2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
46 static struct extent_io_ops btree_extent_io_ops;
47 static void end_workqueue_fn(struct btrfs_work *work);
48 static void free_fs_root(struct btrfs_root *root);
49 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
52 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
53 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
54 struct btrfs_root *root);
55 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
56 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
57 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
58 struct extent_io_tree *dirty_pages,
60 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
61 struct extent_io_tree *pinned_extents);
62 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65 * end_io_wq structs are used to do processing in task context when an IO is
66 * complete. This is used during reads to verify checksums, and it is used
67 * by writes to insert metadata for new file extents after IO is complete.
73 struct btrfs_fs_info *info;
76 struct list_head list;
77 struct btrfs_work work;
81 * async submit bios are used to offload expensive checksumming
82 * onto the worker threads. They checksum file and metadata bios
83 * just before they are sent down the IO stack.
85 struct async_submit_bio {
88 struct list_head list;
89 extent_submit_bio_hook_t *submit_bio_start;
90 extent_submit_bio_hook_t *submit_bio_done;
93 unsigned long bio_flags;
95 * bio_offset is optional, can be used if the pages in the bio
96 * can't tell us where in the file the bio should go
99 struct btrfs_work work;
102 /* These are used to set the lockdep class on the extent buffer locks.
103 * The class is set by the readpage_end_io_hook after the buffer has
104 * passed csum validation but before the pages are unlocked.
106 * The lockdep class is also set by btrfs_init_new_buffer on freshly
109 * The class is based on the level in the tree block, which allows lockdep
110 * to know that lower nodes nest inside the locks of higher nodes.
112 * We also add a check to make sure the highest level of the tree is
113 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
114 * code needs update as well.
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 # if BTRFS_MAX_LEVEL != 8
120 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
121 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
131 /* highest possible level */
137 * extents on the btree inode are pretty simple, there's one extent
138 * that covers the entire device
140 static struct extent_map *btree_get_extent(struct inode *inode,
141 struct page *page, size_t pg_offset, u64 start, u64 len,
144 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
145 struct extent_map *em;
148 read_lock(&em_tree->lock);
149 em = lookup_extent_mapping(em_tree, start, len);
152 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
153 read_unlock(&em_tree->lock);
156 read_unlock(&em_tree->lock);
158 em = alloc_extent_map();
160 em = ERR_PTR(-ENOMEM);
165 em->block_len = (u64)-1;
167 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
169 write_lock(&em_tree->lock);
170 ret = add_extent_mapping(em_tree, em);
171 if (ret == -EEXIST) {
172 u64 failed_start = em->start;
173 u64 failed_len = em->len;
176 em = lookup_extent_mapping(em_tree, start, len);
180 em = lookup_extent_mapping(em_tree, failed_start,
188 write_unlock(&em_tree->lock);
196 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
198 return crc32c(seed, data, len);
201 void btrfs_csum_final(u32 crc, char *result)
203 put_unaligned_le32(~crc, result);
207 * compute the csum for a btree block, and either verify it or write it
208 * into the csum field of the block.
210 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
214 btrfs_super_csum_size(&root->fs_info->super_copy);
217 unsigned long cur_len;
218 unsigned long offset = BTRFS_CSUM_SIZE;
219 char *map_token = NULL;
221 unsigned long map_start;
222 unsigned long map_len;
225 unsigned long inline_result;
227 len = buf->len - offset;
229 err = map_private_extent_buffer(buf, offset, 32,
231 &map_start, &map_len, KM_USER0);
234 cur_len = min(len, map_len - (offset - map_start));
235 crc = btrfs_csum_data(root, kaddr + offset - map_start,
239 unmap_extent_buffer(buf, map_token, KM_USER0);
241 if (csum_size > sizeof(inline_result)) {
242 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
246 result = (char *)&inline_result;
249 btrfs_csum_final(crc, result);
252 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
255 memcpy(&found, result, csum_size);
257 read_extent_buffer(buf, &val, 0, csum_size);
258 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
259 "failed on %llu wanted %X found %X "
261 root->fs_info->sb->s_id,
262 (unsigned long long)buf->start, val, found,
263 btrfs_header_level(buf));
264 if (result != (char *)&inline_result)
269 write_extent_buffer(buf, result, 0, csum_size);
271 if (result != (char *)&inline_result)
277 * we can't consider a given block up to date unless the transid of the
278 * block matches the transid in the parent node's pointer. This is how we
279 * detect blocks that either didn't get written at all or got written
280 * in the wrong place.
282 static int verify_parent_transid(struct extent_io_tree *io_tree,
283 struct extent_buffer *eb, u64 parent_transid)
285 struct extent_state *cached_state = NULL;
288 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
291 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
292 0, &cached_state, GFP_NOFS);
293 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
294 btrfs_header_generation(eb) == parent_transid) {
298 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
300 (unsigned long long)eb->start,
301 (unsigned long long)parent_transid,
302 (unsigned long long)btrfs_header_generation(eb));
304 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
306 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
307 &cached_state, GFP_NOFS);
312 * helper to read a given tree block, doing retries as required when
313 * the checksums don't match and we have alternate mirrors to try.
315 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
316 struct extent_buffer *eb,
317 u64 start, u64 parent_transid)
319 struct extent_io_tree *io_tree;
324 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
325 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
328 btree_get_extent, mirror_num);
330 !verify_parent_transid(io_tree, eb, parent_transid))
334 * This buffer's crc is fine, but its contents are corrupted, so
335 * there is no reason to read the other copies, they won't be
338 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
341 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
347 if (mirror_num > num_copies)
354 * checksum a dirty tree block before IO. This has extra checks to make sure
355 * we only fill in the checksum field in the first page of a multi-page block
358 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
360 struct extent_io_tree *tree;
361 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
364 struct extent_buffer *eb;
367 tree = &BTRFS_I(page->mapping->host)->io_tree;
369 if (page->private == EXTENT_PAGE_PRIVATE) {
373 if (!page->private) {
377 len = page->private >> 2;
380 eb = alloc_extent_buffer(tree, start, len, page);
385 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
386 btrfs_header_generation(eb));
388 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
390 found_start = btrfs_header_bytenr(eb);
391 if (found_start != start) {
395 if (eb->first_page != page) {
399 if (!PageUptodate(page)) {
403 csum_tree_block(root, eb, 0);
405 free_extent_buffer(eb);
410 static int check_tree_block_fsid(struct btrfs_root *root,
411 struct extent_buffer *eb)
413 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
414 u8 fsid[BTRFS_UUID_SIZE];
417 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
420 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
424 fs_devices = fs_devices->seed;
429 #define CORRUPT(reason, eb, root, slot) \
430 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
431 "root=%llu, slot=%d\n", reason, \
432 (unsigned long long)btrfs_header_bytenr(eb), \
433 (unsigned long long)root->objectid, slot)
435 static noinline int check_leaf(struct btrfs_root *root,
436 struct extent_buffer *leaf)
438 struct btrfs_key key;
439 struct btrfs_key leaf_key;
440 u32 nritems = btrfs_header_nritems(leaf);
446 /* Check the 0 item */
447 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
448 BTRFS_LEAF_DATA_SIZE(root)) {
449 CORRUPT("invalid item offset size pair", leaf, root, 0);
454 * Check to make sure each items keys are in the correct order and their
455 * offsets make sense. We only have to loop through nritems-1 because
456 * we check the current slot against the next slot, which verifies the
457 * next slot's offset+size makes sense and that the current's slot
460 for (slot = 0; slot < nritems - 1; slot++) {
461 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
462 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
464 /* Make sure the keys are in the right order */
465 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
466 CORRUPT("bad key order", leaf, root, slot);
471 * Make sure the offset and ends are right, remember that the
472 * item data starts at the end of the leaf and grows towards the
475 if (btrfs_item_offset_nr(leaf, slot) !=
476 btrfs_item_end_nr(leaf, slot + 1)) {
477 CORRUPT("slot offset bad", leaf, root, slot);
482 * Check to make sure that we don't point outside of the leaf,
483 * just incase all the items are consistent to eachother, but
484 * all point outside of the leaf.
