2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_early_retrans __read_mostly = 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 #define REXMIT_NONE 0 /* no loss recovery to do */
126 #define REXMIT_LOST 1 /* retransmit packets marked lost */
127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
131 static bool __once __read_mostly;
134 struct net_device *dev;
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 dev ? dev->name : "Unknown driver");
146 /* Adapt the MSS value used to make delayed ack decision to the
149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 struct inet_connection_sock *icsk = inet_csk(sk);
152 const unsigned int lss = icsk->icsk_ack.last_seg_size;
155 icsk->icsk_ack.last_seg_size = 0;
157 /* skb->len may jitter because of SACKs, even if peer
158 * sends good full-sized frames.
160 len = skb_shinfo(skb)->gso_size ? : skb->len;
161 if (len >= icsk->icsk_ack.rcv_mss) {
162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 if (unlikely(icsk->icsk_ack.rcv_mss != len))
165 tcp_gro_dev_warn(sk, skb);
167 /* Otherwise, we make more careful check taking into account,
168 * that SACKs block is variable.
170 * "len" is invariant segment length, including TCP header.
172 len += skb->data - skb_transport_header(skb);
173 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
174 /* If PSH is not set, packet should be
175 * full sized, provided peer TCP is not badly broken.
176 * This observation (if it is correct 8)) allows
177 * to handle super-low mtu links fairly.
179 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
180 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
181 /* Subtract also invariant (if peer is RFC compliant),
182 * tcp header plus fixed timestamp option length.
183 * Resulting "len" is MSS free of SACK jitter.
185 len -= tcp_sk(sk)->tcp_header_len;
186 icsk->icsk_ack.last_seg_size = len;
188 icsk->icsk_ack.rcv_mss = len;
192 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
193 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 static void tcp_incr_quickack(struct sock *sk)
200 struct inet_connection_sock *icsk = inet_csk(sk);
201 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205 if (quickacks > icsk->icsk_ack.quick)
206 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
209 static void tcp_enter_quickack_mode(struct sock *sk)
211 struct inet_connection_sock *icsk = inet_csk(sk);
212 tcp_incr_quickack(sk);
213 icsk->icsk_ack.pingpong = 0;
214 icsk->icsk_ack.ato = TCP_ATO_MIN;
217 /* Send ACKs quickly, if "quick" count is not exhausted
218 * and the session is not interactive.
221 static bool tcp_in_quickack_mode(struct sock *sk)
223 const struct inet_connection_sock *icsk = inet_csk(sk);
224 const struct dst_entry *dst = __sk_dst_get(sk);
226 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
227 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
230 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
232 if (tp->ecn_flags & TCP_ECN_OK)
233 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
236 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
238 if (tcp_hdr(skb)->cwr)
239 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
242 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
244 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
247 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
249 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
250 case INET_ECN_NOT_ECT:
251 /* Funny extension: if ECT is not set on a segment,
252 * and we already seen ECT on a previous segment,
253 * it is probably a retransmit.
255 if (tp->ecn_flags & TCP_ECN_SEEN)
256 tcp_enter_quickack_mode((struct sock *)tp);
259 if (tcp_ca_needs_ecn((struct sock *)tp))
260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
262 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
263 /* Better not delay acks, sender can have a very low cwnd */
264 tcp_enter_quickack_mode((struct sock *)tp);
265 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
267 tp->ecn_flags |= TCP_ECN_SEEN;
270 if (tcp_ca_needs_ecn((struct sock *)tp))
271 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
272 tp->ecn_flags |= TCP_ECN_SEEN;
277 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
279 if (tp->ecn_flags & TCP_ECN_OK)
280 __tcp_ecn_check_ce(tp, skb);
283 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
285 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
286 tp->ecn_flags &= ~TCP_ECN_OK;
289 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
291 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
292 tp->ecn_flags &= ~TCP_ECN_OK;
295 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
297 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
302 /* Buffer size and advertised window tuning.
304 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
307 static void tcp_sndbuf_expand(struct sock *sk)
309 const struct tcp_sock *tp = tcp_sk(sk);
310 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 /* Worst case is non GSO/TSO : each frame consumes one skb
315 * and skb->head is kmalloced using power of two area of memory
317 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
319 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
321 per_mss = roundup_pow_of_two(per_mss) +
322 SKB_DATA_ALIGN(sizeof(struct sk_buff));
324 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
325 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
327 /* Fast Recovery (RFC 5681 3.2) :
328 * Cubic needs 1.7 factor, rounded to 2 to include
329 * extra cushion (application might react slowly to POLLOUT)
331 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
332 sndmem *= nr_segs * per_mss;
334 if (sk->sk_sndbuf < sndmem)
335 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
338 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
340 * All tcp_full_space() is split to two parts: "network" buffer, allocated
341 * forward and advertised in receiver window (tp->rcv_wnd) and
342 * "application buffer", required to isolate scheduling/application
343 * latencies from network.
344 * window_clamp is maximal advertised window. It can be less than
345 * tcp_full_space(), in this case tcp_full_space() - window_clamp
346 * is reserved for "application" buffer. The less window_clamp is
347 * the smoother our behaviour from viewpoint of network, but the lower
348 * throughput and the higher sensitivity of the connection to losses. 8)
350 * rcv_ssthresh is more strict window_clamp used at "slow start"
351 * phase to predict further behaviour of this connection.
352 * It is used for two goals:
353 * - to enforce header prediction at sender, even when application
354 * requires some significant "application buffer". It is check #1.
355 * - to prevent pruning of receive queue because of misprediction
356 * of receiver window. Check #2.
358 * The scheme does not work when sender sends good segments opening
359 * window and then starts to feed us spaghetti. But it should work
360 * in common situations. Otherwise, we have to rely on queue collapsing.
363 /* Slow part of check#2. */
364 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
366 struct tcp_sock *tp = tcp_sk(sk);
368 int truesize = tcp_win_from_space(skb->truesize) >> 1;
369 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
371 while (tp->rcv_ssthresh <= window) {
372 if (truesize <= skb->len)
373 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
381 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
383 struct tcp_sock *tp = tcp_sk(sk);
386 if (tp->rcv_ssthresh < tp->window_clamp &&
387 (int)tp->rcv_ssthresh < tcp_space(sk) &&
388 !tcp_under_memory_pressure(sk)) {
391 /* Check #2. Increase window, if skb with such overhead
392 * will fit to rcvbuf in future.
394 if (tcp_win_from_space(skb->truesize) <= skb->len)
395 incr = 2 * tp->advmss;
397 incr = __tcp_grow_window(sk, skb);
400 incr = max_t(int, incr, 2 * skb->len);
401 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
403 inet_csk(sk)->icsk_ack.quick |= 1;
408 /* 3. Tuning rcvbuf, when connection enters established state. */
409 static void tcp_fixup_rcvbuf(struct sock *sk)
411 u32 mss = tcp_sk(sk)->advmss;
414 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
415 tcp_default_init_rwnd(mss);
417 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
418 * Allow enough cushion so that sender is not limited by our window
420 if (sysctl_tcp_moderate_rcvbuf)
423 if (sk->sk_rcvbuf < rcvmem)
424 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
427 /* 4. Try to fixup all. It is made immediately after connection enters
430 void tcp_init_buffer_space(struct sock *sk)
432 struct tcp_sock *tp = tcp_sk(sk);
435 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
436 tcp_fixup_rcvbuf(sk);
437 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
438 tcp_sndbuf_expand(sk);
440 tp->rcvq_space.space = tp->rcv_wnd;
441 tp->rcvq_space.time = tcp_time_stamp;
442 tp->rcvq_space.seq = tp->copied_seq;
444 maxwin = tcp_full_space(sk);
446 if (tp->window_clamp >= maxwin) {
447 tp->window_clamp = maxwin;
449 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
450 tp->window_clamp = max(maxwin -
451 (maxwin >> sysctl_tcp_app_win),
455 /* Force reservation of one segment. */
456 if (sysctl_tcp_app_win &&
457 tp->window_clamp > 2 * tp->advmss &&
458 tp->window_clamp + tp->advmss > maxwin)
459 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
461 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
462 tp->snd_cwnd_stamp = tcp_time_stamp;
465 /* 5. Recalculate window clamp after socket hit its memory bounds. */
466 static void tcp_clamp_window(struct sock *sk)
468 struct tcp_sock *tp = tcp_sk(sk);
469 struct inet_connection_sock *icsk = inet_csk(sk);
471 icsk->icsk_ack.quick = 0;
473 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
474 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
475 !tcp_under_memory_pressure(sk) &&
476 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
477 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
480 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
481 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
484 /* Initialize RCV_MSS value.
485 * RCV_MSS is an our guess about MSS used by the peer.
486 * We haven't any direct information about the MSS.
487 * It's better to underestimate the RCV_MSS rather than overestimate.
488 * Overestimations make us ACKing less frequently than needed.
489 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
491 void tcp_initialize_rcv_mss(struct sock *sk)
493 const struct tcp_sock *tp = tcp_sk(sk);
494 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
496 hint = min(hint, tp->rcv_wnd / 2);
497 hint = min(hint, TCP_MSS_DEFAULT);
498 hint = max(hint, TCP_MIN_MSS);
500 inet_csk(sk)->icsk_ack.rcv_mss = hint;
502 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
504 /* Receiver "autotuning" code.
506 * The algorithm for RTT estimation w/o timestamps is based on
507 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
508 * <http://public.lanl.gov/radiant/pubs.html#DRS>
510 * More detail on this code can be found at
511 * <http://staff.psc.edu/jheffner/>,
512 * though this reference is out of date. A new paper
515 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
517 u32 new_sample = tp->rcv_rtt_est.rtt;
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
529 * Also, since we are only going for a minimum in the
530 * non-timestamp case, we do not smooth things out
531 * else with timestamps disabled convergence takes too
535 m -= (new_sample >> 3);
543 /* No previous measure. */
547 if (tp->rcv_rtt_est.rtt != new_sample)
548 tp->rcv_rtt_est.rtt = new_sample;
551 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
553 if (tp->rcv_rtt_est.time == 0)
555 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
560 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
561 tp->rcv_rtt_est.time = tcp_time_stamp;
564 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
565 const struct sk_buff *skb)
567 struct tcp_sock *tp = tcp_sk(sk);
568 if (tp->rx_opt.rcv_tsecr &&
569 (TCP_SKB_CB(skb)->end_seq -
570 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
571 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
575 * This function should be called every time data is copied to user space.
576 * It calculates the appropriate TCP receive buffer space.
578 void tcp_rcv_space_adjust(struct sock *sk)
580 struct tcp_sock *tp = tcp_sk(sk);
584 time = tcp_time_stamp - tp->rcvq_space.time;
585 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
588 /* Number of bytes copied to user in last RTT */
589 copied = tp->copied_seq - tp->rcvq_space.seq;
590 if (copied <= tp->rcvq_space.space)
594 * copied = bytes received in previous RTT, our base window
595 * To cope with packet losses, we need a 2x factor
596 * To cope with slow start, and sender growing its cwin by 100 %
597 * every RTT, we need a 4x factor, because the ACK we are sending
598 * now is for the next RTT, not the current one :
599 * <prev RTT . ><current RTT .. ><next RTT .... >
602 if (sysctl_tcp_moderate_rcvbuf &&
603 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
604 int rcvwin, rcvmem, rcvbuf;
606 /* minimal window to cope with packet losses, assuming
607 * steady state. Add some cushion because of small variations.
609 rcvwin = (copied << 1) + 16 * tp->advmss;
611 /* If rate increased by 25%,
612 * assume slow start, rcvwin = 3 * copied
613 * If rate increased by 50%,
614 * assume sender can use 2x growth, rcvwin = 4 * copied
617 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
619 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
622 rcvwin += (rcvwin >> 1);
625 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
626 while (tcp_win_from_space(rcvmem) < tp->advmss)
629 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
630 if (rcvbuf > sk->sk_rcvbuf) {
631 sk->sk_rcvbuf = rcvbuf;
633 /* Make the window clamp follow along. */
634 tp->window_clamp = rcvwin;
637 tp->rcvq_space.space = copied;
640 tp->rcvq_space.seq = tp->copied_seq;
641 tp->rcvq_space.time = tcp_time_stamp;
644 /* There is something which you must keep in mind when you analyze the
645 * behavior of the tp->ato delayed ack timeout interval. When a
646 * connection starts up, we want to ack as quickly as possible. The
647 * problem is that "good" TCP's do slow start at the beginning of data
648 * transmission. The means that until we send the first few ACK's the
649 * sender will sit on his end and only queue most of his data, because
650 * he can only send snd_cwnd unacked packets at any given time. For
651 * each ACK we send, he increments snd_cwnd and transmits more of his
654 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
656 struct tcp_sock *tp = tcp_sk(sk);
657 struct inet_connection_sock *icsk = inet_csk(sk);
660 inet_csk_schedule_ack(sk);
662 tcp_measure_rcv_mss(sk, skb);
664 tcp_rcv_rtt_measure(tp);
666 now = tcp_time_stamp;
668 if (!icsk->icsk_ack.ato) {
669 /* The _first_ data packet received, initialize
670 * delayed ACK engine.
672 tcp_incr_quickack(sk);
673 icsk->icsk_ack.ato = TCP_ATO_MIN;
675 int m = now - icsk->icsk_ack.lrcvtime;
677 if (m <= TCP_ATO_MIN / 2) {
678 /* The fastest case is the first. */
679 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
680 } else if (m < icsk->icsk_ack.ato) {
681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
682 if (icsk->icsk_ack.ato > icsk->icsk_rto)
683 icsk->icsk_ack.ato = icsk->icsk_rto;
684 } else if (m > icsk->icsk_rto) {
685 /* Too long gap. Apparently sender failed to
686 * restart window, so that we send ACKs quickly.
688 tcp_incr_quickack(sk);
692 icsk->icsk_ack.lrcvtime = now;
694 tcp_ecn_check_ce(tp, skb);
697 tcp_grow_window(sk, skb);
700 /* Called to compute a smoothed rtt estimate. The data fed to this
701 * routine either comes from timestamps, or from segments that were
702 * known _not_ to have been retransmitted [see Karn/Partridge
703 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
704 * piece by Van Jacobson.
705 * NOTE: the next three routines used to be one big routine.
706 * To save cycles in the RFC 1323 implementation it was better to break
707 * it up into three procedures. -- erics
709 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
711 struct tcp_sock *tp = tcp_sk(sk);
712 long m = mrtt_us; /* RTT */
713 u32 srtt = tp->srtt_us;
715 /* The following amusing code comes from Jacobson's
716 * article in SIGCOMM '88. Note that rtt and mdev
717 * are scaled versions of rtt and mean deviation.
718 * This is designed to be as fast as possible
719 * m stands for "measurement".
721 * On a 1990 paper the rto value is changed to:
722 * RTO = rtt + 4 * mdev
724 * Funny. This algorithm seems to be very broken.
725 * These formulae increase RTO, when it should be decreased, increase
726 * too slowly, when it should be increased quickly, decrease too quickly
727 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
728 * does not matter how to _calculate_ it. Seems, it was trap
729 * that VJ failed to avoid. 8)
732 m -= (srtt >> 3); /* m is now error in rtt est */
733 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
735 m = -m; /* m is now abs(error) */
736 m -= (tp->mdev_us >> 2); /* similar update on mdev */
737 /* This is similar to one of Eifel findings.
738 * Eifel blocks mdev updates when rtt decreases.
739 * This solution is a bit different: we use finer gain
740 * for mdev in this case (alpha*beta).
741 * Like Eifel it also prevents growth of rto,
742 * but also it limits too fast rto decreases,
743 * happening in pure Eifel.
748 m -= (tp->mdev_us >> 2); /* similar update on mdev */
750 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
751 if (tp->mdev_us > tp->mdev_max_us) {
752 tp->mdev_max_us = tp->mdev_us;
753 if (tp->mdev_max_us > tp->rttvar_us)
754 tp->rttvar_us = tp->mdev_max_us;
756 if (after(tp->snd_una, tp->rtt_seq)) {
757 if (tp->mdev_max_us < tp->rttvar_us)
758 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
759 tp->rtt_seq = tp->snd_nxt;
760 tp->mdev_max_us = tcp_rto_min_us(sk);
763 /* no previous measure. */
764 srtt = m << 3; /* take the measured time to be rtt */
765 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
766 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
767 tp->mdev_max_us = tp->rttvar_us;
768 tp->rtt_seq = tp->snd_nxt;
770 tp->srtt_us = max(1U, srtt);
773 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
774 * Note: TCP stack does not yet implement pacing.
775 * FQ packet scheduler can be used to implement cheap but effective
776 * TCP pacing, to smooth the burst on large writes when packets
777 * in flight is significantly lower than cwnd (or rwin)
779 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
780 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
782 static void tcp_update_pacing_rate(struct sock *sk)
784 const struct tcp_sock *tp = tcp_sk(sk);
787 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
788 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
790 /* current rate is (cwnd * mss) / srtt
791 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
792 * In Congestion Avoidance phase, set it to 120 % the current rate.
794 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
795 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
796 * end of slow start and should slow down.
798 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
799 rate *= sysctl_tcp_pacing_ss_ratio;
801 rate *= sysctl_tcp_pacing_ca_ratio;
803 rate *= max(tp->snd_cwnd, tp->packets_out);
805 if (likely(tp->srtt_us))
806 do_div(rate, tp->srtt_us);
808 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
809 * without any lock. We want to make sure compiler wont store
810 * intermediate values in this location.
812 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
813 sk->sk_max_pacing_rate);
816 /* Calculate rto without backoff. This is the second half of Van Jacobson's
817 * routine referred to above.
819 static void tcp_set_rto(struct sock *sk)
821 const struct tcp_sock *tp = tcp_sk(sk);
822 /* Old crap is replaced with new one. 8)
825 * 1. If rtt variance happened to be less 50msec, it is hallucination.
826 * It cannot be less due to utterly erratic ACK generation made
827 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
828 * to do with delayed acks, because at cwnd>2 true delack timeout
829 * is invisible. Actually, Linux-2.4 also generates erratic
830 * ACKs in some circumstances.
832 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
834 /* 2. Fixups made earlier cannot be right.
835 * If we do not estimate RTO correctly without them,
836 * all the algo is pure shit and should be replaced
837 * with correct one. It is exactly, which we pretend to do.
840 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
841 * guarantees that rto is higher.
