1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
73 static void __unhash_process(struct task_struct *p, bool group_dead)
76 detach_pid(p, PIDTYPE_PID);
78 detach_pid(p, PIDTYPE_TGID);
79 detach_pid(p, PIDTYPE_PGID);
80 detach_pid(p, PIDTYPE_SID);
82 list_del_rcu(&p->tasks);
83 list_del_init(&p->sibling);
84 __this_cpu_dec(process_counts);
86 list_del_rcu(&p->thread_group);
87 list_del_rcu(&p->thread_node);
91 * This function expects the tasklist_lock write-locked.
93 static void __exit_signal(struct task_struct *tsk)
95 struct signal_struct *sig = tsk->signal;
96 bool group_dead = thread_group_leader(tsk);
97 struct sighand_struct *sighand;
98 struct tty_struct *tty;
101 sighand = rcu_dereference_check(tsk->sighand,
102 lockdep_tasklist_lock_is_held());
103 spin_lock(&sighand->siglock);
105 #ifdef CONFIG_POSIX_TIMERS
106 posix_cpu_timers_exit(tsk);
108 posix_cpu_timers_exit_group(tsk);
116 * If there is any task waiting for the group exit
119 if (sig->notify_count > 0 && !--sig->notify_count)
120 wake_up_process(sig->group_exit_task);
122 if (tsk == sig->curr_target)
123 sig->curr_target = next_thread(tsk);
126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 sizeof(unsigned long long));
130 * Accumulate here the counters for all threads as they die. We could
131 * skip the group leader because it is the last user of signal_struct,
132 * but we want to avoid the race with thread_group_cputime() which can
133 * see the empty ->thread_head list.
135 task_cputime(tsk, &utime, &stime);
136 write_seqlock(&sig->stats_lock);
139 sig->gtime += task_gtime(tsk);
140 sig->min_flt += tsk->min_flt;
141 sig->maj_flt += tsk->maj_flt;
142 sig->nvcsw += tsk->nvcsw;
143 sig->nivcsw += tsk->nivcsw;
144 sig->inblock += task_io_get_inblock(tsk);
145 sig->oublock += task_io_get_oublock(tsk);
146 task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 __unhash_process(tsk, group_dead);
150 write_sequnlock(&sig->stats_lock);
153 * Do this under ->siglock, we can race with another thread
154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
156 flush_sigqueue(&tsk->pending);
158 spin_unlock(&sighand->siglock);
160 __cleanup_sighand(sighand);
161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
163 flush_sigqueue(&sig->shared_pending);
168 static void delayed_put_task_struct(struct rcu_head *rhp)
170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
172 kprobe_flush_task(tsk);
173 perf_event_delayed_put(tsk);
174 trace_sched_process_free(tsk);
175 put_task_struct(tsk);
178 void put_task_struct_rcu_user(struct task_struct *task)
180 if (refcount_dec_and_test(&task->rcu_users))
181 call_rcu(&task->rcu, delayed_put_task_struct);
184 void release_task(struct task_struct *p)
186 struct task_struct *leader;
187 struct pid *thread_pid;
190 /* don't need to get the RCU readlock here - the process is dead and
191 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
198 write_lock_irq(&tasklist_lock);
199 ptrace_release_task(p);
200 thread_pid = get_pid(p->thread_pid);
204 * If we are the last non-leader member of the thread
205 * group, and the leader is zombie, then notify the
206 * group leader's parent process. (if it wants notification.)
209 leader = p->group_leader;
210 if (leader != p && thread_group_empty(leader)
211 && leader->exit_state == EXIT_ZOMBIE) {
213 * If we were the last child thread and the leader has
214 * exited already, and the leader's parent ignores SIGCHLD,
215 * then we are the one who should release the leader.
217 zap_leader = do_notify_parent(leader, leader->exit_signal);
219 leader->exit_state = EXIT_DEAD;
222 write_unlock_irq(&tasklist_lock);
223 seccomp_filter_release(p);
224 proc_flush_pid(thread_pid);
227 put_task_struct_rcu_user(p);
230 if (unlikely(zap_leader))
234 int rcuwait_wake_up(struct rcuwait *w)
237 struct task_struct *task;
242 * Order condition vs @task, such that everything prior to the load
243 * of @task is visible. This is the condition as to why the user called
244 * rcuwait_wake() in the first place. Pairs with set_current_state()
245 * barrier (A) in rcuwait_wait_event().
248 * [S] tsk = current [S] cond = true
254 task = rcu_dereference(w->task);
256 ret = wake_up_process(task);
261 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
264 * Determine if a process group is "orphaned", according to the POSIX
265 * definition in 2.2.2.52. Orphaned process groups are not to be affected
266 * by terminal-generated stop signals. Newly orphaned process groups are
267 * to receive a SIGHUP and a SIGCONT.
