1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
43 #include <asm/pgalloc.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
51 * By default, transparent hugepage support is disabled in order to avoid
52 * risking an increased memory footprint for applications that are not
53 * guaranteed to benefit from it. When transparent hugepage support is
54 * enabled, it is for all mappings, and khugepaged scans all mappings.
55 * Defrag is invoked by khugepaged hugepage allocations and by page faults
56 * for all hugepage allocations.
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69 static struct shrinker *deferred_split_shrinker;
70 static unsigned long deferred_split_count(struct shrinker *shrink,
71 struct shrink_control *sc);
72 static unsigned long deferred_split_scan(struct shrinker *shrink,
73 struct shrink_control *sc);
75 static atomic_t huge_zero_refcount;
76 struct page *huge_zero_page __read_mostly;
77 unsigned long huge_zero_pfn __read_mostly = ~0UL;
78 unsigned long huge_anon_orders_always __read_mostly;
79 unsigned long huge_anon_orders_madvise __read_mostly;
80 unsigned long huge_anon_orders_inherit __read_mostly;
82 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
83 unsigned long vm_flags, bool smaps,
84 bool in_pf, bool enforce_sysfs,
87 /* Check the intersection of requested and supported orders. */
88 orders &= vma_is_anonymous(vma) ?
89 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
93 if (!vma->vm_mm) /* vdso */
97 * Explicitly disabled through madvise or prctl, or some
98 * architectures may disable THP for some mappings, for
101 if ((vm_flags & VM_NOHUGEPAGE) ||
102 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
105 * If the hardware/firmware marked hugepage support disabled.
107 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
110 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
112 return in_pf ? orders : 0;
115 * khugepaged special VMA and hugetlb VMA.
116 * Must be checked after dax since some dax mappings may have
119 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
123 * Check alignment for file vma and size for both file and anon vma by
124 * filtering out the unsuitable orders.
126 * Skip the check for page fault. Huge fault does the check in fault
130 int order = highest_order(orders);
134 addr = vma->vm_end - (PAGE_SIZE << order);
135 if (thp_vma_suitable_order(vma, addr, order))
137 order = next_order(&orders, order);
145 * Enabled via shmem mount options or sysfs settings.
146 * Must be done before hugepage flags check since shmem has its
149 if (!in_pf && shmem_file(vma->vm_file))
150 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
151 !enforce_sysfs, vma->vm_mm, vm_flags)
154 if (!vma_is_anonymous(vma)) {
156 * Enforce sysfs THP requirements as necessary. Anonymous vmas
157 * were already handled in thp_vma_allowable_orders().
160 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
161 !hugepage_global_always())))
165 * Trust that ->huge_fault() handlers know what they are doing
168 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
170 /* Only regular file is valid in collapse path */
171 if (((!in_pf || smaps)) && file_thp_enabled(vma))
176 if (vma_is_temporary_stack(vma))
180 * THPeligible bit of smaps should show 1 for proper VMAs even
181 * though anon_vma is not initialized yet.
183 * Allow page fault since anon_vma may be not initialized until
184 * the first page fault.
187 return (smaps || in_pf) ? orders : 0;
192 static bool get_huge_zero_page(void)
194 struct page *zero_page;
196 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
199 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
202 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
206 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
208 __free_pages(zero_page, compound_order(zero_page));
211 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
213 /* We take additional reference here. It will be put back by shrinker */
214 atomic_set(&huge_zero_refcount, 2);
216 count_vm_event(THP_ZERO_PAGE_ALLOC);
220 static void put_huge_zero_page(void)
223 * Counter should never go to zero here. Only shrinker can put
226 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
229 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
231 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
232 return READ_ONCE(huge_zero_page);
234 if (!get_huge_zero_page())
237 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
238 put_huge_zero_page();
240 return READ_ONCE(huge_zero_page);
243 void mm_put_huge_zero_page(struct mm_struct *mm)
245 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
246 put_huge_zero_page();
249 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
250 struct shrink_control *sc)
252 /* we can free zero page only if last reference remains */
253 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
256 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
257 struct shrink_control *sc)
259 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
260 struct page *zero_page = xchg(&huge_zero_page, NULL);
261 BUG_ON(zero_page == NULL);
262 WRITE_ONCE(huge_zero_pfn, ~0UL);
263 __free_pages(zero_page, compound_order(zero_page));
270 static struct shrinker *huge_zero_page_shrinker;
273 static ssize_t enabled_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
278 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
279 output = "[always] madvise never";
280 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
281 &transparent_hugepage_flags))
282 output = "always [madvise] never";
284 output = "always madvise [never]";
286 return sysfs_emit(buf, "%s\n", output);
289 static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
295 if (sysfs_streq(buf, "always")) {
296 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
298 } else if (sysfs_streq(buf, "madvise")) {
299 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
300 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 } else if (sysfs_streq(buf, "never")) {
302 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
303 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
308 int err = start_stop_khugepaged();
315 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
317 ssize_t single_hugepage_flag_show(struct kobject *kobj,
318 struct kobj_attribute *attr, char *buf,
319 enum transparent_hugepage_flag flag)
321 return sysfs_emit(buf, "%d\n",
322 !!test_bit(flag, &transparent_hugepage_flags));
325 ssize_t single_hugepage_flag_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count,
328 enum transparent_hugepage_flag flag)
333 ret = kstrtoul(buf, 10, &value);
340 set_bit(flag, &transparent_hugepage_flags);
342 clear_bit(flag, &transparent_hugepage_flags);
347 static ssize_t defrag_show(struct kobject *kobj,
348 struct kobj_attribute *attr, char *buf)
352 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
353 &transparent_hugepage_flags))
354 output = "[always] defer defer+madvise madvise never";
355 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
356 &transparent_hugepage_flags))
357 output = "always [defer] defer+madvise madvise never";
358 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
359 &transparent_hugepage_flags))
360 output = "always defer [defer+madvise] madvise never";
361 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
362 &transparent_hugepage_flags))
363 output = "always defer defer+madvise [madvise] never";
365 output = "always defer defer+madvise madvise [never]";
367 return sysfs_emit(buf, "%s\n", output);
370 static ssize_t defrag_store(struct kobject *kobj,
371 struct kobj_attribute *attr,
372 const char *buf, size_t count)
374 if (sysfs_streq(buf, "always")) {
375 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
376 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
377 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
378 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
379 } else if (sysfs_streq(buf, "defer+madvise")) {
380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
383 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
384 } else if (sysfs_streq(buf, "defer")) {
385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
388 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
389 } else if (sysfs_streq(buf, "madvise")) {
390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
393 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
394 } else if (sysfs_streq(buf, "never")) {
395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
409 return single_hugepage_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 struct kobj_attribute *attr, const char *buf, size_t count)
415 return single_hugepage_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
418 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
420 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
421 struct kobj_attribute *attr, char *buf)
423 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
425 static struct kobj_attribute hpage_pmd_size_attr =
426 __ATTR_RO(hpage_pmd_size);
428 static struct attribute *hugepage_attr[] = {
431 &use_zero_page_attr.attr,
432 &hpage_pmd_size_attr.attr,
434 &shmem_enabled_attr.attr,
439 static const struct attribute_group hugepage_attr_group = {
440 .attrs = hugepage_attr,
443 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
444 static void thpsize_release(struct kobject *kobj);
445 static DEFINE_SPINLOCK(huge_anon_orders_lock);
446 static LIST_HEAD(thpsize_list);
450 struct list_head node;
454 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
456 static ssize_t thpsize_enabled_show(struct kobject *kobj,
457 struct kobj_attribute *attr, char *buf)
459 int order = to_thpsize(kobj)->order;
462 if (test_bit(order, &huge_anon_orders_always))
463 output = "[always] inherit madvise never";
464 else if (test_bit(order, &huge_anon_orders_inherit))
465 output = "always [inherit] madvise never";
466 else if (test_bit(order, &huge_anon_orders_madvise))
467 output = "always inherit [madvise] never";
469 output = "always inherit madvise [never]";
471 return sysfs_emit(buf, "%s\n", output);
474 static ssize_t thpsize_enabled_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
478 int order = to_thpsize(kobj)->order;
481 if (sysfs_streq(buf, "always")) {
482 spin_lock(&huge_anon_orders_lock);
483 clear_bit(order, &huge_anon_orders_inherit);
484 clear_bit(order, &huge_anon_orders_madvise);
485 set_bit(order, &huge_anon_orders_always);
486 spin_unlock(&huge_anon_orders_lock);
487 } else if (sysfs_streq(buf, "inherit")) {
488 spin_lock(&huge_anon_orders_lock);
489 clear_bit(order, &huge_anon_orders_always);
490 clear_bit(order, &huge_anon_orders_madvise);
491 set_bit(order, &huge_anon_orders_inherit);
492 spin_unlock(&huge_anon_orders_lock);
493 } else if (sysfs_streq(buf, "madvise")) {
494 spin_lock(&huge_anon_orders_lock);
495 clear_bit(order, &huge_anon_orders_always);
496 clear_bit(order, &huge_anon_orders_inherit);
497 set_bit(order, &huge_anon_orders_madvise);
498 spin_unlock(&huge_anon_orders_lock);
499 } else if (sysfs_streq(buf, "never")) {
500 spin_lock(&huge_anon_orders_lock);
501 clear_bit(order, &huge_anon_orders_always);
502 clear_bit(order, &huge_anon_orders_inherit);
503 clear_bit(order, &huge_anon_orders_madvise);
504 spin_unlock(&huge_anon_orders_lock);
511 static struct kobj_attribute thpsize_enabled_attr =
512 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
514 static struct attribute *thpsize_attrs[] = {
515 &thpsize_enabled_attr.attr,
519 static const struct attribute_group thpsize_attr_group = {
520 .attrs = thpsize_attrs,
523 static const struct kobj_type thpsize_ktype = {
524 .release = &thpsize_release,
525 .sysfs_ops = &kobj_sysfs_ops,
528 static struct thpsize *thpsize_create(int order, struct kobject *parent)
530 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
531 struct thpsize *thpsize;
534 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
536 return ERR_PTR(-ENOMEM);
538 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
539 "hugepages-%lukB", size);
545 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
547 kobject_put(&thpsize->kobj);
551 thpsize->order = order;
555 static void thpsize_release(struct kobject *kobj)
557 kfree(to_thpsize(kobj));
560 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
563 struct thpsize *thpsize;
564 unsigned long orders;
568 * Default to setting PMD-sized THP to inherit the global setting and
569 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
570 * constant so we have to do this here.