846 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
848 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
851 cwnd = TCP_INIT_CWND;
852 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
856 * Packet counting of FACK is based on in-order assumptions, therefore TCP
857 * disables it when reordering is detected
859 void tcp_disable_fack(struct tcp_sock *tp)
861 /* RFC3517 uses different metric in lost marker => reset on change */
863 tp->lost_skb_hint = NULL;
864 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
867 /* Take a notice that peer is sending D-SACKs */
868 static void tcp_dsack_seen(struct tcp_sock *tp)
870 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
873 static void tcp_update_reordering(struct sock *sk, const int metric,
876 struct tcp_sock *tp = tcp_sk(sk);
877 if (metric > tp->reordering) {
880 tp->reordering = min(sysctl_tcp_max_reordering, metric);
882 /* This exciting event is worth to be remembered. 8) */
884 mib_idx = LINUX_MIB_TCPTSREORDER;
885 else if (tcp_is_reno(tp))
886 mib_idx = LINUX_MIB_TCPRENOREORDER;
887 else if (tcp_is_fack(tp))
888 mib_idx = LINUX_MIB_TCPFACKREORDER;
890 mib_idx = LINUX_MIB_TCPSACKREORDER;
892 NET_INC_STATS(sock_net(sk), mib_idx);
893 #if FASTRETRANS_DEBUG > 1
894 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
895 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 tp->undo_marker ? tp->undo_retrans : 0);
901 tcp_disable_fack(tp);
907 /* This must be called before lost_out is incremented */
908 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
910 if (!tp->retransmit_skb_hint ||
911 before(TCP_SKB_CB(skb)->seq,
912 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
913 tp->retransmit_skb_hint = skb;
916 /* Sum the number of packets on the wire we have marked as lost.
917 * There are two cases we care about here:
918 * a) Packet hasn't been marked lost (nor retransmitted),
919 * and this is the first loss.
920 * b) Packet has been marked both lost and retransmitted,
921 * and this means we think it was lost again.
923 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
925 __u8 sacked = TCP_SKB_CB(skb)->sacked;
927 if (!(sacked & TCPCB_LOST) ||
928 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
929 tp->lost += tcp_skb_pcount(skb);
932 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
935 tcp_verify_retransmit_hint(tp, skb);
937 tp->lost_out += tcp_skb_pcount(skb);
938 tcp_sum_lost(tp, skb);
939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
943 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
945 tcp_verify_retransmit_hint(tp, skb);
947 tcp_sum_lost(tp, skb);
948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 tp->lost_out += tcp_skb_pcount(skb);
950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
954 /* This procedure tags the retransmission queue when SACKs arrive.
956 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
957 * Packets in queue with these bits set are counted in variables
958 * sacked_out, retrans_out and lost_out, correspondingly.
960 * Valid combinations are:
961 * Tag InFlight Description
962 * 0 1 - orig segment is in flight.
963 * S 0 - nothing flies, orig reached receiver.
964 * L 0 - nothing flies, orig lost by net.
965 * R 2 - both orig and retransmit are in flight.
966 * L|R 1 - orig is lost, retransmit is in flight.
967 * S|R 1 - orig reached receiver, retrans is still in flight.
968 * (L|S|R is logically valid, it could occur when L|R is sacked,
969 * but it is equivalent to plain S and code short-curcuits it to S.
970 * L|S is logically invalid, it would mean -1 packet in flight 8))
972 * These 6 states form finite state machine, controlled by the following events:
973 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
974 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
975 * 3. Loss detection event of two flavors:
976 * A. Scoreboard estimator decided the packet is lost.
977 * A'. Reno "three dupacks" marks head of queue lost.
978 * A''. Its FACK modification, head until snd.fack is lost.
979 * B. SACK arrives sacking SND.NXT at the moment, when the
980 * segment was retransmitted.
981 * 4. D-SACK added new rule: D-SACK changes any tag to S.
983 * It is pleasant to note, that state diagram turns out to be commutative,
984 * so that we are allowed not to be bothered by order of our actions,
985 * when multiple events arrive simultaneously. (see the function below).
987 * Reordering detection.
988 * --------------------
989 * Reordering metric is maximal distance, which a packet can be displaced
990 * in packet stream. With SACKs we can estimate it:
992 * 1. SACK fills old hole and the corresponding segment was not
993 * ever retransmitted -> reordering. Alas, we cannot use it
994 * when segment was retransmitted.
995 * 2. The last flaw is solved with D-SACK. D-SACK arrives
996 * for retransmitted and already SACKed segment -> reordering..
997 * Both of these heuristics are not used in Loss state, when we cannot
998 * account for retransmits accurately.
1000 * SACK block validation.
1001 * ----------------------
1003 * SACK block range validation checks that the received SACK block fits to
1004 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1005 * Note that SND.UNA is not included to the range though being valid because
1006 * it means that the receiver is rather inconsistent with itself reporting
1007 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1008 * perfectly valid, however, in light of RFC2018 which explicitly states
1009 * that "SACK block MUST reflect the newest segment. Even if the newest
1010 * segment is going to be discarded ...", not that it looks very clever
1011 * in case of head skb. Due to potentional receiver driven attacks, we
1012 * choose to avoid immediate execution of a walk in write queue due to
1013 * reneging and defer head skb's loss recovery to standard loss recovery
1014 * procedure that will eventually trigger (nothing forbids us doing this).
1016 * Implements also blockage to start_seq wrap-around. Problem lies in the
1017 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1018 * there's no guarantee that it will be before snd_nxt (n). The problem
1019 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1022 * <- outs wnd -> <- wrapzone ->
1023 * u e n u_w e_w s n_w
1025 * |<------------+------+----- TCP seqno space --------------+---------->|
1026 * ...-- <2^31 ->| |<--------...
1027 * ...---- >2^31 ------>| |<--------...
1029 * Current code wouldn't be vulnerable but it's better still to discard such
1030 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1031 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1032 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1033 * equal to the ideal case (infinite seqno space without wrap caused issues).
1035 * With D-SACK the lower bound is extended to cover sequence space below
1036 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1037 * again, D-SACK block must not to go across snd_una (for the same reason as
1038 * for the normal SACK blocks, explained above). But there all simplicity
1039 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1040 * fully below undo_marker they do not affect behavior in anyway and can
1041 * therefore be safely ignored. In rare cases (which are more or less
1042 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1043 * fragmentation and packet reordering past skb's retransmission. To consider
1044 * them correctly, the acceptable range must be extended even more though
1045 * the exact amount is rather hard to quantify. However, tp->max_window can
1046 * be used as an exaggerated estimate.
1048 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1049 u32 start_seq, u32 end_seq)
1051 /* Too far in future, or reversed (interpretation is ambiguous) */
1052 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1055 /* Nasty start_seq wrap-around check (see comments above) */
1056 if (!before(start_seq, tp->snd_nxt))
1059 /* In outstanding window? ...This is valid exit for D-SACKs too.
1060 * start_seq == snd_una is non-sensical (see comments above)
1062 if (after(start_seq, tp->snd_una))
1065 if (!is_dsack || !tp->undo_marker)
1068 /* ...Then it's D-SACK, and must reside below snd_una completely */
1069 if (after(end_seq, tp->snd_una))
1072 if (!before(start_seq, tp->undo_marker))
1076 if (!after(end_seq, tp->undo_marker))
1079 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1080 * start_seq < undo_marker and end_seq >= undo_marker.
1082 return !before(start_seq, end_seq - tp->max_window);
1085 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1086 struct tcp_sack_block_wire *sp, int num_sacks,
1089 struct tcp_sock *tp = tcp_sk(sk);
1090 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1091 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1092 bool dup_sack = false;
1094 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1098 } else if (num_sacks > 1) {
1099 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1100 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1102 if (!after(end_seq_0, end_seq_1) &&
1103 !before(start_seq_0, start_seq_1)) {
1106 NET_INC_STATS(sock_net(sk),
1107 LINUX_MIB_TCPDSACKOFORECV);
1111 /* D-SACK for already forgotten data... Do dumb counting. */
1112 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1113 !after(end_seq_0, prior_snd_una) &&
1114 after(end_seq_0, tp->undo_marker))
1120 struct tcp_sacktag_state {
1123 /* Timestamps for earliest and latest never-retransmitted segment
1124 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 * but congestion control should still get an accurate delay signal.
1127 struct skb_mstamp first_sackt;
1128 struct skb_mstamp last_sackt;
1129 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
1130 struct rate_sample *rate;
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135 * the incoming SACK may not exactly match but we can find smaller MSS
1136 * aligned portion of it that matches. Therefore we might need to fragment
1137 * which may fail and creates some hassle (caller must handle error case
1140 * FIXME: this could be merged to shift decision code
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 u32 start_seq, u32 end_seq)
1147 unsigned int pkt_len;
1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 mss = tcp_skb_mss(skb);
1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1168 /* Round if necessary so that SACKs cover only full MSSes
1169 * and/or the remaining small portion (if present)
1171 if (pkt_len > mss) {
1172 unsigned int new_len = (pkt_len / mss) * mss;
1173 if (!in_sack && new_len < pkt_len) {
1175 if (new_len >= skb->len)
1180 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1189 static u8 tcp_sacktag_one(struct sock *sk,
1190 struct tcp_sacktag_state *state, u8 sacked,
1191 u32 start_seq, u32 end_seq,
1192 int dup_sack, int pcount,
1193 const struct skb_mstamp *xmit_time)
1195 struct tcp_sock *tp = tcp_sk(sk);
1196 int fack_count = state->fack_count;
1198 /* Account D-SACK for retransmitted packet. */
1199 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1200 if (tp->undo_marker && tp->undo_retrans > 0 &&
1201 after(end_seq, tp->undo_marker))
1203 if (sacked & TCPCB_SACKED_ACKED)
1204 state->reord = min(fack_count, state->reord);
1207 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1208 if (!after(end_seq, tp->snd_una))
1211 if (!(sacked & TCPCB_SACKED_ACKED)) {
1212 tcp_rack_advance(tp, sacked, end_seq,
1213 xmit_time, &state->ack_time);
1215 if (sacked & TCPCB_SACKED_RETRANS) {
1216 /* If the segment is not tagged as lost,
1217 * we do not clear RETRANS, believing
1218 * that retransmission is still in flight.
1220 if (sacked & TCPCB_LOST) {
1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 tp->lost_out -= pcount;
1223 tp->retrans_out -= pcount;
1226 if (!(sacked & TCPCB_RETRANS)) {
1227 /* New sack for not retransmitted frame,
1228 * which was in hole. It is reordering.
1230 if (before(start_seq,
1231 tcp_highest_sack_seq(tp)))
1232 state->reord = min(fack_count,
1234 if (!after(end_seq, tp->high_seq))
1235 state->flag |= FLAG_ORIG_SACK_ACKED;
1236 if (state->first_sackt.v64 == 0)
1237 state->first_sackt = *xmit_time;
1238 state->last_sackt = *xmit_time;
1241 if (sacked & TCPCB_LOST) {
1242 sacked &= ~TCPCB_LOST;
1243 tp->lost_out -= pcount;
1247 sacked |= TCPCB_SACKED_ACKED;
1248 state->flag |= FLAG_DATA_SACKED;
1249 tp->sacked_out += pcount;
1250 tp->delivered += pcount; /* Out-of-order packets delivered */
1252 fack_count += pcount;
1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 tp->lost_cnt_hint += pcount;
1259 if (fack_count > tp->fackets_out)
1260 tp->fackets_out = fack_count;
1263 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1264 * frames and clear it. undo_retrans is decreased above, L|R frames
1265 * are accounted above as well.
1267 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1268 sacked &= ~TCPCB_SACKED_RETRANS;
1269 tp->retrans_out -= pcount;
1275 /* Shift newly-SACKed bytes from this skb to the immediately previous
1276 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1278 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1279 struct tcp_sacktag_state *state,
1280 unsigned int pcount, int shifted, int mss,
1283 struct tcp_sock *tp = tcp_sk(sk);
1284 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1285 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1286 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1290 /* Adjust counters and hints for the newly sacked sequence
1291 * range but discard the return value since prev is already
1292 * marked. We must tag the range first because the seq
1293 * advancement below implicitly advances
1294 * tcp_highest_sack_seq() when skb is highest_sack.
1296 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1297 start_seq, end_seq, dup_sack, pcount,
1299 tcp_rate_skb_delivered(sk, skb, state->rate);
1301 if (skb == tp->lost_skb_hint)
1302 tp->lost_cnt_hint += pcount;
1304 TCP_SKB_CB(prev)->end_seq += shifted;
1305 TCP_SKB_CB(skb)->seq += shifted;
1307 tcp_skb_pcount_add(prev, pcount);
1308 BUG_ON(tcp_skb_pcount(skb) < pcount);
1309 tcp_skb_pcount_add(skb, -pcount);
1311 /* When we're adding to gso_segs == 1, gso_size will be zero,
1312 * in theory this shouldn't be necessary but as long as DSACK
1313 * code can come after this skb later on it's better to keep
1314 * setting gso_size to something.
1316 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1317 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1319 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1320 if (tcp_skb_pcount(skb) <= 1)
1321 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1323 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1324 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1327 BUG_ON(!tcp_skb_pcount(skb));
1328 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 /* Whole SKB was eaten :-) */
1334 if (skb == tp->retransmit_skb_hint)
1335 tp->retransmit_skb_hint = prev;
1336 if (skb == tp->lost_skb_hint) {
1337 tp->lost_skb_hint = prev;
1338 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1341 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1342 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1344 TCP_SKB_CB(prev)->end_seq++;
1346 if (skb == tcp_highest_sack(sk))
1347 tcp_advance_highest_sack(sk, skb);
1349 tcp_skb_collapse_tstamp(prev, skb);
1350 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1351 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1353 tcp_unlink_write_queue(skb, sk);
1354 sk_wmem_free_skb(sk, skb);
1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1361 /* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1372 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379 struct tcp_sacktag_state *state,
1380 u32 start_seq, u32 end_seq,
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *prev;
1390 if (!sk_can_gso(sk))
1393 /* Normally R but no L won't result in plain S */
1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1397 if (!skb_can_shift(skb))
1399 /* This frame is about to be dropped (was ACKed). */
1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 /* Can only happen with delayed DSACK + discard craziness */
1404 if (unlikely(skb == tcp_write_queue_head(sk)))
1406 prev = tcp_write_queue_prev(sk, skb);
1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 if (!tcp_skb_can_collapse_to(prev))
1414 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1415 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1419 pcount = tcp_skb_pcount(skb);
1420 mss = tcp_skb_seglen(skb);
1422 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1423 * drop this restriction as unnecessary
1425 if (mss != tcp_skb_seglen(prev))
1428 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1430 /* CHECKME: This is non-MSS split case only?, this will
1431 * cause skipped skbs due to advancing loop btw, original
1432 * has that feature too
1434 if (tcp_skb_pcount(skb) <= 1)
1437 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1439 /* TODO: head merge to next could be attempted here
1440 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1441 * though it might not be worth of the additional hassle
1443 * ...we can probably just fallback to what was done
1444 * previously. We could try merging non-SACKed ones
1445 * as well but it probably isn't going to buy off
1446 * because later SACKs might again split them, and
1447 * it would make skb timestamp tracking considerably
1453 len = end_seq - TCP_SKB_CB(skb)->seq;
1455 BUG_ON(len > skb->len);
1457 /* MSS boundaries should be honoured or else pcount will
1458 * severely break even though it makes things bit trickier.
1459 * Optimize common case to avoid most of the divides
1461 mss = tcp_skb_mss(skb);
1463 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1464 * drop this restriction as unnecessary
1466 if (mss != tcp_skb_seglen(prev))
1471 } else if (len < mss) {
1479 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1480 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1483 if (!skb_shift(prev, skb, len))
1485 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1488 /* Hole filled allows collapsing with the next as well, this is very
1489 * useful when hole on every nth skb pattern happens
1491 if (prev == tcp_write_queue_tail(sk))
1493 skb = tcp_write_queue_next(sk, prev);
1495 if (!skb_can_shift(skb) ||
1496 (skb == tcp_send_head(sk)) ||
1497 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1498 (mss != tcp_skb_seglen(skb)))
1502 if (skb_shift(prev, skb, len)) {
1503 pcount += tcp_skb_pcount(skb);
1504 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1508 state->fack_count += pcount;
1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 struct tcp_sack_block *next_dup,
1521 struct tcp_sacktag_state *state,
1522 u32 start_seq, u32 end_seq,
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 struct sk_buff *tmp;
1528 tcp_for_write_queue_from(skb, sk) {
1530 bool dup_sack = dup_sack_in;
1532 if (skb == tcp_send_head(sk))
1535 /* queue is in-order => we can short-circuit the walk early */
1536 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1540 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1541 in_sack = tcp_match_skb_to_sack(sk, skb,
1542 next_dup->start_seq,
1548 /* skb reference here is a bit tricky to get right, since
1549 * shifting can eat and free both this skb and the next,
1550 * so not even _safe variant of the loop is enough.
1553 tmp = tcp_shift_skb_data(sk, skb, state,
1554 start_seq, end_seq, dup_sack);
1563 in_sack = tcp_match_skb_to_sack(sk, skb,
1569 if (unlikely(in_sack < 0))
1573 TCP_SKB_CB(skb)->sacked =
1576 TCP_SKB_CB(skb)->sacked,
1577 TCP_SKB_CB(skb)->seq,
1578 TCP_SKB_CB(skb)->end_seq,
1580 tcp_skb_pcount(skb),
1582 tcp_rate_skb_delivered(sk, skb, state->rate);
1584 if (!before(TCP_SKB_CB(skb)->seq,
1585 tcp_highest_sack_seq(tp)))
1586 tcp_advance_highest_sack(sk, skb);
1589 state->fack_count += tcp_skb_pcount(skb);
1594 /* Avoid all extra work that is being done by sacktag while walking in
1597 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1598 struct tcp_sacktag_state *state,
1601 tcp_for_write_queue_from(skb, sk) {
1602 if (skb == tcp_send_head(sk))
1605 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1608 state->fack_count += tcp_skb_pcount(skb);
1613 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1615 struct tcp_sack_block *next_dup,
1616 struct tcp_sacktag_state *state,
1622 if (before(next_dup->start_seq, skip_to_seq)) {
1623 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1624 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1625 next_dup->start_seq, next_dup->end_seq,
1632 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1634 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1638 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1639 u32 prior_snd_una, struct tcp_sacktag_state *state)
1641 struct tcp_sock *tp = tcp_sk(sk);
1642 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1643 TCP_SKB_CB(ack_skb)->sacked);
1644 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1645 struct tcp_sack_block sp[TCP_NUM_SACKS];
1646 struct tcp_sack_block *cache;
1647 struct sk_buff *skb;
1648 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1650 bool found_dup_sack = false;
1652 int first_sack_index;
1655 state->reord = tp->packets_out;
1657 if (!tp->sacked_out) {
1658 if (WARN_ON(tp->fackets_out))
1659 tp->fackets_out = 0;
1660 tcp_highest_sack_reset(sk);
1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 num_sacks, prior_snd_una);
1665 if (found_dup_sack) {
1666 state->flag |= FLAG_DSACKING_ACK;
1667 tp->delivered++; /* A spurious retransmission is delivered */
1670 /* Eliminate too old ACKs, but take into
1671 * account more or less fresh ones, they can
1672 * contain valid SACK info.
