]> Git Repo - linux.git/blob - kernel/exit.c
kernel/sched: Fix sched_fork() access an invalid sched_task_group
[linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75         nr_threads--;
76         detach_pid(p, PIDTYPE_PID);
77         if (group_dead) {
78                 detach_pid(p, PIDTYPE_TGID);
79                 detach_pid(p, PIDTYPE_PGID);
80                 detach_pid(p, PIDTYPE_SID);
81
82                 list_del_rcu(&p->tasks);
83                 list_del_init(&p->sibling);
84                 __this_cpu_dec(process_counts);
85         }
86         list_del_rcu(&p->thread_group);
87         list_del_rcu(&p->thread_node);
88 }
89
90 /*
91  * This function expects the tasklist_lock write-locked.
92  */
93 static void __exit_signal(struct task_struct *tsk)
94 {
95         struct signal_struct *sig = tsk->signal;
96         bool group_dead = thread_group_leader(tsk);
97         struct sighand_struct *sighand;
98         struct tty_struct *tty;
99         u64 utime, stime;
100
101         sighand = rcu_dereference_check(tsk->sighand,
102                                         lockdep_tasklist_lock_is_held());
103         spin_lock(&sighand->siglock);
104
105 #ifdef CONFIG_POSIX_TIMERS
106         posix_cpu_timers_exit(tsk);
107         if (group_dead)
108                 posix_cpu_timers_exit_group(tsk);
109 #endif
110
111         if (group_dead) {
112                 tty = sig->tty;
113                 sig->tty = NULL;
114         } else {
115                 /*
116                  * If there is any task waiting for the group exit
117                  * then notify it:
118                  */
119                 if (sig->notify_count > 0 && !--sig->notify_count)
120                         wake_up_process(sig->group_exit_task);
121
122                 if (tsk == sig->curr_target)
123                         sig->curr_target = next_thread(tsk);
124         }
125
126         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127                               sizeof(unsigned long long));
128
129         /*
130          * Accumulate here the counters for all threads as they die. We could
131          * skip the group leader because it is the last user of signal_struct,
132          * but we want to avoid the race with thread_group_cputime() which can
133          * see the empty ->thread_head list.
134          */
135         task_cputime(tsk, &utime, &stime);
136         write_seqlock(&sig->stats_lock);
137         sig->utime += utime;
138         sig->stime += stime;
139         sig->gtime += task_gtime(tsk);
140         sig->min_flt += tsk->min_flt;
141         sig->maj_flt += tsk->maj_flt;
142         sig->nvcsw += tsk->nvcsw;
143         sig->nivcsw += tsk->nivcsw;
144         sig->inblock += task_io_get_inblock(tsk);
145         sig->oublock += task_io_get_oublock(tsk);
146         task_io_accounting_add(&sig->ioac, &tsk->ioac);
147         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148         sig->nr_threads--;
149         __unhash_process(tsk, group_dead);
150         write_sequnlock(&sig->stats_lock);
151
152         /*
153          * Do this under ->siglock, we can race with another thread
154          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155          */
156         flush_sigqueue(&tsk->pending);
157         tsk->sighand = NULL;
158         spin_unlock(&sighand->siglock);
159
160         __cleanup_sighand(sighand);
161         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162         if (group_dead) {
163                 flush_sigqueue(&sig->shared_pending);
164                 tty_kref_put(tty);
165         }
166 }
167
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171
172         kprobe_flush_task(tsk);
173         perf_event_delayed_put(tsk);
174         trace_sched_process_free(tsk);
175         put_task_struct(tsk);
176 }
177
178 void put_task_struct_rcu_user(struct task_struct *task)
179 {
180         if (refcount_dec_and_test(&task->rcu_users))
181                 call_rcu(&task->rcu, delayed_put_task_struct);
182 }
183
184 void release_task(struct task_struct *p)
185 {
186         struct task_struct *leader;
187         struct pid *thread_pid;
188         int zap_leader;
189 repeat:
190         /* don't need to get the RCU readlock here - the process is dead and
191          * can't be modifying its own credentials. But shut RCU-lockdep up */
192         rcu_read_lock();
193         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
194         rcu_read_unlock();
195
196         cgroup_release(p);
197
198         write_lock_irq(&tasklist_lock);
199         ptrace_release_task(p);
200         thread_pid = get_pid(p->thread_pid);
201         __exit_signal(p);
202
203         /*
204          * If we are the last non-leader member of the thread
205          * group, and the leader is zombie, then notify the
206          * group leader's parent process. (if it wants notification.)
207          */
208         zap_leader = 0;
209         leader = p->group_leader;
210         if (leader != p && thread_group_empty(leader)
211                         && leader->exit_state == EXIT_ZOMBIE) {
212                 /*
213                  * If we were the last child thread and the leader has
214                  * exited already, and the leader's parent ignores SIGCHLD,
215                  * then we are the one who should release the leader.
216                  */
217                 zap_leader = do_notify_parent(leader, leader->exit_signal);
218                 if (zap_leader)
219                         leader->exit_state = EXIT_DEAD;
220         }
221
222         write_unlock_irq(&tasklist_lock);
223         seccomp_filter_release(p);
224         proc_flush_pid(thread_pid);
225         put_pid(thread_pid);
226         release_thread(p);
227         put_task_struct_rcu_user(p);
228
229         p = leader;
230         if (unlikely(zap_leader))
231                 goto repeat;
232 }
233
234 int rcuwait_wake_up(struct rcuwait *w)
235 {
236         int ret = 0;
237         struct task_struct *task;
238
239         rcu_read_lock();
240
241         /*
242          * Order condition vs @task, such that everything prior to the load
243          * of @task is visible. This is the condition as to why the user called
244          * rcuwait_wake() in the first place. Pairs with set_current_state()
245          * barrier (A) in rcuwait_wait_event().
246          *
247          *    WAIT                WAKE
248          *    [S] tsk = current   [S] cond = true
249          *        MB (A)              MB (B)
250          *    [L] cond            [L] tsk
251          */
252         smp_mb(); /* (B) */
253
254         task = rcu_dereference(w->task);
255         if (task)
256                 ret = wake_up_process(task);
257         rcu_read_unlock();
258
259         return ret;
260 }
261 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
262
263 /*
264  * Determine if a process group is "orphaned", according to the POSIX
265  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
266  * by terminal-generated stop signals.  Newly orphaned process groups are
267  * to receive a SIGHUP and a SIGCONT.
268  *
269  * "I ask you, have you ever known what it is to be an orphan?"
