1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
52 /* Lower limit for ETR hardware buffer */
53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
59 * contain more than one SG buffer and tables.
61 * A table entry has the following format:
63 * ---Bit31------------Bit4-------Bit1-----Bit0--
64 * | Address[39:12] | SBZ | Entry Type |
65 * ----------------------------------------------
67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
72 * b01 - Last entry in the tables, points to 4K page buffer.
73 * b10 - Normal entry, points to 4K page buffer.
74 * b11 - Link. The address points to the base of next table.
79 #define ETR_SG_PAGE_SHIFT 12
80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
85 #define ETR_SG_ET_MASK 0x3
86 #define ETR_SG_ET_LAST 0x1
87 #define ETR_SG_ET_NORMAL 0x2
88 #define ETR_SG_ET_LINK 0x3
90 #define ETR_SG_ADDR_SHIFT 4
92 #define ETR_SG_ENTRY(addr, type) \
93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
94 (type & ETR_SG_ET_MASK))
96 #define ETR_SG_ADDR(entry) \
97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
101 * struct etr_sg_table : ETR SG Table
102 * @sg_table: Generic SG Table holding the data/table pages.
103 * @hwaddr: hwaddress used by the TMC, which is the base
104 * address of the table.
106 struct etr_sg_table {
107 struct tmc_sg_table *sg_table;
112 * tmc_etr_sg_table_entries: Total number of table entries required to map
113 * @nr_pages system pages.
115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
117 * with the last entry pointing to another page of table entries.
118 * If we spill over to a new page for mapping 1 entry, we could as
119 * well replace the link entry of the previous page with the last entry.
121 static inline unsigned long __attribute_const__
122 tmc_etr_sg_table_entries(int nr_pages)
124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
127 * If we spill over to a new page for 1 entry, we could as well
128 * make it the LAST entry in the previous page, skipping the Link
131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
133 return nr_sgpages + nr_sglinks;
137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
138 * and map the device address @addr to an offset within the virtual
142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
145 dma_addr_t page_start;
147 for (i = 0; i < tmc_pages->nr_pages; i++) {
148 page_start = tmc_pages->daddrs[i];
149 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
150 return i * PAGE_SIZE + (addr - page_start);
157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
158 * If the pages were not allocated in tmc_pages_alloc(), we would
159 * simply drop the refcount.
161 static void tmc_pages_free(struct tmc_pages *tmc_pages,
162 struct device *dev, enum dma_data_direction dir)
165 struct device *real_dev = dev->parent;
167 for (i = 0; i < tmc_pages->nr_pages; i++) {
168 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
169 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
171 if (tmc_pages->pages && tmc_pages->pages[i])
172 __free_page(tmc_pages->pages[i]);
175 kfree(tmc_pages->pages);
176 kfree(tmc_pages->daddrs);
177 tmc_pages->pages = NULL;
178 tmc_pages->daddrs = NULL;
179 tmc_pages->nr_pages = 0;
183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
184 * If @pages is not NULL, the list of page virtual addresses are
185 * used as the data pages. The pages are then dma_map'ed for @dev
186 * with dma_direction @dir.
188 * Returns 0 upon success, else the error number.
190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
191 struct device *dev, int node,
192 enum dma_data_direction dir, void **pages)
197 struct device *real_dev = dev->parent;
199 nr_pages = tmc_pages->nr_pages;
200 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
202 if (!tmc_pages->daddrs)
204 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
206 if (!tmc_pages->pages) {
207 kfree(tmc_pages->daddrs);
208 tmc_pages->daddrs = NULL;
212 for (i = 0; i < nr_pages; i++) {
213 if (pages && pages[i]) {
214 page = virt_to_page(pages[i]);
215 /* Hold a refcount on the page */
218 page = alloc_pages_node(node,
219 GFP_KERNEL | __GFP_ZERO, 0);
221 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
222 if (dma_mapping_error(real_dev, paddr))
224 tmc_pages->daddrs[i] = paddr;
225 tmc_pages->pages[i] = page;
229 tmc_pages_free(tmc_pages, dev, dir);
234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
236 return tmc_pages_get_offset(&sg_table->data_pages, addr);
239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
241 if (sg_table->table_vaddr)
242 vunmap(sg_table->table_vaddr);
243 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
248 if (sg_table->data_vaddr)
249 vunmap(sg_table->data_vaddr);
250 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
253 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
255 tmc_free_table_pages(sg_table);
256 tmc_free_data_pages(sg_table);
260 * Alloc pages for the table. Since this will be used by the device,
261 * allocate the pages closer to the device (i.e, dev_to_node(dev)
262 * rather than the CPU node).