1674 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1677 if (!tp->packets_out)
1681 first_sack_index = 0;
1682 for (i = 0; i < num_sacks; i++) {
1683 bool dup_sack = !i && found_dup_sack;
1685 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1686 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1688 if (!tcp_is_sackblock_valid(tp, dup_sack,
1689 sp[used_sacks].start_seq,
1690 sp[used_sacks].end_seq)) {
1694 if (!tp->undo_marker)
1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1697 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1699 /* Don't count olds caused by ACK reordering */
1700 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1701 !after(sp[used_sacks].end_seq, tp->snd_una))
1703 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1706 NET_INC_STATS(sock_net(sk), mib_idx);
1708 first_sack_index = -1;
1712 /* Ignore very old stuff early */
1713 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1719 /* order SACK blocks to allow in order walk of the retrans queue */
1720 for (i = used_sacks - 1; i > 0; i--) {
1721 for (j = 0; j < i; j++) {
1722 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1723 swap(sp[j], sp[j + 1]);
1725 /* Track where the first SACK block goes to */
1726 if (j == first_sack_index)
1727 first_sack_index = j + 1;
1732 skb = tcp_write_queue_head(sk);
1733 state->fack_count = 0;
1736 if (!tp->sacked_out) {
1737 /* It's already past, so skip checking against it */
1738 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1740 cache = tp->recv_sack_cache;
1741 /* Skip empty blocks in at head of the cache */
1742 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1747 while (i < used_sacks) {
1748 u32 start_seq = sp[i].start_seq;
1749 u32 end_seq = sp[i].end_seq;
1750 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1751 struct tcp_sack_block *next_dup = NULL;
1753 if (found_dup_sack && ((i + 1) == first_sack_index))
1754 next_dup = &sp[i + 1];
1756 /* Skip too early cached blocks */
1757 while (tcp_sack_cache_ok(tp, cache) &&
1758 !before(start_seq, cache->end_seq))
1761 /* Can skip some work by looking recv_sack_cache? */
1762 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1763 after(end_seq, cache->start_seq)) {
1766 if (before(start_seq, cache->start_seq)) {
1767 skb = tcp_sacktag_skip(skb, sk, state,
1769 skb = tcp_sacktag_walk(skb, sk, next_dup,
1776 /* Rest of the block already fully processed? */
1777 if (!after(end_seq, cache->end_seq))
1780 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1784 /* ...tail remains todo... */
1785 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1786 /* ...but better entrypoint exists! */
1787 skb = tcp_highest_sack(sk);
1790 state->fack_count = tp->fackets_out;
1795 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1796 /* Check overlap against next cached too (past this one already) */
1801 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1802 skb = tcp_highest_sack(sk);
1805 state->fack_count = tp->fackets_out;
1807 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1810 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1811 start_seq, end_seq, dup_sack);
1817 /* Clear the head of the cache sack blocks so we can skip it next time */
1818 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1819 tp->recv_sack_cache[i].start_seq = 0;
1820 tp->recv_sack_cache[i].end_seq = 0;
1822 for (j = 0; j < used_sacks; j++)
1823 tp->recv_sack_cache[i++] = sp[j];
1825 if ((state->reord < tp->fackets_out) &&
1826 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1827 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1829 tcp_verify_left_out(tp);
1832 #if FASTRETRANS_DEBUG > 0
1833 WARN_ON((int)tp->sacked_out < 0);
1834 WARN_ON((int)tp->lost_out < 0);
1835 WARN_ON((int)tp->retrans_out < 0);
1836 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1848 holes = max(tp->lost_out, 1U);
1849 holes = min(holes, tp->packets_out);
1851 if ((tp->sacked_out + holes) > tp->packets_out) {
1852 tp->sacked_out = tp->packets_out - holes;
1858 /* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1864 struct tcp_sock *tp = tcp_sk(sk);
1865 if (tcp_limit_reno_sacked(tp))
1866 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1871 static void tcp_add_reno_sack(struct sock *sk)
1873 struct tcp_sock *tp = tcp_sk(sk);
1874 u32 prior_sacked = tp->sacked_out;
1877 tcp_check_reno_reordering(sk, 0);
1878 if (tp->sacked_out > prior_sacked)
1879 tp->delivered++; /* Some out-of-order packet is delivered */
1880 tcp_verify_left_out(tp);
1883 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1885 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1887 struct tcp_sock *tp = tcp_sk(sk);
1890 /* One ACK acked hole. The rest eat duplicate ACKs. */
1891 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1892 if (acked - 1 >= tp->sacked_out)
1895 tp->sacked_out -= acked - 1;
1897 tcp_check_reno_reordering(sk, acked);
1898 tcp_verify_left_out(tp);
1901 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1906 void tcp_clear_retrans(struct tcp_sock *tp)
1908 tp->retrans_out = 0;
1910 tp->undo_marker = 0;
1911 tp->undo_retrans = -1;
1912 tp->fackets_out = 0;
1916 static inline void tcp_init_undo(struct tcp_sock *tp)
1918 tp->undo_marker = tp->snd_una;
1919 /* Retransmission still in flight may cause DSACKs later. */
1920 tp->undo_retrans = tp->retrans_out ? : -1;
1923 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1924 * and reset tags completely, otherwise preserve SACKs. If receiver
1925 * dropped its ofo queue, we will know this due to reneging detection.
1927 void tcp_enter_loss(struct sock *sk)
1929 const struct inet_connection_sock *icsk = inet_csk(sk);
1930 struct tcp_sock *tp = tcp_sk(sk);
1931 struct net *net = sock_net(sk);
1932 struct sk_buff *skb;
1933 bool is_reneg; /* is receiver reneging on SACKs? */
1936 /* Reduce ssthresh if it has not yet been made inside this window. */
1937 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1938 !after(tp->high_seq, tp->snd_una) ||
1939 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1940 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1941 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1942 tcp_ca_event(sk, CA_EVENT_LOSS);
1946 tp->snd_cwnd_cnt = 0;
1947 tp->snd_cwnd_stamp = tcp_time_stamp;
1949 tp->retrans_out = 0;
1952 if (tcp_is_reno(tp))
1953 tcp_reset_reno_sack(tp);
1955 skb = tcp_write_queue_head(sk);
1956 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1958 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1960 tp->fackets_out = 0;
1962 tcp_clear_all_retrans_hints(tp);
1964 tcp_for_write_queue(skb, sk) {
1965 if (skb == tcp_send_head(sk))
1968 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1971 tcp_sum_lost(tp, skb);
1972 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976 tp->lost_out += tcp_skb_pcount(skb);
1979 tcp_verify_left_out(tp);
1981 /* Timeout in disordered state after receiving substantial DUPACKs
1982 * suggests that the degree of reordering is over-estimated.
1984 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1985 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1986 tp->reordering = min_t(unsigned int, tp->reordering,
1987 net->ipv4.sysctl_tcp_reordering);
1988 tcp_set_ca_state(sk, TCP_CA_Loss);
1989 tp->high_seq = tp->snd_nxt;
1990 tcp_ecn_queue_cwr(tp);
1992 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1993 * if a previous recovery is underway, otherwise it may incorrectly
1994 * call a timeout spurious if some previously retransmitted packets
1995 * are s/acked (sec 3.2). We do not apply that retriction since
1996 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
1997 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
1998 * on PTMU discovery to avoid sending new data.
2000 tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size;
2003 /* If ACK arrived pointing to a remembered SACK, it means that our
2004 * remembered SACKs do not reflect real state of receiver i.e.
2005 * receiver _host_ is heavily congested (or buggy).
2007 * To avoid big spurious retransmission bursts due to transient SACK
2008 * scoreboard oddities that look like reneging, we give the receiver a
2009 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2010 * restore sanity to the SACK scoreboard. If the apparent reneging
2011 * persists until this RTO then we'll clear the SACK scoreboard.
2013 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2015 if (flag & FLAG_SACK_RENEGING) {
2016 struct tcp_sock *tp = tcp_sk(sk);
2017 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2018 msecs_to_jiffies(10));
2020 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2021 delay, TCP_RTO_MAX);
2027 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2029 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2033 * counter when SACK is enabled (without SACK, sacked_out is used for
2036 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2037 * segments up to the highest received SACK block so far and holes in
2040 * With reordering, holes may still be in flight, so RFC3517 recovery
2041 * uses pure sacked_out (total number of SACKed segments) even though
2042 * it violates the RFC that uses duplicate ACKs, often these are equal
2043 * but when e.g. out-of-window ACKs or packet duplication occurs,
2044 * they differ. Since neither occurs due to loss, TCP should really
2047 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2049 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2052 /* Linux NewReno/SACK/FACK/ECN state machine.
2053 * --------------------------------------
2055 * "Open" Normal state, no dubious events, fast path.
2056 * "Disorder" In all the respects it is "Open",
2057 * but requires a bit more attention. It is entered when
2058 * we see some SACKs or dupacks. It is split of "Open"
2059 * mainly to move some processing from fast path to slow one.
2060 * "CWR" CWND was reduced due to some Congestion Notification event.
2061 * It can be ECN, ICMP source quench, local device congestion.
2062 * "Recovery" CWND was reduced, we are fast-retransmitting.
2063 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2065 * tcp_fastretrans_alert() is entered:
2066 * - each incoming ACK, if state is not "Open"
2067 * - when arrived ACK is unusual, namely:
2072 * Counting packets in flight is pretty simple.
2074 * in_flight = packets_out - left_out + retrans_out
2076 * packets_out is SND.NXT-SND.UNA counted in packets.
2078 * retrans_out is number of retransmitted segments.
2080 * left_out is number of segments left network, but not ACKed yet.
2082 * left_out = sacked_out + lost_out
2084 * sacked_out: Packets, which arrived to receiver out of order
2085 * and hence not ACKed. With SACKs this number is simply
2086 * amount of SACKed data. Even without SACKs
2087 * it is easy to give pretty reliable estimate of this number,
2088 * counting duplicate ACKs.
2090 * lost_out: Packets lost by network. TCP has no explicit
2091 * "loss notification" feedback from network (for now).
2092 * It means that this number can be only _guessed_.
2093 * Actually, it is the heuristics to predict lossage that
2094 * distinguishes different algorithms.
2096 * F.e. after RTO, when all the queue is considered as lost,
2097 * lost_out = packets_out and in_flight = retrans_out.
2099 * Essentially, we have now a few algorithms detecting
2102 * If the receiver supports SACK:
2104 * RFC6675/3517: It is the conventional algorithm. A packet is
2105 * considered lost if the number of higher sequence packets
2106 * SACKed is greater than or equal the DUPACK thoreshold
2107 * (reordering). This is implemented in tcp_mark_head_lost and
2108 * tcp_update_scoreboard.
2110 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2111 * (2017-) that checks timing instead of counting DUPACKs.
2112 * Essentially a packet is considered lost if it's not S/ACKed
2113 * after RTT + reordering_window, where both metrics are
2114 * dynamically measured and adjusted. This is implemented in
2115 * tcp_rack_mark_lost.
2117 * FACK (Disabled by default. Subsumbed by RACK):
2118 * It is the simplest heuristics. As soon as we decided
2119 * that something is lost, we decide that _all_ not SACKed
2120 * packets until the most forward SACK are lost. I.e.
2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2122 * It is absolutely correct estimate, if network does not reorder
2123 * packets. And it loses any connection to reality when reordering
2124 * takes place. We use FACK by default until reordering
2125 * is suspected on the path to this destination.
2127 * If the receiver does not support SACK:
2129 * NewReno (RFC6582): in Recovery we assume that one segment
2130 * is lost (classic Reno). While we are in Recovery and
2131 * a partial ACK arrives, we assume that one more packet
2132 * is lost (NewReno). This heuristics are the same in NewReno
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2153 /* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2161 struct tcp_sock *tp = tcp_sk(sk);
2163 /* Trick#1: The loss is proven. */
2167 /* Not-A-Trick#2 : Classic rule... */
2168 if (tcp_dupack_heuristics(tp) > tp->reordering)
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2176 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178 * the maximum SACKed segments to pass before reaching this limit.
2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *skb;
2184 int cnt, oldcnt, lost;
2186 /* Use SACK to deduce losses of new sequences sent during recovery */
2187 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2189 WARN_ON(packets > tp->packets_out);
2190 if (tp->lost_skb_hint) {
2191 skb = tp->lost_skb_hint;
2192 cnt = tp->lost_cnt_hint;
2193 /* Head already handled? */
2194 if (mark_head && skb != tcp_write_queue_head(sk))
2197 skb = tcp_write_queue_head(sk);
2201 tcp_for_write_queue_from(skb, sk) {
2202 if (skb == tcp_send_head(sk))
2204 /* TODO: do this better */
2205 /* this is not the most efficient way to do this... */
2206 tp->lost_skb_hint = skb;
2207 tp->lost_cnt_hint = cnt;
2209 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2213 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2214 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2215 cnt += tcp_skb_pcount(skb);
2217 if (cnt > packets) {
2218 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2219 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2220 (oldcnt >= packets))
2223 mss = tcp_skb_mss(skb);
2224 /* If needed, chop off the prefix to mark as lost. */
2225 lost = (packets - oldcnt) * mss;
2226 if (lost < skb->len &&
2227 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2232 tcp_skb_mark_lost(tp, skb);
2237 tcp_verify_left_out(tp);
2240 /* Account newly detected lost packet(s) */
2242 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2244 struct tcp_sock *tp = tcp_sk(sk);
2246 if (tcp_is_reno(tp)) {
2247 tcp_mark_head_lost(sk, 1, 1);
2248 } else if (tcp_is_fack(tp)) {
2249 int lost = tp->fackets_out - tp->reordering;
2252 tcp_mark_head_lost(sk, lost, 0);
2254 int sacked_upto = tp->sacked_out - tp->reordering;
2255 if (sacked_upto >= 0)
2256 tcp_mark_head_lost(sk, sacked_upto, 0);
2257 else if (fast_rexmit)
2258 tcp_mark_head_lost(sk, 1, 1);
2262 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2264 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2265 before(tp->rx_opt.rcv_tsecr, when);
2268 /* skb is spurious retransmitted if the returned timestamp echo
2269 * reply is prior to the skb transmission time
2271 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2272 const struct sk_buff *skb)
2274 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2275 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2278 /* Nothing was retransmitted or returned timestamp is less
2279 * than timestamp of the first retransmission.
2281 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2283 return !tp->retrans_stamp ||
2284 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2287 /* Undo procedures. */
2289 /* We can clear retrans_stamp when there are no retransmissions in the
2290 * window. It would seem that it is trivially available for us in
2291 * tp->retrans_out, however, that kind of assumptions doesn't consider
2292 * what will happen if errors occur when sending retransmission for the
2293 * second time. ...It could the that such segment has only
2294 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2295 * the head skb is enough except for some reneging corner cases that
2296 * are not worth the effort.
2298 * Main reason for all this complexity is the fact that connection dying
2299 * time now depends on the validity of the retrans_stamp, in particular,
2300 * that successive retransmissions of a segment must not advance
2301 * retrans_stamp under any conditions.
2303 static bool tcp_any_retrans_done(const struct sock *sk)
2305 const struct tcp_sock *tp = tcp_sk(sk);
2306 struct sk_buff *skb;
2308 if (tp->retrans_out)
2311 skb = tcp_write_queue_head(sk);
2312 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2318 #if FASTRETRANS_DEBUG > 1
2319 static void DBGUNDO(struct sock *sk, const char *msg)
2321 struct tcp_sock *tp = tcp_sk(sk);
2322 struct inet_sock *inet = inet_sk(sk);
2324 if (sk->sk_family == AF_INET) {
2325 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2327 &inet->inet_daddr, ntohs(inet->inet_dport),
2328 tp->snd_cwnd, tcp_left_out(tp),
2329 tp->snd_ssthresh, tp->prior_ssthresh,
2332 #if IS_ENABLED(CONFIG_IPV6)
2333 else if (sk->sk_family == AF_INET6) {
2334 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2336 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2337 tp->snd_cwnd, tcp_left_out(tp),
2338 tp->snd_ssthresh, tp->prior_ssthresh,
2344 #define DBGUNDO(x...) do { } while (0)
2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2349 struct tcp_sock *tp = tcp_sk(sk);
2352 struct sk_buff *skb;
2354 tcp_for_write_queue(skb, sk) {
2355 if (skb == tcp_send_head(sk))
2357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2360 tcp_clear_all_retrans_hints(tp);
2363 if (tp->prior_ssthresh) {
2364 const struct inet_connection_sock *icsk = inet_csk(sk);
2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2368 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2369 tp->snd_ssthresh = tp->prior_ssthresh;
2370 tcp_ecn_withdraw_cwr(tp);
2373 tp->snd_cwnd_stamp = tcp_time_stamp;
2374 tp->undo_marker = 0;
2377 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2379 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2382 /* People celebrate: "We love our President!" */
2383 static bool tcp_try_undo_recovery(struct sock *sk)
2385 struct tcp_sock *tp = tcp_sk(sk);
2387 if (tcp_may_undo(tp)) {
2390 /* Happy end! We did not retransmit anything
2391 * or our original transmission succeeded.
2393 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2394 tcp_undo_cwnd_reduction(sk, false);
2395 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2396 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2398 mib_idx = LINUX_MIB_TCPFULLUNDO;
2400 NET_INC_STATS(sock_net(sk), mib_idx);
2402 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2403 /* Hold old state until something *above* high_seq
2404 * is ACKed. For Reno it is MUST to prevent false
2405 * fast retransmits (RFC2582). SACK TCP is safe. */
2406 if (!tcp_any_retrans_done(sk))
2407 tp->retrans_stamp = 0;
2410 tcp_set_ca_state(sk, TCP_CA_Open);
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock *sk)
2417 struct tcp_sock *tp = tcp_sk(sk);
2419 if (tp->undo_marker && !tp->undo_retrans) {
2420 DBGUNDO(sk, "D-SACK");
2421 tcp_undo_cwnd_reduction(sk, false);
2422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2431 struct tcp_sock *tp = tcp_sk(sk);
2433 if (frto_undo || tcp_may_undo(tp)) {
2434 tcp_undo_cwnd_reduction(sk, true);
2436 DBGUNDO(sk, "partial loss");
2437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2439 NET_INC_STATS(sock_net(sk),
2440 LINUX_MIB_TCPSPURIOUSRTOS);
2441 inet_csk(sk)->icsk_retransmits = 0;
2442 if (frto_undo || tcp_is_sack(tp))
2443 tcp_set_ca_state(sk, TCP_CA_Open);
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450 * It computes the number of packets to send (sndcnt) based on packets newly
2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2453 * cwnd reductions across a full RTT.
