
3683                 if (wret) {
3684                         space_needed = data_size;
3685                         if (slot > 0)
3686                                 space_needed -= btrfs_leaf_free_space(l);
3687                         wret = push_leaf_left(trans, root, path, space_needed,
3688                                               space_needed, 0, (u32)-1);
3689                         if (wret < 0)
3690                                 return wret;
3691                 }
3692                 l = path->nodes[0];
3693
3694                 /* did the pushes work? */
3695                 if (btrfs_leaf_free_space(l) >= data_size)
3696                         return 0;
3697         }
3698
3699         if (!path->nodes[1]) {
3700                 ret = insert_new_root(trans, root, path, 1);
3701                 if (ret)
3702                         return ret;
3703         }
3704 again:
3705         split = 1;
3706         l = path->nodes[0];
3707         slot = path->slots[0];
3708         nritems = btrfs_header_nritems(l);
3709         mid = (nritems + 1) / 2;
3710
3711         if (mid <= slot) {
3712                 if (nritems == 1 ||
3713                     leaf_space_used(l, mid, nritems - mid) + data_size >
3714                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3715                         if (slot >= nritems) {
3716                                 split = 0;
3717                         } else {
3718                                 mid = slot;
3719                                 if (mid != nritems &&
3720                                     leaf_space_used(l, mid, nritems - mid) +
3721                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3722                                         if (data_size && !tried_avoid_double)
3723                                                 goto push_for_double;
3724                                         split = 2;
3725                                 }
3726                         }
3727                 }
3728         } else {
3729                 if (leaf_space_used(l, 0, mid) + data_size >
3730                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3731                         if (!extend && data_size && slot == 0) {
3732                                 split = 0;
3733                         } else if ((extend || !data_size) && slot == 0) {
3734                                 mid = 1;
3735                         } else {
3736                                 mid = slot;
3737                                 if (mid != nritems &&
3738                                     leaf_space_used(l, mid, nritems - mid) +
3739                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3740                                         if (data_size && !tried_avoid_double)
3741                                                 goto push_for_double;
3742                                         split = 2;
3743                                 }
3744                         }
3745                 }
3746         }
3747
3748         if (split == 0)
3749                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3750         else
3751                 btrfs_item_key(l, &disk_key, mid);
3752
3753         /*
3754          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3755          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3756          * subclasses, which is 8 at the time of this patch, and we've maxed it
3757          * out.  In the future we could add a
3758          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3759          * use BTRFS_NESTING_NEW_ROOT.
3760          */
3761         right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3762                                        &disk_key, 0, l->start, 0, 0,
3763                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3764                                        BTRFS_NESTING_SPLIT);
3765         if (IS_ERR(right))
3766                 return PTR_ERR(right);
3767
3768         root_add_used_bytes(root);
3769
3770         if (split == 0) {
3771                 if (mid <= slot) {
3772                         btrfs_set_header_nritems(right, 0);
3773                         ret = insert_ptr(trans, path, &disk_key,
3774                                          right->start, path->slots[1] + 1, 1);
3775                         if (ret < 0) {
3776                                 btrfs_tree_unlock(right);
3777                                 free_extent_buffer(right);
3778                                 return ret;
3779                         }
3780                         btrfs_tree_unlock(path->nodes[0]);
3781                         free_extent_buffer(path->nodes[0]);
3782                         path->nodes[0] = right;
3783                         path->slots[0] = 0;
3784                         path->slots[1] += 1;
3785                 } else {
3786                         btrfs_set_header_nritems(right, 0);
3787                         ret = insert_ptr(trans, path, &disk_key,
3788                                          right->start, path->slots[1], 1);
3789                         if (ret < 0) {
3790                                 btrfs_tree_unlock(right);
3791                                 free_extent_buffer(right);
3792                                 return ret;
3793                         }
3794                         btrfs_tree_unlock(path->nodes[0]);
3795                         free_extent_buffer(path->nodes[0]);
3796                         path->nodes[0] = right;
3797                         path->slots[0] = 0;
3798                         if (path->slots[1] == 0)
3799                                 fixup_low_keys(trans, path, &disk_key, 1);
3800                 }
3801                 /*
3802                  * We create a new leaf 'right' for the required ins_len and
3803                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3804                  * the content of ins_len to 'right'.