264 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
267 struct tmc_pages *table_pages = &sg_table->table_pages;
269 rc = tmc_pages_alloc(table_pages, sg_table->dev,
270 dev_to_node(sg_table->dev),
271 DMA_TO_DEVICE, NULL);
274 sg_table->table_vaddr = vmap(table_pages->pages,
275 table_pages->nr_pages,
278 if (!sg_table->table_vaddr)
281 sg_table->table_daddr = table_pages->daddrs[0];
285 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
289 /* Allocate data pages on the node requested by the caller */
290 rc = tmc_pages_alloc(&sg_table->data_pages,
291 sg_table->dev, sg_table->node,
292 DMA_FROM_DEVICE, pages);
294 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
295 sg_table->data_pages.nr_pages,
298 if (!sg_table->data_vaddr)
305 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
306 * and data buffers. TMC writes to the data buffers and reads from the SG
309 * @dev - Coresight device to which page should be DMA mapped.
310 * @node - Numa node for mem allocations
311 * @nr_tpages - Number of pages for the table entries.
312 * @nr_dpages - Number of pages for Data buffer.
313 * @pages - Optional list of virtual address of pages.
315 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
322 struct tmc_sg_table *sg_table;
324 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
326 return ERR_PTR(-ENOMEM);
327 sg_table->data_pages.nr_pages = nr_dpages;
328 sg_table->table_pages.nr_pages = nr_tpages;
329 sg_table->node = node;
332 rc = tmc_alloc_data_pages(sg_table, pages);
334 rc = tmc_alloc_table_pages(sg_table);
336 tmc_free_sg_table(sg_table);
345 * tmc_sg_table_sync_data_range: Sync the data buffer written
346 * by the device from @offset upto a @size bytes.
348 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
349 u64 offset, u64 size)
352 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
353 struct device *real_dev = table->dev->parent;
354 struct tmc_pages *data = &table->data_pages;
356 start = offset >> PAGE_SHIFT;
357 for (i = start; i < (start + npages); i++) {
358 index = i % data->nr_pages;
359 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
360 PAGE_SIZE, DMA_FROM_DEVICE);
364 /* tmc_sg_sync_table: Sync the page table */
365 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
368 struct device *real_dev = sg_table->dev->parent;
369 struct tmc_pages *table_pages = &sg_table->table_pages;
371 for (i = 0; i < table_pages->nr_pages; i++)
372 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
373 PAGE_SIZE, DMA_TO_DEVICE);
377 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
378 * in the SG buffer. The @bufpp is updated to point to the buffer.
380 * the length of linear data available at @offset.
382 * <= 0 if no data is available.
384 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
385 u64 offset, size_t len, char **bufpp)
388 int pg_idx = offset >> PAGE_SHIFT;
389 int pg_offset = offset & (PAGE_SIZE - 1);
390 struct tmc_pages *data_pages = &sg_table->data_pages;
392 size = tmc_sg_table_buf_size(sg_table);
396 /* Make sure we don't go beyond the end */
397 len = (len < (size - offset)) ? len : size - offset;
398 /* Respect the page boundaries */
399 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
401 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
406 /* Map a dma address to virtual address */
408 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
409 dma_addr_t addr, bool table)
413 struct tmc_pages *tmc_pages;
416 tmc_pages = &sg_table->table_pages;
417 base = (unsigned long)sg_table->table_vaddr;
419 tmc_pages = &sg_table->data_pages;
420 base = (unsigned long)sg_table->data_vaddr;
423 offset = tmc_pages_get_offset(tmc_pages, addr);
426 return base + offset;
429 /* Dump the given sg_table */
430 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
435 struct tmc_sg_table *sg_table = etr_table->sg_table;
437 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
438 etr_table->hwaddr, true);
440 addr = ETR_SG_ADDR(*ptr);
441 switch (ETR_SG_ET(*ptr)) {
442 case ETR_SG_ET_NORMAL:
443 dev_dbg(sg_table->dev,
444 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
448 dev_dbg(sg_table->dev,
449 "%05d: *** %p\t:{L} 0x%llx ***\n",
451 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
455 dev_dbg(sg_table->dev,
456 "%05d: ### %p\t:[L] 0x%llx ###\n",
460 dev_dbg(sg_table->dev,
461 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
467 dev_dbg(sg_table->dev, "******* End of Table *****\n");
470 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
474 * Populate the SG Table page table entries from table/data
475 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
476 * So does a Table page. So we keep track of indices of the tables
477 * in each system page and move the pointers accordingly.