486 if (btrfs_item_end_nr(leaf, slot) >
487 BTRFS_LEAF_DATA_SIZE(root)) {
488 CORRUPT("slot end outside of leaf", leaf, root, slot);
496 #ifdef CONFIG_DEBUG_LOCK_ALLOC
497 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
499 lockdep_set_class_and_name(&eb->lock,
500 &btrfs_eb_class[level],
501 btrfs_eb_name[level]);
505 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
506 struct extent_state *state)
508 struct extent_io_tree *tree;
512 struct extent_buffer *eb;
513 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
516 tree = &BTRFS_I(page->mapping->host)->io_tree;
517 if (page->private == EXTENT_PAGE_PRIVATE)
522 len = page->private >> 2;
525 eb = alloc_extent_buffer(tree, start, len, page);
531 found_start = btrfs_header_bytenr(eb);
532 if (found_start != start) {
533 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
535 (unsigned long long)found_start,
536 (unsigned long long)eb->start);
540 if (eb->first_page != page) {
541 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
542 eb->first_page->index, page->index);
547 if (check_tree_block_fsid(root, eb)) {
548 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
549 (unsigned long long)eb->start);
553 found_level = btrfs_header_level(eb);
555 btrfs_set_buffer_lockdep_class(eb, found_level);
557 ret = csum_tree_block(root, eb, 1);
564 * If this is a leaf block and it is corrupt, set the corrupt bit so
565 * that we don't try and read the other copies of this block, just
568 if (found_level == 0 && check_leaf(root, eb)) {
569 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
573 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
574 end = eb->start + end - 1;
576 free_extent_buffer(eb);
581 static void end_workqueue_bio(struct bio *bio, int err)
583 struct end_io_wq *end_io_wq = bio->bi_private;
584 struct btrfs_fs_info *fs_info;
586 fs_info = end_io_wq->info;
587 end_io_wq->error = err;
588 end_io_wq->work.func = end_workqueue_fn;
589 end_io_wq->work.flags = 0;
591 if (bio->bi_rw & REQ_WRITE) {
592 if (end_io_wq->metadata == 1)
593 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
595 else if (end_io_wq->metadata == 2)
596 btrfs_queue_worker(&fs_info->endio_freespace_worker,
599 btrfs_queue_worker(&fs_info->endio_write_workers,
602 if (end_io_wq->metadata)
603 btrfs_queue_worker(&fs_info->endio_meta_workers,
606 btrfs_queue_worker(&fs_info->endio_workers,
612 * For the metadata arg you want
615 * 1 - if normal metadta
616 * 2 - if writing to the free space cache area
618 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
621 struct end_io_wq *end_io_wq;
622 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
626 end_io_wq->private = bio->bi_private;
627 end_io_wq->end_io = bio->bi_end_io;
628 end_io_wq->info = info;
629 end_io_wq->error = 0;
630 end_io_wq->bio = bio;
631 end_io_wq->metadata = metadata;
633 bio->bi_private = end_io_wq;
634 bio->bi_end_io = end_workqueue_bio;
638 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
640 unsigned long limit = min_t(unsigned long,
641 info->workers.max_workers,
642 info->fs_devices->open_devices);
646 static void run_one_async_start(struct btrfs_work *work)
648 struct async_submit_bio *async;
650 async = container_of(work, struct async_submit_bio, work);
651 async->submit_bio_start(async->inode, async->rw, async->bio,
652 async->mirror_num, async->bio_flags,
656 static void run_one_async_done(struct btrfs_work *work)
658 struct btrfs_fs_info *fs_info;
659 struct async_submit_bio *async;
662 async = container_of(work, struct async_submit_bio, work);
663 fs_info = BTRFS_I(async->inode)->root->fs_info;
665 limit = btrfs_async_submit_limit(fs_info);
666 limit = limit * 2 / 3;
668 atomic_dec(&fs_info->nr_async_submits);
670 if (atomic_read(&fs_info->nr_async_submits) < limit &&
671 waitqueue_active(&fs_info->async_submit_wait))
672 wake_up(&fs_info->async_submit_wait);
674 async->submit_bio_done(async->inode, async->rw, async->bio,
675 async->mirror_num, async->bio_flags,
679 static void run_one_async_free(struct btrfs_work *work)
681 struct async_submit_bio *async;
683 async = container_of(work, struct async_submit_bio, work);
687 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
688 int rw, struct bio *bio, int mirror_num,
689 unsigned long bio_flags,
691 extent_submit_bio_hook_t *submit_bio_start,
692 extent_submit_bio_hook_t *submit_bio_done)
694 struct async_submit_bio *async;
696 async = kmalloc(sizeof(*async), GFP_NOFS);
700 async->inode = inode;
703 async->mirror_num = mirror_num;
704 async->submit_bio_start = submit_bio_start;
705 async->submit_bio_done = submit_bio_done;
707 async->work.func = run_one_async_start;
708 async->work.ordered_func = run_one_async_done;
709 async->work.ordered_free = run_one_async_free;
711 async->work.flags = 0;
712 async->bio_flags = bio_flags;
713 async->bio_offset = bio_offset;
715 atomic_inc(&fs_info->nr_async_submits);
718 btrfs_set_work_high_prio(&async->work);
720 btrfs_queue_worker(&fs_info->workers, &async->work);
722 while (atomic_read(&fs_info->async_submit_draining) &&
723 atomic_read(&fs_info->nr_async_submits)) {
724 wait_event(fs_info->async_submit_wait,
725 (atomic_read(&fs_info->nr_async_submits) == 0));
731 static int btree_csum_one_bio(struct bio *bio)
733 struct bio_vec *bvec = bio->bi_io_vec;
735 struct btrfs_root *root;
737 WARN_ON(bio->bi_vcnt <= 0);
738 while (bio_index < bio->bi_vcnt) {
739 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
740 csum_dirty_buffer(root, bvec->bv_page);
747 static int __btree_submit_bio_start(struct inode *inode, int rw,
748 struct bio *bio, int mirror_num,
749 unsigned long bio_flags,
753 * when we're called for a write, we're already in the async
754 * submission context. Just jump into btrfs_map_bio
756 btree_csum_one_bio(bio);
760 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
761 int mirror_num, unsigned long bio_flags,
765 * when we're called for a write, we're already in the async
766 * submission context. Just jump into btrfs_map_bio
768 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
771 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
772 int mirror_num, unsigned long bio_flags,
777 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
781 if (!(rw & REQ_WRITE)) {
783 * called for a read, do the setup so that checksum validation
784 * can happen in the async kernel threads
786 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
791 * kthread helpers are used to submit writes so that checksumming
792 * can happen in parallel across all CPUs
794 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
795 inode, rw, bio, mirror_num, 0,
797 __btree_submit_bio_start,
798 __btree_submit_bio_done);
801 #ifdef CONFIG_MIGRATION
802 static int btree_migratepage(struct address_space *mapping,
803 struct page *newpage, struct page *page)
806 * we can't safely write a btree page from here,
807 * we haven't done the locking hook
812 * Buffers may be managed in a filesystem specific way.
813 * We must have no buffers or drop them.
