]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'leds-for-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/j...
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <linux/clk.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <linux/component.h>
42 #include <linux/of_device.h>
43 #include "vc4_drv.h"
44 #include "vc4_regs.h"
45
46 struct vc4_crtc_state {
47         struct drm_crtc_state base;
48         /* Dlist area for this CRTC configuration. */
49         struct drm_mm_node mm;
50         bool feed_txp;
51         bool txp_armed;
52 };
53
54 static inline struct vc4_crtc_state *
55 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
56 {
57         return (struct vc4_crtc_state *)crtc_state;
58 }
59
60 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
61 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
62
63 #define CRTC_REG(reg) { reg, #reg }
64 static const struct {
65         u32 reg;
66         const char *name;
67 } crtc_regs[] = {
68         CRTC_REG(PV_CONTROL),
69         CRTC_REG(PV_V_CONTROL),
70         CRTC_REG(PV_VSYNCD_EVEN),
71         CRTC_REG(PV_HORZA),
72         CRTC_REG(PV_HORZB),
73         CRTC_REG(PV_VERTA),
74         CRTC_REG(PV_VERTB),
75         CRTC_REG(PV_VERTA_EVEN),
76         CRTC_REG(PV_VERTB_EVEN),
77         CRTC_REG(PV_INTEN),
78         CRTC_REG(PV_INTSTAT),
79         CRTC_REG(PV_STAT),
80         CRTC_REG(PV_HACT_ACT),
81 };
82
83 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
84 {
85         int i;
86
87         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
88                 DRM_INFO("0x%04x (%s): 0x%08x\n",
89                          crtc_regs[i].reg, crtc_regs[i].name,
90                          CRTC_READ(crtc_regs[i].reg));
91         }
92 }
93
94 #ifdef CONFIG_DEBUG_FS
95 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
96 {
97         struct drm_info_node *node = (struct drm_info_node *)m->private;
98         struct drm_device *dev = node->minor->dev;
99         int crtc_index = (uintptr_t)node->info_ent->data;
100         struct drm_crtc *crtc;
101         struct vc4_crtc *vc4_crtc;
102         int i;
103
104         i = 0;
105         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
106                 if (i == crtc_index)
107                         break;
108                 i++;
109         }
110         if (!crtc)
111                 return 0;
112         vc4_crtc = to_vc4_crtc(crtc);
113
114         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
115                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
116                            crtc_regs[i].name, crtc_regs[i].reg,
117                            CRTC_READ(crtc_regs[i].reg));
118         }
119
120         return 0;
121 }
122 #endif
123
124 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
125                              bool in_vblank_irq, int *vpos, int *hpos,
126                              ktime_t *stime, ktime_t *etime,
127                              const struct drm_display_mode *mode)
128 {
129         struct vc4_dev *vc4 = to_vc4_dev(dev);
130         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
131         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
132         u32 val;
133         int fifo_lines;
134         int vblank_lines;
135         bool ret = false;
136
137         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
138
139         /* Get optional system timestamp before query. */
140         if (stime)
141                 *stime = ktime_get();
142
143         /*
144          * Read vertical scanline which is currently composed for our
145          * pixelvalve by the HVS, and also the scaler status.
146          */
147         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
148
149         /* Get optional system timestamp after query. */
150         if (etime)
151                 *etime = ktime_get();
152
153         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
154
155         /* Vertical position of hvs composed scanline. */
156         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
157         *hpos = 0;
158
159         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
160                 *vpos /= 2;
161
162                 /* Use hpos to correct for field offset in interlaced mode. */
163                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
164                         *hpos += mode->crtc_htotal / 2;
165         }
166
167         /* This is the offset we need for translating hvs -> pv scanout pos. */
168         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
169
170         if (fifo_lines > 0)
171                 ret = true;
172
173         /* HVS more than fifo_lines into frame for compositing? */
174         if (*vpos > fifo_lines) {
175                 /*
176                  * We are in active scanout and can get some meaningful results
177                  * from HVS. The actual PV scanout can not trail behind more
178                  * than fifo_lines as that is the fifo's capacity. Assume that
179                  * in active scanout the HVS and PV work in lockstep wrt. HVS
180                  * refilling the fifo and PV consuming from the fifo, ie.
181                  * whenever the PV consumes and frees up a scanline in the
182                  * fifo, the HVS will immediately refill it, therefore
183                  * incrementing vpos. Therefore we choose HVS read position -
184                  * fifo size in scanlines as a estimate of the real scanout
185                  * position of the PV.