3805                  */
3806                 return ret;
3807         }
3808
3809         ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3810         if (ret < 0) {
3811                 btrfs_tree_unlock(right);
3812                 free_extent_buffer(right);
3813                 return ret;
3814         }
3815
3816         if (split == 2) {
3817                 BUG_ON(num_doubles != 0);
3818                 num_doubles++;
3819                 goto again;
3820         }
3821
3822         return 0;
3823
3824 push_for_double:
3825         push_for_double_split(trans, root, path, data_size);
3826         tried_avoid_double = 1;
3827         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3828                 return 0;
3829         goto again;
3830 }
3831
3832 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3833                                          struct btrfs_root *root,
3834                                          struct btrfs_path *path, int ins_len)
3835 {
3836         struct btrfs_key key;
3837         struct extent_buffer *leaf;
3838         struct btrfs_file_extent_item *fi;
3839         u64 extent_len = 0;
3840         u32 item_size;
3841         int ret;
3842
3843         leaf = path->nodes[0];
3844         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3845
3846         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3847                key.type != BTRFS_EXTENT_CSUM_KEY);
3848
3849         if (btrfs_leaf_free_space(leaf) >= ins_len)
3850                 return 0;
3851
3852         item_size = btrfs_item_size(leaf, path->slots[0]);
3853         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3854                 fi = btrfs_item_ptr(leaf, path->slots[0],
3855                                     struct btrfs_file_extent_item);
3856                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3857         }
3858         btrfs_release_path(path);
3859
3860         path->keep_locks = 1;
3861         path->search_for_split = 1;
3862         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3863         path->search_for_split = 0;
3864         if (ret > 0)
3865                 ret = -EAGAIN;
3866         if (ret < 0)
3867                 goto err;
3868
3869         ret = -EAGAIN;
3870         leaf = path->nodes[0];
3871         /* if our item isn't there, return now */
3872         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3873                 goto err;
3874
3875         /* the leaf has  changed, it now has room.  return now */
3876         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3877                 goto err;
3878
3879         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3880                 fi = btrfs_item_ptr(leaf, path->slots[0],
3881                                     struct btrfs_file_extent_item);
3882                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3883                         goto err;
3884         }
3885
3886         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3887         if (ret)
3888                 goto err;
3889
3890         path->keep_locks = 0;
3891         btrfs_unlock_up_safe(path, 1);
3892         return 0;
3893 err:
3894         path->keep_locks = 0;
3895         return ret;
3896 }
3897
3898 static noinline int split_item(struct btrfs_trans_handle *trans,
3899                                struct btrfs_path *path,
3900                                const struct btrfs_key *new_key,
3901                                unsigned long split_offset)
3902 {
3903         struct extent_buffer *leaf;
3904         int orig_slot, slot;
3905         char *buf;
3906         u32 nritems;
3907         u32 item_size;
3908         u32 orig_offset;
3909         struct btrfs_disk_key disk_key;
3910
3911         leaf = path->nodes[0];
3912         /*
3913          * Shouldn't happen because the caller must have previously called
3914          * setup_leaf_for_split() to make room for the new item in the leaf.
3915          */
3916         if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3917                 return -ENOSPC;
3918
3919         orig_slot = path->slots[0];
3920         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3921         item_size = btrfs_item_size(leaf, path->slots[0]);
3922
3923         buf = kmalloc(item_size, GFP_NOFS);
3924         if (!buf)
3925                 return -ENOMEM;
3926
3927         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3928                             path->slots[0]), item_size);
3929
3930         slot = path->slots[0] + 1;
3931         nritems = btrfs_header_nritems(leaf);
3932         if (slot != nritems) {
3933                 /* shift the items */
3934                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3935         }
3936
3937         btrfs_cpu_key_to_disk(&disk_key, new_key);
3938         btrfs_set_item_key(leaf, &disk_key, slot);
3939
3940         btrfs_set_item_offset(leaf, slot, orig_offset);
3941         btrfs_set_item_size(leaf, slot, item_size - split_offset);
3942
3943         btrfs_set_item_offset(leaf, orig_slot,
3944                                  orig_offset + item_size - split_offset);
3945         btrfs_set_item_size(leaf, orig_slot, split_offset);
3946
3947         btrfs_set_header_nritems(leaf, nritems + 1);
3948
3949         /* write the data for the start of the original item */
3950         write_extent_buffer(leaf, buf,
3951                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3952                             split_offset);
3953
3954         /* write the data for the new item */
3955         write_extent_buffer(leaf, buf + split_offset,
3956                             btrfs_item_ptr_offset(leaf, slot),
3957                             item_size - split_offset);
3958         btrfs_mark_buffer_dirty(trans, leaf);
3959
3960         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3961         kfree(buf);
3962         return 0;
3963 }
3964
3965 /*
3966  * This function splits a single item into two items,
3967  * giving 'new_key' to the new item and splitting the
3968  * old one at split_offset (from the start of the item).
3969  *
3970  * The path may be released by this operation.  After
3971  * the split, the path is pointing to the old item.  The
3972  * new item is going to be in the same node as the old one.
3973  *
3974  * Note, the item being split must be smaller enough to live alone on
3975  * a tree block with room for one extra struct btrfs_item
3976  *
3977  * This allows us to split the item in place, keeping a lock on the
3978  * leaf the entire time.
3979  */
3980 int btrfs_split_item(struct btrfs_trans_handle *trans,
3981                      struct btrfs_root *root,
3982                      struct btrfs_path *path,
3983                      const struct btrfs_key *new_key,
3984                      unsigned long split_offset)
3985 {
3986         int ret;
3987         ret = setup_leaf_for_split(trans, root, path,
3988                                    sizeof(struct btrfs_item));
3989         if (ret)
3990                 return ret;
3991
3992         ret = split_item(trans, path, new_key, split_offset);
3993         return ret;
3994 }
3995
3996 /*
3997  * make the item pointed to by the path smaller.  new_size indicates
3998  * how small to make it, and from_end tells us if we just chop bytes
3999  * off the end of the item or if we shift the item to chop bytes off
4000  * the front.
