]> Git Repo - linux.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <[email protected]>
12  *                              Mark Evans, <[email protected]>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <[email protected]>
16  *              Alan Cox <[email protected]>
17  *              David Hinds <[email protected]>
18  *              Alexey Kuznetsov <[email protected]>
19  *              Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp)   \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         int ret = ____dev_forward_skb(dev, skb);
1769
1770         if (likely(!ret)) {
1771                 skb->protocol = eth_type_trans(skb, dev);
1772                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773         }
1774
1775         return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *      NET_RX_SUCCESS  (no congestion)
1787  *      NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804                               struct packet_type *pt_prev,
1805                               struct net_device *orig_dev)
1806 {
1807         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808                 return -ENOMEM;
1809         atomic_inc(&skb->users);
1810         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814                                           struct packet_type **pt,
1815                                           struct net_device *orig_dev,
1816                                           __be16 type,
1817                                           struct list_head *ptype_list)
1818 {
1819         struct packet_type *ptype, *pt_prev = *pt;
1820
1821         list_for_each_entry_rcu(ptype, ptype_list, list) {
1822                 if (ptype->type != type)
1823                         continue;
1824                 if (pt_prev)
1825                         deliver_skb(skb, pt_prev, orig_dev);
1826                 pt_prev = ptype;
1827         }
1828         *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833         if (!ptype->af_packet_priv || !skb->sk)
1834                 return false;
1835
1836         if (ptype->id_match)
1837                 return ptype->id_match(ptype, skb->sk);
1838         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839                 return true;
1840
1841         return false;
1842 }
1843
1844 /*
1845  *      Support routine. Sends outgoing frames to any network
1846  *      taps currently in use.
1847  */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851         struct packet_type *ptype;
1852         struct sk_buff *skb2 = NULL;
1853         struct packet_type *pt_prev = NULL;
1854         struct list_head *ptype_list = &ptype_all;
1855
1856         rcu_read_lock();
1857 again:
1858         list_for_each_entry_rcu(ptype, ptype_list, list) {
1859                 /* Never send packets back to the socket
1860                  * they originated from - MvS ([email protected])
1861                  */
1862                 if (skb_loop_sk(ptype, skb))
1863                         continue;
1864
1865                 if (pt_prev) {
1866                         deliver_skb(skb2, pt_prev, skb->dev);
1867                         pt_prev = ptype;
1868                         continue;
1869                 }
1870
1871                 /* need to clone skb, done only once */
1872                 skb2 = skb_clone(skb, GFP_ATOMIC);
1873                 if (!skb2)
1874                         goto out_unlock;
1875
1876                 net_timestamp_set(skb2);
1877
1878                 /* skb->nh should be correctly
1879                  * set by sender, so that the second statement is
1880                  * just protection against buggy protocols.
1881                  */
1882                 skb_reset_mac_header(skb2);
1883
1884                 if (skb_network_header(skb2) < skb2->data ||
1885                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887                                              ntohs(skb2->protocol),
1888                                              dev->name);
1889                         skb_reset_network_header(skb2);
1890                 }
1891
1892                 skb2->transport_header = skb2->network_header;
1893                 skb2->pkt_type = PACKET_OUTGOING;
1894                 pt_prev = ptype;
1895         }
1896
1897         if (ptype_list == &ptype_all) {
1898                 ptype_list = &dev->ptype_all;
1899                 goto again;
1900         }
1901 out_unlock:
1902         if (pt_prev)
1903                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904         rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923         int i;
1924         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926         /* If TC0 is invalidated disable TC mapping */
1927         if (tc->offset + tc->count > txq) {
1928                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929                 dev->num_tc = 0;
1930                 return;
1931         }
1932
1933         /* Invalidated prio to tc mappings set to TC0 */
1934         for (i = 1; i < TC_BITMASK + 1; i++) {
1935                 int q = netdev_get_prio_tc_map(dev, i);
1936
1937                 tc = &dev->tc_to_txq[q];
1938                 if (tc->offset + tc->count > txq) {
1939                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940                                 i, q);
1941                         netdev_set_prio_tc_map(dev, i, 0);
1942                 }
1943         }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         if (dev->num_tc) {
1949                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950                 int i;
1951
1952                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953                         if ((txq - tc->offset) < tc->count)
1954                                 return i;
1955                 }
1956
1957                 return -1;
1958         }
1959
1960         return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)             \
1966         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969                              int tci, u16 index)
1970 {
1971         struct xps_map *map = NULL;
1972         int pos;
1973
1974         if (dev_maps)
1975                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976         if (!map)
1977                 return false;
1978
1979         for (pos = map->len; pos--;) {
1980                 if (map->queues[pos] != index)
1981                         continue;
1982
1983                 if (map->len > 1) {
1984                         map->queues[pos] = map->queues[--map->len];
1985                         break;
1986                 }
1987
1988                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989                 kfree_rcu(map, rcu);
1990                 return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997                                  struct xps_dev_maps *dev_maps,
1998                                  int cpu, u16 offset, u16 count)
1999 {
2000         int num_tc = dev->num_tc ? : 1;
2001         bool active = false;
2002         int tci;
2003
2004         for (tci = cpu * num_tc; num_tc--; tci++) {
2005                 int i, j;
2006
2007                 for (i = count, j = offset; i--; j++) {
2008                         if (!remove_xps_queue(dev_maps, cpu, j))
2009                                 break;
2010                 }
2011
2012                 active |= i < 0;
2013         }
2014
2015         return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019                                    u16 count)
2020 {
2021         struct xps_dev_maps *dev_maps;
2022         int cpu, i;
2023         bool active = false;
2024
2025         mutex_lock(&xps_map_mutex);
2026         dev_maps = xmap_dereference(dev->xps_maps);
2027
2028         if (!dev_maps)
2029                 goto out_no_maps;
2030
2031         for_each_possible_cpu(cpu)
2032                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033                                                offset, count);
2034
2035         if (!active) {
2036                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037                 kfree_rcu(dev_maps, rcu);
2038         }
2039
2040         for (i = offset + (count - 1); count--; i--)
2041                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042                                              NUMA_NO_NODE);
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054                                       int cpu, u16 index)
2055 {
2056         struct xps_map *new_map;
2057         int alloc_len = XPS_MIN_MAP_ALLOC;
2058         int i, pos;
2059
2060         for (pos = 0; map && pos < map->len; pos++) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063                 return map;
2064         }
2065
2066         /* Need to add queue to this CPU's existing map */
2067         if (map) {
2068                 if (pos < map->alloc_len)
2069                         return map;
2070
2071                 alloc_len = map->alloc_len * 2;
2072         }
2073
2074         /* Need to allocate new map to store queue on this CPU's map */
2075         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076                                cpu_to_node(cpu));
2077         if (!new_map)
2078                 return NULL;
2079
2080         for (i = 0; i < pos; i++)
2081                 new_map->queues[i] = map->queues[i];
2082         new_map->alloc_len = alloc_len;
2083         new_map->len = pos;
2084
2085         return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089                         u16 index)
2090 {
2091         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092         int i, cpu, tci, numa_node_id = -2;
2093         int maps_sz, num_tc = 1, tc = 0;
2094         struct xps_map *map, *new_map;
2095         bool active = false;
2096
2097         if (dev->num_tc) {
2098                 num_tc = dev->num_tc;
2099                 tc = netdev_txq_to_tc(dev, index);
2100                 if (tc < 0)
2101                         return -EINVAL;
2102         }
2103
2104         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105         if (maps_sz < L1_CACHE_BYTES)
2106                 maps_sz = L1_CACHE_BYTES;
2107
2108         mutex_lock(&xps_map_mutex);
2109
2110         dev_maps = xmap_dereference(dev->xps_maps);
2111
2112         /* allocate memory for queue storage */
2113         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114                 if (!new_dev_maps)
2115                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116                 if (!new_dev_maps) {
2117                         mutex_unlock(&xps_map_mutex);
2118                         return -ENOMEM;
2119                 }
2120
2121                 tci = cpu * num_tc + tc;
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123                                  NULL;
2124
2125                 map = expand_xps_map(map, cpu, index);
2126                 if (!map)
2127                         goto error;
2128
2129                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130         }
2131
2132         if (!new_dev_maps)
2133                 goto out_no_new_maps;
2134
2135         for_each_possible_cpu(cpu) {
2136                 /* copy maps belonging to foreign traffic classes */
2137                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138                         /* fill in the new device map from the old device map */
2139                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2140                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141                 }
2142
2143                 /* We need to explicitly update tci as prevous loop
2144                  * could break out early if dev_maps is NULL.
2145                  */
2146                 tci = cpu * num_tc + tc;
2147
2148                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149                         /* add queue to CPU maps */
2150                         int pos = 0;
2151
2152                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153                         while ((pos < map->len) && (map->queues[pos] != index))
2154                                 pos++;
2155
2156                         if (pos == map->len)
2157                                 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159                         if (numa_node_id == -2)
2160                                 numa_node_id = cpu_to_node(cpu);
2161                         else if (numa_node_id != cpu_to_node(cpu))
2162                                 numa_node_id = -1;
2163 #endif
2164                 } else if (dev_maps) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* copy maps belonging to foreign traffic classes */
2171                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172                         /* fill in the new device map from the old device map */
2173                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2174                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175                 }
2176         }
2177
2178         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180         /* Cleanup old maps */
2181         if (!dev_maps)
2182                 goto out_no_old_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         if (map && map != new_map)
2189                                 kfree_rcu(map, rcu);
2190                 }
2191         }
2192
2193         kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196         dev_maps = new_dev_maps;
2197         active = true;
2198
2199 out_no_new_maps:
2200         /* update Tx queue numa node */
2201         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202                                      (numa_node_id >= 0) ? numa_node_id :
2203                                      NUMA_NO_NODE);
2204
2205         if (!dev_maps)
2206                 goto out_no_maps;
2207
2208         /* removes queue from unused CPUs */
2209         for_each_possible_cpu(cpu) {
2210                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211                         active |= remove_xps_queue(dev_maps, tci, index);
2212                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213                         active |= remove_xps_queue(dev_maps, tci, index);
2214                 for (i = num_tc - tc, tci++; --i; tci++)
2215                         active |= remove_xps_queue(dev_maps, tci, index);
2216         }
2217
2218         /* free map if not active */
2219         if (!active) {
2220                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221                 kfree_rcu(dev_maps, rcu);
2222         }
2223
2224 out_no_maps:
2225         mutex_unlock(&xps_map_mutex);
2226
2227         return 0;
2228 error:
2229         /* remove any maps that we added */
2230         for_each_possible_cpu(cpu) {
2231                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233                         map = dev_maps ?
2234                               xmap_dereference(dev_maps->cpu_map[tci]) :
2235                               NULL;
2236                         if (new_map && new_map != map)
2237                                 kfree(new_map);
2238                 }
2239         }
2240
2241         mutex_unlock(&xps_map_mutex);
2242
2243         kfree(new_dev_maps);
2244         return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252         netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254         dev->num_tc = 0;
2255         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262         if (tc >= dev->num_tc)
2263                 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266         netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268         dev->tc_to_txq[tc].count = count;
2269         dev->tc_to_txq[tc].offset = offset;
2270         return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276         if (num_tc > TC_MAX_QUEUE)
2277                 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = num_tc;
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293         int rc;
2294
2295         if (txq < 1 || txq > dev->num_tx_queues)
2296                 return -EINVAL;
2297
2298         if (dev->reg_state == NETREG_REGISTERED ||
2299             dev->reg_state == NETREG_UNREGISTERING) {
2300                 ASSERT_RTNL();
2301
2302                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303                                                   txq);
2304                 if (rc)
2305                         return rc;
2306
2307                 if (dev->num_tc)
2308                         netif_setup_tc(dev, txq);
2309
2310                 if (txq < dev->real_num_tx_queues) {
2311                         qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313                         netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315                 }
2316         }
2317
2318         dev->real_num_tx_queues = txq;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *      @dev: Network device
2327  *      @rxq: Actual number of RX queues
2328  *
2329  *      This must be called either with the rtnl_lock held or before
2330  *      registration of the net device.  Returns 0 on success, or a
2331  *      negative error code.  If called before registration, it always
2332  *      succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336         int rc;
2337
2338         if (rxq < 1 || rxq > dev->num_rx_queues)
2339                 return -EINVAL;
2340
2341         if (dev->reg_state == NETREG_REGISTERED) {
2342                 ASSERT_RTNL();
2343
2344                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345                                                   rxq);
2346                 if (rc)
2347                         return rc;
2348         }
2349
2350         dev->real_num_rx_queues = rxq;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364         return is_kdump_kernel() ?
2365                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371         struct softnet_data *sd;
2372         unsigned long flags;
2373
2374         local_irq_save(flags);
2375         sd = this_cpu_ptr(&softnet_data);
2376         q->next_sched = NULL;
2377         *sd->output_queue_tailp = q;
2378         sd->output_queue_tailp = &q->next_sched;
2379         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380         local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386                 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391         enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396         return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401         rcu_read_lock();
2402         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405                 __netif_schedule(q);
2406         }
2407         rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2412 {
2413         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2414                 struct Qdisc *q;
2415
2416                 rcu_read_lock();
2417                 q = rcu_dereference(dev_queue->qdisc);
2418                 __netif_schedule(q);
2419                 rcu_read_unlock();
2420         }
2421 }
2422 EXPORT_SYMBOL(netif_tx_wake_queue);
2423
2424 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2425 {
2426         unsigned long flags;
2427
2428         if (likely(atomic_read(&skb->users) == 1)) {
2429                 smp_rmb();
2430                 atomic_set(&skb->users, 0);
2431         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2432                 return;
2433         }
2434         get_kfree_skb_cb(skb)->reason = reason;
2435         local_irq_save(flags);
2436         skb->next = __this_cpu_read(softnet_data.completion_queue);
2437         __this_cpu_write(softnet_data.completion_queue, skb);
2438         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2439         local_irq_restore(flags);
2440 }
2441 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2442
2443 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2444 {
2445         if (in_irq() || irqs_disabled())
2446                 __dev_kfree_skb_irq(skb, reason);
2447         else
2448                 dev_kfree_skb(skb);
2449 }
2450 EXPORT_SYMBOL(__dev_kfree_skb_any);
2451
2452
2453 /**
2454  * netif_device_detach - mark device as removed
2455  * @dev: network device
2456  *
2457  * Mark device as removed from system and therefore no longer available.
2458  */
2459 void netif_device_detach(struct net_device *dev)
2460 {
2461         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2462             netif_running(dev)) {
2463                 netif_tx_stop_all_queues(dev);
2464         }
2465 }
2466 EXPORT_SYMBOL(netif_device_detach);
2467
2468 /**
2469  * netif_device_attach - mark device as attached
2470  * @dev: network device
2471  *
2472  * Mark device as attached from system and restart if needed.
2473  */
2474 void netif_device_attach(struct net_device *dev)
2475 {
2476         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2477             netif_running(dev)) {
2478                 netif_tx_wake_all_queues(dev);
2479                 __netdev_watchdog_up(dev);
2480         }
2481 }
2482 EXPORT_SYMBOL(netif_device_attach);
2483
2484 /*
2485  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2486  * to be used as a distribution range.
2487  */
2488 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2489                   unsigned int num_tx_queues)
2490 {
2491         u32 hash;
2492         u16 qoffset = 0;
2493         u16 qcount = num_tx_queues;
2494
2495         if (skb_rx_queue_recorded(skb)) {
2496                 hash = skb_get_rx_queue(skb);
2497                 while (unlikely(hash >= num_tx_queues))
2498                         hash -= num_tx_queues;
2499                 return hash;
2500         }
2501
2502         if (dev->num_tc) {
2503                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2504                 qoffset = dev->tc_to_txq[tc].offset;
2505                 qcount = dev->tc_to_txq[tc].count;
2506         }
2507
2508         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2509 }
2510 EXPORT_SYMBOL(__skb_tx_hash);
2511
2512 static void skb_warn_bad_offload(const struct sk_buff *skb)
2513 {
2514         static const netdev_features_t null_features;
2515         struct net_device *dev = skb->dev;
2516         const char *name = "";
2517
2518         if (!net_ratelimit())
2519                 return;
2520
2521         if (dev) {
2522                 if (dev->dev.parent)
2523                         name = dev_driver_string(dev->dev.parent);
2524                 else
2525                         name = netdev_name(dev);
2526         }
2527         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2528              "gso_type=%d ip_summed=%d\n",
2529              name, dev ? &dev->features : &null_features,
2530              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2531              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2532              skb_shinfo(skb)->gso_type, skb->ip_summed);
2533 }
2534
2535 /*
2536  * Invalidate hardware checksum when packet is to be mangled, and
2537  * complete checksum manually on outgoing path.
2538  */
2539 int skb_checksum_help(struct sk_buff *skb)
2540 {
2541         __wsum csum;
2542         int ret = 0, offset;
2543
2544         if (skb->ip_summed == CHECKSUM_COMPLETE)
2545                 goto out_set_summed;
2546
2547         if (unlikely(skb_shinfo(skb)->gso_size)) {
2548                 skb_warn_bad_offload(skb);
2549                 return -EINVAL;
2550         }
2551
2552         /* Before computing a checksum, we should make sure no frag could
2553          * be modified by an external entity : checksum could be wrong.
2554          */
2555         if (skb_has_shared_frag(skb)) {
2556                 ret = __skb_linearize(skb);
2557                 if (ret)
2558                         goto out;
2559         }
2560
2561         offset = skb_checksum_start_offset(skb);
2562         BUG_ON(offset >= skb_headlen(skb));
2563         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2564
2565         offset += skb->csum_offset;
2566         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2567
2568         if (skb_cloned(skb) &&
2569             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2570                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2571                 if (ret)
2572                         goto out;
2573         }
2574
2575         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2576 out_set_summed:
2577         skb->ip_summed = CHECKSUM_NONE;
2578 out:
2579         return ret;
2580 }
2581 EXPORT_SYMBOL(skb_checksum_help);
2582
2583 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2584 {
2585         __be16 type = skb->protocol;
2586
2587         /* Tunnel gso handlers can set protocol to ethernet. */
2588         if (type == htons(ETH_P_TEB)) {
2589                 struct ethhdr *eth;
2590
2591                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2592                         return 0;
2593
2594                 eth = (struct ethhdr *)skb_mac_header(skb);
2595                 type = eth->h_proto;
2596         }
2597
2598         return __vlan_get_protocol(skb, type, depth);
2599 }
2600
2601 /**
2602  *      skb_mac_gso_segment - mac layer segmentation handler.
2603  *      @skb: buffer to segment
2604  *      @features: features for the output path (see dev->features)
2605  */
2606 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2607                                     netdev_features_t features)
2608 {
2609         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2610         struct packet_offload *ptype;
2611         int vlan_depth = skb->mac_len;
2612         __be16 type = skb_network_protocol(skb, &vlan_depth);
2613
2614         if (unlikely(!type))
2615                 return ERR_PTR(-EINVAL);
2616
2617         __skb_pull(skb, vlan_depth);
2618
2619         rcu_read_lock();
2620         list_for_each_entry_rcu(ptype, &offload_base, list) {
2621                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2622                         segs = ptype->callbacks.gso_segment(skb, features);
2623                         break;
2624                 }
2625         }
2626         rcu_read_unlock();
2627
2628         __skb_push(skb, skb->data - skb_mac_header(skb));
2629
2630         return segs;
2631 }
2632 EXPORT_SYMBOL(skb_mac_gso_segment);
2633
2634
2635 /* openvswitch calls this on rx path, so we need a different check.
2636  */
2637 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2638 {
2639         if (tx_path)
2640                 return skb->ip_summed != CHECKSUM_PARTIAL;
2641         else
2642                 return skb->ip_summed == CHECKSUM_NONE;
2643 }
2644
2645 /**
2646  *      __skb_gso_segment - Perform segmentation on skb.
2647  *      @skb: buffer to segment
2648  *      @features: features for the output path (see dev->features)
2649  *      @tx_path: whether it is called in TX path
2650  *
2651  *      This function segments the given skb and returns a list of segments.
2652  *
2653  *      It may return NULL if the skb requires no segmentation.  This is
2654  *      only possible when GSO is used for verifying header integrity.
2655  *
2656  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2657  */
2658 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2659                                   netdev_features_t features, bool tx_path)
2660 {
2661         if (unlikely(skb_needs_check(skb, tx_path))) {
2662                 int err;
2663
2664                 skb_warn_bad_offload(skb);
2665
2666                 err = skb_cow_head(skb, 0);
2667                 if (err < 0)
2668                         return ERR_PTR(err);
2669         }
2670
2671         /* Only report GSO partial support if it will enable us to
2672          * support segmentation on this frame without needing additional
2673          * work.
2674          */
2675         if (features & NETIF_F_GSO_PARTIAL) {
2676                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2677                 struct net_device *dev = skb->dev;
2678
2679                 partial_features |= dev->features & dev->gso_partial_features;
2680                 if (!skb_gso_ok(skb, features | partial_features))
2681                         features &= ~NETIF_F_GSO_PARTIAL;
2682         }
2683
2684         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2685                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2686
2687         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2688         SKB_GSO_CB(skb)->encap_level = 0;
2689
2690         skb_reset_mac_header(skb);
2691         skb_reset_mac_len(skb);
2692
2693         return skb_mac_gso_segment(skb, features);
2694 }
2695 EXPORT_SYMBOL(__skb_gso_segment);
2696
2697 /* Take action when hardware reception checksum errors are detected. */
2698 #ifdef CONFIG_BUG
2699 void netdev_rx_csum_fault(struct net_device *dev)
2700 {
2701         if (net_ratelimit()) {
2702                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2703                 dump_stack();
2704         }
2705 }
2706 EXPORT_SYMBOL(netdev_rx_csum_fault);
2707 #endif
2708
2709 /* Actually, we should eliminate this check as soon as we know, that:
2710  * 1. IOMMU is present and allows to map all the memory.
2711  * 2. No high memory really exists on this machine.
2712  */
2713
2714 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2715 {
2716 #ifdef CONFIG_HIGHMEM
2717         int i;
2718         if (!(dev->features & NETIF_F_HIGHDMA)) {
2719                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2720                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2721                         if (PageHighMem(skb_frag_page(frag)))
2722                                 return 1;
2723                 }
2724         }
2725
2726         if (PCI_DMA_BUS_IS_PHYS) {
2727                 struct device *pdev = dev->dev.parent;
2728
2729                 if (!pdev)
2730                         return 0;
2731                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2732                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2733                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2734                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2735                                 return 1;
2736                 }
2737         }
2738 #endif
2739         return 0;
2740 }
2741
2742 /* If MPLS offload request, verify we are testing hardware MPLS features
2743  * instead of standard features for the netdev.
2744  */
2745 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2746 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2747                                            netdev_features_t features,
2748                                            __be16 type)
2749 {
2750         if (eth_p_mpls(type))
2751                 features &= skb->dev->mpls_features;
2752
2753         return features;
2754 }
2755 #else
2756 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2757                                            netdev_features_t features,
2758                                            __be16 type)
2759 {
2760         return features;
2761 }
2762 #endif
2763
2764 static netdev_features_t harmonize_features(struct sk_buff *skb,
2765         netdev_features_t features)
2766 {
2767         int tmp;
2768         __be16 type;
2769
2770         type = skb_network_protocol(skb, &tmp);
2771         features = net_mpls_features(skb, features, type);
2772
2773         if (skb->ip_summed != CHECKSUM_NONE &&
2774             !can_checksum_protocol(features, type)) {
2775                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2776         }
2777         if (illegal_highdma(skb->dev, skb))
2778                 features &= ~NETIF_F_SG;
2779
2780         return features;
2781 }
2782
2783 netdev_features_t passthru_features_check(struct sk_buff *skb,
2784                                           struct net_device *dev,
2785                                           netdev_features_t features)
2786 {
2787         return features;
2788 }
2789 EXPORT_SYMBOL(passthru_features_check);
2790
2791 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2792                                              struct net_device *dev,
2793                                              netdev_features_t features)
2794 {
2795         return vlan_features_check(skb, features);
2796 }
2797
2798 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2799                                             struct net_device *dev,
2800                                             netdev_features_t features)
2801 {
2802         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2803
2804         if (gso_segs > dev->gso_max_segs)
2805                 return features & ~NETIF_F_GSO_MASK;
2806
2807         /* Support for GSO partial features requires software
2808          * intervention before we can actually process the packets
2809          * so we need to strip support for any partial features now
2810          * and we can pull them back in after we have partially
2811          * segmented the frame.
