2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
41 * structure owned by writepages passed to individual writepage calls
43 struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
47 struct xfs_ioend *ioend;
57 struct buffer_head *bh, *head;
59 *delalloc = *unwritten = 0;
61 bh = head = page_buffers(page);
63 if (buffer_unwritten(bh))
65 else if (buffer_delay(bh))
67 } while ((bh = bh->b_this_page) != head);
71 xfs_find_bdev_for_inode(
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
80 return mp->m_ddev_targp->bt_bdev;
84 * We're now finished for good with this page. Update the page state via the
85 * associated buffer_heads, paying attention to the start and end offsets that
86 * we need to process on the page.
88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
90 * the page at all, as we may be racing with memory reclaim and it can free both
91 * the bufferhead chain and the page as it will see the page as clean and
95 xfs_finish_page_writeback(
100 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
101 struct buffer_head *head, *bh, *next;
102 unsigned int off = 0;
105 ASSERT(bvec->bv_offset < PAGE_SIZE);
106 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
107 ASSERT(end < PAGE_SIZE);
108 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
110 bh = head = page_buffers(bvec->bv_page);
116 next = bh->b_this_page;
117 if (off < bvec->bv_offset)
119 bh->b_end_io(bh, !error);
122 } while ((bh = next) != head);
126 * We're now finished for good with this ioend structure. Update the page
127 * state, release holds on bios, and finally free up memory. Do not use the
132 struct xfs_ioend *ioend,
135 struct inode *inode = ioend->io_inode;
136 struct bio *last = ioend->io_bio;
137 struct bio *bio, *next;
139 for (bio = &ioend->io_inline_bio; bio; bio = next) {
140 struct bio_vec *bvec;
144 * For the last bio, bi_private points to the ioend, so we
145 * need to explicitly end the iteration here.
150 next = bio->bi_private;
152 /* walk each page on bio, ending page IO on them */
153 bio_for_each_segment_all(bvec, bio, i)
154 xfs_finish_page_writeback(inode, bvec, error);
161 * Fast and loose check if this write could update the on-disk inode size.
163 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
165 return ioend->io_offset + ioend->io_size >
166 XFS_I(ioend->io_inode)->i_d.di_size;
170 xfs_setfilesize_trans_alloc(
171 struct xfs_ioend *ioend)
173 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
174 struct xfs_trans *tp;
177 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
181 ioend->io_append_trans = tp;
184 * We may pass freeze protection with a transaction. So tell lockdep
187 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
189 * We hand off the transaction to the completion thread now, so
190 * clear the flag here.
192 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
197 * Update on-disk file size now that data has been written to disk.
201 struct xfs_inode *ip,
202 struct xfs_trans *tp,
208 xfs_ilock(ip, XFS_ILOCK_EXCL);
209 isize = xfs_new_eof(ip, offset + size);
211 xfs_iunlock(ip, XFS_ILOCK_EXCL);
212 xfs_trans_cancel(tp);
216 trace_xfs_setfilesize(ip, offset, size);
218 ip->i_d.di_size = isize;
219 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
222 return xfs_trans_commit(tp);
227 struct xfs_inode *ip,
231 struct xfs_mount *mp = ip->i_mount;
232 struct xfs_trans *tp;
235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
239 return __xfs_setfilesize(ip, tp, offset, size);
243 xfs_setfilesize_ioend(
244 struct xfs_ioend *ioend,
247 struct xfs_inode *ip = XFS_I(ioend->io_inode);
248 struct xfs_trans *tp = ioend->io_append_trans;
251 * The transaction may have been allocated in the I/O submission thread,
252 * thus we need to mark ourselves as being in a transaction manually.
253 * Similarly for freeze protection.
255 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
256 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
258 /* we abort the update if there was an IO error */
260 xfs_trans_cancel(tp);
264 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
268 * IO write completion.