186                  */
187                 *vpos -= fifo_lines + 1;
188
189                 return ret;
190         }
191
192         /*
193          * Less: This happens when we are in vblank and the HVS, after getting
194          * the VSTART restart signal from the PV, just started refilling its
195          * fifo with new lines from the top-most lines of the new framebuffers.
196          * The PV does not scan out in vblank, so does not remove lines from
197          * the fifo, so the fifo will be full quickly and the HVS has to pause.
198          * We can't get meaningful readings wrt. scanline position of the PV
199          * and need to make things up in a approximative but consistent way.
200          */
201         vblank_lines = mode->vtotal - mode->vdisplay;
202
203         if (in_vblank_irq) {
204                 /*
205                  * Assume the irq handler got called close to first
206                  * line of vblank, so PV has about a full vblank
207                  * scanlines to go, and as a base timestamp use the
208                  * one taken at entry into vblank irq handler, so it
209                  * is not affected by random delays due to lock
210                  * contention on event_lock or vblank_time lock in
211                  * the core.
212                  */
213                 *vpos = -vblank_lines;
214
215                 if (stime)
216                         *stime = vc4_crtc->t_vblank;
217                 if (etime)
218                         *etime = vc4_crtc->t_vblank;
219
220                 /*
221                  * If the HVS fifo is not yet full then we know for certain
222                  * we are at the very beginning of vblank, as the hvs just
223                  * started refilling, and the stime and etime timestamps
224                  * truly correspond to start of vblank.
225                  *
226                  * Unfortunately there's no way to report this to upper levels
227                  * and make it more useful.
228                  */
229         } else {
230                 /*
231                  * No clue where we are inside vblank. Return a vpos of zero,
232                  * which will cause calling code to just return the etime
233                  * timestamp uncorrected. At least this is no worse than the
234                  * standard fallback.
235                  */
236                 *vpos = 0;
237         }
238
239         return ret;
240 }
241
242 static void vc4_crtc_destroy(struct drm_crtc *crtc)
243 {
244         drm_crtc_cleanup(crtc);
245 }
246
247 static void
248 vc4_crtc_lut_load(struct drm_crtc *crtc)
249 {
250         struct drm_device *dev = crtc->dev;
251         struct vc4_dev *vc4 = to_vc4_dev(dev);
252         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
253         u32 i;
254
255         /* The LUT memory is laid out with each HVS channel in order,
256          * each of which takes 256 writes for R, 256 for G, then 256
257          * for B.
258          */
259         HVS_WRITE(SCALER_GAMADDR,
260                   SCALER_GAMADDR_AUTOINC |
261                   (vc4_crtc->channel * 3 * crtc->gamma_size));
262
263         for (i = 0; i < crtc->gamma_size; i++)
264                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
265         for (i = 0; i < crtc->gamma_size; i++)
266                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
267         for (i = 0; i < crtc->gamma_size; i++)
268                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
269 }
270
271 static void
272 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
273 {
274         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
275         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
276         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
277         u32 i;
278
279         for (i = 0; i < length; i++) {
280                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
281                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
282                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
283         }
284
285         vc4_crtc_lut_load(crtc);
286 }
287
288 static u32 vc4_get_fifo_full_level(u32 format)
289 {
290         static const u32 fifo_len_bytes = 64;
291         static const u32 hvs_latency_pix = 6;
292
293         switch (format) {
294         case PV_CONTROL_FORMAT_DSIV_16:
295         case PV_CONTROL_FORMAT_DSIC_16:
296                 return fifo_len_bytes - 2 * hvs_latency_pix;
297         case PV_CONTROL_FORMAT_DSIV_18:
298                 return fifo_len_bytes - 14;
299         case PV_CONTROL_FORMAT_24:
300         case PV_CONTROL_FORMAT_DSIV_24:
301         default:
302                 return fifo_len_bytes - 3 * hvs_latency_pix;
303         }
304 }
305
306 /*
307  * Returns the encoder attached to the CRTC.
308  *
309  * VC4 can only scan out to one encoder at a time, while the DRM core
310  * allows drivers to push pixels to more than one encoder from the
311  * same CRTC.