2812          */
2813         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2814                 features &= ~dev->gso_partial_features;
2815
2816         /* Make sure to clear the IPv4 ID mangling feature if the
2817          * IPv4 header has the potential to be fragmented.
2818          */
2819         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2820                 struct iphdr *iph = skb->encapsulation ?
2821                                     inner_ip_hdr(skb) : ip_hdr(skb);
2822
2823                 if (!(iph->frag_off & htons(IP_DF)))
2824                         features &= ~NETIF_F_TSO_MANGLEID;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t netif_skb_features(struct sk_buff *skb)
2831 {
2832         struct net_device *dev = skb->dev;
2833         netdev_features_t features = dev->features;
2834
2835         if (skb_is_gso(skb))
2836                 features = gso_features_check(skb, dev, features);
2837
2838         /* If encapsulation offload request, verify we are testing
2839          * hardware encapsulation features instead of standard
2840          * features for the netdev
2841          */
2842         if (skb->encapsulation)
2843                 features &= dev->hw_enc_features;
2844
2845         if (skb_vlan_tagged(skb))
2846                 features = netdev_intersect_features(features,
2847                                                      dev->vlan_features |
2848                                                      NETIF_F_HW_VLAN_CTAG_TX |
2849                                                      NETIF_F_HW_VLAN_STAG_TX);
2850
2851         if (dev->netdev_ops->ndo_features_check)
2852                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2853                                                                 features);
2854         else
2855                 features &= dflt_features_check(skb, dev, features);
2856
2857         return harmonize_features(skb, features);
2858 }
2859 EXPORT_SYMBOL(netif_skb_features);
2860
2861 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2862                     struct netdev_queue *txq, bool more)
2863 {
2864         unsigned int len;
2865         int rc;
2866
2867         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2868                 dev_queue_xmit_nit(skb, dev);
2869
2870         len = skb->len;
2871         trace_net_dev_start_xmit(skb, dev);
2872         rc = netdev_start_xmit(skb, dev, txq, more);
2873         trace_net_dev_xmit(skb, rc, dev, len);
2874
2875         return rc;
2876 }
2877
2878 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2879                                     struct netdev_queue *txq, int *ret)
2880 {
2881         struct sk_buff *skb = first;
2882         int rc = NETDEV_TX_OK;
2883
2884         while (skb) {
2885                 struct sk_buff *next = skb->next;
2886
2887                 skb->next = NULL;
2888                 rc = xmit_one(skb, dev, txq, next != NULL);
2889                 if (unlikely(!dev_xmit_complete(rc))) {
2890                         skb->next = next;
2891                         goto out;
2892                 }
2893
2894                 skb = next;
2895                 if (netif_xmit_stopped(txq) && skb) {
2896                         rc = NETDEV_TX_BUSY;
2897                         break;
2898                 }
2899         }
2900
2901 out:
2902         *ret = rc;
2903         return skb;
2904 }
2905
2906 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2907                                           netdev_features_t features)
2908 {
2909         if (skb_vlan_tag_present(skb) &&
2910             !vlan_hw_offload_capable(features, skb->vlan_proto))
2911                 skb = __vlan_hwaccel_push_inside(skb);
2912         return skb;
2913 }
2914
2915 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2916 {
2917         netdev_features_t features;
2918
2919         features = netif_skb_features(skb);
2920         skb = validate_xmit_vlan(skb, features);
2921         if (unlikely(!skb))
2922                 goto out_null;
2923
2924         if (netif_needs_gso(skb, features)) {
2925                 struct sk_buff *segs;
2926
2927                 segs = skb_gso_segment(skb, features);
2928                 if (IS_ERR(segs)) {
2929                         goto out_kfree_skb;
2930                 } else if (segs) {
2931                         consume_skb(skb);
2932                         skb = segs;
2933                 }
2934         } else {
2935                 if (skb_needs_linearize(skb, features) &&
2936                     __skb_linearize(skb))
2937                         goto out_kfree_skb;
2938
2939                 /* If packet is not checksummed and device does not
2940                  * support checksumming for this protocol, complete
2941                  * checksumming here.
2942                  */
2943                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2944                         if (skb->encapsulation)
2945                                 skb_set_inner_transport_header(skb,
2946                                                                skb_checksum_start_offset(skb));
2947                         else
2948                                 skb_set_transport_header(skb,
2949                                                          skb_checksum_start_offset(skb));
2950                         if (!(features & NETIF_F_CSUM_MASK) &&
2951                             skb_checksum_help(skb))
2952                                 goto out_kfree_skb;
2953                 }
2954         }
2955
2956         return skb;
2957
2958 out_kfree_skb:
2959         kfree_skb(skb);
2960 out_null:
2961         atomic_long_inc(&dev->tx_dropped);
2962         return NULL;
2963 }
2964
2965 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2966 {
2967         struct sk_buff *next, *head = NULL, *tail;
2968
2969         for (; skb != NULL; skb = next) {
2970                 next = skb->next;
2971                 skb->next = NULL;
2972
2973                 /* in case skb wont be segmented, point to itself */
2974                 skb->prev = skb;
2975
2976                 skb = validate_xmit_skb(skb, dev);
2977                 if (!skb)
2978                         continue;
2979
2980                 if (!head)
2981                         head = skb;
2982                 else
2983                         tail->next = skb;
2984                 /* If skb was segmented, skb->prev points to
2985                  * the last segment. If not, it still contains skb.
2986                  */
2987                 tail = skb->prev;
2988         }
2989         return head;
2990 }
2991 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997         qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999         /* To get more precise estimation of bytes sent on wire,
3000          * we add to pkt_len the headers size of all segments
3001          */
3002         if (shinfo->gso_size)  {
3003                 unsigned int hdr_len;
3004                 u16 gso_segs = shinfo->gso_segs;
3005
3006                 /* mac layer + network layer */
3007                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009                 /* + transport layer */
3010                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011                         hdr_len += tcp_hdrlen(skb);
3012                 else
3013                         hdr_len += sizeof(struct udphdr);
3014
3015                 if (shinfo->gso_type & SKB_GSO_DODGY)
3016                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017                                                 shinfo->gso_size);
3018
3019                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020         }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024                                  struct net_device *dev,
3025                                  struct netdev_queue *txq)
3026 {
3027         spinlock_t *root_lock = qdisc_lock(q);
3028         struct sk_buff *to_free = NULL;
3029         bool contended;
3030         int rc;
3031
3032         qdisc_calculate_pkt_len(skb, q);
3033         /*
3034          * Heuristic to force contended enqueues to serialize on a
3035          * separate lock before trying to get qdisc main lock.
3036          * This permits qdisc->running owner to get the lock more
3037          * often and dequeue packets faster.
3038          */
3039         contended = qdisc_is_running(q);
3040         if (unlikely(contended))
3041                 spin_lock(&q->busylock);
3042
3043         spin_lock(root_lock);
3044         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3045                 __qdisc_drop(skb, &to_free);
3046                 rc = NET_XMIT_DROP;
3047         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3048                    qdisc_run_begin(q)) {
3049                 /*
3050                  * This is a work-conserving queue; there are no old skbs
3051                  * waiting to be sent out; and the qdisc is not running -
3052                  * xmit the skb directly.
3053                  */
3054
3055                 qdisc_bstats_update(q, skb);
3056
3057                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3058                         if (unlikely(contended)) {
3059                                 spin_unlock(&q->busylock);
3060                                 contended = false;
3061                         }
3062                         __qdisc_run(q);
3063                 } else
3064                         qdisc_run_end(q);
3065
3066                 rc = NET_XMIT_SUCCESS;
3067         } else {
3068                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3069                 if (qdisc_run_begin(q)) {
3070                         if (unlikely(contended)) {
3071                                 spin_unlock(&q->busylock);
3072                                 contended = false;
3073                         }
3074                         __qdisc_run(q);
3075                 }
3076         }
3077         spin_unlock(root_lock);
3078         if (unlikely(to_free))
3079                 kfree_skb_list(to_free);
3080         if (unlikely(contended))
3081                 spin_unlock(&q->busylock);
3082         return rc;
3083 }
3084
3085 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3086 static void skb_update_prio(struct sk_buff *skb)
3087 {
3088         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3089
3090         if (!skb->priority && skb->sk && map) {
3091                 unsigned int prioidx =
3092                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3093
3094                 if (prioidx < map->priomap_len)
3095                         skb->priority = map->priomap[prioidx];
3096         }
3097 }
3098 #else
3099 #define skb_update_prio(skb)
3100 #endif
3101
3102 DEFINE_PER_CPU(int, xmit_recursion);
3103 EXPORT_SYMBOL(xmit_recursion);
3104
3105 /**
3106  *      dev_loopback_xmit - loop back @skb
3107  *      @net: network namespace this loopback is happening in
3108  *      @sk:  sk needed to be a netfilter okfn
3109  *      @skb: buffer to transmit
3110  */
3111 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3112 {
3113         skb_reset_mac_header(skb);
3114         __skb_pull(skb, skb_network_offset(skb));
3115         skb->pkt_type = PACKET_LOOPBACK;
3116         skb->ip_summed = CHECKSUM_UNNECESSARY;
3117         WARN_ON(!skb_dst(skb));
3118         skb_dst_force(skb);
3119         netif_rx_ni(skb);
3120         return 0;
3121 }
3122 EXPORT_SYMBOL(dev_loopback_xmit);
3123
3124 #ifdef CONFIG_NET_EGRESS
3125 static struct sk_buff *
3126 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3127 {
3128         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3129         struct tcf_result cl_res;
3130
3131         if (!cl)
3132                 return skb;
3133
3134         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3135         qdisc_bstats_cpu_update(cl->q, skb);
3136
3137         switch (tc_classify(skb, cl, &cl_res, false)) {
3138         case TC_ACT_OK:
3139         case TC_ACT_RECLASSIFY:
3140                 skb->tc_index = TC_H_MIN(cl_res.classid);
3141                 break;
3142         case TC_ACT_SHOT:
3143                 qdisc_qstats_cpu_drop(cl->q);
3144                 *ret = NET_XMIT_DROP;
3145                 kfree_skb(skb);
3146                 return NULL;
3147         case TC_ACT_STOLEN:
3148         case TC_ACT_QUEUED:
3149                 *ret = NET_XMIT_SUCCESS;
3150                 consume_skb(skb);
3151                 return NULL;
3152         case TC_ACT_REDIRECT:
3153                 /* No need to push/pop skb's mac_header here on egress! */
3154                 skb_do_redirect(skb);
3155                 *ret = NET_XMIT_SUCCESS;
3156                 return NULL;
3157         default:
3158                 break;
3159         }
3160
3161         return skb;
3162 }
3163 #endif /* CONFIG_NET_EGRESS */
3164
3165 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3166 {
3167 #ifdef CONFIG_XPS
3168         struct xps_dev_maps *dev_maps;
3169         struct xps_map *map;
3170         int queue_index = -1;
3171
3172         rcu_read_lock();
3173         dev_maps = rcu_dereference(dev->xps_maps);
3174         if (dev_maps) {
3175                 unsigned int tci = skb->sender_cpu - 1;
3176
3177                 if (dev->num_tc) {
3178                         tci *= dev->num_tc;
3179                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3180                 }
3181
3182                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3183                 if (map) {
3184                         if (map->len == 1)
3185                                 queue_index = map->queues[0];
3186                         else
3187                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3188                                                                            map->len)];
3189                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3190                                 queue_index = -1;
3191                 }
3192         }
3193         rcu_read_unlock();
3194
3195         return queue_index;
3196 #else
3197         return -1;
3198 #endif
3199 }
3200
3201 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3202 {
3203         struct sock *sk = skb->sk;
3204         int queue_index = sk_tx_queue_get(sk);
3205
3206         if (queue_index < 0 || skb->ooo_okay ||
3207             queue_index >= dev->real_num_tx_queues) {
3208                 int new_index = get_xps_queue(dev, skb);
3209                 if (new_index < 0)
3210                         new_index = skb_tx_hash(dev, skb);
3211
3212                 if (queue_index != new_index && sk &&
3213                     sk_fullsock(sk) &&
3214                     rcu_access_pointer(sk->sk_dst_cache))
3215                         sk_tx_queue_set(sk, new_index);
3216
3217                 queue_index = new_index;
3218         }
3219
3220         return queue_index;
3221 }
3222
3223 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3224                                     struct sk_buff *skb,
3225                                     void *accel_priv)
3226 {
3227         int queue_index = 0;
3228
3229 #ifdef CONFIG_XPS
3230         u32 sender_cpu = skb->sender_cpu - 1;
3231
3232         if (sender_cpu >= (u32)NR_CPUS)
3233                 skb->sender_cpu = raw_smp_processor_id() + 1;
3234 #endif
3235
3236         if (dev->real_num_tx_queues != 1) {
3237                 const struct net_device_ops *ops = dev->netdev_ops;
3238                 if (ops->ndo_select_queue)
3239                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3240                                                             __netdev_pick_tx);
3241                 else
3242                         queue_index = __netdev_pick_tx(dev, skb);
3243
3244                 if (!accel_priv)
3245                         queue_index = netdev_cap_txqueue(dev, queue_index);
3246         }
3247
3248         skb_set_queue_mapping(skb, queue_index);
3249         return netdev_get_tx_queue(dev, queue_index);
3250 }
3251
3252 /**
3253  *      __dev_queue_xmit - transmit a buffer
3254  *      @skb: buffer to transmit
3255  *      @accel_priv: private data used for L2 forwarding offload
3256  *
3257  *      Queue a buffer for transmission to a network device. The caller must
3258  *      have set the device and priority and built the buffer before calling
3259  *      this function. The function can be called from an interrupt.
3260  *
3261  *      A negative errno code is returned on a failure. A success does not
3262  *      guarantee the frame will be transmitted as it may be dropped due
3263  *      to congestion or traffic shaping.
3264  *
3265  * -----------------------------------------------------------------------------------
3266  *      I notice this method can also return errors from the queue disciplines,
3267  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3268  *      be positive.
3269  *
3270  *      Regardless of the return value, the skb is consumed, so it is currently
3271  *      difficult to retry a send to this method.  (You can bump the ref count
3272  *      before sending to hold a reference for retry if you are careful.)
3273  *
3274  *      When calling this method, interrupts MUST be enabled.  This is because
3275  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3276  *          --BLG
3277  */
3278 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3279 {
3280         struct net_device *dev = skb->dev;
3281         struct netdev_queue *txq;
3282         struct Qdisc *q;
3283         int rc = -ENOMEM;
3284
3285         skb_reset_mac_header(skb);
3286
3287         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3288                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3289
3290         /* Disable soft irqs for various locks below. Also
3291          * stops preemption for RCU.
3292          */
3293         rcu_read_lock_bh();
3294
3295         skb_update_prio(skb);
3296
3297         qdisc_pkt_len_init(skb);
3298 #ifdef CONFIG_NET_CLS_ACT
3299         skb->tc_at_ingress = 0;
3300 # ifdef CONFIG_NET_EGRESS
3301         if (static_key_false(&egress_needed)) {
3302                 skb = sch_handle_egress(skb, &rc, dev);
3303                 if (!skb)
3304                         goto out;
3305         }
3306 # endif
3307 #endif
3308         /* If device/qdisc don't need skb->dst, release it right now while
3309          * its hot in this cpu cache.
3310          */
3311         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3312                 skb_dst_drop(skb);
3313         else
3314                 skb_dst_force(skb);
3315
3316         txq = netdev_pick_tx(dev, skb, accel_priv);
3317         q = rcu_dereference_bh(txq->qdisc);
3318
3319         trace_net_dev_queue(skb);
3320         if (q->enqueue) {
3321                 rc = __dev_xmit_skb(skb, q, dev, txq);
3322                 goto out;
3323         }
3324
3325         /* The device has no queue. Common case for software devices:
3326            loopback, all the sorts of tunnels...
3327
3328            Really, it is unlikely that netif_tx_lock protection is necessary
3329            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3330            counters.)
3331            However, it is possible, that they rely on protection
3332            made by us here.
3333
3334            Check this and shot the lock. It is not prone from deadlocks.
3335            Either shot noqueue qdisc, it is even simpler 8)
3336          */
3337         if (dev->flags & IFF_UP) {
3338                 int cpu = smp_processor_id(); /* ok because BHs are off */
3339
3340                 if (txq->xmit_lock_owner != cpu) {
3341                         if (unlikely(__this_cpu_read(xmit_recursion) >
3342                                      XMIT_RECURSION_LIMIT))
3343                                 goto recursion_alert;
3344
3345                         skb = validate_xmit_skb(skb, dev);
3346                         if (!skb)
3347                                 goto out;
3348
3349                         HARD_TX_LOCK(dev, txq, cpu);
3350
3351                         if (!netif_xmit_stopped(txq)) {
3352                                 __this_cpu_inc(xmit_recursion);
3353                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3354                                 __this_cpu_dec(xmit_recursion);
3355                                 if (dev_xmit_complete(rc)) {
3356                                         HARD_TX_UNLOCK(dev, txq);
3357                                         goto out;
3358                                 }
3359                         }
3360                         HARD_TX_UNLOCK(dev, txq);
3361                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3362                                              dev->name);
3363                 } else {
3364                         /* Recursion is detected! It is possible,
3365                          * unfortunately
3366                          */
3367 recursion_alert:
3368                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3369                                              dev->name);
3370                 }
3371         }
3372
3373         rc = -ENETDOWN;
3374         rcu_read_unlock_bh();
3375
3376         atomic_long_inc(&dev->tx_dropped);
3377         kfree_skb_list(skb);
3378         return rc;
3379 out:
3380         rcu_read_unlock_bh();
3381         return rc;
3382 }
3383
3384 int dev_queue_xmit(struct sk_buff *skb)
3385 {
3386         return __dev_queue_xmit(skb, NULL);
3387 }
3388 EXPORT_SYMBOL(dev_queue_xmit);
3389
3390 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3391 {
3392         return __dev_queue_xmit(skb, accel_priv);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit_accel);
3395
3396
3397 /*=======================================================================
3398                         Receiver routines
3399   =======================================================================*/
3400
3401 int netdev_max_backlog __read_mostly = 1000;
3402 EXPORT_SYMBOL(netdev_max_backlog);
3403
3404 int netdev_tstamp_prequeue __read_mostly = 1;
3405 int netdev_budget __read_mostly = 300;
3406 int weight_p __read_mostly = 64;           /* old backlog weight */
3407 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3408 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3409 int dev_rx_weight __read_mostly = 64;
3410 int dev_tx_weight __read_mostly = 64;
3411
3412 /* Called with irq disabled */
3413 static inline void ____napi_schedule(struct softnet_data *sd,
3414                                      struct napi_struct *napi)
3415 {
3416         list_add_tail(&napi->poll_list, &sd->poll_list);
3417         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3418 }
3419
3420 #ifdef CONFIG_RPS
3421
3422 /* One global table that all flow-based protocols share. */
3423 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3424 EXPORT_SYMBOL(rps_sock_flow_table);
3425 u32 rps_cpu_mask __read_mostly;
3426 EXPORT_SYMBOL(rps_cpu_mask);
3427
3428 struct static_key rps_needed __read_mostly;
3429 EXPORT_SYMBOL(rps_needed);
3430 struct static_key rfs_needed __read_mostly;
3431 EXPORT_SYMBOL(rfs_needed);
3432
3433 static struct rps_dev_flow *
3434 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3435             struct rps_dev_flow *rflow, u16 next_cpu)
3436 {
3437         if (next_cpu < nr_cpu_ids) {
3438 #ifdef CONFIG_RFS_ACCEL
3439                 struct netdev_rx_queue *rxqueue;
3440                 struct rps_dev_flow_table *flow_table;
3441                 struct rps_dev_flow *old_rflow;
3442                 u32 flow_id;
3443                 u16 rxq_index;
3444                 int rc;
3445
3446                 /* Should we steer this flow to a different hardware queue? */
3447                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3448                     !(dev->features & NETIF_F_NTUPLE))
3449                         goto out;
3450                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3451                 if (rxq_index == skb_get_rx_queue(skb))
3452                         goto out;
3453
3454                 rxqueue = dev->_rx + rxq_index;
3455                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3456                 if (!flow_table)
3457                         goto out;
3458                 flow_id = skb_get_hash(skb) & flow_table->mask;
3459                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3460                                                         rxq_index, flow_id);
3461                 if (rc < 0)
3462                         goto out;
3463                 old_rflow = rflow;
3464                 rflow = &flow_table->flows[flow_id];
3465                 rflow->filter = rc;
3466                 if (old_rflow->filter == rflow->filter)
3467                         old_rflow->filter = RPS_NO_FILTER;
3468         out:
3469 #endif
3470                 rflow->last_qtail =
3471                         per_cpu(softnet_data, next_cpu).input_queue_head;
3472         }
3473
3474         rflow->cpu = next_cpu;
3475         return rflow;
3476 }
3477
3478 /*
3479  * get_rps_cpu is called from netif_receive_skb and returns the target
3480  * CPU from the RPS map of the receiving queue for a given skb.
3481  * rcu_read_lock must be held on entry.
3482  */
3483 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3484                        struct rps_dev_flow **rflowp)
3485 {
3486         const struct rps_sock_flow_table *sock_flow_table;
3487         struct netdev_rx_queue *rxqueue = dev->_rx;
3488         struct rps_dev_flow_table *flow_table;
3489         struct rps_map *map;
3490         int cpu = -1;
3491         u32 tcpu;
3492         u32 hash;
3493
3494         if (skb_rx_queue_recorded(skb)) {
3495                 u16 index = skb_get_rx_queue(skb);
3496
3497                 if (unlikely(index >= dev->real_num_rx_queues)) {
3498                         WARN_ONCE(dev->real_num_rx_queues > 1,
3499                                   "%s received packet on queue %u, but number "
3500                                   "of RX queues is %u\n",
3501                                   dev->name, index, dev->real_num_rx_queues);
3502                         goto done;
3503                 }
3504                 rxqueue += index;
3505         }
3506
3507         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3508
3509         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3510         map = rcu_dereference(rxqueue->rps_map);
3511         if (!flow_table && !map)
3512                 goto done;
3513
3514         skb_reset_network_header(skb);
3515         hash = skb_get_hash(skb);
3516         if (!hash)
3517                 goto done;
3518
3519         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3520         if (flow_table && sock_flow_table) {
3521                 struct rps_dev_flow *rflow;
3522                 u32 next_cpu;
3523                 u32 ident;
3524
3525                 /* First check into global flow table if there is a match */
3526                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3527                 if ((ident ^ hash) & ~rps_cpu_mask)
3528                         goto try_rps;
3529
3530                 next_cpu = ident & rps_cpu_mask;
3531
3532                 /* OK, now we know there is a match,
3533                  * we can look at the local (per receive queue) flow table
3534                  */
3535                 rflow = &flow_table->flows[hash & flow_table->mask];
3536                 tcpu = rflow->cpu;
3537
3538                 /*
3539                  * If the desired CPU (where last recvmsg was done) is
3540                  * different from current CPU (one in the rx-queue flow
3541                  * table entry), switch if one of the following holds:
3542                  *   - Current CPU is unset (>= nr_cpu_ids).
