1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
50 #include "blk-mq-sched.h"
52 #include "blk-rq-qos.h"
54 struct dentry *blk_debugfs_root;
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 DEFINE_IDA(blk_queue_ida);
66 * For queue allocation
68 struct kmem_cache *blk_requestq_cachep;
71 * Controlling structure to kblockd
73 static struct workqueue_struct *kblockd_workqueue;
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 set_bit(flag, &q->queue_flags);
84 EXPORT_SYMBOL(blk_queue_flag_set);
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 clear_bit(flag, &q->queue_flags);
95 EXPORT_SYMBOL(blk_queue_flag_clear);
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 return test_and_set_bit(flag, &q->queue_flags);
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 void blk_rq_init(struct request_queue *q, struct request *rq)
113 memset(rq, 0, sizeof(*rq));
115 INIT_LIST_HEAD(&rq->queuelist);
117 rq->__sector = (sector_t) -1;
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
122 rq->start_time_ns = ktime_get_ns();
124 refcount_set(&rq->ref, 1);
125 blk_crypto_rq_set_defaults(rq);
127 EXPORT_SYMBOL(blk_rq_init);
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
137 REQ_OP_NAME(ZONE_RESET_ALL),
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
141 REQ_OP_NAME(ZONE_APPEND),
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
145 REQ_OP_NAME(DRV_OUT),
150 * blk_op_str - Return string XXX in the REQ_OP_XXX.
153 * Description: Centralize block layer function to convert REQ_OP_XXX into
154 * string format. Useful in the debugging and tracing bio or request. For
155 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 inline const char *blk_op_str(unsigned int op)
159 const char *op_str = "UNKNOWN";
161 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
162 op_str = blk_op_name[op];
166 EXPORT_SYMBOL_GPL(blk_op_str);
168 static const struct {
172 [BLK_STS_OK] = { 0, "" },
173 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
174 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
175 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
176 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
177 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
178 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
179 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
180 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
181 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
182 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
183 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
185 /* device mapper special case, should not leak out: */
186 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188 /* zone device specific errors */
189 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
190 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
192 /* everything else not covered above: */
193 [BLK_STS_IOERR] = { -EIO, "I/O" },
196 blk_status_t errno_to_blk_status(int errno)
200 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
201 if (blk_errors[i].errno == errno)
202 return (__force blk_status_t)i;
205 return BLK_STS_IOERR;
207 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209 int blk_status_to_errno(blk_status_t status)
211 int idx = (__force int)status;
213 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 return blk_errors[idx].errno;
217 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219 static void print_req_error(struct request *req, blk_status_t status,
222 int idx = (__force int)status;
224 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
227 printk_ratelimited(KERN_ERR
228 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
229 "phys_seg %u prio class %u\n",
230 caller, blk_errors[idx].name,
231 req->rq_disk ? req->rq_disk->disk_name : "?",
232 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
233 req->cmd_flags & ~REQ_OP_MASK,
234 req->nr_phys_segments,
235 IOPRIO_PRIO_CLASS(req->ioprio));
238 static void req_bio_endio(struct request *rq, struct bio *bio,
239 unsigned int nbytes, blk_status_t error)
242 bio->bi_status = error;
244 if (unlikely(rq->rq_flags & RQF_QUIET))
245 bio_set_flag(bio, BIO_QUIET);
247 bio_advance(bio, nbytes);
249 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 * Partial zone append completions cannot be supported as the
252 * BIO fragments may end up not being written sequentially.
254 if (bio->bi_iter.bi_size)
255 bio->bi_status = BLK_STS_IOERR;
257 bio->bi_iter.bi_sector = rq->__sector;
260 /* don't actually finish bio if it's part of flush sequence */
261 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
265 void blk_dump_rq_flags(struct request *rq, char *msg)
267 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
268 rq->rq_disk ? rq->rq_disk->disk_name : "?",
269 (unsigned long long) rq->cmd_flags);
271 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
272 (unsigned long long)blk_rq_pos(rq),
273 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
274 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
275 rq->bio, rq->biotail, blk_rq_bytes(rq));
277 EXPORT_SYMBOL(blk_dump_rq_flags);
280 * blk_sync_queue - cancel any pending callbacks on a queue
284 * The block layer may perform asynchronous callback activity
285 * on a queue, such as calling the unplug function after a timeout.
286 * A block device may call blk_sync_queue to ensure that any
287 * such activity is cancelled, thus allowing it to release resources
288 * that the callbacks might use. The caller must already have made sure
289 * that its ->submit_bio will not re-add plugging prior to calling
292 * This function does not cancel any asynchronous activity arising
293 * out of elevator or throttling code. That would require elevator_exit()
294 * and blkcg_exit_queue() to be called with queue lock initialized.