270  */
271 static int will_become_orphaned_pgrp(struct pid *pgrp,
272                                         struct task_struct *ignored_task)
273 {
274         struct task_struct *p;
275
276         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277                 if ((p == ignored_task) ||
278                     (p->exit_state && thread_group_empty(p)) ||
279                     is_global_init(p->real_parent))
280                         continue;
281
282                 if (task_pgrp(p->real_parent) != pgrp &&
283                     task_session(p->real_parent) == task_session(p))
284                         return 0;
285         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
286
287         return 1;
288 }
289
290 int is_current_pgrp_orphaned(void)
291 {
292         int retval;
293
294         read_lock(&tasklist_lock);
295         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
296         read_unlock(&tasklist_lock);
297
298         return retval;
299 }
300
301 static bool has_stopped_jobs(struct pid *pgrp)
302 {
303         struct task_struct *p;
304
305         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
306                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
307                         return true;
308         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
309
310         return false;
311 }
312
313 /*
314  * Check to see if any process groups have become orphaned as
315  * a result of our exiting, and if they have any stopped jobs,
316  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
317  */
318 static void
319 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
320 {
321         struct pid *pgrp = task_pgrp(tsk);
322         struct task_struct *ignored_task = tsk;
323
324         if (!parent)
325                 /* exit: our father is in a different pgrp than
326                  * we are and we were the only connection outside.
327                  */
328                 parent = tsk->real_parent;
329         else
330                 /* reparent: our child is in a different pgrp than
331                  * we are, and it was the only connection outside.
332                  */
333                 ignored_task = NULL;
334
335         if (task_pgrp(parent) != pgrp &&
336             task_session(parent) == task_session(tsk) &&
337             will_become_orphaned_pgrp(pgrp, ignored_task) &&
338             has_stopped_jobs(pgrp)) {
339                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
340                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
341         }
342 }
343
344 #ifdef CONFIG_MEMCG
345 /*
346  * A task is exiting.   If it owned this mm, find a new owner for the mm.
347  */
348 void mm_update_next_owner(struct mm_struct *mm)
349 {
350         struct task_struct *c, *g, *p = current;
351
352 retry:
353         /*
354          * If the exiting or execing task is not the owner, it's
355          * someone else's problem.
356          */
357         if (mm->owner != p)
358                 return;
359         /*
360          * The current owner is exiting/execing and there are no other
361          * candidates.  Do not leave the mm pointing to a possibly
362          * freed task structure.
363          */
364         if (atomic_read(&mm->mm_users) <= 1) {
365                 WRITE_ONCE(mm->owner, NULL);
366                 return;
367         }
368
369         read_lock(&tasklist_lock);
370         /*
371          * Search in the children
372          */
373         list_for_each_entry(c, &p->children, sibling) {
374                 if (c->mm == mm)
375                         goto assign_new_owner;
376         }
377
378         /*
379          * Search in the siblings
380          */
381         list_for_each_entry(c, &p->real_parent->children, sibling) {
382                 if (c->mm == mm)
383                         goto assign_new_owner;
384         }
385
386         /*
387          * Search through everything else, we should not get here often.
388          */
389         for_each_process(g) {
390                 if (g->flags & PF_KTHREAD)
391                         continue;
392                 for_each_thread(g, c) {
393                         if (c->mm == mm)
394                                 goto assign_new_owner;
395                         if (c->mm)
396                                 break;
397                 }
398         }
399         read_unlock(&tasklist_lock);
400         /*
401          * We found no owner yet mm_users > 1: this implies that we are
402          * most likely racing with swapoff (try_to_unuse()) or /proc or
403          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
404          */
405         WRITE_ONCE(mm->owner, NULL);
406         return;
407
408 assign_new_owner:
409         BUG_ON(c == p);
410         get_task_struct(c);
411         /*
412          * The task_lock protects c->mm from changing.
413          * We always want mm->owner->mm == mm
414          */
415         task_lock(c);
416         /*
417          * Delay read_unlock() till we have the task_lock()
418          * to ensure that c does not slip away underneath us
419          */
420         read_unlock(&tasklist_lock);
421         if (c->mm != mm) {
422                 task_unlock(c);
423                 put_task_struct(c);
424                 goto retry;
425         }
426         WRITE_ONCE(mm->owner, c);
427         task_unlock(c);
428         put_task_struct(c);
429 }
430 #endif /* CONFIG_MEMCG */
431
432 /*
433  * Turn us into a lazy TLB process if we
434  * aren't already..
435  */
436 static void exit_mm(void)
437 {
438         struct mm_struct *mm = current->mm;
439         struct core_state *core_state;
440
441         exit_mm_release(current, mm);
442         if (!mm)
443                 return;
444         sync_mm_rss(mm);
445         /*
446          * Serialize with any possible pending coredump.
447          * We must hold mmap_lock around checking core_state
448          * and clearing tsk->mm.  The core-inducing thread
449          * will increment ->nr_threads for each thread in the
450          * group with ->mm != NULL.
451          */
452         mmap_read_lock(mm);
453         core_state = mm->core_state;
454         if (core_state) {
455                 struct core_thread self;
456
457                 mmap_read_unlock(mm);
458
459                 self.task = current;
460                 if (self.task->flags & PF_SIGNALED)
461                         self.next = xchg(&core_state->dumper.next, &self);
462                 else
463                         self.task = NULL;
464                 /*
465                  * Implies mb(), the result of xchg() must be visible
466                  * to core_state->dumper.
467                  */
468                 if (atomic_dec_and_test(&core_state->nr_threads))
469                         complete(&core_state->startup);
470
471                 for (;;) {
472                         set_current_state(TASK_UNINTERRUPTIBLE);
473                         if (!self.task) /* see coredump_finish() */
474                                 break;
475                         freezable_schedule();
476                 }
477                 __set_current_state(TASK_RUNNING);
478                 mmap_read_lock(mm);
479         }
480         mmgrab(mm);
481         BUG_ON(mm != current->active_mm);
482         /* more a memory barrier than a real lock */
483         task_lock(current);
484         /*
485          * When a thread stops operating on an address space, the loop
486          * in membarrier_private_expedited() may not observe that
487          * tsk->mm, and the loop in membarrier_global_expedited() may
488          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
489          * rq->membarrier_state, so those would not issue an IPI.
490          * Membarrier requires a memory barrier after accessing
491          * user-space memory, before clearing tsk->mm or the
492          * rq->membarrier_state.