572 huge_anon_orders_inherit = BIT(PMD_ORDER);
574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 if (unlikely(!*hugepage_kobj)) {
576 pr_err("failed to create transparent hugepage kobject\n");
580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
582 pr_err("failed to register transparent hugepage group\n");
586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
588 pr_err("failed to register transparent hugepage group\n");
589 goto remove_hp_group;
592 orders = THP_ORDERS_ALL_ANON;
593 order = highest_order(orders);
595 thpsize = thpsize_create(order, *hugepage_kobj);
596 if (IS_ERR(thpsize)) {
597 pr_err("failed to create thpsize for order %d\n", order);
598 err = PTR_ERR(thpsize);
601 list_add(&thpsize->node, &thpsize_list);
602 order = next_order(&orders, order);
608 hugepage_exit_sysfs(*hugepage_kobj);
611 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
613 kobject_put(*hugepage_kobj);
617 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619 struct thpsize *thpsize, *tmp;
621 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
622 list_del(&thpsize->node);
623 kobject_put(&thpsize->kobj);
626 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
627 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
628 kobject_put(hugepage_kobj);
631 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
636 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
639 #endif /* CONFIG_SYSFS */
641 static int __init thp_shrinker_init(void)
643 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
644 if (!huge_zero_page_shrinker)
647 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
648 SHRINKER_MEMCG_AWARE |
650 "thp-deferred_split");
651 if (!deferred_split_shrinker) {
652 shrinker_free(huge_zero_page_shrinker);
656 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
657 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
658 shrinker_register(huge_zero_page_shrinker);
660 deferred_split_shrinker->count_objects = deferred_split_count;
661 deferred_split_shrinker->scan_objects = deferred_split_scan;
662 shrinker_register(deferred_split_shrinker);
667 static void __init thp_shrinker_exit(void)
669 shrinker_free(huge_zero_page_shrinker);
670 shrinker_free(deferred_split_shrinker);
673 static int __init hugepage_init(void)
676 struct kobject *hugepage_kobj;
678 if (!has_transparent_hugepage()) {
679 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
684 * hugepages can't be allocated by the buddy allocator
686 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
688 * we use page->mapping and page->index in second tail page
689 * as list_head: assuming THP order >= 2
691 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
693 err = hugepage_init_sysfs(&hugepage_kobj);
697 err = khugepaged_init();
701 err = thp_shrinker_init();
706 * By default disable transparent hugepages on smaller systems,
707 * where the extra memory used could hurt more than TLB overhead
708 * is likely to save. The admin can still enable it through /sys.
710 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
711 transparent_hugepage_flags = 0;
715 err = start_stop_khugepaged();
723 khugepaged_destroy();
725 hugepage_exit_sysfs(hugepage_kobj);
729 subsys_initcall(hugepage_init);
731 static int __init setup_transparent_hugepage(char *str)
736 if (!strcmp(str, "always")) {
737 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
738 &transparent_hugepage_flags);
739 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
740 &transparent_hugepage_flags);
742 } else if (!strcmp(str, "madvise")) {
743 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
744 &transparent_hugepage_flags);
745 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
746 &transparent_hugepage_flags);
748 } else if (!strcmp(str, "never")) {
749 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
750 &transparent_hugepage_flags);
751 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
752 &transparent_hugepage_flags);
757 pr_warn("transparent_hugepage= cannot parse, ignored\n");
760 __setup("transparent_hugepage=", setup_transparent_hugepage);
762 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
764 if (likely(vma->vm_flags & VM_WRITE))
765 pmd = pmd_mkwrite(pmd, vma);
771 struct deferred_split *get_deferred_split_queue(struct folio *folio)
773 struct mem_cgroup *memcg = folio_memcg(folio);
774 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
777 return &memcg->deferred_split_queue;
779 return &pgdat->deferred_split_queue;
783 struct deferred_split *get_deferred_split_queue(struct folio *folio)
785 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
787 return &pgdat->deferred_split_queue;
791 void folio_prep_large_rmappable(struct folio *folio)
793 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
794 INIT_LIST_HEAD(&folio->_deferred_list);
795 folio_set_large_rmappable(folio);
798 static inline bool is_transparent_hugepage(struct folio *folio)
800 if (!folio_test_large(folio))
803 return is_huge_zero_page(&folio->page) ||
804 folio_test_large_rmappable(folio);
807 static unsigned long __thp_get_unmapped_area(struct file *filp,
808 unsigned long addr, unsigned long len,
809 loff_t off, unsigned long flags, unsigned long size)
811 loff_t off_end = off + len;
812 loff_t off_align = round_up(off, size);
813 unsigned long len_pad, ret;
815 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
818 if (off_end <= off_align || (off_end - off_align) < size)
821 len_pad = len + size;
822 if (len_pad < len || (off + len_pad) < off)
825 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
826 off >> PAGE_SHIFT, flags);
829 * The failure might be due to length padding. The caller will retry
830 * without the padding.
832 if (IS_ERR_VALUE(ret))
836 * Do not try to align to THP boundary if allocation at the address
842 ret += (off - ret) & (size - 1);
846 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
847 unsigned long len, unsigned long pgoff, unsigned long flags)
850 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
852 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
856 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
858 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
860 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
861 struct page *page, gfp_t gfp)
863 struct vm_area_struct *vma = vmf->vma;
864 struct folio *folio = page_folio(page);
866 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
869 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
871 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
873 count_vm_event(THP_FAULT_FALLBACK);
874 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
875 return VM_FAULT_FALLBACK;
877 folio_throttle_swaprate(folio, gfp);
879 pgtable = pte_alloc_one(vma->vm_mm);
880 if (unlikely(!pgtable)) {
885 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
887 * The memory barrier inside __folio_mark_uptodate makes sure that
888 * clear_huge_page writes become visible before the set_pmd_at()
891 __folio_mark_uptodate(folio);
893 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
894 if (unlikely(!pmd_none(*vmf->pmd))) {
899 ret = check_stable_address_space(vma->vm_mm);
903 /* Deliver the page fault to userland */
904 if (userfaultfd_missing(vma)) {
905 spin_unlock(vmf->ptl);
907 pte_free(vma->vm_mm, pgtable);
908 ret = handle_userfault(vmf, VM_UFFD_MISSING);
909 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
913 entry = mk_huge_pmd(page, vma->vm_page_prot);
914 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
915 folio_add_new_anon_rmap(folio, vma, haddr);
916 folio_add_lru_vma(folio, vma);
917 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
918 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
919 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
920 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
921 mm_inc_nr_ptes(vma->vm_mm);
922 spin_unlock(vmf->ptl);
923 count_vm_event(THP_FAULT_ALLOC);
924 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
929 spin_unlock(vmf->ptl);
932 pte_free(vma->vm_mm, pgtable);
939 * always: directly stall for all thp allocations
940 * defer: wake kswapd and fail if not immediately available
941 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
942 * fail if not immediately available
943 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
945 * never: never stall for any thp allocation
947 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
949 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
951 /* Always do synchronous compaction */
952 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
953 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
955 /* Kick kcompactd and fail quickly */
956 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
957 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
959 /* Synchronous compaction if madvised, otherwise kick kcompactd */
960 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
961 return GFP_TRANSHUGE_LIGHT |
962 (vma_madvised ? __GFP_DIRECT_RECLAIM :
963 __GFP_KSWAPD_RECLAIM);
965 /* Only do synchronous compaction if madvised */
966 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
967 return GFP_TRANSHUGE_LIGHT |
968 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
970 return GFP_TRANSHUGE_LIGHT;
973 /* Caller must hold page table lock. */
974 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
975 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
976 struct page *zero_page)
981 entry = mk_pmd(zero_page, vma->vm_page_prot);
982 entry = pmd_mkhuge(entry);
983 pgtable_trans_huge_deposit(mm, pmd, pgtable);
984 set_pmd_at(mm, haddr, pmd, entry);
988 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
990 struct vm_area_struct *vma = vmf->vma;
993 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
995 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
996 return VM_FAULT_FALLBACK;
997 if (unlikely(anon_vma_prepare(vma)))
999 khugepaged_enter_vma(vma, vma->vm_flags);
1001 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1002 !mm_forbids_zeropage(vma->vm_mm) &&
1003 transparent_hugepage_use_zero_page()) {
1005 struct page *zero_page;
1007 pgtable = pte_alloc_one(vma->vm_mm);
1008 if (unlikely(!pgtable))
1009 return VM_FAULT_OOM;
1010 zero_page = mm_get_huge_zero_page(vma->vm_mm);
1011 if (unlikely(!zero_page)) {
1012 pte_free(vma->vm_mm, pgtable);
1013 count_vm_event(THP_FAULT_FALLBACK);
1014 return VM_FAULT_FALLBACK;
1016 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1018 if (pmd_none(*vmf->pmd)) {
1019 ret = check_stable_address_space(vma->vm_mm);
1021 spin_unlock(vmf->ptl);
1022 pte_free(vma->vm_mm, pgtable);
1023 } else if (userfaultfd_missing(vma)) {
1024 spin_unlock(vmf->ptl);
1025 pte_free(vma->vm_mm, pgtable);
1026 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1027 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1029 set_huge_zero_page(pgtable, vma->vm_mm, vma,
1030 haddr, vmf->pmd, zero_page);
1031 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1032 spin_unlock(vmf->ptl);
1035 spin_unlock(vmf->ptl);
1036 pte_free(vma->vm_mm, pgtable);
1040 gfp = vma_thp_gfp_mask(vma);
1041 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1042 if (unlikely(!folio)) {
1043 count_vm_event(THP_FAULT_FALLBACK);
1044 return VM_FAULT_FALLBACK;
1046 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1049 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1050 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1053 struct mm_struct *mm = vma->vm_mm;
1057 ptl = pmd_lock(mm, pmd);
1058 if (!pmd_none(*pmd)) {
1060 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1061 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1064 entry = pmd_mkyoung(*pmd);
1065 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1066 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1067 update_mmu_cache_pmd(vma, addr, pmd);
1073 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1074 if (pfn_t_devmap(pfn))
1075 entry = pmd_mkdevmap(entry);
1077 entry = pmd_mkyoung(pmd_mkdirty(entry));
1078 entry = maybe_pmd_mkwrite(entry, vma);
1082 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1087 set_pmd_at(mm, addr, pmd, entry);
1088 update_mmu_cache_pmd(vma, addr, pmd);
1093 pte_free(mm, pgtable);
1097 * vmf_insert_pfn_pmd - insert a pmd size pfn
1098 * @vmf: Structure describing the fault
1099 * @pfn: pfn to insert
1100 * @write: whether it's a write fault
1102 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1104 * Return: vm_fault_t value.