312  */
313 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
314 {
315         struct drm_connector *connector;
316         struct drm_connector_list_iter conn_iter;
317
318         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
319         drm_for_each_connector_iter(connector, &conn_iter) {
320                 if (connector->state->crtc == crtc) {
321                         drm_connector_list_iter_end(&conn_iter);
322                         return connector->encoder;
323                 }
324         }
325         drm_connector_list_iter_end(&conn_iter);
326
327         return NULL;
328 }
329
330 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
331 {
332         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
333         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
334         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
335         struct drm_crtc_state *state = crtc->state;
336         struct drm_display_mode *mode = &state->adjusted_mode;
337         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
338         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
339         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
340                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
341         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
342
343         /* Reset the PV fifo. */
344         CRTC_WRITE(PV_CONTROL, 0);
345         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
346         CRTC_WRITE(PV_CONTROL, 0);
347
348         CRTC_WRITE(PV_HORZA,
349                    VC4_SET_FIELD((mode->htotal -
350                                   mode->hsync_end) * pixel_rep,
351                                  PV_HORZA_HBP) |
352                    VC4_SET_FIELD((mode->hsync_end -
353                                   mode->hsync_start) * pixel_rep,
354                                  PV_HORZA_HSYNC));
355         CRTC_WRITE(PV_HORZB,
356                    VC4_SET_FIELD((mode->hsync_start -
357                                   mode->hdisplay) * pixel_rep,
358                                  PV_HORZB_HFP) |
359                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
360
361         CRTC_WRITE(PV_VERTA,
362                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
363                                  PV_VERTA_VBP) |
364                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
365                                  PV_VERTA_VSYNC));
366         CRTC_WRITE(PV_VERTB,
367                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
368                                  PV_VERTB_VFP) |
369                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370
371         if (interlace) {
372                 CRTC_WRITE(PV_VERTA_EVEN,
373                            VC4_SET_FIELD(mode->crtc_vtotal -
374                                          mode->crtc_vsync_end - 1,
375                                          PV_VERTA_VBP) |
376                            VC4_SET_FIELD(mode->crtc_vsync_end -
377                                          mode->crtc_vsync_start,
378                                          PV_VERTA_VSYNC));
379                 CRTC_WRITE(PV_VERTB_EVEN,
380                            VC4_SET_FIELD(mode->crtc_vsync_start -
381                                          mode->crtc_vdisplay,
382                                          PV_VERTB_VFP) |
383                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
384
385                 /* We set up first field even mode for HDMI.  VEC's
386                  * NTSC mode would want first field odd instead, once
387                  * we support it (to do so, set ODD_FIRST and put the
388                  * delay in VSYNCD_EVEN instead).
389                  */
390                 CRTC_WRITE(PV_V_CONTROL,
391                            PV_VCONTROL_CONTINUOUS |
392                            (is_dsi ? PV_VCONTROL_DSI : 0) |
393                            PV_VCONTROL_INTERLACE |
394                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
395                                          PV_VCONTROL_ODD_DELAY));
396                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
397         } else {
398                 CRTC_WRITE(PV_V_CONTROL,
399                            PV_VCONTROL_CONTINUOUS |
400                            (is_dsi ? PV_VCONTROL_DSI : 0));
401         }
402
403         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
404
405         CRTC_WRITE(PV_CONTROL,
406                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
407                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
408                                  PV_CONTROL_FIFO_LEVEL) |
409                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
410                    PV_CONTROL_CLR_AT_START |
411                    PV_CONTROL_TRIGGER_UNDERFLOW |
412                    PV_CONTROL_WAIT_HSTART |
413                    VC4_SET_FIELD(vc4_encoder->clock_select,
414                                  PV_CONTROL_CLK_SELECT) |
415                    PV_CONTROL_FIFO_CLR |
416                    PV_CONTROL_EN);
417 }
418
419 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
420 {
421         struct drm_device *dev = crtc->dev;
422         struct vc4_dev *vc4 = to_vc4_dev(dev);
423         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
424         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
425         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
426         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
427         bool debug_dump_regs = false;
428
429         if (debug_dump_regs) {
430                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
431                 vc4_crtc_dump_regs(vc4_crtc);
432         }
433
434         if (vc4_crtc->channel == 2) {
435                 u32 dispctrl;
436                 u32 dsp3_mux;
437
438                 /*
439                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
440                  * FIFO X'.
441                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
442                  *
443                  * DSP3 is connected to FIFO2 unless the transposer is
444                  * enabled. In this case, FIFO 2 is directly accessed by the
445                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
446                  * route.