493          */
494         smp_mb__after_spinlock();
495         local_irq_disable();
496         current->mm = NULL;
497         membarrier_update_current_mm(NULL);
498         enter_lazy_tlb(mm, current);
499         local_irq_enable();
500         task_unlock(current);
501         mmap_read_unlock(mm);
502         mm_update_next_owner(mm);
503         mmput(mm);
504         if (test_thread_flag(TIF_MEMDIE))
505                 exit_oom_victim();
506 }
507
508 static struct task_struct *find_alive_thread(struct task_struct *p)
509 {
510         struct task_struct *t;
511
512         for_each_thread(p, t) {
513                 if (!(t->flags & PF_EXITING))
514                         return t;
515         }
516         return NULL;
517 }
518
519 static struct task_struct *find_child_reaper(struct task_struct *father,
520                                                 struct list_head *dead)
521         __releases(&tasklist_lock)
522         __acquires(&tasklist_lock)
523 {
524         struct pid_namespace *pid_ns = task_active_pid_ns(father);
525         struct task_struct *reaper = pid_ns->child_reaper;
526         struct task_struct *p, *n;
527
528         if (likely(reaper != father))
529                 return reaper;
530
531         reaper = find_alive_thread(father);
532         if (reaper) {
533                 pid_ns->child_reaper = reaper;
534                 return reaper;
535         }
536
537         write_unlock_irq(&tasklist_lock);
538
539         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
540                 list_del_init(&p->ptrace_entry);
541                 release_task(p);
542         }
543
544         zap_pid_ns_processes(pid_ns);
545         write_lock_irq(&tasklist_lock);
546
547         return father;
548 }
549
550 /*
551  * When we die, we re-parent all our children, and try to:
552  * 1. give them to another thread in our thread group, if such a member exists
553  * 2. give it to the first ancestor process which prctl'd itself as a
554  *    child_subreaper for its children (like a service manager)
555  * 3. give it to the init process (PID 1) in our pid namespace
556  */
557 static struct task_struct *find_new_reaper(struct task_struct *father,
558                                            struct task_struct *child_reaper)
559 {
560         struct task_struct *thread, *reaper;
561
562         thread = find_alive_thread(father);
563         if (thread)
564                 return thread;
565
566         if (father->signal->has_child_subreaper) {
567                 unsigned int ns_level = task_pid(father)->level;
568                 /*
569                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
570                  * We can't check reaper != child_reaper to ensure we do not
571                  * cross the namespaces, the exiting parent could be injected
572                  * by setns() + fork().
573                  * We check pid->level, this is slightly more efficient than
574                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
575                  */
576                 for (reaper = father->real_parent;
577                      task_pid(reaper)->level == ns_level;
578                      reaper = reaper->real_parent) {
579                         if (reaper == &init_task)
580                                 break;
581                         if (!reaper->signal->is_child_subreaper)
582                                 continue;
583                         thread = find_alive_thread(reaper);
584                         if (thread)
585                                 return thread;
586                 }
587         }
588
589         return child_reaper;
590 }
591
592 /*
593 * Any that need to be release_task'd are put on the @dead list.
594  */
595 static void reparent_leader(struct task_struct *father, struct task_struct *p,
596                                 struct list_head *dead)
597 {
598         if (unlikely(p->exit_state == EXIT_DEAD))
599                 return;
600
601         /* We don't want people slaying init. */
602         p->exit_signal = SIGCHLD;
603
604         /* If it has exited notify the new parent about this child's death. */
605         if (!p->ptrace &&
606             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
607                 if (do_notify_parent(p, p->exit_signal)) {
608                         p->exit_state = EXIT_DEAD;
609                         list_add(&p->ptrace_entry, dead);
610                 }
611         }
612
613         kill_orphaned_pgrp(p, father);
614 }
615
616 /*
617  * This does two things:
618  *
619  * A.  Make init inherit all the child processes
620  * B.  Check to see if any process groups have become orphaned
621  *      as a result of our exiting, and if they have any stopped
622  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
623  */
624 static void forget_original_parent(struct task_struct *father,
625                                         struct list_head *dead)
626 {
627         struct task_struct *p, *t, *reaper;
628
629         if (unlikely(!list_empty(&father->ptraced)))
630                 exit_ptrace(father, dead);
631
632         /* Can drop and reacquire tasklist_lock */
633         reaper = find_child_reaper(father, dead);
634         if (list_empty(&father->children))
635                 return;
636
637         reaper = find_new_reaper(father, reaper);
638         list_for_each_entry(p, &father->children, sibling) {
639                 for_each_thread(p, t) {
640                         RCU_INIT_POINTER(t->real_parent, reaper);
641                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
642                         if (likely(!t->ptrace))
643                                 t->parent = t->real_parent;
644                         if (t->pdeath_signal)
645                                 group_send_sig_info(t->pdeath_signal,
646                                                     SEND_SIG_NOINFO, t,
647                                                     PIDTYPE_TGID);
648                 }
649                 /*
650                  * If this is a threaded reparent there is no need to
651                  * notify anyone anything has happened.
652                  */
653                 if (!same_thread_group(reaper, father))
654                         reparent_leader(father, p, dead);
655         }
656         list_splice_tail_init(&father->children, &reaper->children);
657 }
658
659 /*
660  * Send signals to all our closest relatives so that they know
661  * to properly mourn us..
662  */
663 static void exit_notify(struct task_struct *tsk, int group_dead)
664 {
665         bool autoreap;
666         struct task_struct *p, *n;
667         LIST_HEAD(dead);
668
669         write_lock_irq(&tasklist_lock);
670         forget_original_parent(tsk, &dead);
671
672         if (group_dead)
673                 kill_orphaned_pgrp(tsk->group_leader, NULL);
674
675         tsk->exit_state = EXIT_ZOMBIE;
676         if (unlikely(tsk->ptrace)) {
677                 int sig = thread_group_leader(tsk) &&
678                                 thread_group_empty(tsk) &&
679                                 !ptrace_reparented(tsk) ?
680                         tsk->exit_signal : SIGCHLD;
681                 autoreap = do_notify_parent(tsk, sig);
682         } else if (thread_group_leader(tsk)) {
683                 autoreap = thread_group_empty(tsk) &&
684                         do_notify_parent(tsk, tsk->exit_signal);
685         } else {
686                 autoreap = true;
687         }
688
689         if (autoreap) {
690                 tsk->exit_state = EXIT_DEAD;
691                 list_add(&tsk->ptrace_entry, &dead);
692         }
693
694         /* mt-exec, de_thread() is waiting for group leader */
695         if (unlikely(tsk->signal->notify_count < 0))
696                 wake_up_process(tsk->signal->group_exit_task);
697         write_unlock_irq(&tasklist_lock);
698
699         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
700                 list_del_init(&p->ptrace_entry);
701                 release_task(p);
702         }
703 }
704
705 #ifdef CONFIG_DEBUG_STACK_USAGE
706 static void check_stack_usage(void)
707 {
708         static DEFINE_SPINLOCK(low_water_lock);
709         static int lowest_to_date = THREAD_SIZE;
710         unsigned long free;
711
712         free = stack_not_used(current);
713
714         if (free >= lowest_to_date)
715                 return;
716
717         spin_lock(&low_water_lock);
718         if (free < lowest_to_date) {
719                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
720                         current->comm, task_pid_nr(current), free);
721                 lowest_to_date = free;
722         }
723         spin_unlock(&low_water_lock);
724 }
725 #else
726 static inline void check_stack_usage(void) {}
727 #endif
728
729 void __noreturn do_exit(long code)
730 {
731         struct task_struct *tsk = current;
732         int group_dead;
733
734         /*
735          * We can get here from a kernel oops, sometimes with preemption off.