269 * "I ask you, have you ever known what it is to be an orphan?"
271 static int will_become_orphaned_pgrp(struct pid *pgrp,
272 struct task_struct *ignored_task)
274 struct task_struct *p;
276 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277 if ((p == ignored_task) ||
278 (p->exit_state && thread_group_empty(p)) ||
279 is_global_init(p->real_parent))
282 if (task_pgrp(p->real_parent) != pgrp &&
283 task_session(p->real_parent) == task_session(p))
285 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 int is_current_pgrp_orphaned(void)
294 read_lock(&tasklist_lock);
295 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
296 read_unlock(&tasklist_lock);
301 static bool has_stopped_jobs(struct pid *pgrp)
303 struct task_struct *p;
305 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
306 if (p->signal->flags & SIGNAL_STOP_STOPPED)
308 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
314 * Check to see if any process groups have become orphaned as
315 * a result of our exiting, and if they have any stopped jobs,
316 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
319 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
321 struct pid *pgrp = task_pgrp(tsk);
322 struct task_struct *ignored_task = tsk;
325 /* exit: our father is in a different pgrp than
326 * we are and we were the only connection outside.
328 parent = tsk->real_parent;
330 /* reparent: our child is in a different pgrp than
331 * we are, and it was the only connection outside.
335 if (task_pgrp(parent) != pgrp &&
336 task_session(parent) == task_session(tsk) &&
337 will_become_orphaned_pgrp(pgrp, ignored_task) &&
338 has_stopped_jobs(pgrp)) {
339 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
340 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
346 * A task is exiting. If it owned this mm, find a new owner for the mm.
348 void mm_update_next_owner(struct mm_struct *mm)
350 struct task_struct *c, *g, *p = current;
354 * If the exiting or execing task is not the owner, it's
355 * someone else's problem.
360 * The current owner is exiting/execing and there are no other
361 * candidates. Do not leave the mm pointing to a possibly
362 * freed task structure.
364 if (atomic_read(&mm->mm_users) <= 1) {
365 WRITE_ONCE(mm->owner, NULL);
369 read_lock(&tasklist_lock);
371 * Search in the children
373 list_for_each_entry(c, &p->children, sibling) {
375 goto assign_new_owner;
379 * Search in the siblings
381 list_for_each_entry(c, &p->real_parent->children, sibling) {
383 goto assign_new_owner;
387 * Search through everything else, we should not get here often.
389 for_each_process(g) {
390 if (g->flags & PF_KTHREAD)
392 for_each_thread(g, c) {
394 goto assign_new_owner;
399 read_unlock(&tasklist_lock);
401 * We found no owner yet mm_users > 1: this implies that we are
402 * most likely racing with swapoff (try_to_unuse()) or /proc or
403 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
405 WRITE_ONCE(mm->owner, NULL);
412 * The task_lock protects c->mm from changing.
413 * We always want mm->owner->mm == mm
417 * Delay read_unlock() till we have the task_lock()
418 * to ensure that c does not slip away underneath us
420 read_unlock(&tasklist_lock);
426 WRITE_ONCE(mm->owner, c);
430 #endif /* CONFIG_MEMCG */
433 * Turn us into a lazy TLB process if we
436 static void exit_mm(void)
438 struct mm_struct *mm = current->mm;
439 struct core_state *core_state;
441 exit_mm_release(current, mm);
446 * Serialize with any possible pending coredump.
447 * We must hold mmap_lock around checking core_state
448 * and clearing tsk->mm. The core-inducing thread
449 * will increment ->nr_threads for each thread in the
450 * group with ->mm != NULL.
453 core_state = mm->core_state;
455 struct core_thread self;
457 mmap_read_unlock(mm);
460 if (self.task->flags & PF_SIGNALED)
461 self.next = xchg(&core_state->dumper.next, &self);
465 * Implies mb(), the result of xchg() must be visible
466 * to core_state->dumper.
468 if (atomic_dec_and_test(&core_state->nr_threads))
469 complete(&core_state->startup);
472 set_current_state(TASK_UNINTERRUPTIBLE);
473 if (!self.task) /* see coredump_finish() */
475 freezable_schedule();
477 __set_current_state(TASK_RUNNING);
481 BUG_ON(mm != current->active_mm);
482 /* more a memory barrier than a real lock */
485 * When a thread stops operating on an address space, the loop
486 * in membarrier_private_expedited() may not observe that
487 * tsk->mm, and the loop in membarrier_global_expedited() may
488 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
489 * rq->membarrier_state, so those would not issue an IPI.
490 * Membarrier requires a memory barrier after accessing
491 * user-space memory, before clearing tsk->mm or the
492 * rq->membarrier_state.