447                  */
448                 if (vc4_state->feed_txp)
449                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
450                 else
451                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
452
453                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
454                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
455                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
456         }
457
458         if (!vc4_state->feed_txp)
459                 vc4_crtc_config_pv(crtc);
460
461         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
462                   SCALER_DISPBKGND_AUTOHS |
463                   SCALER_DISPBKGND_GAMMA |
464                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
465
466         /* Reload the LUT, since the SRAMs would have been disabled if
467          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
468          */
469         vc4_crtc_lut_load(crtc);
470
471         if (debug_dump_regs) {
472                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
473                 vc4_crtc_dump_regs(vc4_crtc);
474         }
475 }
476
477 static void require_hvs_enabled(struct drm_device *dev)
478 {
479         struct vc4_dev *vc4 = to_vc4_dev(dev);
480
481         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
482                      SCALER_DISPCTRL_ENABLE);
483 }
484
485 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
486                                     struct drm_crtc_state *old_state)
487 {
488         struct drm_device *dev = crtc->dev;
489         struct vc4_dev *vc4 = to_vc4_dev(dev);
490         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491         u32 chan = vc4_crtc->channel;
492         int ret;
493         require_hvs_enabled(dev);
494
495         /* Disable vblank irq handling before crtc is disabled. */
496         drm_crtc_vblank_off(crtc);
497
498         CRTC_WRITE(PV_V_CONTROL,
499                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
500         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
501         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502
503         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
504             SCALER_DISPCTRLX_ENABLE) {
505                 HVS_WRITE(SCALER_DISPCTRLX(chan),
506                           SCALER_DISPCTRLX_RESET);
507
508                 /* While the docs say that reset is self-clearing, it
509                  * seems it doesn't actually.
510                  */
511                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
512         }
513
514         /* Once we leave, the scaler should be disabled and its fifo empty. */
515
516         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
517
518         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
519                                    SCALER_DISPSTATX_MODE) !=
520                      SCALER_DISPSTATX_MODE_DISABLED);
521
522         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
523                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
524                      SCALER_DISPSTATX_EMPTY);
525
526         /*
527          * Make sure we issue a vblank event after disabling the CRTC if
528          * someone was waiting it.
529          */
530         if (crtc->state->event) {
531                 unsigned long flags;
532
533                 spin_lock_irqsave(&dev->event_lock, flags);
534                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
535                 crtc->state->event = NULL;
536                 spin_unlock_irqrestore(&dev->event_lock, flags);
537         }
538 }
539
540 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
541 {
542         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
543
544         vc4_state->txp_armed = true;
545 }
546
547 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
548 {
549         struct drm_device *dev = crtc->dev;
550         struct vc4_dev *vc4 = to_vc4_dev(dev);
551         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
552         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
553
554         if (crtc->state->event) {
555                 unsigned long flags;
556
557                 crtc->state->event->pipe = drm_crtc_index(crtc);
558
559                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
560
561                 spin_lock_irqsave(&dev->event_lock, flags);
562
563                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
564                         vc4_crtc->event = crtc->state->event;
565                         crtc->state->event = NULL;
566                 }
567
568                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
569                           vc4_state->mm.start);
570
571                 spin_unlock_irqrestore(&dev->event_lock, flags);
572         } else {
573                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
574                           vc4_state->mm.start);
575         }
576 }
577
578 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
579                                    struct drm_crtc_state *old_state)
580 {
581         struct drm_device *dev = crtc->dev;
582         struct vc4_dev *vc4 = to_vc4_dev(dev);
583         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
584         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
585         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
586
587         require_hvs_enabled(dev);
588
589         /* Enable vblank irq handling before crtc is started otherwise
590          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
591          */
592         drm_crtc_vblank_on(crtc);
593         vc4_crtc_update_dlist(crtc);
594
595         /* Turn on the scaler, which will wait for vstart to start
596          * compositing.
597          * When feeding the transposer, we should operate in oneshot
598          * mode.
599          */
600         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
601                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
602                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
603                   SCALER_DISPCTRLX_ENABLE |
604                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
605
606         /* When feeding the transposer block the pixelvalve is unneeded and
607          * should not be enabled.
608          */
609         if (!vc4_state->feed_txp)
610                 CRTC_WRITE(PV_V_CONTROL,
611                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
612 }
613
614 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
615                                                 const struct drm_display_mode *mode)
616 {
617         /* Do not allow doublescan modes from user space */
618         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
619                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
620                               crtc->base.id);
621                 return MODE_NO_DBLESCAN;
622         }
623
624         return MODE_OK;
625 }
626
627 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
628                                  struct drm_crtc_state *state)
629 {
630         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
631         struct drm_device *dev = crtc->dev;
632         struct vc4_dev *vc4 = to_vc4_dev(dev);
633         struct drm_plane *plane;
634         unsigned long flags;
635         const struct drm_plane_state *plane_state;
636         struct drm_connector *conn;
637         struct drm_connector_state *conn_state;
638         u32 dlist_count = 0;
639         int ret, i;
640
641         /* The pixelvalve can only feed one encoder (and encoders are
642          * 1:1 with connectors.)