736          * Start by checking for critical errors.
737          * Then fix up important state like USER_DS and preemption.
738          * Then do everything else.
739          */
740
741         WARN_ON(blk_needs_flush_plug(tsk));
742
743         if (unlikely(in_interrupt()))
744                 panic("Aiee, killing interrupt handler!");
745         if (unlikely(!tsk->pid))
746                 panic("Attempted to kill the idle task!");
747
748         /*
749          * If do_exit is called because this processes oopsed, it's possible
750          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
751          * continuing. Amongst other possible reasons, this is to prevent
752          * mm_release()->clear_child_tid() from writing to a user-controlled
753          * kernel address.
754          */
755         force_uaccess_begin();
756
757         if (unlikely(in_atomic())) {
758                 pr_info("note: %s[%d] exited with preempt_count %d\n",
759                         current->comm, task_pid_nr(current),
760                         preempt_count());
761                 preempt_count_set(PREEMPT_ENABLED);
762         }
763
764         profile_task_exit(tsk);
765         kcov_task_exit(tsk);
766
767         ptrace_event(PTRACE_EVENT_EXIT, code);
768
769         validate_creds_for_do_exit(tsk);
770
771         /*
772          * We're taking recursive faults here in do_exit. Safest is to just
773          * leave this task alone and wait for reboot.
774          */
775         if (unlikely(tsk->flags & PF_EXITING)) {
776                 pr_alert("Fixing recursive fault but reboot is needed!\n");
777                 futex_exit_recursive(tsk);
778                 set_current_state(TASK_UNINTERRUPTIBLE);
779                 schedule();
780         }
781
782         io_uring_files_cancel();
783         exit_signals(tsk);  /* sets PF_EXITING */
784
785         /* sync mm's RSS info before statistics gathering */
786         if (tsk->mm)
787                 sync_mm_rss(tsk->mm);
788         acct_update_integrals(tsk);
789         group_dead = atomic_dec_and_test(&tsk->signal->live);
790         if (group_dead) {
791                 /*
792                  * If the last thread of global init has exited, panic
793                  * immediately to get a useable coredump.
794                  */
795                 if (unlikely(is_global_init(tsk)))
796                         panic("Attempted to kill init! exitcode=0x%08x\n",
797                                 tsk->signal->group_exit_code ?: (int)code);
798
799 #ifdef CONFIG_POSIX_TIMERS
800                 hrtimer_cancel(&tsk->signal->real_timer);
801                 exit_itimers(tsk->signal);
802 #endif
803                 if (tsk->mm)
804                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
805         }
806         acct_collect(code, group_dead);
807         if (group_dead)
808                 tty_audit_exit();
809         audit_free(tsk);
810
811         tsk->exit_code = code;
812         taskstats_exit(tsk, group_dead);
813
814         exit_mm();
815
816         if (group_dead)
817                 acct_process();
818         trace_sched_process_exit(tsk);
819
820         exit_sem(tsk);
821         exit_shm(tsk);
822         exit_files(tsk);
823         exit_fs(tsk);
824         if (group_dead)
825                 disassociate_ctty(1);
826         exit_task_namespaces(tsk);
827         exit_task_work(tsk);
828         exit_thread(tsk);
829
830         /*
831          * Flush inherited counters to the parent - before the parent
832          * gets woken up by child-exit notifications.
833          *
834          * because of cgroup mode, must be called before cgroup_exit()
835          */
836         perf_event_exit_task(tsk);
837
838         sched_autogroup_exit_task(tsk);
839         cgroup_exit(tsk);
840
841         /*
842          * FIXME: do that only when needed, using sched_exit tracepoint
843          */
844         flush_ptrace_hw_breakpoint(tsk);
845
846         exit_tasks_rcu_start();
847         exit_notify(tsk, group_dead);
848         proc_exit_connector(tsk);
849         mpol_put_task_policy(tsk);
850 #ifdef CONFIG_FUTEX
851         if (unlikely(current->pi_state_cache))
852                 kfree(current->pi_state_cache);
853 #endif
854         /*
855          * Make sure we are holding no locks:
856          */
857         debug_check_no_locks_held();
858
859         if (tsk->io_context)
860                 exit_io_context(tsk);
861
862         if (tsk->splice_pipe)
863                 free_pipe_info(tsk->splice_pipe);
864
865         if (tsk->task_frag.page)
866                 put_page(tsk->task_frag.page);
867
868         validate_creds_for_do_exit(tsk);
869
870         check_stack_usage();
871         preempt_disable();
872         if (tsk->nr_dirtied)
873                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
874         exit_rcu();
875         exit_tasks_rcu_finish();
876
877         lockdep_free_task(tsk);
878         do_task_dead();
879 }
880 EXPORT_SYMBOL_GPL(do_exit);
881
882 void complete_and_exit(struct completion *comp, long code)
883 {
884         if (comp)
885                 complete(comp);
886
887         do_exit(code);
888 }
889 EXPORT_SYMBOL(complete_and_exit);
890
891 SYSCALL_DEFINE1(exit, int, error_code)
892 {
893         do_exit((error_code&0xff)<<8);
894 }
895
896 /*
897  * Take down every thread in the group.  This is called by fatal signals
898  * as well as by sys_exit_group (below).
899  */
900 void
901 do_group_exit(int exit_code)
902 {
903         struct signal_struct *sig = current->signal;
904
905         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
906
907         if (signal_group_exit(sig))
908                 exit_code = sig->group_exit_code;
909         else if (!thread_group_empty(current)) {
910                 struct sighand_struct *const sighand = current->sighand;
911
912                 spin_lock_irq(&sighand->siglock);
913                 if (signal_group_exit(sig))
914                         /* Another thread got here before we took the lock.  */
915                         exit_code = sig->group_exit_code;
916                 else {
917                         sig->group_exit_code = exit_code;
918                         sig->flags = SIGNAL_GROUP_EXIT;
919                         zap_other_threads(current);
920                 }
921                 spin_unlock_irq(&sighand->siglock);
922         }
923
924         do_exit(exit_code);
925         /* NOTREACHED */
926 }
927
928 /*
929  * this kills every thread in the thread group. Note that any externally
930  * wait4()-ing process will get the correct exit code - even if this
931  * thread is not the thread group leader.