297 void blk_sync_queue(struct request_queue *q)
299 del_timer_sync(&q->timeout);
300 cancel_work_sync(&q->timeout_work);
302 EXPORT_SYMBOL(blk_sync_queue);
305 * blk_set_pm_only - increment pm_only counter
306 * @q: request queue pointer
308 void blk_set_pm_only(struct request_queue *q)
310 atomic_inc(&q->pm_only);
312 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314 void blk_clear_pm_only(struct request_queue *q)
318 pm_only = atomic_dec_return(&q->pm_only);
319 WARN_ON_ONCE(pm_only < 0);
321 wake_up_all(&q->mq_freeze_wq);
323 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
326 * blk_put_queue - decrement the request_queue refcount
327 * @q: the request_queue structure to decrement the refcount for
329 * Decrements the refcount of the request_queue kobject. When this reaches 0
330 * we'll have blk_release_queue() called.
332 * Context: Any context, but the last reference must not be dropped from
335 void blk_put_queue(struct request_queue *q)
337 kobject_put(&q->kobj);
339 EXPORT_SYMBOL(blk_put_queue);
341 void blk_set_queue_dying(struct request_queue *q)
343 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346 * When queue DYING flag is set, we need to block new req
347 * entering queue, so we call blk_freeze_queue_start() to
348 * prevent I/O from crossing blk_queue_enter().
350 blk_freeze_queue_start(q);
353 blk_mq_wake_waiters(q);
355 /* Make blk_queue_enter() reexamine the DYING flag. */
356 wake_up_all(&q->mq_freeze_wq);
358 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
361 * blk_cleanup_queue - shutdown a request queue
362 * @q: request queue to shutdown
364 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
365 * put it. All future requests will be failed immediately with -ENODEV.
369 void blk_cleanup_queue(struct request_queue *q)
371 /* cannot be called from atomic context */
374 WARN_ON_ONCE(blk_queue_registered(q));
376 /* mark @q DYING, no new request or merges will be allowed afterwards */
377 blk_set_queue_dying(q);
379 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
380 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
383 * Drain all requests queued before DYING marking. Set DEAD flag to
384 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
385 * after draining finished.
391 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393 /* for synchronous bio-based driver finish in-flight integrity i/o */
394 blk_flush_integrity();
398 blk_mq_exit_queue(q);
401 * In theory, request pool of sched_tags belongs to request queue.
402 * However, the current implementation requires tag_set for freeing
403 * requests, so free the pool now.
405 * Queue has become frozen, there can't be any in-queue requests, so
406 * it is safe to free requests now.
408 mutex_lock(&q->sysfs_lock);
410 blk_mq_sched_free_requests(q);
411 mutex_unlock(&q->sysfs_lock);
413 percpu_ref_exit(&q->q_usage_counter);
415 /* @q is and will stay empty, shutdown and put */
418 EXPORT_SYMBOL(blk_cleanup_queue);
421 * blk_queue_enter() - try to increase q->q_usage_counter
422 * @q: request queue pointer
423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
425 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
427 const bool pm = flags & BLK_MQ_REQ_PM;
430 bool success = false;
433 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
435 * The code that increments the pm_only counter is
436 * responsible for ensuring that that counter is
437 * globally visible before the queue is unfrozen.
439 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
440 !blk_queue_pm_only(q)) {
443 percpu_ref_put(&q->q_usage_counter);
451 if (flags & BLK_MQ_REQ_NOWAIT)
455 * read pair of barrier in blk_freeze_queue_start(),
456 * we need to order reading __PERCPU_REF_DEAD flag of
457 * .q_usage_counter and reading .mq_freeze_depth or
458 * queue dying flag, otherwise the following wait may
459 * never return if the two reads are reordered.
463 wait_event(q->mq_freeze_wq,
464 (!q->mq_freeze_depth &&
465 blk_pm_resume_queue(pm, q)) ||
467 if (blk_queue_dying(q))
472 static inline int bio_queue_enter(struct bio *bio)
474 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
475 bool nowait = bio->bi_opf & REQ_NOWAIT;
478 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
480 if (nowait && !blk_queue_dying(q))
481 bio_wouldblock_error(bio);
489 void blk_queue_exit(struct request_queue *q)
491 percpu_ref_put(&q->q_usage_counter);
494 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
496 struct request_queue *q =
497 container_of(ref, struct request_queue, q_usage_counter);
499 wake_up_all(&q->mq_freeze_wq);
502 static void blk_rq_timed_out_timer(struct timer_list *t)
504 struct request_queue *q = from_timer(q, t, timeout);
506 kblockd_schedule_work(&q->timeout_work);
509 static void blk_timeout_work(struct work_struct *work)
513 struct request_queue *blk_alloc_queue(int node_id)
515 struct request_queue *q;
518 q = kmem_cache_alloc_node(blk_requestq_cachep,
519 GFP_KERNEL | __GFP_ZERO, node_id);
523 q->last_merge = NULL;
525 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
529 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
533 q->stats = blk_alloc_queue_stats();
539 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
541 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
542 INIT_WORK(&q->timeout_work, blk_timeout_work);
543 INIT_LIST_HEAD(&q->icq_list);
544 #ifdef CONFIG_BLK_CGROUP
545 INIT_LIST_HEAD(&q->blkg_list);
548 kobject_init(&q->kobj, &blk_queue_ktype);
550 mutex_init(&q->debugfs_mutex);
551 mutex_init(&q->sysfs_lock);
552 mutex_init(&q->sysfs_dir_lock);
553 spin_lock_init(&q->queue_lock);
555 init_waitqueue_head(&q->mq_freeze_wq);
556 mutex_init(&q->mq_freeze_lock);
559 * Init percpu_ref in atomic mode so that it's faster to shutdown.