2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2455 * But when the retransmits are acked without further losses, PRR
2456 * slow starts cwnd up to ssthresh to speed up the recovery.
2458 static void tcp_init_cwnd_reduction(struct sock *sk)
2460 struct tcp_sock *tp = tcp_sk(sk);
2462 tp->high_seq = tp->snd_nxt;
2463 tp->tlp_high_seq = 0;
2464 tp->snd_cwnd_cnt = 0;
2465 tp->prior_cwnd = tp->snd_cwnd;
2466 tp->prr_delivered = 0;
2468 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469 tcp_ecn_queue_cwr(tp);
2472 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2474 struct tcp_sock *tp = tcp_sk(sk);
2476 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2478 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481 tp->prr_delivered += newly_acked_sacked;
2483 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2485 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2486 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2487 !(flag & FLAG_LOST_RETRANS)) {
2488 sndcnt = min_t(int, delta,
2489 max_t(int, tp->prr_delivered - tp->prr_out,
2490 newly_acked_sacked) + 1);
2492 sndcnt = min(delta, newly_acked_sacked);
2494 /* Force a fast retransmit upon entering fast recovery */
2495 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2496 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2501 struct tcp_sock *tp = tcp_sk(sk);
2503 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2508 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2509 tp->snd_cwnd = tp->snd_ssthresh;
2510 tp->snd_cwnd_stamp = tcp_time_stamp;
2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock *sk)
2518 struct tcp_sock *tp = tcp_sk(sk);
2520 tp->prior_ssthresh = 0;
2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522 tp->undo_marker = 0;
2523 tcp_init_cwnd_reduction(sk);
2524 tcp_set_ca_state(sk, TCP_CA_CWR);
2527 EXPORT_SYMBOL(tcp_enter_cwr);
2529 static void tcp_try_keep_open(struct sock *sk)
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 int state = TCP_CA_Open;
2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535 state = TCP_CA_Disorder;
2537 if (inet_csk(sk)->icsk_ca_state != state) {
2538 tcp_set_ca_state(sk, state);
2539 tp->high_seq = tp->snd_nxt;
2543 static void tcp_try_to_open(struct sock *sk, int flag)
2545 struct tcp_sock *tp = tcp_sk(sk);
2547 tcp_verify_left_out(tp);
2549 if (!tcp_any_retrans_done(sk))
2550 tp->retrans_stamp = 0;
2552 if (flag & FLAG_ECE)
2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556 tcp_try_keep_open(sk);
2560 static void tcp_mtup_probe_failed(struct sock *sk)
2562 struct inet_connection_sock *icsk = inet_csk(sk);
2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565 icsk->icsk_mtup.probe_size = 0;
2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2569 static void tcp_mtup_probe_success(struct sock *sk)
2571 struct tcp_sock *tp = tcp_sk(sk);
2572 struct inet_connection_sock *icsk = inet_csk(sk);
2574 /* FIXME: breaks with very large cwnd */
2575 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576 tp->snd_cwnd = tp->snd_cwnd *
2577 tcp_mss_to_mtu(sk, tp->mss_cache) /
2578 icsk->icsk_mtup.probe_size;
2579 tp->snd_cwnd_cnt = 0;
2580 tp->snd_cwnd_stamp = tcp_time_stamp;
2581 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584 icsk->icsk_mtup.probe_size = 0;
2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590 * tcp_timer. This is used for path mtu discovery.
2591 * The socket is already locked here.
2593 void tcp_simple_retransmit(struct sock *sk)
2595 const struct inet_connection_sock *icsk = inet_csk(sk);
2596 struct tcp_sock *tp = tcp_sk(sk);
2597 struct sk_buff *skb;
2598 unsigned int mss = tcp_current_mss(sk);
2599 u32 prior_lost = tp->lost_out;
2601 tcp_for_write_queue(skb, sk) {
2602 if (skb == tcp_send_head(sk))
2604 if (tcp_skb_seglen(skb) > mss &&
2605 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2607 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2608 tp->retrans_out -= tcp_skb_pcount(skb);
2610 tcp_skb_mark_lost_uncond_verify(tp, skb);
2614 tcp_clear_retrans_hints_partial(tp);
2616 if (prior_lost == tp->lost_out)
2619 if (tcp_is_reno(tp))
2620 tcp_limit_reno_sacked(tp);
2622 tcp_verify_left_out(tp);
2624 /* Don't muck with the congestion window here.
2625 * Reason is that we do not increase amount of _data_
2626 * in network, but units changed and effective
2627 * cwnd/ssthresh really reduced now.
2629 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2630 tp->high_seq = tp->snd_nxt;
2631 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632 tp->prior_ssthresh = 0;
2633 tp->undo_marker = 0;
2634 tcp_set_ca_state(sk, TCP_CA_Loss);
2636 tcp_xmit_retransmit_queue(sk);
2638 EXPORT_SYMBOL(tcp_simple_retransmit);
2640 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2642 struct tcp_sock *tp = tcp_sk(sk);
2645 if (tcp_is_reno(tp))
2646 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2648 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2650 NET_INC_STATS(sock_net(sk), mib_idx);
2652 tp->prior_ssthresh = 0;
2655 if (!tcp_in_cwnd_reduction(sk)) {
2657 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2658 tcp_init_cwnd_reduction(sk);
2660 tcp_set_ca_state(sk, TCP_CA_Recovery);
2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2669 struct tcp_sock *tp = tcp_sk(sk);
2670 bool recovered = !before(tp->snd_una, tp->high_seq);
2672 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673 tcp_try_undo_loss(sk, false))
2676 /* The ACK (s)acks some never-retransmitted data meaning not all
2677 * the data packets before the timeout were lost. Therefore we
2678 * undo the congestion window and state. This is essentially
2679 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2680 * a retransmitted skb is permantly marked, we can apply such an
2681 * operation even if F-RTO was not used.
2683 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2684 tcp_try_undo_loss(sk, tp->undo_marker))
2687 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2688 if (after(tp->snd_nxt, tp->high_seq)) {
2689 if (flag & FLAG_DATA_SACKED || is_dupack)
2690 tp->frto = 0; /* Step 3.a. loss was real */
2691 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2692 tp->high_seq = tp->snd_nxt;
2693 /* Step 2.b. Try send new data (but deferred until cwnd
2694 * is updated in tcp_ack()). Otherwise fall back to
2695 * the conventional recovery.
2697 if (tcp_send_head(sk) &&
2698 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2699 *rexmit = REXMIT_NEW;
2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 tcp_try_undo_recovery(sk);
2711 if (tcp_is_reno(tp)) {
2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 * delivered. Lower inflight to clock out (re)tranmissions.
2715 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2716 tcp_add_reno_sack(sk);
2717 else if (flag & FLAG_SND_UNA_ADVANCED)
2718 tcp_reset_reno_sack(tp);
2720 *rexmit = REXMIT_LOST;
2723 /* Undo during fast recovery after partial ACK. */
2724 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2726 struct tcp_sock *tp = tcp_sk(sk);
2728 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit.
2732 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2734 /* We are getting evidence that the reordering degree is higher
2735 * than we realized. If there are no retransmits out then we
2736 * can undo. Otherwise we clock out new packets but do not
2737 * mark more packets lost or retransmit more.
2739 if (tp->retrans_out)
2742 if (!tcp_any_retrans_done(sk))
2743 tp->retrans_stamp = 0;
2745 DBGUNDO(sk, "partial recovery");
2746 tcp_undo_cwnd_reduction(sk, true);
2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748 tcp_try_keep_open(sk);
2754 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag,
2755 const struct skb_mstamp *ack_time)
2757 struct tcp_sock *tp = tcp_sk(sk);
2759 /* Use RACK to detect loss */
2760 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2761 u32 prior_retrans = tp->retrans_out;
2763 tcp_rack_mark_lost(sk, ack_time);
2764 if (prior_retrans > tp->retrans_out)
2765 *ack_flag |= FLAG_LOST_RETRANS;
2769 /* Process an event, which can update packets-in-flight not trivially.
2770 * Main goal of this function is to calculate new estimate for left_out,
2771 * taking into account both packets sitting in receiver's buffer and
2772 * packets lost by network.
2774 * Besides that it updates the congestion state when packet loss or ECN
2775 * is detected. But it does not reduce the cwnd, it is done by the
2776 * congestion control later.
2778 * It does _not_ decide what to send, it is made in function
2779 * tcp_xmit_retransmit_queue().
2781 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2782 bool is_dupack, int *ack_flag, int *rexmit,
2783 const struct skb_mstamp *ack_time)
2785 struct inet_connection_sock *icsk = inet_csk(sk);
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 int fast_rexmit = 0, flag = *ack_flag;
2788 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2789 (tcp_fackets_out(tp) > tp->reordering));
2791 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2793 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2794 tp->fackets_out = 0;
2796 /* Now state machine starts.
2797 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2798 if (flag & FLAG_ECE)
2799 tp->prior_ssthresh = 0;
2801 /* B. In all the states check for reneging SACKs. */
2802 if (tcp_check_sack_reneging(sk, flag))
2805 /* C. Check consistency of the current state. */
2806 tcp_verify_left_out(tp);
2808 /* D. Check state exit conditions. State can be terminated
2809 * when high_seq is ACKed. */
2810 if (icsk->icsk_ca_state == TCP_CA_Open) {
2811 WARN_ON(tp->retrans_out != 0);
2812 tp->retrans_stamp = 0;
2813 } else if (!before(tp->snd_una, tp->high_seq)) {
2814 switch (icsk->icsk_ca_state) {
2816 /* CWR is to be held something *above* high_seq
2817 * is ACKed for CWR bit to reach receiver. */
2818 if (tp->snd_una != tp->high_seq) {
2819 tcp_end_cwnd_reduction(sk);
2820 tcp_set_ca_state(sk, TCP_CA_Open);
2824 case TCP_CA_Recovery:
2825 if (tcp_is_reno(tp))
2826 tcp_reset_reno_sack(tp);
2827 if (tcp_try_undo_recovery(sk))
2829 tcp_end_cwnd_reduction(sk);
2834 /* E. Process state. */
2835 switch (icsk->icsk_ca_state) {
2836 case TCP_CA_Recovery:
2837 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2838 if (tcp_is_reno(tp) && is_dupack)
2839 tcp_add_reno_sack(sk);
2841 if (tcp_try_undo_partial(sk, acked))
2843 /* Partial ACK arrived. Force fast retransmit. */
2844 do_lost = tcp_is_reno(tp) ||
2845 tcp_fackets_out(tp) > tp->reordering;
2847 if (tcp_try_undo_dsack(sk)) {
2848 tcp_try_keep_open(sk);
2851 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2854 tcp_process_loss(sk, flag, is_dupack, rexmit);
2855 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2856 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2857 (*ack_flag & FLAG_LOST_RETRANS)))
2859 /* Change state if cwnd is undone or retransmits are lost */
2861 if (tcp_is_reno(tp)) {
2862 if (flag & FLAG_SND_UNA_ADVANCED)
2863 tcp_reset_reno_sack(tp);
2865 tcp_add_reno_sack(sk);
2868 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2869 tcp_try_undo_dsack(sk);
2871 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2872 if (!tcp_time_to_recover(sk, flag)) {
2873 tcp_try_to_open(sk, flag);
2877 /* MTU probe failure: don't reduce cwnd */
2878 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2879 icsk->icsk_mtup.probe_size &&
2880 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2881 tcp_mtup_probe_failed(sk);
2882 /* Restores the reduction we did in tcp_mtup_probe() */
2884 tcp_simple_retransmit(sk);
2888 /* Otherwise enter Recovery state */
2889 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2894 tcp_update_scoreboard(sk, fast_rexmit);
2895 *rexmit = REXMIT_LOST;
2898 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2900 struct tcp_sock *tp = tcp_sk(sk);
2901 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2903 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2904 rtt_us ? : jiffies_to_usecs(1));
2907 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2908 long seq_rtt_us, long sack_rtt_us,
2911 const struct tcp_sock *tp = tcp_sk(sk);
2913 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2914 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2915 * Karn's algorithm forbids taking RTT if some retransmitted data
2916 * is acked (RFC6298).
2919 seq_rtt_us = sack_rtt_us;
2921 /* RTTM Rule: A TSecr value received in a segment is used to
2922 * update the averaged RTT measurement only if the segment
2923 * acknowledges some new data, i.e., only if it advances the
2924 * left edge of the send window.
2925 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2927 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2929 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2930 tp->rx_opt.rcv_tsecr);
2934 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2935 * always taken together with ACK, SACK, or TS-opts. Any negative
2936 * values will be skipped with the seq_rtt_us < 0 check above.
2938 tcp_update_rtt_min(sk, ca_rtt_us);
2939 tcp_rtt_estimator(sk, seq_rtt_us);
2942 /* RFC6298: only reset backoff on valid RTT measurement. */
2943 inet_csk(sk)->icsk_backoff = 0;
2947 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2948 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2952 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2953 struct skb_mstamp now;
2955 skb_mstamp_get(&now);
2956 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2959 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2963 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2965 const struct inet_connection_sock *icsk = inet_csk(sk);
2967 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2968 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2971 /* Restart timer after forward progress on connection.
2972 * RFC2988 recommends to restart timer to now+rto.
2974 void tcp_rearm_rto(struct sock *sk)
2976 const struct inet_connection_sock *icsk = inet_csk(sk);
2977 struct tcp_sock *tp = tcp_sk(sk);
2979 /* If the retrans timer is currently being used by Fast Open
2980 * for SYN-ACK retrans purpose, stay put.
2982 if (tp->fastopen_rsk)
2985 if (!tp->packets_out) {
2986 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2988 u32 rto = inet_csk(sk)->icsk_rto;
2989 /* Offset the time elapsed after installing regular RTO */
2990 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2991 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2992 struct sk_buff *skb = tcp_write_queue_head(sk);
2993 const u32 rto_time_stamp =
2994 tcp_skb_timestamp(skb) + rto;
2995 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2996 /* delta may not be positive if the socket is locked
2997 * when the retrans timer fires and is rescheduled.
3002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3007 /* If we get here, the whole TSO packet has not been acked. */
3008 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3010 struct tcp_sock *tp = tcp_sk(sk);
3013 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3015 packets_acked = tcp_skb_pcount(skb);
3016 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3018 packets_acked -= tcp_skb_pcount(skb);
3020 if (packets_acked) {
3021 BUG_ON(tcp_skb_pcount(skb) == 0);
3022 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3025 return packets_acked;
3028 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3031 const struct skb_shared_info *shinfo;
3033 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3034 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3037 shinfo = skb_shinfo(skb);
3038 if (!before(shinfo->tskey, prior_snd_una) &&
3039 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3040 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3043 /* Remove acknowledged frames from the retransmission queue. If our packet
3044 * is before the ack sequence we can discard it as it's confirmed to have
3045 * arrived at the other end.
3047 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3048 u32 prior_snd_una, int *acked,
3049 struct tcp_sacktag_state *sack)
3051 const struct inet_connection_sock *icsk = inet_csk(sk);
3052 struct skb_mstamp first_ackt, last_ackt;
3053 struct skb_mstamp *now = &sack->ack_time;
3054 struct tcp_sock *tp = tcp_sk(sk);
3055 u32 prior_sacked = tp->sacked_out;
3056 u32 reord = tp->packets_out;
3057 bool fully_acked = true;
3058 long sack_rtt_us = -1L;
3059 long seq_rtt_us = -1L;
3060 long ca_rtt_us = -1L;
3061 struct sk_buff *skb;
3063 u32 last_in_flight = 0;
3069 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3070 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3071 u8 sacked = scb->sacked;
3074 tcp_ack_tstamp(sk, skb, prior_snd_una);
3076 /* Determine how many packets and what bytes were acked, tso and else */
3077 if (after(scb->end_seq, tp->snd_una)) {
3078 if (tcp_skb_pcount(skb) == 1 ||
3079 !after(tp->snd_una, scb->seq))
3082 acked_pcount = tcp_tso_acked(sk, skb);
3085 fully_acked = false;
3087 /* Speedup tcp_unlink_write_queue() and next loop */
3088 prefetchw(skb->next);
3089 acked_pcount = tcp_skb_pcount(skb);
3092 if (unlikely(sacked & TCPCB_RETRANS)) {
3093 if (sacked & TCPCB_SACKED_RETRANS)
3094 tp->retrans_out -= acked_pcount;
3095 flag |= FLAG_RETRANS_DATA_ACKED;
3096 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3097 last_ackt = skb->skb_mstamp;
3098 WARN_ON_ONCE(last_ackt.v64 == 0);
3099 if (!first_ackt.v64)
3100 first_ackt = last_ackt;
3102 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3103 reord = min(pkts_acked, reord);
3104 if (!after(scb->end_seq, tp->high_seq))
3105 flag |= FLAG_ORIG_SACK_ACKED;
3108 if (sacked & TCPCB_SACKED_ACKED) {
3109 tp->sacked_out -= acked_pcount;
3110 } else if (tcp_is_sack(tp)) {
3111 tp->delivered += acked_pcount;
3112 if (!tcp_skb_spurious_retrans(tp, skb))
3113 tcp_rack_advance(tp, sacked, scb->end_seq,
3117 if (sacked & TCPCB_LOST)
3118 tp->lost_out -= acked_pcount;
3120 tp->packets_out -= acked_pcount;
3121 pkts_acked += acked_pcount;
3122 tcp_rate_skb_delivered(sk, skb, sack->rate);
3124 /* Initial outgoing SYN's get put onto the write_queue
3125 * just like anything else we transmit. It is not
3126 * true data, and if we misinform our callers that
3127 * this ACK acks real data, we will erroneously exit
3128 * connection startup slow start one packet too
3129 * quickly. This is severely frowned upon behavior.