932  */
933 SYSCALL_DEFINE1(exit_group, int, error_code)
934 {
935         do_group_exit((error_code & 0xff) << 8);
936         /* NOTREACHED */
937         return 0;
938 }
939
940 struct waitid_info {
941         pid_t pid;
942         uid_t uid;
943         int status;
944         int cause;
945 };
946
947 struct wait_opts {
948         enum pid_type           wo_type;
949         int                     wo_flags;
950         struct pid              *wo_pid;
951
952         struct waitid_info      *wo_info;
953         int                     wo_stat;
954         struct rusage           *wo_rusage;
955
956         wait_queue_entry_t              child_wait;
957         int                     notask_error;
958 };
959
960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
961 {
962         return  wo->wo_type == PIDTYPE_MAX ||
963                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
964 }
965
966 static int
967 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
968 {
969         if (!eligible_pid(wo, p))
970                 return 0;
971
972         /*
973          * Wait for all children (clone and not) if __WALL is set or
974          * if it is traced by us.
975          */
976         if (ptrace || (wo->wo_flags & __WALL))
977                 return 1;
978
979         /*
980          * Otherwise, wait for clone children *only* if __WCLONE is set;
981          * otherwise, wait for non-clone children *only*.
982          *
983          * Note: a "clone" child here is one that reports to its parent
984          * using a signal other than SIGCHLD, or a non-leader thread which
985          * we can only see if it is traced by us.
986          */
987         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
988                 return 0;
989
990         return 1;
991 }
992
993 /*
994  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
995  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
996  * the lock and this task is uninteresting.  If we return nonzero, we have
997  * released the lock and the system call should return.
998  */
999 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1000 {
1001         int state, status;
1002         pid_t pid = task_pid_vnr(p);
1003         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1004         struct waitid_info *infop;
1005
1006         if (!likely(wo->wo_flags & WEXITED))
1007                 return 0;
1008
1009         if (unlikely(wo->wo_flags & WNOWAIT)) {
1010                 status = p->exit_code;
1011                 get_task_struct(p);
1012                 read_unlock(&tasklist_lock);
1013                 sched_annotate_sleep();
1014                 if (wo->wo_rusage)
1015                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1016                 put_task_struct(p);
1017                 goto out_info;
1018         }
1019         /*
1020          * Move the task's state to DEAD/TRACE, only one thread can do this.
1021          */
1022         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1023                 EXIT_TRACE : EXIT_DEAD;
1024         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1025                 return 0;
1026         /*
1027          * We own this thread, nobody else can reap it.
1028          */
1029         read_unlock(&tasklist_lock);
1030         sched_annotate_sleep();
1031
1032         /*
1033          * Check thread_group_leader() to exclude the traced sub-threads.
1034          */
1035         if (state == EXIT_DEAD && thread_group_leader(p)) {
1036                 struct signal_struct *sig = p->signal;
1037                 struct signal_struct *psig = current->signal;
1038                 unsigned long maxrss;
1039                 u64 tgutime, tgstime;
1040
1041                 /*
1042                  * The resource counters for the group leader are in its
1043                  * own task_struct.  Those for dead threads in the group
1044                  * are in its signal_struct, as are those for the child
1045                  * processes it has previously reaped.  All these
1046                  * accumulate in the parent's signal_struct c* fields.
1047                  *
1048                  * We don't bother to take a lock here to protect these
1049                  * p->signal fields because the whole thread group is dead
1050                  * and nobody can change them.
1051                  *
1052                  * psig->stats_lock also protects us from our sub-theads
1053                  * which can reap other children at the same time. Until
1054                  * we change k_getrusage()-like users to rely on this lock
1055                  * we have to take ->siglock as well.
1056                  *
1057                  * We use thread_group_cputime_adjusted() to get times for
1058                  * the thread group, which consolidates times for all threads
1059                  * in the group including the group leader.
1060                  */
1061                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1062                 spin_lock_irq(&current->sighand->siglock);
1063                 write_seqlock(&psig->stats_lock);
1064                 psig->cutime += tgutime + sig->cutime;
1065                 psig->cstime += tgstime + sig->cstime;
1066                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1067                 psig->cmin_flt +=
1068                         p->min_flt + sig->min_flt + sig->cmin_flt;
1069                 psig->cmaj_flt +=
1070                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1071                 psig->cnvcsw +=
1072                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1073                 psig->cnivcsw +=
1074                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1075                 psig->cinblock +=
1076                         task_io_get_inblock(p) +
1077                         sig->inblock + sig->cinblock;
1078                 psig->coublock +=
1079                         task_io_get_oublock(p) +
1080                         sig->oublock + sig->coublock;
1081                 maxrss = max(sig->maxrss, sig->cmaxrss);
1082                 if (psig->cmaxrss < maxrss)
1083                         psig->cmaxrss = maxrss;
1084                 task_io_accounting_add(&psig->ioac, &p->ioac);
1085                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1086                 write_sequnlock(&psig->stats_lock);
1087                 spin_unlock_irq(&current->sighand->siglock);
1088         }
1089
1090         if (wo->wo_rusage)
1091                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1092         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1093                 ? p->signal->group_exit_code : p->exit_code;
1094         wo->wo_stat = status;
1095
1096         if (state == EXIT_TRACE) {
1097                 write_lock_irq(&tasklist_lock);
1098                 /* We dropped tasklist, ptracer could die and untrace */
1099                 ptrace_unlink(p);
1100
1101                 /* If parent wants a zombie, don't release it now */
1102                 state = EXIT_ZOMBIE;
1103                 if (do_notify_parent(p, p->exit_signal))
1104                         state = EXIT_DEAD;
1105                 p->exit_state = state;
1106                 write_unlock_irq(&tasklist_lock);
1107         }
1108         if (state == EXIT_DEAD)
1109                 release_task(p);
1110
1111 out_info:
1112         infop = wo->wo_info;
1113         if (infop) {
1114                 if ((status & 0x7f) == 0) {
1115                         infop->cause = CLD_EXITED;
1116                         infop->status = status >> 8;
1117                 } else {
1118                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1119                         infop->status = status & 0x7f;
1120                 }
1121                 infop->pid = pid;
1122                 infop->uid = uid;
1123         }
1124
1125         return pid;
1126 }
1127
1128 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1129 {
1130         if (ptrace) {
1131                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1132                         return &p->exit_code;
1133         } else {
1134                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135                         return &p->signal->group_exit_code;
1136         }
1137         return NULL;
1138 }
1139
1140 /**
1141  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142  * @wo: wait options
1143  * @ptrace: is the wait for ptrace
1144  * @p: task to wait for
1145  *
1146  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147  *
1148  * CONTEXT:
1149  * read_lock(&tasklist_lock), which is released if return value is
1150  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1151  *
1152  * RETURNS:
1153  * 0 if wait condition didn't exist and search for other wait conditions
1154  * should continue.  Non-zero return, -errno on failure and @p's pid on
1155  * success, implies that tasklist_lock is released and wait condition
1156  * search should terminate.