272 struct work_struct *work)
274 struct xfs_ioend *ioend =
275 container_of(work, struct xfs_ioend, io_work);
276 struct xfs_inode *ip = XFS_I(ioend->io_inode);
277 xfs_off_t offset = ioend->io_offset;
278 size_t size = ioend->io_size;
282 * Just clean up the in-memory strutures if the fs has been shut down.
284 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
290 * Clean up any COW blocks on an I/O error.
292 error = blk_status_to_errno(ioend->io_bio->bi_status);
293 if (unlikely(error)) {
294 switch (ioend->io_type) {
296 xfs_reflink_cancel_cow_range(ip, offset, size, true);
304 * Success: commit the COW or unwritten blocks if needed.
306 switch (ioend->io_type) {
308 error = xfs_reflink_end_cow(ip, offset, size);
310 case XFS_IO_UNWRITTEN:
311 error = xfs_iomap_write_unwritten(ip, offset, size);
314 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
319 if (ioend->io_append_trans)
320 error = xfs_setfilesize_ioend(ioend, error);
321 xfs_destroy_ioend(ioend, error);
328 struct xfs_ioend *ioend = bio->bi_private;
329 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
331 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
332 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
333 else if (ioend->io_append_trans)
334 queue_work(mp->m_data_workqueue, &ioend->io_work);
336 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
343 struct xfs_bmbt_irec *imap,
346 struct xfs_inode *ip = XFS_I(inode);
347 struct xfs_mount *mp = ip->i_mount;
348 ssize_t count = i_blocksize(inode);
349 xfs_fileoff_t offset_fsb, end_fsb;
351 int bmapi_flags = XFS_BMAPI_ENTIRE;
354 if (XFS_FORCED_SHUTDOWN(mp))
357 ASSERT(type != XFS_IO_COW);
358 if (type == XFS_IO_UNWRITTEN)
359 bmapi_flags |= XFS_BMAPI_IGSTATE;
361 xfs_ilock(ip, XFS_ILOCK_SHARED);
362 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
363 (ip->i_df.if_flags & XFS_IFEXTENTS));
364 ASSERT(offset <= mp->m_super->s_maxbytes);
366 if (offset + count > mp->m_super->s_maxbytes)
367 count = mp->m_super->s_maxbytes - offset;
368 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
369 offset_fsb = XFS_B_TO_FSBT(mp, offset);
370 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
371 imap, &nimaps, bmapi_flags);
373 * Truncate an overwrite extent if there's a pending CoW
374 * reservation before the end of this extent. This forces us
375 * to come back to writepage to take care of the CoW.
377 if (nimaps && type == XFS_IO_OVERWRITE)
378 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
379 xfs_iunlock(ip, XFS_ILOCK_SHARED);
384 if (type == XFS_IO_DELALLOC &&
385 (!nimaps || isnullstartblock(imap->br_startblock))) {
386 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
389 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
394 if (type == XFS_IO_UNWRITTEN) {
396 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
397 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
401 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
408 struct xfs_bmbt_irec *imap,
411 offset >>= inode->i_blkbits;
413 return offset >= imap->br_startoff &&
414 offset < imap->br_startoff + imap->br_blockcount;
418 xfs_start_buffer_writeback(
419 struct buffer_head *bh)
421 ASSERT(buffer_mapped(bh));
422 ASSERT(buffer_locked(bh));
423 ASSERT(!buffer_delay(bh));
424 ASSERT(!buffer_unwritten(bh));
426 mark_buffer_async_write(bh);
427 set_buffer_uptodate(bh);
428 clear_buffer_dirty(bh);
432 xfs_start_page_writeback(
436 ASSERT(PageLocked(page));
437 ASSERT(!PageWriteback(page));
440 * if the page was not fully cleaned, we need to ensure that the higher
441 * layers come back to it correctly. That means we need to keep the page
442 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
443 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
444 * write this page in this writeback sweep will be made.