3543                  *   - Current CPU is offline.
3544                  *   - The current CPU's queue tail has advanced beyond the
3545                  *     last packet that was enqueued using this table entry.
3546                  *     This guarantees that all previous packets for the flow
3547                  *     have been dequeued, thus preserving in order delivery.
3548                  */
3549                 if (unlikely(tcpu != next_cpu) &&
3550                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3551                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3552                       rflow->last_qtail)) >= 0)) {
3553                         tcpu = next_cpu;
3554                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3555                 }
3556
3557                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3558                         *rflowp = rflow;
3559                         cpu = tcpu;
3560                         goto done;
3561                 }
3562         }
3563
3564 try_rps:
3565
3566         if (map) {
3567                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3568                 if (cpu_online(tcpu)) {
3569                         cpu = tcpu;
3570                         goto done;
3571                 }
3572         }
3573
3574 done:
3575         return cpu;
3576 }
3577
3578 #ifdef CONFIG_RFS_ACCEL
3579
3580 /**
3581  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3582  * @dev: Device on which the filter was set
3583  * @rxq_index: RX queue index
3584  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3585  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3586  *
3587  * Drivers that implement ndo_rx_flow_steer() should periodically call
3588  * this function for each installed filter and remove the filters for
3589  * which it returns %true.
3590  */
3591 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3592                          u32 flow_id, u16 filter_id)
3593 {
3594         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3595         struct rps_dev_flow_table *flow_table;
3596         struct rps_dev_flow *rflow;
3597         bool expire = true;
3598         unsigned int cpu;
3599
3600         rcu_read_lock();
3601         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3602         if (flow_table && flow_id <= flow_table->mask) {
3603                 rflow = &flow_table->flows[flow_id];
3604                 cpu = ACCESS_ONCE(rflow->cpu);
3605                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3606                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3607                            rflow->last_qtail) <
3608                      (int)(10 * flow_table->mask)))
3609                         expire = false;
3610         }
3611         rcu_read_unlock();
3612         return expire;
3613 }
3614 EXPORT_SYMBOL(rps_may_expire_flow);
3615
3616 #endif /* CONFIG_RFS_ACCEL */
3617
3618 /* Called from hardirq (IPI) context */
3619 static void rps_trigger_softirq(void *data)
3620 {
3621         struct softnet_data *sd = data;
3622
3623         ____napi_schedule(sd, &sd->backlog);
3624         sd->received_rps++;
3625 }
3626
3627 #endif /* CONFIG_RPS */
3628
3629 /*
3630  * Check if this softnet_data structure is another cpu one
3631  * If yes, queue it to our IPI list and return 1
3632  * If no, return 0
3633  */
3634 static int rps_ipi_queued(struct softnet_data *sd)
3635 {
3636 #ifdef CONFIG_RPS
3637         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3638
3639         if (sd != mysd) {
3640                 sd->rps_ipi_next = mysd->rps_ipi_list;
3641                 mysd->rps_ipi_list = sd;
3642
3643                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3644                 return 1;
3645         }
3646 #endif /* CONFIG_RPS */
3647         return 0;
3648 }
3649
3650 #ifdef CONFIG_NET_FLOW_LIMIT
3651 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3652 #endif
3653
3654 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3655 {
3656 #ifdef CONFIG_NET_FLOW_LIMIT
3657         struct sd_flow_limit *fl;
3658         struct softnet_data *sd;
3659         unsigned int old_flow, new_flow;
3660
3661         if (qlen < (netdev_max_backlog >> 1))
3662                 return false;
3663
3664         sd = this_cpu_ptr(&softnet_data);
3665
3666         rcu_read_lock();
3667         fl = rcu_dereference(sd->flow_limit);
3668         if (fl) {
3669                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3670                 old_flow = fl->history[fl->history_head];
3671                 fl->history[fl->history_head] = new_flow;
3672
3673                 fl->history_head++;
3674                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3675
3676                 if (likely(fl->buckets[old_flow]))
3677                         fl->buckets[old_flow]--;
3678
3679                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3680                         fl->count++;
3681                         rcu_read_unlock();
3682                         return true;
3683                 }
3684         }
3685         rcu_read_unlock();
3686 #endif
3687         return false;
3688 }
3689
3690 /*
3691  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3692  * queue (may be a remote CPU queue).
3693  */
3694 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3695                               unsigned int *qtail)
3696 {
3697         struct softnet_data *sd;
3698         unsigned long flags;
3699         unsigned int qlen;
3700
3701         sd = &per_cpu(softnet_data, cpu);
3702
3703         local_irq_save(flags);
3704
3705         rps_lock(sd);
3706         if (!netif_running(skb->dev))
3707                 goto drop;
3708         qlen = skb_queue_len(&sd->input_pkt_queue);
3709         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3710                 if (qlen) {
3711 enqueue:
3712                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3713                         input_queue_tail_incr_save(sd, qtail);
3714                         rps_unlock(sd);
3715                         local_irq_restore(flags);
3716                         return NET_RX_SUCCESS;
3717                 }
3718
3719                 /* Schedule NAPI for backlog device
3720                  * We can use non atomic operation since we own the queue lock
3721                  */
3722                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3723                         if (!rps_ipi_queued(sd))
3724                                 ____napi_schedule(sd, &sd->backlog);
3725                 }
3726                 goto enqueue;
3727         }
3728
3729 drop:
3730         sd->dropped++;
3731         rps_unlock(sd);
3732
3733         local_irq_restore(flags);
3734
3735         atomic_long_inc(&skb->dev->rx_dropped);
3736         kfree_skb(skb);
3737         return NET_RX_DROP;
3738 }
3739
3740 static int netif_rx_internal(struct sk_buff *skb)
3741 {
3742         int ret;
3743
3744         net_timestamp_check(netdev_tstamp_prequeue, skb);
3745
3746         trace_netif_rx(skb);
3747 #ifdef CONFIG_RPS
3748         if (static_key_false(&rps_needed)) {
3749                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3750                 int cpu;
3751
3752                 preempt_disable();
3753                 rcu_read_lock();
3754
3755                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3756                 if (cpu < 0)
3757                         cpu = smp_processor_id();
3758
3759                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3760
3761                 rcu_read_unlock();
3762                 preempt_enable();
3763         } else
3764 #endif
3765         {
3766                 unsigned int qtail;
3767                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3768                 put_cpu();
3769         }
3770         return ret;
3771 }
3772
3773 /**
3774  *      netif_rx        -       post buffer to the network code
3775  *      @skb: buffer to post
3776  *
3777  *      This function receives a packet from a device driver and queues it for
3778  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3779  *      may be dropped during processing for congestion control or by the
3780  *      protocol layers.
3781  *
3782  *      return values:
3783  *      NET_RX_SUCCESS  (no congestion)
3784  *      NET_RX_DROP     (packet was dropped)
3785  *
3786  */
3787
3788 int netif_rx(struct sk_buff *skb)
3789 {
3790         trace_netif_rx_entry(skb);
3791
3792         return netif_rx_internal(skb);
3793 }
3794 EXPORT_SYMBOL(netif_rx);
3795
3796 int netif_rx_ni(struct sk_buff *skb)
3797 {
3798         int err;
3799
3800         trace_netif_rx_ni_entry(skb);
3801
3802         preempt_disable();
3803         err = netif_rx_internal(skb);
3804         if (local_softirq_pending())
3805                 do_softirq();
3806         preempt_enable();
3807
3808         return err;
3809 }
3810 EXPORT_SYMBOL(netif_rx_ni);
3811
3812 static __latent_entropy void net_tx_action(struct softirq_action *h)
3813 {
3814         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3815
3816         if (sd->completion_queue) {
3817                 struct sk_buff *clist;
3818
3819                 local_irq_disable();
3820                 clist = sd->completion_queue;
3821                 sd->completion_queue = NULL;
3822                 local_irq_enable();
3823
3824                 while (clist) {
3825                         struct sk_buff *skb = clist;
3826                         clist = clist->next;
3827
3828                         WARN_ON(atomic_read(&skb->users));
3829                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3830                                 trace_consume_skb(skb);
3831                         else
3832                                 trace_kfree_skb(skb, net_tx_action);
3833
3834                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3835                                 __kfree_skb(skb);
3836                         else
3837                                 __kfree_skb_defer(skb);
3838                 }
3839
3840                 __kfree_skb_flush();
3841         }
3842
3843         if (sd->output_queue) {
3844                 struct Qdisc *head;
3845
3846                 local_irq_disable();
3847                 head = sd->output_queue;
3848                 sd->output_queue = NULL;
3849                 sd->output_queue_tailp = &sd->output_queue;
3850                 local_irq_enable();
3851
3852                 while (head) {
3853                         struct Qdisc *q = head;
3854                         spinlock_t *root_lock;
3855
3856                         head = head->next_sched;
3857
3858                         root_lock = qdisc_lock(q);
3859                         spin_lock(root_lock);
3860                         /* We need to make sure head->next_sched is read
3861                          * before clearing __QDISC_STATE_SCHED
3862                          */
3863                         smp_mb__before_atomic();
3864                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3865                         qdisc_run(q);
3866                         spin_unlock(root_lock);
3867                 }
3868         }
3869 }
3870
3871 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3872 /* This hook is defined here for ATM LANE */
3873 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3874                              unsigned char *addr) __read_mostly;
3875 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3876 #endif
3877
3878 static inline struct sk_buff *
3879 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3880                    struct net_device *orig_dev)
3881 {
3882 #ifdef CONFIG_NET_CLS_ACT
3883         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3884         struct tcf_result cl_res;
3885
3886         /* If there's at least one ingress present somewhere (so
3887          * we get here via enabled static key), remaining devices
3888          * that are not configured with an ingress qdisc will bail
3889          * out here.
3890          */
3891         if (!cl)
3892                 return skb;
3893         if (*pt_prev) {
3894                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3895                 *pt_prev = NULL;
3896         }
3897
3898         qdisc_skb_cb(skb)->pkt_len = skb->len;
3899         skb->tc_at_ingress = 1;
3900         qdisc_bstats_cpu_update(cl->q, skb);
3901
3902         switch (tc_classify(skb, cl, &cl_res, false)) {
3903         case TC_ACT_OK:
3904         case TC_ACT_RECLASSIFY:
3905                 skb->tc_index = TC_H_MIN(cl_res.classid);
3906                 break;
3907         case TC_ACT_SHOT:
3908                 qdisc_qstats_cpu_drop(cl->q);
3909                 kfree_skb(skb);
3910                 return NULL;
3911         case TC_ACT_STOLEN:
3912         case TC_ACT_QUEUED:
3913                 consume_skb(skb);
3914                 return NULL;
3915         case TC_ACT_REDIRECT:
3916                 /* skb_mac_header check was done by cls/act_bpf, so
3917                  * we can safely push the L2 header back before
3918                  * redirecting to another netdev
3919                  */
3920                 __skb_push(skb, skb->mac_len);
3921                 skb_do_redirect(skb);
3922                 return NULL;
3923         default:
3924                 break;
3925         }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927         return skb;
3928 }
3929
3930 /**
3931  *      netdev_is_rx_handler_busy - check if receive handler is registered
3932  *      @dev: device to check
3933  *
3934  *      Check if a receive handler is already registered for a given device.
3935  *      Return true if there one.
3936  *
3937  *      The caller must hold the rtnl_mutex.
3938  */
3939 bool netdev_is_rx_handler_busy(struct net_device *dev)
3940 {
3941         ASSERT_RTNL();
3942         return dev && rtnl_dereference(dev->rx_handler);
3943 }
3944 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3945
3946 /**
3947  *      netdev_rx_handler_register - register receive handler
3948  *      @dev: device to register a handler for
3949  *      @rx_handler: receive handler to register
3950  *      @rx_handler_data: data pointer that is used by rx handler
3951  *
3952  *      Register a receive handler for a device. This handler will then be
3953  *      called from __netif_receive_skb. A negative errno code is returned
3954  *      on a failure.
3955  *
3956  *      The caller must hold the rtnl_mutex.
3957  *
3958  *      For a general description of rx_handler, see enum rx_handler_result.
3959  */
3960 int netdev_rx_handler_register(struct net_device *dev,
3961                                rx_handler_func_t *rx_handler,
3962                                void *rx_handler_data)
3963 {
3964         if (netdev_is_rx_handler_busy(dev))
3965                 return -EBUSY;
3966
3967         /* Note: rx_handler_data must be set before rx_handler */
3968         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3969         rcu_assign_pointer(dev->rx_handler, rx_handler);
3970
3971         return 0;
3972 }
3973 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3974
3975 /**
3976  *      netdev_rx_handler_unregister - unregister receive handler
3977  *      @dev: device to unregister a handler from
3978  *
3979  *      Unregister a receive handler from a device.
3980  *
3981  *      The caller must hold the rtnl_mutex.
3982  */
3983 void netdev_rx_handler_unregister(struct net_device *dev)
3984 {
3985
3986         ASSERT_RTNL();
3987         RCU_INIT_POINTER(dev->rx_handler, NULL);
3988         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3989          * section has a guarantee to see a non NULL rx_handler_data
3990          * as well.
3991          */
3992         synchronize_net();
3993         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3996
3997 /*
3998  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3999  * the special handling of PFMEMALLOC skbs.
4000  */
4001 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4002 {
4003         switch (skb->protocol) {
4004         case htons(ETH_P_ARP):
4005         case htons(ETH_P_IP):
4006         case htons(ETH_P_IPV6):
4007         case htons(ETH_P_8021Q):
4008         case htons(ETH_P_8021AD):
4009                 return true;
4010         default:
4011                 return false;
4012         }
4013 }
4014
4015 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4016                              int *ret, struct net_device *orig_dev)
4017 {
4018 #ifdef CONFIG_NETFILTER_INGRESS
4019         if (nf_hook_ingress_active(skb)) {
4020                 int ingress_retval;
4021
4022                 if (*pt_prev) {
4023                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4024                         *pt_prev = NULL;
4025                 }
4026
4027                 rcu_read_lock();
4028                 ingress_retval = nf_hook_ingress(skb);
4029                 rcu_read_unlock();
4030                 return ingress_retval;
4031         }
4032 #endif /* CONFIG_NETFILTER_INGRESS */
4033         return 0;
4034 }
4035
4036 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4037 {
4038         struct packet_type *ptype, *pt_prev;
4039         rx_handler_func_t *rx_handler;
4040         struct net_device *orig_dev;
4041         bool deliver_exact = false;
4042         int ret = NET_RX_DROP;
4043         __be16 type;
4044
4045         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4046
4047         trace_netif_receive_skb(skb);
4048
4049         orig_dev = skb->dev;
4050
4051         skb_reset_network_header(skb);
4052         if (!skb_transport_header_was_set(skb))
4053                 skb_reset_transport_header(skb);
4054         skb_reset_mac_len(skb);
4055
4056         pt_prev = NULL;
4057
4058 another_round:
4059         skb->skb_iif = skb->dev->ifindex;
4060
4061         __this_cpu_inc(softnet_data.processed);
4062
4063         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4064             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4065                 skb = skb_vlan_untag(skb);
4066                 if (unlikely(!skb))
4067                         goto out;
4068         }
4069
4070         if (skb_skip_tc_classify(skb))
4071                 goto skip_classify;
4072
4073         if (pfmemalloc)
4074                 goto skip_taps;
4075
4076         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4077                 if (pt_prev)
4078                         ret = deliver_skb(skb, pt_prev, orig_dev);
4079                 pt_prev = ptype;
4080         }
4081
4082         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4083                 if (pt_prev)
4084                         ret = deliver_skb(skb, pt_prev, orig_dev);
4085                 pt_prev = ptype;
4086         }
4087
4088 skip_taps:
4089 #ifdef CONFIG_NET_INGRESS
4090         if (static_key_false(&ingress_needed)) {
4091                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4092                 if (!skb)
4093                         goto out;
4094
4095                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4096                         goto out;
4097         }
4098 #endif
4099         skb_reset_tc(skb);
4100 skip_classify:
4101         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4102                 goto drop;
4103
4104         if (skb_vlan_tag_present(skb)) {
4105                 if (pt_prev) {
4106                         ret = deliver_skb(skb, pt_prev, orig_dev);
4107                         pt_prev = NULL;
4108                 }
4109                 if (vlan_do_receive(&skb))
4110                         goto another_round;
4111                 else if (unlikely(!skb))
4112                         goto out;
4113         }
4114
4115         rx_handler = rcu_dereference(skb->dev->rx_handler);
4116         if (rx_handler) {
4117                 if (pt_prev) {
4118                         ret = deliver_skb(skb, pt_prev, orig_dev);
4119                         pt_prev = NULL;
4120                 }
4121                 switch (rx_handler(&skb)) {
4122                 case RX_HANDLER_CONSUMED:
4123                         ret = NET_RX_SUCCESS;
4124                         goto out;
4125                 case RX_HANDLER_ANOTHER:
4126                         goto another_round;
4127                 case RX_HANDLER_EXACT:
4128                         deliver_exact = true;
4129                 case RX_HANDLER_PASS:
4130                         break;
4131                 default:
4132                         BUG();
4133                 }
4134         }
4135
4136         if (unlikely(skb_vlan_tag_present(skb))) {
4137                 if (skb_vlan_tag_get_id(skb))
4138                         skb->pkt_type = PACKET_OTHERHOST;
4139                 /* Note: we might in the future use prio bits
4140                  * and set skb->priority like in vlan_do_receive()
4141                  * For the time being, just ignore Priority Code Point
4142                  */
4143                 skb->vlan_tci = 0;
4144         }
4145
4146         type = skb->protocol;
4147
4148         /* deliver only exact match when indicated */
4149         if (likely(!deliver_exact)) {
4150                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4151                                        &ptype_base[ntohs(type) &
4152                                                    PTYPE_HASH_MASK]);
4153         }
4154
4155         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4156                                &orig_dev->ptype_specific);
4157
4158         if (unlikely(skb->dev != orig_dev)) {
4159                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4160                                        &skb->dev->ptype_specific);
4161         }
4162
4163         if (pt_prev) {
4164                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4165                         goto drop;
4166                 else
4167                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4168         } else {
4169 drop:
4170                 if (!deliver_exact)
4171                         atomic_long_inc(&skb->dev->rx_dropped);
4172                 else
4173                         atomic_long_inc(&skb->dev->rx_nohandler);
4174                 kfree_skb(skb);
4175                 /* Jamal, now you will not able to escape explaining
4176                  * me how you were going to use this. :-)
4177                  */
4178                 ret = NET_RX_DROP;
4179         }
4180
4181 out:
4182         return ret;
4183 }
4184
4185 static int __netif_receive_skb(struct sk_buff *skb)
4186 {
4187         int ret;
4188
4189         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4190                 unsigned long pflags = current->flags;
4191
4192                 /*
4193                  * PFMEMALLOC skbs are special, they should
4194                  * - be delivered to SOCK_MEMALLOC sockets only
4195                  * - stay away from userspace
4196                  * - have bounded memory usage
4197                  *
4198                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4199                  * context down to all allocation sites.
4200                  */
4201                 current->flags |= PF_MEMALLOC;
4202                 ret = __netif_receive_skb_core(skb, true);
4203                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4204         } else
4205                 ret = __netif_receive_skb_core(skb, false);
4206
4207         return ret;
4208 }
4209
4210 static int netif_receive_skb_internal(struct sk_buff *skb)
4211 {
4212         int ret;
4213
4214         net_timestamp_check(netdev_tstamp_prequeue, skb);
4215
4216         if (skb_defer_rx_timestamp(skb))
4217                 return NET_RX_SUCCESS;
4218
4219         rcu_read_lock();
4220
4221 #ifdef CONFIG_RPS
4222         if (static_key_false(&rps_needed)) {
4223                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4224                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4225
4226                 if (cpu >= 0) {
4227                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4228                         rcu_read_unlock();
4229                         return ret;
4230                 }
4231         }
4232 #endif
4233         ret = __netif_receive_skb(skb);
4234         rcu_read_unlock();
4235         return ret;
4236 }
4237
4238 /**
4239  *      netif_receive_skb - process receive buffer from network
4240  *      @skb: buffer to process
4241  *
4242  *      netif_receive_skb() is the main receive data processing function.
4243  *      It always succeeds. The buffer may be dropped during processing
4244  *      for congestion control or by the protocol layers.
4245  *
4246  *      This function may only be called from softirq context and interrupts
4247  *      should be enabled.
4248  *
4249  *      Return values (usually ignored):
4250  *      NET_RX_SUCCESS: no congestion
4251  *      NET_RX_DROP: packet was dropped
4252  */
4253 int netif_receive_skb(struct sk_buff *skb)
4254 {
4255         trace_netif_receive_skb_entry(skb);
4256
4257         return netif_receive_skb_internal(skb);
4258 }
4259 EXPORT_SYMBOL(netif_receive_skb);
4260
4261 DEFINE_PER_CPU(struct work_struct, flush_works);
4262
4263 /* Network device is going away, flush any packets still pending */
4264 static void flush_backlog(struct work_struct *work)
4265 {
4266         struct sk_buff *skb, *tmp;
4267         struct softnet_data *sd;
4268
4269         local_bh_disable();
4270         sd = this_cpu_ptr(&softnet_data);
4271
4272         local_irq_disable();
4273         rps_lock(sd);
4274         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4275                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4276                         __skb_unlink(skb, &sd->input_pkt_queue);
4277                         kfree_skb(skb);
4278                         input_queue_head_incr(sd);
4279                 }
4280         }
4281         rps_unlock(sd);
4282         local_irq_enable();
4283
4284         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4285                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4286                         __skb_unlink(skb, &sd->process_queue);
4287                         kfree_skb(skb);
4288                         input_queue_head_incr(sd);
4289                 }
4290         }
4291         local_bh_enable();
4292 }
4293
4294 static void flush_all_backlogs(void)
4295 {
4296         unsigned int cpu;
4297
4298         get_online_cpus();
4299
4300         for_each_online_cpu(cpu)
4301                 queue_work_on(cpu, system_highpri_wq,
4302                               per_cpu_ptr(&flush_works, cpu));
4303
4304         for_each_online_cpu(cpu)
4305                 flush_work(per_cpu_ptr(&flush_works, cpu));
4306
4307         put_online_cpus();
4308 }
4309
4310 static int napi_gro_complete(struct sk_buff *skb)
4311 {
4312         struct packet_offload *ptype;
4313         __be16 type = skb->protocol;
4314         struct list_head *head = &offload_base;
4315         int err = -ENOENT;
4316
4317         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4318
4319         if (NAPI_GRO_CB(skb)->count == 1) {
4320                 skb_shinfo(skb)->gso_size = 0;
4321                 goto out;
4322         }
4323
4324         rcu_read_lock();
4325         list_for_each_entry_rcu(ptype, head, list) {
4326                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4327                         continue;
4328
4329                 err = ptype->callbacks.gro_complete(skb, 0);
4330                 break;
4331         }
4332         rcu_read_unlock();
4333
4334         if (err) {
4335                 WARN_ON(&ptype->list == head);
4336                 kfree_skb(skb);
4337                 return NET_RX_SUCCESS;
4338         }
4339
4340 out:
4341         return netif_receive_skb_internal(skb);
4342 }
4343
4344 /* napi->gro_list contains packets ordered by age.
4345  * youngest packets at the head of it.
4346  * Complete skbs in reverse order to reduce latencies.