815 if (page_has_private(page) &&
816 !try_to_release_page(page, GFP_KERNEL))
818 return migrate_page(mapping, newpage, page);
822 static int btree_writepage(struct page *page, struct writeback_control *wbc)
824 struct extent_io_tree *tree;
825 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
826 struct extent_buffer *eb;
829 tree = &BTRFS_I(page->mapping->host)->io_tree;
830 if (!(current->flags & PF_MEMALLOC)) {
831 return extent_write_full_page(tree, page,
832 btree_get_extent, wbc);
835 redirty_page_for_writepage(wbc, page);
836 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
839 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
841 spin_lock(&root->fs_info->delalloc_lock);
842 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
843 spin_unlock(&root->fs_info->delalloc_lock);
845 free_extent_buffer(eb);
851 static int btree_writepages(struct address_space *mapping,
852 struct writeback_control *wbc)
854 struct extent_io_tree *tree;
855 tree = &BTRFS_I(mapping->host)->io_tree;
856 if (wbc->sync_mode == WB_SYNC_NONE) {
857 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
859 unsigned long thresh = 32 * 1024 * 1024;
861 if (wbc->for_kupdate)
864 /* this is a bit racy, but that's ok */
865 num_dirty = root->fs_info->dirty_metadata_bytes;
866 if (num_dirty < thresh)
869 return extent_writepages(tree, mapping, btree_get_extent, wbc);
872 static int btree_readpage(struct file *file, struct page *page)
874 struct extent_io_tree *tree;
875 tree = &BTRFS_I(page->mapping->host)->io_tree;
876 return extent_read_full_page(tree, page, btree_get_extent);
879 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
881 struct extent_io_tree *tree;
882 struct extent_map_tree *map;
885 if (PageWriteback(page) || PageDirty(page))
888 tree = &BTRFS_I(page->mapping->host)->io_tree;
889 map = &BTRFS_I(page->mapping->host)->extent_tree;
891 ret = try_release_extent_state(map, tree, page, gfp_flags);
895 ret = try_release_extent_buffer(tree, page);
897 ClearPagePrivate(page);
898 set_page_private(page, 0);
899 page_cache_release(page);
905 static void btree_invalidatepage(struct page *page, unsigned long offset)
907 struct extent_io_tree *tree;
908 tree = &BTRFS_I(page->mapping->host)->io_tree;
909 extent_invalidatepage(tree, page, offset);
910 btree_releasepage(page, GFP_NOFS);
911 if (PagePrivate(page)) {
912 printk(KERN_WARNING "btrfs warning page private not zero "
913 "on page %llu\n", (unsigned long long)page_offset(page));
914 ClearPagePrivate(page);
915 set_page_private(page, 0);
916 page_cache_release(page);
920 static const struct address_space_operations btree_aops = {
921 .readpage = btree_readpage,
922 .writepage = btree_writepage,
923 .writepages = btree_writepages,
924 .releasepage = btree_releasepage,
925 .invalidatepage = btree_invalidatepage,
926 #ifdef CONFIG_MIGRATION
927 .migratepage = btree_migratepage,
931 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
934 struct extent_buffer *buf = NULL;
935 struct inode *btree_inode = root->fs_info->btree_inode;
938 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
941 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
942 buf, 0, 0, btree_get_extent, 0);
943 free_extent_buffer(buf);
947 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
948 u64 bytenr, u32 blocksize)
950 struct inode *btree_inode = root->fs_info->btree_inode;
951 struct extent_buffer *eb;
952 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
957 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
958 u64 bytenr, u32 blocksize)
960 struct inode *btree_inode = root->fs_info->btree_inode;
961 struct extent_buffer *eb;
963 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
964 bytenr, blocksize, NULL);
969 int btrfs_write_tree_block(struct extent_buffer *buf)
971 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
972 buf->start + buf->len - 1);
975 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
977 return filemap_fdatawait_range(buf->first_page->mapping,
978 buf->start, buf->start + buf->len - 1);
981 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
982 u32 blocksize, u64 parent_transid)
984 struct extent_buffer *buf = NULL;
987 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
991 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
994 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
999 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1000 struct extent_buffer *buf)
1002 struct inode *btree_inode = root->fs_info->btree_inode;
1003 if (btrfs_header_generation(buf) ==
1004 root->fs_info->running_transaction->transid) {
1005 btrfs_assert_tree_locked(buf);
1007 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1008 spin_lock(&root->fs_info->delalloc_lock);
1009 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1010 root->fs_info->dirty_metadata_bytes -= buf->len;
1013 spin_unlock(&root->fs_info->delalloc_lock);
1016 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1017 btrfs_set_lock_blocking(buf);
1018 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1024 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1025 u32 stripesize, struct btrfs_root *root,
1026 struct btrfs_fs_info *fs_info,
1030 root->commit_root = NULL;
1031 root->sectorsize = sectorsize;
1032 root->nodesize = nodesize;
1033 root->leafsize = leafsize;
1034 root->stripesize = stripesize;
1036 root->track_dirty = 0;
1038 root->orphan_item_inserted = 0;
1039 root->orphan_cleanup_state = 0;
1041 root->fs_info = fs_info;
1042 root->objectid = objectid;
1043 root->last_trans = 0;
1044 root->highest_objectid = 0;
1047 root->inode_tree = RB_ROOT;
1048 root->block_rsv = NULL;
1049 root->orphan_block_rsv = NULL;
1051 INIT_LIST_HEAD(&root->dirty_list);
1052 INIT_LIST_HEAD(&root->orphan_list);
1053 INIT_LIST_HEAD(&root->root_list);
1054 spin_lock_init(&root->node_lock);
1055 spin_lock_init(&root->orphan_lock);
1056 spin_lock_init(&root->inode_lock);
1057 spin_lock_init(&root->accounting_lock);
1058 mutex_init(&root->objectid_mutex);
1059 mutex_init(&root->log_mutex);
1060 init_waitqueue_head(&root->log_writer_wait);
1061 init_waitqueue_head(&root->log_commit_wait[0]);
1062 init_waitqueue_head(&root->log_commit_wait[1]);
1063 atomic_set(&root->log_commit[0], 0);
1064 atomic_set(&root->log_commit[1], 0);
1065 atomic_set(&root->log_writers, 0);
1066 root->log_batch = 0;
1067 root->log_transid = 0;
1068 root->last_log_commit = 0;
1069 extent_io_tree_init(&root->dirty_log_pages,
1070 fs_info->btree_inode->i_mapping);
1072 memset(&root->root_key, 0, sizeof(root->root_key));
1073 memset(&root->root_item, 0, sizeof(root->root_item));
1074 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1075 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1076 root->defrag_trans_start = fs_info->generation;
1077 init_completion(&root->kobj_unregister);
1078 root->defrag_running = 0;
1079 root->root_key.objectid = objectid;
1080 root->anon_super.s_root = NULL;
1081 root->anon_super.s_dev = 0;
1082 INIT_LIST_HEAD(&root->anon_super.s_list);
1083 INIT_LIST_HEAD(&root->anon_super.s_instances);
1084 init_rwsem(&root->anon_super.s_umount);
1089 static int find_and_setup_root(struct btrfs_root *tree_root,
1090 struct btrfs_fs_info *fs_info,
1092 struct btrfs_root *root)
1098 __setup_root(tree_root->nodesize, tree_root->leafsize,
1099 tree_root->sectorsize, tree_root->stripesize,
1100 root, fs_info, objectid);
1101 ret = btrfs_find_last_root(tree_root, objectid,
1102 &root->root_item, &root->root_key);
1107 generation = btrfs_root_generation(&root->root_item);
1108 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1109 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1110 blocksize, generation);
1111 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1112 free_extent_buffer(root->node);
1115 root->commit_root = btrfs_root_node(root);
1119 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1120 struct btrfs_fs_info *fs_info)
1122 struct btrfs_root *root;
1123 struct btrfs_root *tree_root = fs_info->tree_root;
1124 struct extent_buffer *leaf;
1126 root = kzalloc(sizeof(*root), GFP_NOFS);
1128 return ERR_PTR(-ENOMEM);
1130 __setup_root(tree_root->nodesize, tree_root->leafsize,
1131 tree_root->sectorsize, tree_root->stripesize,
1132 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1134 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1135 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1136 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1138 * log trees do not get reference counted because they go away
1139 * before a real commit is actually done. They do store pointers
1140 * to file data extents, and those reference counts still get
1141 * updated (along with back refs to the log tree).