3131 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3132 flag |= FLAG_DATA_ACKED;
3134 flag |= FLAG_SYN_ACKED;
3135 tp->retrans_stamp = 0;
3141 tcp_unlink_write_queue(skb, sk);
3142 sk_wmem_free_skb(sk, skb);
3143 if (unlikely(skb == tp->retransmit_skb_hint))
3144 tp->retransmit_skb_hint = NULL;
3145 if (unlikely(skb == tp->lost_skb_hint))
3146 tp->lost_skb_hint = NULL;
3150 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3152 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3153 tp->snd_up = tp->snd_una;
3155 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3156 flag |= FLAG_SACK_RENEGING;
3158 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3159 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3160 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3162 if (sack->first_sackt.v64) {
3163 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3164 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3166 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3167 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3170 if (flag & FLAG_ACKED) {
3172 if (unlikely(icsk->icsk_mtup.probe_size &&
3173 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3174 tcp_mtup_probe_success(sk);
3177 if (tcp_is_reno(tp)) {
3178 tcp_remove_reno_sacks(sk, pkts_acked);
3182 /* Non-retransmitted hole got filled? That's reordering */
3183 if (reord < prior_fackets)
3184 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3186 delta = tcp_is_fack(tp) ? pkts_acked :
3187 prior_sacked - tp->sacked_out;
3188 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3191 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3193 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3194 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3195 /* Do not re-arm RTO if the sack RTT is measured from data sent
3196 * after when the head was last (re)transmitted. Otherwise the
3197 * timeout may continue to extend in loss recovery.
3202 if (icsk->icsk_ca_ops->pkts_acked) {
3203 struct ack_sample sample = { .pkts_acked = pkts_acked,
3204 .rtt_us = ca_rtt_us,
3205 .in_flight = last_in_flight };
3207 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3210 #if FASTRETRANS_DEBUG > 0
3211 WARN_ON((int)tp->sacked_out < 0);
3212 WARN_ON((int)tp->lost_out < 0);
3213 WARN_ON((int)tp->retrans_out < 0);
3214 if (!tp->packets_out && tcp_is_sack(tp)) {
3215 icsk = inet_csk(sk);
3217 pr_debug("Leak l=%u %d\n",
3218 tp->lost_out, icsk->icsk_ca_state);
3221 if (tp->sacked_out) {
3222 pr_debug("Leak s=%u %d\n",
3223 tp->sacked_out, icsk->icsk_ca_state);
3226 if (tp->retrans_out) {
3227 pr_debug("Leak r=%u %d\n",
3228 tp->retrans_out, icsk->icsk_ca_state);
3229 tp->retrans_out = 0;
3233 *acked = pkts_acked;
3237 static void tcp_ack_probe(struct sock *sk)
3239 const struct tcp_sock *tp = tcp_sk(sk);
3240 struct inet_connection_sock *icsk = inet_csk(sk);
3242 /* Was it a usable window open? */
3244 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3245 icsk->icsk_backoff = 0;
3246 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3247 /* Socket must be waked up by subsequent tcp_data_snd_check().
3248 * This function is not for random using!
3251 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3253 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3258 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3260 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3261 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3264 /* Decide wheather to run the increase function of congestion control. */
3265 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3267 /* If reordering is high then always grow cwnd whenever data is
3268 * delivered regardless of its ordering. Otherwise stay conservative
3269 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3270 * new SACK or ECE mark may first advance cwnd here and later reduce
3271 * cwnd in tcp_fastretrans_alert() based on more states.
3273 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3274 return flag & FLAG_FORWARD_PROGRESS;
3276 return flag & FLAG_DATA_ACKED;
3279 /* The "ultimate" congestion control function that aims to replace the rigid
3280 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3281 * It's called toward the end of processing an ACK with precise rate
3282 * information. All transmission or retransmission are delayed afterwards.
3284 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3285 int flag, const struct rate_sample *rs)
3287 const struct inet_connection_sock *icsk = inet_csk(sk);
3289 if (icsk->icsk_ca_ops->cong_control) {
3290 icsk->icsk_ca_ops->cong_control(sk, rs);
3294 if (tcp_in_cwnd_reduction(sk)) {
3295 /* Reduce cwnd if state mandates */
3296 tcp_cwnd_reduction(sk, acked_sacked, flag);
3297 } else if (tcp_may_raise_cwnd(sk, flag)) {
3298 /* Advance cwnd if state allows */
3299 tcp_cong_avoid(sk, ack, acked_sacked);
3301 tcp_update_pacing_rate(sk);
3304 /* Check that window update is acceptable.
3305 * The function assumes that snd_una<=ack<=snd_next.
3307 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3308 const u32 ack, const u32 ack_seq,
3311 return after(ack, tp->snd_una) ||
3312 after(ack_seq, tp->snd_wl1) ||
3313 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3316 /* If we update tp->snd_una, also update tp->bytes_acked */
3317 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3319 u32 delta = ack - tp->snd_una;
3321 sock_owned_by_me((struct sock *)tp);
3322 tp->bytes_acked += delta;
3326 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3327 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3329 u32 delta = seq - tp->rcv_nxt;
3331 sock_owned_by_me((struct sock *)tp);
3332 tp->bytes_received += delta;
3336 /* Update our send window.
3338 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3339 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3341 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3344 struct tcp_sock *tp = tcp_sk(sk);
3346 u32 nwin = ntohs(tcp_hdr(skb)->window);
3348 if (likely(!tcp_hdr(skb)->syn))
3349 nwin <<= tp->rx_opt.snd_wscale;
3351 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3352 flag |= FLAG_WIN_UPDATE;
3353 tcp_update_wl(tp, ack_seq);
3355 if (tp->snd_wnd != nwin) {
3358 /* Note, it is the only place, where
3359 * fast path is recovered for sending TCP.
3362 tcp_fast_path_check(sk);
3364 if (tcp_send_head(sk))
3365 tcp_slow_start_after_idle_check(sk);
3367 if (nwin > tp->max_window) {
3368 tp->max_window = nwin;
3369 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3374 tcp_snd_una_update(tp, ack);
3379 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3380 u32 *last_oow_ack_time)
3382 if (*last_oow_ack_time) {
3383 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3385 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3386 NET_INC_STATS(net, mib_idx);
3387 return true; /* rate-limited: don't send yet! */
3391 *last_oow_ack_time = tcp_time_stamp;
3393 return false; /* not rate-limited: go ahead, send dupack now! */
3396 /* Return true if we're currently rate-limiting out-of-window ACKs and
3397 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3398 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3399 * attacks that send repeated SYNs or ACKs for the same connection. To
3400 * do this, we do not send a duplicate SYNACK or ACK if the remote
3401 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3403 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3404 int mib_idx, u32 *last_oow_ack_time)
3406 /* Data packets without SYNs are not likely part of an ACK loop. */
3407 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3411 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3414 /* RFC 5961 7 [ACK Throttling] */
3415 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3417 /* unprotected vars, we dont care of overwrites */
3418 static u32 challenge_timestamp;
3419 static unsigned int challenge_count;
3420 struct tcp_sock *tp = tcp_sk(sk);
3423 /* First check our per-socket dupack rate limit. */
3424 if (__tcp_oow_rate_limited(sock_net(sk),
3425 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3426 &tp->last_oow_ack_time))
3429 /* Then check host-wide RFC 5961 rate limit. */
3431 if (now != challenge_timestamp) {
3432 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3434 challenge_timestamp = now;
3435 WRITE_ONCE(challenge_count, half +
3436 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3438 count = READ_ONCE(challenge_count);
3440 WRITE_ONCE(challenge_count, count - 1);
3441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3446 static void tcp_store_ts_recent(struct tcp_sock *tp)
3448 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3449 tp->rx_opt.ts_recent_stamp = get_seconds();
3452 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3454 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3455 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3456 * extra check below makes sure this can only happen
3457 * for pure ACK frames. -DaveM
3459 * Not only, also it occurs for expired timestamps.
3462 if (tcp_paws_check(&tp->rx_opt, 0))
3463 tcp_store_ts_recent(tp);
3467 /* This routine deals with acks during a TLP episode.
3468 * We mark the end of a TLP episode on receiving TLP dupack or when
3469 * ack is after tlp_high_seq.
3470 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3472 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3474 struct tcp_sock *tp = tcp_sk(sk);
3476 if (before(ack, tp->tlp_high_seq))
3479 if (flag & FLAG_DSACKING_ACK) {
3480 /* This DSACK means original and TLP probe arrived; no loss */
3481 tp->tlp_high_seq = 0;
3482 } else if (after(ack, tp->tlp_high_seq)) {
3483 /* ACK advances: there was a loss, so reduce cwnd. Reset
3484 * tlp_high_seq in tcp_init_cwnd_reduction()
3486 tcp_init_cwnd_reduction(sk);
3487 tcp_set_ca_state(sk, TCP_CA_CWR);
3488 tcp_end_cwnd_reduction(sk);
3489 tcp_try_keep_open(sk);
3490 NET_INC_STATS(sock_net(sk),
3491 LINUX_MIB_TCPLOSSPROBERECOVERY);
3492 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3493 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3494 /* Pure dupack: original and TLP probe arrived; no loss */
3495 tp->tlp_high_seq = 0;
3499 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3501 const struct inet_connection_sock *icsk = inet_csk(sk);
3503 if (icsk->icsk_ca_ops->in_ack_event)
3504 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3507 /* Congestion control has updated the cwnd already. So if we're in
3508 * loss recovery then now we do any new sends (for FRTO) or
3509 * retransmits (for CA_Loss or CA_recovery) that make sense.
3511 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3513 struct tcp_sock *tp = tcp_sk(sk);
3515 if (rexmit == REXMIT_NONE)
3518 if (unlikely(rexmit == 2)) {
3519 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3521 if (after(tp->snd_nxt, tp->high_seq))
3525 tcp_xmit_retransmit_queue(sk);
3528 /* This routine deals with incoming acks, but not outgoing ones. */
3529 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3531 struct inet_connection_sock *icsk = inet_csk(sk);
3532 struct tcp_sock *tp = tcp_sk(sk);
3533 struct tcp_sacktag_state sack_state;
3534 struct rate_sample rs = { .prior_delivered = 0 };
3535 u32 prior_snd_una = tp->snd_una;
3536 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3537 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3538 bool is_dupack = false;
3540 int prior_packets = tp->packets_out;
3541 u32 delivered = tp->delivered;
3542 u32 lost = tp->lost;
3543 int acked = 0; /* Number of packets newly acked */
3544 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3546 sack_state.first_sackt.v64 = 0;
3547 sack_state.rate = &rs;
3549 /* We very likely will need to access write queue head. */
3550 prefetchw(sk->sk_write_queue.next);
3552 /* If the ack is older than previous acks
3553 * then we can probably ignore it.
3555 if (before(ack, prior_snd_una)) {
3556 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3557 if (before(ack, prior_snd_una - tp->max_window)) {
3558 tcp_send_challenge_ack(sk, skb);
3564 /* If the ack includes data we haven't sent yet, discard
3565 * this segment (RFC793 Section 3.9).
3567 if (after(ack, tp->snd_nxt))
3570 skb_mstamp_get(&sack_state.ack_time);
3572 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3575 if (after(ack, prior_snd_una)) {
3576 flag |= FLAG_SND_UNA_ADVANCED;
3577 icsk->icsk_retransmits = 0;
3580 prior_fackets = tp->fackets_out;
3581 rs.prior_in_flight = tcp_packets_in_flight(tp);
3583 /* ts_recent update must be made after we are sure that the packet
3586 if (flag & FLAG_UPDATE_TS_RECENT)
3587 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3589 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3590 /* Window is constant, pure forward advance.
3591 * No more checks are required.
3592 * Note, we use the fact that SND.UNA>=SND.WL2.
3594 tcp_update_wl(tp, ack_seq);
3595 tcp_snd_una_update(tp, ack);
3596 flag |= FLAG_WIN_UPDATE;
3598 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3602 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3604 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3609 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3611 if (TCP_SKB_CB(skb)->sacked)
3612 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3615 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3617 ack_ev_flags |= CA_ACK_ECE;
3620 if (flag & FLAG_WIN_UPDATE)
3621 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3623 tcp_in_ack_event(sk, ack_ev_flags);
3626 /* We passed data and got it acked, remove any soft error
3627 * log. Something worked...
3629 sk->sk_err_soft = 0;
3630 icsk->icsk_probes_out = 0;
3631 tp->rcv_tstamp = tcp_time_stamp;
3635 /* See if we can take anything off of the retransmit queue. */
3636 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3639 if (tcp_ack_is_dubious(sk, flag)) {
3640 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3641 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3642 &sack_state.ack_time);
3644 if (tp->tlp_high_seq)
3645 tcp_process_tlp_ack(sk, ack, flag);
3647 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3648 struct dst_entry *dst = __sk_dst_get(sk);
3653 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3654 tcp_schedule_loss_probe(sk);
3655 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3656 lost = tp->lost - lost; /* freshly marked lost */
3657 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time,
3659 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3660 tcp_xmit_recovery(sk, rexmit);
3664 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3665 if (flag & FLAG_DSACKING_ACK)
3666 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3667 &sack_state.ack_time);
3668 /* If this ack opens up a zero window, clear backoff. It was
3669 * being used to time the probes, and is probably far higher than
3670 * it needs to be for normal retransmission.
3672 if (tcp_send_head(sk))
3675 if (tp->tlp_high_seq)
3676 tcp_process_tlp_ack(sk, ack, flag);
3680 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3684 /* If data was SACKed, tag it and see if we should send more data.
3685 * If data was DSACKed, see if we can undo a cwnd reduction.
3687 if (TCP_SKB_CB(skb)->sacked) {
3688 skb_mstamp_get(&sack_state.ack_time);
3689 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3691 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3692 &sack_state.ack_time);
3693 tcp_xmit_recovery(sk, rexmit);
3696 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3700 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3701 bool syn, struct tcp_fastopen_cookie *foc,
3704 /* Valid only in SYN or SYN-ACK with an even length. */
3705 if (!foc || !syn || len < 0 || (len & 1))
3708 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3709 len <= TCP_FASTOPEN_COOKIE_MAX)
3710 memcpy(foc->val, cookie, len);
3717 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3718 * But, this can also be called on packets in the established flow when
3719 * the fast version below fails.
3721 void tcp_parse_options(const struct sk_buff *skb,
3722 struct tcp_options_received *opt_rx, int estab,
3723 struct tcp_fastopen_cookie *foc)
3725 const unsigned char *ptr;
3726 const struct tcphdr *th = tcp_hdr(skb);
3727 int length = (th->doff * 4) - sizeof(struct tcphdr);
3729 ptr = (const unsigned char *)(th + 1);
3730 opt_rx->saw_tstamp = 0;
3732 while (length > 0) {
3733 int opcode = *ptr++;
3739 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3744 if (opsize < 2) /* "silly options" */
3746 if (opsize > length)
3747 return; /* don't parse partial options */
3750 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3751 u16 in_mss = get_unaligned_be16(ptr);
3753 if (opt_rx->user_mss &&
3754 opt_rx->user_mss < in_mss)
3755 in_mss = opt_rx->user_mss;
3756 opt_rx->mss_clamp = in_mss;
3761 if (opsize == TCPOLEN_WINDOW && th->syn &&
3762 !estab && sysctl_tcp_window_scaling) {
3763 __u8 snd_wscale = *(__u8 *)ptr;
3764 opt_rx->wscale_ok = 1;
3765 if (snd_wscale > 14) {
3766 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3771 opt_rx->snd_wscale = snd_wscale;
3774 case TCPOPT_TIMESTAMP:
3775 if ((opsize == TCPOLEN_TIMESTAMP) &&
3776 ((estab && opt_rx->tstamp_ok) ||
3777 (!estab && sysctl_tcp_timestamps))) {
3778 opt_rx->saw_tstamp = 1;
3779 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3780 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3783 case TCPOPT_SACK_PERM:
3784 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3785 !estab && sysctl_tcp_sack) {
3786 opt_rx->sack_ok = TCP_SACK_SEEN;
3787 tcp_sack_reset(opt_rx);
3792 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3793 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3795 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3798 #ifdef CONFIG_TCP_MD5SIG
3801 * The MD5 Hash has already been
3802 * checked (see tcp_v{4,6}_do_rcv()).
3806 case TCPOPT_FASTOPEN:
3807 tcp_parse_fastopen_option(
3808 opsize - TCPOLEN_FASTOPEN_BASE,
3809 ptr, th->syn, foc, false);
3813 /* Fast Open option shares code 254 using a
3814 * 16 bits magic number.
3816 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3817 get_unaligned_be16(ptr) ==
3818 TCPOPT_FASTOPEN_MAGIC)
3819 tcp_parse_fastopen_option(opsize -
3820 TCPOLEN_EXP_FASTOPEN_BASE,
3821 ptr + 2, th->syn, foc, true);
3830 EXPORT_SYMBOL(tcp_parse_options);
3832 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3834 const __be32 *ptr = (const __be32 *)(th + 1);
3836 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3837 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3838 tp->rx_opt.saw_tstamp = 1;
3840 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3843 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3845 tp->rx_opt.rcv_tsecr = 0;
3851 /* Fast parse options. This hopes to only see timestamps.
3852 * If it is wrong it falls back on tcp_parse_options().
3854 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3855 const struct tcphdr *th, struct tcp_sock *tp)
3857 /* In the spirit of fast parsing, compare doff directly to constant
3858 * values. Because equality is used, short doff can be ignored here.
3860 if (th->doff == (sizeof(*th) / 4)) {
3861 tp->rx_opt.saw_tstamp = 0;
3863 } else if (tp->rx_opt.tstamp_ok &&
3864 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3865 if (tcp_parse_aligned_timestamp(tp, th))
3869 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3870 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3871 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3876 #ifdef CONFIG_TCP_MD5SIG
3878 * Parse MD5 Signature option
3880 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3882 int length = (th->doff << 2) - sizeof(*th);
3883 const u8 *ptr = (const u8 *)(th + 1);
3885 /* If the TCP option is too short, we can short cut */
3886 if (length < TCPOLEN_MD5SIG)
3889 while (length > 0) {
3890 int opcode = *ptr++;
3901 if (opsize < 2 || opsize > length)
3903 if (opcode == TCPOPT_MD5SIG)
3904 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3911 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3914 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3916 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3917 * it can pass through stack. So, the following predicate verifies that
3918 * this segment is not used for anything but congestion avoidance or
3919 * fast retransmit. Moreover, we even are able to eliminate most of such
3920 * second order effects, if we apply some small "replay" window (~RTO)
3921 * to timestamp space.