4347  */
4348 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4349 {
4350         struct sk_buff *skb, *prev = NULL;
4351
4352         /* scan list and build reverse chain */
4353         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4354                 skb->prev = prev;
4355                 prev = skb;
4356         }
4357
4358         for (skb = prev; skb; skb = prev) {
4359                 skb->next = NULL;
4360
4361                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4362                         return;
4363
4364                 prev = skb->prev;
4365                 napi_gro_complete(skb);
4366                 napi->gro_count--;
4367         }
4368
4369         napi->gro_list = NULL;
4370 }
4371 EXPORT_SYMBOL(napi_gro_flush);
4372
4373 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4374 {
4375         struct sk_buff *p;
4376         unsigned int maclen = skb->dev->hard_header_len;
4377         u32 hash = skb_get_hash_raw(skb);
4378
4379         for (p = napi->gro_list; p; p = p->next) {
4380                 unsigned long diffs;
4381
4382                 NAPI_GRO_CB(p)->flush = 0;
4383
4384                 if (hash != skb_get_hash_raw(p)) {
4385                         NAPI_GRO_CB(p)->same_flow = 0;
4386                         continue;
4387                 }
4388
4389                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4390                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4391                 diffs |= skb_metadata_dst_cmp(p, skb);
4392                 if (maclen == ETH_HLEN)
4393                         diffs |= compare_ether_header(skb_mac_header(p),
4394                                                       skb_mac_header(skb));
4395                 else if (!diffs)
4396                         diffs = memcmp(skb_mac_header(p),
4397                                        skb_mac_header(skb),
4398                                        maclen);
4399                 NAPI_GRO_CB(p)->same_flow = !diffs;
4400         }
4401 }
4402
4403 static void skb_gro_reset_offset(struct sk_buff *skb)
4404 {
4405         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4406         const skb_frag_t *frag0 = &pinfo->frags[0];
4407
4408         NAPI_GRO_CB(skb)->data_offset = 0;
4409         NAPI_GRO_CB(skb)->frag0 = NULL;
4410         NAPI_GRO_CB(skb)->frag0_len = 0;
4411
4412         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4413             pinfo->nr_frags &&
4414             !PageHighMem(skb_frag_page(frag0))) {
4415                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4416                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4417                                                     skb_frag_size(frag0),
4418                                                     skb->end - skb->tail);
4419         }
4420 }
4421
4422 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4423 {
4424         struct skb_shared_info *pinfo = skb_shinfo(skb);
4425
4426         BUG_ON(skb->end - skb->tail < grow);
4427
4428         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4429
4430         skb->data_len -= grow;
4431         skb->tail += grow;
4432
4433         pinfo->frags[0].page_offset += grow;
4434         skb_frag_size_sub(&pinfo->frags[0], grow);
4435
4436         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4437                 skb_frag_unref(skb, 0);
4438                 memmove(pinfo->frags, pinfo->frags + 1,
4439                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4440         }
4441 }
4442
4443 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4444 {
4445         struct sk_buff **pp = NULL;
4446         struct packet_offload *ptype;
4447         __be16 type = skb->protocol;
4448         struct list_head *head = &offload_base;
4449         int same_flow;
4450         enum gro_result ret;
4451         int grow;
4452
4453         if (!(skb->dev->features & NETIF_F_GRO))
4454                 goto normal;
4455
4456         if (skb->csum_bad)
4457                 goto normal;
4458
4459         gro_list_prepare(napi, skb);
4460
4461         rcu_read_lock();
4462         list_for_each_entry_rcu(ptype, head, list) {
4463                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4464                         continue;
4465
4466                 skb_set_network_header(skb, skb_gro_offset(skb));
4467                 skb_reset_mac_len(skb);
4468                 NAPI_GRO_CB(skb)->same_flow = 0;
4469                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4470                 NAPI_GRO_CB(skb)->free = 0;
4471                 NAPI_GRO_CB(skb)->encap_mark = 0;
4472                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4473                 NAPI_GRO_CB(skb)->is_fou = 0;
4474                 NAPI_GRO_CB(skb)->is_atomic = 1;
4475                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4476
4477                 /* Setup for GRO checksum validation */
4478                 switch (skb->ip_summed) {
4479                 case CHECKSUM_COMPLETE:
4480                         NAPI_GRO_CB(skb)->csum = skb->csum;
4481                         NAPI_GRO_CB(skb)->csum_valid = 1;
4482                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4483                         break;
4484                 case CHECKSUM_UNNECESSARY:
4485                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4486                         NAPI_GRO_CB(skb)->csum_valid = 0;
4487                         break;
4488                 default:
4489                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4490                         NAPI_GRO_CB(skb)->csum_valid = 0;
4491                 }
4492
4493                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4494                 break;
4495         }
4496         rcu_read_unlock();
4497
4498         if (&ptype->list == head)
4499                 goto normal;
4500
4501         same_flow = NAPI_GRO_CB(skb)->same_flow;
4502         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4503
4504         if (pp) {
4505                 struct sk_buff *nskb = *pp;
4506
4507                 *pp = nskb->next;
4508                 nskb->next = NULL;
4509                 napi_gro_complete(nskb);
4510                 napi->gro_count--;
4511         }
4512
4513         if (same_flow)
4514                 goto ok;
4515
4516         if (NAPI_GRO_CB(skb)->flush)
4517                 goto normal;
4518
4519         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4520                 struct sk_buff *nskb = napi->gro_list;
4521
4522                 /* locate the end of the list to select the 'oldest' flow */
4523                 while (nskb->next) {
4524                         pp = &nskb->next;
4525                         nskb = *pp;
4526                 }
4527                 *pp = NULL;
4528                 nskb->next = NULL;
4529                 napi_gro_complete(nskb);
4530         } else {
4531                 napi->gro_count++;
4532         }
4533         NAPI_GRO_CB(skb)->count = 1;
4534         NAPI_GRO_CB(skb)->age = jiffies;
4535         NAPI_GRO_CB(skb)->last = skb;
4536         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4537         skb->next = napi->gro_list;
4538         napi->gro_list = skb;
4539         ret = GRO_HELD;
4540
4541 pull:
4542         grow = skb_gro_offset(skb) - skb_headlen(skb);
4543         if (grow > 0)
4544                 gro_pull_from_frag0(skb, grow);
4545 ok:
4546         return ret;
4547
4548 normal:
4549         ret = GRO_NORMAL;
4550         goto pull;
4551 }
4552
4553 struct packet_offload *gro_find_receive_by_type(__be16 type)
4554 {
4555         struct list_head *offload_head = &offload_base;
4556         struct packet_offload *ptype;
4557
4558         list_for_each_entry_rcu(ptype, offload_head, list) {
4559                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4560                         continue;
4561                 return ptype;
4562         }
4563         return NULL;
4564 }
4565 EXPORT_SYMBOL(gro_find_receive_by_type);
4566
4567 struct packet_offload *gro_find_complete_by_type(__be16 type)
4568 {
4569         struct list_head *offload_head = &offload_base;
4570         struct packet_offload *ptype;
4571
4572         list_for_each_entry_rcu(ptype, offload_head, list) {
4573                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4574                         continue;
4575                 return ptype;
4576         }
4577         return NULL;
4578 }
4579 EXPORT_SYMBOL(gro_find_complete_by_type);
4580
4581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4582 {
4583         switch (ret) {
4584         case GRO_NORMAL:
4585                 if (netif_receive_skb_internal(skb))
4586                         ret = GRO_DROP;
4587                 break;
4588
4589         case GRO_DROP:
4590                 kfree_skb(skb);
4591                 break;
4592
4593         case GRO_MERGED_FREE:
4594                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4595                         skb_dst_drop(skb);
4596                         kmem_cache_free(skbuff_head_cache, skb);
4597                 } else {
4598                         __kfree_skb(skb);
4599                 }
4600                 break;
4601
4602         case GRO_HELD:
4603         case GRO_MERGED:
4604                 break;
4605         }
4606
4607         return ret;
4608 }
4609
4610 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4611 {
4612         skb_mark_napi_id(skb, napi);
4613         trace_napi_gro_receive_entry(skb);
4614
4615         skb_gro_reset_offset(skb);
4616
4617         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4618 }
4619 EXPORT_SYMBOL(napi_gro_receive);
4620
4621 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4622 {
4623         if (unlikely(skb->pfmemalloc)) {
4624                 consume_skb(skb);
4625                 return;
4626         }
4627         __skb_pull(skb, skb_headlen(skb));
4628         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4629         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4630         skb->vlan_tci = 0;
4631         skb->dev = napi->dev;
4632         skb->skb_iif = 0;
4633         skb->encapsulation = 0;
4634         skb_shinfo(skb)->gso_type = 0;
4635         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4636
4637         napi->skb = skb;
4638 }
4639
4640 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4641 {
4642         struct sk_buff *skb = napi->skb;
4643
4644         if (!skb) {
4645                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4646                 if (skb) {
4647                         napi->skb = skb;
4648                         skb_mark_napi_id(skb, napi);
4649                 }
4650         }
4651         return skb;
4652 }
4653 EXPORT_SYMBOL(napi_get_frags);
4654
4655 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4656                                       struct sk_buff *skb,
4657                                       gro_result_t ret)
4658 {
4659         switch (ret) {
4660         case GRO_NORMAL:
4661         case GRO_HELD:
4662                 __skb_push(skb, ETH_HLEN);
4663                 skb->protocol = eth_type_trans(skb, skb->dev);
4664                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4665                         ret = GRO_DROP;
4666                 break;
4667
4668         case GRO_DROP:
4669         case GRO_MERGED_FREE:
4670                 napi_reuse_skb(napi, skb);
4671                 break;
4672
4673         case GRO_MERGED:
4674                 break;
4675         }
4676
4677         return ret;
4678 }
4679
4680 /* Upper GRO stack assumes network header starts at gro_offset=0
4681  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4682  * We copy ethernet header into skb->data to have a common layout.
4683  */
4684 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4685 {
4686         struct sk_buff *skb = napi->skb;
4687         const struct ethhdr *eth;
4688         unsigned int hlen = sizeof(*eth);
4689
4690         napi->skb = NULL;
4691
4692         skb_reset_mac_header(skb);
4693         skb_gro_reset_offset(skb);
4694
4695         eth = skb_gro_header_fast(skb, 0);
4696         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4697                 eth = skb_gro_header_slow(skb, hlen, 0);
4698                 if (unlikely(!eth)) {
4699                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4700                                              __func__, napi->dev->name);
4701                         napi_reuse_skb(napi, skb);
4702                         return NULL;
4703                 }
4704         } else {
4705                 gro_pull_from_frag0(skb, hlen);
4706                 NAPI_GRO_CB(skb)->frag0 += hlen;
4707                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4708         }
4709         __skb_pull(skb, hlen);
4710
4711         /*
4712          * This works because the only protocols we care about don't require
4713          * special handling.
4714          * We'll fix it up properly in napi_frags_finish()
4715          */
4716         skb->protocol = eth->h_proto;
4717
4718         return skb;
4719 }
4720
4721 gro_result_t napi_gro_frags(struct napi_struct *napi)
4722 {
4723         struct sk_buff *skb = napi_frags_skb(napi);
4724
4725         if (!skb)
4726                 return GRO_DROP;
4727
4728         trace_napi_gro_frags_entry(skb);
4729
4730         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4731 }
4732 EXPORT_SYMBOL(napi_gro_frags);
4733
4734 /* Compute the checksum from gro_offset and return the folded value
4735  * after adding in any pseudo checksum.
4736  */
4737 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4738 {
4739         __wsum wsum;
4740         __sum16 sum;
4741
4742         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4743
4744         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4745         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4746         if (likely(!sum)) {
4747                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4748                     !skb->csum_complete_sw)
4749                         netdev_rx_csum_fault(skb->dev);
4750         }
4751
4752         NAPI_GRO_CB(skb)->csum = wsum;
4753         NAPI_GRO_CB(skb)->csum_valid = 1;
4754
4755         return sum;
4756 }
4757 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4758
4759 /*
4760  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4761  * Note: called with local irq disabled, but exits with local irq enabled.
4762  */
4763 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4764 {
4765 #ifdef CONFIG_RPS
4766         struct softnet_data *remsd = sd->rps_ipi_list;
4767
4768         if (remsd) {
4769                 sd->rps_ipi_list = NULL;
4770
4771                 local_irq_enable();
4772
4773                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4774                 while (remsd) {
4775                         struct softnet_data *next = remsd->rps_ipi_next;
4776
4777                         if (cpu_online(remsd->cpu))
4778                                 smp_call_function_single_async(remsd->cpu,
4779                                                            &remsd->csd);
4780                         remsd = next;
4781                 }
4782         } else
4783 #endif
4784                 local_irq_enable();
4785 }
4786
4787 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4788 {
4789 #ifdef CONFIG_RPS
4790         return sd->rps_ipi_list != NULL;
4791 #else
4792         return false;
4793 #endif
4794 }
4795
4796 static int process_backlog(struct napi_struct *napi, int quota)
4797 {
4798         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4799         bool again = true;
4800         int work = 0;
4801
4802         /* Check if we have pending ipi, its better to send them now,
4803          * not waiting net_rx_action() end.
4804          */
4805         if (sd_has_rps_ipi_waiting(sd)) {
4806                 local_irq_disable();
4807                 net_rps_action_and_irq_enable(sd);
4808         }
4809
4810         napi->weight = dev_rx_weight;
4811         while (again) {
4812                 struct sk_buff *skb;
4813
4814                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4815                         rcu_read_lock();
4816                         __netif_receive_skb(skb);
4817                         rcu_read_unlock();
4818                         input_queue_head_incr(sd);
4819                         if (++work >= quota)
4820                                 return work;
4821
4822                 }
4823
4824                 local_irq_disable();
4825                 rps_lock(sd);
4826                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4827                         /*
4828                          * Inline a custom version of __napi_complete().
4829                          * only current cpu owns and manipulates this napi,
4830                          * and NAPI_STATE_SCHED is the only possible flag set
4831                          * on backlog.
4832                          * We can use a plain write instead of clear_bit(),
4833                          * and we dont need an smp_mb() memory barrier.
4834                          */
4835                         napi->state = 0;
4836                         again = false;
4837                 } else {
4838                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4839                                                    &sd->process_queue);
4840                 }
4841                 rps_unlock(sd);
4842                 local_irq_enable();
4843         }
4844
4845         return work;
4846 }
4847
4848 /**
4849  * __napi_schedule - schedule for receive
4850  * @n: entry to schedule
4851  *
4852  * The entry's receive function will be scheduled to run.
4853  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4854  */
4855 void __napi_schedule(struct napi_struct *n)
4856 {
4857         unsigned long flags;
4858
4859         local_irq_save(flags);
4860         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4861         local_irq_restore(flags);
4862 }
4863 EXPORT_SYMBOL(__napi_schedule);
4864
4865 /**
4866  * __napi_schedule_irqoff - schedule for receive
4867  * @n: entry to schedule
4868  *
4869  * Variant of __napi_schedule() assuming hard irqs are masked
4870  */
4871 void __napi_schedule_irqoff(struct napi_struct *n)
4872 {
4873         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4874 }
4875 EXPORT_SYMBOL(__napi_schedule_irqoff);
4876
4877 bool __napi_complete(struct napi_struct *n)
4878 {
4879         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4880
4881         /* Some drivers call us directly, instead of calling
4882          * napi_complete_done().
4883          */
4884         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4885                 return false;
4886
4887         list_del_init(&n->poll_list);
4888         smp_mb__before_atomic();
4889         clear_bit(NAPI_STATE_SCHED, &n->state);
4890         return true;
4891 }
4892 EXPORT_SYMBOL(__napi_complete);
4893
4894 bool napi_complete_done(struct napi_struct *n, int work_done)
4895 {
4896         unsigned long flags;
4897
4898         /*
4899          * 1) Don't let napi dequeue from the cpu poll list
4900          *    just in case its running on a different cpu.
4901          * 2) If we are busy polling, do nothing here, we have
4902          *    the guarantee we will be called later.
4903          */
4904         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4905                                  NAPIF_STATE_IN_BUSY_POLL)))
4906                 return false;
4907
4908         if (n->gro_list) {
4909                 unsigned long timeout = 0;
4910
4911                 if (work_done)
4912                         timeout = n->dev->gro_flush_timeout;
4913
4914                 if (timeout)
4915                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4916                                       HRTIMER_MODE_REL_PINNED);
4917                 else
4918                         napi_gro_flush(n, false);
4919         }
4920         if (likely(list_empty(&n->poll_list))) {
4921                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4922         } else {
4923                 /* If n->poll_list is not empty, we need to mask irqs */
4924                 local_irq_save(flags);
4925                 __napi_complete(n);
4926                 local_irq_restore(flags);
4927         }
4928         return true;
4929 }
4930 EXPORT_SYMBOL(napi_complete_done);
4931
4932 /* must be called under rcu_read_lock(), as we dont take a reference */
4933 static struct napi_struct *napi_by_id(unsigned int napi_id)
4934 {
4935         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4936         struct napi_struct *napi;
4937
4938         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4939                 if (napi->napi_id == napi_id)
4940                         return napi;
4941
4942         return NULL;
4943 }
4944
4945 #if defined(CONFIG_NET_RX_BUSY_POLL)
4946
4947 #define BUSY_POLL_BUDGET 8
4948
4949 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4950 {
4951         int rc;
4952
4953         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4954
4955         local_bh_disable();
4956
4957         /* All we really want here is to re-enable device interrupts.
4958          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4959          */
4960         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4961         netpoll_poll_unlock(have_poll_lock);
4962         if (rc == BUSY_POLL_BUDGET)
4963                 __napi_schedule(napi);
4964         local_bh_enable();
4965         if (local_softirq_pending())
4966                 do_softirq();
4967 }
4968
4969 bool sk_busy_loop(struct sock *sk, int nonblock)
4970 {
4971         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4972         int (*napi_poll)(struct napi_struct *napi, int budget);
4973         int (*busy_poll)(struct napi_struct *dev);
4974         void *have_poll_lock = NULL;
4975         struct napi_struct *napi;
4976         int rc;
4977
4978 restart:
4979         rc = false;
4980         napi_poll = NULL;
4981
4982         rcu_read_lock();
4983
4984         napi = napi_by_id(sk->sk_napi_id);
4985         if (!napi)
4986                 goto out;
4987
4988         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4989         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4990
4991         preempt_disable();
4992         for (;;) {
4993                 rc = 0;
4994                 local_bh_disable();
4995                 if (busy_poll) {
4996                         rc = busy_poll(napi);
4997                         goto count;
4998                 }
4999                 if (!napi_poll) {
5000                         unsigned long val = READ_ONCE(napi->state);
5001
5002                         /* If multiple threads are competing for this napi,
5003                          * we avoid dirtying napi->state as much as we can.
5004                          */
5005                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5006                                    NAPIF_STATE_IN_BUSY_POLL))
5007                                 goto count;
5008                         if (cmpxchg(&napi->state, val,
5009                                     val | NAPIF_STATE_IN_BUSY_POLL |
5010                                           NAPIF_STATE_SCHED) != val)
5011                                 goto count;
5012                         have_poll_lock = netpoll_poll_lock(napi);
5013                         napi_poll = napi->poll;
5014                 }
5015                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5016                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5017 count:
5018                 if (rc > 0)
5019                         __NET_ADD_STATS(sock_net(sk),
5020                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5021                 local_bh_enable();
5022
5023                 if (rc == LL_FLUSH_FAILED)
5024                         break; /* permanent failure */
5025
5026                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5027                     busy_loop_timeout(end_time))
5028                         break;
5029
5030                 if (unlikely(need_resched())) {
5031                         if (napi_poll)
5032                                 busy_poll_stop(napi, have_poll_lock);
5033                         preempt_enable();
5034                         rcu_read_unlock();
5035                         cond_resched();
5036                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5037                         if (rc || busy_loop_timeout(end_time))
5038                                 return rc;
5039                         goto restart;
5040                 }
5041                 cpu_relax();
5042         }
5043         if (napi_poll)
5044                 busy_poll_stop(napi, have_poll_lock);
5045         preempt_enable();
5046         rc = !skb_queue_empty(&sk->sk_receive_queue);
5047 out:
5048         rcu_read_unlock();
5049         return rc;
5050 }
5051 EXPORT_SYMBOL(sk_busy_loop);
5052
5053 #endif /* CONFIG_NET_RX_BUSY_POLL */
5054
5055 static void napi_hash_add(struct napi_struct *napi)
5056 {
5057         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5058             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5059                 return;
5060
5061         spin_lock(&napi_hash_lock);
5062
5063         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5064         do {
5065                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5066                         napi_gen_id = NR_CPUS + 1;
5067         } while (napi_by_id(napi_gen_id));
5068         napi->napi_id = napi_gen_id;
5069
5070         hlist_add_head_rcu(&napi->napi_hash_node,
5071                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5072
5073         spin_unlock(&napi_hash_lock);
5074 }
5075
5076 /* Warning : caller is responsible to make sure rcu grace period
5077  * is respected before freeing memory containing @napi
5078  */
5079 bool napi_hash_del(struct napi_struct *napi)
5080 {
5081         bool rcu_sync_needed = false;
5082
5083         spin_lock(&napi_hash_lock);
5084
5085         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5086                 rcu_sync_needed = true;
5087                 hlist_del_rcu(&napi->napi_hash_node);
5088         }
5089         spin_unlock(&napi_hash_lock);
5090         return rcu_sync_needed;
5091 }
5092 EXPORT_SYMBOL_GPL(napi_hash_del);
5093
5094 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5095 {
5096         struct napi_struct *napi;
5097
5098         napi = container_of(timer, struct napi_struct, timer);
5099         if (napi->gro_list)
5100                 napi_schedule(napi);
5101
5102         return HRTIMER_NORESTART;
5103 }
5104
5105 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5106                     int (*poll)(struct napi_struct *, int), int weight)
5107 {
5108         INIT_LIST_HEAD(&napi->poll_list);
5109         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5110         napi->timer.function = napi_watchdog;
5111         napi->gro_count = 0;
5112         napi->gro_list = NULL;
5113         napi->skb = NULL;
5114         napi->poll = poll;
5115         if (weight > NAPI_POLL_WEIGHT)
5116                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5117                             weight, dev->name);
5118         napi->weight = weight;
5119         list_add(&napi->dev_list, &dev->napi_list);
5120         napi->dev = dev;
5121 #ifdef CONFIG_NETPOLL
5122         napi->poll_owner = -1;
5123 #endif
5124         set_bit(NAPI_STATE_SCHED, &napi->state);
5125         napi_hash_add(napi);
5126 }
5127 EXPORT_SYMBOL(netif_napi_add);
5128
5129 void napi_disable(struct napi_struct *n)
5130 {
5131         might_sleep();
5132         set_bit(NAPI_STATE_DISABLE, &n->state);
5133
5134         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5135                 msleep(1);
5136         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5137                 msleep(1);
5138
5139         hrtimer_cancel(&n->timer);
5140
5141         clear_bit(NAPI_STATE_DISABLE, &n->state);
5142 }
5143 EXPORT_SYMBOL(napi_disable);
5144
5145 /* Must be called in process context */
5146 void netif_napi_del(struct napi_struct *napi)
5147 {
5148         might_sleep();
5149         if (napi_hash_del(napi))
5150                 synchronize_net();
5151         list_del_init(&napi->dev_list);
5152         napi_free_frags(napi);
5153
5154         kfree_skb_list(napi->gro_list);
5155         napi->gro_list = NULL;
5156         napi->gro_count = 0;
5157 }
5158 EXPORT_SYMBOL(netif_napi_del);
5159
5160 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5161 {
5162         void *have;
5163         int work, weight;
5164
5165         list_del_init(&n->poll_list);
5166
5167         have = netpoll_poll_lock(n);
5168
5169         weight = n->weight;
5170
5171         /* This NAPI_STATE_SCHED test is for avoiding a race
5172          * with netpoll's poll_napi().  Only the entity which
5173          * obtains the lock and sees NAPI_STATE_SCHED set will
5174          * actually make the ->poll() call.  Therefore we avoid
5175          * accidentally calling ->poll() when NAPI is not scheduled.