1145 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1146 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1149 return ERR_CAST(leaf);
1152 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1153 btrfs_set_header_bytenr(leaf, leaf->start);
1154 btrfs_set_header_generation(leaf, trans->transid);
1155 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1156 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1159 write_extent_buffer(root->node, root->fs_info->fsid,
1160 (unsigned long)btrfs_header_fsid(root->node),
1162 btrfs_mark_buffer_dirty(root->node);
1163 btrfs_tree_unlock(root->node);
1167 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1168 struct btrfs_fs_info *fs_info)
1170 struct btrfs_root *log_root;
1172 log_root = alloc_log_tree(trans, fs_info);
1173 if (IS_ERR(log_root))
1174 return PTR_ERR(log_root);
1175 WARN_ON(fs_info->log_root_tree);
1176 fs_info->log_root_tree = log_root;
1180 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1181 struct btrfs_root *root)
1183 struct btrfs_root *log_root;
1184 struct btrfs_inode_item *inode_item;
1186 log_root = alloc_log_tree(trans, root->fs_info);
1187 if (IS_ERR(log_root))
1188 return PTR_ERR(log_root);
1190 log_root->last_trans = trans->transid;
1191 log_root->root_key.offset = root->root_key.objectid;
1193 inode_item = &log_root->root_item.inode;
1194 inode_item->generation = cpu_to_le64(1);
1195 inode_item->size = cpu_to_le64(3);
1196 inode_item->nlink = cpu_to_le32(1);
1197 inode_item->nbytes = cpu_to_le64(root->leafsize);
1198 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1200 btrfs_set_root_node(&log_root->root_item, log_root->node);
1202 WARN_ON(root->log_root);
1203 root->log_root = log_root;
1204 root->log_transid = 0;
1205 root->last_log_commit = 0;
1209 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1210 struct btrfs_key *location)
1212 struct btrfs_root *root;
1213 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1214 struct btrfs_path *path;
1215 struct extent_buffer *l;
1220 root = kzalloc(sizeof(*root), GFP_NOFS);
1222 return ERR_PTR(-ENOMEM);
1223 if (location->offset == (u64)-1) {
1224 ret = find_and_setup_root(tree_root, fs_info,
1225 location->objectid, root);
1228 return ERR_PTR(ret);
1233 __setup_root(tree_root->nodesize, tree_root->leafsize,
1234 tree_root->sectorsize, tree_root->stripesize,
1235 root, fs_info, location->objectid);
1237 path = btrfs_alloc_path();
1240 return ERR_PTR(-ENOMEM);
1242 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1245 read_extent_buffer(l, &root->root_item,
1246 btrfs_item_ptr_offset(l, path->slots[0]),
1247 sizeof(root->root_item));
1248 memcpy(&root->root_key, location, sizeof(*location));
1250 btrfs_free_path(path);
1255 return ERR_PTR(ret);
1258 generation = btrfs_root_generation(&root->root_item);
1259 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1260 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1261 blocksize, generation);
1262 root->commit_root = btrfs_root_node(root);
1263 BUG_ON(!root->node);
1265 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1267 btrfs_check_and_init_root_item(&root->root_item);
1273 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1274 struct btrfs_key *location)
1276 struct btrfs_root *root;
1279 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1280 return fs_info->tree_root;
1281 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1282 return fs_info->extent_root;
1283 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1284 return fs_info->chunk_root;
1285 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1286 return fs_info->dev_root;
1287 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1288 return fs_info->csum_root;
1290 spin_lock(&fs_info->fs_roots_radix_lock);
1291 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1292 (unsigned long)location->objectid);
1293 spin_unlock(&fs_info->fs_roots_radix_lock);
1297 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1301 set_anon_super(&root->anon_super, NULL);
1303 if (btrfs_root_refs(&root->root_item) == 0) {
1308 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1312 root->orphan_item_inserted = 1;
1314 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1318 spin_lock(&fs_info->fs_roots_radix_lock);
1319 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1320 (unsigned long)root->root_key.objectid,
1325 spin_unlock(&fs_info->fs_roots_radix_lock);
1326 radix_tree_preload_end();
1328 if (ret == -EEXIST) {
1335 ret = btrfs_find_dead_roots(fs_info->tree_root,
1336 root->root_key.objectid);
1341 return ERR_PTR(ret);
1344 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1346 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1348 struct btrfs_device *device;
1349 struct backing_dev_info *bdi;
1351 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1354 bdi = blk_get_backing_dev_info(device->bdev);
1355 if (bdi && bdi_congested(bdi, bdi_bits)) {
1364 * If this fails, caller must call bdi_destroy() to get rid of the
1367 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1371 bdi->capabilities = BDI_CAP_MAP_COPY;
1372 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1376 bdi->ra_pages = default_backing_dev_info.ra_pages;
1377 bdi->congested_fn = btrfs_congested_fn;
1378 bdi->congested_data = info;
1382 static int bio_ready_for_csum(struct bio *bio)
1388 struct extent_io_tree *io_tree = NULL;
1389 struct bio_vec *bvec;
1393 bio_for_each_segment(bvec, bio, i) {
1394 page = bvec->bv_page;
1395 if (page->private == EXTENT_PAGE_PRIVATE) {
1396 length += bvec->bv_len;
1399 if (!page->private) {
1400 length += bvec->bv_len;
1403 length = bvec->bv_len;
1404 buf_len = page->private >> 2;
1405 start = page_offset(page) + bvec->bv_offset;
1406 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1408 /* are we fully contained in this bio? */
1409 if (buf_len <= length)
1412 ret = extent_range_uptodate(io_tree, start + length,
1413 start + buf_len - 1);
1418 * called by the kthread helper functions to finally call the bio end_io
1419 * functions. This is where read checksum verification actually happens
1421 static void end_workqueue_fn(struct btrfs_work *work)
1424 struct end_io_wq *end_io_wq;
1425 struct btrfs_fs_info *fs_info;
1428 end_io_wq = container_of(work, struct end_io_wq, work);
1429 bio = end_io_wq->bio;
1430 fs_info = end_io_wq->info;
1432 /* metadata bio reads are special because the whole tree block must
1433 * be checksummed at once. This makes sure the entire block is in
1434 * ram and up to date before trying to verify things. For
1435 * blocksize <= pagesize, it is basically a noop
1437 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1438 !bio_ready_for_csum(bio)) {
1439 btrfs_queue_worker(&fs_info->endio_meta_workers,
1443 error = end_io_wq->error;
1444 bio->bi_private = end_io_wq->private;
1445 bio->bi_end_io = end_io_wq->end_io;
1447 bio_endio(bio, error);
1450 static int cleaner_kthread(void *arg)
1452 struct btrfs_root *root = arg;
1455 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1457 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1458 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1459 btrfs_run_delayed_iputs(root);
1460 btrfs_clean_old_snapshots(root);
1461 mutex_unlock(&root->fs_info->cleaner_mutex);
1464 if (freezing(current)) {
1467 set_current_state(TASK_INTERRUPTIBLE);
1468 if (!kthread_should_stop())
1470 __set_current_state(TASK_RUNNING);
1472 } while (!kthread_should_stop());
1476 static int transaction_kthread(void *arg)
1478 struct btrfs_root *root = arg;
1479 struct btrfs_trans_handle *trans;
1480 struct btrfs_transaction *cur;
1483 unsigned long delay;
1488 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1489 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1491 spin_lock(&root->fs_info->new_trans_lock);
1492 cur = root->fs_info->running_transaction;
1494 spin_unlock(&root->fs_info->new_trans_lock);
1498 now = get_seconds();
1499 if (!cur->blocked &&
1500 (now < cur->start_time || now - cur->start_time < 30)) {
1501 spin_unlock(&root->fs_info->new_trans_lock);
1505 transid = cur->transid;
1506 spin_unlock(&root->fs_info->new_trans_lock);
1508 trans = btrfs_join_transaction(root, 1);
1509 BUG_ON(IS_ERR(trans));
1510 if (transid == trans->transid) {
1511 ret = btrfs_commit_transaction(trans, root);
1514 btrfs_end_transaction(trans, root);
1517 wake_up_process(root->fs_info->cleaner_kthread);
1518 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1520 if (freezing(current)) {
1523 set_current_state(TASK_INTERRUPTIBLE);
1524 if (!kthread_should_stop() &&
1525 !btrfs_transaction_blocked(root->fs_info))
1526 schedule_timeout(delay);
1527 __set_current_state(TASK_RUNNING);
1529 } while (!kthread_should_stop());
1533 struct btrfs_root *open_ctree(struct super_block *sb,
1534 struct btrfs_fs_devices *fs_devices,
1544 struct btrfs_key location;
1545 struct buffer_head *bh;
1546 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1548 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1550 struct btrfs_root *tree_root = btrfs_sb(sb);
1551 struct btrfs_fs_info *fs_info = NULL;
1552 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1554 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1556 struct btrfs_root *log_tree_root;
1561 struct btrfs_super_block *disk_super;
1563 if (!extent_root || !tree_root || !tree_root->fs_info ||
1564 !chunk_root || !dev_root || !csum_root) {
1568 fs_info = tree_root->fs_info;
1570 ret = init_srcu_struct(&fs_info->subvol_srcu);
1576 ret = setup_bdi(fs_info, &fs_info->bdi);
1582 fs_info->btree_inode = new_inode(sb);
1583 if (!fs_info->btree_inode) {
1588 fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1590 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1591 INIT_LIST_HEAD(&fs_info->trans_list);
1592 INIT_LIST_HEAD(&fs_info->dead_roots);
1593 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1594 INIT_LIST_HEAD(&fs_info->hashers);
1595 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1596 INIT_LIST_HEAD(&fs_info->ordered_operations);
1597 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1598 spin_lock_init(&fs_info->delalloc_lock);
1599 spin_lock_init(&fs_info->new_trans_lock);
1600 spin_lock_init(&fs_info->ref_cache_lock);
1601 spin_lock_init(&fs_info->fs_roots_radix_lock);
1602 spin_lock_init(&fs_info->delayed_iput_lock);
1604 init_completion(&fs_info->kobj_unregister);
1605 fs_info->tree_root = tree_root;
1606 fs_info->extent_root = extent_root;
1607 fs_info->csum_root = csum_root;
1608 fs_info->chunk_root = chunk_root;
1609 fs_info->dev_root = dev_root;
1610 fs_info->fs_devices = fs_devices;
1611 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1612 INIT_LIST_HEAD(&fs_info->space_info);
1613 btrfs_mapping_init(&fs_info->mapping_tree);
1614 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1615 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1616 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1617 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1618 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1619 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1620 mutex_init(&fs_info->durable_block_rsv_mutex);
1621 atomic_set(&fs_info->nr_async_submits, 0);
1622 atomic_set(&fs_info->async_delalloc_pages, 0);
1623 atomic_set(&fs_info->async_submit_draining, 0);
1624 atomic_set(&fs_info->nr_async_bios, 0);
1626 fs_info->max_inline = 8192 * 1024;
1627 fs_info->metadata_ratio = 0;
1629 fs_info->thread_pool_size = min_t(unsigned long,
1630 num_online_cpus() + 2, 8);
1632 INIT_LIST_HEAD(&fs_info->ordered_extents);
1633 spin_lock_init(&fs_info->ordered_extent_lock);
1635 sb->s_blocksize = 4096;
1636 sb->s_blocksize_bits = blksize_bits(4096);
1637 sb->s_bdi = &fs_info->bdi;
1639 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1640 fs_info->btree_inode->i_nlink = 1;
1642 * we set the i_size on the btree inode to the max possible int.