479 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
480 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
483 int i, type, nr_entries;
484 int tpidx = 0; /* index to the current system table_page */
485 int sgtidx = 0; /* index to the sg_table within the current syspage */
486 int sgtentry = 0; /* the entry within the sg_table */
487 int dpidx = 0; /* index to the current system data_page */
488 int spidx = 0; /* index to the SG page within the current data page */
489 sgte_t *ptr; /* pointer to the table entry to fill */
490 struct tmc_sg_table *sg_table = etr_table->sg_table;
491 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
492 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
494 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
496 * Use the contiguous virtual address of the table to update entries.
498 ptr = sg_table->table_vaddr;
500 * Fill all the entries, except the last entry to avoid special
501 * checks within the loop.
503 for (i = 0; i < nr_entries - 1; i++) {
504 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
506 * Last entry in a sg_table page is a link address to
507 * the next table page. If this sg_table is the last
508 * one in the system page, it links to the first
509 * sg_table in the next system page. Otherwise, it
510 * links to the next sg_table page within the system
513 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
514 paddr = table_daddrs[tpidx + 1];
516 paddr = table_daddrs[tpidx] +
517 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
519 type = ETR_SG_ET_LINK;
522 * Update the indices to the data_pages to point to the
523 * next sg_page in the data buffer.
525 type = ETR_SG_ET_NORMAL;
526 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
527 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
530 *ptr++ = ETR_SG_ENTRY(paddr, type);
532 * Move to the next table pointer, moving the table page index
535 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
536 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
541 /* Set up the last entry, which is always a data pointer */
542 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
543 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
547 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
548 * populate the table.
550 * @dev - Device pointer for the TMC
551 * @node - NUMA node where the memory should be allocated
552 * @size - Total size of the data buffer
553 * @pages - Optional list of page virtual address
555 static struct etr_sg_table *
556 tmc_init_etr_sg_table(struct device *dev, int node,
557 unsigned long size, void **pages)
559 int nr_entries, nr_tpages;
560 int nr_dpages = size >> PAGE_SHIFT;
561 struct tmc_sg_table *sg_table;
562 struct etr_sg_table *etr_table;
564 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
566 return ERR_PTR(-ENOMEM);
567 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
568 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
570 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
571 if (IS_ERR(sg_table)) {
573 return ERR_CAST(sg_table);
576 etr_table->sg_table = sg_table;
577 /* TMC should use table base address for DBA */
578 etr_table->hwaddr = sg_table->table_daddr;
579 tmc_etr_sg_table_populate(etr_table);
580 /* Sync the table pages for the HW */
581 tmc_sg_table_sync_table(sg_table);
582 tmc_etr_sg_table_dump(etr_table);
588 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
590 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
591 struct etr_buf *etr_buf, int node,
594 struct etr_flat_buf *flat_buf;
595 struct device *real_dev = drvdata->csdev->dev.parent;
597 /* We cannot reuse existing pages for flat buf */
601 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
605 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
606 &flat_buf->daddr, GFP_KERNEL);
607 if (!flat_buf->vaddr) {
612 flat_buf->size = etr_buf->size;
613 flat_buf->dev = &drvdata->csdev->dev;
614 etr_buf->hwaddr = flat_buf->daddr;
615 etr_buf->mode = ETR_MODE_FLAT;
616 etr_buf->private = flat_buf;
620 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
622 struct etr_flat_buf *flat_buf = etr_buf->private;
624 if (flat_buf && flat_buf->daddr) {
625 struct device *real_dev = flat_buf->dev->parent;
627 dma_free_coherent(real_dev, flat_buf->size,
628 flat_buf->vaddr, flat_buf->daddr);
633 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
636 * Adjust the buffer to point to the beginning of the trace data
637 * and update the available trace data.
639 etr_buf->offset = rrp - etr_buf->hwaddr;
641 etr_buf->len = etr_buf->size;
643 etr_buf->len = rwp - rrp;
646 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
647 u64 offset, size_t len, char **bufpp)
649 struct etr_flat_buf *flat_buf = etr_buf->private;
651 *bufpp = (char *)flat_buf->vaddr + offset;
653 * tmc_etr_buf_get_data already adjusts the length to handle
654 * buffer wrapping around.