1157  */
1158 static int wait_task_stopped(struct wait_opts *wo,
1159                                 int ptrace, struct task_struct *p)
1160 {
1161         struct waitid_info *infop;
1162         int exit_code, *p_code, why;
1163         uid_t uid = 0; /* unneeded, required by compiler */
1164         pid_t pid;
1165
1166         /*
1167          * Traditionally we see ptrace'd stopped tasks regardless of options.
1168          */
1169         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170                 return 0;
1171
1172         if (!task_stopped_code(p, ptrace))
1173                 return 0;
1174
1175         exit_code = 0;
1176         spin_lock_irq(&p->sighand->siglock);
1177
1178         p_code = task_stopped_code(p, ptrace);
1179         if (unlikely(!p_code))
1180                 goto unlock_sig;
1181
1182         exit_code = *p_code;
1183         if (!exit_code)
1184                 goto unlock_sig;
1185
1186         if (!unlikely(wo->wo_flags & WNOWAIT))
1187                 *p_code = 0;
1188
1189         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190 unlock_sig:
1191         spin_unlock_irq(&p->sighand->siglock);
1192         if (!exit_code)
1193                 return 0;
1194
1195         /*
1196          * Now we are pretty sure this task is interesting.
1197          * Make sure it doesn't get reaped out from under us while we
1198          * give up the lock and then examine it below.  We don't want to
1199          * keep holding onto the tasklist_lock while we call getrusage and
1200          * possibly take page faults for user memory.
1201          */
1202         get_task_struct(p);
1203         pid = task_pid_vnr(p);
1204         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205         read_unlock(&tasklist_lock);
1206         sched_annotate_sleep();
1207         if (wo->wo_rusage)
1208                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1209         put_task_struct(p);
1210
1211         if (likely(!(wo->wo_flags & WNOWAIT)))
1212                 wo->wo_stat = (exit_code << 8) | 0x7f;
1213
1214         infop = wo->wo_info;
1215         if (infop) {
1216                 infop->cause = why;
1217                 infop->status = exit_code;
1218                 infop->pid = pid;
1219                 infop->uid = uid;
1220         }
1221         return pid;
1222 }
1223
1224 /*
1225  * Handle do_wait work for one task in a live, non-stopped state.
1226  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1227  * the lock and this task is uninteresting.  If we return nonzero, we have
1228  * released the lock and the system call should return.
1229  */
1230 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1231 {
1232         struct waitid_info *infop;
1233         pid_t pid;
1234         uid_t uid;
1235
1236         if (!unlikely(wo->wo_flags & WCONTINUED))
1237                 return 0;
1238
1239         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1240                 return 0;
1241
1242         spin_lock_irq(&p->sighand->siglock);
1243         /* Re-check with the lock held.  */
1244         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1245                 spin_unlock_irq(&p->sighand->siglock);
1246                 return 0;
1247         }
1248         if (!unlikely(wo->wo_flags & WNOWAIT))
1249                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1250         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1251         spin_unlock_irq(&p->sighand->siglock);
1252
1253         pid = task_pid_vnr(p);
1254         get_task_struct(p);
1255         read_unlock(&tasklist_lock);
1256         sched_annotate_sleep();
1257         if (wo->wo_rusage)
1258                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1259         put_task_struct(p);
1260
1261         infop = wo->wo_info;
1262         if (!infop) {
1263                 wo->wo_stat = 0xffff;
1264         } else {
1265                 infop->cause = CLD_CONTINUED;
1266                 infop->pid = pid;
1267                 infop->uid = uid;
1268                 infop->status = SIGCONT;
1269         }
1270         return pid;
1271 }
1272
1273 /*
1274  * Consider @p for a wait by @parent.
1275  *
1276  * -ECHILD should be in ->notask_error before the first call.
1277  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1278  * Returns zero if the search for a child should continue;
1279  * then ->notask_error is 0 if @p is an eligible child,
1280  * or still -ECHILD.
1281  */
1282 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1283                                 struct task_struct *p)
1284 {
1285         /*
1286          * We can race with wait_task_zombie() from another thread.
1287          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1288          * can't confuse the checks below.
1289          */
1290         int exit_state = READ_ONCE(p->exit_state);
1291         int ret;
1292
1293         if (unlikely(exit_state == EXIT_DEAD))
1294                 return 0;
1295
1296         ret = eligible_child(wo, ptrace, p);
1297         if (!ret)
1298                 return ret;
1299
1300         if (unlikely(exit_state == EXIT_TRACE)) {
1301                 /*
1302                  * ptrace == 0 means we are the natural parent. In this case
1303                  * we should clear notask_error, debugger will notify us.
1304                  */
1305                 if (likely(!ptrace))
1306                         wo->notask_error = 0;
1307                 return 0;
1308         }
1309
1310         if (likely(!ptrace) && unlikely(p->ptrace)) {
1311                 /*
1312                  * If it is traced by its real parent's group, just pretend
1313                  * the caller is ptrace_do_wait() and reap this child if it
1314                  * is zombie.
1315                  *
1316                  * This also hides group stop state from real parent; otherwise
1317                  * a single stop can be reported twice as group and ptrace stop.
1318                  * If a ptracer wants to distinguish these two events for its
1319                  * own children it should create a separate process which takes
1320                  * the role of real parent.
1321                  */
1322                 if (!ptrace_reparented(p))
1323                         ptrace = 1;
1324         }
1325
1326         /* slay zombie? */
1327         if (exit_state == EXIT_ZOMBIE) {
1328                 /* we don't reap group leaders with subthreads */
1329                 if (!delay_group_leader(p)) {
1330                         /*
1331                          * A zombie ptracee is only visible to its ptracer.
1332                          * Notification and reaping will be cascaded to the
1333                          * real parent when the ptracer detaches.
1334                          */
1335                         if (unlikely(ptrace) || likely(!p->ptrace))
1336                                 return wait_task_zombie(wo, p);
1337                 }
1338
1339                 /*
1340                  * Allow access to stopped/continued state via zombie by
1341                  * falling through.  Clearing of notask_error is complex.
1342                  *
1343                  * When !@ptrace:
1344                  *
1345                  * If WEXITED is set, notask_error should naturally be
1346                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1347                  * so, if there are live subthreads, there are events to
1348                  * wait for.  If all subthreads are dead, it's still safe
1349                  * to clear - this function will be called again in finite
1350                  * amount time once all the subthreads are released and
1351                  * will then return without clearing.
1352                  *
1353                  * When @ptrace:
1354                  *
1355                  * Stopped state is per-task and thus can't change once the
1356                  * target task dies.  Only continued and exited can happen.
1357                  * Clear notask_error if WCONTINUED | WEXITED.