3923 * All these measures still do not guarantee that we reject wrapped ACKs
3924 * on networks with high bandwidth, when sequence space is recycled fastly,
3925 * but it guarantees that such events will be very rare and do not affect
3926 * connection seriously. This doesn't look nice, but alas, PAWS is really
3929 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3930 * states that events when retransmit arrives after original data are rare.
3931 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3932 * the biggest problem on large power networks even with minor reordering.
3933 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3934 * up to bandwidth of 18Gigabit/sec. 8) ]
3937 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3939 const struct tcp_sock *tp = tcp_sk(sk);
3940 const struct tcphdr *th = tcp_hdr(skb);
3941 u32 seq = TCP_SKB_CB(skb)->seq;
3942 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3944 return (/* 1. Pure ACK with correct sequence number. */
3945 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3947 /* 2. ... and duplicate ACK. */
3948 ack == tp->snd_una &&
3950 /* 3. ... and does not update window. */
3951 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3953 /* 4. ... and sits in replay window. */
3954 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3957 static inline bool tcp_paws_discard(const struct sock *sk,
3958 const struct sk_buff *skb)
3960 const struct tcp_sock *tp = tcp_sk(sk);
3962 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3963 !tcp_disordered_ack(sk, skb);
3966 /* Check segment sequence number for validity.
3968 * Segment controls are considered valid, if the segment
3969 * fits to the window after truncation to the window. Acceptability
3970 * of data (and SYN, FIN, of course) is checked separately.
3971 * See tcp_data_queue(), for example.
3973 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3974 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3975 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3976 * (borrowed from freebsd)
3979 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3981 return !before(end_seq, tp->rcv_wup) &&
3982 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3985 /* When we get a reset we do this. */
3986 void tcp_reset(struct sock *sk)
3988 /* We want the right error as BSD sees it (and indeed as we do). */
3989 switch (sk->sk_state) {
3991 sk->sk_err = ECONNREFUSED;
3993 case TCP_CLOSE_WAIT:
3999 sk->sk_err = ECONNRESET;
4001 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4004 if (!sock_flag(sk, SOCK_DEAD))
4005 sk->sk_error_report(sk);
4011 * Process the FIN bit. This now behaves as it is supposed to work
4012 * and the FIN takes effect when it is validly part of sequence
4013 * space. Not before when we get holes.
4015 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4016 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4019 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4020 * close and we go into CLOSING (and later onto TIME-WAIT)
4022 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4024 void tcp_fin(struct sock *sk)
4026 struct tcp_sock *tp = tcp_sk(sk);
4028 inet_csk_schedule_ack(sk);
4030 sk->sk_shutdown |= RCV_SHUTDOWN;
4031 sock_set_flag(sk, SOCK_DONE);
4033 switch (sk->sk_state) {
4035 case TCP_ESTABLISHED:
4036 /* Move to CLOSE_WAIT */
4037 tcp_set_state(sk, TCP_CLOSE_WAIT);
4038 inet_csk(sk)->icsk_ack.pingpong = 1;
4041 case TCP_CLOSE_WAIT:
4043 /* Received a retransmission of the FIN, do
4048 /* RFC793: Remain in the LAST-ACK state. */
4052 /* This case occurs when a simultaneous close
4053 * happens, we must ack the received FIN and
4054 * enter the CLOSING state.
4057 tcp_set_state(sk, TCP_CLOSING);
4060 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4062 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4065 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4066 * cases we should never reach this piece of code.
4068 pr_err("%s: Impossible, sk->sk_state=%d\n",
4069 __func__, sk->sk_state);
4073 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4074 * Probably, we should reset in this case. For now drop them.
4076 skb_rbtree_purge(&tp->out_of_order_queue);
4077 if (tcp_is_sack(tp))
4078 tcp_sack_reset(&tp->rx_opt);
4081 if (!sock_flag(sk, SOCK_DEAD)) {
4082 sk->sk_state_change(sk);
4084 /* Do not send POLL_HUP for half duplex close. */
4085 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4086 sk->sk_state == TCP_CLOSE)
4087 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4089 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4096 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4097 if (before(seq, sp->start_seq))
4098 sp->start_seq = seq;
4099 if (after(end_seq, sp->end_seq))
4100 sp->end_seq = end_seq;
4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4108 struct tcp_sock *tp = tcp_sk(sk);
4110 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4113 if (before(seq, tp->rcv_nxt))
4114 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4116 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4118 NET_INC_STATS(sock_net(sk), mib_idx);
4120 tp->rx_opt.dsack = 1;
4121 tp->duplicate_sack[0].start_seq = seq;
4122 tp->duplicate_sack[0].end_seq = end_seq;
4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4128 struct tcp_sock *tp = tcp_sk(sk);
4130 if (!tp->rx_opt.dsack)
4131 tcp_dsack_set(sk, seq, end_seq);
4133 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4138 struct tcp_sock *tp = tcp_sk(sk);
4140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4141 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4142 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4143 tcp_enter_quickack_mode(sk);
4145 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4146 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4148 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4149 end_seq = tp->rcv_nxt;
4150 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4157 /* These routines update the SACK block as out-of-order packets arrive or
4158 * in-order packets close up the sequence space.
4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4163 struct tcp_sack_block *sp = &tp->selective_acks[0];
4164 struct tcp_sack_block *swalk = sp + 1;
4166 /* See if the recent change to the first SACK eats into
4167 * or hits the sequence space of other SACK blocks, if so coalesce.
4169 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4170 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4173 /* Zap SWALK, by moving every further SACK up by one slot.
4174 * Decrease num_sacks.
4176 tp->rx_opt.num_sacks--;
4177 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4181 this_sack++, swalk++;
4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4187 struct tcp_sock *tp = tcp_sk(sk);
4188 struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 int cur_sacks = tp->rx_opt.num_sacks;
4195 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4196 if (tcp_sack_extend(sp, seq, end_seq)) {
4197 /* Rotate this_sack to the first one. */
4198 for (; this_sack > 0; this_sack--, sp--)
4199 swap(*sp, *(sp - 1));
4201 tcp_sack_maybe_coalesce(tp);
4206 /* Could not find an adjacent existing SACK, build a new one,
4207 * put it at the front, and shift everyone else down. We
4208 * always know there is at least one SACK present already here.
4210 * If the sack array is full, forget about the last one.
4212 if (this_sack >= TCP_NUM_SACKS) {
4214 tp->rx_opt.num_sacks--;
4217 for (; this_sack > 0; this_sack--, sp--)
4221 /* Build the new head SACK, and we're done. */
4222 sp->start_seq = seq;
4223 sp->end_seq = end_seq;
4224 tp->rx_opt.num_sacks++;
4227 /* RCV.NXT advances, some SACKs should be eaten. */
4229 static void tcp_sack_remove(struct tcp_sock *tp)
4231 struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 int num_sacks = tp->rx_opt.num_sacks;
4235 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4236 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4237 tp->rx_opt.num_sacks = 0;
4241 for (this_sack = 0; this_sack < num_sacks;) {
4242 /* Check if the start of the sack is covered by RCV.NXT. */
4243 if (!before(tp->rcv_nxt, sp->start_seq)) {
4246 /* RCV.NXT must cover all the block! */
4247 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4249 /* Zap this SACK, by moving forward any other SACKS. */
4250 for (i = this_sack+1; i < num_sacks; i++)
4251 tp->selective_acks[i-1] = tp->selective_acks[i];
4258 tp->rx_opt.num_sacks = num_sacks;
4262 * tcp_try_coalesce - try to merge skb to prior one
4265 * @from: buffer to add in queue
4266 * @fragstolen: pointer to boolean
4268 * Before queueing skb @from after @to, try to merge them
4269 * to reduce overall memory use and queue lengths, if cost is small.
4270 * Packets in ofo or receive queues can stay a long time.
4271 * Better try to coalesce them right now to avoid future collapses.
4272 * Returns true if caller should free @from instead of queueing it
4274 static bool tcp_try_coalesce(struct sock *sk,
4276 struct sk_buff *from,
4281 *fragstolen = false;
4283 /* Its possible this segment overlaps with prior segment in queue */
4284 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4287 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4290 atomic_add(delta, &sk->sk_rmem_alloc);
4291 sk_mem_charge(sk, delta);
4292 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4293 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4294 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4295 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4299 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4301 sk_drops_add(sk, skb);
4305 /* This one checks to see if we can put data from the
4306 * out_of_order queue into the receive_queue.
4308 static void tcp_ofo_queue(struct sock *sk)
4310 struct tcp_sock *tp = tcp_sk(sk);
4311 __u32 dsack_high = tp->rcv_nxt;
4312 bool fin, fragstolen, eaten;
4313 struct sk_buff *skb, *tail;
4316 p = rb_first(&tp->out_of_order_queue);
4318 skb = rb_entry(p, struct sk_buff, rbnode);
4319 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4322 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4323 __u32 dsack = dsack_high;
4324 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4325 dsack_high = TCP_SKB_CB(skb)->end_seq;
4326 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4329 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4331 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4332 SOCK_DEBUG(sk, "ofo packet was already received\n");
4336 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4337 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4338 TCP_SKB_CB(skb)->end_seq);
4340 tail = skb_peek_tail(&sk->sk_receive_queue);
4341 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4342 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4343 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4345 __skb_queue_tail(&sk->sk_receive_queue, skb);
4347 kfree_skb_partial(skb, fragstolen);
4349 if (unlikely(fin)) {
4351 /* tcp_fin() purges tp->out_of_order_queue,
4352 * so we must end this loop right now.
4359 static bool tcp_prune_ofo_queue(struct sock *sk);
4360 static int tcp_prune_queue(struct sock *sk);
4362 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4365 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4366 !sk_rmem_schedule(sk, skb, size)) {
4368 if (tcp_prune_queue(sk) < 0)
4371 while (!sk_rmem_schedule(sk, skb, size)) {
4372 if (!tcp_prune_ofo_queue(sk))
4379 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4381 struct tcp_sock *tp = tcp_sk(sk);
4382 struct rb_node **p, *q, *parent;
4383 struct sk_buff *skb1;
4387 tcp_ecn_check_ce(tp, skb);
4389 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4390 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4395 /* Disable header prediction. */
4397 inet_csk_schedule_ack(sk);
4399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4400 seq = TCP_SKB_CB(skb)->seq;
4401 end_seq = TCP_SKB_CB(skb)->end_seq;
4402 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4403 tp->rcv_nxt, seq, end_seq);
4405 p = &tp->out_of_order_queue.rb_node;
4406 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4407 /* Initial out of order segment, build 1 SACK. */
4408 if (tcp_is_sack(tp)) {
4409 tp->rx_opt.num_sacks = 1;
4410 tp->selective_acks[0].start_seq = seq;
4411 tp->selective_acks[0].end_seq = end_seq;
4413 rb_link_node(&skb->rbnode, NULL, p);
4414 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4415 tp->ooo_last_skb = skb;
4419 /* In the typical case, we are adding an skb to the end of the list.
4420 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4422 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4424 tcp_grow_window(sk, skb);
4425 kfree_skb_partial(skb, fragstolen);
4429 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4430 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4431 parent = &tp->ooo_last_skb->rbnode;
4432 p = &parent->rb_right;
4436 /* Find place to insert this segment. Handle overlaps on the way. */
4440 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4441 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4442 p = &parent->rb_left;
4445 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4446 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4447 /* All the bits are present. Drop. */
4448 NET_INC_STATS(sock_net(sk),
4449 LINUX_MIB_TCPOFOMERGE);
4452 tcp_dsack_set(sk, seq, end_seq);
4455 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4456 /* Partial overlap. */
4457 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4459 /* skb's seq == skb1's seq and skb covers skb1.
4460 * Replace skb1 with skb.
4462 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4463 &tp->out_of_order_queue);
4464 tcp_dsack_extend(sk,
4465 TCP_SKB_CB(skb1)->seq,
4466 TCP_SKB_CB(skb1)->end_seq);
4467 NET_INC_STATS(sock_net(sk),
4468 LINUX_MIB_TCPOFOMERGE);
4472 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4475 p = &parent->rb_right;
4478 /* Insert segment into RB tree. */
4479 rb_link_node(&skb->rbnode, parent, p);
4480 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4483 /* Remove other segments covered by skb. */
4484 while ((q = rb_next(&skb->rbnode)) != NULL) {
4485 skb1 = rb_entry(q, struct sk_buff, rbnode);
4487 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4489 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4494 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496 TCP_SKB_CB(skb1)->end_seq);
4497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4500 /* If there is no skb after us, we are the last_skb ! */
4502 tp->ooo_last_skb = skb;
4505 if (tcp_is_sack(tp))
4506 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4509 tcp_grow_window(sk, skb);
4511 skb_set_owner_r(skb, sk);
4515 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4519 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4521 __skb_pull(skb, hdrlen);
4523 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4526 __skb_queue_tail(&sk->sk_receive_queue, skb);
4527 skb_set_owner_r(skb, sk);
4532 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4534 struct sk_buff *skb;
4542 if (size > PAGE_SIZE) {
4543 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4545 data_len = npages << PAGE_SHIFT;
4546 size = data_len + (size & ~PAGE_MASK);
4548 skb = alloc_skb_with_frags(size - data_len, data_len,
4549 PAGE_ALLOC_COSTLY_ORDER,
4550 &err, sk->sk_allocation);
4554 skb_put(skb, size - data_len);
4555 skb->data_len = data_len;
4558 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4561 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4565 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4569 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570 WARN_ON_ONCE(fragstolen); /* should not happen */
4582 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4584 struct tcp_sock *tp = tcp_sk(sk);
4585 bool fragstolen = false;
4588 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4593 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4595 tcp_ecn_accept_cwr(tp, skb);
4597 tp->rx_opt.dsack = 0;
4599 /* Queue data for delivery to the user.
4600 * Packets in sequence go to the receive queue.
4601 * Out of sequence packets to the out_of_order_queue.
4603 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4604 if (tcp_receive_window(tp) == 0)
4607 /* Ok. In sequence. In window. */
4608 if (tp->ucopy.task == current &&
4609 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4610 sock_owned_by_user(sk) && !tp->urg_data) {
4611 int chunk = min_t(unsigned int, skb->len,
4614 __set_current_state(TASK_RUNNING);
4616 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617 tp->ucopy.len -= chunk;
4618 tp->copied_seq += chunk;
4619 eaten = (chunk == skb->len);
4620 tcp_rcv_space_adjust(sk);
4627 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4628 sk_forced_mem_schedule(sk, skb->truesize);
4629 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4632 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636 tcp_event_data_recv(sk, skb);
4637 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4640 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4643 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4644 * gap in queue is filled.
4646 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4647 inet_csk(sk)->icsk_ack.pingpong = 0;
4650 if (tp->rx_opt.num_sacks)
4651 tcp_sack_remove(tp);
4653 tcp_fast_path_check(sk);
4656 kfree_skb_partial(skb, fragstolen);
4657 if (!sock_flag(sk, SOCK_DEAD))
4658 sk->sk_data_ready(sk);
4662 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4663 /* A retransmit, 2nd most common case. Force an immediate ack. */
4664 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4665 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4668 tcp_enter_quickack_mode(sk);
4669 inet_csk_schedule_ack(sk);
4675 /* Out of window. F.e. zero window probe. */
4676 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4679 tcp_enter_quickack_mode(sk);
4681 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4682 /* Partial packet, seq < rcv_next < end_seq */
4683 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4684 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4685 TCP_SKB_CB(skb)->end_seq);
4687 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689 /* If window is closed, drop tail of packet. But after
4690 * remembering D-SACK for its head made in previous line.
4692 if (!tcp_receive_window(tp))
4697 tcp_data_queue_ofo(sk, skb);
4700 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4703 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4705 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4708 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4709 struct sk_buff_head *list,
4710 struct rb_root *root)
4712 struct sk_buff *next = tcp_skb_next(skb, list);
4715 __skb_unlink(skb, list);
4717 rb_erase(&skb->rbnode, root);
4720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4725 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4726 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4728 struct rb_node **p = &root->rb_node;
4729 struct rb_node *parent = NULL;
4730 struct sk_buff *skb1;
4734 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4735 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4736 p = &parent->rb_left;
4738 p = &parent->rb_right;
4740 rb_link_node(&skb->rbnode, parent, p);
4741 rb_insert_color(&skb->rbnode, root);
4744 /* Collapse contiguous sequence of skbs head..tail with
4745 * sequence numbers start..end.
4747 * If tail is NULL, this means until the end of the queue.
4749 * Segments with FIN/SYN are not collapsed (only because this
4753 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4754 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4756 struct sk_buff *skb = head, *n;
4757 struct sk_buff_head tmp;
4760 /* First, check that queue is collapsible and find
4761 * the point where collapsing can be useful.
4764 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4765 n = tcp_skb_next(skb, list);
4767 /* No new bits? It is possible on ofo queue. */
4768 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4769 skb = tcp_collapse_one(sk, skb, list, root);
4775 /* The first skb to collapse is:
4777 * - bloated or contains data before "start" or
4778 * overlaps to the next one.
4780 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4781 (tcp_win_from_space(skb->truesize) > skb->len ||
4782 before(TCP_SKB_CB(skb)->seq, start))) {
4783 end_of_skbs = false;
4787 if (n && n != tail &&
4788 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4789 end_of_skbs = false;
4793 /* Decided to skip this, advance start seq. */
4794 start = TCP_SKB_CB(skb)->end_seq;
4797 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4800 __skb_queue_head_init(&tmp);
4802 while (before(start, end)) {
4803 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4804 struct sk_buff *nskb;
4806 nskb = alloc_skb(copy, GFP_ATOMIC);
4810 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4811 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4813 __skb_queue_before(list, skb, nskb);
4815 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4816 skb_set_owner_r(nskb, sk);
4818 /* Copy data, releasing collapsed skbs. */
4820 int offset = start - TCP_SKB_CB(skb)->seq;
4821 int size = TCP_SKB_CB(skb)->end_seq - start;
4825 size = min(copy, size);
4826 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4828 TCP_SKB_CB(nskb)->end_seq += size;
4832 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4833 skb = tcp_collapse_one(sk, skb, list, root);
4836 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4842 skb_queue_walk_safe(&tmp, skb, n)
4843 tcp_rbtree_insert(root, skb);
4846 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4847 * and tcp_collapse() them until all the queue is collapsed.
4849 static void tcp_collapse_ofo_queue(struct sock *sk)
4851 struct tcp_sock *tp = tcp_sk(sk);
4852 struct sk_buff *skb, *head;
4856 p = rb_first(&tp->out_of_order_queue);
4857 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4860 p = rb_last(&tp->out_of_order_queue);
4861 /* Note: This is possible p is NULL here. We do not
4862 * use rb_entry_safe(), as ooo_last_skb is valid only
4863 * if rbtree is not empty.