447 clear_page_dirty_for_io(page);
448 set_page_writeback(page);
450 set_page_writeback_keepwrite(page);
455 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
457 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
461 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
462 * it, and we submit that bio. The ioend may be used for multiple bio
463 * submissions, so we only want to allocate an append transaction for the ioend
464 * once. In the case of multiple bio submission, each bio will take an IO
465 * reference to the ioend to ensure that the ioend completion is only done once
466 * all bios have been submitted and the ioend is really done.
468 * If @fail is non-zero, it means that we have a situation where some part of
469 * the submission process has failed after we have marked paged for writeback
470 * and unlocked them. In this situation, we need to fail the bio and ioend
471 * rather than submit it to IO. This typically only happens on a filesystem
476 struct writeback_control *wbc,
477 struct xfs_ioend *ioend,
480 /* Convert CoW extents to regular */
481 if (!status && ioend->io_type == XFS_IO_COW) {
482 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
483 ioend->io_offset, ioend->io_size);
486 /* Reserve log space if we might write beyond the on-disk inode size. */
488 ioend->io_type != XFS_IO_UNWRITTEN &&
489 xfs_ioend_is_append(ioend) &&
490 !ioend->io_append_trans)
491 status = xfs_setfilesize_trans_alloc(ioend);
493 ioend->io_bio->bi_private = ioend;
494 ioend->io_bio->bi_end_io = xfs_end_bio;
495 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
498 * If we are failing the IO now, just mark the ioend with an
499 * error and finish it. This will run IO completion immediately
500 * as there is only one reference to the ioend at this point in
504 ioend->io_bio->bi_status = errno_to_blk_status(status);
505 bio_endio(ioend->io_bio);
509 submit_bio(ioend->io_bio);
514 xfs_init_bio_from_bh(
516 struct buffer_head *bh)
518 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
519 bio->bi_bdev = bh->b_bdev;
522 static struct xfs_ioend *
527 struct buffer_head *bh)
529 struct xfs_ioend *ioend;
532 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
533 xfs_init_bio_from_bh(bio, bh);
535 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
536 INIT_LIST_HEAD(&ioend->io_list);
537 ioend->io_type = type;
538 ioend->io_inode = inode;
540 ioend->io_offset = offset;
541 INIT_WORK(&ioend->io_work, xfs_end_io);
542 ioend->io_append_trans = NULL;
548 * Allocate a new bio, and chain the old bio to the new one.
550 * Note that we have to do perform the chaining in this unintuitive order
551 * so that the bi_private linkage is set up in the right direction for the
552 * traversal in xfs_destroy_ioend().
556 struct xfs_ioend *ioend,
557 struct writeback_control *wbc,
558 struct buffer_head *bh)
562 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
563 xfs_init_bio_from_bh(new, bh);
565 bio_chain(ioend->io_bio, new);
566 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
567 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
568 submit_bio(ioend->io_bio);
573 * Test to see if we've been building up a completion structure for
574 * earlier buffers -- if so, we try to append to this ioend if we
575 * can, otherwise we finish off any current ioend and start another.
576 * Return the ioend we finished off so that the caller can submit it
577 * once it has finished processing the dirty page.
582 struct buffer_head *bh,
584 struct xfs_writepage_ctx *wpc,
585 struct writeback_control *wbc,
586 struct list_head *iolist)
588 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
589 bh->b_blocknr != wpc->last_block + 1 ||
590 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
592 list_add(&wpc->ioend->io_list, iolist);
593 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
597 * If the buffer doesn't fit into the bio we need to allocate a new
598 * one. This shouldn't happen more than once for a given buffer.
600 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
601 xfs_chain_bio(wpc->ioend, wbc, bh);
603 wpc->ioend->io_size += bh->b_size;
604 wpc->last_block = bh->b_blocknr;
605 xfs_start_buffer_writeback(bh);
611 struct buffer_head *bh,
612 struct xfs_bmbt_irec *imap,
616 struct xfs_mount *m = XFS_I(inode)->i_mount;
617 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
618 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
620 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
621 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
623 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
624 ((offset - iomap_offset) >> inode->i_blkbits);
626 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
629 set_buffer_mapped(bh);
635 struct buffer_head *bh,
636 struct xfs_bmbt_irec *imap,
639 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
640 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
642 xfs_map_buffer(inode, bh, imap, offset);
643 set_buffer_mapped(bh);
644 clear_buffer_delay(bh);
645 clear_buffer_unwritten(bh);
649 * Test if a given page contains at least one buffer of a given @type.