659 static const struct etr_buf_operations etr_flat_buf_ops = {
660 .alloc = tmc_etr_alloc_flat_buf,
661 .free = tmc_etr_free_flat_buf,
662 .sync = tmc_etr_sync_flat_buf,
663 .get_data = tmc_etr_get_data_flat_buf,
667 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
670 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
671 struct etr_buf *etr_buf, int node,
674 struct etr_sg_table *etr_table;
675 struct device *dev = &drvdata->csdev->dev;
677 etr_table = tmc_init_etr_sg_table(dev, node,
678 etr_buf->size, pages);
679 if (IS_ERR(etr_table))
681 etr_buf->hwaddr = etr_table->hwaddr;
682 etr_buf->mode = ETR_MODE_ETR_SG;
683 etr_buf->private = etr_table;
687 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
689 struct etr_sg_table *etr_table = etr_buf->private;
692 tmc_free_sg_table(etr_table->sg_table);
697 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
698 size_t len, char **bufpp)
700 struct etr_sg_table *etr_table = etr_buf->private;
702 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
705 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
707 long r_offset, w_offset;
708 struct etr_sg_table *etr_table = etr_buf->private;
709 struct tmc_sg_table *table = etr_table->sg_table;
711 /* Convert hw address to offset in the buffer */
712 r_offset = tmc_sg_get_data_page_offset(table, rrp);
715 "Unable to map RRP %llx to offset\n", rrp);
720 w_offset = tmc_sg_get_data_page_offset(table, rwp);
723 "Unable to map RWP %llx to offset\n", rwp);
728 etr_buf->offset = r_offset;
730 etr_buf->len = etr_buf->size;
732 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
734 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
737 static const struct etr_buf_operations etr_sg_buf_ops = {
738 .alloc = tmc_etr_alloc_sg_buf,
739 .free = tmc_etr_free_sg_buf,
740 .sync = tmc_etr_sync_sg_buf,
741 .get_data = tmc_etr_get_data_sg_buf,
745 * TMC ETR could be connected to a CATU device, which can provide address
746 * translation service. This is represented by the Output port of the TMC
747 * (ETR) connected to the input port of the CATU.
749 * Returns : coresight_device ptr for the CATU device if a CATU is found.
752 struct coresight_device *
753 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
756 struct coresight_device *tmp, *etr = drvdata->csdev;
758 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
761 for (i = 0; i < etr->pdata->nr_outport; i++) {
762 tmp = etr->pdata->conns[i].child_dev;
763 if (tmp && coresight_is_catu_device(tmp))
770 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
771 struct etr_buf *etr_buf)
773 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
775 if (catu && helper_ops(catu)->enable)
776 return helper_ops(catu)->enable(catu, etr_buf);
780 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
782 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
784 if (catu && helper_ops(catu)->disable)
785 helper_ops(catu)->disable(catu, drvdata->etr_buf);
788 static const struct etr_buf_operations *etr_buf_ops[] = {
789 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
790 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
791 [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU)
792 ? &etr_catu_buf_ops : NULL,
795 static inline int tmc_etr_mode_alloc_buf(int mode,
796 struct tmc_drvdata *drvdata,
797 struct etr_buf *etr_buf, int node,
804 case ETR_MODE_ETR_SG:
806 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
807 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
810 etr_buf->ops = etr_buf_ops[mode];
818 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
819 * @drvdata : ETR device details.
820 * @size : size of the requested buffer.
821 * @flags : Required properties for the buffer.
822 * @node : Node for memory allocations.
823 * @pages : An optional list of pages.
825 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
826 ssize_t size, int flags,
827 int node, void **pages)
830 bool has_etr_sg, has_iommu;
831 bool has_sg, has_catu;
832 struct etr_buf *etr_buf;
833 struct device *dev = &drvdata->csdev->dev;
835 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
836 has_iommu = iommu_get_domain_for_dev(dev->parent);
837 has_catu = !!tmc_etr_get_catu_device(drvdata);
839 has_sg = has_catu || has_etr_sg;
841 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
843 return ERR_PTR(-ENOMEM);
845 etr_buf->size = size;
848 * If we have to use an existing list of pages, we cannot reliably
849 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
850 * we use the contiguous DMA memory if at least one of the following
851 * conditions is true:
852 * a) The ETR cannot use Scatter-Gather.
853 * b) we have a backing IOMMU
854 * c) The requested memory size is smaller (< 1M).
856 * Fallback to available mechanisms.
860 (!has_sg || has_iommu || size < SZ_1M))
861 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
862 etr_buf, node, pages);
863 if (rc && has_etr_sg)
864 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
865 etr_buf, node, pages);
867 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
868 etr_buf, node, pages);
874 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
875 (unsigned long)size >> 10, etr_buf->mode);
879 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
881 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
882 etr_buf->ops->free(etr_buf);
887 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
888 * with a maximum of @len bytes.
889 * Returns: The size of the linear data available @pos, with *bufpp
890 * updated to point to the buffer.