494 smp_mb__after_spinlock();
497 membarrier_update_current_mm(NULL);
498 enter_lazy_tlb(mm, current);
500 task_unlock(current);
501 mmap_read_unlock(mm);
502 mm_update_next_owner(mm);
504 if (test_thread_flag(TIF_MEMDIE))
508 static struct task_struct *find_alive_thread(struct task_struct *p)
510 struct task_struct *t;
512 for_each_thread(p, t) {
513 if (!(t->flags & PF_EXITING))
519 static struct task_struct *find_child_reaper(struct task_struct *father,
520 struct list_head *dead)
521 __releases(&tasklist_lock)
522 __acquires(&tasklist_lock)
524 struct pid_namespace *pid_ns = task_active_pid_ns(father);
525 struct task_struct *reaper = pid_ns->child_reaper;
526 struct task_struct *p, *n;
528 if (likely(reaper != father))
531 reaper = find_alive_thread(father);
533 pid_ns->child_reaper = reaper;
537 write_unlock_irq(&tasklist_lock);
539 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
540 list_del_init(&p->ptrace_entry);
544 zap_pid_ns_processes(pid_ns);
545 write_lock_irq(&tasklist_lock);
551 * When we die, we re-parent all our children, and try to:
552 * 1. give them to another thread in our thread group, if such a member exists
553 * 2. give it to the first ancestor process which prctl'd itself as a
554 * child_subreaper for its children (like a service manager)
555 * 3. give it to the init process (PID 1) in our pid namespace
557 static struct task_struct *find_new_reaper(struct task_struct *father,
558 struct task_struct *child_reaper)
560 struct task_struct *thread, *reaper;
562 thread = find_alive_thread(father);
566 if (father->signal->has_child_subreaper) {
567 unsigned int ns_level = task_pid(father)->level;
569 * Find the first ->is_child_subreaper ancestor in our pid_ns.
570 * We can't check reaper != child_reaper to ensure we do not
571 * cross the namespaces, the exiting parent could be injected
572 * by setns() + fork().
573 * We check pid->level, this is slightly more efficient than
574 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
576 for (reaper = father->real_parent;
577 task_pid(reaper)->level == ns_level;
578 reaper = reaper->real_parent) {
579 if (reaper == &init_task)
581 if (!reaper->signal->is_child_subreaper)
583 thread = find_alive_thread(reaper);
593 * Any that need to be release_task'd are put on the @dead list.
595 static void reparent_leader(struct task_struct *father, struct task_struct *p,
596 struct list_head *dead)
598 if (unlikely(p->exit_state == EXIT_DEAD))
601 /* We don't want people slaying init. */
602 p->exit_signal = SIGCHLD;
604 /* If it has exited notify the new parent about this child's death. */
606 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
607 if (do_notify_parent(p, p->exit_signal)) {
608 p->exit_state = EXIT_DEAD;
609 list_add(&p->ptrace_entry, dead);
613 kill_orphaned_pgrp(p, father);
617 * This does two things:
619 * A. Make init inherit all the child processes
620 * B. Check to see if any process groups have become orphaned
621 * as a result of our exiting, and if they have any stopped
622 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
624 static void forget_original_parent(struct task_struct *father,
625 struct list_head *dead)
627 struct task_struct *p, *t, *reaper;
629 if (unlikely(!list_empty(&father->ptraced)))
630 exit_ptrace(father, dead);
632 /* Can drop and reacquire tasklist_lock */
633 reaper = find_child_reaper(father, dead);
634 if (list_empty(&father->children))
637 reaper = find_new_reaper(father, reaper);
638 list_for_each_entry(p, &father->children, sibling) {
639 for_each_thread(p, t) {
640 RCU_INIT_POINTER(t->real_parent, reaper);
641 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
642 if (likely(!t->ptrace))
643 t->parent = t->real_parent;
644 if (t->pdeath_signal)
645 group_send_sig_info(t->pdeath_signal,
650 * If this is a threaded reparent there is no need to
651 * notify anyone anything has happened.
653 if (!same_thread_group(reaper, father))
654 reparent_leader(father, p, dead);
656 list_splice_tail_init(&father->children, &reaper->children);
660 * Send signals to all our closest relatives so that they know
661 * to properly mourn us..
663 static void exit_notify(struct task_struct *tsk, int group_dead)
666 struct task_struct *p, *n;
669 write_lock_irq(&tasklist_lock);
670 forget_original_parent(tsk, &dead);
673 kill_orphaned_pgrp(tsk->group_leader, NULL);
675 tsk->exit_state = EXIT_ZOMBIE;
676 if (unlikely(tsk->ptrace)) {
677 int sig = thread_group_leader(tsk) &&
678 thread_group_empty(tsk) &&
679 !ptrace_reparented(tsk) ?