650 * If @check_all_buffers is true, then we walk all the buffers in the page to
651 * try to find one of the type passed in. If it is not set, then the caller only
652 * needs to check the first buffer on the page for a match.
658 bool check_all_buffers)
660 struct buffer_head *bh;
661 struct buffer_head *head;
663 if (PageWriteback(page))
667 if (!page_has_buffers(page))
670 bh = head = page_buffers(page);
672 if (buffer_unwritten(bh)) {
673 if (type == XFS_IO_UNWRITTEN)
675 } else if (buffer_delay(bh)) {
676 if (type == XFS_IO_DELALLOC)
678 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
679 if (type == XFS_IO_OVERWRITE)
683 /* If we are only checking the first buffer, we are done now. */
684 if (!check_all_buffers)
686 } while ((bh = bh->b_this_page) != head);
692 xfs_vm_invalidatepage(
697 trace_xfs_invalidatepage(page->mapping->host, page, offset,
699 block_invalidatepage(page, offset, length);
703 * If the page has delalloc buffers on it, we need to punch them out before we
704 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
705 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
706 * is done on that same region - the delalloc extent is returned when none is
707 * supposed to be there.
709 * We prevent this by truncating away the delalloc regions on the page before
710 * invalidating it. Because they are delalloc, we can do this without needing a
711 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
712 * truncation without a transaction as there is no space left for block
713 * reservation (typically why we see a ENOSPC in writeback).
715 * This is not a performance critical path, so for now just do the punching a
716 * buffer head at a time.
719 xfs_aops_discard_page(
722 struct inode *inode = page->mapping->host;
723 struct xfs_inode *ip = XFS_I(inode);
724 struct buffer_head *bh, *head;
725 loff_t offset = page_offset(page);
727 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
730 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
733 xfs_alert(ip->i_mount,
734 "page discard on page %p, inode 0x%llx, offset %llu.",
735 page, ip->i_ino, offset);
737 xfs_ilock(ip, XFS_ILOCK_EXCL);
738 bh = head = page_buffers(page);
741 xfs_fileoff_t start_fsb;
743 if (!buffer_delay(bh))
746 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
747 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
749 /* something screwed, just bail */
750 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
751 xfs_alert(ip->i_mount,
752 "page discard unable to remove delalloc mapping.");
757 offset += i_blocksize(inode);
759 } while ((bh = bh->b_this_page) != head);
761 xfs_iunlock(ip, XFS_ILOCK_EXCL);
763 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
769 struct xfs_writepage_ctx *wpc,
772 unsigned int *new_type)
774 struct xfs_inode *ip = XFS_I(inode);
775 struct xfs_bmbt_irec imap;
780 * If we already have a valid COW mapping keep using it.
782 if (wpc->io_type == XFS_IO_COW) {
783 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
784 if (wpc->imap_valid) {
785 *new_type = XFS_IO_COW;
791 * Else we need to check if there is a COW mapping at this offset.
793 xfs_ilock(ip, XFS_ILOCK_SHARED);
794 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
795 xfs_iunlock(ip, XFS_ILOCK_SHARED);
801 * And if the COW mapping has a delayed extent here we need to
802 * allocate real space for it now.