4001  */
4002 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4003                          struct btrfs_path *path, u32 new_size, int from_end)
4004 {
4005         int slot;
4006         struct extent_buffer *leaf;
4007         u32 nritems;
4008         unsigned int data_end;
4009         unsigned int old_data_start;
4010         unsigned int old_size;
4011         unsigned int size_diff;
4012         int i;
4013         struct btrfs_map_token token;
4014
4015         leaf = path->nodes[0];
4016         slot = path->slots[0];
4017
4018         old_size = btrfs_item_size(leaf, slot);
4019         if (old_size == new_size)
4020                 return;
4021
4022         nritems = btrfs_header_nritems(leaf);
4023         data_end = leaf_data_end(leaf);
4024
4025         old_data_start = btrfs_item_offset(leaf, slot);
4026
4027         size_diff = old_size - new_size;
4028
4029         BUG_ON(slot < 0);
4030         BUG_ON(slot >= nritems);
4031
4032         /*
4033          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4034          */
4035         /* first correct the data pointers */
4036         btrfs_init_map_token(&token, leaf);
4037         for (i = slot; i < nritems; i++) {
4038                 u32 ioff;
4039
4040                 ioff = btrfs_token_item_offset(&token, i);
4041                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4042         }
4043
4044         /* shift the data */
4045         if (from_end) {
4046                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4047                                   old_data_start + new_size - data_end);
4048         } else {
4049                 struct btrfs_disk_key disk_key;
4050                 u64 offset;
4051
4052                 btrfs_item_key(leaf, &disk_key, slot);
4053
4054                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4055                         unsigned long ptr;
4056                         struct btrfs_file_extent_item *fi;
4057
4058                         fi = btrfs_item_ptr(leaf, slot,
4059                                             struct btrfs_file_extent_item);
4060                         fi = (struct btrfs_file_extent_item *)(
4061                              (unsigned long)fi - size_diff);
4062
4063                         if (btrfs_file_extent_type(leaf, fi) ==
4064                             BTRFS_FILE_EXTENT_INLINE) {
4065                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4066                                 memmove_extent_buffer(leaf, ptr,
4067                                       (unsigned long)fi,
4068                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4069                         }
4070                 }
4071
4072                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4073                                   old_data_start - data_end);
4074
4075                 offset = btrfs_disk_key_offset(&disk_key);
4076                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4077                 btrfs_set_item_key(leaf, &disk_key, slot);
4078                 if (slot == 0)
4079                         fixup_low_keys(trans, path, &disk_key, 1);
4080         }
4081
4082         btrfs_set_item_size(leaf, slot, new_size);
4083         btrfs_mark_buffer_dirty(trans, leaf);
4084
4085         if (btrfs_leaf_free_space(leaf) < 0) {
4086                 btrfs_print_leaf(leaf);
4087                 BUG();
4088         }
4089 }
4090
4091 /*
4092  * make the item pointed to by the path bigger, data_size is the added size.
4093  */
4094 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4095                        struct btrfs_path *path, u32 data_size)
4096 {
4097         int slot;
4098         struct extent_buffer *leaf;
4099         u32 nritems;
4100         unsigned int data_end;
4101         unsigned int old_data;
4102         unsigned int old_size;
4103         int i;
4104         struct btrfs_map_token token;
4105
4106         leaf = path->nodes[0];
4107
4108         nritems = btrfs_header_nritems(leaf);
4109         data_end = leaf_data_end(leaf);
4110
4111         if (btrfs_leaf_free_space(leaf) < data_size) {
4112                 btrfs_print_leaf(leaf);
4113                 BUG();
4114         }
4115         slot = path->slots[0];
4116         old_data = btrfs_item_data_end(leaf, slot);
4117
4118         BUG_ON(slot < 0);
4119         if (slot >= nritems) {
4120                 btrfs_print_leaf(leaf);
4121                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4122                            slot, nritems);
4123                 BUG();
4124         }
4125
4126         /*
4127          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4128          */
4129         /* first correct the data pointers */
4130         btrfs_init_map_token(&token, leaf);
4131         for (i = slot; i < nritems; i++) {
4132                 u32 ioff;
4133
4134                 ioff = btrfs_token_item_offset(&token, i);
4135                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4136         }
4137
4138         /* shift the data */
4139         memmove_leaf_data(leaf, data_end - data_size, data_end,
4140                           old_data - data_end);
4141
4142         data_end = old_data;
4143         old_size = btrfs_item_size(leaf, slot);
4144         btrfs_set_item_size(leaf, slot, old_size + data_size);
4145         btrfs_mark_buffer_dirty(trans, leaf);
4146
4147         if (btrfs_leaf_free_space(leaf) < 0) {
4148                 btrfs_print_leaf(leaf);
4149                 BUG();
4150         }
4151 }
4152
4153 /*
4154  * Make space in the node before inserting one or more items.
4155  *
4156  * @trans:      transaction handle
4157  * @root:       root we are inserting items to
4158  * @path:       points to the leaf/slot where we are going to insert new items
4159  * @batch:      information about the batch of items to insert
4160  *
4161  * Main purpose is to save stack depth by doing the bulk of the work in a
4162  * function that doesn't call btrfs_search_slot
4163  */
4164 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4165                                    struct btrfs_root *root, struct btrfs_path *path,
4166                                    const struct btrfs_item_batch *batch)
4167 {
4168         struct btrfs_fs_info *fs_info = root->fs_info;
4169         int i;
4170         u32 nritems;
4171         unsigned int data_end;
4172         struct btrfs_disk_key disk_key;
4173         struct extent_buffer *leaf;
4174         int slot;
4175         struct btrfs_map_token token;
4176         u32 total_size;
4177
4178         /*
4179          * Before anything else, update keys in the parent and other ancestors
4180          * if needed, then release the write locks on them, so that other tasks
4181          * can use them while we modify the leaf.