680 tsk->exit_signal : SIGCHLD;
681 autoreap = do_notify_parent(tsk, sig);
682 } else if (thread_group_leader(tsk)) {
683 autoreap = thread_group_empty(tsk) &&
684 do_notify_parent(tsk, tsk->exit_signal);
690 tsk->exit_state = EXIT_DEAD;
691 list_add(&tsk->ptrace_entry, &dead);
694 /* mt-exec, de_thread() is waiting for group leader */
695 if (unlikely(tsk->signal->notify_count < 0))
696 wake_up_process(tsk->signal->group_exit_task);
697 write_unlock_irq(&tasklist_lock);
699 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
700 list_del_init(&p->ptrace_entry);
705 #ifdef CONFIG_DEBUG_STACK_USAGE
706 static void check_stack_usage(void)
708 static DEFINE_SPINLOCK(low_water_lock);
709 static int lowest_to_date = THREAD_SIZE;
712 free = stack_not_used(current);
714 if (free >= lowest_to_date)
717 spin_lock(&low_water_lock);
718 if (free < lowest_to_date) {
719 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
720 current->comm, task_pid_nr(current), free);
721 lowest_to_date = free;
723 spin_unlock(&low_water_lock);
726 static inline void check_stack_usage(void) {}
729 void __noreturn do_exit(long code)
731 struct task_struct *tsk = current;
735 * We can get here from a kernel oops, sometimes with preemption off.
736 * Start by checking for critical errors.
737 * Then fix up important state like USER_DS and preemption.
738 * Then do everything else.
741 WARN_ON(blk_needs_flush_plug(tsk));
743 if (unlikely(in_interrupt()))
744 panic("Aiee, killing interrupt handler!");
745 if (unlikely(!tsk->pid))
746 panic("Attempted to kill the idle task!");
749 * If do_exit is called because this processes oopsed, it's possible
750 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
751 * continuing. Amongst other possible reasons, this is to prevent
752 * mm_release()->clear_child_tid() from writing to a user-controlled
755 force_uaccess_begin();
757 if (unlikely(in_atomic())) {
758 pr_info("note: %s[%d] exited with preempt_count %d\n",
759 current->comm, task_pid_nr(current),
761 preempt_count_set(PREEMPT_ENABLED);
764 profile_task_exit(tsk);
767 ptrace_event(PTRACE_EVENT_EXIT, code);
769 validate_creds_for_do_exit(tsk);
772 * We're taking recursive faults here in do_exit. Safest is to just
773 * leave this task alone and wait for reboot.
775 if (unlikely(tsk->flags & PF_EXITING)) {
776 pr_alert("Fixing recursive fault but reboot is needed!\n");
777 futex_exit_recursive(tsk);
778 set_current_state(TASK_UNINTERRUPTIBLE);
782 io_uring_files_cancel();
783 exit_signals(tsk); /* sets PF_EXITING */
785 /* sync mm's RSS info before statistics gathering */
787 sync_mm_rss(tsk->mm);
788 acct_update_integrals(tsk);
789 group_dead = atomic_dec_and_test(&tsk->signal->live);
792 * If the last thread of global init has exited, panic
793 * immediately to get a useable coredump.
795 if (unlikely(is_global_init(tsk)))
796 panic("Attempted to kill init! exitcode=0x%08x\n",
797 tsk->signal->group_exit_code ?: (int)code);
799 #ifdef CONFIG_POSIX_TIMERS
800 hrtimer_cancel(&tsk->signal->real_timer);
801 exit_itimers(tsk->signal);
804 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
806 acct_collect(code, group_dead);
811 tsk->exit_code = code;
812 taskstats_exit(tsk, group_dead);
818 trace_sched_process_exit(tsk);
825 disassociate_ctty(1);
826 exit_task_namespaces(tsk);
831 * Flush inherited counters to the parent - before the parent
832 * gets woken up by child-exit notifications.
834 * because of cgroup mode, must be called before cgroup_exit()
836 perf_event_exit_task(tsk);
838 sched_autogroup_exit_task(tsk);
842 * FIXME: do that only when needed, using sched_exit tracepoint
844 flush_ptrace_hw_breakpoint(tsk);
846 exit_tasks_rcu_start();
847 exit_notify(tsk, group_dead);
848 proc_exit_connector(tsk);
849 mpol_put_task_policy(tsk);
851 if (unlikely(current->pi_state_cache))
852 kfree(current->pi_state_cache);
855 * Make sure we are holding no locks:
857 debug_check_no_locks_held();
860 exit_io_context(tsk);
862 if (tsk->splice_pipe)
863 free_pipe_info(tsk->splice_pipe);
865 if (tsk->task_frag.page)
866 put_page(tsk->task_frag.page);
868 validate_creds_for_do_exit(tsk);
873 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
875 exit_tasks_rcu_finish();
877 lockdep_free_task(tsk);
880 EXPORT_SYMBOL_GPL(do_exit);
882 void complete_and_exit(struct completion *comp, long code)
889 EXPORT_SYMBOL(complete_and_exit);
891 SYSCALL_DEFINE1(exit, int, error_code)
893 do_exit((error_code&0xff)<<8);
897 * Take down every thread in the group. This is called by fatal signals
898 * as well as by sys_exit_group (below).