5176          */
5177         work = 0;
5178         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5179                 work = n->poll(n, weight);
5180                 trace_napi_poll(n, work, weight);
5181         }
5182
5183         WARN_ON_ONCE(work > weight);
5184
5185         if (likely(work < weight))
5186                 goto out_unlock;
5187
5188         /* Drivers must not modify the NAPI state if they
5189          * consume the entire weight.  In such cases this code
5190          * still "owns" the NAPI instance and therefore can
5191          * move the instance around on the list at-will.
5192          */
5193         if (unlikely(napi_disable_pending(n))) {
5194                 napi_complete(n);
5195                 goto out_unlock;
5196         }
5197
5198         if (n->gro_list) {
5199                 /* flush too old packets
5200                  * If HZ < 1000, flush all packets.
5201                  */
5202                 napi_gro_flush(n, HZ >= 1000);
5203         }
5204
5205         /* Some drivers may have called napi_schedule
5206          * prior to exhausting their budget.
5207          */
5208         if (unlikely(!list_empty(&n->poll_list))) {
5209                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5210                              n->dev ? n->dev->name : "backlog");
5211                 goto out_unlock;
5212         }
5213
5214         list_add_tail(&n->poll_list, repoll);
5215
5216 out_unlock:
5217         netpoll_poll_unlock(have);
5218
5219         return work;
5220 }
5221
5222 static __latent_entropy void net_rx_action(struct softirq_action *h)
5223 {
5224         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5225         unsigned long time_limit = jiffies + 2;
5226         int budget = netdev_budget;
5227         LIST_HEAD(list);
5228         LIST_HEAD(repoll);
5229
5230         local_irq_disable();
5231         list_splice_init(&sd->poll_list, &list);
5232         local_irq_enable();
5233
5234         for (;;) {
5235                 struct napi_struct *n;
5236
5237                 if (list_empty(&list)) {
5238                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5239                                 goto out;
5240                         break;
5241                 }
5242
5243                 n = list_first_entry(&list, struct napi_struct, poll_list);
5244                 budget -= napi_poll(n, &repoll);
5245
5246                 /* If softirq window is exhausted then punt.
5247                  * Allow this to run for 2 jiffies since which will allow
5248                  * an average latency of 1.5/HZ.
5249                  */
5250                 if (unlikely(budget <= 0 ||
5251                              time_after_eq(jiffies, time_limit))) {
5252                         sd->time_squeeze++;
5253                         break;
5254                 }
5255         }
5256
5257         local_irq_disable();
5258
5259         list_splice_tail_init(&sd->poll_list, &list);
5260         list_splice_tail(&repoll, &list);
5261         list_splice(&list, &sd->poll_list);
5262         if (!list_empty(&sd->poll_list))
5263                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5264
5265         net_rps_action_and_irq_enable(sd);
5266 out:
5267         __kfree_skb_flush();
5268 }
5269
5270 struct netdev_adjacent {
5271         struct net_device *dev;
5272
5273         /* upper master flag, there can only be one master device per list */
5274         bool master;
5275
5276         /* counter for the number of times this device was added to us */
5277         u16 ref_nr;
5278
5279         /* private field for the users */
5280         void *private;
5281
5282         struct list_head list;
5283         struct rcu_head rcu;
5284 };
5285
5286 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5287                                                  struct list_head *adj_list)
5288 {
5289         struct netdev_adjacent *adj;
5290
5291         list_for_each_entry(adj, adj_list, list) {
5292                 if (adj->dev == adj_dev)
5293                         return adj;
5294         }
5295         return NULL;
5296 }
5297
5298 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5299 {
5300         struct net_device *dev = data;
5301
5302         return upper_dev == dev;
5303 }
5304
5305 /**
5306  * netdev_has_upper_dev - Check if device is linked to an upper device
5307  * @dev: device
5308  * @upper_dev: upper device to check
5309  *
5310  * Find out if a device is linked to specified upper device and return true
5311  * in case it is. Note that this checks only immediate upper device,
5312  * not through a complete stack of devices. The caller must hold the RTNL lock.
5313  */
5314 bool netdev_has_upper_dev(struct net_device *dev,
5315                           struct net_device *upper_dev)
5316 {
5317         ASSERT_RTNL();
5318
5319         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5320                                              upper_dev);
5321 }
5322 EXPORT_SYMBOL(netdev_has_upper_dev);
5323
5324 /**
5325  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5326  * @dev: device
5327  * @upper_dev: upper device to check
5328  *
5329  * Find out if a device is linked to specified upper device and return true
5330  * in case it is. Note that this checks the entire upper device chain.
5331  * The caller must hold rcu lock.
5332  */
5333
5334 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5335                                   struct net_device *upper_dev)
5336 {
5337         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5338                                                upper_dev);
5339 }
5340 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5341
5342 /**
5343  * netdev_has_any_upper_dev - Check if device is linked to some device
5344  * @dev: device
5345  *
5346  * Find out if a device is linked to an upper device and return true in case
5347  * it is. The caller must hold the RTNL lock.
5348  */
5349 static bool netdev_has_any_upper_dev(struct net_device *dev)
5350 {
5351         ASSERT_RTNL();
5352
5353         return !list_empty(&dev->adj_list.upper);
5354 }
5355
5356 /**
5357  * netdev_master_upper_dev_get - Get master upper device
5358  * @dev: device
5359  *
5360  * Find a master upper device and return pointer to it or NULL in case
5361  * it's not there. The caller must hold the RTNL lock.
5362  */
5363 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5364 {
5365         struct netdev_adjacent *upper;
5366
5367         ASSERT_RTNL();
5368
5369         if (list_empty(&dev->adj_list.upper))
5370                 return NULL;
5371
5372         upper = list_first_entry(&dev->adj_list.upper,
5373                                  struct netdev_adjacent, list);
5374         if (likely(upper->master))
5375                 return upper->dev;
5376         return NULL;
5377 }
5378 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5379
5380 /**
5381  * netdev_has_any_lower_dev - Check if device is linked to some device
5382  * @dev: device
5383  *
5384  * Find out if a device is linked to a lower device and return true in case
5385  * it is. The caller must hold the RTNL lock.
5386  */
5387 static bool netdev_has_any_lower_dev(struct net_device *dev)
5388 {
5389         ASSERT_RTNL();
5390
5391         return !list_empty(&dev->adj_list.lower);
5392 }
5393
5394 void *netdev_adjacent_get_private(struct list_head *adj_list)
5395 {
5396         struct netdev_adjacent *adj;
5397
5398         adj = list_entry(adj_list, struct netdev_adjacent, list);
5399
5400         return adj->private;
5401 }
5402 EXPORT_SYMBOL(netdev_adjacent_get_private);
5403
5404 /**
5405  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5406  * @dev: device
5407  * @iter: list_head ** of the current position
5408  *
5409  * Gets the next device from the dev's upper list, starting from iter
5410  * position. The caller must hold RCU read lock.
5411  */
5412 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5413                                                  struct list_head **iter)
5414 {
5415         struct netdev_adjacent *upper;
5416
5417         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5418
5419         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5420
5421         if (&upper->list == &dev->adj_list.upper)
5422                 return NULL;
5423
5424         *iter = &upper->list;
5425
5426         return upper->dev;
5427 }
5428 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5429
5430 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5431                                                     struct list_head **iter)
5432 {
5433         struct netdev_adjacent *upper;
5434
5435         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5436
5437         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5438
5439         if (&upper->list == &dev->adj_list.upper)
5440                 return NULL;
5441
5442         *iter = &upper->list;
5443
5444         return upper->dev;
5445 }
5446
5447 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5448                                   int (*fn)(struct net_device *dev,
5449                                             void *data),
5450                                   void *data)
5451 {
5452         struct net_device *udev;
5453         struct list_head *iter;
5454         int ret;
5455
5456         for (iter = &dev->adj_list.upper,
5457              udev = netdev_next_upper_dev_rcu(dev, &iter);
5458              udev;
5459              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5460                 /* first is the upper device itself */
5461                 ret = fn(udev, data);
5462                 if (ret)
5463                         return ret;
5464
5465                 /* then look at all of its upper devices */
5466                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5467                 if (ret)
5468                         return ret;
5469         }
5470
5471         return 0;
5472 }
5473 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5474
5475 /**
5476  * netdev_lower_get_next_private - Get the next ->private from the
5477  *                                 lower neighbour list
5478  * @dev: device
5479  * @iter: list_head ** of the current position
5480  *
5481  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5482  * list, starting from iter position. The caller must hold either hold the
5483  * RTNL lock or its own locking that guarantees that the neighbour lower
5484  * list will remain unchanged.
5485  */
5486 void *netdev_lower_get_next_private(struct net_device *dev,
5487                                     struct list_head **iter)
5488 {
5489         struct netdev_adjacent *lower;
5490
5491         lower = list_entry(*iter, struct netdev_adjacent, list);
5492
5493         if (&lower->list == &dev->adj_list.lower)
5494                 return NULL;
5495
5496         *iter = lower->list.next;
5497
5498         return lower->private;
5499 }
5500 EXPORT_SYMBOL(netdev_lower_get_next_private);
5501
5502 /**
5503  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5504  *                                     lower neighbour list, RCU
5505  *                                     variant
5506  * @dev: device
5507  * @iter: list_head ** of the current position
5508  *
5509  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5510  * list, starting from iter position. The caller must hold RCU read lock.
5511  */
5512 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5513                                         struct list_head **iter)
5514 {
5515         struct netdev_adjacent *lower;
5516
5517         WARN_ON_ONCE(!rcu_read_lock_held());
5518
5519         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5520
5521         if (&lower->list == &dev->adj_list.lower)
5522                 return NULL;
5523
5524         *iter = &lower->list;
5525
5526         return lower->private;
5527 }
5528 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5529
5530 /**
5531  * netdev_lower_get_next - Get the next device from the lower neighbour
5532  *                         list
5533  * @dev: device
5534  * @iter: list_head ** of the current position
5535  *
5536  * Gets the next netdev_adjacent from the dev's lower neighbour
5537  * list, starting from iter position. The caller must hold RTNL lock or
5538  * its own locking that guarantees that the neighbour lower
5539  * list will remain unchanged.
5540  */
5541 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5542 {
5543         struct netdev_adjacent *lower;
5544
5545         lower = list_entry(*iter, struct netdev_adjacent, list);
5546
5547         if (&lower->list == &dev->adj_list.lower)
5548                 return NULL;
5549
5550         *iter = lower->list.next;
5551
5552         return lower->dev;
5553 }
5554 EXPORT_SYMBOL(netdev_lower_get_next);
5555
5556 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5557                                                 struct list_head **iter)
5558 {
5559         struct netdev_adjacent *lower;
5560
5561         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5562
5563         if (&lower->list == &dev->adj_list.lower)
5564                 return NULL;
5565
5566         *iter = &lower->list;
5567
5568         return lower->dev;
5569 }
5570
5571 int netdev_walk_all_lower_dev(struct net_device *dev,
5572                               int (*fn)(struct net_device *dev,
5573                                         void *data),
5574                               void *data)
5575 {
5576         struct net_device *ldev;
5577         struct list_head *iter;
5578         int ret;
5579
5580         for (iter = &dev->adj_list.lower,
5581              ldev = netdev_next_lower_dev(dev, &iter);
5582              ldev;
5583              ldev = netdev_next_lower_dev(dev, &iter)) {
5584                 /* first is the lower device itself */
5585                 ret = fn(ldev, data);
5586                 if (ret)
5587                         return ret;
5588
5589                 /* then look at all of its lower devices */
5590                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5591                 if (ret)
5592                         return ret;
5593         }
5594
5595         return 0;
5596 }
5597 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5598
5599 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5600                                                     struct list_head **iter)
5601 {
5602         struct netdev_adjacent *lower;
5603
5604         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5605         if (&lower->list == &dev->adj_list.lower)
5606                 return NULL;
5607
5608         *iter = &lower->list;
5609
5610         return lower->dev;
5611 }
5612
5613 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5614                                   int (*fn)(struct net_device *dev,
5615                                             void *data),
5616                                   void *data)
5617 {
5618         struct net_device *ldev;
5619         struct list_head *iter;
5620         int ret;
5621
5622         for (iter = &dev->adj_list.lower,
5623              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5624              ldev;
5625              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5626                 /* first is the lower device itself */
5627                 ret = fn(ldev, data);
5628                 if (ret)
5629                         return ret;
5630
5631                 /* then look at all of its lower devices */
5632                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5633                 if (ret)
5634                         return ret;
5635         }
5636
5637         return 0;
5638 }
5639 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5640
5641 /**
5642  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5643  *                                     lower neighbour list, RCU
5644  *                                     variant
5645  * @dev: device
5646  *
5647  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5648  * list. The caller must hold RCU read lock.
5649  */
5650 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5651 {
5652         struct netdev_adjacent *lower;
5653
5654         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5655                         struct netdev_adjacent, list);
5656         if (lower)
5657                 return lower->private;
5658         return NULL;
5659 }
5660 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5661
5662 /**
5663  * netdev_master_upper_dev_get_rcu - Get master upper device
5664  * @dev: device
5665  *
5666  * Find a master upper device and return pointer to it or NULL in case
5667  * it's not there. The caller must hold the RCU read lock.
5668  */
5669 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5670 {
5671         struct netdev_adjacent *upper;
5672
5673         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5674                                        struct netdev_adjacent, list);
5675         if (upper && likely(upper->master))
5676                 return upper->dev;
5677         return NULL;
5678 }
5679 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5680
5681 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5682                               struct net_device *adj_dev,
5683                               struct list_head *dev_list)
5684 {
5685         char linkname[IFNAMSIZ+7];
5686         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5687                 "upper_%s" : "lower_%s", adj_dev->name);
5688         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5689                                  linkname);
5690 }
5691 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5692                                char *name,
5693                                struct list_head *dev_list)
5694 {
5695         char linkname[IFNAMSIZ+7];
5696         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5697                 "upper_%s" : "lower_%s", name);
5698         sysfs_remove_link(&(dev->dev.kobj), linkname);
5699 }
5700
5701 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5702                                                  struct net_device *adj_dev,
5703                                                  struct list_head *dev_list)
5704 {
5705         return (dev_list == &dev->adj_list.upper ||
5706                 dev_list == &dev->adj_list.lower) &&
5707                 net_eq(dev_net(dev), dev_net(adj_dev));
5708 }
5709
5710 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5711                                         struct net_device *adj_dev,
5712                                         struct list_head *dev_list,
5713                                         void *private, bool master)
5714 {
5715         struct netdev_adjacent *adj;
5716         int ret;
5717
5718         adj = __netdev_find_adj(adj_dev, dev_list);
5719
5720         if (adj) {
5721                 adj->ref_nr += 1;
5722                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5723                          dev->name, adj_dev->name, adj->ref_nr);
5724
5725                 return 0;
5726         }
5727
5728         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5729         if (!adj)
5730                 return -ENOMEM;
5731
5732         adj->dev = adj_dev;
5733         adj->master = master;
5734         adj->ref_nr = 1;
5735         adj->private = private;
5736         dev_hold(adj_dev);
5737
5738         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5739                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5740
5741         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5742                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5743                 if (ret)
5744                         goto free_adj;
5745         }
5746
5747         /* Ensure that master link is always the first item in list. */
5748         if (master) {
5749                 ret = sysfs_create_link(&(dev->dev.kobj),
5750                                         &(adj_dev->dev.kobj), "master");
5751                 if (ret)
5752                         goto remove_symlinks;
5753
5754                 list_add_rcu(&adj->list, dev_list);
5755         } else {
5756                 list_add_tail_rcu(&adj->list, dev_list);
5757         }
5758
5759         return 0;
5760
5761 remove_symlinks:
5762         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5763                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5764 free_adj:
5765         kfree(adj);
5766         dev_put(adj_dev);
5767
5768         return ret;
5769 }
5770
5771 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5772                                          struct net_device *adj_dev,
5773                                          u16 ref_nr,
5774                                          struct list_head *dev_list)
5775 {
5776         struct netdev_adjacent *adj;
5777
5778         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5779                  dev->name, adj_dev->name, ref_nr);
5780
5781         adj = __netdev_find_adj(adj_dev, dev_list);
5782
5783         if (!adj) {
5784                 pr_err("Adjacency does not exist for device %s from %s\n",
5785                        dev->name, adj_dev->name);
5786                 WARN_ON(1);
5787                 return;
5788         }
5789
5790         if (adj->ref_nr > ref_nr) {
5791                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5792                          dev->name, adj_dev->name, ref_nr,
5793                          adj->ref_nr - ref_nr);
5794                 adj->ref_nr -= ref_nr;
5795                 return;
5796         }
5797
5798         if (adj->master)
5799                 sysfs_remove_link(&(dev->dev.kobj), "master");
5800
5801         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5802                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5803
5804         list_del_rcu(&adj->list);
5805         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5806                  adj_dev->name, dev->name, adj_dev->name);
5807         dev_put(adj_dev);
5808         kfree_rcu(adj, rcu);
5809 }
5810
5811 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5812                                             struct net_device *upper_dev,
5813                                             struct list_head *up_list,
5814                                             struct list_head *down_list,
5815                                             void *private, bool master)
5816 {
5817         int ret;
5818
5819         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5820                                            private, master);
5821         if (ret)
5822                 return ret;
5823
5824         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5825                                            private, false);
5826         if (ret) {
5827                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5828                 return ret;
5829         }
5830
5831         return 0;
5832 }
5833
5834 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5835                                                struct net_device *upper_dev,
5836                                                u16 ref_nr,
5837                                                struct list_head *up_list,
5838                                                struct list_head *down_list)
5839 {
5840         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5841         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5842 }
5843
5844 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5845                                                 struct net_device *upper_dev,
5846                                                 void *private, bool master)
5847 {
5848         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5849                                                 &dev->adj_list.upper,
5850                                                 &upper_dev->adj_list.lower,
5851                                                 private, master);
5852 }
5853
5854 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5855                                                    struct net_device *upper_dev)
5856 {
5857         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5858                                            &dev->adj_list.upper,
5859                                            &upper_dev->adj_list.lower);
5860 }
5861
5862 static int __netdev_upper_dev_link(struct net_device *dev,
5863                                    struct net_device *upper_dev, bool master,
5864                                    void *upper_priv, void *upper_info)
5865 {
5866         struct netdev_notifier_changeupper_info changeupper_info;
5867         int ret = 0;
5868
5869         ASSERT_RTNL();
5870
5871         if (dev == upper_dev)
5872                 return -EBUSY;
5873
5874         /* To prevent loops, check if dev is not upper device to upper_dev. */
5875         if (netdev_has_upper_dev(upper_dev, dev))
5876                 return -EBUSY;
5877
5878         if (netdev_has_upper_dev(dev, upper_dev))
5879                 return -EEXIST;
5880
5881         if (master && netdev_master_upper_dev_get(dev))
5882                 return -EBUSY;
5883
5884         changeupper_info.upper_dev = upper_dev;
5885         changeupper_info.master = master;
5886         changeupper_info.linking = true;
5887         changeupper_info.upper_info = upper_info;
5888
5889         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5890                                             &changeupper_info.info);
5891         ret = notifier_to_errno(ret);
5892         if (ret)
5893                 return ret;
5894
5895         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5896                                                    master);
5897         if (ret)
5898                 return ret;
5899
5900         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5901                                             &changeupper_info.info);
5902         ret = notifier_to_errno(ret);
5903         if (ret)
5904                 goto rollback;
5905
5906         return 0;
5907
5908 rollback:
5909         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5910
5911         return ret;
5912 }
5913
5914 /**
5915  * netdev_upper_dev_link - Add a link to the upper device
5916  * @dev: device
5917  * @upper_dev: new upper device
5918  *
5919  * Adds a link to device which is upper to this one. The caller must hold
5920  * the RTNL lock. On a failure a negative errno code is returned.
5921  * On success the reference counts are adjusted and the function
5922  * returns zero.
5923  */
5924 int netdev_upper_dev_link(struct net_device *dev,
5925                           struct net_device *upper_dev)
5926 {
5927         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5928 }
5929 EXPORT_SYMBOL(netdev_upper_dev_link);
5930
5931 /**
5932  * netdev_master_upper_dev_link - Add a master link to the upper device
5933  * @dev: device
5934  * @upper_dev: new upper device
5935  * @upper_priv: upper device private
5936  * @upper_info: upper info to be passed down via notifier
5937  *
5938  * Adds a link to device which is upper to this one. In this case, only
5939  * one master upper device can be linked, although other non-master devices
5940  * might be linked as well. The caller must hold the RTNL lock.
5941  * On a failure a negative errno code is returned. On success the reference
5942  * counts are adjusted and the function returns zero.
5943  */
5944 int netdev_master_upper_dev_link(struct net_device *dev,
5945                                  struct net_device *upper_dev,
5946                                  void *upper_priv, void *upper_info)
5947 {
5948         return __netdev_upper_dev_link(dev, upper_dev, true,
5949                                        upper_priv, upper_info);
5950 }
5951 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5952
5953 /**
5954  * netdev_upper_dev_unlink - Removes a link to upper device
5955  * @dev: device
5956  * @upper_dev: new upper device
5957  *
5958  * Removes a link to device which is upper to this one. The caller must hold
5959  * the RTNL lock.
5960  */
5961 void netdev_upper_dev_unlink(struct net_device *dev,
5962                              struct net_device *upper_dev)
5963 {
5964         struct netdev_notifier_changeupper_info changeupper_info;
5965         ASSERT_RTNL();
5966
5967         changeupper_info.upper_dev = upper_dev;
5968         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5969         changeupper_info.linking = false;
5970
5971         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5972                                       &changeupper_info.info);
5973
5974         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5975
5976         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5977                                       &changeupper_info.info);
5978 }
5979 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5980
5981 /**
5982  * netdev_bonding_info_change - Dispatch event about slave change
5983  * @dev: device
5984  * @bonding_info: info to dispatch
5985  *
5986  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5987  * The caller must hold the RTNL lock.
5988  */
5989 void netdev_bonding_info_change(struct net_device *dev,
5990                                 struct netdev_bonding_info *bonding_info)
5991 {
5992         struct netdev_notifier_bonding_info     info;
5993
5994         memcpy(&info.bonding_info, bonding_info,
5995                sizeof(struct netdev_bonding_info));
5996         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5997                                       &info.info);
5998 }
5999 EXPORT_SYMBOL(netdev_bonding_info_change);
6000
6001 static void netdev_adjacent_add_links(struct net_device *dev)
6002 {
6003         struct netdev_adjacent *iter;
6004
6005         struct net *net = dev_net(dev);
6006
6007         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6008                 if (!net_eq(net, dev_net(iter->dev)))
6009                         continue;
6010                 netdev_adjacent_sysfs_add(iter->dev, dev,
6011                                           &iter->dev->adj_list.lower);
6012                 netdev_adjacent_sysfs_add(dev, iter->dev,
6013                                           &dev->adj_list.upper);
6014         }
6015
6016         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6017                 if (!net_eq(net, dev_net(iter->dev)))
6018                         continue;
6019                 netdev_adjacent_sysfs_add(iter->dev, dev,
6020                                           &iter->dev->adj_list.upper);
6021                 netdev_adjacent_sysfs_add(dev, iter->dev,
6022                                           &dev->adj_list.lower);
6023         }
6024 }
6025
6026 static void netdev_adjacent_del_links(struct net_device *dev)
6027 {
6028         struct netdev_adjacent *iter;
6029
6030         struct net *net = dev_net(dev);
6031
6032         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6033                 if (!net_eq(net, dev_net(iter->dev)))
6034                         continue;
6035                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6036                                           &iter->dev->adj_list.lower);
6037                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6038                                           &dev->adj_list.upper);
6039         }
6040
6041         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6042                 if (!net_eq(net, dev_net(iter->dev)))
6043                         continue;
6044                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6045                                           &iter->dev->adj_list.upper);
6046                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6047                                           &dev->adj_list.lower);
6048         }
6049 }
6050
6051 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6052 {
6053         struct netdev_adjacent *iter;
6054
6055         struct net *net = dev_net(dev);
6056
6057         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6058                 if (!net_eq(net, dev_net(iter->dev)))
6059                         continue;
6060                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6061                                           &iter->dev->adj_list.lower);
6062                 netdev_adjacent_sysfs_add(iter->dev, dev,
6063                                           &iter->dev->adj_list.lower);
6064         }
6065
6066         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6067                 if (!net_eq(net, dev_net(iter->dev)))
6068                         continue;
6069                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6070                                           &iter->dev->adj_list.upper);
6071                 netdev_adjacent_sysfs_add(iter->dev, dev,
6072                                           &iter->dev->adj_list.upper);
6073         }
6074 }
6075
6076 void *netdev_lower_dev_get_private(struct net_device *dev,
6077                                    struct net_device *lower_dev)
6078 {
6079         struct netdev_adjacent *lower;
6080
6081         if (!lower_dev)
6082                 return NULL;
6083         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6084         if (!lower)
6085                 return NULL;
6086
6087         return lower->private;
6088 }
6089 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6090
6091
6092 int dev_get_nest_level(struct net_device *dev)
6093 {
6094         struct net_device *lower = NULL;
6095         struct list_head *iter;
6096         int max_nest = -1;
6097         int nest;
6098
6099         ASSERT_RTNL();
6100
6101         netdev_for_each_lower_dev(dev, lower, iter) {
6102                 nest = dev_get_nest_level(lower);
6103                 if (max_nest < nest)
6104                         max_nest = nest;
6105         }
6106
6107         return max_nest + 1;
6108 }
6109 EXPORT_SYMBOL(dev_get_nest_level);
6110
6111 /**
6112  * netdev_lower_change - Dispatch event about lower device state change
6113  * @lower_dev: device
6114  * @lower_state_info: state to dispatch
6115  *
6116  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6117  * The caller must hold the RTNL lock.