892 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
893 u64 offset, size_t len, char **bufpp)
895 /* Adjust the length to limit this transaction to end of buffer */
896 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
898 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
902 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
907 len = tmc_etr_buf_get_data(etr_buf, offset,
908 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
909 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
911 coresight_insert_barrier_packet(bufp);
912 return offset + CORESIGHT_BARRIER_PKT_SIZE;
916 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
917 * Makes sure the trace data is synced to the memory for consumption.
918 * @etr_buf->offset will hold the offset to the beginning of the trace data
919 * within the buffer, with @etr_buf->len bytes to consume.
921 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
923 struct etr_buf *etr_buf = drvdata->etr_buf;
927 rrp = tmc_read_rrp(drvdata);
928 rwp = tmc_read_rwp(drvdata);
929 status = readl_relaxed(drvdata->base + TMC_STS);
930 etr_buf->full = status & TMC_STS_FULL;
932 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
934 etr_buf->ops->sync(etr_buf, rrp, rwp);
936 /* Insert barrier packets at the beginning, if there was an overflow */
938 tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
941 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
944 struct etr_buf *etr_buf = drvdata->etr_buf;
946 CS_UNLOCK(drvdata->base);
948 /* Wait for TMCSReady bit to be set */
949 tmc_wait_for_tmcready(drvdata);
951 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
952 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
954 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
955 axictl &= ~TMC_AXICTL_CLEAR_MASK;
956 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
957 axictl |= TMC_AXICTL_AXCACHE_OS;
959 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
960 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
961 axictl |= TMC_AXICTL_ARCACHE_OS;
964 if (etr_buf->mode == ETR_MODE_ETR_SG)
965 axictl |= TMC_AXICTL_SCT_GAT_MODE;
967 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
968 tmc_write_dba(drvdata, etr_buf->hwaddr);
970 * If the TMC pointers must be programmed before the session,
971 * we have to set it properly (i.e, RRP/RWP to base address and
972 * STS to "not full").
974 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
975 tmc_write_rrp(drvdata, etr_buf->hwaddr);
976 tmc_write_rwp(drvdata, etr_buf->hwaddr);
977 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
978 writel_relaxed(sts, drvdata->base + TMC_STS);
981 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
982 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
983 TMC_FFCR_TRIGON_TRIGIN,
984 drvdata->base + TMC_FFCR);
985 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
986 tmc_enable_hw(drvdata);
988 CS_LOCK(drvdata->base);
991 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
992 struct etr_buf *etr_buf)
996 /* Callers should provide an appropriate buffer for use */
997 if (WARN_ON(!etr_buf))
1000 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1001 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1004 if (WARN_ON(drvdata->etr_buf))
1008 * If this ETR is connected to a CATU, enable it before we turn
1011 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1014 rc = coresight_claim_device(drvdata->base);
1016 drvdata->etr_buf = etr_buf;
1017 __tmc_etr_enable_hw(drvdata);
1024 * Return the available trace data in the buffer (starts at etr_buf->offset,
1025 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1026 * also updating the @bufpp on where to find it. Since the trace data
1027 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1028 * @len returned to handle buffer wrapping around.
1030 * We are protected here by drvdata->reading != 0, which ensures the
1031 * sysfs_buf stays alive.
1033 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1034 loff_t pos, size_t len, char **bufpp)
1037 ssize_t actual = len;
1038 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1040 if (pos + actual > etr_buf->len)
1041 actual = etr_buf->len - pos;
1045 /* Compute the offset from which we read the data */
1046 offset = etr_buf->offset + pos;
1047 if (offset >= etr_buf->size)
1048 offset -= etr_buf->size;
1049 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1052 static struct etr_buf *
1053 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1055 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1056 0, cpu_to_node(0), NULL);
1060 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1063 tmc_free_etr_buf(buf);
1066 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1068 struct etr_buf *etr_buf = drvdata->etr_buf;
1070 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1071 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1072 drvdata->sysfs_buf = NULL;
1074 tmc_sync_etr_buf(drvdata);
1078 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1080 CS_UNLOCK(drvdata->base);
1082 tmc_flush_and_stop(drvdata);
1084 * When operating in sysFS mode the content of the buffer needs to be
1085 * read before the TMC is disabled.
1087 if (drvdata->mode == CS_MODE_SYSFS)
1088 tmc_etr_sync_sysfs_buf(drvdata);
1090 tmc_disable_hw(drvdata);
1092 CS_LOCK(drvdata->base);
1096 static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1098 __tmc_etr_disable_hw(drvdata);
1099 /* Disable CATU device if this ETR is connected to one */
1100 tmc_etr_disable_catu(drvdata);
1101 coresight_disclaim_device(drvdata->base);
1102 /* Reset the ETR buf used by hardware */
1103 drvdata->etr_buf = NULL;
1106 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1109 unsigned long flags;
1110 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1111 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1114 * If we are enabling the ETR from disabled state, we need to make
1115 * sure we have a buffer with the right size. The etr_buf is not reset
1116 * immediately after we stop the tracing in SYSFS mode as we wait for
1117 * the user to collect the data. We may be able to reuse the existing
1118 * buffer, provided the size matches. Any allocation has to be done
1119 * with the lock released.