1106 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1108 unsigned long addr = vmf->address & PMD_MASK;
1109 struct vm_area_struct *vma = vmf->vma;
1110 pgprot_t pgprot = vma->vm_page_prot;
1111 pgtable_t pgtable = NULL;
1114 * If we had pmd_special, we could avoid all these restrictions,
1115 * but we need to be consistent with PTEs and architectures that
1116 * can't support a 'special' bit.
1118 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1119 !pfn_t_devmap(pfn));
1120 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1121 (VM_PFNMAP|VM_MIXEDMAP));
1122 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1124 if (addr < vma->vm_start || addr >= vma->vm_end)
1125 return VM_FAULT_SIGBUS;
1127 if (arch_needs_pgtable_deposit()) {
1128 pgtable = pte_alloc_one(vma->vm_mm);
1130 return VM_FAULT_OOM;
1133 track_pfn_insert(vma, &pgprot, pfn);
1135 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1136 return VM_FAULT_NOPAGE;
1138 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1140 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1141 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1143 if (likely(vma->vm_flags & VM_WRITE))
1144 pud = pud_mkwrite(pud);
1148 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1149 pud_t *pud, pfn_t pfn, bool write)
1151 struct mm_struct *mm = vma->vm_mm;
1152 pgprot_t prot = vma->vm_page_prot;
1156 ptl = pud_lock(mm, pud);
1157 if (!pud_none(*pud)) {
1159 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1160 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1163 entry = pud_mkyoung(*pud);
1164 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1165 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1166 update_mmu_cache_pud(vma, addr, pud);
1171 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1172 if (pfn_t_devmap(pfn))
1173 entry = pud_mkdevmap(entry);
1175 entry = pud_mkyoung(pud_mkdirty(entry));
1176 entry = maybe_pud_mkwrite(entry, vma);
1178 set_pud_at(mm, addr, pud, entry);
1179 update_mmu_cache_pud(vma, addr, pud);
1186 * vmf_insert_pfn_pud - insert a pud size pfn
1187 * @vmf: Structure describing the fault
1188 * @pfn: pfn to insert
1189 * @write: whether it's a write fault
1191 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1193 * Return: vm_fault_t value.
1195 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1197 unsigned long addr = vmf->address & PUD_MASK;
1198 struct vm_area_struct *vma = vmf->vma;
1199 pgprot_t pgprot = vma->vm_page_prot;
1202 * If we had pud_special, we could avoid all these restrictions,
1203 * but we need to be consistent with PTEs and architectures that
1204 * can't support a 'special' bit.
1206 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1207 !pfn_t_devmap(pfn));
1208 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1209 (VM_PFNMAP|VM_MIXEDMAP));
1210 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1212 if (addr < vma->vm_start || addr >= vma->vm_end)
1213 return VM_FAULT_SIGBUS;
1215 track_pfn_insert(vma, &pgprot, pfn);
1217 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1218 return VM_FAULT_NOPAGE;
1220 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1221 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1223 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1224 pmd_t *pmd, bool write)
1228 _pmd = pmd_mkyoung(*pmd);
1230 _pmd = pmd_mkdirty(_pmd);
1231 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1233 update_mmu_cache_pmd(vma, addr, pmd);
1236 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1237 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1239 unsigned long pfn = pmd_pfn(*pmd);
1240 struct mm_struct *mm = vma->vm_mm;
1244 assert_spin_locked(pmd_lockptr(mm, pmd));
1246 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1249 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1254 if (flags & FOLL_TOUCH)
1255 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1258 * device mapped pages can only be returned if the
1259 * caller will manage the page reference count.
1261 if (!(flags & (FOLL_GET | FOLL_PIN)))
1262 return ERR_PTR(-EEXIST);
1264 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1265 *pgmap = get_dev_pagemap(pfn, *pgmap);
1267 return ERR_PTR(-EFAULT);
1268 page = pfn_to_page(pfn);
1269 ret = try_grab_page(page, flags);
1271 page = ERR_PTR(ret);
1276 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1277 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1278 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1280 spinlock_t *dst_ptl, *src_ptl;
1281 struct page *src_page;
1282 struct folio *src_folio;
1284 pgtable_t pgtable = NULL;
1287 /* Skip if can be re-fill on fault */
1288 if (!vma_is_anonymous(dst_vma))
1291 pgtable = pte_alloc_one(dst_mm);
1292 if (unlikely(!pgtable))
1295 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1296 src_ptl = pmd_lockptr(src_mm, src_pmd);
1297 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1302 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1303 if (unlikely(is_swap_pmd(pmd))) {
1304 swp_entry_t entry = pmd_to_swp_entry(pmd);
1306 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1307 if (!is_readable_migration_entry(entry)) {
1308 entry = make_readable_migration_entry(
1310 pmd = swp_entry_to_pmd(entry);
1311 if (pmd_swp_soft_dirty(*src_pmd))
1312 pmd = pmd_swp_mksoft_dirty(pmd);
1313 if (pmd_swp_uffd_wp(*src_pmd))
1314 pmd = pmd_swp_mkuffd_wp(pmd);
1315 set_pmd_at(src_mm, addr, src_pmd, pmd);
1317 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1318 mm_inc_nr_ptes(dst_mm);
1319 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1320 if (!userfaultfd_wp(dst_vma))
1321 pmd = pmd_swp_clear_uffd_wp(pmd);
1322 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1328 if (unlikely(!pmd_trans_huge(pmd))) {
1329 pte_free(dst_mm, pgtable);
1333 * When page table lock is held, the huge zero pmd should not be
1334 * under splitting since we don't split the page itself, only pmd to
1337 if (is_huge_zero_pmd(pmd)) {
1339 * get_huge_zero_page() will never allocate a new page here,
1340 * since we already have a zero page to copy. It just takes a
1343 mm_get_huge_zero_page(dst_mm);
1347 src_page = pmd_page(pmd);
1348 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1349 src_folio = page_folio(src_page);
1351 folio_get(src_folio);
1352 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1353 /* Page maybe pinned: split and retry the fault on PTEs. */
1354 folio_put(src_folio);
1355 pte_free(dst_mm, pgtable);
1356 spin_unlock(src_ptl);
1357 spin_unlock(dst_ptl);
1358 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1361 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1363 mm_inc_nr_ptes(dst_mm);
1364 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1365 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1366 if (!userfaultfd_wp(dst_vma))
1367 pmd = pmd_clear_uffd_wp(pmd);
1368 pmd = pmd_mkold(pmd_wrprotect(pmd));
1369 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1373 spin_unlock(src_ptl);
1374 spin_unlock(dst_ptl);
1379 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1380 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1381 pud_t *pud, bool write)
1385 _pud = pud_mkyoung(*pud);
1387 _pud = pud_mkdirty(_pud);
1388 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1390 update_mmu_cache_pud(vma, addr, pud);
1393 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1394 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1396 unsigned long pfn = pud_pfn(*pud);
1397 struct mm_struct *mm = vma->vm_mm;
1401 assert_spin_locked(pud_lockptr(mm, pud));
1403 if (flags & FOLL_WRITE && !pud_write(*pud))
1406 if (pud_present(*pud) && pud_devmap(*pud))
1411 if (flags & FOLL_TOUCH)
1412 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1415 * device mapped pages can only be returned if the
1416 * caller will manage the page reference count.