6118  */
6119 void netdev_lower_state_changed(struct net_device *lower_dev,
6120                                 void *lower_state_info)
6121 {
6122         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6123
6124         ASSERT_RTNL();
6125         changelowerstate_info.lower_state_info = lower_state_info;
6126         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6127                                       &changelowerstate_info.info);
6128 }
6129 EXPORT_SYMBOL(netdev_lower_state_changed);
6130
6131 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6132                                            struct neighbour *n)
6133 {
6134         struct net_device *lower_dev, *stop_dev;
6135         struct list_head *iter;
6136         int err;
6137
6138         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6139                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6140                         continue;
6141                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6142                 if (err) {
6143                         stop_dev = lower_dev;
6144                         goto rollback;
6145                 }
6146         }
6147         return 0;
6148
6149 rollback:
6150         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6151                 if (lower_dev == stop_dev)
6152                         break;
6153                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6154                         continue;
6155                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6156         }
6157         return err;
6158 }
6159 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6160
6161 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6162                                           struct neighbour *n)
6163 {
6164         struct net_device *lower_dev;
6165         struct list_head *iter;
6166
6167         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6168                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6169                         continue;
6170                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6171         }
6172 }
6173 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6174
6175 static void dev_change_rx_flags(struct net_device *dev, int flags)
6176 {
6177         const struct net_device_ops *ops = dev->netdev_ops;
6178
6179         if (ops->ndo_change_rx_flags)
6180                 ops->ndo_change_rx_flags(dev, flags);
6181 }
6182
6183 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6184 {
6185         unsigned int old_flags = dev->flags;
6186         kuid_t uid;
6187         kgid_t gid;
6188
6189         ASSERT_RTNL();
6190
6191         dev->flags |= IFF_PROMISC;
6192         dev->promiscuity += inc;
6193         if (dev->promiscuity == 0) {
6194                 /*
6195                  * Avoid overflow.
6196                  * If inc causes overflow, untouch promisc and return error.
6197                  */
6198                 if (inc < 0)
6199                         dev->flags &= ~IFF_PROMISC;
6200                 else {
6201                         dev->promiscuity -= inc;
6202                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6203                                 dev->name);
6204                         return -EOVERFLOW;
6205                 }
6206         }
6207         if (dev->flags != old_flags) {
6208                 pr_info("device %s %s promiscuous mode\n",
6209                         dev->name,
6210                         dev->flags & IFF_PROMISC ? "entered" : "left");
6211                 if (audit_enabled) {
6212                         current_uid_gid(&uid, &gid);
6213                         audit_log(current->audit_context, GFP_ATOMIC,
6214                                 AUDIT_ANOM_PROMISCUOUS,
6215                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6216                                 dev->name, (dev->flags & IFF_PROMISC),
6217                                 (old_flags & IFF_PROMISC),
6218                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6219                                 from_kuid(&init_user_ns, uid),
6220                                 from_kgid(&init_user_ns, gid),
6221                                 audit_get_sessionid(current));
6222                 }
6223
6224                 dev_change_rx_flags(dev, IFF_PROMISC);
6225         }
6226         if (notify)
6227                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6228         return 0;
6229 }
6230
6231 /**
6232  *      dev_set_promiscuity     - update promiscuity count on a device
6233  *      @dev: device
6234  *      @inc: modifier
6235  *
6236  *      Add or remove promiscuity from a device. While the count in the device
6237  *      remains above zero the interface remains promiscuous. Once it hits zero
6238  *      the device reverts back to normal filtering operation. A negative inc
6239  *      value is used to drop promiscuity on the device.
6240  *      Return 0 if successful or a negative errno code on error.
6241  */
6242 int dev_set_promiscuity(struct net_device *dev, int inc)
6243 {
6244         unsigned int old_flags = dev->flags;
6245         int err;
6246
6247         err = __dev_set_promiscuity(dev, inc, true);
6248         if (err < 0)
6249                 return err;
6250         if (dev->flags != old_flags)
6251                 dev_set_rx_mode(dev);
6252         return err;
6253 }
6254 EXPORT_SYMBOL(dev_set_promiscuity);
6255
6256 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6257 {
6258         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6259
6260         ASSERT_RTNL();
6261
6262         dev->flags |= IFF_ALLMULTI;
6263         dev->allmulti += inc;
6264         if (dev->allmulti == 0) {
6265                 /*
6266                  * Avoid overflow.
6267                  * If inc causes overflow, untouch allmulti and return error.
6268                  */
6269                 if (inc < 0)
6270                         dev->flags &= ~IFF_ALLMULTI;
6271                 else {
6272                         dev->allmulti -= inc;
6273                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6274                                 dev->name);
6275                         return -EOVERFLOW;
6276                 }
6277         }
6278         if (dev->flags ^ old_flags) {
6279                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6280                 dev_set_rx_mode(dev);
6281                 if (notify)
6282                         __dev_notify_flags(dev, old_flags,
6283                                            dev->gflags ^ old_gflags);
6284         }
6285         return 0;
6286 }
6287
6288 /**
6289  *      dev_set_allmulti        - update allmulti count on a device
6290  *      @dev: device
6291  *      @inc: modifier
6292  *
6293  *      Add or remove reception of all multicast frames to a device. While the
6294  *      count in the device remains above zero the interface remains listening
6295  *      to all interfaces. Once it hits zero the device reverts back to normal
6296  *      filtering operation. A negative @inc value is used to drop the counter
6297  *      when releasing a resource needing all multicasts.
6298  *      Return 0 if successful or a negative errno code on error.
6299  */
6300
6301 int dev_set_allmulti(struct net_device *dev, int inc)
6302 {
6303         return __dev_set_allmulti(dev, inc, true);
6304 }
6305 EXPORT_SYMBOL(dev_set_allmulti);
6306
6307 /*
6308  *      Upload unicast and multicast address lists to device and
6309  *      configure RX filtering. When the device doesn't support unicast
6310  *      filtering it is put in promiscuous mode while unicast addresses
6311  *      are present.
6312  */
6313 void __dev_set_rx_mode(struct net_device *dev)
6314 {
6315         const struct net_device_ops *ops = dev->netdev_ops;
6316
6317         /* dev_open will call this function so the list will stay sane. */
6318         if (!(dev->flags&IFF_UP))
6319                 return;
6320
6321         if (!netif_device_present(dev))
6322                 return;
6323
6324         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6325                 /* Unicast addresses changes may only happen under the rtnl,
6326                  * therefore calling __dev_set_promiscuity here is safe.
6327                  */
6328                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6329                         __dev_set_promiscuity(dev, 1, false);
6330                         dev->uc_promisc = true;
6331                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6332                         __dev_set_promiscuity(dev, -1, false);
6333                         dev->uc_promisc = false;
6334                 }
6335         }
6336
6337         if (ops->ndo_set_rx_mode)
6338                 ops->ndo_set_rx_mode(dev);
6339 }
6340
6341 void dev_set_rx_mode(struct net_device *dev)
6342 {
6343         netif_addr_lock_bh(dev);
6344         __dev_set_rx_mode(dev);
6345         netif_addr_unlock_bh(dev);
6346 }
6347
6348 /**
6349  *      dev_get_flags - get flags reported to userspace
6350  *      @dev: device
6351  *
6352  *      Get the combination of flag bits exported through APIs to userspace.
6353  */
6354 unsigned int dev_get_flags(const struct net_device *dev)
6355 {
6356         unsigned int flags;
6357
6358         flags = (dev->flags & ~(IFF_PROMISC |
6359                                 IFF_ALLMULTI |
6360                                 IFF_RUNNING |
6361                                 IFF_LOWER_UP |
6362                                 IFF_DORMANT)) |
6363                 (dev->gflags & (IFF_PROMISC |
6364                                 IFF_ALLMULTI));
6365
6366         if (netif_running(dev)) {
6367                 if (netif_oper_up(dev))
6368                         flags |= IFF_RUNNING;
6369                 if (netif_carrier_ok(dev))
6370                         flags |= IFF_LOWER_UP;
6371                 if (netif_dormant(dev))
6372                         flags |= IFF_DORMANT;
6373         }
6374
6375         return flags;
6376 }
6377 EXPORT_SYMBOL(dev_get_flags);
6378
6379 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6380 {
6381         unsigned int old_flags = dev->flags;
6382         int ret;
6383
6384         ASSERT_RTNL();
6385
6386         /*
6387          *      Set the flags on our device.
6388          */
6389
6390         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6391                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6392                                IFF_AUTOMEDIA)) |
6393                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6394                                     IFF_ALLMULTI));
6395
6396         /*
6397          *      Load in the correct multicast list now the flags have changed.
6398          */
6399
6400         if ((old_flags ^ flags) & IFF_MULTICAST)
6401                 dev_change_rx_flags(dev, IFF_MULTICAST);
6402
6403         dev_set_rx_mode(dev);
6404
6405         /*
6406          *      Have we downed the interface. We handle IFF_UP ourselves
6407          *      according to user attempts to set it, rather than blindly
6408          *      setting it.
6409          */
6410
6411         ret = 0;
6412         if ((old_flags ^ flags) & IFF_UP)
6413                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6414
6415         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6416                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6417                 unsigned int old_flags = dev->flags;
6418
6419                 dev->gflags ^= IFF_PROMISC;
6420
6421                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6422                         if (dev->flags != old_flags)
6423                                 dev_set_rx_mode(dev);
6424         }
6425
6426         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6427            is important. Some (broken) drivers set IFF_PROMISC, when
6428            IFF_ALLMULTI is requested not asking us and not reporting.
6429          */
6430         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6431                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6432
6433                 dev->gflags ^= IFF_ALLMULTI;
6434                 __dev_set_allmulti(dev, inc, false);
6435         }
6436
6437         return ret;
6438 }
6439
6440 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6441                         unsigned int gchanges)
6442 {
6443         unsigned int changes = dev->flags ^ old_flags;
6444
6445         if (gchanges)
6446                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6447
6448         if (changes & IFF_UP) {
6449                 if (dev->flags & IFF_UP)
6450                         call_netdevice_notifiers(NETDEV_UP, dev);
6451                 else
6452                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6453         }
6454
6455         if (dev->flags & IFF_UP &&
6456             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6457                 struct netdev_notifier_change_info change_info;
6458
6459                 change_info.flags_changed = changes;
6460                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6461                                               &change_info.info);
6462         }
6463 }
6464
6465 /**
6466  *      dev_change_flags - change device settings
6467  *      @dev: device
6468  *      @flags: device state flags
6469  *
6470  *      Change settings on device based state flags. The flags are
6471  *      in the userspace exported format.
6472  */
6473 int dev_change_flags(struct net_device *dev, unsigned int flags)
6474 {
6475         int ret;
6476         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6477
6478         ret = __dev_change_flags(dev, flags);
6479         if (ret < 0)
6480                 return ret;
6481
6482         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6483         __dev_notify_flags(dev, old_flags, changes);
6484         return ret;
6485 }
6486 EXPORT_SYMBOL(dev_change_flags);
6487
6488 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6489 {
6490         const struct net_device_ops *ops = dev->netdev_ops;
6491
6492         if (ops->ndo_change_mtu)
6493                 return ops->ndo_change_mtu(dev, new_mtu);
6494
6495         dev->mtu = new_mtu;
6496         return 0;
6497 }
6498
6499 /**
6500  *      dev_set_mtu - Change maximum transfer unit
6501  *      @dev: device
6502  *      @new_mtu: new transfer unit
6503  *
6504  *      Change the maximum transfer size of the network device.
6505  */
6506 int dev_set_mtu(struct net_device *dev, int new_mtu)
6507 {
6508         int err, orig_mtu;
6509
6510         if (new_mtu == dev->mtu)
6511                 return 0;
6512
6513         /* MTU must be positive, and in range */
6514         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6515                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6516                                     dev->name, new_mtu, dev->min_mtu);
6517                 return -EINVAL;
6518         }
6519
6520         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6521                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6522                                     dev->name, new_mtu, dev->max_mtu);
6523                 return -EINVAL;
6524         }
6525
6526         if (!netif_device_present(dev))
6527                 return -ENODEV;
6528
6529         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6530         err = notifier_to_errno(err);
6531         if (err)
6532                 return err;
6533
6534         orig_mtu = dev->mtu;
6535         err = __dev_set_mtu(dev, new_mtu);
6536
6537         if (!err) {
6538                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6539                 err = notifier_to_errno(err);
6540                 if (err) {
6541                         /* setting mtu back and notifying everyone again,
6542                          * so that they have a chance to revert changes.
6543                          */
6544                         __dev_set_mtu(dev, orig_mtu);
6545                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6546                 }
6547         }
6548         return err;
6549 }
6550 EXPORT_SYMBOL(dev_set_mtu);
6551
6552 /**
6553  *      dev_set_group - Change group this device belongs to
6554  *      @dev: device
6555  *      @new_group: group this device should belong to
6556  */
6557 void dev_set_group(struct net_device *dev, int new_group)
6558 {
6559         dev->group = new_group;
6560 }
6561 EXPORT_SYMBOL(dev_set_group);
6562
6563 /**
6564  *      dev_set_mac_address - Change Media Access Control Address
6565  *      @dev: device
6566  *      @sa: new address
6567  *
6568  *      Change the hardware (MAC) address of the device
6569  */
6570 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6571 {
6572         const struct net_device_ops *ops = dev->netdev_ops;
6573         int err;
6574
6575         if (!ops->ndo_set_mac_address)
6576                 return -EOPNOTSUPP;
6577         if (sa->sa_family != dev->type)
6578                 return -EINVAL;
6579         if (!netif_device_present(dev))
6580                 return -ENODEV;
6581         err = ops->ndo_set_mac_address(dev, sa);
6582         if (err)
6583                 return err;
6584         dev->addr_assign_type = NET_ADDR_SET;
6585         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6586         add_device_randomness(dev->dev_addr, dev->addr_len);
6587         return 0;
6588 }
6589 EXPORT_SYMBOL(dev_set_mac_address);
6590
6591 /**
6592  *      dev_change_carrier - Change device carrier
6593  *      @dev: device
6594  *      @new_carrier: new value
6595  *
6596  *      Change device carrier
6597  */
6598 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6599 {
6600         const struct net_device_ops *ops = dev->netdev_ops;
6601
6602         if (!ops->ndo_change_carrier)
6603                 return -EOPNOTSUPP;
6604         if (!netif_device_present(dev))
6605                 return -ENODEV;
6606         return ops->ndo_change_carrier(dev, new_carrier);
6607 }
6608 EXPORT_SYMBOL(dev_change_carrier);
6609
6610 /**
6611  *      dev_get_phys_port_id - Get device physical port ID
6612  *      @dev: device
6613  *      @ppid: port ID
6614  *
6615  *      Get device physical port ID
6616  */
6617 int dev_get_phys_port_id(struct net_device *dev,
6618                          struct netdev_phys_item_id *ppid)
6619 {
6620         const struct net_device_ops *ops = dev->netdev_ops;
6621
6622         if (!ops->ndo_get_phys_port_id)
6623                 return -EOPNOTSUPP;
6624         return ops->ndo_get_phys_port_id(dev, ppid);
6625 }
6626 EXPORT_SYMBOL(dev_get_phys_port_id);
6627
6628 /**
6629  *      dev_get_phys_port_name - Get device physical port name
6630  *      @dev: device
6631  *      @name: port name
6632  *      @len: limit of bytes to copy to name
6633  *
6634  *      Get device physical port name
6635  */
6636 int dev_get_phys_port_name(struct net_device *dev,
6637                            char *name, size_t len)
6638 {
6639         const struct net_device_ops *ops = dev->netdev_ops;
6640
6641         if (!ops->ndo_get_phys_port_name)
6642                 return -EOPNOTSUPP;
6643         return ops->ndo_get_phys_port_name(dev, name, len);
6644 }
6645 EXPORT_SYMBOL(dev_get_phys_port_name);
6646
6647 /**
6648  *      dev_change_proto_down - update protocol port state information
6649  *      @dev: device
6650  *      @proto_down: new value
6651  *
6652  *      This info can be used by switch drivers to set the phys state of the
6653  *      port.
6654  */
6655 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6656 {
6657         const struct net_device_ops *ops = dev->netdev_ops;
6658
6659         if (!ops->ndo_change_proto_down)
6660                 return -EOPNOTSUPP;
6661         if (!netif_device_present(dev))
6662                 return -ENODEV;
6663         return ops->ndo_change_proto_down(dev, proto_down);
6664 }
6665 EXPORT_SYMBOL(dev_change_proto_down);
6666
6667 /**
6668  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6669  *      @dev: device
6670  *      @fd: new program fd or negative value to clear
6671  *      @flags: xdp-related flags
6672  *
6673  *      Set or clear a bpf program for a device
6674  */
6675 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6676 {
6677         const struct net_device_ops *ops = dev->netdev_ops;
6678         struct bpf_prog *prog = NULL;
6679         struct netdev_xdp xdp;
6680         int err;
6681
6682         ASSERT_RTNL();
6683
6684         if (!ops->ndo_xdp)
6685                 return -EOPNOTSUPP;
6686         if (fd >= 0) {
6687                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6688                         memset(&xdp, 0, sizeof(xdp));
6689                         xdp.command = XDP_QUERY_PROG;
6690
6691                         err = ops->ndo_xdp(dev, &xdp);
6692                         if (err < 0)
6693                                 return err;
6694                         if (xdp.prog_attached)
6695                                 return -EBUSY;
6696                 }
6697
6698                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6699                 if (IS_ERR(prog))
6700                         return PTR_ERR(prog);
6701         }
6702
6703         memset(&xdp, 0, sizeof(xdp));
6704         xdp.command = XDP_SETUP_PROG;
6705         xdp.prog = prog;
6706
6707         err = ops->ndo_xdp(dev, &xdp);
6708         if (err < 0 && prog)
6709                 bpf_prog_put(prog);
6710
6711         return err;
6712 }
6713 EXPORT_SYMBOL(dev_change_xdp_fd);
6714
6715 /**
6716  *      dev_new_index   -       allocate an ifindex
6717  *      @net: the applicable net namespace
6718  *
6719  *      Returns a suitable unique value for a new device interface
6720  *      number.  The caller must hold the rtnl semaphore or the
6721  *      dev_base_lock to be sure it remains unique.
6722  */
6723 static int dev_new_index(struct net *net)
6724 {
6725         int ifindex = net->ifindex;
6726         for (;;) {
6727                 if (++ifindex <= 0)
6728                         ifindex = 1;
6729                 if (!__dev_get_by_index(net, ifindex))
6730                         return net->ifindex = ifindex;
6731         }
6732 }
6733
6734 /* Delayed registration/unregisteration */
6735 static LIST_HEAD(net_todo_list);
6736 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6737
6738 static void net_set_todo(struct net_device *dev)
6739 {
6740         list_add_tail(&dev->todo_list, &net_todo_list);
6741         dev_net(dev)->dev_unreg_count++;
6742 }
6743
6744 static void rollback_registered_many(struct list_head *head)
6745 {
6746         struct net_device *dev, *tmp;
6747         LIST_HEAD(close_head);
6748
6749         BUG_ON(dev_boot_phase);
6750         ASSERT_RTNL();
6751
6752         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6753                 /* Some devices call without registering
6754                  * for initialization unwind. Remove those
6755                  * devices and proceed with the remaining.
6756                  */
6757                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6758                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6759                                  dev->name, dev);
6760
6761                         WARN_ON(1);
6762                         list_del(&dev->unreg_list);
6763                         continue;
6764                 }
6765                 dev->dismantle = true;
6766                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6767         }
6768
6769         /* If device is running, close it first. */
6770         list_for_each_entry(dev, head, unreg_list)
6771                 list_add_tail(&dev->close_list, &close_head);
6772         dev_close_many(&close_head, true);
6773
6774         list_for_each_entry(dev, head, unreg_list) {
6775                 /* And unlink it from device chain. */
6776                 unlist_netdevice(dev);
6777
6778                 dev->reg_state = NETREG_UNREGISTERING;
6779         }
6780         flush_all_backlogs();
6781
6782         synchronize_net();
6783
6784         list_for_each_entry(dev, head, unreg_list) {
6785                 struct sk_buff *skb = NULL;
6786
6787                 /* Shutdown queueing discipline. */
6788                 dev_shutdown(dev);
6789
6790
6791                 /* Notify protocols, that we are about to destroy
6792                    this device. They should clean all the things.