901 do_group_exit(int exit_code)
903 struct signal_struct *sig = current->signal;
905 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
907 if (signal_group_exit(sig))
908 exit_code = sig->group_exit_code;
909 else if (!thread_group_empty(current)) {
910 struct sighand_struct *const sighand = current->sighand;
912 spin_lock_irq(&sighand->siglock);
913 if (signal_group_exit(sig))
914 /* Another thread got here before we took the lock. */
915 exit_code = sig->group_exit_code;
917 sig->group_exit_code = exit_code;
918 sig->flags = SIGNAL_GROUP_EXIT;
919 zap_other_threads(current);
921 spin_unlock_irq(&sighand->siglock);
929 * this kills every thread in the thread group. Note that any externally
930 * wait4()-ing process will get the correct exit code - even if this
931 * thread is not the thread group leader.
933 SYSCALL_DEFINE1(exit_group, int, error_code)
935 do_group_exit((error_code & 0xff) << 8);
948 enum pid_type wo_type;
952 struct waitid_info *wo_info;
954 struct rusage *wo_rusage;
956 wait_queue_entry_t child_wait;
960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
962 return wo->wo_type == PIDTYPE_MAX ||
963 task_pid_type(p, wo->wo_type) == wo->wo_pid;
967 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
969 if (!eligible_pid(wo, p))
973 * Wait for all children (clone and not) if __WALL is set or
974 * if it is traced by us.
976 if (ptrace || (wo->wo_flags & __WALL))
980 * Otherwise, wait for clone children *only* if __WCLONE is set;
981 * otherwise, wait for non-clone children *only*.
983 * Note: a "clone" child here is one that reports to its parent
984 * using a signal other than SIGCHLD, or a non-leader thread which
985 * we can only see if it is traced by us.
987 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
994 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
995 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
996 * the lock and this task is uninteresting. If we return nonzero, we have
997 * released the lock and the system call should return.
999 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1002 pid_t pid = task_pid_vnr(p);
1003 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1004 struct waitid_info *infop;
1006 if (!likely(wo->wo_flags & WEXITED))
1009 if (unlikely(wo->wo_flags & WNOWAIT)) {
1010 status = p->exit_code;
1012 read_unlock(&tasklist_lock);
1013 sched_annotate_sleep();
1015 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1020 * Move the task's state to DEAD/TRACE, only one thread can do this.
1022 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1023 EXIT_TRACE : EXIT_DEAD;
1024 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1027 * We own this thread, nobody else can reap it.
1029 read_unlock(&tasklist_lock);
1030 sched_annotate_sleep();
1033 * Check thread_group_leader() to exclude the traced sub-threads.
1035 if (state == EXIT_DEAD && thread_group_leader(p)) {
1036 struct signal_struct *sig = p->signal;
1037 struct signal_struct *psig = current->signal;
1038 unsigned long maxrss;
1039 u64 tgutime, tgstime;
1042 * The resource counters for the group leader are in its
1043 * own task_struct. Those for dead threads in the group
1044 * are in its signal_struct, as are those for the child
1045 * processes it has previously reaped. All these
1046 * accumulate in the parent's signal_struct c* fields.
1048 * We don't bother to take a lock here to protect these
1049 * p->signal fields because the whole thread group is dead
1050 * and nobody can change them.
1052 * psig->stats_lock also protects us from our sub-theads
1053 * which can reap other children at the same time. Until
1054 * we change k_getrusage()-like users to rely on this lock
1055 * we have to take ->siglock as well.
1057 * We use thread_group_cputime_adjusted() to get times for
1058 * the thread group, which consolidates times for all threads
1059 * in the group including the group leader.