643          */
644         if (hweight32(state->connector_mask) > 1)
645                 return -EINVAL;
646
647         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
648                 dlist_count += vc4_plane_dlist_size(plane_state);
649
650         dlist_count++; /* Account for SCALER_CTL0_END. */
651
652         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
653         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
654                                  dlist_count);
655         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
656         if (ret)
657                 return ret;
658
659         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
660                 if (conn_state->crtc != crtc)
661                         continue;
662
663                 /* The writeback connector is implemented using the transposer
664                  * block which is directly taking its data from the HVS FIFO.
665                  */
666                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
667                         state->no_vblank = true;
668                         vc4_state->feed_txp = true;
669                 } else {
670                         state->no_vblank = false;
671                         vc4_state->feed_txp = false;
672                 }
673
674                 break;
675         }
676
677         return 0;
678 }
679
680 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
681                                   struct drm_crtc_state *old_state)
682 {
683         struct drm_device *dev = crtc->dev;
684         struct vc4_dev *vc4 = to_vc4_dev(dev);
685         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
686         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
687         struct drm_plane *plane;
688         struct vc4_plane_state *vc4_plane_state;
689         bool debug_dump_regs = false;
690         bool enable_bg_fill = false;
691         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
692         u32 __iomem *dlist_next = dlist_start;
693
694         if (debug_dump_regs) {
695                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
696                 vc4_hvs_dump_state(dev);
697         }
698
699         /* Copy all the active planes' dlist contents to the hardware dlist. */
700         drm_atomic_crtc_for_each_plane(plane, crtc) {
701                 /* Is this the first active plane? */
702                 if (dlist_next == dlist_start) {
703                         /* We need to enable background fill when a plane
704                          * could be alpha blending from the background, i.e.
705                          * where no other plane is underneath. It suffices to
706                          * consider the first active plane here since we set
707                          * needs_bg_fill such that either the first plane
708                          * already needs it or all planes on top blend from
709                          * the first or a lower plane.
710                          */
711                         vc4_plane_state = to_vc4_plane_state(plane->state);
712                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
713                 }
714
715                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
716         }
717
718         writel(SCALER_CTL0_END, dlist_next);
719         dlist_next++;
720
721         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
722
723         if (enable_bg_fill)
724                 /* This sets a black background color fill, as is the case
725                  * with other DRM drivers.
726                  */
727                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
728                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
729                           SCALER_DISPBKGND_FILL);
730
731         /* Only update DISPLIST if the CRTC was already running and is not
732          * being disabled.
733          * vc4_crtc_enable() takes care of updating the dlist just after
734          * re-enabling VBLANK interrupts and before enabling the engine.
735          * If the CRTC is being disabled, there's no point in updating this
736          * information.
737          */
738         if (crtc->state->active && old_state->active)
739                 vc4_crtc_update_dlist(crtc);
740
741         if (crtc->state->color_mgmt_changed) {
742                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
743
744                 if (crtc->state->gamma_lut) {
745                         vc4_crtc_update_gamma_lut(crtc);
746                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
747                 } else {
748                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
749                          * in hardware, which is the same as a linear lut that
750                          * DRM expects us to use in absence of a user lut.
751                          */
752                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
753                 }
754                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
755         }
756
757         if (debug_dump_regs) {
758                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
759                 vc4_hvs_dump_state(dev);
760         }
761 }
762
763 static int vc4_enable_vblank(struct drm_crtc *crtc)
764 {
765         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
766
767         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
768
769         return 0;
770 }
771
772 static void vc4_disable_vblank(struct drm_crtc *crtc)
773 {
774         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775
776         CRTC_WRITE(PV_INTEN, 0);
777 }
778
779 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
780 {
781         struct drm_crtc *crtc = &vc4_crtc->base;
782         struct drm_device *dev = crtc->dev;
783         struct vc4_dev *vc4 = to_vc4_dev(dev);
784         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
785         u32 chan = vc4_crtc->channel;
786         unsigned long flags;
787
788         spin_lock_irqsave(&dev->event_lock, flags);
789         if (vc4_crtc->event &&
790             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
791              vc4_state->feed_txp)) {
792                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
793                 vc4_crtc->event = NULL;
794                 drm_crtc_vblank_put(crtc);
795         }
796         spin_unlock_irqrestore(&dev->event_lock, flags);
797 }
798
799 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
800 {
801         crtc->t_vblank = ktime_get();
802         drm_crtc_handle_vblank(&crtc->base);
803         vc4_crtc_handle_page_flip(crtc);
804 }
805
806 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
807 {
808         struct vc4_crtc *vc4_crtc = data;
809         u32 stat = CRTC_READ(PV_INTSTAT);
810         irqreturn_t ret = IRQ_NONE;
811
812         if (stat & PV_INT_VFP_START) {
813                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
814                 vc4_crtc_handle_vblank(vc4_crtc);
815                 ret = IRQ_HANDLED;
816         }
817
818         return ret;
819 }
820
821 struct vc4_async_flip_state {
822         struct drm_crtc *crtc;
823         struct drm_framebuffer *fb;
824         struct drm_framebuffer *old_fb;
825         struct drm_pending_vblank_event *event;
826
827         struct vc4_seqno_cb cb;
828 };
829
830 /* Called when the V3D execution for the BO being flipped to is done, so that
831  * we can actually update the plane's address to point to it.