1418 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1420 if (!(flags & (FOLL_GET | FOLL_PIN)))
1421 return ERR_PTR(-EEXIST);
1423 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1424 *pgmap = get_dev_pagemap(pfn, *pgmap);
1426 return ERR_PTR(-EFAULT);
1427 page = pfn_to_page(pfn);
1429 ret = try_grab_page(page, flags);
1431 page = ERR_PTR(ret);
1436 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1437 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1438 struct vm_area_struct *vma)
1440 spinlock_t *dst_ptl, *src_ptl;
1444 dst_ptl = pud_lock(dst_mm, dst_pud);
1445 src_ptl = pud_lockptr(src_mm, src_pud);
1446 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1450 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1454 * When page table lock is held, the huge zero pud should not be
1455 * under splitting since we don't split the page itself, only pud to
1458 if (is_huge_zero_pud(pud)) {
1459 /* No huge zero pud yet */
1463 * TODO: once we support anonymous pages, use
1464 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1466 pudp_set_wrprotect(src_mm, addr, src_pud);
1467 pud = pud_mkold(pud_wrprotect(pud));
1468 set_pud_at(dst_mm, addr, dst_pud, pud);
1472 spin_unlock(src_ptl);
1473 spin_unlock(dst_ptl);
1477 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1479 bool write = vmf->flags & FAULT_FLAG_WRITE;
1481 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1482 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1485 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1487 spin_unlock(vmf->ptl);
1489 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1491 void huge_pmd_set_accessed(struct vm_fault *vmf)
1493 bool write = vmf->flags & FAULT_FLAG_WRITE;
1495 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1496 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1499 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1502 spin_unlock(vmf->ptl);
1505 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1507 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1508 struct vm_area_struct *vma = vmf->vma;
1509 struct folio *folio;
1511 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1512 pmd_t orig_pmd = vmf->orig_pmd;
1514 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1515 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1517 if (is_huge_zero_pmd(orig_pmd))
1520 spin_lock(vmf->ptl);
1522 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1523 spin_unlock(vmf->ptl);
1527 page = pmd_page(orig_pmd);
1528 folio = page_folio(page);
1529 VM_BUG_ON_PAGE(!PageHead(page), page);
1531 /* Early check when only holding the PT lock. */
1532 if (PageAnonExclusive(page))
1535 if (!folio_trylock(folio)) {
1537 spin_unlock(vmf->ptl);
1539 spin_lock(vmf->ptl);
1540 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1541 spin_unlock(vmf->ptl);
1542 folio_unlock(folio);
1549 /* Recheck after temporarily dropping the PT lock. */
1550 if (PageAnonExclusive(page)) {
1551 folio_unlock(folio);
1556 * See do_wp_page(): we can only reuse the folio exclusively if
1557 * there are no additional references. Note that we always drain
1558 * the LRU cache immediately after adding a THP.
1560 if (folio_ref_count(folio) >
1561 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1562 goto unlock_fallback;
1563 if (folio_test_swapcache(folio))
1564 folio_free_swap(folio);
1565 if (folio_ref_count(folio) == 1) {
1568 folio_move_anon_rmap(folio, vma);
1569 SetPageAnonExclusive(page);
1570 folio_unlock(folio);
1572 if (unlikely(unshare)) {
1573 spin_unlock(vmf->ptl);
1576 entry = pmd_mkyoung(orig_pmd);
1577 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1578 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1579 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1580 spin_unlock(vmf->ptl);
1585 folio_unlock(folio);
1586 spin_unlock(vmf->ptl);
1588 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1589 return VM_FAULT_FALLBACK;
1592 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1593 unsigned long addr, pmd_t pmd)
1597 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1600 /* Don't touch entries that are not even readable (NUMA hinting). */
1601 if (pmd_protnone(pmd))
1604 /* Do we need write faults for softdirty tracking? */
1605 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1608 /* Do we need write faults for uffd-wp tracking? */
1609 if (userfaultfd_huge_pmd_wp(vma, pmd))
1612 if (!(vma->vm_flags & VM_SHARED)) {
1613 /* See can_change_pte_writable(). */
1614 page = vm_normal_page_pmd(vma, addr, pmd);
1615 return page && PageAnon(page) && PageAnonExclusive(page);
1618 /* See can_change_pte_writable(). */
1619 return pmd_dirty(pmd);
1622 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1623 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1624 struct vm_area_struct *vma,
1627 /* If the pmd is writable, we can write to the page. */
1631 /* Maybe FOLL_FORCE is set to override it? */
1632 if (!(flags & FOLL_FORCE))
1635 /* But FOLL_FORCE has no effect on shared mappings */
1636 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1639 /* ... or read-only private ones */
1640 if (!(vma->vm_flags & VM_MAYWRITE))
1643 /* ... or already writable ones that just need to take a write fault */
1644 if (vma->vm_flags & VM_WRITE)
1648 * See can_change_pte_writable(): we broke COW and could map the page
1649 * writable if we have an exclusive anonymous page ...
1651 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1654 /* ... and a write-fault isn't required for other reasons. */
1655 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1657 return !userfaultfd_huge_pmd_wp(vma, pmd);
1660 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1665 struct mm_struct *mm = vma->vm_mm;
1669 assert_spin_locked(pmd_lockptr(mm, pmd));
1671 page = pmd_page(*pmd);
1672 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1674 if ((flags & FOLL_WRITE) &&
1675 !can_follow_write_pmd(*pmd, page, vma, flags))
1678 /* Avoid dumping huge zero page */
1679 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1680 return ERR_PTR(-EFAULT);
1682 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1685 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1686 return ERR_PTR(-EMLINK);
1688 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1689 !PageAnonExclusive(page), page);
1691 ret = try_grab_page(page, flags);
1693 return ERR_PTR(ret);
1695 if (flags & FOLL_TOUCH)
1696 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1698 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1699 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1704 /* NUMA hinting page fault entry point for trans huge pmds */
1705 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1707 struct vm_area_struct *vma = vmf->vma;
1708 pmd_t oldpmd = vmf->orig_pmd;
1710 struct folio *folio;
1711 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1712 int nid = NUMA_NO_NODE;
1713 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1714 bool migrated = false, writable = false;
1717 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1718 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1719 spin_unlock(vmf->ptl);
1723 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1726 * Detect now whether the PMD could be writable; this information
1727 * is only valid while holding the PT lock.
1729 writable = pmd_write(pmd);
1730 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1731 can_change_pmd_writable(vma, vmf->address, pmd))
1734 folio = vm_normal_folio_pmd(vma, haddr, pmd);
1738 /* See similar comment in do_numa_page for explanation */
1740 flags |= TNF_NO_GROUP;
1742 nid = folio_nid(folio);
1744 * For memory tiering mode, cpupid of slow memory page is used
1745 * to record page access time. So use default value.
1747 if (node_is_toptier(nid))
1748 last_cpupid = folio_last_cpupid(folio);
1749 target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1750 if (target_nid == NUMA_NO_NODE) {
1755 spin_unlock(vmf->ptl);
1758 migrated = migrate_misplaced_folio(folio, vma, target_nid);
1760 flags |= TNF_MIGRATED;
1763 flags |= TNF_MIGRATE_FAIL;
1764 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1765 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1766 spin_unlock(vmf->ptl);
1773 if (nid != NUMA_NO_NODE)
1774 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1779 /* Restore the PMD */
1780 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1781 pmd = pmd_mkyoung(pmd);
1783 pmd = pmd_mkwrite(pmd, vma);
1784 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1785 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1786 spin_unlock(vmf->ptl);
1791 * Return true if we do MADV_FREE successfully on entire pmd page.
1792 * Otherwise, return false.
1794 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1795 pmd_t *pmd, unsigned long addr, unsigned long next)
1799 struct folio *folio;
1800 struct mm_struct *mm = tlb->mm;
1803 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1805 ptl = pmd_trans_huge_lock(pmd, vma);
1810 if (is_huge_zero_pmd(orig_pmd))
1813 if (unlikely(!pmd_present(orig_pmd))) {
1814 VM_BUG_ON(thp_migration_supported() &&
1815 !is_pmd_migration_entry(orig_pmd));
1819 folio = pfn_folio(pmd_pfn(orig_pmd));
1821 * If other processes are mapping this folio, we couldn't discard
1822 * the folio unless they all do MADV_FREE so let's skip the folio.
1824 if (folio_estimated_sharers(folio) != 1)
1827 if (!folio_trylock(folio))
1831 * If user want to discard part-pages of THP, split it so MADV_FREE
1832 * will deactivate only them.
1834 if (next - addr != HPAGE_PMD_SIZE) {
1838 folio_unlock(folio);
1843 if (folio_test_dirty(folio))
1844 folio_clear_dirty(folio);
1845 folio_unlock(folio);
1847 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1848 pmdp_invalidate(vma, addr, pmd);
1849 orig_pmd = pmd_mkold(orig_pmd);
1850 orig_pmd = pmd_mkclean(orig_pmd);
1852 set_pmd_at(mm, addr, pmd, orig_pmd);
1853 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1856 folio_mark_lazyfree(folio);
1864 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1868 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1869 pte_free(mm, pgtable);
1873 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1874 pmd_t *pmd, unsigned long addr)
1879 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1881 ptl = __pmd_trans_huge_lock(pmd, vma);
1885 * For architectures like ppc64 we look at deposited pgtable
1886 * when calling pmdp_huge_get_and_clear. So do the
1887 * pgtable_trans_huge_withdraw after finishing pmdp related
1890 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1892 arch_check_zapped_pmd(vma, orig_pmd);
1893 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1894 if (vma_is_special_huge(vma)) {
1895 if (arch_needs_pgtable_deposit())
1896 zap_deposited_table(tlb->mm, pmd);
1898 } else if (is_huge_zero_pmd(orig_pmd)) {
1899 zap_deposited_table(tlb->mm, pmd);
1902 struct page *page = NULL;
1903 int flush_needed = 1;
1905 if (pmd_present(orig_pmd)) {
1906 page = pmd_page(orig_pmd);
1907 folio_remove_rmap_pmd(page_folio(page), page, vma);
1908 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1909 VM_BUG_ON_PAGE(!PageHead(page), page);
1910 } else if (thp_migration_supported()) {
1913 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1914 entry = pmd_to_swp_entry(orig_pmd);
1915 page = pfn_swap_entry_to_page(entry);
1918 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1920 if (PageAnon(page)) {
1921 zap_deposited_table(tlb->mm, pmd);
1922 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1924 if (arch_needs_pgtable_deposit())
1925 zap_deposited_table(tlb->mm, pmd);
1926 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1931 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1936 #ifndef pmd_move_must_withdraw
1937 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1938 spinlock_t *old_pmd_ptl,
1939 struct vm_area_struct *vma)
1942 * With split pmd lock we also need to move preallocated
1943 * PTE page table if new_pmd is on different PMD page table.