1061 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1062 spin_lock_irq(¤t->sighand->siglock);
1063 write_seqlock(&psig->stats_lock);
1064 psig->cutime += tgutime + sig->cutime;
1065 psig->cstime += tgstime + sig->cstime;
1066 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1068 p->min_flt + sig->min_flt + sig->cmin_flt;
1070 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1072 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1074 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1076 task_io_get_inblock(p) +
1077 sig->inblock + sig->cinblock;
1079 task_io_get_oublock(p) +
1080 sig->oublock + sig->coublock;
1081 maxrss = max(sig->maxrss, sig->cmaxrss);
1082 if (psig->cmaxrss < maxrss)
1083 psig->cmaxrss = maxrss;
1084 task_io_accounting_add(&psig->ioac, &p->ioac);
1085 task_io_accounting_add(&psig->ioac, &sig->ioac);
1086 write_sequnlock(&psig->stats_lock);
1087 spin_unlock_irq(¤t->sighand->siglock);
1091 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1092 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1093 ? p->signal->group_exit_code : p->exit_code;
1094 wo->wo_stat = status;
1096 if (state == EXIT_TRACE) {
1097 write_lock_irq(&tasklist_lock);
1098 /* We dropped tasklist, ptracer could die and untrace */
1101 /* If parent wants a zombie, don't release it now */
1102 state = EXIT_ZOMBIE;
1103 if (do_notify_parent(p, p->exit_signal))
1105 p->exit_state = state;
1106 write_unlock_irq(&tasklist_lock);
1108 if (state == EXIT_DEAD)
1112 infop = wo->wo_info;
1114 if ((status & 0x7f) == 0) {
1115 infop->cause = CLD_EXITED;
1116 infop->status = status >> 8;
1118 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1119 infop->status = status & 0x7f;
1128 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1131 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1132 return &p->exit_code;
1134 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135 return &p->signal->group_exit_code;
1141 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1143 * @ptrace: is the wait for ptrace
1144 * @p: task to wait for
1146 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1149 * read_lock(&tasklist_lock), which is released if return value is
1150 * non-zero. Also, grabs and releases @p->sighand->siglock.
1153 * 0 if wait condition didn't exist and search for other wait conditions
1154 * should continue. Non-zero return, -errno on failure and @p's pid on
1155 * success, implies that tasklist_lock is released and wait condition
1156 * search should terminate.
1158 static int wait_task_stopped(struct wait_opts *wo,
1159 int ptrace, struct task_struct *p)
1161 struct waitid_info *infop;
1162 int exit_code, *p_code, why;
1163 uid_t uid = 0; /* unneeded, required by compiler */
1167 * Traditionally we see ptrace'd stopped tasks regardless of options.
1169 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1172 if (!task_stopped_code(p, ptrace))
1176 spin_lock_irq(&p->sighand->siglock);
1178 p_code = task_stopped_code(p, ptrace);
1179 if (unlikely(!p_code))
1182 exit_code = *p_code;
1186 if (!unlikely(wo->wo_flags & WNOWAIT))
1189 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1191 spin_unlock_irq(&p->sighand->siglock);
1196 * Now we are pretty sure this task is interesting.
1197 * Make sure it doesn't get reaped out from under us while we
1198 * give up the lock and then examine it below. We don't want to
1199 * keep holding onto the tasklist_lock while we call getrusage and
1200 * possibly take page faults for user memory.
1203 pid = task_pid_vnr(p);
1204 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205 read_unlock(&tasklist_lock);
1206 sched_annotate_sleep();
1208 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1211 if (likely(!(wo->wo_flags & WNOWAIT)))
1212 wo->wo_stat = (exit_code << 8) | 0x7f;
1214 infop = wo->wo_info;
1217 infop->status = exit_code;
1225 * Handle do_wait work for one task in a live, non-stopped state.
1226 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1227 * the lock and this task is uninteresting. If we return nonzero, we have
1228 * released the lock and the system call should return.
1230 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1232 struct waitid_info *infop;
1236 if (!unlikely(wo->wo_flags & WCONTINUED))
1239 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1242 spin_lock_irq(&p->sighand->siglock);
1243 /* Re-check with the lock held. */
1244 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1245 spin_unlock_irq(&p->sighand->siglock);
1248 if (!unlikely(wo->wo_flags & WNOWAIT))
1249 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1250 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1251 spin_unlock_irq(&p->sighand->siglock);
1253 pid = task_pid_vnr(p);
1255 read_unlock(&tasklist_lock);
1256 sched_annotate_sleep();
1258 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261 infop = wo->wo_info;
1263 wo->wo_stat = 0xffff;
1265 infop->cause = CLD_CONTINUED;
1268 infop->status = SIGCONT;
1274 * Consider @p for a wait by @parent.
1276 * -ECHILD should be in ->notask_error before the first call.
1277 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1278 * Returns zero if the search for a child should continue;
1279 * then ->notask_error is 0 if @p is an eligible child,
1282 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1283 struct task_struct *p)
1286 * We can race with wait_task_zombie() from another thread.
1287 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1288 * can't confuse the checks below.
1290 int exit_state = READ_ONCE(p->exit_state);
1293 if (unlikely(exit_state == EXIT_DEAD))
1296 ret = eligible_child(wo, ptrace, p);
1300 if (unlikely(exit_state == EXIT_TRACE)) {
1302 * ptrace == 0 means we are the natural parent. In this case
1303 * we should clear notask_error, debugger will notify us.