832  */
833 static void
834 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
835 {
836         struct vc4_async_flip_state *flip_state =
837                 container_of(cb, struct vc4_async_flip_state, cb);
838         struct drm_crtc *crtc = flip_state->crtc;
839         struct drm_device *dev = crtc->dev;
840         struct vc4_dev *vc4 = to_vc4_dev(dev);
841         struct drm_plane *plane = crtc->primary;
842
843         vc4_plane_async_set_fb(plane, flip_state->fb);
844         if (flip_state->event) {
845                 unsigned long flags;
846
847                 spin_lock_irqsave(&dev->event_lock, flags);
848                 drm_crtc_send_vblank_event(crtc, flip_state->event);
849                 spin_unlock_irqrestore(&dev->event_lock, flags);
850         }
851
852         drm_crtc_vblank_put(crtc);
853         drm_framebuffer_put(flip_state->fb);
854
855         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
856          * when the planes are updated through the async update path.
857          * FIXME: we should move to generic async-page-flip when it's
858          * available, so that we can get rid of this hand-made cleanup_fb()
859          * logic.
860          */
861         if (flip_state->old_fb) {
862                 struct drm_gem_cma_object *cma_bo;
863                 struct vc4_bo *bo;
864
865                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
866                 bo = to_vc4_bo(&cma_bo->base);
867                 vc4_bo_dec_usecnt(bo);
868                 drm_framebuffer_put(flip_state->old_fb);
869         }
870
871         kfree(flip_state);
872
873         up(&vc4->async_modeset);
874 }
875
876 /* Implements async (non-vblank-synced) page flips.
877  *
878  * The page flip ioctl needs to return immediately, so we grab the
879  * modeset semaphore on the pipe, and queue the address update for
880  * when V3D is done with the BO being flipped to.
881  */
882 static int vc4_async_page_flip(struct drm_crtc *crtc,
883                                struct drm_framebuffer *fb,
884                                struct drm_pending_vblank_event *event,
885                                uint32_t flags)
886 {
887         struct drm_device *dev = crtc->dev;
888         struct vc4_dev *vc4 = to_vc4_dev(dev);
889         struct drm_plane *plane = crtc->primary;
890         int ret = 0;
891         struct vc4_async_flip_state *flip_state;
892         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
893         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
894
895         /* Increment the BO usecnt here, so that we never end up with an
896          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
897          * plane is later updated through the non-async path.
898          * FIXME: we should move to generic async-page-flip when it's
899          * available, so that we can get rid of this hand-made prepare_fb()
900          * logic.
901          */
902         ret = vc4_bo_inc_usecnt(bo);
903         if (ret)
904                 return ret;
905
906         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
907         if (!flip_state) {
908                 vc4_bo_dec_usecnt(bo);
909                 return -ENOMEM;
910         }
911
912         drm_framebuffer_get(fb);
913         flip_state->fb = fb;
914         flip_state->crtc = crtc;
915         flip_state->event = event;
916
917         /* Make sure all other async modesetes have landed. */
918         ret = down_interruptible(&vc4->async_modeset);
919         if (ret) {
920                 drm_framebuffer_put(fb);
921                 vc4_bo_dec_usecnt(bo);
922                 kfree(flip_state);
923                 return ret;
924         }
925
926         /* Save the current FB before it's replaced by the new one in
927          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
928          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
929          * it consistent.
930          * FIXME: we should move to generic async-page-flip when it's
931          * available, so that we can get rid of this hand-made cleanup_fb()
932          * logic.
933          */
934         flip_state->old_fb = plane->state->fb;
935         if (flip_state->old_fb)
936                 drm_framebuffer_get(flip_state->old_fb);
937
938         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
939
940         /* Immediately update the plane's legacy fb pointer, so that later
941          * modeset prep sees the state that will be present when the semaphore
942          * is released.