4865 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4868 start = TCP_SKB_CB(skb)->seq;
4869 end = TCP_SKB_CB(skb)->end_seq;
4871 for (head = skb;;) {
4872 skb = tcp_skb_next(skb, NULL);
4874 /* Range is terminated when we see a gap or when
4875 * we are at the queue end.
4878 after(TCP_SKB_CB(skb)->seq, end) ||
4879 before(TCP_SKB_CB(skb)->end_seq, start)) {
4880 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4881 head, skb, start, end);
4885 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4886 start = TCP_SKB_CB(skb)->seq;
4887 if (after(TCP_SKB_CB(skb)->end_seq, end))
4888 end = TCP_SKB_CB(skb)->end_seq;
4893 * Clean the out-of-order queue to make room.
4894 * We drop high sequences packets to :
4895 * 1) Let a chance for holes to be filled.
4896 * 2) not add too big latencies if thousands of packets sit there.
4897 * (But if application shrinks SO_RCVBUF, we could still end up
4898 * freeing whole queue here)
4900 * Return true if queue has shrunk.
4902 static bool tcp_prune_ofo_queue(struct sock *sk)
4904 struct tcp_sock *tp = tcp_sk(sk);
4905 struct rb_node *node, *prev;
4907 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4910 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4911 node = &tp->ooo_last_skb->rbnode;
4913 prev = rb_prev(node);
4914 rb_erase(node, &tp->out_of_order_queue);
4915 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4918 !tcp_under_memory_pressure(sk))
4922 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4924 /* Reset SACK state. A conforming SACK implementation will
4925 * do the same at a timeout based retransmit. When a connection
4926 * is in a sad state like this, we care only about integrity
4927 * of the connection not performance.
4929 if (tp->rx_opt.sack_ok)
4930 tcp_sack_reset(&tp->rx_opt);
4934 /* Reduce allocated memory if we can, trying to get
4935 * the socket within its memory limits again.
4937 * Return less than zero if we should start dropping frames
4938 * until the socket owning process reads some of the data
4939 * to stabilize the situation.
4941 static int tcp_prune_queue(struct sock *sk)
4943 struct tcp_sock *tp = tcp_sk(sk);
4945 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4947 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4949 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4950 tcp_clamp_window(sk);
4951 else if (tcp_under_memory_pressure(sk))
4952 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4954 tcp_collapse_ofo_queue(sk);
4955 if (!skb_queue_empty(&sk->sk_receive_queue))
4956 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4957 skb_peek(&sk->sk_receive_queue),
4959 tp->copied_seq, tp->rcv_nxt);
4962 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4965 /* Collapsing did not help, destructive actions follow.
4966 * This must not ever occur. */
4968 tcp_prune_ofo_queue(sk);
4970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4973 /* If we are really being abused, tell the caller to silently
4974 * drop receive data on the floor. It will get retransmitted
4975 * and hopefully then we'll have sufficient space.
4977 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4979 /* Massive buffer overcommit. */
4984 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4986 const struct tcp_sock *tp = tcp_sk(sk);
4988 /* If the user specified a specific send buffer setting, do
4991 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4994 /* If we are under global TCP memory pressure, do not expand. */
4995 if (tcp_under_memory_pressure(sk))
4998 /* If we are under soft global TCP memory pressure, do not expand. */
4999 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5002 /* If we filled the congestion window, do not expand. */
5003 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5009 /* When incoming ACK allowed to free some skb from write_queue,
5010 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5011 * on the exit from tcp input handler.
5013 * PROBLEM: sndbuf expansion does not work well with largesend.
5015 static void tcp_new_space(struct sock *sk)
5017 struct tcp_sock *tp = tcp_sk(sk);
5019 if (tcp_should_expand_sndbuf(sk)) {
5020 tcp_sndbuf_expand(sk);
5021 tp->snd_cwnd_stamp = tcp_time_stamp;
5024 sk->sk_write_space(sk);
5027 static void tcp_check_space(struct sock *sk)
5029 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5030 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5031 /* pairs with tcp_poll() */
5033 if (sk->sk_socket &&
5034 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5036 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5037 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5042 static inline void tcp_data_snd_check(struct sock *sk)
5044 tcp_push_pending_frames(sk);
5045 tcp_check_space(sk);
5049 * Check if sending an ack is needed.
5051 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5053 struct tcp_sock *tp = tcp_sk(sk);
5055 /* More than one full frame received... */
5056 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5057 /* ... and right edge of window advances far enough.
5058 * (tcp_recvmsg() will send ACK otherwise). Or...
5060 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5061 /* We ACK each frame or... */
5062 tcp_in_quickack_mode(sk) ||
5063 /* We have out of order data. */
5064 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5065 /* Then ack it now */
5068 /* Else, send delayed ack. */
5069 tcp_send_delayed_ack(sk);
5073 static inline void tcp_ack_snd_check(struct sock *sk)
5075 if (!inet_csk_ack_scheduled(sk)) {
5076 /* We sent a data segment already. */
5079 __tcp_ack_snd_check(sk, 1);
5083 * This routine is only called when we have urgent data
5084 * signaled. Its the 'slow' part of tcp_urg. It could be
5085 * moved inline now as tcp_urg is only called from one
5086 * place. We handle URGent data wrong. We have to - as
5087 * BSD still doesn't use the correction from RFC961.
5088 * For 1003.1g we should support a new option TCP_STDURG to permit
5089 * either form (or just set the sysctl tcp_stdurg).
5092 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5094 struct tcp_sock *tp = tcp_sk(sk);
5095 u32 ptr = ntohs(th->urg_ptr);
5097 if (ptr && !sysctl_tcp_stdurg)
5099 ptr += ntohl(th->seq);
5101 /* Ignore urgent data that we've already seen and read. */
5102 if (after(tp->copied_seq, ptr))
5105 /* Do not replay urg ptr.
5107 * NOTE: interesting situation not covered by specs.
5108 * Misbehaving sender may send urg ptr, pointing to segment,
5109 * which we already have in ofo queue. We are not able to fetch
5110 * such data and will stay in TCP_URG_NOTYET until will be eaten
5111 * by recvmsg(). Seems, we are not obliged to handle such wicked
5112 * situations. But it is worth to think about possibility of some
5113 * DoSes using some hypothetical application level deadlock.
5115 if (before(ptr, tp->rcv_nxt))
5118 /* Do we already have a newer (or duplicate) urgent pointer? */
5119 if (tp->urg_data && !after(ptr, tp->urg_seq))
5122 /* Tell the world about our new urgent pointer. */
5125 /* We may be adding urgent data when the last byte read was
5126 * urgent. To do this requires some care. We cannot just ignore
5127 * tp->copied_seq since we would read the last urgent byte again
5128 * as data, nor can we alter copied_seq until this data arrives
5129 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5131 * NOTE. Double Dutch. Rendering to plain English: author of comment
5132 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5133 * and expect that both A and B disappear from stream. This is _wrong_.
5134 * Though this happens in BSD with high probability, this is occasional.
5135 * Any application relying on this is buggy. Note also, that fix "works"
5136 * only in this artificial test. Insert some normal data between A and B and we will
5137 * decline of BSD again. Verdict: it is better to remove to trap
5140 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5141 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5142 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5144 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5145 __skb_unlink(skb, &sk->sk_receive_queue);
5150 tp->urg_data = TCP_URG_NOTYET;
5153 /* Disable header prediction. */
5157 /* This is the 'fast' part of urgent handling. */
5158 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5160 struct tcp_sock *tp = tcp_sk(sk);
5162 /* Check if we get a new urgent pointer - normally not. */
5164 tcp_check_urg(sk, th);
5166 /* Do we wait for any urgent data? - normally not... */
5167 if (tp->urg_data == TCP_URG_NOTYET) {
5168 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5171 /* Is the urgent pointer pointing into this packet? */
5172 if (ptr < skb->len) {
5174 if (skb_copy_bits(skb, ptr, &tmp, 1))
5176 tp->urg_data = TCP_URG_VALID | tmp;
5177 if (!sock_flag(sk, SOCK_DEAD))
5178 sk->sk_data_ready(sk);
5183 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5185 struct tcp_sock *tp = tcp_sk(sk);
5186 int chunk = skb->len - hlen;
5189 if (skb_csum_unnecessary(skb))
5190 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5192 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5195 tp->ucopy.len -= chunk;
5196 tp->copied_seq += chunk;
5197 tcp_rcv_space_adjust(sk);
5203 /* Accept RST for rcv_nxt - 1 after a FIN.
5204 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5205 * FIN is sent followed by a RST packet. The RST is sent with the same
5206 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5207 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5208 * ACKs on the closed socket. In addition middleboxes can drop either the
5209 * challenge ACK or a subsequent RST.
5211 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5213 struct tcp_sock *tp = tcp_sk(sk);
5215 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5216 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5220 /* Does PAWS and seqno based validation of an incoming segment, flags will
5221 * play significant role here.
5223 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5224 const struct tcphdr *th, int syn_inerr)
5226 struct tcp_sock *tp = tcp_sk(sk);
5227 bool rst_seq_match = false;
5229 /* RFC1323: H1. Apply PAWS check first. */
5230 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5231 tcp_paws_discard(sk, skb)) {
5233 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5234 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5235 LINUX_MIB_TCPACKSKIPPEDPAWS,
5236 &tp->last_oow_ack_time))
5237 tcp_send_dupack(sk, skb);
5240 /* Reset is accepted even if it did not pass PAWS. */
5243 /* Step 1: check sequence number */
5244 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5245 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5246 * (RST) segments are validated by checking their SEQ-fields."
5247 * And page 69: "If an incoming segment is not acceptable,
5248 * an acknowledgment should be sent in reply (unless the RST
5249 * bit is set, if so drop the segment and return)".
5254 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5255 LINUX_MIB_TCPACKSKIPPEDSEQ,
5256 &tp->last_oow_ack_time))
5257 tcp_send_dupack(sk, skb);
5258 } else if (tcp_reset_check(sk, skb)) {
5264 /* Step 2: check RST bit */
5266 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5267 * FIN and SACK too if available):
5268 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5269 * the right-most SACK block,
5271 * RESET the connection
5273 * Send a challenge ACK
5275 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5276 tcp_reset_check(sk, skb)) {
5277 rst_seq_match = true;
5278 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5279 struct tcp_sack_block *sp = &tp->selective_acks[0];
5280 int max_sack = sp[0].end_seq;
5283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5285 max_sack = after(sp[this_sack].end_seq,
5287 sp[this_sack].end_seq : max_sack;
5290 if (TCP_SKB_CB(skb)->seq == max_sack)
5291 rst_seq_match = true;
5297 tcp_send_challenge_ack(sk, skb);
5301 /* step 3: check security and precedence [ignored] */
5303 /* step 4: Check for a SYN
5304 * RFC 5961 4.2 : Send a challenge ack
5309 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5311 tcp_send_challenge_ack(sk, skb);
5323 * TCP receive function for the ESTABLISHED state.
5325 * It is split into a fast path and a slow path. The fast path is
5327 * - A zero window was announced from us - zero window probing
5328 * is only handled properly in the slow path.
5329 * - Out of order segments arrived.
5330 * - Urgent data is expected.
5331 * - There is no buffer space left
5332 * - Unexpected TCP flags/window values/header lengths are received
5333 * (detected by checking the TCP header against pred_flags)
5334 * - Data is sent in both directions. Fast path only supports pure senders
5335 * or pure receivers (this means either the sequence number or the ack
5336 * value must stay constant)
5337 * - Unexpected TCP option.
5339 * When these conditions are not satisfied it drops into a standard
5340 * receive procedure patterned after RFC793 to handle all cases.
5341 * The first three cases are guaranteed by proper pred_flags setting,
5342 * the rest is checked inline. Fast processing is turned on in
5343 * tcp_data_queue when everything is OK.
5345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5346 const struct tcphdr *th, unsigned int len)
5348 struct tcp_sock *tp = tcp_sk(sk);
5350 if (unlikely(!sk->sk_rx_dst))
5351 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5353 * Header prediction.
5354 * The code loosely follows the one in the famous
5355 * "30 instruction TCP receive" Van Jacobson mail.
5357 * Van's trick is to deposit buffers into socket queue
5358 * on a device interrupt, to call tcp_recv function
5359 * on the receive process context and checksum and copy
5360 * the buffer to user space. smart...
5362 * Our current scheme is not silly either but we take the
5363 * extra cost of the net_bh soft interrupt processing...
5364 * We do checksum and copy also but from device to kernel.
5367 tp->rx_opt.saw_tstamp = 0;
5369 /* pred_flags is 0xS?10 << 16 + snd_wnd
5370 * if header_prediction is to be made
5371 * 'S' will always be tp->tcp_header_len >> 2
5372 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5373 * turn it off (when there are holes in the receive
5374 * space for instance)
5375 * PSH flag is ignored.
5378 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5379 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5380 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5381 int tcp_header_len = tp->tcp_header_len;
5383 /* Timestamp header prediction: tcp_header_len
5384 * is automatically equal to th->doff*4 due to pred_flags
5388 /* Check timestamp */
5389 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5390 /* No? Slow path! */
5391 if (!tcp_parse_aligned_timestamp(tp, th))
5394 /* If PAWS failed, check it more carefully in slow path */
5395 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5398 /* DO NOT update ts_recent here, if checksum fails
5399 * and timestamp was corrupted part, it will result
5400 * in a hung connection since we will drop all
5401 * future packets due to the PAWS test.
5405 if (len <= tcp_header_len) {
5406 /* Bulk data transfer: sender */
5407 if (len == tcp_header_len) {
5408 /* Predicted packet is in window by definition.
5409 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5410 * Hence, check seq<=rcv_wup reduces to:
5412 if (tcp_header_len ==
5413 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5414 tp->rcv_nxt == tp->rcv_wup)
5415 tcp_store_ts_recent(tp);
5417 /* We know that such packets are checksummed
5420 tcp_ack(sk, skb, 0);
5422 tcp_data_snd_check(sk);
5424 } else { /* Header too small */
5425 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5430 bool fragstolen = false;
5432 if (tp->ucopy.task == current &&
5433 tp->copied_seq == tp->rcv_nxt &&
5434 len - tcp_header_len <= tp->ucopy.len &&
5435 sock_owned_by_user(sk)) {
5436 __set_current_state(TASK_RUNNING);
5438 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5439 /* Predicted packet is in window by definition.
5440 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5441 * Hence, check seq<=rcv_wup reduces to:
5443 if (tcp_header_len ==
5444 (sizeof(struct tcphdr) +
5445 TCPOLEN_TSTAMP_ALIGNED) &&
5446 tp->rcv_nxt == tp->rcv_wup)
5447 tcp_store_ts_recent(tp);
5449 tcp_rcv_rtt_measure_ts(sk, skb);
5451 __skb_pull(skb, tcp_header_len);
5452 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5453 NET_INC_STATS(sock_net(sk),
5454 LINUX_MIB_TCPHPHITSTOUSER);
5459 if (tcp_checksum_complete(skb))
5462 if ((int)skb->truesize > sk->sk_forward_alloc)
5465 /* Predicted packet is in window by definition.
5466 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5467 * Hence, check seq<=rcv_wup reduces to:
5469 if (tcp_header_len ==
5470 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5471 tp->rcv_nxt == tp->rcv_wup)
5472 tcp_store_ts_recent(tp);
5474 tcp_rcv_rtt_measure_ts(sk, skb);
5476 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5478 /* Bulk data transfer: receiver */
5479 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5483 tcp_event_data_recv(sk, skb);
5485 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5486 /* Well, only one small jumplet in fast path... */
5487 tcp_ack(sk, skb, FLAG_DATA);
5488 tcp_data_snd_check(sk);
5489 if (!inet_csk_ack_scheduled(sk))
5493 __tcp_ack_snd_check(sk, 0);
5496 kfree_skb_partial(skb, fragstolen);
5497 sk->sk_data_ready(sk);
5503 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5506 if (!th->ack && !th->rst && !th->syn)
5510 * Standard slow path.
5513 if (!tcp_validate_incoming(sk, skb, th, 1))
5517 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5520 tcp_rcv_rtt_measure_ts(sk, skb);
5522 /* Process urgent data. */
5523 tcp_urg(sk, skb, th);
5525 /* step 7: process the segment text */
5526 tcp_data_queue(sk, skb);
5528 tcp_data_snd_check(sk);
5529 tcp_ack_snd_check(sk);
5533 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5534 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5539 EXPORT_SYMBOL(tcp_rcv_established);
5541 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5543 struct tcp_sock *tp = tcp_sk(sk);
5544 struct inet_connection_sock *icsk = inet_csk(sk);
5546 tcp_set_state(sk, TCP_ESTABLISHED);
5549 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5550 security_inet_conn_established(sk, skb);
5553 /* Make sure socket is routed, for correct metrics. */
5554 icsk->icsk_af_ops->rebuild_header(sk);
5556 tcp_init_metrics(sk);
5558 tcp_init_congestion_control(sk);
5560 /* Prevent spurious tcp_cwnd_restart() on first data
5563 tp->lsndtime = tcp_time_stamp;
5565 tcp_init_buffer_space(sk);
5567 if (sock_flag(sk, SOCK_KEEPOPEN))
5568 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5570 if (!tp->rx_opt.snd_wscale)
5571 __tcp_fast_path_on(tp, tp->snd_wnd);
5575 if (!sock_flag(sk, SOCK_DEAD)) {
5576 sk->sk_state_change(sk);
5577 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5581 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5582 struct tcp_fastopen_cookie *cookie)
5584 struct tcp_sock *tp = tcp_sk(sk);
5585 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5586 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5587 bool syn_drop = false;
5589 if (mss == tp->rx_opt.user_mss) {
5590 struct tcp_options_received opt;
5592 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5593 tcp_clear_options(&opt);
5594 opt.user_mss = opt.mss_clamp = 0;
5595 tcp_parse_options(synack, &opt, 0, NULL);
5596 mss = opt.mss_clamp;
5599 if (!tp->syn_fastopen) {
5600 /* Ignore an unsolicited cookie */
5602 } else if (tp->total_retrans) {
5603 /* SYN timed out and the SYN-ACK neither has a cookie nor
5604 * acknowledges data. Presumably the remote received only
5605 * the retransmitted (regular) SYNs: either the original
5606 * SYN-data or the corresponding SYN-ACK was dropped.