804 if (isnullstartblock(imap.br_startblock)) {
805 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
811 wpc->io_type = *new_type = XFS_IO_COW;
812 wpc->imap_valid = true;
818 * We implement an immediate ioend submission policy here to avoid needing to
819 * chain multiple ioends and hence nest mempool allocations which can violate
820 * forward progress guarantees we need to provide. The current ioend we are
821 * adding buffers to is cached on the writepage context, and if the new buffer
822 * does not append to the cached ioend it will create a new ioend and cache that
825 * If a new ioend is created and cached, the old ioend is returned and queued
826 * locally for submission once the entire page is processed or an error has been
827 * detected. While ioends are submitted immediately after they are completed,
828 * batching optimisations are provided by higher level block plugging.
830 * At the end of a writeback pass, there will be a cached ioend remaining on the
831 * writepage context that the caller will need to submit.
835 struct xfs_writepage_ctx *wpc,
836 struct writeback_control *wbc,
840 __uint64_t end_offset)
842 LIST_HEAD(submit_list);
843 struct xfs_ioend *ioend, *next;
844 struct buffer_head *bh, *head;
845 ssize_t len = i_blocksize(inode);
849 unsigned int new_type;
851 bh = head = page_buffers(page);
852 offset = page_offset(page);
854 if (offset >= end_offset)
856 if (!buffer_uptodate(bh))
860 * set_page_dirty dirties all buffers in a page, independent
861 * of their state. The dirty state however is entirely
862 * meaningless for holes (!mapped && uptodate), so skip
863 * buffers covering holes here.
865 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
866 wpc->imap_valid = false;
870 if (buffer_unwritten(bh))
871 new_type = XFS_IO_UNWRITTEN;
872 else if (buffer_delay(bh))
873 new_type = XFS_IO_DELALLOC;
874 else if (buffer_uptodate(bh))
875 new_type = XFS_IO_OVERWRITE;
877 if (PageUptodate(page))
878 ASSERT(buffer_mapped(bh));
880 * This buffer is not uptodate and will not be
881 * written to disk. Ensure that we will put any
882 * subsequent writeable buffers into a new
885 wpc->imap_valid = false;
889 if (xfs_is_reflink_inode(XFS_I(inode))) {
890 error = xfs_map_cow(wpc, inode, offset, &new_type);
895 if (wpc->io_type != new_type) {
896 wpc->io_type = new_type;
897 wpc->imap_valid = false;
901 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
903 if (!wpc->imap_valid) {
904 error = xfs_map_blocks(inode, offset, &wpc->imap,
908 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
911 if (wpc->imap_valid) {
913 if (wpc->io_type != XFS_IO_OVERWRITE)
914 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
915 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
919 } while (offset += len, ((bh = bh->b_this_page) != head));
921 if (uptodate && bh == head)
922 SetPageUptodate(page);
924 ASSERT(wpc->ioend || list_empty(&submit_list));
928 * On error, we have to fail the ioend here because we have locked
929 * buffers in the ioend. If we don't do this, we'll deadlock
930 * invalidating the page as that tries to lock the buffers on the page.
931 * Also, because we may have set pages under writeback, we have to make
932 * sure we run IO completion to mark the error state of the IO
933 * appropriately, so we can't cancel the ioend directly here. That means
934 * we have to mark this page as under writeback if we included any
935 * buffers from it in the ioend chain so that completion treats it
938 * If we didn't include the page in the ioend, the on error we can
939 * simply discard and unlock it as there are no other users of the page
940 * or it's buffers right now. The caller will still need to trigger
941 * submission of outstanding ioends on the writepage context so they are
942 * treated correctly on error.
945 xfs_start_page_writeback(page, !error);
948 * Preserve the original error if there was one, otherwise catch
949 * submission errors here and propagate into subsequent ioend
952 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
955 list_del_init(&ioend->io_list);
956 error2 = xfs_submit_ioend(wbc, ioend, error);
957 if (error2 && !error)
961 xfs_aops_discard_page(page);
962 ClearPageUptodate(page);
966 * We can end up here with no error and nothing to write if we
967 * race with a partial page truncate on a sub-page block sized
968 * filesystem. In that case we need to mark the page clean.