560 * See blk_register_queue() for details.
562 if (percpu_ref_init(&q->q_usage_counter,
563 blk_queue_usage_counter_release,
564 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
567 if (blkcg_init_queue(q))
570 blk_queue_dma_alignment(q, 511);
571 blk_set_default_limits(&q->limits);
572 q->nr_requests = BLKDEV_MAX_RQ;
577 percpu_ref_exit(&q->q_usage_counter);
579 blk_free_queue_stats(q->stats);
581 bioset_exit(&q->bio_split);
583 ida_simple_remove(&blk_queue_ida, q->id);
585 kmem_cache_free(blk_requestq_cachep, q);
590 * blk_get_queue - increment the request_queue refcount
591 * @q: the request_queue structure to increment the refcount for
593 * Increment the refcount of the request_queue kobject.
595 * Context: Any context.
597 bool blk_get_queue(struct request_queue *q)
599 if (likely(!blk_queue_dying(q))) {
606 EXPORT_SYMBOL(blk_get_queue);
609 * blk_get_request - allocate a request
610 * @q: request queue to allocate a request for
611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
614 struct request *blk_get_request(struct request_queue *q, unsigned int op,
615 blk_mq_req_flags_t flags)
619 WARN_ON_ONCE(op & REQ_NOWAIT);
620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
622 req = blk_mq_alloc_request(q, op, flags);
623 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
624 q->mq_ops->initialize_rq_fn(req);
628 EXPORT_SYMBOL(blk_get_request);
630 void blk_put_request(struct request *req)
632 blk_mq_free_request(req);
634 EXPORT_SYMBOL(blk_put_request);
636 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
638 char b[BDEVNAME_SIZE];
640 pr_info_ratelimited("attempt to access beyond end of device\n"
641 "%s: rw=%d, want=%llu, limit=%llu\n",
642 bio_devname(bio, b), bio->bi_opf,
643 bio_end_sector(bio), maxsector);
646 #ifdef CONFIG_FAIL_MAKE_REQUEST
648 static DECLARE_FAULT_ATTR(fail_make_request);
650 static int __init setup_fail_make_request(char *str)
652 return setup_fault_attr(&fail_make_request, str);
654 __setup("fail_make_request=", setup_fail_make_request);
656 static bool should_fail_request(struct block_device *part, unsigned int bytes)
658 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
661 static int __init fail_make_request_debugfs(void)
663 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
664 NULL, &fail_make_request);
666 return PTR_ERR_OR_ZERO(dir);
669 late_initcall(fail_make_request_debugfs);
671 #else /* CONFIG_FAIL_MAKE_REQUEST */
673 static inline bool should_fail_request(struct block_device *part,
679 #endif /* CONFIG_FAIL_MAKE_REQUEST */
681 static inline bool bio_check_ro(struct bio *bio)
683 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
684 char b[BDEVNAME_SIZE];
686 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
690 "Trying to write to read-only block-device %s (partno %d)\n",
691 bio_devname(bio, b), bio->bi_bdev->bd_partno);
692 /* Older lvm-tools actually trigger this */
699 static noinline int should_fail_bio(struct bio *bio)
701 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
705 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
708 * Check whether this bio extends beyond the end of the device or partition.
709 * This may well happen - the kernel calls bread() without checking the size of
710 * the device, e.g., when mounting a file system.
712 static inline int bio_check_eod(struct bio *bio)
714 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
715 unsigned int nr_sectors = bio_sectors(bio);
717 if (nr_sectors && maxsector &&
718 (nr_sectors > maxsector ||
719 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
720 handle_bad_sector(bio, maxsector);
727 * Remap block n of partition p to block n+start(p) of the disk.
729 static int blk_partition_remap(struct bio *bio)
731 struct block_device *p = bio->bi_bdev;
733 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
735 if (bio_sectors(bio)) {
736 bio->bi_iter.bi_sector += p->bd_start_sect;
737 trace_block_bio_remap(bio, p->bd_dev,
738 bio->bi_iter.bi_sector -
741 bio_set_flag(bio, BIO_REMAPPED);
746 * Check write append to a zoned block device.