5608 syn_drop = (cookie->len < 0 && data);
5609 } else if (cookie->len < 0 && !tp->syn_data) {
5610 /* We requested a cookie but didn't get it. If we did not use
5611 * the (old) exp opt format then try so next time (try_exp=1).
5612 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5614 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5617 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5619 if (data) { /* Retransmit unacked data in SYN */
5620 tcp_for_write_queue_from(data, sk) {
5621 if (data == tcp_send_head(sk) ||
5622 __tcp_retransmit_skb(sk, data, 1))
5626 NET_INC_STATS(sock_net(sk),
5627 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5630 tp->syn_data_acked = tp->syn_data;
5631 if (tp->syn_data_acked)
5632 NET_INC_STATS(sock_net(sk),
5633 LINUX_MIB_TCPFASTOPENACTIVE);
5635 tcp_fastopen_add_skb(sk, synack);
5640 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5641 const struct tcphdr *th)
5643 struct inet_connection_sock *icsk = inet_csk(sk);
5644 struct tcp_sock *tp = tcp_sk(sk);
5645 struct tcp_fastopen_cookie foc = { .len = -1 };
5646 int saved_clamp = tp->rx_opt.mss_clamp;
5648 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5649 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5650 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5654 * "If the state is SYN-SENT then
5655 * first check the ACK bit
5656 * If the ACK bit is set
5657 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5658 * a reset (unless the RST bit is set, if so drop
5659 * the segment and return)"
5661 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5662 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5663 goto reset_and_undo;
5665 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5666 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5668 NET_INC_STATS(sock_net(sk),
5669 LINUX_MIB_PAWSACTIVEREJECTED);
5670 goto reset_and_undo;
5673 /* Now ACK is acceptable.
5675 * "If the RST bit is set
5676 * If the ACK was acceptable then signal the user "error:
5677 * connection reset", drop the segment, enter CLOSED state,
5678 * delete TCB, and return."
5687 * "fifth, if neither of the SYN or RST bits is set then
5688 * drop the segment and return."
5694 goto discard_and_undo;
5697 * "If the SYN bit is on ...
5698 * are acceptable then ...
5699 * (our SYN has been ACKed), change the connection
5700 * state to ESTABLISHED..."
5703 tcp_ecn_rcv_synack(tp, th);
5705 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5706 tcp_ack(sk, skb, FLAG_SLOWPATH);
5708 /* Ok.. it's good. Set up sequence numbers and
5709 * move to established.
5711 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5712 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5714 /* RFC1323: The window in SYN & SYN/ACK segments is
5717 tp->snd_wnd = ntohs(th->window);
5719 if (!tp->rx_opt.wscale_ok) {
5720 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5721 tp->window_clamp = min(tp->window_clamp, 65535U);
5724 if (tp->rx_opt.saw_tstamp) {
5725 tp->rx_opt.tstamp_ok = 1;
5726 tp->tcp_header_len =
5727 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5728 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5729 tcp_store_ts_recent(tp);
5731 tp->tcp_header_len = sizeof(struct tcphdr);
5734 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5735 tcp_enable_fack(tp);
5738 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5739 tcp_initialize_rcv_mss(sk);
5741 /* Remember, tcp_poll() does not lock socket!
5742 * Change state from SYN-SENT only after copied_seq
5743 * is initialized. */
5744 tp->copied_seq = tp->rcv_nxt;
5748 tcp_finish_connect(sk, skb);
5750 if ((tp->syn_fastopen || tp->syn_data) &&
5751 tcp_rcv_fastopen_synack(sk, skb, &foc))
5754 if (sk->sk_write_pending ||
5755 icsk->icsk_accept_queue.rskq_defer_accept ||
5756 icsk->icsk_ack.pingpong) {
5757 /* Save one ACK. Data will be ready after
5758 * several ticks, if write_pending is set.
5760 * It may be deleted, but with this feature tcpdumps
5761 * look so _wonderfully_ clever, that I was not able
5762 * to stand against the temptation 8) --ANK
5764 inet_csk_schedule_ack(sk);
5765 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5766 tcp_enter_quickack_mode(sk);
5767 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5768 TCP_DELACK_MAX, TCP_RTO_MAX);
5779 /* No ACK in the segment */
5783 * "If the RST bit is set
5785 * Otherwise (no ACK) drop the segment and return."
5788 goto discard_and_undo;
5792 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5793 tcp_paws_reject(&tp->rx_opt, 0))
5794 goto discard_and_undo;
5797 /* We see SYN without ACK. It is attempt of
5798 * simultaneous connect with crossed SYNs.
5799 * Particularly, it can be connect to self.
5801 tcp_set_state(sk, TCP_SYN_RECV);
5803 if (tp->rx_opt.saw_tstamp) {
5804 tp->rx_opt.tstamp_ok = 1;
5805 tcp_store_ts_recent(tp);
5806 tp->tcp_header_len =
5807 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5809 tp->tcp_header_len = sizeof(struct tcphdr);
5812 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5813 tp->copied_seq = tp->rcv_nxt;
5814 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5816 /* RFC1323: The window in SYN & SYN/ACK segments is
5819 tp->snd_wnd = ntohs(th->window);
5820 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5821 tp->max_window = tp->snd_wnd;
5823 tcp_ecn_rcv_syn(tp, th);
5826 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5827 tcp_initialize_rcv_mss(sk);
5829 tcp_send_synack(sk);
5831 /* Note, we could accept data and URG from this segment.
5832 * There are no obstacles to make this (except that we must
5833 * either change tcp_recvmsg() to prevent it from returning data
5834 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5836 * However, if we ignore data in ACKless segments sometimes,
5837 * we have no reasons to accept it sometimes.
5838 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5839 * is not flawless. So, discard packet for sanity.
5840 * Uncomment this return to process the data.
5847 /* "fifth, if neither of the SYN or RST bits is set then
5848 * drop the segment and return."
5852 tcp_clear_options(&tp->rx_opt);
5853 tp->rx_opt.mss_clamp = saved_clamp;
5857 tcp_clear_options(&tp->rx_opt);
5858 tp->rx_opt.mss_clamp = saved_clamp;
5863 * This function implements the receiving procedure of RFC 793 for
5864 * all states except ESTABLISHED and TIME_WAIT.
5865 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5866 * address independent.
5869 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5871 struct tcp_sock *tp = tcp_sk(sk);
5872 struct inet_connection_sock *icsk = inet_csk(sk);
5873 const struct tcphdr *th = tcp_hdr(skb);
5874 struct request_sock *req;
5878 switch (sk->sk_state) {
5892 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5901 tp->rx_opt.saw_tstamp = 0;
5902 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5906 /* Do step6 onward by hand. */
5907 tcp_urg(sk, skb, th);
5909 tcp_data_snd_check(sk);
5913 tp->rx_opt.saw_tstamp = 0;
5914 req = tp->fastopen_rsk;
5916 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5917 sk->sk_state != TCP_FIN_WAIT1);
5919 if (!tcp_check_req(sk, skb, req, true))
5923 if (!th->ack && !th->rst && !th->syn)
5926 if (!tcp_validate_incoming(sk, skb, th, 0))
5929 /* step 5: check the ACK field */
5930 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5931 FLAG_UPDATE_TS_RECENT) > 0;
5933 switch (sk->sk_state) {
5939 tcp_synack_rtt_meas(sk, req);
5941 /* Once we leave TCP_SYN_RECV, we no longer need req
5945 inet_csk(sk)->icsk_retransmits = 0;
5946 reqsk_fastopen_remove(sk, req, false);
5948 /* Make sure socket is routed, for correct metrics. */
5949 icsk->icsk_af_ops->rebuild_header(sk);
5950 tcp_init_congestion_control(sk);
5953 tp->copied_seq = tp->rcv_nxt;
5954 tcp_init_buffer_space(sk);
5957 tcp_set_state(sk, TCP_ESTABLISHED);
5958 sk->sk_state_change(sk);
5960 /* Note, that this wakeup is only for marginal crossed SYN case.
5961 * Passively open sockets are not waked up, because
5962 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5965 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5967 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5968 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5969 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5971 if (tp->rx_opt.tstamp_ok)
5972 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5975 /* Re-arm the timer because data may have been sent out.
5976 * This is similar to the regular data transmission case
5977 * when new data has just been ack'ed.
5979 * (TFO) - we could try to be more aggressive and
5980 * retransmitting any data sooner based on when they
5985 tcp_init_metrics(sk);
5987 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5988 tcp_update_pacing_rate(sk);
5990 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5991 tp->lsndtime = tcp_time_stamp;
5993 tcp_initialize_rcv_mss(sk);
5994 tcp_fast_path_on(tp);
5997 case TCP_FIN_WAIT1: {
5998 struct dst_entry *dst;
6001 /* If we enter the TCP_FIN_WAIT1 state and we are a
6002 * Fast Open socket and this is the first acceptable
6003 * ACK we have received, this would have acknowledged
6004 * our SYNACK so stop the SYNACK timer.
6007 /* Return RST if ack_seq is invalid.
6008 * Note that RFC793 only says to generate a
6009 * DUPACK for it but for TCP Fast Open it seems
6010 * better to treat this case like TCP_SYN_RECV
6015 /* We no longer need the request sock. */
6016 reqsk_fastopen_remove(sk, req, false);
6019 if (tp->snd_una != tp->write_seq)
6022 tcp_set_state(sk, TCP_FIN_WAIT2);
6023 sk->sk_shutdown |= SEND_SHUTDOWN;
6025 dst = __sk_dst_get(sk);
6029 if (!sock_flag(sk, SOCK_DEAD)) {
6030 /* Wake up lingering close() */
6031 sk->sk_state_change(sk);
6035 if (tp->linger2 < 0 ||
6036 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6037 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6043 tmo = tcp_fin_time(sk);
6044 if (tmo > TCP_TIMEWAIT_LEN) {
6045 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6046 } else if (th->fin || sock_owned_by_user(sk)) {
6047 /* Bad case. We could lose such FIN otherwise.
6048 * It is not a big problem, but it looks confusing
6049 * and not so rare event. We still can lose it now,
6050 * if it spins in bh_lock_sock(), but it is really
6053 inet_csk_reset_keepalive_timer(sk, tmo);
6055 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6062 if (tp->snd_una == tp->write_seq) {
6063 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6069 if (tp->snd_una == tp->write_seq) {
6070 tcp_update_metrics(sk);
6077 /* step 6: check the URG bit */
6078 tcp_urg(sk, skb, th);
6080 /* step 7: process the segment text */
6081 switch (sk->sk_state) {
6082 case TCP_CLOSE_WAIT:
6085 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6089 /* RFC 793 says to queue data in these states,
6090 * RFC 1122 says we MUST send a reset.
6091 * BSD 4.4 also does reset.
6093 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6094 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6095 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6096 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6102 case TCP_ESTABLISHED:
6103 tcp_data_queue(sk, skb);
6108 /* tcp_data could move socket to TIME-WAIT */
6109 if (sk->sk_state != TCP_CLOSE) {
6110 tcp_data_snd_check(sk);
6111 tcp_ack_snd_check(sk);
6120 EXPORT_SYMBOL(tcp_rcv_state_process);
6122 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6124 struct inet_request_sock *ireq = inet_rsk(req);
6126 if (family == AF_INET)
6127 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6128 &ireq->ir_rmt_addr, port);
6129 #if IS_ENABLED(CONFIG_IPV6)
6130 else if (family == AF_INET6)
6131 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6132 &ireq->ir_v6_rmt_addr, port);
6136 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6138 * If we receive a SYN packet with these bits set, it means a
6139 * network is playing bad games with TOS bits. In order to
6140 * avoid possible false congestion notifications, we disable
6141 * TCP ECN negotiation.
6143 * Exception: tcp_ca wants ECN. This is required for DCTCP
6144 * congestion control: Linux DCTCP asserts ECT on all packets,
6145 * including SYN, which is most optimal solution; however,
6146 * others, such as FreeBSD do not.
6148 static void tcp_ecn_create_request(struct request_sock *req,
6149 const struct sk_buff *skb,
6150 const struct sock *listen_sk,
6151 const struct dst_entry *dst)
6153 const struct tcphdr *th = tcp_hdr(skb);
6154 const struct net *net = sock_net(listen_sk);
6155 bool th_ecn = th->ece && th->cwr;
6162 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6163 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6164 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6166 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6167 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6168 inet_rsk(req)->ecn_ok = 1;
6171 static void tcp_openreq_init(struct request_sock *req,
6172 const struct tcp_options_received *rx_opt,
6173 struct sk_buff *skb, const struct sock *sk)
6175 struct inet_request_sock *ireq = inet_rsk(req);
6177 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6179 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6180 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6181 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6182 tcp_rsk(req)->last_oow_ack_time = 0;
6183 req->mss = rx_opt->mss_clamp;
6184 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6185 ireq->tstamp_ok = rx_opt->tstamp_ok;
6186 ireq->sack_ok = rx_opt->sack_ok;
6187 ireq->snd_wscale = rx_opt->snd_wscale;
6188 ireq->wscale_ok = rx_opt->wscale_ok;
6191 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6192 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6193 ireq->ir_mark = inet_request_mark(sk, skb);
6196 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6197 struct sock *sk_listener,
6198 bool attach_listener)
6200 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6204 struct inet_request_sock *ireq = inet_rsk(req);
6206 kmemcheck_annotate_bitfield(ireq, flags);
6208 #if IS_ENABLED(CONFIG_IPV6)
6209 ireq->pktopts = NULL;
6211 atomic64_set(&ireq->ir_cookie, 0);
6212 ireq->ireq_state = TCP_NEW_SYN_RECV;
6213 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6214 ireq->ireq_family = sk_listener->sk_family;
6219 EXPORT_SYMBOL(inet_reqsk_alloc);
6222 * Return true if a syncookie should be sent
6224 static bool tcp_syn_flood_action(const struct sock *sk,
6225 const struct sk_buff *skb,
6228 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6229 const char *msg = "Dropping request";
6230 bool want_cookie = false;
6231 struct net *net = sock_net(sk);
6233 #ifdef CONFIG_SYN_COOKIES
6234 if (net->ipv4.sysctl_tcp_syncookies) {
6235 msg = "Sending cookies";
6237 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6240 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6242 if (!queue->synflood_warned &&
6243 net->ipv4.sysctl_tcp_syncookies != 2 &&
6244 xchg(&queue->synflood_warned, 1) == 0)
6245 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6246 proto, ntohs(tcp_hdr(skb)->dest), msg);
6251 static void tcp_reqsk_record_syn(const struct sock *sk,
6252 struct request_sock *req,
6253 const struct sk_buff *skb)
6255 if (tcp_sk(sk)->save_syn) {
6256 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6259 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6262 memcpy(©[1], skb_network_header(skb), len);
6263 req->saved_syn = copy;
6268 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6269 const struct tcp_request_sock_ops *af_ops,
6270 struct sock *sk, struct sk_buff *skb)
6272 struct tcp_fastopen_cookie foc = { .len = -1 };
6273 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6274 struct tcp_options_received tmp_opt;
6275 struct tcp_sock *tp = tcp_sk(sk);
6276 struct net *net = sock_net(sk);
6277 struct sock *fastopen_sk = NULL;
6278 struct dst_entry *dst = NULL;
6279 struct request_sock *req;
6280 bool want_cookie = false;
6283 /* TW buckets are converted to open requests without
6284 * limitations, they conserve resources and peer is
6285 * evidently real one.
6287 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6288 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6289 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6294 if (sk_acceptq_is_full(sk)) {
6295 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6299 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6303 tcp_rsk(req)->af_specific = af_ops;
6304 tcp_rsk(req)->ts_off = 0;
6306 tcp_clear_options(&tmp_opt);
6307 tmp_opt.mss_clamp = af_ops->mss_clamp;
6308 tmp_opt.user_mss = tp->rx_opt.user_mss;
6309 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6311 if (want_cookie && !tmp_opt.saw_tstamp)
6312 tcp_clear_options(&tmp_opt);
6314 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6315 tcp_openreq_init(req, &tmp_opt, skb, sk);
6316 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6318 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6319 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6321 af_ops->init_req(req, sk, skb);
6323 if (security_inet_conn_request(sk, skb, req))
6326 if (isn && tmp_opt.tstamp_ok)
6327 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6329 if (!want_cookie && !isn) {
6330 /* VJ's idea. We save last timestamp seen
6331 * from the destination in peer table, when entering
6332 * state TIME-WAIT, and check against it before
6333 * accepting new connection request.
6335 * If "isn" is not zero, this request hit alive
6336 * timewait bucket, so that all the necessary checks
6337 * are made in the function processing timewait state.
6339 if (net->ipv4.tcp_death_row.sysctl_tw_recycle) {
6342 dst = af_ops->route_req(sk, &fl, req, &strict);
6344 if (dst && strict &&
6345 !tcp_peer_is_proven(req, dst, true,
6346 tmp_opt.saw_tstamp)) {
6347 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6348 goto drop_and_release;
6351 /* Kill the following clause, if you dislike this way. */
6352 else if (!net->ipv4.sysctl_tcp_syncookies &&
6353 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6354 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6355 !tcp_peer_is_proven(req, dst, false,
6356 tmp_opt.saw_tstamp)) {
6357 /* Without syncookies last quarter of
6358 * backlog is filled with destinations,
6359 * proven to be alive.
6360 * It means that we continue to communicate
6361 * to destinations, already remembered
6362 * to the moment of synflood.
6364 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6366 goto drop_and_release;
6369 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6372 dst = af_ops->route_req(sk, &fl, req, NULL);
6377 tcp_ecn_create_request(req, skb, sk, dst);
6380 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6381 tcp_rsk(req)->ts_off = 0;
6382 req->cookie_ts = tmp_opt.tstamp_ok;
6383 if (!tmp_opt.tstamp_ok)
6384 inet_rsk(req)->ecn_ok = 0;
6387 tcp_rsk(req)->snt_isn = isn;
6388 tcp_rsk(req)->txhash = net_tx_rndhash();
6389 tcp_openreq_init_rwin(req, sk, dst);
6391 tcp_reqsk_record_syn(sk, req, skb);
6392 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6395 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6396 &foc, TCP_SYNACK_FASTOPEN);
6397 /* Add the child socket directly into the accept queue */
6398 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6399 sk->sk_data_ready(sk);
6400 bh_unlock_sock(fastopen_sk);
6401 sock_put(fastopen_sk);
6403 tcp_rsk(req)->tfo_listener = false;
6405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6406 af_ops->send_synack(sk, dst, &fl, req, &foc,
6407 !want_cookie ? TCP_SYNACK_NORMAL :
6425 EXPORT_SYMBOL(tcp_conn_request);