1305 if (likely(!ptrace))
1306 wo->notask_error = 0;
1310 if (likely(!ptrace) && unlikely(p->ptrace)) {
1312 * If it is traced by its real parent's group, just pretend
1313 * the caller is ptrace_do_wait() and reap this child if it
1316 * This also hides group stop state from real parent; otherwise
1317 * a single stop can be reported twice as group and ptrace stop.
1318 * If a ptracer wants to distinguish these two events for its
1319 * own children it should create a separate process which takes
1320 * the role of real parent.
1322 if (!ptrace_reparented(p))
1327 if (exit_state == EXIT_ZOMBIE) {
1328 /* we don't reap group leaders with subthreads */
1329 if (!delay_group_leader(p)) {
1331 * A zombie ptracee is only visible to its ptracer.
1332 * Notification and reaping will be cascaded to the
1333 * real parent when the ptracer detaches.
1335 if (unlikely(ptrace) || likely(!p->ptrace))
1336 return wait_task_zombie(wo, p);
1340 * Allow access to stopped/continued state via zombie by
1341 * falling through. Clearing of notask_error is complex.
1345 * If WEXITED is set, notask_error should naturally be
1346 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1347 * so, if there are live subthreads, there are events to
1348 * wait for. If all subthreads are dead, it's still safe
1349 * to clear - this function will be called again in finite
1350 * amount time once all the subthreads are released and
1351 * will then return without clearing.
1355 * Stopped state is per-task and thus can't change once the
1356 * target task dies. Only continued and exited can happen.
1357 * Clear notask_error if WCONTINUED | WEXITED.
1359 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1360 wo->notask_error = 0;
1363 * @p is alive and it's gonna stop, continue or exit, so
1364 * there always is something to wait for.
1366 wo->notask_error = 0;
1370 * Wait for stopped. Depending on @ptrace, different stopped state
1371 * is used and the two don't interact with each other.
1373 ret = wait_task_stopped(wo, ptrace, p);
1378 * Wait for continued. There's only one continued state and the
1379 * ptracer can consume it which can confuse the real parent. Don't
1380 * use WCONTINUED from ptracer. You don't need or want it.
1382 return wait_task_continued(wo, p);
1386 * Do the work of do_wait() for one thread in the group, @tsk.
1388 * -ECHILD should be in ->notask_error before the first call.
1389 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1390 * Returns zero if the search for a child should continue; then
1391 * ->notask_error is 0 if there were any eligible children,
1394 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1396 struct task_struct *p;
1398 list_for_each_entry(p, &tsk->children, sibling) {
1399 int ret = wait_consider_task(wo, 0, p);
1408 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1410 struct task_struct *p;
1412 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1413 int ret = wait_consider_task(wo, 1, p);
1422 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1423 int sync, void *key)
1425 struct wait_opts *wo = container_of(wait, struct wait_opts,
1427 struct task_struct *p = key;
1429 if (!eligible_pid(wo, p))
1432 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1435 return default_wake_function(wait, mode, sync, key);
1438 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1440 __wake_up_sync_key(&parent->signal->wait_chldexit,
1441 TASK_INTERRUPTIBLE, p);
1444 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1445 struct task_struct *target)
1447 struct task_struct *parent =
1448 !ptrace ? target->real_parent : target->parent;
1450 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1451 same_thread_group(current, parent));
1455 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1456 * and tracee lists to find the target task.
1458 static int do_wait_pid(struct wait_opts *wo)
1461 struct task_struct *target;
1465 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1466 if (target && is_effectively_child(wo, ptrace, target)) {
1467 retval = wait_consider_task(wo, ptrace, target);
1473 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1474 if (target && target->ptrace &&
1475 is_effectively_child(wo, ptrace, target)) {
1476 retval = wait_consider_task(wo, ptrace, target);
1484 static long do_wait(struct wait_opts *wo)
1488 trace_sched_process_wait(wo->wo_pid);
1490 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1491 wo->child_wait.private = current;
1492 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1495 * If there is nothing that can match our criteria, just get out.