748 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
751 sector_t pos = bio->bi_iter.bi_sector;
752 int nr_sectors = bio_sectors(bio);
754 /* Only applicable to zoned block devices */
755 if (!blk_queue_is_zoned(q))
756 return BLK_STS_NOTSUPP;
758 /* The bio sector must point to the start of a sequential zone */
759 if (pos & (blk_queue_zone_sectors(q) - 1) ||
760 !blk_queue_zone_is_seq(q, pos))
761 return BLK_STS_IOERR;
764 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
765 * split and could result in non-contiguous sectors being written in
768 if (nr_sectors > q->limits.chunk_sectors)
769 return BLK_STS_IOERR;
771 /* Make sure the BIO is small enough and will not get split */
772 if (nr_sectors > q->limits.max_zone_append_sectors)
773 return BLK_STS_IOERR;
775 bio->bi_opf |= REQ_NOMERGE;
780 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
782 struct block_device *bdev = bio->bi_bdev;
783 struct request_queue *q = bdev->bd_disk->queue;
784 blk_status_t status = BLK_STS_IOERR;
785 struct blk_plug *plug;
789 plug = blk_mq_plug(q, bio);
790 if (plug && plug->nowait)
791 bio->bi_opf |= REQ_NOWAIT;
794 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
795 * if queue does not support NOWAIT.
797 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
800 if (should_fail_bio(bio))
802 if (unlikely(bio_check_ro(bio)))
804 if (!bio_flagged(bio, BIO_REMAPPED)) {
805 if (unlikely(bio_check_eod(bio)))
807 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
812 * Filter flush bio's early so that bio based drivers without flush
813 * support don't have to worry about them.
815 if (op_is_flush(bio->bi_opf) &&
816 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
817 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
818 if (!bio_sectors(bio)) {
824 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
825 bio->bi_opf &= ~REQ_HIPRI;
827 switch (bio_op(bio)) {
829 if (!blk_queue_discard(q))
832 case REQ_OP_SECURE_ERASE:
833 if (!blk_queue_secure_erase(q))
836 case REQ_OP_WRITE_SAME:
837 if (!q->limits.max_write_same_sectors)
840 case REQ_OP_ZONE_APPEND:
841 status = blk_check_zone_append(q, bio);
842 if (status != BLK_STS_OK)
845 case REQ_OP_ZONE_RESET:
846 case REQ_OP_ZONE_OPEN:
847 case REQ_OP_ZONE_CLOSE:
848 case REQ_OP_ZONE_FINISH:
849 if (!blk_queue_is_zoned(q))
852 case REQ_OP_ZONE_RESET_ALL:
853 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
856 case REQ_OP_WRITE_ZEROES:
857 if (!q->limits.max_write_zeroes_sectors)
865 * Various block parts want %current->io_context, so allocate it up
866 * front rather than dealing with lots of pain to allocate it only
867 * where needed. This may fail and the block layer knows how to live
870 if (unlikely(!current->io_context))
871 create_task_io_context(current, GFP_ATOMIC, q->node);
873 if (blk_throtl_bio(bio)) {
874 blkcg_bio_issue_init(bio);
878 blk_cgroup_bio_start(bio);
879 blkcg_bio_issue_init(bio);
881 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
882 trace_block_bio_queue(bio);
883 /* Now that enqueuing has been traced, we need to trace
884 * completion as well.
886 bio_set_flag(bio, BIO_TRACE_COMPLETION);
891 status = BLK_STS_NOTSUPP;
893 bio->bi_status = status;
898 static blk_qc_t __submit_bio(struct bio *bio)
900 struct gendisk *disk = bio->bi_bdev->bd_disk;
901 blk_qc_t ret = BLK_QC_T_NONE;
903 if (blk_crypto_bio_prep(&bio)) {
904 if (!disk->fops->submit_bio)
905 return blk_mq_submit_bio(bio);
906 ret = disk->fops->submit_bio(bio);
908 blk_queue_exit(disk->queue);
913 * The loop in this function may be a bit non-obvious, and so deserves some
916 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
917 * that), so we have a list with a single bio.
918 * - We pretend that we have just taken it off a longer list, so we assign
919 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
920 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
921 * bios through a recursive call to submit_bio_noacct. If it did, we find a
922 * non-NULL value in bio_list and re-enter the loop from the top.
923 * - In this case we really did just take the bio of the top of the list (no
924 * pretending) and so remove it from bio_list, and call into ->submit_bio()
927 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
928 * bio_list_on_stack[1] contains bios that were submitted before the current
929 * ->submit_bio_bio, but that haven't been processed yet.
931 static blk_qc_t __submit_bio_noacct(struct bio *bio)
933 struct bio_list bio_list_on_stack[2];
934 blk_qc_t ret = BLK_QC_T_NONE;
936 BUG_ON(bio->bi_next);
938 bio_list_init(&bio_list_on_stack[0]);
939 current->bio_list = bio_list_on_stack;
942 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
943 struct bio_list lower, same;
945 if (unlikely(bio_queue_enter(bio) != 0))
949 * Create a fresh bio_list for all subordinate requests.