4182          */
4183         if (path->slots[0] == 0) {
4184                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4185                 fixup_low_keys(trans, path, &disk_key, 1);
4186         }
4187         btrfs_unlock_up_safe(path, 1);
4188
4189         leaf = path->nodes[0];
4190         slot = path->slots[0];
4191
4192         nritems = btrfs_header_nritems(leaf);
4193         data_end = leaf_data_end(leaf);
4194         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4195
4196         if (btrfs_leaf_free_space(leaf) < total_size) {
4197                 btrfs_print_leaf(leaf);
4198                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4199                            total_size, btrfs_leaf_free_space(leaf));
4200                 BUG();
4201         }
4202
4203         btrfs_init_map_token(&token, leaf);
4204         if (slot != nritems) {
4205                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4206
4207                 if (old_data < data_end) {
4208                         btrfs_print_leaf(leaf);
4209                         btrfs_crit(fs_info,
4210                 "item at slot %d with data offset %u beyond data end of leaf %u",
4211                                    slot, old_data, data_end);
4212                         BUG();
4213                 }
4214                 /*
4215                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4216                  */
4217                 /* first correct the data pointers */
4218                 for (i = slot; i < nritems; i++) {
4219                         u32 ioff;
4220
4221                         ioff = btrfs_token_item_offset(&token, i);
4222                         btrfs_set_token_item_offset(&token, i,
4223                                                        ioff - batch->total_data_size);
4224                 }
4225                 /* shift the items */
4226                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4227
4228                 /* shift the data */
4229                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4230                                   data_end, old_data - data_end);
4231                 data_end = old_data;
4232         }
4233
4234         /* setup the item for the new data */
4235         for (i = 0; i < batch->nr; i++) {
4236                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4237                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4238                 data_end -= batch->data_sizes[i];
4239                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4240                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4241         }
4242
4243         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4244         btrfs_mark_buffer_dirty(trans, leaf);
4245
4246         if (btrfs_leaf_free_space(leaf) < 0) {
4247                 btrfs_print_leaf(leaf);
4248                 BUG();
4249         }
4250 }
4251
4252 /*
4253  * Insert a new item into a leaf.
4254  *
4255  * @trans:     Transaction handle.
4256  * @root:      The root of the btree.
4257  * @path:      A path pointing to the target leaf and slot.
4258  * @key:       The key of the new item.
4259  * @data_size: The size of the data associated with the new key.
4260  */
4261 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4262                                  struct btrfs_root *root,
4263                                  struct btrfs_path *path,
4264                                  const struct btrfs_key *key,
4265                                  u32 data_size)
4266 {
4267         struct btrfs_item_batch batch;
4268
4269         batch.keys = key;
4270         batch.data_sizes = &data_size;
4271         batch.total_data_size = data_size;
4272         batch.nr = 1;
4273
4274         setup_items_for_insert(trans, root, path, &batch);
4275 }
4276
4277 /*
4278  * Given a key and some data, insert items into the tree.
4279  * This does all the path init required, making room in the tree if needed.
4280  *
4281  * Returns: 0        on success
4282  *          -EEXIST  if the first key already exists
4283  *          < 0      on other errors
4284  */
4285 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4286                             struct btrfs_root *root,
4287                             struct btrfs_path *path,
4288                             const struct btrfs_item_batch *batch)
4289 {
4290         int ret = 0;
4291         int slot;
4292         u32 total_size;
4293
4294         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4295         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4296         if (ret == 0)
4297                 return -EEXIST;
4298         if (ret < 0)
4299                 return ret;
4300
4301         slot = path->slots[0];
4302         BUG_ON(slot < 0);
4303
4304         setup_items_for_insert(trans, root, path, batch);
4305         return 0;
4306 }
4307
4308 /*
4309  * Given a key and some data, insert an item into the tree.
4310  * This does all the path init required, making room in the tree if needed.
4311  */
4312 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4313                       const struct btrfs_key *cpu_key, void *data,
4314                       u32 data_size)
4315 {
4316         int ret = 0;
4317         struct btrfs_path *path;
4318         struct extent_buffer *leaf;
4319         unsigned long ptr;
4320
4321         path = btrfs_alloc_path();
4322         if (!path)
4323                 return -ENOMEM;
4324         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4325         if (!ret) {
4326                 leaf = path->nodes[0];
4327                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4328                 write_extent_buffer(leaf, data, ptr, data_size);
4329                 btrfs_mark_buffer_dirty(trans, leaf);
4330         }
4331         btrfs_free_path(path);
4332         return ret;
4333 }
4334
4335 /*
4336  * This function duplicates an item, giving 'new_key' to the new item.
4337  * It guarantees both items live in the same tree leaf and the new item is
4338  * contiguous with the original item.
4339  *
4340  * This allows us to split a file extent in place, keeping a lock on the leaf
4341  * the entire time.
4342  */
4343 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4344                          struct btrfs_root *root,
4345                          struct btrfs_path *path,
4346                          const struct btrfs_key *new_key)
4347 {
4348         struct extent_buffer *leaf;
4349         int ret;
4350         u32 item_size;
4351
4352         leaf = path->nodes[0];
4353         item_size = btrfs_item_size(leaf, path->slots[0]);
4354         ret = setup_leaf_for_split(trans, root, path,
4355                                    item_size + sizeof(struct btrfs_item));
4356         if (ret)
4357                 return ret;
4358
4359         path->slots[0]++;
4360         btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4361         leaf = path->nodes[0];
4362         memcpy_extent_buffer(leaf,
4363                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4364                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4365                              item_size);
4366         return 0;
4367 }
4368
4369 /*
4370  * delete the pointer from a given node.
4371  *
4372  * the tree should have been previously balanced so the deletion does not
4373  * empty a node.
4374  *
4375  * This is exported for use inside btrfs-progs, don't un-export it.