1121 spin_lock_irqsave(&drvdata->spinlock, flags);
1122 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1123 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1124 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1126 /* Allocate memory with the locks released */
1127 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1128 if (IS_ERR(new_buf))
1129 return PTR_ERR(new_buf);
1131 /* Let's try again */
1132 spin_lock_irqsave(&drvdata->spinlock, flags);
1135 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1141 * In sysFS mode we can have multiple writers per sink. Since this
1142 * sink is already enabled no memory is needed and the HW need not be
1143 * touched, even if the buffer size has changed.
1145 if (drvdata->mode == CS_MODE_SYSFS) {
1146 atomic_inc(csdev->refcnt);
1151 * If we don't have a buffer or it doesn't match the requested size,
1152 * use the buffer allocated above. Otherwise reuse the existing buffer.
1154 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1155 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1156 free_buf = sysfs_buf;
1157 drvdata->sysfs_buf = new_buf;
1160 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1162 drvdata->mode = CS_MODE_SYSFS;
1163 atomic_inc(csdev->refcnt);
1166 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1168 /* Free memory outside the spinlock if need be */
1170 tmc_etr_free_sysfs_buf(free_buf);
1173 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1179 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1180 * The size of the hardware buffer is dependent on the size configured
1181 * via sysfs and the perf ring buffer size. We prefer to allocate the
1182 * largest possible size, scaling down the size by half until it
1183 * reaches a minimum limit (1M), beyond which we give up.
1185 static struct etr_buf *
1186 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1187 int nr_pages, void **pages, bool snapshot)
1190 struct etr_buf *etr_buf;
1193 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1195 * Try to match the perf ring buffer size if it is larger
1196 * than the size requested via sysfs.
1198 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1199 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1201 if (!IS_ERR(etr_buf))
1206 * Else switch to configured size for this ETR
1207 * and scale down until we hit the minimum limit.
1209 size = drvdata->size;
1211 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1212 if (!IS_ERR(etr_buf))
1215 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1217 return ERR_PTR(-ENOMEM);
1223 static struct etr_buf *
1224 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1225 struct perf_event *event, int nr_pages,
1226 void **pages, bool snapshot)
1229 pid_t pid = task_pid_nr(event->owner);
1230 struct etr_buf *etr_buf;
1234 * An etr_perf_buffer is associated with an event and holds a reference
1235 * to the AUX ring buffer that was created for that event. In CPU-wide
1236 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1237 * buffer, share a sink. As such an etr_perf_buffer is created for each
1238 * event but a single etr_buf associated with the ETR is shared between
1239 * them. The last event in a trace session will copy the content of the
1240 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1241 * events are simply not used an freed as events are destoyed. We still
1242 * need to allocate a ring buffer for each event since we don't know
1243 * which event will be last.
1247 * The first thing to do here is check if an etr_buf has already been
1248 * allocated for this session. If so it is shared with this event,
1249 * otherwise it is created.
1251 mutex_lock(&drvdata->idr_mutex);
1252 etr_buf = idr_find(&drvdata->idr, pid);
1254 refcount_inc(&etr_buf->refcount);
1255 mutex_unlock(&drvdata->idr_mutex);
1259 /* If we made it here no buffer has been allocated, do so now. */
1260 mutex_unlock(&drvdata->idr_mutex);
1262 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1263 if (IS_ERR(etr_buf))
1266 refcount_set(&etr_buf->refcount, 1);
1268 /* Now that we have a buffer, add it to the IDR. */
1269 mutex_lock(&drvdata->idr_mutex);
1270 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1271 mutex_unlock(&drvdata->idr_mutex);
1273 /* Another event with this session ID has allocated this buffer. */
1274 if (ret == -ENOSPC) {
1275 tmc_free_etr_buf(etr_buf);
1279 /* The IDR can't allocate room for a new session, abandon ship. */
1280 if (ret == -ENOMEM) {
1281 tmc_free_etr_buf(etr_buf);
1282 return ERR_PTR(ret);
1289 static struct etr_buf *
1290 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1291 struct perf_event *event, int nr_pages,
1292 void **pages, bool snapshot)
1294 struct etr_buf *etr_buf;
1297 * In per-thread mode the etr_buf isn't shared, so just go ahead
1298 * with memory allocation.