951 bio_list_on_stack[1] = bio_list_on_stack[0];
952 bio_list_init(&bio_list_on_stack[0]);
954 ret = __submit_bio(bio);
957 * Sort new bios into those for a lower level and those for the
960 bio_list_init(&lower);
961 bio_list_init(&same);
962 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
963 if (q == bio->bi_bdev->bd_disk->queue)
964 bio_list_add(&same, bio);
966 bio_list_add(&lower, bio);
969 * Now assemble so we handle the lowest level first.
971 bio_list_merge(&bio_list_on_stack[0], &lower);
972 bio_list_merge(&bio_list_on_stack[0], &same);
973 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
974 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
976 current->bio_list = NULL;
980 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
982 struct bio_list bio_list[2] = { };
983 blk_qc_t ret = BLK_QC_T_NONE;
985 current->bio_list = bio_list;
988 struct gendisk *disk = bio->bi_bdev->bd_disk;
990 if (unlikely(bio_queue_enter(bio) != 0))
993 if (!blk_crypto_bio_prep(&bio)) {
994 blk_queue_exit(disk->queue);
999 ret = blk_mq_submit_bio(bio);
1000 } while ((bio = bio_list_pop(&bio_list[0])));
1002 current->bio_list = NULL;
1007 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1008 * @bio: The bio describing the location in memory and on the device.
1010 * This is a version of submit_bio() that shall only be used for I/O that is
1011 * resubmitted to lower level drivers by stacking block drivers. All file
1012 * systems and other upper level users of the block layer should use
1013 * submit_bio() instead.
1015 blk_qc_t submit_bio_noacct(struct bio *bio)
1017 if (!submit_bio_checks(bio))
1018 return BLK_QC_T_NONE;
1021 * We only want one ->submit_bio to be active at a time, else stack
1022 * usage with stacked devices could be a problem. Use current->bio_list
1023 * to collect a list of requests submited by a ->submit_bio method while
1024 * it is active, and then process them after it returned.
1026 if (current->bio_list) {
1027 bio_list_add(¤t->bio_list[0], bio);
1028 return BLK_QC_T_NONE;
1031 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1032 return __submit_bio_noacct_mq(bio);
1033 return __submit_bio_noacct(bio);
1035 EXPORT_SYMBOL(submit_bio_noacct);
1038 * submit_bio - submit a bio to the block device layer for I/O
1039 * @bio: The &struct bio which describes the I/O
1041 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1042 * fully set up &struct bio that describes the I/O that needs to be done. The
1043 * bio will be send to the device described by the bi_bdev field.
1045 * The success/failure status of the request, along with notification of
1046 * completion, is delivered asynchronously through the ->bi_end_io() callback
1047 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1050 blk_qc_t submit_bio(struct bio *bio)
1052 if (blkcg_punt_bio_submit(bio))
1053 return BLK_QC_T_NONE;
1056 * If it's a regular read/write or a barrier with data attached,
1057 * go through the normal accounting stuff before submission.
1059 if (bio_has_data(bio)) {
1062 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1063 count = queue_logical_block_size(
1064 bio->bi_bdev->bd_disk->queue) >> 9;
1066 count = bio_sectors(bio);
1068 if (op_is_write(bio_op(bio))) {
1069 count_vm_events(PGPGOUT, count);
1071 task_io_account_read(bio->bi_iter.bi_size);
1072 count_vm_events(PGPGIN, count);
1077 * If we're reading data that is part of the userspace workingset, count
1078 * submission time as memory stall. When the device is congested, or
1079 * the submitting cgroup IO-throttled, submission can be a significant
1080 * part of overall IO time.
1082 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1083 bio_flagged(bio, BIO_WORKINGSET))) {
1084 unsigned long pflags;
1087 psi_memstall_enter(&pflags);
1088 ret = submit_bio_noacct(bio);
1089 psi_memstall_leave(&pflags);
1094 return submit_bio_noacct(bio);
1096 EXPORT_SYMBOL(submit_bio);
1099 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1100 * for the new queue limits
1102 * @rq: the request being checked
1105 * @rq may have been made based on weaker limitations of upper-level queues
1106 * in request stacking drivers, and it may violate the limitation of @q.
1107 * Since the block layer and the underlying device driver trust @rq
1108 * after it is inserted to @q, it should be checked against @q before
1109 * the insertion using this generic function.
1111 * Request stacking drivers like request-based dm may change the queue
1112 * limits when retrying requests on other queues. Those requests need
1113 * to be checked against the new queue limits again during dispatch.
1115 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1118 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1120 if (blk_rq_sectors(rq) > max_sectors) {
1122 * SCSI device does not have a good way to return if
1123 * Write Same/Zero is actually supported. If a device rejects
1124 * a non-read/write command (discard, write same,etc.) the
1125 * low-level device driver will set the relevant queue limit to
1126 * 0 to prevent blk-lib from issuing more of the offending
1127 * operations. Commands queued prior to the queue limit being
1128 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1129 * errors being propagated to upper layers.