1643 * the real end of the address space is determined by all of
1644 * the devices in the system
1646 fs_info->btree_inode->i_size = OFFSET_MAX;
1647 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1648 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1650 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1651 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1652 fs_info->btree_inode->i_mapping);
1653 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1655 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1657 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1658 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1659 sizeof(struct btrfs_key));
1660 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1661 insert_inode_hash(fs_info->btree_inode);
1663 spin_lock_init(&fs_info->block_group_cache_lock);
1664 fs_info->block_group_cache_tree = RB_ROOT;
1666 extent_io_tree_init(&fs_info->freed_extents[0],
1667 fs_info->btree_inode->i_mapping);
1668 extent_io_tree_init(&fs_info->freed_extents[1],
1669 fs_info->btree_inode->i_mapping);
1670 fs_info->pinned_extents = &fs_info->freed_extents[0];
1671 fs_info->do_barriers = 1;
1674 mutex_init(&fs_info->trans_mutex);
1675 mutex_init(&fs_info->ordered_operations_mutex);
1676 mutex_init(&fs_info->tree_log_mutex);
1677 mutex_init(&fs_info->chunk_mutex);
1678 mutex_init(&fs_info->transaction_kthread_mutex);
1679 mutex_init(&fs_info->cleaner_mutex);
1680 mutex_init(&fs_info->volume_mutex);
1681 init_rwsem(&fs_info->extent_commit_sem);
1682 init_rwsem(&fs_info->cleanup_work_sem);
1683 init_rwsem(&fs_info->subvol_sem);
1685 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1686 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1688 init_waitqueue_head(&fs_info->transaction_throttle);
1689 init_waitqueue_head(&fs_info->transaction_wait);
1690 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1691 init_waitqueue_head(&fs_info->async_submit_wait);
1693 __setup_root(4096, 4096, 4096, 4096, tree_root,
1694 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1696 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1702 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1703 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1704 sizeof(fs_info->super_for_commit));
1707 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1709 disk_super = &fs_info->super_copy;
1710 if (!btrfs_super_root(disk_super))
1713 /* check FS state, whether FS is broken. */
1714 fs_info->fs_state |= btrfs_super_flags(disk_super);
1716 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1719 * In the long term, we'll store the compression type in the super
1720 * block, and it'll be used for per file compression control.
1722 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1724 ret = btrfs_parse_options(tree_root, options);
1730 features = btrfs_super_incompat_flags(disk_super) &
1731 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1733 printk(KERN_ERR "BTRFS: couldn't mount because of "
1734 "unsupported optional features (%Lx).\n",
1735 (unsigned long long)features);
1740 features = btrfs_super_incompat_flags(disk_super);
1741 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1742 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1743 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1744 btrfs_set_super_incompat_flags(disk_super, features);
1746 features = btrfs_super_compat_ro_flags(disk_super) &
1747 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1748 if (!(sb->s_flags & MS_RDONLY) && features) {
1749 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1750 "unsupported option features (%Lx).\n",
1751 (unsigned long long)features);
1756 btrfs_init_workers(&fs_info->generic_worker,
1757 "genwork", 1, NULL);
1759 btrfs_init_workers(&fs_info->workers, "worker",
1760 fs_info->thread_pool_size,
1761 &fs_info->generic_worker);
1763 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1764 fs_info->thread_pool_size,
1765 &fs_info->generic_worker);
1767 btrfs_init_workers(&fs_info->submit_workers, "submit",
1768 min_t(u64, fs_devices->num_devices,
1769 fs_info->thread_pool_size),
1770 &fs_info->generic_worker);
1772 /* a higher idle thresh on the submit workers makes it much more
1773 * likely that bios will be send down in a sane order to the
1776 fs_info->submit_workers.idle_thresh = 64;
1778 fs_info->workers.idle_thresh = 16;
1779 fs_info->workers.ordered = 1;
1781 fs_info->delalloc_workers.idle_thresh = 2;
1782 fs_info->delalloc_workers.ordered = 1;
1784 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1785 &fs_info->generic_worker);
1786 btrfs_init_workers(&fs_info->endio_workers, "endio",
1787 fs_info->thread_pool_size,
1788 &fs_info->generic_worker);
1789 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1790 fs_info->thread_pool_size,
1791 &fs_info->generic_worker);
1792 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1793 "endio-meta-write", fs_info->thread_pool_size,
1794 &fs_info->generic_worker);
1795 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1796 fs_info->thread_pool_size,
1797 &fs_info->generic_worker);
1798 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1799 1, &fs_info->generic_worker);
1802 * endios are largely parallel and should have a very
1805 fs_info->endio_workers.idle_thresh = 4;
1806 fs_info->endio_meta_workers.idle_thresh = 4;
1808 fs_info->endio_write_workers.idle_thresh = 2;
1809 fs_info->endio_meta_write_workers.idle_thresh = 2;
1811 btrfs_start_workers(&fs_info->workers, 1);
1812 btrfs_start_workers(&fs_info->generic_worker, 1);
1813 btrfs_start_workers(&fs_info->submit_workers, 1);
1814 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1815 btrfs_start_workers(&fs_info->fixup_workers, 1);
1816 btrfs_start_workers(&fs_info->endio_workers, 1);
1817 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1818 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1819 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1820 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1822 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1823 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1824 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1826 nodesize = btrfs_super_nodesize(disk_super);
1827 leafsize = btrfs_super_leafsize(disk_super);
1828 sectorsize = btrfs_super_sectorsize(disk_super);
1829 stripesize = btrfs_super_stripesize(disk_super);
1830 tree_root->nodesize = nodesize;
1831 tree_root->leafsize = leafsize;
1832 tree_root->sectorsize = sectorsize;
1833 tree_root->stripesize = stripesize;
1835 sb->s_blocksize = sectorsize;
1836 sb->s_blocksize_bits = blksize_bits(sectorsize);
1838 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1839 sizeof(disk_super->magic))) {
1840 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1841 goto fail_sb_buffer;
1844 mutex_lock(&fs_info->chunk_mutex);
1845 ret = btrfs_read_sys_array(tree_root);
1846 mutex_unlock(&fs_info->chunk_mutex);
1848 printk(KERN_WARNING "btrfs: failed to read the system "
1849 "array on %s\n", sb->s_id);
1850 goto fail_sb_buffer;
1853 blocksize = btrfs_level_size(tree_root,
1854 btrfs_super_chunk_root_level(disk_super));
1855 generation = btrfs_super_chunk_root_generation(disk_super);
1857 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1858 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1860 chunk_root->node = read_tree_block(chunk_root,
1861 btrfs_super_chunk_root(disk_super),
1862 blocksize, generation);
1863 BUG_ON(!chunk_root->node);
1864 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1865 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1867 goto fail_chunk_root;