1300 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1301 if (IS_ERR(etr_buf))
1304 refcount_set(&etr_buf->refcount, 1);
1309 static struct etr_buf *
1310 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1311 int nr_pages, void **pages, bool snapshot)
1313 if (event->cpu == -1)
1314 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1317 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1321 static struct etr_perf_buffer *
1322 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1323 int nr_pages, void **pages, bool snapshot)
1326 struct etr_buf *etr_buf;
1327 struct etr_perf_buffer *etr_perf;
1329 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1331 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1333 return ERR_PTR(-ENOMEM);
1335 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1336 if (!IS_ERR(etr_buf))
1340 return ERR_PTR(-ENOMEM);
1344 * Keep a reference to the ETR this buffer has been allocated for
1345 * in order to have access to the IDR in tmc_free_etr_buffer().
1347 etr_perf->drvdata = drvdata;
1348 etr_perf->etr_buf = etr_buf;
1354 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1355 struct perf_event *event, void **pages,
1356 int nr_pages, bool snapshot)
1358 struct etr_perf_buffer *etr_perf;
1359 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1361 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1362 nr_pages, pages, snapshot);
1363 if (IS_ERR(etr_perf)) {
1364 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1368 etr_perf->pid = task_pid_nr(event->owner);
1369 etr_perf->snapshot = snapshot;
1370 etr_perf->nr_pages = nr_pages;
1371 etr_perf->pages = pages;
1376 static void tmc_free_etr_buffer(void *config)
1378 struct etr_perf_buffer *etr_perf = config;
1379 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1380 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1383 goto free_etr_perf_buffer;
1385 mutex_lock(&drvdata->idr_mutex);
1386 /* If we are not the last one to use the buffer, don't touch it. */
1387 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1388 mutex_unlock(&drvdata->idr_mutex);
1389 goto free_etr_perf_buffer;
1392 /* We are the last one, remove from the IDR and free the buffer. */
1393 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1394 mutex_unlock(&drvdata->idr_mutex);
1397 * Something went very wrong if the buffer associated with this ID
1398 * is not the same in the IDR. Leak to avoid use after free.
1400 if (buf && WARN_ON(buf != etr_buf))
1401 goto free_etr_perf_buffer;
1403 tmc_free_etr_buf(etr_perf->etr_buf);
1405 free_etr_perf_buffer:
1410 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1411 * buffer to the perf ring buffer.
1413 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf)
1415 long bytes, to_copy;
1416 long pg_idx, pg_offset, src_offset;
1417 unsigned long head = etr_perf->head;
1418 char **dst_pages, *src_buf;
1419 struct etr_buf *etr_buf = etr_perf->etr_buf;
1421 head = etr_perf->head;
1422 pg_idx = head >> PAGE_SHIFT;
1423 pg_offset = head & (PAGE_SIZE - 1);
1424 dst_pages = (char **)etr_perf->pages;
1425 src_offset = etr_buf->offset;
1426 to_copy = etr_buf->len;
1428 while (to_copy > 0) {
1430 * In one iteration, we can copy minimum of :
1431 * 1) what is available in the source buffer,
1432 * 2) what is available in the source buffer, before it
1434 * 3) what is available in the destination page.
1437 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1439 if (WARN_ON_ONCE(bytes <= 0))
1441 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1443 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1447 /* Move destination pointers */
1449 if (pg_offset == PAGE_SIZE) {
1451 if (++pg_idx == etr_perf->nr_pages)
1455 /* Move source pointers */
1456 src_offset += bytes;
1457 if (src_offset >= etr_buf->size)
1458 src_offset -= etr_buf->size;
1463 * tmc_update_etr_buffer : Update the perf ring buffer with the
1464 * available trace data. We use software double buffering at the moment.
1466 * TODO: Add support for reusing the perf ring buffer.
1468 static unsigned long
1469 tmc_update_etr_buffer(struct coresight_device *csdev,
1470 struct perf_output_handle *handle,
1474 unsigned long flags, size = 0;
1475 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1476 struct etr_perf_buffer *etr_perf = config;
1477 struct etr_buf *etr_buf = etr_perf->etr_buf;
1479 spin_lock_irqsave(&drvdata->spinlock, flags);
1481 /* Don't do anything if another tracer is using this sink */
1482 if (atomic_read(csdev->refcnt) != 1) {
1483 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1487 if (WARN_ON(drvdata->perf_data != etr_perf)) {
1489 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1493 CS_UNLOCK(drvdata->base);
1495 tmc_flush_and_stop(drvdata);
1496 tmc_sync_etr_buf(drvdata);
1498 CS_LOCK(drvdata->base);
1499 /* Reset perf specific data */
1500 drvdata->perf_data = NULL;
1501 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1503 size = etr_buf->len;
1504 tmc_etr_sync_perf_buffer(etr_perf);
1507 * In snapshot mode we simply increment the head by the number of byte
1508 * that were written. User space function cs_etm_find_snapshot() will
1509 * figure out how many bytes to get from the AUX buffer based on the
1510 * position of the head.