1358                  */
1359                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1360                         wo->notask_error = 0;
1361         } else {
1362                 /*
1363                  * @p is alive and it's gonna stop, continue or exit, so
1364                  * there always is something to wait for.
1365                  */
1366                 wo->notask_error = 0;
1367         }
1368
1369         /*
1370          * Wait for stopped.  Depending on @ptrace, different stopped state
1371          * is used and the two don't interact with each other.
1372          */
1373         ret = wait_task_stopped(wo, ptrace, p);
1374         if (ret)
1375                 return ret;
1376
1377         /*
1378          * Wait for continued.  There's only one continued state and the
1379          * ptracer can consume it which can confuse the real parent.  Don't
1380          * use WCONTINUED from ptracer.  You don't need or want it.
1381          */
1382         return wait_task_continued(wo, p);
1383 }
1384
1385 /*
1386  * Do the work of do_wait() for one thread in the group, @tsk.
1387  *
1388  * -ECHILD should be in ->notask_error before the first call.
1389  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1390  * Returns zero if the search for a child should continue; then
1391  * ->notask_error is 0 if there were any eligible children,
1392  * or still -ECHILD.
1393  */
1394 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1395 {
1396         struct task_struct *p;
1397
1398         list_for_each_entry(p, &tsk->children, sibling) {
1399                 int ret = wait_consider_task(wo, 0, p);
1400
1401                 if (ret)
1402                         return ret;
1403         }
1404
1405         return 0;
1406 }
1407
1408 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1409 {
1410         struct task_struct *p;
1411
1412         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1413                 int ret = wait_consider_task(wo, 1, p);
1414
1415                 if (ret)
1416                         return ret;
1417         }
1418
1419         return 0;
1420 }
1421
1422 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1423                                 int sync, void *key)
1424 {
1425         struct wait_opts *wo = container_of(wait, struct wait_opts,
1426                                                 child_wait);
1427         struct task_struct *p = key;
1428
1429         if (!eligible_pid(wo, p))
1430                 return 0;
1431
1432         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1433                 return 0;
1434
1435         return default_wake_function(wait, mode, sync, key);
1436 }
1437
1438 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1439 {
1440         __wake_up_sync_key(&parent->signal->wait_chldexit,
1441                            TASK_INTERRUPTIBLE, p);
1442 }
1443
1444 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1445                                  struct task_struct *target)
1446 {
1447         struct task_struct *parent =
1448                 !ptrace ? target->real_parent : target->parent;
1449
1450         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1451                                      same_thread_group(current, parent));
1452 }
1453
1454 /*
1455  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1456  * and tracee lists to find the target task.
1457  */
1458 static int do_wait_pid(struct wait_opts *wo)
1459 {
1460         bool ptrace;
1461         struct task_struct *target;
1462         int retval;
1463
1464         ptrace = false;
1465         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1466         if (target && is_effectively_child(wo, ptrace, target)) {
1467                 retval = wait_consider_task(wo, ptrace, target);
1468                 if (retval)
1469                         return retval;
1470         }
1471
1472         ptrace = true;
1473         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1474         if (target && target->ptrace &&
1475             is_effectively_child(wo, ptrace, target)) {
1476                 retval = wait_consider_task(wo, ptrace, target);
1477                 if (retval)
1478                         return retval;
1479         }
1480
1481         return 0;
1482 }
1483
1484 static long do_wait(struct wait_opts *wo)
1485 {
1486         int retval;
1487
1488         trace_sched_process_wait(wo->wo_pid);
1489
1490         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1491         wo->child_wait.private = current;
1492         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1493 repeat:
1494         /*
1495          * If there is nothing that can match our criteria, just get out.
1496          * We will clear ->notask_error to zero if we see any child that
1497          * might later match our criteria, even if we are not able to reap
1498          * it yet.
1499          */
1500         wo->notask_error = -ECHILD;
1501         if ((wo->wo_type < PIDTYPE_MAX) &&
1502            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1503                 goto notask;
1504
1505         set_current_state(TASK_INTERRUPTIBLE);
1506         read_lock(&tasklist_lock);
1507
1508         if (wo->wo_type == PIDTYPE_PID) {
1509                 retval = do_wait_pid(wo);
1510                 if (retval)
1511                         goto end;
1512         } else {
1513                 struct task_struct *tsk = current;
1514
1515                 do {
1516                         retval = do_wait_thread(wo, tsk);
1517                         if (retval)
1518                                 goto end;
1519
1520                         retval = ptrace_do_wait(wo, tsk);
1521                         if (retval)
1522                                 goto end;
1523
1524                         if (wo->wo_flags & __WNOTHREAD)
1525                                 break;
1526                 } while_each_thread(current, tsk);
1527         }
1528         read_unlock(&tasklist_lock);
1529
1530 notask:
1531         retval = wo->notask_error;
1532         if (!retval && !(wo->wo_flags & WNOHANG)) {
1533                 retval = -ERESTARTSYS;
1534                 if (!signal_pending(current)) {
1535                         schedule();
1536                         goto repeat;
1537                 }
1538         }
1539 end:
1540         __set_current_state(TASK_RUNNING);
1541         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1542         return retval;
1543 }
1544
1545 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1546                           int options, struct rusage *ru)
1547 {
1548         struct wait_opts wo;
1549         struct pid *pid = NULL;
1550         enum pid_type type;
1551         long ret;
1552         unsigned int f_flags = 0;
1553
1554         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1555                         __WNOTHREAD|__WCLONE|__WALL))
1556                 return -EINVAL;
1557         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1558                 return -EINVAL;
1559
1560         switch (which) {
1561         case P_ALL:
1562                 type = PIDTYPE_MAX;
1563                 break;
1564         case P_PID:
1565                 type = PIDTYPE_PID;
1566                 if (upid <= 0)
1567                         return -EINVAL;
1568
1569                 pid = find_get_pid(upid);
1570                 break;
1571         case P_PGID:
1572                 type = PIDTYPE_PGID;
1573                 if (upid < 0)
1574                         return -EINVAL;
1575
1576                 if (upid)
1577                         pid = find_get_pid(upid);
1578                 else
1579                         pid = get_task_pid(current, PIDTYPE_PGID);
1580                 break;
1581         case P_PIDFD:
1582                 type = PIDTYPE_PID;
1583                 if (upid < 0)