970 xfs_start_page_writeback(page, 1);
971 end_page_writeback(page);
974 mapping_set_error(page->mapping, error);
979 * Write out a dirty page.
981 * For delalloc space on the page we need to allocate space and flush it.
982 * For unwritten space on the page we need to start the conversion to
983 * regular allocated space.
984 * For any other dirty buffer heads on the page we should flush them.
989 struct writeback_control *wbc,
992 struct xfs_writepage_ctx *wpc = data;
993 struct inode *inode = page->mapping->host;
995 __uint64_t end_offset;
998 trace_xfs_writepage(inode, page, 0, 0);
1000 ASSERT(page_has_buffers(page));
1003 * Refuse to write the page out if we are called from reclaim context.
1005 * This avoids stack overflows when called from deeply used stacks in
1006 * random callers for direct reclaim or memcg reclaim. We explicitly
1007 * allow reclaim from kswapd as the stack usage there is relatively low.
1009 * This should never happen except in the case of a VM regression so
1012 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1017 * Given that we do not allow direct reclaim to call us, we should
1018 * never be called while in a filesystem transaction.
1020 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1024 * Is this page beyond the end of the file?
1026 * The page index is less than the end_index, adjust the end_offset
1027 * to the highest offset that this page should represent.
1028 * -----------------------------------------------------
1029 * | file mapping | <EOF> |
1030 * -----------------------------------------------------
1031 * | Page ... | Page N-2 | Page N-1 | Page N | |
1032 * ^--------------------------------^----------|--------
1033 * | desired writeback range | see else |
1034 * ---------------------------------^------------------|
1036 offset = i_size_read(inode);
1037 end_index = offset >> PAGE_SHIFT;
1038 if (page->index < end_index)
1039 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1042 * Check whether the page to write out is beyond or straddles
1044 * -------------------------------------------------------
1045 * | file mapping | <EOF> |
1046 * -------------------------------------------------------
1047 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1048 * ^--------------------------------^-----------|---------
1050 * ---------------------------------^-----------|--------|
1052 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1055 * Skip the page if it is fully outside i_size, e.g. due to a
1056 * truncate operation that is in progress. We must redirty the
1057 * page so that reclaim stops reclaiming it. Otherwise
1058 * xfs_vm_releasepage() is called on it and gets confused.
1060 * Note that the end_index is unsigned long, it would overflow
1061 * if the given offset is greater than 16TB on 32-bit system
1062 * and if we do check the page is fully outside i_size or not
1063 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1064 * will be evaluated to 0. Hence this page will be redirtied
1065 * and be written out repeatedly which would result in an
1066 * infinite loop, the user program that perform this operation
1067 * will hang. Instead, we can verify this situation by checking
1068 * if the page to write is totally beyond the i_size or if it's
1069 * offset is just equal to the EOF.
1071 if (page->index > end_index ||
1072 (page->index == end_index && offset_into_page == 0))
1076 * The page straddles i_size. It must be zeroed out on each
1077 * and every writepage invocation because it may be mmapped.
1078 * "A file is mapped in multiples of the page size. For a file
1079 * that is not a multiple of the page size, the remaining
1080 * memory is zeroed when mapped, and writes to that region are
1081 * not written out to the file."
1083 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1085 /* Adjust the end_offset to the end of file */
1086 end_offset = offset;
1089 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1092 redirty_page_for_writepage(wbc, page);
1100 struct writeback_control *wbc)
1102 struct xfs_writepage_ctx wpc = {
1103 .io_type = XFS_IO_INVALID,
1107 ret = xfs_do_writepage(page, wbc, &wpc);
1109 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1115 struct address_space *mapping,
1116 struct writeback_control *wbc)
1118 struct xfs_writepage_ctx wpc = {
1119 .io_type = XFS_IO_INVALID,
1123 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1124 if (dax_mapping(mapping))
1125 return dax_writeback_mapping_range(mapping,
1126 xfs_find_bdev_for_inode(mapping->host), wbc);
1128 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1130 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1135 * Called to move a page into cleanable state - and from there
1136 * to be released. The page should already be clean. We always
1137 * have buffer heads in this call.