4376  */
4377 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4378                   struct btrfs_path *path, int level, int slot)
4379 {
4380         struct extent_buffer *parent = path->nodes[level];
4381         u32 nritems;
4382         int ret;
4383
4384         nritems = btrfs_header_nritems(parent);
4385         if (slot != nritems - 1) {
4386                 if (level) {
4387                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4388                                         slot + 1, nritems - slot - 1);
4389                         if (ret < 0) {
4390                                 btrfs_abort_transaction(trans, ret);
4391                                 return ret;
4392                         }
4393                 }
4394                 memmove_extent_buffer(parent,
4395                               btrfs_node_key_ptr_offset(parent, slot),
4396                               btrfs_node_key_ptr_offset(parent, slot + 1),
4397                               sizeof(struct btrfs_key_ptr) *
4398                               (nritems - slot - 1));
4399         } else if (level) {
4400                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4401                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4402                 if (ret < 0) {
4403                         btrfs_abort_transaction(trans, ret);
4404                         return ret;
4405                 }
4406         }
4407
4408         nritems--;
4409         btrfs_set_header_nritems(parent, nritems);
4410         if (nritems == 0 && parent == root->node) {
4411                 BUG_ON(btrfs_header_level(root->node) != 1);
4412                 /* just turn the root into a leaf and break */
4413                 btrfs_set_header_level(root->node, 0);
4414         } else if (slot == 0) {
4415                 struct btrfs_disk_key disk_key;
4416
4417                 btrfs_node_key(parent, &disk_key, 0);
4418                 fixup_low_keys(trans, path, &disk_key, level + 1);
4419         }
4420         btrfs_mark_buffer_dirty(trans, parent);
4421         return 0;
4422 }
4423
4424 /*
4425  * a helper function to delete the leaf pointed to by path->slots[1] and
4426  * path->nodes[1].
4427  *
4428  * This deletes the pointer in path->nodes[1] and frees the leaf
4429  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4430  *
4431  * The path must have already been setup for deleting the leaf, including
4432  * all the proper balancing.  path->nodes[1] must be locked.
4433  */
4434 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4435                                    struct btrfs_root *root,
4436                                    struct btrfs_path *path,
4437                                    struct extent_buffer *leaf)
4438 {
4439         int ret;
4440
4441         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4442         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4443         if (ret < 0)
4444                 return ret;
4445
4446         /*
4447          * btrfs_free_extent is expensive, we want to make sure we
4448          * aren't holding any locks when we call it
4449          */
4450         btrfs_unlock_up_safe(path, 0);
4451
4452         root_sub_used_bytes(root);
4453
4454         atomic_inc(&leaf->refs);
4455         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4456         free_extent_buffer_stale(leaf);
4457         return 0;
4458 }
4459 /*
4460  * delete the item at the leaf level in path.  If that empties
4461  * the leaf, remove it from the tree
4462  */
4463 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4464                     struct btrfs_path *path, int slot, int nr)
4465 {
4466         struct btrfs_fs_info *fs_info = root->fs_info;
4467         struct extent_buffer *leaf;
4468         int ret = 0;
4469         int wret;
4470         u32 nritems;
4471
4472         leaf = path->nodes[0];
4473         nritems = btrfs_header_nritems(leaf);
4474
4475         if (slot + nr != nritems) {
4476                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4477                 const int data_end = leaf_data_end(leaf);
4478                 struct btrfs_map_token token;
4479                 u32 dsize = 0;
4480                 int i;
4481
4482                 for (i = 0; i < nr; i++)
4483                         dsize += btrfs_item_size(leaf, slot + i);
4484
4485                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4486                                   last_off - data_end);
4487
4488                 btrfs_init_map_token(&token, leaf);
4489                 for (i = slot + nr; i < nritems; i++) {
4490                         u32 ioff;
4491
4492                         ioff = btrfs_token_item_offset(&token, i);
4493                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4494                 }
4495
4496                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4497         }
4498         btrfs_set_header_nritems(leaf, nritems - nr);
4499         nritems -= nr;
4500
4501         /* delete the leaf if we've emptied it */
4502         if (nritems == 0) {
4503                 if (leaf == root->node) {
4504                         btrfs_set_header_level(leaf, 0);
4505                 } else {
4506                         btrfs_clear_buffer_dirty(trans, leaf);
4507                         ret = btrfs_del_leaf(trans, root, path, leaf);
4508                         if (ret < 0)
4509                                 return ret;
4510                 }
4511         } else {
4512                 int used = leaf_space_used(leaf, 0, nritems);
4513                 if (slot == 0) {
4514                         struct btrfs_disk_key disk_key;
4515
4516                         btrfs_item_key(leaf, &disk_key, 0);
4517                         fixup_low_keys(trans, path, &disk_key, 1);
4518                 }
4519
4520                 /*
4521                  * Try to delete the leaf if it is mostly empty. We do this by
4522                  * trying to move all its items into its left and right neighbours.
4523                  * If we can't move all the items, then we don't delete it - it's
4524                  * not ideal, but future insertions might fill the leaf with more
4525                  * items, or items from other leaves might be moved later into our
4526                  * leaf due to deletions on those leaves.
4527                  */
4528                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4529                         u32 min_push_space;
4530
4531                         /* push_leaf_left fixes the path.
4532                          * make sure the path still points to our leaf
4533                          * for possible call to btrfs_del_ptr below
4534                          */
4535                         slot = path->slots[1];
4536                         atomic_inc(&leaf->refs);
4537                         /*
4538                          * We want to be able to at least push one item to the
4539                          * left neighbour leaf, and that's the first item.
4540                          */
4541                         min_push_space = sizeof(struct btrfs_item) +
4542                                 btrfs_item_size(leaf, 0);
4543                         wret = push_leaf_left(trans, root, path, 0,
4544                                               min_push_space, 1, (u32)-1);
4545                         if (wret < 0 && wret != -ENOSPC)
4546                                 ret = wret;
4547
4548                         if (path->nodes[0] == leaf &&
4549                             btrfs_header_nritems(leaf)) {
4550                                 /*
4551                                  * If we were not able to push all items from our
4552                                  * leaf to its left neighbour, then attempt to
4553                                  * either push all the remaining items to the
4554                                  * right neighbour or none. There's no advantage
4555                                  * in pushing only some items, instead of all, as
4556                                  * it's pointless to end up with a leaf having
4557                                  * too few items while the neighbours can be full
4558                                  * or nearly full.