1869 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1870 chunk_root->commit_root = btrfs_root_node(chunk_root);
1872 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1873 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1876 mutex_lock(&fs_info->chunk_mutex);
1877 ret = btrfs_read_chunk_tree(chunk_root);
1878 mutex_unlock(&fs_info->chunk_mutex);
1880 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1882 goto fail_chunk_root;
1885 btrfs_close_extra_devices(fs_devices);
1887 blocksize = btrfs_level_size(tree_root,
1888 btrfs_super_root_level(disk_super));
1889 generation = btrfs_super_generation(disk_super);
1891 tree_root->node = read_tree_block(tree_root,
1892 btrfs_super_root(disk_super),
1893 blocksize, generation);
1894 if (!tree_root->node)
1895 goto fail_chunk_root;
1896 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1897 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1899 goto fail_tree_root;
1901 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1902 tree_root->commit_root = btrfs_root_node(tree_root);
1904 ret = find_and_setup_root(tree_root, fs_info,
1905 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1907 goto fail_tree_root;
1908 extent_root->track_dirty = 1;
1910 ret = find_and_setup_root(tree_root, fs_info,
1911 BTRFS_DEV_TREE_OBJECTID, dev_root);
1913 goto fail_extent_root;
1914 dev_root->track_dirty = 1;
1916 ret = find_and_setup_root(tree_root, fs_info,
1917 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1921 csum_root->track_dirty = 1;
1923 fs_info->generation = generation;
1924 fs_info->last_trans_committed = generation;
1925 fs_info->data_alloc_profile = (u64)-1;
1926 fs_info->metadata_alloc_profile = (u64)-1;
1927 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1929 ret = btrfs_init_space_info(fs_info);
1931 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
1932 goto fail_block_groups;
1935 ret = btrfs_read_block_groups(extent_root);
1937 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1938 goto fail_block_groups;
1941 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1943 if (IS_ERR(fs_info->cleaner_kthread))
1944 goto fail_block_groups;
1946 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1948 "btrfs-transaction");
1949 if (IS_ERR(fs_info->transaction_kthread))
1952 if (!btrfs_test_opt(tree_root, SSD) &&
1953 !btrfs_test_opt(tree_root, NOSSD) &&
1954 !fs_info->fs_devices->rotating) {
1955 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1957 btrfs_set_opt(fs_info->mount_opt, SSD);
1960 /* do not make disk changes in broken FS */
1961 if (btrfs_super_log_root(disk_super) != 0 &&
1962 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
1963 u64 bytenr = btrfs_super_log_root(disk_super);
1965 if (fs_devices->rw_devices == 0) {
1966 printk(KERN_WARNING "Btrfs log replay required "
1969 goto fail_trans_kthread;
1972 btrfs_level_size(tree_root,
1973 btrfs_super_log_root_level(disk_super));
1975 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1976 if (!log_tree_root) {
1978 goto fail_trans_kthread;
1981 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1982 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1984 log_tree_root->node = read_tree_block(tree_root, bytenr,
1987 ret = btrfs_recover_log_trees(log_tree_root);
1990 if (sb->s_flags & MS_RDONLY) {
1991 ret = btrfs_commit_super(tree_root);
1996 ret = btrfs_find_orphan_roots(tree_root);
1999 if (!(sb->s_flags & MS_RDONLY)) {
2000 ret = btrfs_cleanup_fs_roots(fs_info);
2003 ret = btrfs_recover_relocation(tree_root);
2006 "btrfs: failed to recover relocation\n");
2008 goto fail_trans_kthread;
2012 location.objectid = BTRFS_FS_TREE_OBJECTID;
2013 location.type = BTRFS_ROOT_ITEM_KEY;
2014 location.offset = (u64)-1;
2016 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2017 if (!fs_info->fs_root)
2018 goto fail_trans_kthread;
2019 if (IS_ERR(fs_info->fs_root)) {
2020 err = PTR_ERR(fs_info->fs_root);
2021 goto fail_trans_kthread;
2024 if (!(sb->s_flags & MS_RDONLY)) {
2025 down_read(&fs_info->cleanup_work_sem);
2026 err = btrfs_orphan_cleanup(fs_info->fs_root);
2028 err = btrfs_orphan_cleanup(fs_info->tree_root);
2029 up_read(&fs_info->cleanup_work_sem);
2031 close_ctree(tree_root);
2032 return ERR_PTR(err);
2039 kthread_stop(fs_info->transaction_kthread);
2041 kthread_stop(fs_info->cleaner_kthread);
2044 * make sure we're done with the btree inode before we stop our
2047 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2048 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2051 btrfs_free_block_groups(fs_info);
2052 free_extent_buffer(csum_root->node);
2053 free_extent_buffer(csum_root->commit_root);
2055 free_extent_buffer(dev_root->node);
2056 free_extent_buffer(dev_root->commit_root);
2058 free_extent_buffer(extent_root->node);
2059 free_extent_buffer(extent_root->commit_root);
2061 free_extent_buffer(tree_root->node);
2062 free_extent_buffer(tree_root->commit_root);
2064 free_extent_buffer(chunk_root->node);
2065 free_extent_buffer(chunk_root->commit_root);
2067 btrfs_stop_workers(&fs_info->generic_worker);
2068 btrfs_stop_workers(&fs_info->fixup_workers);
2069 btrfs_stop_workers(&fs_info->delalloc_workers);
2070 btrfs_stop_workers(&fs_info->workers);
2071 btrfs_stop_workers(&fs_info->endio_workers);
2072 btrfs_stop_workers(&fs_info->endio_meta_workers);
2073 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2074 btrfs_stop_workers(&fs_info->endio_write_workers);
2075 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2076 btrfs_stop_workers(&fs_info->submit_workers);
2078 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2079 iput(fs_info->btree_inode);
2081 btrfs_close_devices(fs_info->fs_devices);
2082 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2084 bdi_destroy(&fs_info->bdi);
2086 cleanup_srcu_struct(&fs_info->subvol_srcu);
2094 return ERR_PTR(err);
2097 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2099 char b[BDEVNAME_SIZE];
2102 set_buffer_uptodate(bh);
2104 printk_ratelimited(KERN_WARNING "lost page write due to "
2105 "I/O error on %s\n",
2106 bdevname(bh->b_bdev, b));
2107 /* note, we dont' set_buffer_write_io_error because we have
2108 * our own ways of dealing with the IO errors
2110 clear_buffer_uptodate(bh);
2116 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2118 struct buffer_head *bh;
2119 struct buffer_head *latest = NULL;
2120 struct btrfs_super_block *super;
2125 /* we would like to check all the supers, but that would make
2126 * a btrfs mount succeed after a mkfs from a different FS.
2127 * So, we need to add a special mount option to scan for
2128 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2130 for (i = 0; i < 1; i++) {
2131 bytenr = btrfs_sb_offset(i);
2132 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2134 bh = __bread(bdev, bytenr / 4096, 4096);
2138 super = (struct btrfs_super_block *)bh->b_data;
2139 if (btrfs_super_bytenr(super) != bytenr ||
2140 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2141 sizeof(super->magic))) {
2146 if (!latest || btrfs_super_generation(super) > transid) {
2149 transid = btrfs_super_generation(super);
2158 * this should be called twice, once with wait == 0 and
2159 * once with wait == 1. When wait == 0 is done, all the buffer heads
2160 * we write are pinned.
2162 * They are released when wait == 1 is done.
2163 * max_mirrors must be the same for both runs, and it indicates how
2164 * many supers on this one device should be written.
2166 * max_mirrors == 0 means to write them all.