1945 * We also don't deposit and withdraw tables for file pages.
1947 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1951 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1953 #ifdef CONFIG_MEM_SOFT_DIRTY
1954 if (unlikely(is_pmd_migration_entry(pmd)))
1955 pmd = pmd_swp_mksoft_dirty(pmd);
1956 else if (pmd_present(pmd))
1957 pmd = pmd_mksoft_dirty(pmd);
1962 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1963 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1965 spinlock_t *old_ptl, *new_ptl;
1967 struct mm_struct *mm = vma->vm_mm;
1968 bool force_flush = false;
1971 * The destination pmd shouldn't be established, free_pgtables()
1972 * should have released it; but move_page_tables() might have already
1973 * inserted a page table, if racing against shmem/file collapse.
1975 if (!pmd_none(*new_pmd)) {
1976 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1981 * We don't have to worry about the ordering of src and dst
1982 * ptlocks because exclusive mmap_lock prevents deadlock.
1984 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1986 new_ptl = pmd_lockptr(mm, new_pmd);
1987 if (new_ptl != old_ptl)
1988 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1989 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1990 if (pmd_present(pmd))
1992 VM_BUG_ON(!pmd_none(*new_pmd));
1994 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1996 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1997 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1999 pmd = move_soft_dirty_pmd(pmd);
2000 set_pmd_at(mm, new_addr, new_pmd, pmd);
2002 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2003 if (new_ptl != old_ptl)
2004 spin_unlock(new_ptl);
2005 spin_unlock(old_ptl);
2013 * - 0 if PMD could not be locked
2014 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2015 * or if prot_numa but THP migration is not supported
2016 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2018 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2019 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2020 unsigned long cp_flags)
2022 struct mm_struct *mm = vma->vm_mm;
2024 pmd_t oldpmd, entry;
2025 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2026 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2027 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2030 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2032 if (prot_numa && !thp_migration_supported())
2035 ptl = __pmd_trans_huge_lock(pmd, vma);
2039 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2040 if (is_swap_pmd(*pmd)) {
2041 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2042 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2045 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2046 if (is_writable_migration_entry(entry)) {
2048 * A protection check is difficult so
2049 * just be safe and disable write
2051 if (folio_test_anon(folio))
2052 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2054 entry = make_readable_migration_entry(swp_offset(entry));
2055 newpmd = swp_entry_to_pmd(entry);
2056 if (pmd_swp_soft_dirty(*pmd))
2057 newpmd = pmd_swp_mksoft_dirty(newpmd);
2063 newpmd = pmd_swp_mkuffd_wp(newpmd);
2064 else if (uffd_wp_resolve)
2065 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2066 if (!pmd_same(*pmd, newpmd))
2067 set_pmd_at(mm, addr, pmd, newpmd);
2073 struct folio *folio;
2076 * Avoid trapping faults against the zero page. The read-only
2077 * data is likely to be read-cached on the local CPU and
2078 * local/remote hits to the zero page are not interesting.
2080 if (is_huge_zero_pmd(*pmd))
2083 if (pmd_protnone(*pmd))
2086 folio = page_folio(pmd_page(*pmd));
2087 toptier = node_is_toptier(folio_nid(folio));
2089 * Skip scanning top tier node if normal numa
2090 * balancing is disabled
2092 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2096 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2098 folio_xchg_access_time(folio,
2099 jiffies_to_msecs(jiffies));
2102 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2103 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2104 * which is also under mmap_read_lock(mm):
2107 * change_huge_pmd(prot_numa=1)
2108 * pmdp_huge_get_and_clear_notify()
2109 * madvise_dontneed()
2111 * pmd_trans_huge(*pmd) == 0 (without ptl)
2114 * // pmd is re-established
2116 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2117 * which may break userspace.
2119 * pmdp_invalidate_ad() is required to make sure we don't miss
2120 * dirty/young flags set by hardware.
2122 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2124 entry = pmd_modify(oldpmd, newprot);
2126 entry = pmd_mkuffd_wp(entry);
2127 else if (uffd_wp_resolve)
2129 * Leave the write bit to be handled by PF interrupt
2130 * handler, then things like COW could be properly
2133 entry = pmd_clear_uffd_wp(entry);
2135 /* See change_pte_range(). */
2136 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2137 can_change_pmd_writable(vma, addr, entry))
2138 entry = pmd_mkwrite(entry, vma);
2141 set_pmd_at(mm, addr, pmd, entry);
2143 if (huge_pmd_needs_flush(oldpmd, entry))
2144 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2150 #ifdef CONFIG_USERFAULTFD
2152 * The PT lock for src_pmd and the mmap_lock for reading are held by
2153 * the caller, but it must return after releasing the page_table_lock.
2154 * Just move the page from src_pmd to dst_pmd if possible.
2155 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2156 * repeated by the caller, or other errors in case of failure.
2158 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2159 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2160 unsigned long dst_addr, unsigned long src_addr)
2162 pmd_t _dst_pmd, src_pmdval;
2163 struct page *src_page;
2164 struct folio *src_folio;
2165 struct anon_vma *src_anon_vma;
2166 spinlock_t *src_ptl, *dst_ptl;
2167 pgtable_t src_pgtable;
2168 struct mmu_notifier_range range;
2171 src_pmdval = *src_pmd;
2172 src_ptl = pmd_lockptr(mm, src_pmd);
2174 lockdep_assert_held(src_ptl);
2175 mmap_assert_locked(mm);
2177 /* Sanity checks before the operation */
2178 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2179 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2180 spin_unlock(src_ptl);
2184 if (!pmd_trans_huge(src_pmdval)) {
2185 spin_unlock(src_ptl);
2186 if (is_pmd_migration_entry(src_pmdval)) {
2187 pmd_migration_entry_wait(mm, &src_pmdval);
2193 src_page = pmd_page(src_pmdval);
2194 if (unlikely(!PageAnonExclusive(src_page))) {
2195 spin_unlock(src_ptl);
2199 src_folio = page_folio(src_page);
2200 folio_get(src_folio);
2201 spin_unlock(src_ptl);
2203 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2204 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2205 src_addr + HPAGE_PMD_SIZE);
2206 mmu_notifier_invalidate_range_start(&range);
2208 folio_lock(src_folio);
2211 * split_huge_page walks the anon_vma chain without the page
2212 * lock. Serialize against it with the anon_vma lock, the page
2213 * lock is not enough.
2215 src_anon_vma = folio_get_anon_vma(src_folio);
2216 if (!src_anon_vma) {
2220 anon_vma_lock_write(src_anon_vma);
2222 dst_ptl = pmd_lockptr(mm, dst_pmd);
2223 double_pt_lock(src_ptl, dst_ptl);
2224 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2225 !pmd_same(*dst_pmd, dst_pmdval))) {
2229 if (folio_maybe_dma_pinned(src_folio) ||
2230 !PageAnonExclusive(&src_folio->page)) {
2235 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2236 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2241 folio_move_anon_rmap(src_folio, dst_vma);
2242 WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2244 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2245 /* Folio got pinned from under us. Put it back and fail the move. */
2246 if (folio_maybe_dma_pinned(src_folio)) {
2247 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2252 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2253 /* Follow mremap() behavior and treat the entry dirty after the move */
2254 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2255 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2257 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2258 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2260 double_pt_unlock(src_ptl, dst_ptl);
2261 anon_vma_unlock_write(src_anon_vma);
2262 put_anon_vma(src_anon_vma);
2264 /* unblock rmap walks */
2265 folio_unlock(src_folio);
2266 mmu_notifier_invalidate_range_end(&range);
2267 folio_put(src_folio);
2270 #endif /* CONFIG_USERFAULTFD */
2273 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2275 * Note that if it returns page table lock pointer, this routine returns without
2276 * unlocking page table lock. So callers must unlock it.
2278 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2281 ptl = pmd_lock(vma->vm_mm, pmd);
2282 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2290 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2292 * Note that if it returns page table lock pointer, this routine returns without
2293 * unlocking page table lock. So callers must unlock it.