1512 if (etr_perf->snapshot)
1513 handle->head += size;
1515 lost |= etr_buf->full;
1518 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1519 * captured buffer is expected to be truncated and 2) a full buffer
1520 * prevents the event from being re-enabled by the perf core,
1521 * resulting in stale data being send to user space.
1523 if (!etr_perf->snapshot && lost)
1524 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1528 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1532 unsigned long flags;
1533 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1534 struct perf_output_handle *handle = data;
1535 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1537 spin_lock_irqsave(&drvdata->spinlock, flags);
1538 /* Don't use this sink if it is already claimed by sysFS */
1539 if (drvdata->mode == CS_MODE_SYSFS) {
1544 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1549 /* Get a handle on the pid of the process to monitor */
1550 pid = etr_perf->pid;
1552 /* Do not proceed if this device is associated with another session */
1553 if (drvdata->pid != -1 && drvdata->pid != pid) {
1558 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1559 drvdata->perf_data = etr_perf;
1562 * No HW configuration is needed if the sink is already in
1563 * use for this session.
1565 if (drvdata->pid == pid) {
1566 atomic_inc(csdev->refcnt);
1570 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1572 /* Associate with monitored process. */
1574 drvdata->mode = CS_MODE_PERF;
1575 atomic_inc(csdev->refcnt);
1579 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1583 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1584 u32 mode, void *data)
1588 return tmc_enable_etr_sink_sysfs(csdev);
1590 return tmc_enable_etr_sink_perf(csdev, data);
1593 /* We shouldn't be here */
1597 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1599 unsigned long flags;
1600 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1602 spin_lock_irqsave(&drvdata->spinlock, flags);
1604 if (drvdata->reading) {
1605 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1609 if (atomic_dec_return(csdev->refcnt)) {
1610 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1614 /* Complain if we (somehow) got out of sync */
1615 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1616 tmc_etr_disable_hw(drvdata);
1617 /* Dissociate from monitored process. */
1619 drvdata->mode = CS_MODE_DISABLED;
1621 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1623 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1627 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1628 .enable = tmc_enable_etr_sink,
1629 .disable = tmc_disable_etr_sink,
1630 .alloc_buffer = tmc_alloc_etr_buffer,
1631 .update_buffer = tmc_update_etr_buffer,
1632 .free_buffer = tmc_free_etr_buffer,
1635 const struct coresight_ops tmc_etr_cs_ops = {
1636 .sink_ops = &tmc_etr_sink_ops,
1639 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1642 unsigned long flags;
1644 /* config types are set a boot time and never change */
1645 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1648 spin_lock_irqsave(&drvdata->spinlock, flags);
1649 if (drvdata->reading) {
1655 * We can safely allow reads even if the ETR is operating in PERF mode,
1656 * since the sysfs session is captured in mode specific data.
1657 * If drvdata::sysfs_data is NULL the trace data has been read already.
1659 if (!drvdata->sysfs_buf) {
1664 /* Disable the TMC if we are trying to read from a running session. */
1665 if (drvdata->mode == CS_MODE_SYSFS)
1666 __tmc_etr_disable_hw(drvdata);
1668 drvdata->reading = true;
1670 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1675 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1677 unsigned long flags;
1678 struct etr_buf *sysfs_buf = NULL;
1680 /* config types are set a boot time and never change */
1681 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1684 spin_lock_irqsave(&drvdata->spinlock, flags);
1686 /* RE-enable the TMC if need be */
1687 if (drvdata->mode == CS_MODE_SYSFS) {
1689 * The trace run will continue with the same allocated trace
1690 * buffer. Since the tracer is still enabled drvdata::buf can't
1693 __tmc_etr_enable_hw(drvdata);
1696 * The ETR is not tracing and the buffer was just read.
1697 * As such prepare to free the trace buffer.
1699 sysfs_buf = drvdata->sysfs_buf;
1700 drvdata->sysfs_buf = NULL;
1703 drvdata->reading = false;
1704 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1706 /* Free allocated memory out side of the spinlock */
1708 tmc_etr_free_sysfs_buf(sysfs_buf);