943          */
944         drm_atomic_set_fb_for_plane(plane->state, fb);
945
946         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
947                            vc4_async_page_flip_complete);
948
949         /* Driver takes ownership of state on successful async commit. */
950         return 0;
951 }
952
953 static int vc4_page_flip(struct drm_crtc *crtc,
954                          struct drm_framebuffer *fb,
955                          struct drm_pending_vblank_event *event,
956                          uint32_t flags,
957                          struct drm_modeset_acquire_ctx *ctx)
958 {
959         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
960                 return vc4_async_page_flip(crtc, fb, event, flags);
961         else
962                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
963 }
964
965 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
966 {
967         struct vc4_crtc_state *vc4_state, *old_vc4_state;
968
969         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
970         if (!vc4_state)
971                 return NULL;
972
973         old_vc4_state = to_vc4_crtc_state(crtc->state);
974         vc4_state->feed_txp = old_vc4_state->feed_txp;
975
976         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
977         return &vc4_state->base;
978 }
979
980 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
981                                    struct drm_crtc_state *state)
982 {
983         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
984         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
985
986         if (vc4_state->mm.allocated) {
987                 unsigned long flags;
988
989                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
990                 drm_mm_remove_node(&vc4_state->mm);
991                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
992
993         }
994
995         drm_atomic_helper_crtc_destroy_state(crtc, state);
996 }
997
998 static void
999 vc4_crtc_reset(struct drm_crtc *crtc)
1000 {
1001         if (crtc->state)
1002                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1003
1004         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1005         if (crtc->state)
1006                 crtc->state->crtc = crtc;
1007 }
1008
1009 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1010         .set_config = drm_atomic_helper_set_config,
1011         .destroy = vc4_crtc_destroy,
1012         .page_flip = vc4_page_flip,
1013         .set_property = NULL,
1014         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1015         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1016         .reset = vc4_crtc_reset,
1017         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1018         .atomic_destroy_state = vc4_crtc_destroy_state,
1019         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1020         .enable_vblank = vc4_enable_vblank,
1021         .disable_vblank = vc4_disable_vblank,
1022 };
1023
1024 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1025         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1026         .mode_valid = vc4_crtc_mode_valid,
1027         .atomic_check = vc4_crtc_atomic_check,
1028         .atomic_flush = vc4_crtc_atomic_flush,
1029         .atomic_enable = vc4_crtc_atomic_enable,
1030         .atomic_disable = vc4_crtc_atomic_disable,
1031 };
1032
1033 static const struct vc4_crtc_data pv0_data = {
1034         .hvs_channel = 0,
1035         .encoder_types = {
1036                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1037                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1038         },
1039 };
1040
1041 static const struct vc4_crtc_data pv1_data = {
1042         .hvs_channel = 2,
1043         .encoder_types = {
1044                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1045                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1046         },
1047 };
1048
1049 static const struct vc4_crtc_data pv2_data = {
1050         .hvs_channel = 1,
1051         .encoder_types = {
1052                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1053                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1054         },
1055 };
1056
1057 static const struct of_device_id vc4_crtc_dt_match[] = {
1058         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1059         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1060         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1061         {}
1062 };
1063
1064 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1065                                         struct drm_crtc *crtc)
1066 {
1067         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1068         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1069         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1070         struct drm_encoder *encoder;
1071
1072         drm_for_each_encoder(encoder, drm) {
1073                 struct vc4_encoder *vc4_encoder;
1074                 int i;
1075
1076                 /* HVS FIFO2 can feed the TXP IP. */
1077                 if (crtc_data->hvs_channel == 2 &&
1078                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1079                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1080                         continue;
1081                 }
1082
1083                 vc4_encoder = to_vc4_encoder(encoder);
1084                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1085                         if (vc4_encoder->type == encoder_types[i]) {
1086                                 vc4_encoder->clock_select = i;
1087                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1088                                 break;
1089                         }
1090                 }
1091         }
1092 }
1093
1094 static void
1095 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1096 {
1097         struct drm_device *drm = vc4_crtc->base.dev;
1098         struct vc4_dev *vc4 = to_vc4_dev(drm);
1099         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1100         /* Top/base are supposed to be 4-pixel aligned, but the
1101          * Raspberry Pi firmware fills the low bits (which are
1102          * presumably ignored).