2295 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2299 ptl = pud_lock(vma->vm_mm, pud);
2300 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2306 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2307 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2308 pud_t *pud, unsigned long addr)
2312 ptl = __pud_trans_huge_lock(pud, vma);
2316 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2317 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2318 if (vma_is_special_huge(vma)) {
2320 /* No zero page support yet */
2322 /* No support for anonymous PUD pages yet */
2328 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2329 unsigned long haddr)
2331 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2332 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2333 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2334 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2336 count_vm_event(THP_SPLIT_PUD);
2338 pudp_huge_clear_flush(vma, haddr, pud);
2341 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2342 unsigned long address)
2345 struct mmu_notifier_range range;
2347 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2348 address & HPAGE_PUD_MASK,
2349 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2350 mmu_notifier_invalidate_range_start(&range);
2351 ptl = pud_lock(vma->vm_mm, pud);
2352 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2354 __split_huge_pud_locked(vma, pud, range.start);
2358 mmu_notifier_invalidate_range_end(&range);
2360 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2362 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2363 unsigned long haddr, pmd_t *pmd)
2365 struct mm_struct *mm = vma->vm_mm;
2367 pmd_t _pmd, old_pmd;
2373 * Leave pmd empty until pte is filled note that it is fine to delay
2374 * notification until mmu_notifier_invalidate_range_end() as we are
2375 * replacing a zero pmd write protected page with a zero pte write
2378 * See Documentation/mm/mmu_notifier.rst
2380 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2382 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2383 pmd_populate(mm, &_pmd, pgtable);
2385 pte = pte_offset_map(&_pmd, haddr);
2387 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2390 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2391 entry = pte_mkspecial(entry);
2392 if (pmd_uffd_wp(old_pmd))
2393 entry = pte_mkuffd_wp(entry);
2394 VM_BUG_ON(!pte_none(ptep_get(pte)));
2395 set_pte_at(mm, addr, pte, entry);
2399 smp_wmb(); /* make pte visible before pmd */
2400 pmd_populate(mm, pmd, pgtable);
2403 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2404 unsigned long haddr, bool freeze)
2406 struct mm_struct *mm = vma->vm_mm;
2407 struct folio *folio;
2410 pmd_t old_pmd, _pmd;
2411 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2412 bool anon_exclusive = false, dirty = false;
2417 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2418 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2419 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2420 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2421 && !pmd_devmap(*pmd));
2423 count_vm_event(THP_SPLIT_PMD);
2425 if (!vma_is_anonymous(vma)) {
2426 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2428 * We are going to unmap this huge page. So
2429 * just go ahead and zap it
2431 if (arch_needs_pgtable_deposit())
2432 zap_deposited_table(mm, pmd);
2433 if (vma_is_special_huge(vma))
2435 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2438 entry = pmd_to_swp_entry(old_pmd);
2439 page = pfn_swap_entry_to_page(entry);
2441 page = pmd_page(old_pmd);
2442 folio = page_folio(page);
2443 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2444 folio_mark_dirty(folio);
2445 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2446 folio_set_referenced(folio);
2447 folio_remove_rmap_pmd(folio, page, vma);
2450 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2454 if (is_huge_zero_pmd(*pmd)) {
2456 * FIXME: Do we want to invalidate secondary mmu by calling
2457 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2458 * inside __split_huge_pmd() ?
2460 * We are going from a zero huge page write protected to zero
2461 * small page also write protected so it does not seems useful
2462 * to invalidate secondary mmu at this time.
2464 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2468 * Up to this point the pmd is present and huge and userland has the
2469 * whole access to the hugepage during the split (which happens in
2470 * place). If we overwrite the pmd with the not-huge version pointing
2471 * to the pte here (which of course we could if all CPUs were bug
2472 * free), userland could trigger a small page size TLB miss on the
2473 * small sized TLB while the hugepage TLB entry is still established in
2474 * the huge TLB. Some CPU doesn't like that.
2475 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2476 * 383 on page 105. Intel should be safe but is also warns that it's
2477 * only safe if the permission and cache attributes of the two entries
2478 * loaded in the two TLB is identical (which should be the case here).
2479 * But it is generally safer to never allow small and huge TLB entries
2480 * for the same virtual address to be loaded simultaneously. So instead
2481 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2482 * current pmd notpresent (atomically because here the pmd_trans_huge
2483 * must remain set at all times on the pmd until the split is complete
2484 * for this pmd), then we flush the SMP TLB and finally we write the
2485 * non-huge version of the pmd entry with pmd_populate.
2487 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2489 pmd_migration = is_pmd_migration_entry(old_pmd);
2490 if (unlikely(pmd_migration)) {
2493 entry = pmd_to_swp_entry(old_pmd);
2494 page = pfn_swap_entry_to_page(entry);
2495 write = is_writable_migration_entry(entry);
2497 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2498 young = is_migration_entry_young(entry);
2499 dirty = is_migration_entry_dirty(entry);
2500 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2501 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2503 page = pmd_page(old_pmd);
2504 folio = page_folio(page);
2505 if (pmd_dirty(old_pmd)) {
2507 folio_set_dirty(folio);
2509 write = pmd_write(old_pmd);
2510 young = pmd_young(old_pmd);
2511 soft_dirty = pmd_soft_dirty(old_pmd);
2512 uffd_wp = pmd_uffd_wp(old_pmd);
2514 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2515 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2518 * Without "freeze", we'll simply split the PMD, propagating the
2519 * PageAnonExclusive() flag for each PTE by setting it for
2520 * each subpage -- no need to (temporarily) clear.
2522 * With "freeze" we want to replace mapped pages by
2523 * migration entries right away. This is only possible if we
2524 * managed to clear PageAnonExclusive() -- see
2525 * set_pmd_migration_entry().
2527 * In case we cannot clear PageAnonExclusive(), split the PMD
2528 * only and let try_to_migrate_one() fail later.
2530 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2532 anon_exclusive = PageAnonExclusive(page);
2533 if (freeze && anon_exclusive &&
2534 folio_try_share_anon_rmap_pmd(folio, page))
2537 rmap_t rmap_flags = RMAP_NONE;
2539 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2541 rmap_flags |= RMAP_EXCLUSIVE;
2542 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2543 vma, haddr, rmap_flags);
2548 * Withdraw the table only after we mark the pmd entry invalid.
2549 * This's critical for some architectures (Power).
2551 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2552 pmd_populate(mm, &_pmd, pgtable);
2554 pte = pte_offset_map(&_pmd, haddr);
2556 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2559 * Note that NUMA hinting access restrictions are not
2560 * transferred to avoid any possibility of altering
2561 * permissions across VMAs.
2563 if (freeze || pmd_migration) {
2564 swp_entry_t swp_entry;
2566 swp_entry = make_writable_migration_entry(
2567 page_to_pfn(page + i));
2568 else if (anon_exclusive)
2569 swp_entry = make_readable_exclusive_migration_entry(
2570 page_to_pfn(page + i));
2572 swp_entry = make_readable_migration_entry(
2573 page_to_pfn(page + i));
2575 swp_entry = make_migration_entry_young(swp_entry);
2577 swp_entry = make_migration_entry_dirty(swp_entry);
2578 entry = swp_entry_to_pte(swp_entry);
2580 entry = pte_swp_mksoft_dirty(entry);
2582 entry = pte_swp_mkuffd_wp(entry);
2584 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2586 entry = pte_mkwrite(entry, vma);
2588 entry = pte_mkold(entry);
2589 /* NOTE: this may set soft-dirty too on some archs */
2591 entry = pte_mkdirty(entry);
2593 entry = pte_mksoft_dirty(entry);
2595 entry = pte_mkuffd_wp(entry);
2597 VM_BUG_ON(!pte_none(ptep_get(pte)));
2598 set_pte_at(mm, addr, pte, entry);
2604 folio_remove_rmap_pmd(folio, page, vma);
2608 smp_wmb(); /* make pte visible before pmd */
2609 pmd_populate(mm, pmd, pgtable);
2612 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2613 unsigned long address, bool freeze, struct folio *folio)
2616 struct mmu_notifier_range range;
2618 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2619 address & HPAGE_PMD_MASK,
2620 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2621 mmu_notifier_invalidate_range_start(&range);
2622 ptl = pmd_lock(vma->vm_mm, pmd);
2625 * If caller asks to setup a migration entry, we need a folio to check
2626 * pmd against. Otherwise we can end up replacing wrong folio.
2628 VM_BUG_ON(freeze && !folio);
2629 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2631 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2632 is_pmd_migration_entry(*pmd)) {
2634 * It's safe to call pmd_page when folio is set because it's
2635 * guaranteed that pmd is present.
2637 if (folio && folio != page_folio(pmd_page(*pmd)))
2639 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2644 mmu_notifier_invalidate_range_end(&range);
2647 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2648 bool freeze, struct folio *folio)
2650 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2655 __split_huge_pmd(vma, pmd, address, freeze, folio);
2658 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2661 * If the new address isn't hpage aligned and it could previously
2662 * contain an hugepage: check if we need to split an huge pmd.
2664 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2665 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2666 ALIGN(address, HPAGE_PMD_SIZE)))
2667 split_huge_pmd_address(vma, address, false, NULL);
2670 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2671 unsigned long start,
2675 /* Check if we need to split start first. */
2676 split_huge_pmd_if_needed(vma, start);
2678 /* Check if we need to split end next. */
2679 split_huge_pmd_if_needed(vma, end);
2682 * If we're also updating the next vma vm_start,
2683 * check if we need to split it.
2685 if (adjust_next > 0) {
2686 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2687 unsigned long nstart = next->vm_start;
2688 nstart += adjust_next;
2689 split_huge_pmd_if_needed(next, nstart);
2693 static void unmap_folio(struct folio *folio)
2695 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2696 TTU_SYNC | TTU_BATCH_FLUSH;
2698 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2701 * Anon pages need migration entries to preserve them, but file
2702 * pages can simply be left unmapped, then faulted back on demand.
2703 * If that is ever changed (perhaps for mlock), update remap_page().
2705 if (folio_test_anon(folio))
2706 try_to_migrate(folio, ttu_flags);
2708 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2710 try_to_unmap_flush();
2713 static void remap_page(struct folio *folio, unsigned long nr)
2717 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2718 if (!folio_test_anon(folio))
2721 remove_migration_ptes(folio, folio, true);
2722 i += folio_nr_pages(folio);
2725 folio = folio_next(folio);
2729 static void lru_add_page_tail(struct page *head, struct page *tail,
2730 struct lruvec *lruvec, struct list_head *list)
2732 VM_BUG_ON_PAGE(!PageHead(head), head);
2733 VM_BUG_ON_PAGE(PageCompound(tail), head);
2734 VM_BUG_ON_PAGE(PageLRU(tail), head);
2735 lockdep_assert_held(&lruvec->lru_lock);
2738 /* page reclaim is reclaiming a huge page */
2739 VM_WARN_ON(PageLRU(head));
2741 list_add_tail(&tail->lru, list);
2743 /* head is still on lru (and we have it frozen) */
2744 VM_WARN_ON(!PageLRU(head));
2745 if (PageUnevictable(tail))
2746 tail->mlock_count = 0;
2748 list_add_tail(&tail->lru, &head->lru);
2753 static void __split_huge_page_tail(struct folio *folio, int tail,
2754 struct lruvec *lruvec, struct list_head *list)
2756 struct page *head = &folio->page;
2757 struct page *page_tail = head + tail;
2759 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2760 * Don't pass it around before clear_compound_head().