1131 if (max_sectors == 0)
1132 return BLK_STS_NOTSUPP;
1134 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1135 __func__, blk_rq_sectors(rq), max_sectors);
1136 return BLK_STS_IOERR;
1140 * The queue settings related to segment counting may differ from the
1143 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1144 if (rq->nr_phys_segments > queue_max_segments(q)) {
1145 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1146 __func__, rq->nr_phys_segments, queue_max_segments(q));
1147 return BLK_STS_IOERR;
1154 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1155 * @q: the queue to submit the request
1156 * @rq: the request being queued
1158 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1162 ret = blk_cloned_rq_check_limits(q, rq);
1163 if (ret != BLK_STS_OK)
1167 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1168 return BLK_STS_IOERR;
1170 if (blk_crypto_insert_cloned_request(rq))
1171 return BLK_STS_IOERR;
1173 if (blk_queue_io_stat(q))
1174 blk_account_io_start(rq);
1177 * Since we have a scheduler attached on the top device,
1178 * bypass a potential scheduler on the bottom device for
1181 return blk_mq_request_issue_directly(rq, true);
1183 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1186 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1187 * @rq: request to examine
1190 * A request could be merge of IOs which require different failure
1191 * handling. This function determines the number of bytes which
1192 * can be failed from the beginning of the request without
1193 * crossing into area which need to be retried further.
1196 * The number of bytes to fail.
1198 unsigned int blk_rq_err_bytes(const struct request *rq)
1200 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1201 unsigned int bytes = 0;
1204 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1205 return blk_rq_bytes(rq);
1208 * Currently the only 'mixing' which can happen is between
1209 * different fastfail types. We can safely fail portions
1210 * which have all the failfast bits that the first one has -
1211 * the ones which are at least as eager to fail as the first
1214 for (bio = rq->bio; bio; bio = bio->bi_next) {
1215 if ((bio->bi_opf & ff) != ff)
1217 bytes += bio->bi_iter.bi_size;
1220 /* this could lead to infinite loop */
1221 BUG_ON(blk_rq_bytes(rq) && !bytes);
1224 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1226 static void update_io_ticks(struct block_device *part, unsigned long now,
1229 unsigned long stamp;
1231 stamp = READ_ONCE(part->bd_stamp);
1232 if (unlikely(time_after(now, stamp))) {
1233 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1234 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1236 if (part->bd_partno) {
1237 part = bdev_whole(part);
1242 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1244 if (req->part && blk_do_io_stat(req)) {
1245 const int sgrp = op_stat_group(req_op(req));
1248 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1253 void blk_account_io_done(struct request *req, u64 now)
1256 * Account IO completion. flush_rq isn't accounted as a
1257 * normal IO on queueing nor completion. Accounting the
1258 * containing request is enough.
1260 if (req->part && blk_do_io_stat(req) &&
1261 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1262 const int sgrp = op_stat_group(req_op(req));
1265 update_io_ticks(req->part, jiffies, true);
1266 part_stat_inc(req->part, ios[sgrp]);
1267 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1272 void blk_account_io_start(struct request *rq)
1274 if (!blk_do_io_stat(rq))
1277 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1278 if (rq->bio && rq->bio->bi_bdev)
1279 rq->part = rq->bio->bi_bdev;
1281 rq->part = rq->rq_disk->part0;
1284 update_io_ticks(rq->part, jiffies, false);
1288 static unsigned long __part_start_io_acct(struct block_device *part,
1289 unsigned int sectors, unsigned int op)
1291 const int sgrp = op_stat_group(op);
1292 unsigned long now = READ_ONCE(jiffies);
1295 update_io_ticks(part, now, false);
1296 part_stat_inc(part, ios[sgrp]);
1297 part_stat_add(part, sectors[sgrp], sectors);
1298 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1305 * bio_start_io_acct - start I/O accounting for bio based drivers
1306 * @bio: bio to start account for
1308 * Returns the start time that should be passed back to bio_end_io_acct().
1310 unsigned long bio_start_io_acct(struct bio *bio)
1312 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1314 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1316 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1319 return __part_start_io_acct(disk->part0, sectors, op);
1321 EXPORT_SYMBOL(disk_start_io_acct);
1323 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1324 unsigned long start_time)
1326 const int sgrp = op_stat_group(op);
1327 unsigned long now = READ_ONCE(jiffies);
1328 unsigned long duration = now - start_time;
1331 update_io_ticks(part, now, true);
1332 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1333 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1337 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1338 struct block_device *orig_bdev)
1340 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1342 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1344 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1345 unsigned long start_time)
1347 __part_end_io_acct(disk->part0, op, start_time);
1349 EXPORT_SYMBOL(disk_end_io_acct);
1352 * Steal bios from a request and add them to a bio list.