2168 static int write_dev_supers(struct btrfs_device *device,
2169 struct btrfs_super_block *sb,
2170 int do_barriers, int wait, int max_mirrors)
2172 struct buffer_head *bh;
2178 int last_barrier = 0;
2180 if (max_mirrors == 0)
2181 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2183 /* make sure only the last submit_bh does a barrier */
2185 for (i = 0; i < max_mirrors; i++) {
2186 bytenr = btrfs_sb_offset(i);
2187 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2188 device->total_bytes)
2194 for (i = 0; i < max_mirrors; i++) {
2195 bytenr = btrfs_sb_offset(i);
2196 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2200 bh = __find_get_block(device->bdev, bytenr / 4096,
2201 BTRFS_SUPER_INFO_SIZE);
2204 if (!buffer_uptodate(bh))
2207 /* drop our reference */
2210 /* drop the reference from the wait == 0 run */
2214 btrfs_set_super_bytenr(sb, bytenr);
2217 crc = btrfs_csum_data(NULL, (char *)sb +
2218 BTRFS_CSUM_SIZE, crc,
2219 BTRFS_SUPER_INFO_SIZE -
2221 btrfs_csum_final(crc, sb->csum);
2224 * one reference for us, and we leave it for the
2227 bh = __getblk(device->bdev, bytenr / 4096,
2228 BTRFS_SUPER_INFO_SIZE);
2229 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2231 /* one reference for submit_bh */
2234 set_buffer_uptodate(bh);
2236 bh->b_end_io = btrfs_end_buffer_write_sync;
2239 if (i == last_barrier && do_barriers)
2240 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2242 ret = submit_bh(WRITE_SYNC, bh);
2247 return errors < i ? 0 : -1;
2250 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2252 struct list_head *head;
2253 struct btrfs_device *dev;
2254 struct btrfs_super_block *sb;
2255 struct btrfs_dev_item *dev_item;
2259 int total_errors = 0;
2262 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2263 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2265 sb = &root->fs_info->super_for_commit;
2266 dev_item = &sb->dev_item;
2268 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2269 head = &root->fs_info->fs_devices->devices;
2270 list_for_each_entry(dev, head, dev_list) {
2275 if (!dev->in_fs_metadata || !dev->writeable)
2278 btrfs_set_stack_device_generation(dev_item, 0);
2279 btrfs_set_stack_device_type(dev_item, dev->type);
2280 btrfs_set_stack_device_id(dev_item, dev->devid);
2281 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2282 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2283 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2284 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2285 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2286 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2287 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2289 flags = btrfs_super_flags(sb);
2290 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2292 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2296 if (total_errors > max_errors) {
2297 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2303 list_for_each_entry(dev, head, dev_list) {
2306 if (!dev->in_fs_metadata || !dev->writeable)
2309 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2313 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2314 if (total_errors > max_errors) {
2315 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2322 int write_ctree_super(struct btrfs_trans_handle *trans,
2323 struct btrfs_root *root, int max_mirrors)
2327 ret = write_all_supers(root, max_mirrors);
2331 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2333 spin_lock(&fs_info->fs_roots_radix_lock);
2334 radix_tree_delete(&fs_info->fs_roots_radix,
2335 (unsigned long)root->root_key.objectid);
2336 spin_unlock(&fs_info->fs_roots_radix_lock);
2338 if (btrfs_root_refs(&root->root_item) == 0)
2339 synchronize_srcu(&fs_info->subvol_srcu);
2345 static void free_fs_root(struct btrfs_root *root)
2347 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2348 if (root->anon_super.s_dev) {
2349 down_write(&root->anon_super.s_umount);
2350 kill_anon_super(&root->anon_super);
2352 free_extent_buffer(root->node);
2353 free_extent_buffer(root->commit_root);
2358 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2361 struct btrfs_root *gang[8];
2364 while (!list_empty(&fs_info->dead_roots)) {
2365 gang[0] = list_entry(fs_info->dead_roots.next,
2366 struct btrfs_root, root_list);
2367 list_del(&gang[0]->root_list);
2369 if (gang[0]->in_radix) {
2370 btrfs_free_fs_root(fs_info, gang[0]);
2372 free_extent_buffer(gang[0]->node);
2373 free_extent_buffer(gang[0]->commit_root);
2379 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2384 for (i = 0; i < ret; i++)
2385 btrfs_free_fs_root(fs_info, gang[i]);
2390 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2392 u64 root_objectid = 0;
2393 struct btrfs_root *gang[8];
2398 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2399 (void **)gang, root_objectid,
2404 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2405 for (i = 0; i < ret; i++) {
2408 root_objectid = gang[i]->root_key.objectid;
2409 err = btrfs_orphan_cleanup(gang[i]);
2418 int btrfs_commit_super(struct btrfs_root *root)
2420 struct btrfs_trans_handle *trans;
2423 mutex_lock(&root->fs_info->cleaner_mutex);
2424 btrfs_run_delayed_iputs(root);
2425 btrfs_clean_old_snapshots(root);
2426 mutex_unlock(&root->fs_info->cleaner_mutex);
2428 /* wait until ongoing cleanup work done */
2429 down_write(&root->fs_info->cleanup_work_sem);
2430 up_write(&root->fs_info->cleanup_work_sem);
2432 trans = btrfs_join_transaction(root, 1);
2434 return PTR_ERR(trans);
2435 ret = btrfs_commit_transaction(trans, root);
2437 /* run commit again to drop the original snapshot */
2438 trans = btrfs_join_transaction(root, 1);
2440 return PTR_ERR(trans);
2441 btrfs_commit_transaction(trans, root);
2442 ret = btrfs_write_and_wait_transaction(NULL, root);
2445 ret = write_ctree_super(NULL, root, 0);
2449 int close_ctree(struct btrfs_root *root)
2451 struct btrfs_fs_info *fs_info = root->fs_info;
2454 fs_info->closing = 1;
2457 btrfs_put_block_group_cache(fs_info);
2460 * Here come 2 situations when btrfs is broken to flip readonly:
2462 * 1. when btrfs flips readonly somewhere else before
2463 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2464 * and btrfs will skip to write sb directly to keep
2465 * ERROR state on disk.
2467 * 2. when btrfs flips readonly just in btrfs_commit_super,
2468 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2469 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2470 * btrfs will cleanup all FS resources first and write sb then.
2472 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2473 ret = btrfs_commit_super(root);
2475 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2478 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2479 ret = btrfs_error_commit_super(root);
2481 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2484 kthread_stop(root->fs_info->transaction_kthread);
2485 kthread_stop(root->fs_info->cleaner_kthread);
2487 fs_info->closing = 2;
2490 if (fs_info->delalloc_bytes) {
2491 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2492 (unsigned long long)fs_info->delalloc_bytes);
2494 if (fs_info->total_ref_cache_size) {
2495 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2496 (unsigned long long)fs_info->total_ref_cache_size);
2499 free_extent_buffer(fs_info->extent_root->node);
2500 free_extent_buffer(fs_info->extent_root->commit_root);
2501 free_extent_buffer(fs_info->tree_root->node);
2502 free_extent_buffer(fs_info->tree_root->commit_root);
2503 free_extent_buffer(root->fs_info->chunk_root->node);
2504 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2505 free_extent_buffer(root->fs_info->dev_root->node);
2506 free_extent_buffer(root->fs_info->dev_root->commit_root);
2507 free_extent_buffer(root->fs_info->csum_root->node);
2508 free_extent_buffer(root->fs_info->csum_root->commit_root);
2510 btrfs_free_block_groups(root->fs_info);
2512 del_fs_roots(fs_info);
2514 iput(fs_info->btree_inode);
2516 btrfs_stop_workers(&fs_info->generic_worker);
2517 btrfs_stop_workers(&fs_info->fixup_workers);
2518 btrfs_stop_workers(&fs_info->delalloc_workers);
2519 btrfs_stop_workers(&fs_info->workers);
2520 btrfs_stop_workers(&fs_info->endio_workers);
2521 btrfs_stop_workers(&fs_info->endio_meta_workers);
2522 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2523 btrfs_stop_workers(&fs_info->endio_write_workers);
2524 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2525 btrfs_stop_workers(&fs_info->submit_workers);
2527 btrfs_close_devices(fs_info->fs_devices);
2528 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2530 bdi_destroy(&fs_info->bdi);
2531 cleanup_srcu_struct(&fs_info->subvol_srcu);
2533 kfree(fs_info->extent_root);
2534 kfree(fs_info->tree_root);
2535 kfree(fs_info->chunk_root);
2536 kfree(fs_info->dev_root);
2537 kfree(fs_info->csum_root);
2543 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2546 struct inode *btree_inode = buf->first_page->mapping->host;
2548 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2553 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2558 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2560 struct inode *btree_inode = buf->first_page->mapping->host;
2561 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2565 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2567 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2568 u64 transid = btrfs_header_generation(buf);
2569 struct inode *btree_inode = root->fs_info->btree_inode;
2572 btrfs_assert_tree_locked(buf);
2573 if (transid != root->fs_info->generation) {
2574 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2575 "found %llu running %llu\n",
2576 (unsigned long long)buf->start,