2762 struct folio *new_folio = (struct folio *)page_tail;
2764 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2767 * Clone page flags before unfreezing refcount.
2769 * After successful get_page_unless_zero() might follow flags change,
2770 * for example lock_page() which set PG_waiters.
2772 * Note that for mapped sub-pages of an anonymous THP,
2773 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2774 * the migration entry instead from where remap_page() will restore it.
2775 * We can still have PG_anon_exclusive set on effectively unmapped and
2776 * unreferenced sub-pages of an anonymous THP: we can simply drop
2777 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2779 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2780 page_tail->flags |= (head->flags &
2781 ((1L << PG_referenced) |
2782 (1L << PG_swapbacked) |
2783 (1L << PG_swapcache) |
2784 (1L << PG_mlocked) |
2785 (1L << PG_uptodate) |
2787 (1L << PG_workingset) |
2789 (1L << PG_unevictable) |
2790 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2795 LRU_GEN_MASK | LRU_REFS_MASK));
2797 /* ->mapping in first and second tail page is replaced by other uses */
2798 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2800 page_tail->mapping = head->mapping;
2801 page_tail->index = head->index + tail;
2804 * page->private should not be set in tail pages. Fix up and warn once
2805 * if private is unexpectedly set.
2807 if (unlikely(page_tail->private)) {
2808 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2809 page_tail->private = 0;
2811 if (folio_test_swapcache(folio))
2812 new_folio->swap.val = folio->swap.val + tail;
2814 /* Page flags must be visible before we make the page non-compound. */
2818 * Clear PageTail before unfreezing page refcount.
2820 * After successful get_page_unless_zero() might follow put_page()
2821 * which needs correct compound_head().
2823 clear_compound_head(page_tail);
2825 /* Finally unfreeze refcount. Additional reference from page cache. */
2826 page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2827 folio_test_swapcache(folio)));
2829 if (folio_test_young(folio))
2830 folio_set_young(new_folio);
2831 if (folio_test_idle(folio))
2832 folio_set_idle(new_folio);
2834 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2837 * always add to the tail because some iterators expect new
2838 * pages to show after the currently processed elements - e.g.
2841 lru_add_page_tail(head, page_tail, lruvec, list);
2844 static void __split_huge_page(struct page *page, struct list_head *list,
2847 struct folio *folio = page_folio(page);
2848 struct page *head = &folio->page;
2849 struct lruvec *lruvec;
2850 struct address_space *swap_cache = NULL;
2851 unsigned long offset = 0;
2852 unsigned int nr = thp_nr_pages(head);
2853 int i, nr_dropped = 0;
2855 /* complete memcg works before add pages to LRU */
2856 split_page_memcg(head, nr);
2858 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2859 offset = swp_offset(folio->swap);
2860 swap_cache = swap_address_space(folio->swap);
2861 xa_lock(&swap_cache->i_pages);
2864 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2865 lruvec = folio_lruvec_lock(folio);
2867 ClearPageHasHWPoisoned(head);
2869 for (i = nr - 1; i >= 1; i--) {
2870 __split_huge_page_tail(folio, i, lruvec, list);
2871 /* Some pages can be beyond EOF: drop them from page cache */
2872 if (head[i].index >= end) {
2873 struct folio *tail = page_folio(head + i);
2875 if (shmem_mapping(head->mapping))
2877 else if (folio_test_clear_dirty(tail))
2878 folio_account_cleaned(tail,
2879 inode_to_wb(folio->mapping->host));
2880 __filemap_remove_folio(tail, NULL);
2882 } else if (!PageAnon(page)) {
2883 __xa_store(&head->mapping->i_pages, head[i].index,
2885 } else if (swap_cache) {
2886 __xa_store(&swap_cache->i_pages, offset + i,
2891 ClearPageCompound(head);
2892 unlock_page_lruvec(lruvec);
2893 /* Caller disabled irqs, so they are still disabled here */
2895 split_page_owner(head, nr);
2897 /* See comment in __split_huge_page_tail() */
2898 if (PageAnon(head)) {
2899 /* Additional pin to swap cache */
2900 if (PageSwapCache(head)) {
2901 page_ref_add(head, 2);
2902 xa_unlock(&swap_cache->i_pages);
2907 /* Additional pin to page cache */
2908 page_ref_add(head, 2);
2909 xa_unlock(&head->mapping->i_pages);
2914 shmem_uncharge(head->mapping->host, nr_dropped);
2915 remap_page(folio, nr);
2917 if (folio_test_swapcache(folio))
2918 split_swap_cluster(folio->swap);
2920 for (i = 0; i < nr; i++) {
2921 struct page *subpage = head + i;
2922 if (subpage == page)
2924 unlock_page(subpage);
2927 * Subpages may be freed if there wasn't any mapping
2928 * like if add_to_swap() is running on a lru page that
2929 * had its mapping zapped. And freeing these pages
2930 * requires taking the lru_lock so we do the put_page
2931 * of the tail pages after the split is complete.
2933 free_page_and_swap_cache(subpage);
2937 /* Racy check whether the huge page can be split */
2938 bool can_split_folio(struct folio *folio, int *pextra_pins)
2942 /* Additional pins from page cache */
2943 if (folio_test_anon(folio))
2944 extra_pins = folio_test_swapcache(folio) ?
2945 folio_nr_pages(folio) : 0;
2947 extra_pins = folio_nr_pages(folio);
2949 *pextra_pins = extra_pins;
2950 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2954 * This function splits huge page into normal pages. @page can point to any
2955 * subpage of huge page to split. Split doesn't change the position of @page.
2957 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2958 * The huge page must be locked.
2960 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2962 * Both head page and tail pages will inherit mapping, flags, and so on from
2965 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2966 * they are not mapped.
2968 * Returns 0 if the hugepage is split successfully.
2969 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2972 int split_huge_page_to_list(struct page *page, struct list_head *list)
2974 struct folio *folio = page_folio(page);
2975 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2976 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2977 struct anon_vma *anon_vma = NULL;
2978 struct address_space *mapping = NULL;
2979 int extra_pins, ret;
2983 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2984 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2986 is_hzp = is_huge_zero_page(&folio->page);
2988 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2992 if (folio_test_writeback(folio))
2995 if (folio_test_anon(folio)) {
2997 * The caller does not necessarily hold an mmap_lock that would
2998 * prevent the anon_vma disappearing so we first we take a
2999 * reference to it and then lock the anon_vma for write. This
3000 * is similar to folio_lock_anon_vma_read except the write lock
3001 * is taken to serialise against parallel split or collapse
3004 anon_vma = folio_get_anon_vma(folio);
3011 anon_vma_lock_write(anon_vma);
3015 mapping = folio->mapping;
3023 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3026 if (!filemap_release_folio(folio, gfp)) {
3031 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3032 if (xas_error(&xas)) {
3033 ret = xas_error(&xas);
3038 i_mmap_lock_read(mapping);
3041 *__split_huge_page() may need to trim off pages beyond EOF:
3042 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3043 * which cannot be nested inside the page tree lock. So note
3044 * end now: i_size itself may be changed at any moment, but
3045 * folio lock is good enough to serialize the trimming.
3047 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3048 if (shmem_mapping(mapping))
3049 end = shmem_fallocend(mapping->host, end);
3053 * Racy check if we can split the page, before unmap_folio() will
3056 if (!can_split_folio(folio, &extra_pins)) {
3063 /* block interrupt reentry in xa_lock and spinlock */
3064 local_irq_disable();
3067 * Check if the folio is present in page cache.
3068 * We assume all tail are present too, if folio is there.
3072 if (xas_load(&xas) != folio)
3076 /* Prevent deferred_split_scan() touching ->_refcount */
3077 spin_lock(&ds_queue->split_queue_lock);
3078 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3079 if (!list_empty(&folio->_deferred_list)) {
3080 ds_queue->split_queue_len--;
3081 list_del(&folio->_deferred_list);
3083 spin_unlock(&ds_queue->split_queue_lock);
3085 int nr = folio_nr_pages(folio);
3087 xas_split(&xas, folio, folio_order(folio));
3088 if (folio_test_pmd_mappable(folio)) {
3089 if (folio_test_swapbacked(folio)) {
3090 __lruvec_stat_mod_folio(folio,
3091 NR_SHMEM_THPS, -nr);
3093 __lruvec_stat_mod_folio(folio,
3095 filemap_nr_thps_dec(mapping);
3100 __split_huge_page(page, list, end);
3103 spin_unlock(&ds_queue->split_queue_lock);
3108 remap_page(folio, folio_nr_pages(folio));
3114 anon_vma_unlock_write(anon_vma);
3115 put_anon_vma(anon_vma);
3118 i_mmap_unlock_read(mapping);
3121 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3125 void folio_undo_large_rmappable(struct folio *folio)
3127 struct deferred_split *ds_queue;
3128 unsigned long flags;
3131 * At this point, there is no one trying to add the folio to
3132 * deferred_list. If folio is not in deferred_list, it's safe
3133 * to check without acquiring the split_queue_lock.
3135 if (data_race(list_empty(&folio->_deferred_list)))
3138 ds_queue = get_deferred_split_queue(folio);
3139 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3140 if (!list_empty(&folio->_deferred_list)) {
3141 ds_queue->split_queue_len--;
3142 list_del_init(&folio->_deferred_list);
3144 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3147 void deferred_split_folio(struct folio *folio)
3149 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3151 struct mem_cgroup *memcg = folio_memcg(folio);
3153 unsigned long flags;
3155 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3158 * The try_to_unmap() in page reclaim path might reach here too,
3159 * this may cause a race condition to corrupt deferred split queue.