1353 * The request must not have been partially completed before.
1355 void blk_steal_bios(struct bio_list *list, struct request *rq)
1359 list->tail->bi_next = rq->bio;
1361 list->head = rq->bio;
1362 list->tail = rq->biotail;
1370 EXPORT_SYMBOL_GPL(blk_steal_bios);
1373 * blk_update_request - Complete multiple bytes without completing the request
1374 * @req: the request being processed
1375 * @error: block status code
1376 * @nr_bytes: number of bytes to complete for @req
1379 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1380 * the request structure even if @req doesn't have leftover.
1381 * If @req has leftover, sets it up for the next range of segments.
1383 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1384 * %false return from this function.
1387 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1388 * except in the consistency check at the end of this function.
1391 * %false - this request doesn't have any more data
1392 * %true - this request has more data
1394 bool blk_update_request(struct request *req, blk_status_t error,
1395 unsigned int nr_bytes)
1399 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1404 #ifdef CONFIG_BLK_DEV_INTEGRITY
1405 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1406 error == BLK_STS_OK)
1407 req->q->integrity.profile->complete_fn(req, nr_bytes);
1410 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1411 !(req->rq_flags & RQF_QUIET)))
1412 print_req_error(req, error, __func__);
1414 blk_account_io_completion(req, nr_bytes);
1418 struct bio *bio = req->bio;
1419 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1421 if (bio_bytes == bio->bi_iter.bi_size)
1422 req->bio = bio->bi_next;
1424 /* Completion has already been traced */
1425 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1426 req_bio_endio(req, bio, bio_bytes, error);
1428 total_bytes += bio_bytes;
1429 nr_bytes -= bio_bytes;
1440 * Reset counters so that the request stacking driver
1441 * can find how many bytes remain in the request
1444 req->__data_len = 0;
1448 req->__data_len -= total_bytes;
1450 /* update sector only for requests with clear definition of sector */
1451 if (!blk_rq_is_passthrough(req))
1452 req->__sector += total_bytes >> 9;
1454 /* mixed attributes always follow the first bio */
1455 if (req->rq_flags & RQF_MIXED_MERGE) {
1456 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1457 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1460 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1462 * If total number of sectors is less than the first segment
1463 * size, something has gone terribly wrong.
1465 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1466 blk_dump_rq_flags(req, "request botched");
1467 req->__data_len = blk_rq_cur_bytes(req);
1470 /* recalculate the number of segments */
1471 req->nr_phys_segments = blk_recalc_rq_segments(req);
1476 EXPORT_SYMBOL_GPL(blk_update_request);
1478 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1480 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1481 * @rq: the request to be flushed
1484 * Flush all pages in @rq.
1486 void rq_flush_dcache_pages(struct request *rq)
1488 struct req_iterator iter;
1489 struct bio_vec bvec;
1491 rq_for_each_segment(bvec, rq, iter)
1492 flush_dcache_page(bvec.bv_page);
1494 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1498 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1499 * @q : the queue of the device being checked
1502 * Check if underlying low-level drivers of a device are busy.
1503 * If the drivers want to export their busy state, they must set own
1504 * exporting function using blk_queue_lld_busy() first.
1506 * Basically, this function is used only by request stacking drivers
1507 * to stop dispatching requests to underlying devices when underlying
1508 * devices are busy. This behavior helps more I/O merging on the queue
1509 * of the request stacking driver and prevents I/O throughput regression
1510 * on burst I/O load.
1513 * 0 - Not busy (The request stacking driver should dispatch request)
1514 * 1 - Busy (The request stacking driver should stop dispatching request)
1516 int blk_lld_busy(struct request_queue *q)
1518 if (queue_is_mq(q) && q->mq_ops->busy)
1519 return q->mq_ops->busy(q);
1523 EXPORT_SYMBOL_GPL(blk_lld_busy);
1526 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1527 * @rq: the clone request to be cleaned up
1530 * Free all bios in @rq for a cloned request.
1532 void blk_rq_unprep_clone(struct request *rq)
1536 while ((bio = rq->bio) != NULL) {
1537 rq->bio = bio->bi_next;
1542 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1545 * blk_rq_prep_clone - Helper function to setup clone request
1546 * @rq: the request to be setup
1547 * @rq_src: original request to be cloned
1548 * @bs: bio_set that bios for clone are allocated from
1549 * @gfp_mask: memory allocation mask for bio
1550 * @bio_ctr: setup function to be called for each clone bio.
1551 * Returns %0 for success, non %0 for failure.
1552 * @data: private data to be passed to @bio_ctr
1555 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1556 * Also, pages which the original bios are pointing to are not copied
1557 * and the cloned bios just point same pages.
1558 * So cloned bios must be completed before original bios, which means
1559 * the caller must complete @rq before @rq_src.