1584                         return -EINVAL;
1585
1586                 pid = pidfd_get_pid(upid, &f_flags);
1587                 if (IS_ERR(pid))
1588                         return PTR_ERR(pid);
1589
1590                 break;
1591         default:
1592                 return -EINVAL;
1593         }
1594
1595         wo.wo_type      = type;
1596         wo.wo_pid       = pid;
1597         wo.wo_flags     = options;
1598         wo.wo_info      = infop;
1599         wo.wo_rusage    = ru;
1600         if (f_flags & O_NONBLOCK)
1601                 wo.wo_flags |= WNOHANG;
1602
1603         ret = do_wait(&wo);
1604         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1605                 ret = -EAGAIN;
1606
1607         put_pid(pid);
1608         return ret;
1609 }
1610
1611 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1612                 infop, int, options, struct rusage __user *, ru)
1613 {
1614         struct rusage r;
1615         struct waitid_info info = {.status = 0};
1616         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1617         int signo = 0;
1618
1619         if (err > 0) {
1620                 signo = SIGCHLD;
1621                 err = 0;
1622                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1623                         return -EFAULT;
1624         }
1625         if (!infop)
1626                 return err;
1627
1628         if (!user_write_access_begin(infop, sizeof(*infop)))
1629                 return -EFAULT;
1630
1631         unsafe_put_user(signo, &infop->si_signo, Efault);
1632         unsafe_put_user(0, &infop->si_errno, Efault);
1633         unsafe_put_user(info.cause, &infop->si_code, Efault);
1634         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1635         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1636         unsafe_put_user(info.status, &infop->si_status, Efault);
1637         user_write_access_end();
1638         return err;
1639 Efault:
1640         user_write_access_end();
1641         return -EFAULT;
1642 }
1643
1644 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1645                   struct rusage *ru)
1646 {
1647         struct wait_opts wo;
1648         struct pid *pid = NULL;
1649         enum pid_type type;
1650         long ret;
1651
1652         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1653                         __WNOTHREAD|__WCLONE|__WALL))
1654                 return -EINVAL;
1655
1656         /* -INT_MIN is not defined */
1657         if (upid == INT_MIN)
1658                 return -ESRCH;
1659
1660         if (upid == -1)
1661                 type = PIDTYPE_MAX;
1662         else if (upid < 0) {
1663                 type = PIDTYPE_PGID;
1664                 pid = find_get_pid(-upid);
1665         } else if (upid == 0) {
1666                 type = PIDTYPE_PGID;
1667                 pid = get_task_pid(current, PIDTYPE_PGID);
1668         } else /* upid > 0 */ {
1669                 type = PIDTYPE_PID;
1670                 pid = find_get_pid(upid);
1671         }
1672
1673         wo.wo_type      = type;
1674         wo.wo_pid       = pid;
1675         wo.wo_flags     = options | WEXITED;
1676         wo.wo_info      = NULL;
1677         wo.wo_stat      = 0;
1678         wo.wo_rusage    = ru;
1679         ret = do_wait(&wo);
1680         put_pid(pid);
1681         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1682                 ret = -EFAULT;
1683
1684         return ret;
1685 }
1686
1687 int kernel_wait(pid_t pid, int *stat)
1688 {
1689         struct wait_opts wo = {
1690                 .wo_type        = PIDTYPE_PID,
1691                 .wo_pid         = find_get_pid(pid),
1692                 .wo_flags       = WEXITED,
1693         };
1694         int ret;
1695
1696         ret = do_wait(&wo);
1697         if (ret > 0 && wo.wo_stat)
1698                 *stat = wo.wo_stat;
1699         put_pid(wo.wo_pid);
1700         return ret;
1701 }
1702
1703 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1704                 int, options, struct rusage __user *, ru)
1705 {
1706         struct rusage r;
1707         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1708
1709         if (err > 0) {
1710                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1711                         return -EFAULT;
1712         }
1713         return err;
1714 }
1715
1716 #ifdef __ARCH_WANT_SYS_WAITPID
1717
1718 /*
1719  * sys_waitpid() remains for compatibility. waitpid() should be
1720  * implemented by calling sys_wait4() from libc.a.
1721  */
1722 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1723 {
1724         return kernel_wait4(pid, stat_addr, options, NULL);
1725 }
1726
1727 #endif
1728
1729 #ifdef CONFIG_COMPAT
1730 COMPAT_SYSCALL_DEFINE4(wait4,
1731         compat_pid_t, pid,
1732         compat_uint_t __user *, stat_addr,
1733         int, options,
1734         struct compat_rusage __user *, ru)
1735 {
1736         struct rusage r;
1737         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1738         if (err > 0) {
1739                 if (ru && put_compat_rusage(&r, ru))
1740                         return -EFAULT;
1741         }
1742         return err;
1743 }
1744
1745 COMPAT_SYSCALL_DEFINE5(waitid,
1746                 int, which, compat_pid_t, pid,
1747                 struct compat_siginfo __user *, infop, int, options,
1748                 struct compat_rusage __user *, uru)
1749 {
1750         struct rusage ru;
1751         struct waitid_info info = {.status = 0};
1752         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1753         int signo = 0;
1754         if (err > 0) {
1755                 signo = SIGCHLD;
1756                 err = 0;
1757                 if (uru) {
1758                         /* kernel_waitid() overwrites everything in ru */
1759                         if (COMPAT_USE_64BIT_TIME)
1760                                 err = copy_to_user(uru, &ru, sizeof(ru));
1761                         else
1762                                 err = put_compat_rusage(&ru, uru);
1763                         if (err)
1764                                 return -EFAULT;
1765                 }
1766         }
1767
1768         if (!infop)
1769                 return err;
1770
1771         if (!user_write_access_begin(infop, sizeof(*infop)))
1772                 return -EFAULT;
1773
1774         unsafe_put_user(signo, &infop->si_signo, Efault);
1775         unsafe_put_user(0, &infop->si_errno, Efault);
1776         unsafe_put_user(info.cause, &infop->si_code, Efault);
1777         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1778         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1779         unsafe_put_user(info.status, &infop->si_status, Efault);
1780         user_write_access_end();
1781         return err;
1782 Efault:
1783         user_write_access_end();
1784         return -EFAULT;
1785 }
1786 #endif
1787
1788 /**
1789  * thread_group_exited - check that a thread group has exited
1790  * @pid: tgid of thread group to be checked.
1791  *
1792  * Test if the thread group represented by tgid has exited (all
1793  * threads are zombies, dead or completely gone).
1794  *
1795  * Return: true if the thread group has exited. false otherwise.
1796  */
1797 bool thread_group_exited(struct pid *pid)
1798 {
1799         struct task_struct *task;
1800         bool exited;
1801
1802         rcu_read_lock();
1803         task = pid_task(pid, PIDTYPE_PID);
1804         exited = !task ||
1805                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1806         rcu_read_unlock();
1807
1808         return exited;
1809 }
1810 EXPORT_SYMBOL(thread_group_exited);
1811
1812 __weak void abort(void)
1813 {
1814         BUG();
1815
1816         /* if that doesn't kill us, halt */
1817         panic("Oops failed to kill thread");
1818 }
1819 EXPORT_SYMBOL(abort);
This page took 0.131592 seconds and 4 git commands to generate.