3160 * And, if page reclaim is already handling the same folio, it is
3161 * unnecessary to handle it again in shrinker.
3163 * Check the swapcache flag to determine if the folio is being
3164 * handled by page reclaim since THP swap would add the folio into
3165 * swap cache before calling try_to_unmap().
3167 if (folio_test_swapcache(folio))
3170 if (!list_empty(&folio->_deferred_list))
3173 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3174 if (list_empty(&folio->_deferred_list)) {
3175 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3176 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3177 ds_queue->split_queue_len++;
3180 set_shrinker_bit(memcg, folio_nid(folio),
3181 deferred_split_shrinker->id);
3184 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3187 static unsigned long deferred_split_count(struct shrinker *shrink,
3188 struct shrink_control *sc)
3190 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3191 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3195 ds_queue = &sc->memcg->deferred_split_queue;
3197 return READ_ONCE(ds_queue->split_queue_len);
3200 static unsigned long deferred_split_scan(struct shrinker *shrink,
3201 struct shrink_control *sc)
3203 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3204 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3205 unsigned long flags;
3207 struct folio *folio, *next;
3212 ds_queue = &sc->memcg->deferred_split_queue;
3215 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3216 /* Take pin on all head pages to avoid freeing them under us */
3217 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3219 if (folio_try_get(folio)) {
3220 list_move(&folio->_deferred_list, &list);
3222 /* We lost race with folio_put() */
3223 list_del_init(&folio->_deferred_list);
3224 ds_queue->split_queue_len--;
3226 if (!--sc->nr_to_scan)
3229 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3231 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3232 if (!folio_trylock(folio))
3234 /* split_huge_page() removes page from list on success */
3235 if (!split_folio(folio))
3237 folio_unlock(folio);
3242 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3243 list_splice_tail(&list, &ds_queue->split_queue);
3244 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3247 * Stop shrinker if we didn't split any page, but the queue is empty.
3248 * This can happen if pages were freed under us.
3250 if (!split && list_empty(&ds_queue->split_queue))
3255 #ifdef CONFIG_DEBUG_FS
3256 static void split_huge_pages_all(void)
3260 struct folio *folio;
3261 unsigned long pfn, max_zone_pfn;
3262 unsigned long total = 0, split = 0;
3264 pr_debug("Split all THPs\n");
3265 for_each_zone(zone) {
3266 if (!managed_zone(zone))
3268 max_zone_pfn = zone_end_pfn(zone);
3269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3272 page = pfn_to_online_page(pfn);
3273 if (!page || PageTail(page))
3275 folio = page_folio(page);
3276 if (!folio_try_get(folio))
3279 if (unlikely(page_folio(page) != folio))
3282 if (zone != folio_zone(folio))
3285 if (!folio_test_large(folio)
3286 || folio_test_hugetlb(folio)
3287 || !folio_test_lru(folio))
3292 nr_pages = folio_nr_pages(folio);
3293 if (!split_folio(folio))
3295 pfn += nr_pages - 1;
3296 folio_unlock(folio);
3303 pr_debug("%lu of %lu THP split\n", split, total);
3306 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3308 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3309 is_vm_hugetlb_page(vma);
3312 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3313 unsigned long vaddr_end)
3316 struct task_struct *task;
3317 struct mm_struct *mm;
3318 unsigned long total = 0, split = 0;
3321 vaddr_start &= PAGE_MASK;
3322 vaddr_end &= PAGE_MASK;
3324 /* Find the task_struct from pid */
3326 task = find_task_by_vpid(pid);
3332 get_task_struct(task);
3335 /* Find the mm_struct */
3336 mm = get_task_mm(task);
3337 put_task_struct(task);
3344 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3345 pid, vaddr_start, vaddr_end);
3349 * always increase addr by PAGE_SIZE, since we could have a PTE page
3350 * table filled with PTE-mapped THPs, each of which is distinct.
3352 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3353 struct vm_area_struct *vma = vma_lookup(mm, addr);
3355 struct folio *folio;
3360 /* skip special VMA and hugetlb VMA */
3361 if (vma_not_suitable_for_thp_split(vma)) {
3366 /* FOLL_DUMP to ignore special (like zero) pages */
3367 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3369 if (IS_ERR_OR_NULL(page))
3372 folio = page_folio(page);
3373 if (!is_transparent_hugepage(folio))
3377 if (!can_split_folio(folio, NULL))
3380 if (!folio_trylock(folio))
3383 if (!split_folio(folio))
3386 folio_unlock(folio);
3391 mmap_read_unlock(mm);
3394 pr_debug("%lu of %lu THP split\n", split, total);
3400 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3403 struct filename *file;
3404 struct file *candidate;
3405 struct address_space *mapping;
3409 unsigned long total = 0, split = 0;
3411 file = getname_kernel(file_path);
3415 candidate = file_open_name(file, O_RDONLY, 0);
3416 if (IS_ERR(candidate))
3419 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3420 file_path, off_start, off_end);
3422 mapping = candidate->f_mapping;
3424 for (index = off_start; index < off_end; index += nr_pages) {
3425 struct folio *folio = filemap_get_folio(mapping, index);
3431 if (!folio_test_large(folio))
3435 nr_pages = folio_nr_pages(folio);
3437 if (!folio_trylock(folio))
3440 if (!split_folio(folio))
3443 folio_unlock(folio);
3449 filp_close(candidate, NULL);
3452 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3458 #define MAX_INPUT_BUF_SZ 255
3460 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3461 size_t count, loff_t *ppops)
3463 static DEFINE_MUTEX(split_debug_mutex);
3465 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3466 char input_buf[MAX_INPUT_BUF_SZ];
3468 unsigned long vaddr_start, vaddr_end;
3470 ret = mutex_lock_interruptible(&split_debug_mutex);
3476 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3477 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3480 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3482 if (input_buf[0] == '/') {
3484 char *buf = input_buf;
3485 char file_path[MAX_INPUT_BUF_SZ];
3486 pgoff_t off_start = 0, off_end = 0;
3487 size_t input_len = strlen(input_buf);
3489 tok = strsep(&buf, ",");
3491 strcpy(file_path, tok);
3497 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3502 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3509 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3510 if (ret == 1 && pid == 1) {
3511 split_huge_pages_all();
3512 ret = strlen(input_buf);
3514 } else if (ret != 3) {
3519 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3521 ret = strlen(input_buf);
3523 mutex_unlock(&split_debug_mutex);
3528 static const struct file_operations split_huge_pages_fops = {
3529 .owner = THIS_MODULE,
3530 .write = split_huge_pages_write,
3531 .llseek = no_llseek,
3534 static int __init split_huge_pages_debugfs(void)
3536 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3537 &split_huge_pages_fops);
3540 late_initcall(split_huge_pages_debugfs);
3543 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3544 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3547 struct folio *folio = page_folio(page);
3548 struct vm_area_struct *vma = pvmw->vma;
3549 struct mm_struct *mm = vma->vm_mm;
3550 unsigned long address = pvmw->address;
3551 bool anon_exclusive;
3556 if (!(pvmw->pmd && !pvmw->pte))
3559 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3560 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3562 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3563 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3564 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3565 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3569 if (pmd_dirty(pmdval))
3570 folio_mark_dirty(folio);
3571 if (pmd_write(pmdval))
3572 entry = make_writable_migration_entry(page_to_pfn(page));
3573 else if (anon_exclusive)
3574 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3576 entry = make_readable_migration_entry(page_to_pfn(page));
3577 if (pmd_young(pmdval))
3578 entry = make_migration_entry_young(entry);
3579 if (pmd_dirty(pmdval))
3580 entry = make_migration_entry_dirty(entry);
3581 pmdswp = swp_entry_to_pmd(entry);
3582 if (pmd_soft_dirty(pmdval))
3583 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3584 if (pmd_uffd_wp(pmdval))
3585 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3586 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3587 folio_remove_rmap_pmd(folio, page, vma);
3589 trace_set_migration_pmd(address, pmd_val(pmdswp));
3594 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3596 struct folio *folio = page_folio(new);
3597 struct vm_area_struct *vma = pvmw->vma;
3598 struct mm_struct *mm = vma->vm_mm;
3599 unsigned long address = pvmw->address;
3600 unsigned long haddr = address & HPAGE_PMD_MASK;
3604 if (!(pvmw->pmd && !pvmw->pte))
3607 entry = pmd_to_swp_entry(*pvmw->pmd);
3609 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3610 if (pmd_swp_soft_dirty(*pvmw->pmd))
3611 pmde = pmd_mksoft_dirty(pmde);
3612 if (is_writable_migration_entry(entry))
3613 pmde = pmd_mkwrite(pmde, vma);
3614 if (pmd_swp_uffd_wp(*pvmw->pmd))
3615 pmde = pmd_mkuffd_wp(pmde);
3616 if (!is_migration_entry_young(entry))
3617 pmde = pmd_mkold(pmde);
3618 /* NOTE: this may contain setting soft-dirty on some archs */
3619 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3620 pmde = pmd_mkdirty(pmde);
3622 if (folio_test_anon(folio)) {
3623 rmap_t rmap_flags = RMAP_NONE;
3625 if (!is_readable_migration_entry(entry))
3626 rmap_flags |= RMAP_EXCLUSIVE;
3628 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3630 folio_add_file_rmap_pmd(folio, new, vma);
3632 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3633 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3635 /* No need to invalidate - it was non-present before */
3636 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3637 trace_remove_migration_pmd(address, pmd_val(pmde));