1561 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1562 struct bio_set *bs, gfp_t gfp_mask,
1563 int (*bio_ctr)(struct bio *, struct bio *, void *),
1566 struct bio *bio, *bio_src;
1571 __rq_for_each_bio(bio_src, rq_src) {
1572 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1576 if (bio_ctr && bio_ctr(bio, bio_src, data))
1580 rq->biotail->bi_next = bio;
1583 rq->bio = rq->biotail = bio;
1588 /* Copy attributes of the original request to the clone request. */
1589 rq->__sector = blk_rq_pos(rq_src);
1590 rq->__data_len = blk_rq_bytes(rq_src);
1591 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1592 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1593 rq->special_vec = rq_src->special_vec;
1595 rq->nr_phys_segments = rq_src->nr_phys_segments;
1596 rq->ioprio = rq_src->ioprio;
1598 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1606 blk_rq_unprep_clone(rq);
1610 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1612 int kblockd_schedule_work(struct work_struct *work)
1614 return queue_work(kblockd_workqueue, work);
1616 EXPORT_SYMBOL(kblockd_schedule_work);
1618 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1619 unsigned long delay)
1621 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1623 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1626 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1627 * @plug: The &struct blk_plug that needs to be initialized
1630 * blk_start_plug() indicates to the block layer an intent by the caller
1631 * to submit multiple I/O requests in a batch. The block layer may use
1632 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1633 * is called. However, the block layer may choose to submit requests
1634 * before a call to blk_finish_plug() if the number of queued I/Os
1635 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1636 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1637 * the task schedules (see below).
1639 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1640 * pending I/O should the task end up blocking between blk_start_plug() and
1641 * blk_finish_plug(). This is important from a performance perspective, but
1642 * also ensures that we don't deadlock. For instance, if the task is blocking
1643 * for a memory allocation, memory reclaim could end up wanting to free a
1644 * page belonging to that request that is currently residing in our private
1645 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1646 * this kind of deadlock.
1648 void blk_start_plug(struct blk_plug *plug)
1650 struct task_struct *tsk = current;
1653 * If this is a nested plug, don't actually assign it.
1658 INIT_LIST_HEAD(&plug->mq_list);
1659 INIT_LIST_HEAD(&plug->cb_list);
1661 plug->multiple_queues = false;
1662 plug->nowait = false;
1665 * Store ordering should not be needed here, since a potential
1666 * preempt will imply a full memory barrier
1670 EXPORT_SYMBOL(blk_start_plug);
1672 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1674 LIST_HEAD(callbacks);
1676 while (!list_empty(&plug->cb_list)) {
1677 list_splice_init(&plug->cb_list, &callbacks);
1679 while (!list_empty(&callbacks)) {
1680 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1683 list_del(&cb->list);
1684 cb->callback(cb, from_schedule);
1689 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1692 struct blk_plug *plug = current->plug;
1693 struct blk_plug_cb *cb;
1698 list_for_each_entry(cb, &plug->cb_list, list)
1699 if (cb->callback == unplug && cb->data == data)
1702 /* Not currently on the callback list */
1703 BUG_ON(size < sizeof(*cb));
1704 cb = kzalloc(size, GFP_ATOMIC);
1707 cb->callback = unplug;
1708 list_add(&cb->list, &plug->cb_list);
1712 EXPORT_SYMBOL(blk_check_plugged);
1714 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1716 flush_plug_callbacks(plug, from_schedule);
1718 if (!list_empty(&plug->mq_list))
1719 blk_mq_flush_plug_list(plug, from_schedule);
1723 * blk_finish_plug - mark the end of a batch of submitted I/O
1724 * @plug: The &struct blk_plug passed to blk_start_plug()
1727 * Indicate that a batch of I/O submissions is complete. This function
1728 * must be paired with an initial call to blk_start_plug(). The intent
1729 * is to allow the block layer to optimize I/O submission. See the
1730 * documentation for blk_start_plug() for more information.
1732 void blk_finish_plug(struct blk_plug *plug)
1734 if (plug != current->plug)
1736 blk_flush_plug_list(plug, false);
1738 current->plug = NULL;
1740 EXPORT_SYMBOL(blk_finish_plug);
1742 void blk_io_schedule(void)
1744 /* Prevent hang_check timer from firing at us during very long I/O */
1745 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1748 io_schedule_timeout(timeout);
1752 EXPORT_SYMBOL_GPL(blk_io_schedule);
1754 int __init blk_dev_init(void)
1756 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1757 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1758 sizeof_field(struct request, cmd_flags));
1759 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1760 sizeof_field(struct bio, bi_opf));
1762 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1763 kblockd_workqueue = alloc_workqueue("kblockd",
1764 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1765 if (!kblockd_workqueue)
1766 panic("Failed to create kblockd\n");
1768 blk_requestq_cachep = kmem_cache_create("request_queue",
1769 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1771 blk_debugfs_root = debugfs_create_dir("block", NULL);