4559                                  */
4560                                 nritems = btrfs_header_nritems(leaf);
4561                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4562                                 wret = push_leaf_right(trans, root, path, 0,
4563                                                        min_push_space, 1, 0);
4564                                 if (wret < 0 && wret != -ENOSPC)
4565                                         ret = wret;
4566                         }
4567
4568                         if (btrfs_header_nritems(leaf) == 0) {
4569                                 path->slots[1] = slot;
4570                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4571                                 if (ret < 0)
4572                                         return ret;
4573                                 free_extent_buffer(leaf);
4574                                 ret = 0;
4575                         } else {
4576                                 /* if we're still in the path, make sure
4577                                  * we're dirty.  Otherwise, one of the
4578                                  * push_leaf functions must have already
4579                                  * dirtied this buffer
4580                                  */
4581                                 if (path->nodes[0] == leaf)
4582                                         btrfs_mark_buffer_dirty(trans, leaf);
4583                                 free_extent_buffer(leaf);
4584                         }
4585                 } else {
4586                         btrfs_mark_buffer_dirty(trans, leaf);
4587                 }
4588         }
4589         return ret;
4590 }
4591
4592 /*
4593  * A helper function to walk down the tree starting at min_key, and looking
4594  * for nodes or leaves that are have a minimum transaction id.
4595  * This is used by the btree defrag code, and tree logging
4596  *
4597  * This does not cow, but it does stuff the starting key it finds back
4598  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4599  * key and get a writable path.
4600  *
4601  * This honors path->lowest_level to prevent descent past a given level
4602  * of the tree.
4603  *
4604  * min_trans indicates the oldest transaction that you are interested
4605  * in walking through.  Any nodes or leaves older than min_trans are
4606  * skipped over (without reading them).
4607  *
4608  * returns zero if something useful was found, < 0 on error and 1 if there
4609  * was nothing in the tree that matched the search criteria.
4610  */
4611 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4612                          struct btrfs_path *path,
4613                          u64 min_trans)
4614 {
4615         struct extent_buffer *cur;
4616         struct btrfs_key found_key;
4617         int slot;
4618         int sret;
4619         u32 nritems;
4620         int level;
4621         int ret = 1;
4622         int keep_locks = path->keep_locks;
4623
4624         ASSERT(!path->nowait);
4625         path->keep_locks = 1;
4626 again:
4627         cur = btrfs_read_lock_root_node(root);
4628         level = btrfs_header_level(cur);
4629         WARN_ON(path->nodes[level]);
4630         path->nodes[level] = cur;
4631         path->locks[level] = BTRFS_READ_LOCK;
4632
4633         if (btrfs_header_generation(cur) < min_trans) {
4634                 ret = 1;
4635                 goto out;
4636         }
4637         while (1) {
4638                 nritems = btrfs_header_nritems(cur);
4639                 level = btrfs_header_level(cur);
4640                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4641                 if (sret < 0) {
4642                         ret = sret;
4643                         goto out;
4644                 }
4645
4646                 /* at the lowest level, we're done, setup the path and exit */
4647                 if (level == path->lowest_level) {
4648                         if (slot >= nritems)
4649                                 goto find_next_key;
4650                         ret = 0;
4651                         path->slots[level] = slot;
4652                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4653                         goto out;
4654                 }
4655                 if (sret && slot > 0)
4656                         slot--;
4657                 /*
4658                  * check this node pointer against the min_trans parameters.
4659                  * If it is too old, skip to the next one.
4660                  */
4661                 while (slot < nritems) {
4662                         u64 gen;
4663
4664                         gen = btrfs_node_ptr_generation(cur, slot);
4665                         if (gen < min_trans) {
4666                                 slot++;
4667                                 continue;
4668                         }
4669                         break;
4670                 }
4671 find_next_key:
4672                 /*
4673                  * we didn't find a candidate key in this node, walk forward
4674                  * and find another one
4675                  */
4676                 if (slot >= nritems) {
4677                         path->slots[level] = slot;
4678                         sret = btrfs_find_next_key(root, path, min_key, level,
4679                                                   min_trans);
4680                         if (sret == 0) {
4681                                 btrfs_release_path(path);
4682                                 goto again;
4683                         } else {
4684                                 goto out;
4685                         }
4686                 }
4687                 /* save our key for returning back */
4688                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4689                 path->slots[level] = slot;
4690                 if (level == path->lowest_level) {
4691                         ret = 0;
4692                         goto out;
4693                 }
4694                 cur = btrfs_read_node_slot(cur, slot);
4695                 if (IS_ERR(cur)) {
4696                         ret = PTR_ERR(cur);
4697                         goto out;
4698                 }
4699
4700                 btrfs_tree_read_lock(cur);
4701
4702                 path->locks[level - 1] = BTRFS_READ_LOCK;
4703                 path->nodes[level - 1] = cur;
4704                 unlock_up(path, level, 1, 0, NULL);
4705         }
4706 out:
4707         path->keep_locks = keep_locks;
4708         if (ret == 0) {
4709                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4710                 memcpy(min_key, &found_key, sizeof(found_key));
4711         }
4712         return ret;
4713 }
4714
4715 /*
4716  * this is similar to btrfs_next_leaf, but does not try to preserve
4717  * and fixup the path.  It looks for and returns the next key in the
4718  * tree based on the current path and the min_trans parameters.
4719  *
4720  * 0 is returned if another key is found, < 0 if there are any errors
4721  * and 1 is returned if there are no higher keys in the tree
4722  *
4723  * path->keep_locks should be set to 1 on the search made before
4724  * calling this function.