1139 * Returns 1 if the page is ok to release, 0 otherwise.
1146 int delalloc, unwritten;
1148 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1151 * mm accommodates an old ext3 case where clean pages might not have had
1152 * the dirty bit cleared. Thus, it can send actual dirty pages to
1153 * ->releasepage() via shrink_active_list(). Conversely,
1154 * block_invalidatepage() can send pages that are still marked dirty
1155 * but otherwise have invalidated buffers.
1157 * We want to release the latter to avoid unnecessary buildup of the
1158 * LRU, skip the former and warn if we've left any lingering
1159 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1160 * or unwritten buffers and warn if the page is not dirty. Otherwise
1161 * try to release the buffers.
1163 xfs_count_page_state(page, &delalloc, &unwritten);
1166 WARN_ON_ONCE(!PageDirty(page));
1170 WARN_ON_ONCE(!PageDirty(page));
1174 return try_to_free_buffers(page);
1178 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1179 * is, so that we can avoid repeated get_blocks calls.
1181 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1182 * for blocks beyond EOF must be marked new so that sub block regions can be
1183 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1184 * was just allocated or is unwritten, otherwise the callers would overwrite
1185 * existing data with zeros. Hence we have to split the mapping into a range up
1186 * to and including EOF, and a second mapping for beyond EOF.
1190 struct inode *inode,
1192 struct buffer_head *bh_result,
1193 struct xfs_bmbt_irec *imap,
1197 xfs_off_t mapping_size;
1199 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1200 mapping_size <<= inode->i_blkbits;
1202 ASSERT(mapping_size > 0);
1203 if (mapping_size > size)
1204 mapping_size = size;
1205 if (offset < i_size_read(inode) &&
1206 offset + mapping_size >= i_size_read(inode)) {
1207 /* limit mapping to block that spans EOF */
1208 mapping_size = roundup_64(i_size_read(inode) - offset,
1209 i_blocksize(inode));
1211 if (mapping_size > LONG_MAX)
1212 mapping_size = LONG_MAX;
1214 bh_result->b_size = mapping_size;
1219 struct inode *inode,
1221 struct buffer_head *bh_result,
1224 struct xfs_inode *ip = XFS_I(inode);
1225 struct xfs_mount *mp = ip->i_mount;
1226 xfs_fileoff_t offset_fsb, end_fsb;
1229 struct xfs_bmbt_irec imap;
1236 if (XFS_FORCED_SHUTDOWN(mp))
1239 offset = (xfs_off_t)iblock << inode->i_blkbits;
1240 ASSERT(bh_result->b_size >= i_blocksize(inode));
1241 size = bh_result->b_size;
1243 if (offset >= i_size_read(inode))
1247 * Direct I/O is usually done on preallocated files, so try getting
1248 * a block mapping without an exclusive lock first.
1250 lockmode = xfs_ilock_data_map_shared(ip);
1252 ASSERT(offset <= mp->m_super->s_maxbytes);
1253 if (offset + size > mp->m_super->s_maxbytes)
1254 size = mp->m_super->s_maxbytes - offset;
1255 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1256 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1258 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1259 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1264 trace_xfs_get_blocks_found(ip, offset, size,
1265 imap.br_state == XFS_EXT_UNWRITTEN ?
1266 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1267 xfs_iunlock(ip, lockmode);
1269 trace_xfs_get_blocks_notfound(ip, offset, size);
1273 /* trim mapping down to size requested */
1274 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1277 * For unwritten extents do not report a disk address in the buffered
1278 * read case (treat as if we're reading into a hole).
1280 if (xfs_bmap_is_real_extent(&imap))
1281 xfs_map_buffer(inode, bh_result, &imap, offset);
1284 * If this is a realtime file, data may be on a different device.
1285 * to that pointed to from the buffer_head b_bdev currently.