1103          */
1104         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1105         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1106
1107         vc4_crtc->cob_size = top - base + 4;
1108 }
1109
1110 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1111 {
1112         struct platform_device *pdev = to_platform_device(dev);
1113         struct drm_device *drm = dev_get_drvdata(master);
1114         struct vc4_crtc *vc4_crtc;
1115         struct drm_crtc *crtc;
1116         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1117         const struct of_device_id *match;
1118         int ret, i;
1119
1120         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1121         if (!vc4_crtc)
1122                 return -ENOMEM;
1123         crtc = &vc4_crtc->base;
1124
1125         match = of_match_device(vc4_crtc_dt_match, dev);
1126         if (!match)
1127                 return -ENODEV;
1128         vc4_crtc->data = match->data;
1129
1130         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1131         if (IS_ERR(vc4_crtc->regs))
1132                 return PTR_ERR(vc4_crtc->regs);
1133
1134         /* For now, we create just the primary and the legacy cursor
1135          * planes.  We should be able to stack more planes on easily,
1136          * but to do that we would need to compute the bandwidth
1137          * requirement of the plane configuration, and reject ones
1138          * that will take too much.
1139          */
1140         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1141         if (IS_ERR(primary_plane)) {
1142                 dev_err(dev, "failed to construct primary plane\n");
1143                 ret = PTR_ERR(primary_plane);
1144                 goto err;
1145         }
1146
1147         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1148                                   &vc4_crtc_funcs, NULL);
1149         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1150         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1151         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1152         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1153
1154         /* We support CTM, but only for one CRTC at a time. It's therefore
1155          * implemented as private driver state in vc4_kms, not here.
1156          */
1157         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1158
1159         /* Set up some arbitrary number of planes.  We're not limited
1160          * by a set number of physical registers, just the space in
1161          * the HVS (16k) and how small an plane can be (28 bytes).
1162          * However, each plane we set up takes up some memory, and
1163          * increases the cost of looping over planes, which atomic
1164          * modesetting does quite a bit.  As a result, we pick a
1165          * modest number of planes to expose, that should hopefully
1166          * still cover any sane usecase.
1167          */
1168         for (i = 0; i < 8; i++) {
1169                 struct drm_plane *plane =
1170                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1171
1172                 if (IS_ERR(plane))
1173                         continue;
1174
1175                 plane->possible_crtcs = drm_crtc_mask(crtc);
1176         }
1177
1178         /* Set up the legacy cursor after overlay initialization,
1179          * since we overlay planes on the CRTC in the order they were
1180          * initialized.
1181          */
1182         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1183         if (!IS_ERR(cursor_plane)) {
1184                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1185                 crtc->cursor = cursor_plane;
1186         }
1187
1188         vc4_crtc_get_cob_allocation(vc4_crtc);
1189
1190         CRTC_WRITE(PV_INTEN, 0);
1191         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1192         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1193                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1194         if (ret)
1195                 goto err_destroy_planes;
1196
1197         vc4_set_crtc_possible_masks(drm, crtc);
1198
1199         for (i = 0; i < crtc->gamma_size; i++) {
1200                 vc4_crtc->lut_r[i] = i;
1201                 vc4_crtc->lut_g[i] = i;
1202                 vc4_crtc->lut_b[i] = i;
1203         }
1204
1205         platform_set_drvdata(pdev, vc4_crtc);
1206
1207         return 0;
1208
1209 err_destroy_planes:
1210         list_for_each_entry_safe(destroy_plane, temp,
1211                                  &drm->mode_config.plane_list, head) {
1212                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1213                     destroy_plane->funcs->destroy(destroy_plane);
1214         }
1215 err:
1216         return ret;
1217 }
1218
1219 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1220                             void *data)
1221 {
1222         struct platform_device *pdev = to_platform_device(dev);
1223         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1224
1225         vc4_crtc_destroy(&vc4_crtc->base);
1226
1227         CRTC_WRITE(PV_INTEN, 0);
1228
1229         platform_set_drvdata(pdev, NULL);
1230 }
1231
1232 static const struct component_ops vc4_crtc_ops = {
1233         .bind   = vc4_crtc_bind,
1234         .unbind = vc4_crtc_unbind,
1235 };
1236
1237 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1238 {
1239         return component_add(&pdev->dev, &vc4_crtc_ops);
1240 }
1241
1242 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1243 {
1244         component_del(&pdev->dev, &vc4_crtc_ops);
1245         return 0;
1246 }
1247
1248 struct platform_driver vc4_crtc_driver = {
1249         .probe = vc4_crtc_dev_probe,
1250         .remove = vc4_crtc_dev_remove,
1251         .driver = {
1252                 .name = "vc4_crtc",
1253                 .of_match_table = vc4_crtc_dt_match,
1254         },
1255 };
This page took 0.103593 seconds and 4 git commands to generate.