6793                 */
6794                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6795
6796                 if (!dev->rtnl_link_ops ||
6797                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6798                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6799                                                      GFP_KERNEL);
6800
6801                 /*
6802                  *      Flush the unicast and multicast chains
6803                  */
6804                 dev_uc_flush(dev);
6805                 dev_mc_flush(dev);
6806
6807                 if (dev->netdev_ops->ndo_uninit)
6808                         dev->netdev_ops->ndo_uninit(dev);
6809
6810                 if (skb)
6811                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6812
6813                 /* Notifier chain MUST detach us all upper devices. */
6814                 WARN_ON(netdev_has_any_upper_dev(dev));
6815                 WARN_ON(netdev_has_any_lower_dev(dev));
6816
6817                 /* Remove entries from kobject tree */
6818                 netdev_unregister_kobject(dev);
6819 #ifdef CONFIG_XPS
6820                 /* Remove XPS queueing entries */
6821                 netif_reset_xps_queues_gt(dev, 0);
6822 #endif
6823         }
6824
6825         synchronize_net();
6826
6827         list_for_each_entry(dev, head, unreg_list)
6828                 dev_put(dev);
6829 }
6830
6831 static void rollback_registered(struct net_device *dev)
6832 {
6833         LIST_HEAD(single);
6834
6835         list_add(&dev->unreg_list, &single);
6836         rollback_registered_many(&single);
6837         list_del(&single);
6838 }
6839
6840 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6841         struct net_device *upper, netdev_features_t features)
6842 {
6843         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6844         netdev_features_t feature;
6845         int feature_bit;
6846
6847         for_each_netdev_feature(&upper_disables, feature_bit) {
6848                 feature = __NETIF_F_BIT(feature_bit);
6849                 if (!(upper->wanted_features & feature)
6850                     && (features & feature)) {
6851                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6852                                    &feature, upper->name);
6853                         features &= ~feature;
6854                 }
6855         }
6856
6857         return features;
6858 }
6859
6860 static void netdev_sync_lower_features(struct net_device *upper,
6861         struct net_device *lower, netdev_features_t features)
6862 {
6863         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6864         netdev_features_t feature;
6865         int feature_bit;
6866
6867         for_each_netdev_feature(&upper_disables, feature_bit) {
6868                 feature = __NETIF_F_BIT(feature_bit);
6869                 if (!(features & feature) && (lower->features & feature)) {
6870                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6871                                    &feature, lower->name);
6872                         lower->wanted_features &= ~feature;
6873                         netdev_update_features(lower);
6874
6875                         if (unlikely(lower->features & feature))
6876                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6877                                             &feature, lower->name);
6878                 }
6879         }
6880 }
6881
6882 static netdev_features_t netdev_fix_features(struct net_device *dev,
6883         netdev_features_t features)
6884 {
6885         /* Fix illegal checksum combinations */
6886         if ((features & NETIF_F_HW_CSUM) &&
6887             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6888                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6889                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6890         }
6891
6892         /* TSO requires that SG is present as well. */
6893         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6894                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6895                 features &= ~NETIF_F_ALL_TSO;
6896         }
6897
6898         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6899                                         !(features & NETIF_F_IP_CSUM)) {
6900                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6901                 features &= ~NETIF_F_TSO;
6902                 features &= ~NETIF_F_TSO_ECN;
6903         }
6904
6905         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6906                                          !(features & NETIF_F_IPV6_CSUM)) {
6907                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6908                 features &= ~NETIF_F_TSO6;
6909         }
6910
6911         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6912         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6913                 features &= ~NETIF_F_TSO_MANGLEID;
6914
6915         /* TSO ECN requires that TSO is present as well. */
6916         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6917                 features &= ~NETIF_F_TSO_ECN;
6918
6919         /* Software GSO depends on SG. */
6920         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6921                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6922                 features &= ~NETIF_F_GSO;
6923         }
6924
6925         /* UFO needs SG and checksumming */
6926         if (features & NETIF_F_UFO) {
6927                 /* maybe split UFO into V4 and V6? */
6928                 if (!(features & NETIF_F_HW_CSUM) &&
6929                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6930                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6931                         netdev_dbg(dev,
6932                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6933                         features &= ~NETIF_F_UFO;
6934                 }
6935
6936                 if (!(features & NETIF_F_SG)) {
6937                         netdev_dbg(dev,
6938                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6939                         features &= ~NETIF_F_UFO;
6940                 }
6941         }
6942
6943         /* GSO partial features require GSO partial be set */
6944         if ((features & dev->gso_partial_features) &&
6945             !(features & NETIF_F_GSO_PARTIAL)) {
6946                 netdev_dbg(dev,
6947                            "Dropping partially supported GSO features since no GSO partial.\n");
6948                 features &= ~dev->gso_partial_features;
6949         }
6950
6951 #ifdef CONFIG_NET_RX_BUSY_POLL
6952         if (dev->netdev_ops->ndo_busy_poll)
6953                 features |= NETIF_F_BUSY_POLL;
6954         else
6955 #endif
6956                 features &= ~NETIF_F_BUSY_POLL;
6957
6958         return features;
6959 }
6960
6961 int __netdev_update_features(struct net_device *dev)
6962 {
6963         struct net_device *upper, *lower;
6964         netdev_features_t features;
6965         struct list_head *iter;
6966         int err = -1;
6967
6968         ASSERT_RTNL();
6969
6970         features = netdev_get_wanted_features(dev);
6971
6972         if (dev->netdev_ops->ndo_fix_features)
6973                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6974
6975         /* driver might be less strict about feature dependencies */
6976         features = netdev_fix_features(dev, features);
6977
6978         /* some features can't be enabled if they're off an an upper device */
6979         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6980                 features = netdev_sync_upper_features(dev, upper, features);
6981
6982         if (dev->features == features)
6983                 goto sync_lower;
6984
6985         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6986                 &dev->features, &features);
6987
6988         if (dev->netdev_ops->ndo_set_features)
6989                 err = dev->netdev_ops->ndo_set_features(dev, features);
6990         else
6991                 err = 0;
6992
6993         if (unlikely(err < 0)) {
6994                 netdev_err(dev,
6995                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6996                         err, &features, &dev->features);
6997                 /* return non-0 since some features might have changed and
6998                  * it's better to fire a spurious notification than miss it
6999                  */
7000                 return -1;
7001         }
7002
7003 sync_lower:
7004         /* some features must be disabled on lower devices when disabled
7005          * on an upper device (think: bonding master or bridge)
7006          */
7007         netdev_for_each_lower_dev(dev, lower, iter)
7008                 netdev_sync_lower_features(dev, lower, features);
7009
7010         if (!err)
7011                 dev->features = features;
7012
7013         return err < 0 ? 0 : 1;
7014 }
7015
7016 /**
7017  *      netdev_update_features - recalculate device features
7018  *      @dev: the device to check
7019  *
7020  *      Recalculate dev->features set and send notifications if it
7021  *      has changed. Should be called after driver or hardware dependent
7022  *      conditions might have changed that influence the features.
7023  */
7024 void netdev_update_features(struct net_device *dev)
7025 {
7026         if (__netdev_update_features(dev))
7027                 netdev_features_change(dev);
7028 }
7029 EXPORT_SYMBOL(netdev_update_features);
7030
7031 /**
7032  *      netdev_change_features - recalculate device features
7033  *      @dev: the device to check
7034  *
7035  *      Recalculate dev->features set and send notifications even
7036  *      if they have not changed. Should be called instead of
7037  *      netdev_update_features() if also dev->vlan_features might
7038  *      have changed to allow the changes to be propagated to stacked
7039  *      VLAN devices.
7040  */
7041 void netdev_change_features(struct net_device *dev)
7042 {
7043         __netdev_update_features(dev);
7044         netdev_features_change(dev);
7045 }
7046 EXPORT_SYMBOL(netdev_change_features);
7047
7048 /**
7049  *      netif_stacked_transfer_operstate -      transfer operstate
7050  *      @rootdev: the root or lower level device to transfer state from
7051  *      @dev: the device to transfer operstate to
7052  *
7053  *      Transfer operational state from root to device. This is normally
7054  *      called when a stacking relationship exists between the root
7055  *      device and the device(a leaf device).
7056  */
7057 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7058                                         struct net_device *dev)
7059 {
7060         if (rootdev->operstate == IF_OPER_DORMANT)
7061                 netif_dormant_on(dev);
7062         else
7063                 netif_dormant_off(dev);
7064
7065         if (netif_carrier_ok(rootdev)) {
7066                 if (!netif_carrier_ok(dev))
7067                         netif_carrier_on(dev);
7068         } else {
7069                 if (netif_carrier_ok(dev))
7070                         netif_carrier_off(dev);
7071         }
7072 }
7073 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7074
7075 #ifdef CONFIG_SYSFS
7076 static int netif_alloc_rx_queues(struct net_device *dev)
7077 {
7078         unsigned int i, count = dev->num_rx_queues;
7079         struct netdev_rx_queue *rx;
7080         size_t sz = count * sizeof(*rx);
7081
7082         BUG_ON(count < 1);
7083
7084         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7085         if (!rx) {
7086                 rx = vzalloc(sz);
7087                 if (!rx)
7088                         return -ENOMEM;
7089         }
7090         dev->_rx = rx;
7091
7092         for (i = 0; i < count; i++)
7093                 rx[i].dev = dev;
7094         return 0;
7095 }
7096 #endif
7097
7098 static void netdev_init_one_queue(struct net_device *dev,
7099                                   struct netdev_queue *queue, void *_unused)
7100 {
7101         /* Initialize queue lock */
7102         spin_lock_init(&queue->_xmit_lock);
7103         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7104         queue->xmit_lock_owner = -1;
7105         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7106         queue->dev = dev;
7107 #ifdef CONFIG_BQL
7108         dql_init(&queue->dql, HZ);
7109 #endif
7110 }
7111
7112 static void netif_free_tx_queues(struct net_device *dev)
7113 {
7114         kvfree(dev->_tx);
7115 }
7116
7117 static int netif_alloc_netdev_queues(struct net_device *dev)
7118 {
7119         unsigned int count = dev->num_tx_queues;
7120         struct netdev_queue *tx;
7121         size_t sz = count * sizeof(*tx);
7122
7123         if (count < 1 || count > 0xffff)
7124                 return -EINVAL;
7125
7126         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7127         if (!tx) {
7128                 tx = vzalloc(sz);
7129                 if (!tx)
7130                         return -ENOMEM;
7131         }
7132         dev->_tx = tx;
7133
7134         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7135         spin_lock_init(&dev->tx_global_lock);
7136
7137         return 0;
7138 }
7139
7140 void netif_tx_stop_all_queues(struct net_device *dev)
7141 {
7142         unsigned int i;
7143
7144         for (i = 0; i < dev->num_tx_queues; i++) {
7145                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7146                 netif_tx_stop_queue(txq);
7147         }
7148 }
7149 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7150
7151 /**
7152  *      register_netdevice      - register a network device
7153  *      @dev: device to register
7154  *
7155  *      Take a completed network device structure and add it to the kernel
7156  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7157  *      chain. 0 is returned on success. A negative errno code is returned
7158  *      on a failure to set up the device, or if the name is a duplicate.
7159  *
7160  *      Callers must hold the rtnl semaphore. You may want
7161  *      register_netdev() instead of this.
7162  *
7163  *      BUGS:
7164  *      The locking appears insufficient to guarantee two parallel registers
7165  *      will not get the same name.
7166  */
7167
7168 int register_netdevice(struct net_device *dev)
7169 {
7170         int ret;
7171         struct net *net = dev_net(dev);
7172
7173         BUG_ON(dev_boot_phase);
7174         ASSERT_RTNL();
7175
7176         might_sleep();
7177
7178         /* When net_device's are persistent, this will be fatal. */
7179         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7180         BUG_ON(!net);
7181
7182         spin_lock_init(&dev->addr_list_lock);
7183         netdev_set_addr_lockdep_class(dev);
7184
7185         ret = dev_get_valid_name(net, dev, dev->name);
7186         if (ret < 0)
7187                 goto out;
7188
7189         /* Init, if this function is available */
7190         if (dev->netdev_ops->ndo_init) {
7191                 ret = dev->netdev_ops->ndo_init(dev);
7192                 if (ret) {
7193                         if (ret > 0)
7194                                 ret = -EIO;
7195                         goto out;
7196                 }
7197         }
7198
7199         if (((dev->hw_features | dev->features) &
7200              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7201             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7202              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7203                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7204                 ret = -EINVAL;
7205                 goto err_uninit;
7206         }
7207
7208         ret = -EBUSY;
7209         if (!dev->ifindex)
7210                 dev->ifindex = dev_new_index(net);
7211         else if (__dev_get_by_index(net, dev->ifindex))
7212                 goto err_uninit;
7213
7214         /* Transfer changeable features to wanted_features and enable
7215          * software offloads (GSO and GRO).
7216          */
7217         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7218         dev->features |= NETIF_F_SOFT_FEATURES;
7219         dev->wanted_features = dev->features & dev->hw_features;
7220
7221         if (!(dev->flags & IFF_LOOPBACK))
7222                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7223
7224         /* If IPv4 TCP segmentation offload is supported we should also
7225          * allow the device to enable segmenting the frame with the option
7226          * of ignoring a static IP ID value.  This doesn't enable the
7227          * feature itself but allows the user to enable it later.
7228          */
7229         if (dev->hw_features & NETIF_F_TSO)
7230                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7231         if (dev->vlan_features & NETIF_F_TSO)
7232                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7233         if (dev->mpls_features & NETIF_F_TSO)
7234                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7235         if (dev->hw_enc_features & NETIF_F_TSO)
7236                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7237
7238         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7239          */
7240         dev->vlan_features |= NETIF_F_HIGHDMA;
7241
7242         /* Make NETIF_F_SG inheritable to tunnel devices.
7243          */
7244         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7245
7246         /* Make NETIF_F_SG inheritable to MPLS.
7247          */
7248         dev->mpls_features |= NETIF_F_SG;
7249
7250         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7251         ret = notifier_to_errno(ret);
7252         if (ret)
7253                 goto err_uninit;
7254
7255         ret = netdev_register_kobject(dev);
7256         if (ret)
7257                 goto err_uninit;
7258         dev->reg_state = NETREG_REGISTERED;
7259
7260         __netdev_update_features(dev);
7261
7262         /*
7263          *      Default initial state at registry is that the
7264          *      device is present.
7265          */
7266
7267         set_bit(__LINK_STATE_PRESENT, &dev->state);
7268
7269         linkwatch_init_dev(dev);
7270
7271         dev_init_scheduler(dev);
7272         dev_hold(dev);
7273         list_netdevice(dev);
7274         add_device_randomness(dev->dev_addr, dev->addr_len);
7275
7276         /* If the device has permanent device address, driver should
7277          * set dev_addr and also addr_assign_type should be set to
7278          * NET_ADDR_PERM (default value).
7279          */
7280         if (dev->addr_assign_type == NET_ADDR_PERM)
7281                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7282
7283         /* Notify protocols, that a new device appeared. */
7284         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7285         ret = notifier_to_errno(ret);
7286         if (ret) {
7287                 rollback_registered(dev);
7288                 dev->reg_state = NETREG_UNREGISTERED;
7289         }
7290         /*
7291          *      Prevent userspace races by waiting until the network
7292          *      device is fully setup before sending notifications.
7293          */
7294         if (!dev->rtnl_link_ops ||
7295             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7296                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7297
7298 out:
7299         return ret;
7300
7301 err_uninit:
7302         if (dev->netdev_ops->ndo_uninit)
7303                 dev->netdev_ops->ndo_uninit(dev);
7304         goto out;
7305 }
7306 EXPORT_SYMBOL(register_netdevice);
7307
7308 /**
7309  *      init_dummy_netdev       - init a dummy network device for NAPI
7310  *      @dev: device to init
7311  *
7312  *      This takes a network device structure and initialize the minimum
7313  *      amount of fields so it can be used to schedule NAPI polls without
7314  *      registering a full blown interface. This is to be used by drivers
7315  *      that need to tie several hardware interfaces to a single NAPI
7316  *      poll scheduler due to HW limitations.
7317  */
7318 int init_dummy_netdev(struct net_device *dev)
7319 {
7320         /* Clear everything. Note we don't initialize spinlocks
7321          * are they aren't supposed to be taken by any of the
7322          * NAPI code and this dummy netdev is supposed to be
7323          * only ever used for NAPI polls
7324          */
7325         memset(dev, 0, sizeof(struct net_device));
7326
7327         /* make sure we BUG if trying to hit standard
7328          * register/unregister code path
7329          */
7330         dev->reg_state = NETREG_DUMMY;
7331
7332         /* NAPI wants this */
7333         INIT_LIST_HEAD(&dev->napi_list);
7334
7335         /* a dummy interface is started by default */
7336         set_bit(__LINK_STATE_PRESENT, &dev->state);
7337         set_bit(__LINK_STATE_START, &dev->state);
7338
7339         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7340          * because users of this 'device' dont need to change
7341          * its refcount.
7342          */
7343
7344         return 0;
7345 }
7346 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7347
7348
7349 /**
7350  *      register_netdev - register a network device
7351  *      @dev: device to register
7352  *
7353  *      Take a completed network device structure and add it to the kernel
7354  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7355  *      chain. 0 is returned on success. A negative errno code is returned
7356  *      on a failure to set up the device, or if the name is a duplicate.
7357  *
7358  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7359  *      and expands the device name if you passed a format string to
7360  *      alloc_netdev.
7361  */
7362 int register_netdev(struct net_device *dev)
7363 {
7364         int err;
7365
7366         rtnl_lock();
7367         err = register_netdevice(dev);
7368         rtnl_unlock();
7369         return err;
7370 }
7371 EXPORT_SYMBOL(register_netdev);
7372
7373 int netdev_refcnt_read(const struct net_device *dev)
7374 {
7375         int i, refcnt = 0;
7376
7377         for_each_possible_cpu(i)
7378                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7379         return refcnt;
7380 }
7381 EXPORT_SYMBOL(netdev_refcnt_read);
7382
7383 /**
7384  * netdev_wait_allrefs - wait until all references are gone.
7385  * @dev: target net_device
7386  *
7387  * This is called when unregistering network devices.
7388  *
7389  * Any protocol or device that holds a reference should register
7390  * for netdevice notification, and cleanup and put back the
7391  * reference if they receive an UNREGISTER event.
7392  * We can get stuck here if buggy protocols don't correctly
7393  * call dev_put.
7394  */
7395 static void netdev_wait_allrefs(struct net_device *dev)
7396 {
7397         unsigned long rebroadcast_time, warning_time;
7398         int refcnt;
7399
7400         linkwatch_forget_dev(dev);
7401
7402         rebroadcast_time = warning_time = jiffies;
7403         refcnt = netdev_refcnt_read(dev);
7404
7405         while (refcnt != 0) {
7406                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7407                         rtnl_lock();
7408
7409                         /* Rebroadcast unregister notification */
7410                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7411
7412                         __rtnl_unlock();
7413                         rcu_barrier();
7414                         rtnl_lock();
7415
7416                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7417                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7418                                      &dev->state)) {
7419                                 /* We must not have linkwatch events
7420                                  * pending on unregister. If this
7421                                  * happens, we simply run the queue
7422                                  * unscheduled, resulting in a noop
7423                                  * for this device.
7424                                  */
7425                                 linkwatch_run_queue();
7426                         }
7427
7428                         __rtnl_unlock();
7429
7430                         rebroadcast_time = jiffies;
7431                 }
7432
7433                 msleep(250);
7434
7435                 refcnt = netdev_refcnt_read(dev);
7436
7437                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7438                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7439                                  dev->name, refcnt);
7440                         warning_time = jiffies;
7441                 }
7442         }
7443 }
7444
7445 /* The sequence is:
7446  *
7447  *      rtnl_lock();
7448  *      ...
7449  *      register_netdevice(x1);
7450  *      register_netdevice(x2);
7451  *      ...
7452  *      unregister_netdevice(y1);
7453  *      unregister_netdevice(y2);
7454  *      ...
7455  *      rtnl_unlock();
7456  *      free_netdev(y1);
7457  *      free_netdev(y2);
7458  *
7459  * We are invoked by rtnl_unlock().
7460  * This allows us to deal with problems:
7461  * 1) We can delete sysfs objects which invoke hotplug
7462  *    without deadlocking with linkwatch via keventd.
7463  * 2) Since we run with the RTNL semaphore not held, we can sleep
7464  *    safely in order to wait for the netdev refcnt to drop to zero.
7465  *
7466  * We must not return until all unregister events added during
7467  * the interval the lock was held have been completed.
7468  */
7469 void netdev_run_todo(void)
7470 {
7471         struct list_head list;
7472
7473         /* Snapshot list, allow later requests */
7474         list_replace_init(&net_todo_list, &list);
7475
7476         __rtnl_unlock();
7477
7478
7479         /* Wait for rcu callbacks to finish before next phase */
7480         if (!list_empty(&list))
7481                 rcu_barrier();
7482
7483         while (!list_empty(&list)) {
7484                 struct net_device *dev
7485                         = list_first_entry(&list, struct net_device, todo_list);
7486                 list_del(&dev->todo_list);
7487
7488                 rtnl_lock();
7489                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7490                 __rtnl_unlock();
7491
7492                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7493                         pr_err("network todo '%s' but state %d\n",
7494                                dev->name, dev->reg_state);
7495                         dump_stack();
7496                         continue;
7497                 }
7498
7499                 dev->reg_state = NETREG_UNREGISTERED;
7500
7501                 netdev_wait_allrefs(dev);
7502
7503                 /* paranoia */
7504                 BUG_ON(netdev_refcnt_read(dev));
7505                 BUG_ON(!list_empty(&dev->ptype_all));
7506                 BUG_ON(!list_empty(&dev->ptype_specific));
7507                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7508                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7509                 WARN_ON(dev->dn_ptr);
7510
7511                 if (dev->destructor)
7512                         dev->destructor(dev);
7513
7514                 /* Report a network device has been unregistered */
7515                 rtnl_lock();
7516                 dev_net(dev)->dev_unreg_count--;
7517                 __rtnl_unlock();
7518                 wake_up(&netdev_unregistering_wq);
7519
7520                 /* Free network device */
7521                 kobject_put(&dev->dev.kobj);
7522         }
7523 }
7524
7525 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7526  * all the same fields in the same order as net_device_stats, with only
7527  * the type differing, but rtnl_link_stats64 may have additional fields
7528  * at the end for newer counters.
7529  */
7530 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7531                              const struct net_device_stats *netdev_stats)
7532 {
7533 #if BITS_PER_LONG == 64
7534         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7535         memcpy(stats64, netdev_stats, sizeof(*stats64));
7536         /* zero out counters that only exist in rtnl_link_stats64 */
7537         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7538                sizeof(*stats64) - sizeof(*netdev_stats));
7539 #else
7540         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7541         const unsigned long *src = (const unsigned long *)netdev_stats;
7542         u64 *dst = (u64 *)stats64;
7543
7544         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7545         for (i = 0; i < n; i++)
7546                 dst[i] = src[i];
7547         /* zero out counters that only exist in rtnl_link_stats64 */
7548         memset((char *)stats64 + n * sizeof(u64), 0,
7549                sizeof(*stats64) - n * sizeof(u64));
7550 #endif
7551 }
7552 EXPORT_SYMBOL(netdev_stats_to_stats64);
7553
7554 /**
7555  *      dev_get_stats   - get network device statistics
7556  *      @dev: device to get statistics from
7557  *      @storage: place to store stats
7558  *
7559  *      Get network statistics from device. Return @storage.
7560  *      The device driver may provide its own method by setting
7561  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7562  *      otherwise the internal statistics structure is used.
7563  */
7564 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7565                                         struct rtnl_link_stats64 *storage)
7566 {
7567         const struct net_device_ops *ops = dev->netdev_ops;
7568
7569         if (ops->ndo_get_stats64) {
7570                 memset(storage, 0, sizeof(*storage));
7571                 ops->ndo_get_stats64(dev, storage);
7572         } else if (ops->ndo_get_stats) {
7573                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7574         } else {
7575                 netdev_stats_to_stats64(storage, &dev->stats);
7576         }
7577         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7578         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7579         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7580         return storage;
7581 }
7582 EXPORT_SYMBOL(dev_get_stats);
7583
7584 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7585 {
7586         struct netdev_queue *queue = dev_ingress_queue(dev);
7587
7588 #ifdef CONFIG_NET_CLS_ACT
7589         if (queue)
7590                 return queue;
7591         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7592         if (!queue)
7593                 return NULL;
7594         netdev_init_one_queue(dev, queue, NULL);
7595         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7596         queue->qdisc_sleeping = &noop_qdisc;
7597         rcu_assign_pointer(dev->ingress_queue, queue);
7598 #endif
7599         return queue;
7600 }
7601
7602 static const struct ethtool_ops default_ethtool_ops;
7603
7604 void netdev_set_default_ethtool_ops(struct net_device *dev,
7605                                     const struct ethtool_ops *ops)
7606 {
7607         if (dev->ethtool_ops == &default_ethtool_ops)
7608                 dev->ethtool_ops = ops;
7609 }
7610 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7611
7612 void netdev_freemem(struct net_device *dev)
7613 {
7614         char *addr = (char *)dev - dev->padded;
7615
7616         kvfree(addr);
7617 }
7618
7619 /**
7620  *      alloc_netdev_mqs - allocate network device
7621  *      @sizeof_priv:           size of private data to allocate space for
7622  *      @name:                  device name format string
7623  *      @name_assign_type:      origin of device name
7624  *      @setup:                 callback to initialize device
7625  *      @txqs:                  the number of TX subqueues to allocate
7626  *      @rxqs:                  the number of RX subqueues to allocate
7627  *
7628  *      Allocates a struct net_device with private data area for driver use
7629  *      and performs basic initialization.  Also allocates subqueue structs
7630  *      for each queue on the device.