1496 * We will clear ->notask_error to zero if we see any child that
1497 * might later match our criteria, even if we are not able to reap
1500 wo->notask_error = -ECHILD;
1501 if ((wo->wo_type < PIDTYPE_MAX) &&
1502 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1505 set_current_state(TASK_INTERRUPTIBLE);
1506 read_lock(&tasklist_lock);
1508 if (wo->wo_type == PIDTYPE_PID) {
1509 retval = do_wait_pid(wo);
1513 struct task_struct *tsk = current;
1516 retval = do_wait_thread(wo, tsk);
1520 retval = ptrace_do_wait(wo, tsk);
1524 if (wo->wo_flags & __WNOTHREAD)
1526 } while_each_thread(current, tsk);
1528 read_unlock(&tasklist_lock);
1531 retval = wo->notask_error;
1532 if (!retval && !(wo->wo_flags & WNOHANG)) {
1533 retval = -ERESTARTSYS;
1534 if (!signal_pending(current)) {
1540 __set_current_state(TASK_RUNNING);
1541 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1545 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1546 int options, struct rusage *ru)
1548 struct wait_opts wo;
1549 struct pid *pid = NULL;
1552 unsigned int f_flags = 0;
1554 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1555 __WNOTHREAD|__WCLONE|__WALL))
1557 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1569 pid = find_get_pid(upid);
1572 type = PIDTYPE_PGID;
1577 pid = find_get_pid(upid);
1579 pid = get_task_pid(current, PIDTYPE_PGID);
1586 pid = pidfd_get_pid(upid, &f_flags);
1588 return PTR_ERR(pid);
1597 wo.wo_flags = options;
1600 if (f_flags & O_NONBLOCK)
1601 wo.wo_flags |= WNOHANG;
1604 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1611 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1612 infop, int, options, struct rusage __user *, ru)
1615 struct waitid_info info = {.status = 0};
1616 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1622 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1628 if (!user_write_access_begin(infop, sizeof(*infop)))
1631 unsafe_put_user(signo, &infop->si_signo, Efault);
1632 unsafe_put_user(0, &infop->si_errno, Efault);
1633 unsafe_put_user(info.cause, &infop->si_code, Efault);
1634 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1635 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1636 unsafe_put_user(info.status, &infop->si_status, Efault);
1637 user_write_access_end();
1640 user_write_access_end();
1644 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1647 struct wait_opts wo;
1648 struct pid *pid = NULL;
1652 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1653 __WNOTHREAD|__WCLONE|__WALL))
1656 /* -INT_MIN is not defined */
1657 if (upid == INT_MIN)
1662 else if (upid < 0) {
1663 type = PIDTYPE_PGID;
1664 pid = find_get_pid(-upid);
1665 } else if (upid == 0) {
1666 type = PIDTYPE_PGID;
1667 pid = get_task_pid(current, PIDTYPE_PGID);
1668 } else /* upid > 0 */ {
1670 pid = find_get_pid(upid);
1675 wo.wo_flags = options | WEXITED;
1681 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1687 int kernel_wait(pid_t pid, int *stat)
1689 struct wait_opts wo = {
1690 .wo_type = PIDTYPE_PID,
1691 .wo_pid = find_get_pid(pid),
1692 .wo_flags = WEXITED,
1697 if (ret > 0 && wo.wo_stat)
1703 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1704 int, options, struct rusage __user *, ru)
1707 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1710 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1716 #ifdef __ARCH_WANT_SYS_WAITPID
1719 * sys_waitpid() remains for compatibility. waitpid() should be
1720 * implemented by calling sys_wait4() from libc.a.
1722 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1724 return kernel_wait4(pid, stat_addr, options, NULL);
1729 #ifdef CONFIG_COMPAT
1730 COMPAT_SYSCALL_DEFINE4(wait4,
1732 compat_uint_t __user *, stat_addr,
1734 struct compat_rusage __user *, ru)
1737 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1739 if (ru && put_compat_rusage(&r, ru))
1745 COMPAT_SYSCALL_DEFINE5(waitid,
1746 int, which, compat_pid_t, pid,
1747 struct compat_siginfo __user *, infop, int, options,
1748 struct compat_rusage __user *, uru)
1751 struct waitid_info info = {.status = 0};
1752 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1758 /* kernel_waitid() overwrites everything in ru */
1759 if (COMPAT_USE_64BIT_TIME)
1760 err = copy_to_user(uru, &ru, sizeof(ru));
1762 err = put_compat_rusage(&ru, uru);
1771 if (!user_write_access_begin(infop, sizeof(*infop)))
1774 unsafe_put_user(signo, &infop->si_signo, Efault);
1775 unsafe_put_user(0, &infop->si_errno, Efault);
1776 unsafe_put_user(info.cause, &infop->si_code, Efault);
1777 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1778 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1779 unsafe_put_user(info.status, &infop->si_status, Efault);
1780 user_write_access_end();
1783 user_write_access_end();
1789 * thread_group_exited - check that a thread group has exited
1790 * @pid: tgid of thread group to be checked.
1792 * Test if the thread group represented by tgid has exited (all
1793 * threads are zombies, dead or completely gone).
1795 * Return: true if the thread group has exited. false otherwise.
1797 bool thread_group_exited(struct pid *pid)
1799 struct task_struct *task;
1803 task = pid_task(pid, PIDTYPE_PID);
1805 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1810 EXPORT_SYMBOL(thread_group_exited);
1812 __weak void abort(void)
1816 /* if that doesn't kill us, halt */
1817 panic("Oops failed to kill thread");
1819 EXPORT_SYMBOL(abort);