4725  */
4726 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4727                         struct btrfs_key *key, int level, u64 min_trans)
4728 {
4729         int slot;
4730         struct extent_buffer *c;
4731
4732         WARN_ON(!path->keep_locks && !path->skip_locking);
4733         while (level < BTRFS_MAX_LEVEL) {
4734                 if (!path->nodes[level])
4735                         return 1;
4736
4737                 slot = path->slots[level] + 1;
4738                 c = path->nodes[level];
4739 next:
4740                 if (slot >= btrfs_header_nritems(c)) {
4741                         int ret;
4742                         int orig_lowest;
4743                         struct btrfs_key cur_key;
4744                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4745                             !path->nodes[level + 1])
4746                                 return 1;
4747
4748                         if (path->locks[level + 1] || path->skip_locking) {
4749                                 level++;
4750                                 continue;
4751                         }
4752
4753                         slot = btrfs_header_nritems(c) - 1;
4754                         if (level == 0)
4755                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4756                         else
4757                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4758
4759                         orig_lowest = path->lowest_level;
4760                         btrfs_release_path(path);
4761                         path->lowest_level = level;
4762                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4763                                                 0, 0);
4764                         path->lowest_level = orig_lowest;
4765                         if (ret < 0)
4766                                 return ret;
4767
4768                         c = path->nodes[level];
4769                         slot = path->slots[level];
4770                         if (ret == 0)
4771                                 slot++;
4772                         goto next;
4773                 }
4774
4775                 if (level == 0)
4776                         btrfs_item_key_to_cpu(c, key, slot);
4777                 else {
4778                         u64 gen = btrfs_node_ptr_generation(c, slot);
4779
4780                         if (gen < min_trans) {
4781                                 slot++;
4782                                 goto next;
4783                         }
4784                         btrfs_node_key_to_cpu(c, key, slot);
4785                 }
4786                 return 0;
4787         }
4788         return 1;
4789 }
4790
4791 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4792                         u64 time_seq)
4793 {
4794         int slot;
4795         int level;
4796         struct extent_buffer *c;
4797         struct extent_buffer *next;
4798         struct btrfs_fs_info *fs_info = root->fs_info;
4799         struct btrfs_key key;
4800         bool need_commit_sem = false;
4801         u32 nritems;
4802         int ret;
4803         int i;
4804
4805         /*
4806          * The nowait semantics are used only for write paths, where we don't
4807          * use the tree mod log and sequence numbers.
4808          */
4809         if (time_seq)
4810                 ASSERT(!path->nowait);
4811
4812         nritems = btrfs_header_nritems(path->nodes[0]);
4813         if (nritems == 0)
4814                 return 1;
4815
4816         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4817 again:
4818         level = 1;
4819         next = NULL;
4820         btrfs_release_path(path);
4821
4822         path->keep_locks = 1;
4823
4824         if (time_seq) {
4825                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4826         } else {
4827                 if (path->need_commit_sem) {
4828                         path->need_commit_sem = 0;
4829                         need_commit_sem = true;
4830                         if (path->nowait) {
4831                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4832                                         ret = -EAGAIN;
4833                                         goto done;
4834                                 }
4835                         } else {
4836                                 down_read(&fs_info->commit_root_sem);
4837                         }
4838                 }
4839                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4840         }
4841         path->keep_locks = 0;
4842
4843         if (ret < 0)
4844                 goto done;
4845
4846         nritems = btrfs_header_nritems(path->nodes[0]);
4847         /*
4848          * by releasing the path above we dropped all our locks.  A balance
4849          * could have added more items next to the key that used to be
4850          * at the very end of the block.  So, check again here and
4851          * advance the path if there are now more items available.
4852          */
4853         if (nritems > 0 && path->slots[0] < nritems - 1) {
4854                 if (ret == 0)
4855                         path->slots[0]++;
4856                 ret = 0;
4857                 goto done;
4858         }
4859         /*
4860          * So the above check misses one case:
4861          * - after releasing the path above, someone has removed the item that
4862          *   used to be at the very end of the block, and balance between leafs
4863          *   gets another one with bigger key.offset to replace it.
4864          *
4865          * This one should be returned as well, or we can get leaf corruption
4866          * later(esp. in __btrfs_drop_extents()).
4867          *
4868          * And a bit more explanation about this check,
4869          * with ret > 0, the key isn't found, the path points to the slot
4870          * where it should be inserted, so the path->slots[0] item must be the
4871          * bigger one.
4872          */
4873         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4874                 ret = 0;
4875                 goto done;
4876         }
4877
4878         while (level < BTRFS_MAX_LEVEL) {
4879                 if (!path->nodes[level]) {
4880                         ret = 1;
4881                         goto done;
4882                 }
4883
4884                 slot = path->slots[level] + 1;
4885                 c = path->nodes[level];
4886                 if (slot >= btrfs_header_nritems(c)) {
4887                         level++;
4888                         if (level == BTRFS_MAX_LEVEL) {
4889                                 ret = 1;
4890                                 goto done;
4891                         }
4892                         continue;
4893                 }
4894
4895
4896                 /*
4897                  * Our current level is where we're going to start from, and to
4898                  * make sure lockdep doesn't complain we need to drop our locks
4899                  * and nodes from 0 to our current level.