1287 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1291 xfs_iunlock(ip, lockmode);
1298 struct iov_iter *iter)
1301 * We just need the method present so that open/fcntl allow direct I/O.
1308 struct address_space *mapping,
1311 struct inode *inode = (struct inode *)mapping->host;
1312 struct xfs_inode *ip = XFS_I(inode);
1314 trace_xfs_vm_bmap(XFS_I(inode));
1317 * The swap code (ab-)uses ->bmap to get a block mapping and then
1318 * bypasseѕ the file system for actual I/O. We really can't allow
1319 * that on reflinks inodes, so we have to skip out here. And yes,
1320 * 0 is the magic code for a bmap error..
1322 if (xfs_is_reflink_inode(ip))
1325 filemap_write_and_wait(mapping);
1326 return generic_block_bmap(mapping, block, xfs_get_blocks);
1331 struct file *unused,
1334 trace_xfs_vm_readpage(page->mapping->host, 1);
1335 return mpage_readpage(page, xfs_get_blocks);
1340 struct file *unused,
1341 struct address_space *mapping,
1342 struct list_head *pages,
1345 trace_xfs_vm_readpages(mapping->host, nr_pages);
1346 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1350 * This is basically a copy of __set_page_dirty_buffers() with one
1351 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1352 * dirty, we'll never be able to clean them because we don't write buffers
1353 * beyond EOF, and that means we can't invalidate pages that span EOF
1354 * that have been marked dirty. Further, the dirty state can leak into
1355 * the file interior if the file is extended, resulting in all sorts of
1356 * bad things happening as the state does not match the underlying data.
1358 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1359 * this only exist because of bufferheads and how the generic code manages them.
1362 xfs_vm_set_page_dirty(
1365 struct address_space *mapping = page->mapping;
1366 struct inode *inode = mapping->host;
1371 if (unlikely(!mapping))
1372 return !TestSetPageDirty(page);
1374 end_offset = i_size_read(inode);
1375 offset = page_offset(page);
1377 spin_lock(&mapping->private_lock);
1378 if (page_has_buffers(page)) {
1379 struct buffer_head *head = page_buffers(page);
1380 struct buffer_head *bh = head;
1383 if (offset < end_offset)
1384 set_buffer_dirty(bh);
1385 bh = bh->b_this_page;
1386 offset += i_blocksize(inode);
1387 } while (bh != head);
1390 * Lock out page->mem_cgroup migration to keep PageDirty
1391 * synchronized with per-memcg dirty page counters.
1393 lock_page_memcg(page);
1394 newly_dirty = !TestSetPageDirty(page);
1395 spin_unlock(&mapping->private_lock);
1398 /* sigh - __set_page_dirty() is static, so copy it here, too */
1399 unsigned long flags;
1401 spin_lock_irqsave(&mapping->tree_lock, flags);
1402 if (page->mapping) { /* Race with truncate? */
1403 WARN_ON_ONCE(!PageUptodate(page));
1404 account_page_dirtied(page, mapping);
1405 radix_tree_tag_set(&mapping->page_tree,
1406 page_index(page), PAGECACHE_TAG_DIRTY);
1408 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1410 unlock_page_memcg(page);
1412 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1416 const struct address_space_operations xfs_address_space_operations = {
1417 .readpage = xfs_vm_readpage,
1418 .readpages = xfs_vm_readpages,
1419 .writepage = xfs_vm_writepage,
1420 .writepages = xfs_vm_writepages,
1421 .set_page_dirty = xfs_vm_set_page_dirty,
1422 .releasepage = xfs_vm_releasepage,
1423 .invalidatepage = xfs_vm_invalidatepage,
1424 .bmap = xfs_vm_bmap,
1425 .direct_IO = xfs_vm_direct_IO,
1426 .migratepage = buffer_migrate_page,
1427 .is_partially_uptodate = block_is_partially_uptodate,
1428 .error_remove_page = generic_error_remove_page,