7631  */
7632 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7633                 unsigned char name_assign_type,
7634                 void (*setup)(struct net_device *),
7635                 unsigned int txqs, unsigned int rxqs)
7636 {
7637         struct net_device *dev;
7638         size_t alloc_size;
7639         struct net_device *p;
7640
7641         BUG_ON(strlen(name) >= sizeof(dev->name));
7642
7643         if (txqs < 1) {
7644                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7645                 return NULL;
7646         }
7647
7648 #ifdef CONFIG_SYSFS
7649         if (rxqs < 1) {
7650                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7651                 return NULL;
7652         }
7653 #endif
7654
7655         alloc_size = sizeof(struct net_device);
7656         if (sizeof_priv) {
7657                 /* ensure 32-byte alignment of private area */
7658                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7659                 alloc_size += sizeof_priv;
7660         }
7661         /* ensure 32-byte alignment of whole construct */
7662         alloc_size += NETDEV_ALIGN - 1;
7663
7664         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7665         if (!p)
7666                 p = vzalloc(alloc_size);
7667         if (!p)
7668                 return NULL;
7669
7670         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7671         dev->padded = (char *)dev - (char *)p;
7672
7673         dev->pcpu_refcnt = alloc_percpu(int);
7674         if (!dev->pcpu_refcnt)
7675                 goto free_dev;
7676
7677         if (dev_addr_init(dev))
7678                 goto free_pcpu;
7679
7680         dev_mc_init(dev);
7681         dev_uc_init(dev);
7682
7683         dev_net_set(dev, &init_net);
7684
7685         dev->gso_max_size = GSO_MAX_SIZE;
7686         dev->gso_max_segs = GSO_MAX_SEGS;
7687
7688         INIT_LIST_HEAD(&dev->napi_list);
7689         INIT_LIST_HEAD(&dev->unreg_list);
7690         INIT_LIST_HEAD(&dev->close_list);
7691         INIT_LIST_HEAD(&dev->link_watch_list);
7692         INIT_LIST_HEAD(&dev->adj_list.upper);
7693         INIT_LIST_HEAD(&dev->adj_list.lower);
7694         INIT_LIST_HEAD(&dev->ptype_all);
7695         INIT_LIST_HEAD(&dev->ptype_specific);
7696 #ifdef CONFIG_NET_SCHED
7697         hash_init(dev->qdisc_hash);
7698 #endif
7699         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7700         setup(dev);
7701
7702         if (!dev->tx_queue_len) {
7703                 dev->priv_flags |= IFF_NO_QUEUE;
7704                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7705         }
7706
7707         dev->num_tx_queues = txqs;
7708         dev->real_num_tx_queues = txqs;
7709         if (netif_alloc_netdev_queues(dev))
7710                 goto free_all;
7711
7712 #ifdef CONFIG_SYSFS
7713         dev->num_rx_queues = rxqs;
7714         dev->real_num_rx_queues = rxqs;
7715         if (netif_alloc_rx_queues(dev))
7716                 goto free_all;
7717 #endif
7718
7719         strcpy(dev->name, name);
7720         dev->name_assign_type = name_assign_type;
7721         dev->group = INIT_NETDEV_GROUP;
7722         if (!dev->ethtool_ops)
7723                 dev->ethtool_ops = &default_ethtool_ops;
7724
7725         nf_hook_ingress_init(dev);
7726
7727         return dev;
7728
7729 free_all:
7730         free_netdev(dev);
7731         return NULL;
7732
7733 free_pcpu:
7734         free_percpu(dev->pcpu_refcnt);
7735 free_dev:
7736         netdev_freemem(dev);
7737         return NULL;
7738 }
7739 EXPORT_SYMBOL(alloc_netdev_mqs);
7740
7741 /**
7742  *      free_netdev - free network device
7743  *      @dev: device
7744  *
7745  *      This function does the last stage of destroying an allocated device
7746  *      interface. The reference to the device object is released.
7747  *      If this is the last reference then it will be freed.
7748  *      Must be called in process context.
7749  */
7750 void free_netdev(struct net_device *dev)
7751 {
7752         struct napi_struct *p, *n;
7753
7754         might_sleep();
7755         netif_free_tx_queues(dev);
7756 #ifdef CONFIG_SYSFS
7757         kvfree(dev->_rx);
7758 #endif
7759
7760         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7761
7762         /* Flush device addresses */
7763         dev_addr_flush(dev);
7764
7765         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7766                 netif_napi_del(p);
7767
7768         free_percpu(dev->pcpu_refcnt);
7769         dev->pcpu_refcnt = NULL;
7770
7771         /*  Compatibility with error handling in drivers */
7772         if (dev->reg_state == NETREG_UNINITIALIZED) {
7773                 netdev_freemem(dev);
7774                 return;
7775         }
7776
7777         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7778         dev->reg_state = NETREG_RELEASED;
7779
7780         /* will free via device release */
7781         put_device(&dev->dev);
7782 }
7783 EXPORT_SYMBOL(free_netdev);
7784
7785 /**
7786  *      synchronize_net -  Synchronize with packet receive processing
7787  *
7788  *      Wait for packets currently being received to be done.
7789  *      Does not block later packets from starting.
7790  */
7791 void synchronize_net(void)
7792 {
7793         might_sleep();
7794         if (rtnl_is_locked())
7795                 synchronize_rcu_expedited();
7796         else
7797                 synchronize_rcu();
7798 }
7799 EXPORT_SYMBOL(synchronize_net);
7800
7801 /**
7802  *      unregister_netdevice_queue - remove device from the kernel
7803  *      @dev: device
7804  *      @head: list
7805  *
7806  *      This function shuts down a device interface and removes it
7807  *      from the kernel tables.
7808  *      If head not NULL, device is queued to be unregistered later.
7809  *
7810  *      Callers must hold the rtnl semaphore.  You may want
7811  *      unregister_netdev() instead of this.
7812  */
7813
7814 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7815 {
7816         ASSERT_RTNL();
7817
7818         if (head) {
7819                 list_move_tail(&dev->unreg_list, head);
7820         } else {
7821                 rollback_registered(dev);
7822                 /* Finish processing unregister after unlock */
7823                 net_set_todo(dev);
7824         }
7825 }
7826 EXPORT_SYMBOL(unregister_netdevice_queue);
7827
7828 /**
7829  *      unregister_netdevice_many - unregister many devices
7830  *      @head: list of devices
7831  *
7832  *  Note: As most callers use a stack allocated list_head,
7833  *  we force a list_del() to make sure stack wont be corrupted later.
7834  */
7835 void unregister_netdevice_many(struct list_head *head)
7836 {
7837         struct net_device *dev;
7838
7839         if (!list_empty(head)) {
7840                 rollback_registered_many(head);
7841                 list_for_each_entry(dev, head, unreg_list)
7842                         net_set_todo(dev);
7843                 list_del(head);
7844         }
7845 }
7846 EXPORT_SYMBOL(unregister_netdevice_many);
7847
7848 /**
7849  *      unregister_netdev - remove device from the kernel
7850  *      @dev: device
7851  *
7852  *      This function shuts down a device interface and removes it
7853  *      from the kernel tables.
7854  *
7855  *      This is just a wrapper for unregister_netdevice that takes
7856  *      the rtnl semaphore.  In general you want to use this and not
7857  *      unregister_netdevice.
7858  */
7859 void unregister_netdev(struct net_device *dev)
7860 {
7861         rtnl_lock();
7862         unregister_netdevice(dev);
7863         rtnl_unlock();
7864 }
7865 EXPORT_SYMBOL(unregister_netdev);
7866
7867 /**
7868  *      dev_change_net_namespace - move device to different nethost namespace
7869  *      @dev: device
7870  *      @net: network namespace
7871  *      @pat: If not NULL name pattern to try if the current device name
7872  *            is already taken in the destination network namespace.
7873  *
7874  *      This function shuts down a device interface and moves it
7875  *      to a new network namespace. On success 0 is returned, on
7876  *      a failure a netagive errno code is returned.
7877  *
7878  *      Callers must hold the rtnl semaphore.
7879  */
7880
7881 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7882 {
7883         int err;
7884
7885         ASSERT_RTNL();
7886
7887         /* Don't allow namespace local devices to be moved. */
7888         err = -EINVAL;
7889         if (dev->features & NETIF_F_NETNS_LOCAL)
7890                 goto out;
7891
7892         /* Ensure the device has been registrered */
7893         if (dev->reg_state != NETREG_REGISTERED)
7894                 goto out;
7895
7896         /* Get out if there is nothing todo */
7897         err = 0;
7898         if (net_eq(dev_net(dev), net))
7899                 goto out;
7900
7901         /* Pick the destination device name, and ensure
7902          * we can use it in the destination network namespace.
7903          */
7904         err = -EEXIST;
7905         if (__dev_get_by_name(net, dev->name)) {
7906                 /* We get here if we can't use the current device name */
7907                 if (!pat)
7908                         goto out;
7909                 if (dev_get_valid_name(net, dev, pat) < 0)
7910                         goto out;
7911         }
7912
7913         /*
7914          * And now a mini version of register_netdevice unregister_netdevice.
7915          */
7916
7917         /* If device is running close it first. */
7918         dev_close(dev);
7919
7920         /* And unlink it from device chain */
7921         err = -ENODEV;
7922         unlist_netdevice(dev);
7923
7924         synchronize_net();
7925
7926         /* Shutdown queueing discipline. */
7927         dev_shutdown(dev);
7928
7929         /* Notify protocols, that we are about to destroy
7930            this device. They should clean all the things.
7931
7932            Note that dev->reg_state stays at NETREG_REGISTERED.
7933            This is wanted because this way 8021q and macvlan know
7934            the device is just moving and can keep their slaves up.
7935         */
7936         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7937         rcu_barrier();
7938         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7939         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7940
7941         /*
7942          *      Flush the unicast and multicast chains
7943          */
7944         dev_uc_flush(dev);
7945         dev_mc_flush(dev);
7946
7947         /* Send a netdev-removed uevent to the old namespace */
7948         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7949         netdev_adjacent_del_links(dev);
7950
7951         /* Actually switch the network namespace */
7952         dev_net_set(dev, net);
7953
7954         /* If there is an ifindex conflict assign a new one */
7955         if (__dev_get_by_index(net, dev->ifindex))
7956                 dev->ifindex = dev_new_index(net);
7957
7958         /* Send a netdev-add uevent to the new namespace */
7959         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7960         netdev_adjacent_add_links(dev);
7961
7962         /* Fixup kobjects */
7963         err = device_rename(&dev->dev, dev->name);
7964         WARN_ON(err);
7965
7966         /* Add the device back in the hashes */
7967         list_netdevice(dev);
7968
7969         /* Notify protocols, that a new device appeared. */
7970         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7971
7972         /*
7973          *      Prevent userspace races by waiting until the network
7974          *      device is fully setup before sending notifications.
7975          */
7976         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7977
7978         synchronize_net();
7979         err = 0;
7980 out:
7981         return err;
7982 }
7983 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7984
7985 static int dev_cpu_dead(unsigned int oldcpu)
7986 {
7987         struct sk_buff **list_skb;
7988         struct sk_buff *skb;
7989         unsigned int cpu;
7990         struct softnet_data *sd, *oldsd;
7991
7992         local_irq_disable();
7993         cpu = smp_processor_id();
7994         sd = &per_cpu(softnet_data, cpu);
7995         oldsd = &per_cpu(softnet_data, oldcpu);
7996
7997         /* Find end of our completion_queue. */
7998         list_skb = &sd->completion_queue;
7999         while (*list_skb)
8000                 list_skb = &(*list_skb)->next;
8001         /* Append completion queue from offline CPU. */
8002         *list_skb = oldsd->completion_queue;
8003         oldsd->completion_queue = NULL;
8004
8005         /* Append output queue from offline CPU. */
8006         if (oldsd->output_queue) {
8007                 *sd->output_queue_tailp = oldsd->output_queue;
8008                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8009                 oldsd->output_queue = NULL;
8010                 oldsd->output_queue_tailp = &oldsd->output_queue;
8011         }
8012         /* Append NAPI poll list from offline CPU, with one exception :
8013          * process_backlog() must be called by cpu owning percpu backlog.
8014          * We properly handle process_queue & input_pkt_queue later.
8015          */
8016         while (!list_empty(&oldsd->poll_list)) {
8017                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8018                                                             struct napi_struct,
8019                                                             poll_list);
8020
8021                 list_del_init(&napi->poll_list);
8022                 if (napi->poll == process_backlog)
8023                         napi->state = 0;
8024                 else
8025                         ____napi_schedule(sd, napi);
8026         }
8027
8028         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8029         local_irq_enable();
8030
8031         /* Process offline CPU's input_pkt_queue */
8032         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8033                 netif_rx_ni(skb);
8034                 input_queue_head_incr(oldsd);
8035         }
8036         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8037                 netif_rx_ni(skb);
8038                 input_queue_head_incr(oldsd);
8039         }
8040
8041         return 0;
8042 }
8043
8044 /**
8045  *      netdev_increment_features - increment feature set by one
8046  *      @all: current feature set
8047  *      @one: new feature set
8048  *      @mask: mask feature set
8049  *
8050  *      Computes a new feature set after adding a device with feature set
8051  *      @one to the master device with current feature set @all.  Will not
8052  *      enable anything that is off in @mask. Returns the new feature set.
8053  */
8054 netdev_features_t netdev_increment_features(netdev_features_t all,
8055         netdev_features_t one, netdev_features_t mask)
8056 {
8057         if (mask & NETIF_F_HW_CSUM)
8058                 mask |= NETIF_F_CSUM_MASK;
8059         mask |= NETIF_F_VLAN_CHALLENGED;
8060
8061         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8062         all &= one | ~NETIF_F_ALL_FOR_ALL;
8063
8064         /* If one device supports hw checksumming, set for all. */
8065         if (all & NETIF_F_HW_CSUM)
8066                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8067
8068         return all;
8069 }
8070 EXPORT_SYMBOL(netdev_increment_features);
8071
8072 static struct hlist_head * __net_init netdev_create_hash(void)
8073 {
8074         int i;
8075         struct hlist_head *hash;
8076
8077         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8078         if (hash != NULL)
8079                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8080                         INIT_HLIST_HEAD(&hash[i]);
8081
8082         return hash;
8083 }
8084
8085 /* Initialize per network namespace state */
8086 static int __net_init netdev_init(struct net *net)
8087 {
8088         if (net != &init_net)
8089                 INIT_LIST_HEAD(&net->dev_base_head);
8090
8091         net->dev_name_head = netdev_create_hash();
8092         if (net->dev_name_head == NULL)
8093                 goto err_name;
8094
8095         net->dev_index_head = netdev_create_hash();
8096         if (net->dev_index_head == NULL)
8097                 goto err_idx;
8098
8099         return 0;
8100
8101 err_idx:
8102         kfree(net->dev_name_head);
8103 err_name:
8104         return -ENOMEM;
8105 }
8106
8107 /**
8108  *      netdev_drivername - network driver for the device
8109  *      @dev: network device
8110  *
8111  *      Determine network driver for device.
8112  */
8113 const char *netdev_drivername(const struct net_device *dev)
8114 {
8115         const struct device_driver *driver;
8116         const struct device *parent;
8117         const char *empty = "";
8118
8119         parent = dev->dev.parent;
8120         if (!parent)
8121                 return empty;
8122
8123         driver = parent->driver;
8124         if (driver && driver->name)
8125                 return driver->name;
8126         return empty;
8127 }
8128
8129 static void __netdev_printk(const char *level, const struct net_device *dev,
8130                             struct va_format *vaf)
8131 {
8132         if (dev && dev->dev.parent) {
8133                 dev_printk_emit(level[1] - '0',
8134                                 dev->dev.parent,
8135                                 "%s %s %s%s: %pV",
8136                                 dev_driver_string(dev->dev.parent),
8137                                 dev_name(dev->dev.parent),
8138                                 netdev_name(dev), netdev_reg_state(dev),
8139                                 vaf);
8140         } else if (dev) {
8141                 printk("%s%s%s: %pV",
8142                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8143         } else {
8144                 printk("%s(NULL net_device): %pV", level, vaf);
8145         }
8146 }
8147
8148 void netdev_printk(const char *level, const struct net_device *dev,
8149                    const char *format, ...)
8150 {
8151         struct va_format vaf;
8152         va_list args;
8153
8154         va_start(args, format);
8155
8156         vaf.fmt = format;
8157         vaf.va = &args;
8158
8159         __netdev_printk(level, dev, &vaf);
8160
8161         va_end(args);
8162 }
8163 EXPORT_SYMBOL(netdev_printk);
8164
8165 #define define_netdev_printk_level(func, level)                 \
8166 void func(const struct net_device *dev, const char *fmt, ...)   \
8167 {                                                               \
8168         struct va_format vaf;                                   \
8169         va_list args;                                           \
8170                                                                 \
8171         va_start(args, fmt);                                    \
8172                                                                 \
8173         vaf.fmt = fmt;                                          \
8174         vaf.va = &args;                                         \
8175                                                                 \
8176         __netdev_printk(level, dev, &vaf);                      \
8177                                                                 \
8178         va_end(args);                                           \
8179 }                                                               \
8180 EXPORT_SYMBOL(func);
8181
8182 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8183 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8184 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8185 define_netdev_printk_level(netdev_err, KERN_ERR);
8186 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8187 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8188 define_netdev_printk_level(netdev_info, KERN_INFO);
8189
8190 static void __net_exit netdev_exit(struct net *net)
8191 {
8192         kfree(net->dev_name_head);
8193         kfree(net->dev_index_head);
8194 }
8195
8196 static struct pernet_operations __net_initdata netdev_net_ops = {
8197         .init = netdev_init,
8198         .exit = netdev_exit,
8199 };
8200
8201 static void __net_exit default_device_exit(struct net *net)
8202 {
8203         struct net_device *dev, *aux;
8204         /*
8205          * Push all migratable network devices back to the
8206          * initial network namespace
8207          */
8208         rtnl_lock();
8209         for_each_netdev_safe(net, dev, aux) {
8210                 int err;
8211                 char fb_name[IFNAMSIZ];
8212
8213                 /* Ignore unmoveable devices (i.e. loopback) */
8214                 if (dev->features & NETIF_F_NETNS_LOCAL)
8215                         continue;
8216
8217                 /* Leave virtual devices for the generic cleanup */
8218                 if (dev->rtnl_link_ops)
8219                         continue;
8220
8221                 /* Push remaining network devices to init_net */
8222                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8223                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8224                 if (err) {
8225                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8226                                  __func__, dev->name, err);
8227                         BUG();
8228                 }
8229         }
8230         rtnl_unlock();
8231 }
8232
8233 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8234 {
8235         /* Return with the rtnl_lock held when there are no network
8236          * devices unregistering in any network namespace in net_list.
8237          */
8238         struct net *net;
8239         bool unregistering;
8240         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8241
8242         add_wait_queue(&netdev_unregistering_wq, &wait);
8243         for (;;) {
8244                 unregistering = false;
8245                 rtnl_lock();
8246                 list_for_each_entry(net, net_list, exit_list) {
8247                         if (net->dev_unreg_count > 0) {
8248                                 unregistering = true;
8249                                 break;
8250                         }
8251                 }
8252                 if (!unregistering)
8253                         break;
8254                 __rtnl_unlock();
8255
8256                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8257         }
8258         remove_wait_queue(&netdev_unregistering_wq, &wait);
8259 }
8260
8261 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8262 {
8263         /* At exit all network devices most be removed from a network
8264          * namespace.  Do this in the reverse order of registration.
8265          * Do this across as many network namespaces as possible to
8266          * improve batching efficiency.
8267          */
8268         struct net_device *dev;
8269         struct net *net;
8270         LIST_HEAD(dev_kill_list);
8271
8272         /* To prevent network device cleanup code from dereferencing
8273          * loopback devices or network devices that have been freed
8274          * wait here for all pending unregistrations to complete,
8275          * before unregistring the loopback device and allowing the
8276          * network namespace be freed.
8277          *
8278          * The netdev todo list containing all network devices
8279          * unregistrations that happen in default_device_exit_batch
8280          * will run in the rtnl_unlock() at the end of
8281          * default_device_exit_batch.
8282          */
8283         rtnl_lock_unregistering(net_list);
8284         list_for_each_entry(net, net_list, exit_list) {
8285                 for_each_netdev_reverse(net, dev) {
8286                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8287                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8288                         else
8289                                 unregister_netdevice_queue(dev, &dev_kill_list);
8290                 }
8291         }
8292         unregister_netdevice_many(&dev_kill_list);
8293         rtnl_unlock();
8294 }
8295
8296 static struct pernet_operations __net_initdata default_device_ops = {
8297         .exit = default_device_exit,
8298         .exit_batch = default_device_exit_batch,
8299 };
8300
8301 /*
8302  *      Initialize the DEV module. At boot time this walks the device list and
8303  *      unhooks any devices that fail to initialise (normally hardware not
8304  *      present) and leaves us with a valid list of present and active devices.
8305  *
8306  */
8307
8308 /*
8309  *       This is called single threaded during boot, so no need
8310  *       to take the rtnl semaphore.
8311  */
8312 static int __init net_dev_init(void)
8313 {
8314         int i, rc = -ENOMEM;
8315
8316         BUG_ON(!dev_boot_phase);
8317
8318         if (dev_proc_init())
8319                 goto out;
8320
8321         if (netdev_kobject_init())
8322                 goto out;
8323
8324         INIT_LIST_HEAD(&ptype_all);
8325         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8326                 INIT_LIST_HEAD(&ptype_base[i]);
8327
8328         INIT_LIST_HEAD(&offload_base);
8329
8330         if (register_pernet_subsys(&netdev_net_ops))
8331                 goto out;
8332
8333         /*
8334          *      Initialise the packet receive queues.
8335          */
8336
8337         for_each_possible_cpu(i) {
8338                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8339                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8340
8341                 INIT_WORK(flush, flush_backlog);
8342
8343                 skb_queue_head_init(&sd->input_pkt_queue);
8344                 skb_queue_head_init(&sd->process_queue);
8345                 INIT_LIST_HEAD(&sd->poll_list);
8346                 sd->output_queue_tailp = &sd->output_queue;
8347 #ifdef CONFIG_RPS
8348                 sd->csd.func = rps_trigger_softirq;
8349                 sd->csd.info = sd;
8350                 sd->cpu = i;
8351 #endif
8352
8353                 sd->backlog.poll = process_backlog;
8354                 sd->backlog.weight = weight_p;
8355         }
8356
8357         dev_boot_phase = 0;
8358
8359         /* The loopback device is special if any other network devices
8360          * is present in a network namespace the loopback device must
8361          * be present. Since we now dynamically allocate and free the
8362          * loopback device ensure this invariant is maintained by
8363          * keeping the loopback device as the first device on the
8364          * list of network devices.  Ensuring the loopback devices
8365          * is the first device that appears and the last network device
8366          * that disappears.
8367          */
8368         if (register_pernet_device(&loopback_net_ops))
8369                 goto out;
8370
8371         if (register_pernet_device(&default_device_ops))
8372                 goto out;
8373
8374         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8375         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8376
8377         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8378                                        NULL, dev_cpu_dead);
8379         WARN_ON(rc < 0);
8380         dst_subsys_init();
8381         rc = 0;
8382 out:
8383         return rc;
8384 }
8385
8386 subsys_initcall(net_dev_init);
This page took 0.513595 seconds and 4 git commands to generate.