4900                  */
4901                 for (i = 0; i < level; i++) {
4902                         if (path->locks[level]) {
4903                                 btrfs_tree_read_unlock(path->nodes[i]);
4904                                 path->locks[i] = 0;
4905                         }
4906                         free_extent_buffer(path->nodes[i]);
4907                         path->nodes[i] = NULL;
4908                 }
4909
4910                 next = c;
4911                 ret = read_block_for_search(root, path, &next, level,
4912                                             slot, &key);
4913                 if (ret == -EAGAIN && !path->nowait)
4914                         goto again;
4915
4916                 if (ret < 0) {
4917                         btrfs_release_path(path);
4918                         goto done;
4919                 }
4920
4921                 if (!path->skip_locking) {
4922                         ret = btrfs_try_tree_read_lock(next);
4923                         if (!ret && path->nowait) {
4924                                 ret = -EAGAIN;
4925                                 goto done;
4926                         }
4927                         if (!ret && time_seq) {
4928                                 /*
4929                                  * If we don't get the lock, we may be racing
4930                                  * with push_leaf_left, holding that lock while
4931                                  * itself waiting for the leaf we've currently
4932                                  * locked. To solve this situation, we give up
4933                                  * on our lock and cycle.
4934                                  */
4935                                 free_extent_buffer(next);
4936                                 btrfs_release_path(path);
4937                                 cond_resched();
4938                                 goto again;
4939                         }
4940                         if (!ret)
4941                                 btrfs_tree_read_lock(next);
4942                 }
4943                 break;
4944         }
4945         path->slots[level] = slot;
4946         while (1) {
4947                 level--;
4948                 path->nodes[level] = next;
4949                 path->slots[level] = 0;
4950                 if (!path->skip_locking)
4951                         path->locks[level] = BTRFS_READ_LOCK;
4952                 if (!level)
4953                         break;
4954
4955                 ret = read_block_for_search(root, path, &next, level,
4956                                             0, &key);
4957                 if (ret == -EAGAIN && !path->nowait)
4958                         goto again;
4959
4960                 if (ret < 0) {
4961                         btrfs_release_path(path);
4962                         goto done;
4963                 }
4964
4965                 if (!path->skip_locking) {
4966                         if (path->nowait) {
4967                                 if (!btrfs_try_tree_read_lock(next)) {
4968                                         ret = -EAGAIN;
4969                                         goto done;
4970                                 }
4971                         } else {
4972                                 btrfs_tree_read_lock(next);
4973                         }
4974                 }
4975         }
4976         ret = 0;
4977 done:
4978         unlock_up(path, 0, 1, 0, NULL);
4979         if (need_commit_sem) {
4980                 int ret2;
4981
4982                 path->need_commit_sem = 1;
4983                 ret2 = finish_need_commit_sem_search(path);
4984                 up_read(&fs_info->commit_root_sem);
4985                 if (ret2)
4986                         ret = ret2;
4987         }
4988
4989         return ret;
4990 }
4991
4992 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4993 {
4994         path->slots[0]++;
4995         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4996                 return btrfs_next_old_leaf(root, path, time_seq);
4997         return 0;
4998 }
4999
5000 /*
5001  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5002  * searching until it gets past min_objectid or finds an item of 'type'
5003  *
5004  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5005  */
5006 int btrfs_previous_item(struct btrfs_root *root,
5007                         struct btrfs_path *path, u64 min_objectid,
5008                         int type)
5009 {
5010         struct btrfs_key found_key;
5011         struct extent_buffer *leaf;
5012         u32 nritems;
5013         int ret;
5014
5015         while (1) {
5016                 if (path->slots[0] == 0) {
5017                         ret = btrfs_prev_leaf(root, path);
5018                         if (ret != 0)
5019                                 return ret;
5020                 } else {
5021                         path->slots[0]--;
5022                 }
5023                 leaf = path->nodes[0];
5024                 nritems = btrfs_header_nritems(leaf);
5025                 if (nritems == 0)
5026                         return 1;
5027                 if (path->slots[0] == nritems)
5028                         path->slots[0]--;
5029
5030                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5031                 if (found_key.objectid < min_objectid)
5032                         break;
5033                 if (found_key.type == type)
5034                         return 0;
5035                 if (found_key.objectid == min_objectid &&
5036                     found_key.type < type)
5037                         break;
5038         }
5039         return 1;
5040 }
5041
5042 /*
5043  * search in extent tree to find a previous Metadata/Data extent item with
5044  * min objecitd.
5045  *
5046  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5047  */
5048 int btrfs_previous_extent_item(struct btrfs_root *root,
5049                         struct btrfs_path *path, u64 min_objectid)
5050 {
5051         struct btrfs_key found_key;
5052         struct extent_buffer *leaf;
5053         u32 nritems;
5054         int ret;
5055
5056         while (1) {
5057                 if (path->slots[0] == 0) {
5058                         ret = btrfs_prev_leaf(root, path);
5059                         if (ret != 0)
5060                                 return ret;
5061                 } else {
5062                         path->slots[0]--;
5063                 }
5064                 leaf = path->nodes[0];
5065                 nritems = btrfs_header_nritems(leaf);
5066                 if (nritems == 0)
5067                         return 1;
5068                 if (path->slots[0] == nritems)
5069                         path->slots[0]--;
5070
5071                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072                 if (found_key.objectid < min_objectid)
5073                         break;
5074                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5075                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5076                         return 0;
5077                 if (found_key.objectid == min_objectid &&
5078                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5079                         break;
5080         }
5081         return 1;
5082 }
5083
5084 int __init btrfs_ctree_init(void)
5085 {
5086         btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5087         if (!btrfs_path_cachep)
5088                 return -ENOMEM;
5089         return 0;
5090 }
5091
5092 void __cold btrfs_ctree_exit(void)
5093 {
5094         kmem_cache_destroy(btrfs_path_cachep);
5095 }
This page took 0.331795 seconds and 4 git commands to generate.