2577 (unsigned long long)transid,
2578 (unsigned long long)root->fs_info->generation);
2581 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2584 spin_lock(&root->fs_info->delalloc_lock);
2585 root->fs_info->dirty_metadata_bytes += buf->len;
2586 spin_unlock(&root->fs_info->delalloc_lock);
2590 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2593 * looks as though older kernels can get into trouble with
2594 * this code, they end up stuck in balance_dirty_pages forever
2597 unsigned long thresh = 32 * 1024 * 1024;
2599 if (current->flags & PF_MEMALLOC)
2602 num_dirty = root->fs_info->dirty_metadata_bytes;
2604 if (num_dirty > thresh) {
2605 balance_dirty_pages_ratelimited_nr(
2606 root->fs_info->btree_inode->i_mapping, 1);
2611 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2613 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2615 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2617 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2621 int btree_lock_page_hook(struct page *page)
2623 struct inode *inode = page->mapping->host;
2624 struct btrfs_root *root = BTRFS_I(inode)->root;
2625 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2626 struct extent_buffer *eb;
2628 u64 bytenr = page_offset(page);
2630 if (page->private == EXTENT_PAGE_PRIVATE)
2633 len = page->private >> 2;
2634 eb = find_extent_buffer(io_tree, bytenr, len);
2638 btrfs_tree_lock(eb);
2639 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2641 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2642 spin_lock(&root->fs_info->delalloc_lock);
2643 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2644 root->fs_info->dirty_metadata_bytes -= eb->len;
2647 spin_unlock(&root->fs_info->delalloc_lock);
2650 btrfs_tree_unlock(eb);
2651 free_extent_buffer(eb);
2657 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2663 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2664 printk(KERN_WARNING "warning: mount fs with errors, "
2665 "running btrfsck is recommended\n");
2668 int btrfs_error_commit_super(struct btrfs_root *root)
2672 mutex_lock(&root->fs_info->cleaner_mutex);
2673 btrfs_run_delayed_iputs(root);
2674 mutex_unlock(&root->fs_info->cleaner_mutex);
2676 down_write(&root->fs_info->cleanup_work_sem);
2677 up_write(&root->fs_info->cleanup_work_sem);
2679 /* cleanup FS via transaction */
2680 btrfs_cleanup_transaction(root);
2682 ret = write_ctree_super(NULL, root, 0);
2687 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2689 struct btrfs_inode *btrfs_inode;
2690 struct list_head splice;
2692 INIT_LIST_HEAD(&splice);
2694 mutex_lock(&root->fs_info->ordered_operations_mutex);
2695 spin_lock(&root->fs_info->ordered_extent_lock);
2697 list_splice_init(&root->fs_info->ordered_operations, &splice);
2698 while (!list_empty(&splice)) {
2699 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2700 ordered_operations);
2702 list_del_init(&btrfs_inode->ordered_operations);
2704 btrfs_invalidate_inodes(btrfs_inode->root);
2707 spin_unlock(&root->fs_info->ordered_extent_lock);
2708 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2713 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2715 struct list_head splice;
2716 struct btrfs_ordered_extent *ordered;
2717 struct inode *inode;
2719 INIT_LIST_HEAD(&splice);
2721 spin_lock(&root->fs_info->ordered_extent_lock);
2723 list_splice_init(&root->fs_info->ordered_extents, &splice);
2724 while (!list_empty(&splice)) {
2725 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2728 list_del_init(&ordered->root_extent_list);
2729 atomic_inc(&ordered->refs);
2731 /* the inode may be getting freed (in sys_unlink path). */
2732 inode = igrab(ordered->inode);
2734 spin_unlock(&root->fs_info->ordered_extent_lock);
2738 atomic_set(&ordered->refs, 1);
2739 btrfs_put_ordered_extent(ordered);
2741 spin_lock(&root->fs_info->ordered_extent_lock);
2744 spin_unlock(&root->fs_info->ordered_extent_lock);
2749 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2750 struct btrfs_root *root)
2752 struct rb_node *node;
2753 struct btrfs_delayed_ref_root *delayed_refs;
2754 struct btrfs_delayed_ref_node *ref;
2757 delayed_refs = &trans->delayed_refs;
2759 spin_lock(&delayed_refs->lock);
2760 if (delayed_refs->num_entries == 0) {
2761 spin_unlock(&delayed_refs->lock);
2762 printk(KERN_INFO "delayed_refs has NO entry\n");
2766 node = rb_first(&delayed_refs->root);
2768 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2769 node = rb_next(node);
2772 rb_erase(&ref->rb_node, &delayed_refs->root);
2773 delayed_refs->num_entries--;
2775 atomic_set(&ref->refs, 1);
2776 if (btrfs_delayed_ref_is_head(ref)) {
2777 struct btrfs_delayed_ref_head *head;
2779 head = btrfs_delayed_node_to_head(ref);
2780 mutex_lock(&head->mutex);
2781 kfree(head->extent_op);
2782 delayed_refs->num_heads--;
2783 if (list_empty(&head->cluster))
2784 delayed_refs->num_heads_ready--;
2785 list_del_init(&head->cluster);
2786 mutex_unlock(&head->mutex);
2789 spin_unlock(&delayed_refs->lock);
2790 btrfs_put_delayed_ref(ref);
2793 spin_lock(&delayed_refs->lock);
2796 spin_unlock(&delayed_refs->lock);
2801 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2803 struct btrfs_pending_snapshot *snapshot;
2804 struct list_head splice;
2806 INIT_LIST_HEAD(&splice);
2808 list_splice_init(&t->pending_snapshots, &splice);
2810 while (!list_empty(&splice)) {
2811 snapshot = list_entry(splice.next,
2812 struct btrfs_pending_snapshot,
2815 list_del_init(&snapshot->list);
2823 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2825 struct btrfs_inode *btrfs_inode;
2826 struct list_head splice;
2828 INIT_LIST_HEAD(&splice);
2830 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2832 spin_lock(&root->fs_info->delalloc_lock);
2834 while (!list_empty(&splice)) {
2835 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2838 list_del_init(&btrfs_inode->delalloc_inodes);
2840 btrfs_invalidate_inodes(btrfs_inode->root);
2843 spin_unlock(&root->fs_info->delalloc_lock);
2848 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2849 struct extent_io_tree *dirty_pages,
2854 struct inode *btree_inode = root->fs_info->btree_inode;
2855 struct extent_buffer *eb;
2859 unsigned long index;
2862 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2867 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2868 while (start <= end) {
2869 index = start >> PAGE_CACHE_SHIFT;
2870 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2871 page = find_get_page(btree_inode->i_mapping, index);
2874 offset = page_offset(page);
2876 spin_lock(&dirty_pages->buffer_lock);
2877 eb = radix_tree_lookup(
2878 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2879 offset >> PAGE_CACHE_SHIFT);
2880 spin_unlock(&dirty_pages->buffer_lock);
2882 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2884 atomic_set(&eb->refs, 1);
2886 if (PageWriteback(page))
2887 end_page_writeback(page);
2890 if (PageDirty(page)) {
2891 clear_page_dirty_for_io(page);
2892 spin_lock_irq(&page->mapping->tree_lock);
2893 radix_tree_tag_clear(&page->mapping->page_tree,
2895 PAGECACHE_TAG_DIRTY);
2896 spin_unlock_irq(&page->mapping->tree_lock);
2899 page->mapping->a_ops->invalidatepage(page, 0);
2907 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2908 struct extent_io_tree *pinned_extents)
2910 struct extent_io_tree *unpin;
2915 unpin = pinned_extents;
2917 ret = find_first_extent_bit(unpin, 0, &start, &end,
2923 if (btrfs_test_opt(root, DISCARD))
2924 ret = btrfs_error_discard_extent(root, start,
2928 clear_extent_dirty(unpin, start, end, GFP_NOFS);
2929 btrfs_error_unpin_extent_range(root, start, end);
2936 static int btrfs_cleanup_transaction(struct btrfs_root *root)
2938 struct btrfs_transaction *t;
2943 mutex_lock(&root->fs_info->trans_mutex);
2944 mutex_lock(&root->fs_info->transaction_kthread_mutex);
2946 list_splice_init(&root->fs_info->trans_list, &list);
2947 while (!list_empty(&list)) {
2948 t = list_entry(list.next, struct btrfs_transaction, list);
2952 btrfs_destroy_ordered_operations(root);
2954 btrfs_destroy_ordered_extents(root);
2956 btrfs_destroy_delayed_refs(t, root);
2958 btrfs_block_rsv_release(root,
2959 &root->fs_info->trans_block_rsv,
2960 t->dirty_pages.dirty_bytes);
2962 /* FIXME: cleanup wait for commit */
2965 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
2966 wake_up(&root->fs_info->transaction_blocked_wait);
2969 if (waitqueue_active(&root->fs_info->transaction_wait))
2970 wake_up(&root->fs_info->transaction_wait);
2971 mutex_unlock(&root->fs_info->trans_mutex);
2973 mutex_lock(&root->fs_info->trans_mutex);
2975 if (waitqueue_active(&t->commit_wait))
2976 wake_up(&t->commit_wait);
2977 mutex_unlock(&root->fs_info->trans_mutex);
2979 mutex_lock(&root->fs_info->trans_mutex);
2981 btrfs_destroy_pending_snapshots(t);
2983 btrfs_destroy_delalloc_inodes(root);
2985 spin_lock(&root->fs_info->new_trans_lock);
2986 root->fs_info->running_transaction = NULL;
2987 spin_unlock(&root->fs_info->new_trans_lock);
2989 btrfs_destroy_marked_extents(root, &t->dirty_pages,
2992 btrfs_destroy_pinned_extent(root,
2993 root->fs_info->pinned_extents);
2995 atomic_set(&t->use_count, 0);
2996 list_del_init(&t->list);
2997 memset(t, 0, sizeof(*t));
2998 kmem_cache_free(btrfs_transaction_cachep, t);
3001 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3002 mutex_unlock(&root->fs_info->trans_mutex);
3007 static struct extent_io_ops btree_extent_io_ops = {
3008 .write_cache_pages_lock_hook = btree_lock_page_hook,
3009 .readpage_end_io_hook = btree_readpage_end_io_hook,
3010 .submit_bio_hook = btree_submit_bio_hook,
3011 /* note we're sharing with inode.c for the merge bio hook */
3012 .merge_bio_hook = btrfs_merge_bio_hook,