]> Git Repo - linux.git/blob - mm/sparse.c
mm/sparse.c: make sparse_init_one_section void and remove check
[linux.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available())
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         else
71                 section = memblock_virt_alloc_node(array_size, nid);
72
73         return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79         struct mem_section *section;
80
81         if (mem_section[root])
82                 return -EEXIST;
83
84         section = sparse_index_alloc(nid);
85         if (!section)
86                 return -ENOMEM;
87
88         mem_section[root] = section;
89
90         return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95         return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102         unsigned long root_nr;
103         struct mem_section *root = NULL;
104
105         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107                 if (!root)
108                         continue;
109
110                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111                      break;
112         }
113
114         VM_BUG_ON(!root);
115
116         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121         return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133         return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138         return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143                                                 unsigned long *end_pfn)
144 {
145         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147         /*
148          * Sanity checks - do not allow an architecture to pass
149          * in larger pfns than the maximum scope of sparsemem:
150          */
151         if (*start_pfn > max_sparsemem_pfn) {
152                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154                         *start_pfn, *end_pfn, max_sparsemem_pfn);
155                 WARN_ON_ONCE(1);
156                 *start_pfn = max_sparsemem_pfn;
157                 *end_pfn = max_sparsemem_pfn;
158         } else if (*end_pfn > max_sparsemem_pfn) {
159                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161                         *start_pfn, *end_pfn, max_sparsemem_pfn);
162                 WARN_ON_ONCE(1);
163                 *end_pfn = max_sparsemem_pfn;
164         }
165 }
166
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179         int section_nr = __section_nr(ms);
180
181         if (section_nr > __highest_present_section_nr)
182                 __highest_present_section_nr = section_nr;
183
184         ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189         do {
190                 section_nr++;
191                 if (present_section_nr(section_nr))
192                         return section_nr;
193         } while ((section_nr <= __highest_present_section_nr));
194
195         return -1;
196 }
197 #define for_each_present_section_nr(start, section_nr)          \
198         for (section_nr = next_present_section_nr(start-1);     \
199              ((section_nr >= 0) &&                              \
200               (section_nr <= __highest_present_section_nr));    \
201              section_nr = next_present_section_nr(section_nr))
202
203 /* Record a memory area against a node. */
204 void __init memory_present(int nid, unsigned long start, unsigned long end)
205 {
206         unsigned long pfn;
207
208 #ifdef CONFIG_SPARSEMEM_EXTREME
209         if (unlikely(!mem_section)) {
210                 unsigned long size, align;
211
212                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
213                 align = 1 << (INTERNODE_CACHE_SHIFT);
214                 mem_section = memblock_virt_alloc(size, align);
215         }
216 #endif
217
218         start &= PAGE_SECTION_MASK;
219         mminit_validate_memmodel_limits(&start, &end);
220         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
221                 unsigned long section = pfn_to_section_nr(pfn);
222                 struct mem_section *ms;
223
224                 sparse_index_init(section, nid);
225                 set_section_nid(section, nid);
226
227                 ms = __nr_to_section(section);
228                 if (!ms->section_mem_map) {
229                         ms->section_mem_map = sparse_encode_early_nid(nid) |
230                                                         SECTION_IS_ONLINE;
231                         section_mark_present(ms);
232                 }
233         }
234 }
235
236 /*
237  * Subtle, we encode the real pfn into the mem_map such that
238  * the identity pfn - section_mem_map will return the actual
239  * physical page frame number.
240  */
241 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
242 {
243         unsigned long coded_mem_map =
244                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
245         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
246         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
247         return coded_mem_map;
248 }
249
250 /*
251  * Decode mem_map from the coded memmap
252  */
253 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
254 {
255         /* mask off the extra low bits of information */
256         coded_mem_map &= SECTION_MAP_MASK;
257         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
258 }
259
260 static void __meminit sparse_init_one_section(struct mem_section *ms,
261                 unsigned long pnum, struct page *mem_map,
262                 unsigned long *pageblock_bitmap)
263 {
264         ms->section_mem_map &= ~SECTION_MAP_MASK;
265         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
266                                                         SECTION_HAS_MEM_MAP;
267         ms->pageblock_flags = pageblock_bitmap;
268 }
269
270 unsigned long usemap_size(void)
271 {
272         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
273 }
274
275 #ifdef CONFIG_MEMORY_HOTPLUG
276 static unsigned long *__kmalloc_section_usemap(void)
277 {
278         return kmalloc(usemap_size(), GFP_KERNEL);
279 }
280 #endif /* CONFIG_MEMORY_HOTPLUG */
281
282 #ifdef CONFIG_MEMORY_HOTREMOVE
283 static unsigned long * __init
284 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
285                                          unsigned long size)
286 {
287         unsigned long goal, limit;
288         unsigned long *p;
289         int nid;
290         /*
291          * A page may contain usemaps for other sections preventing the
292          * page being freed and making a section unremovable while
293          * other sections referencing the usemap remain active. Similarly,
294          * a pgdat can prevent a section being removed. If section A
295          * contains a pgdat and section B contains the usemap, both
296          * sections become inter-dependent. This allocates usemaps
297          * from the same section as the pgdat where possible to avoid
298          * this problem.
299          */
300         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
301         limit = goal + (1UL << PA_SECTION_SHIFT);
302         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
303 again:
304         p = memblock_virt_alloc_try_nid_nopanic(size,
305                                                 SMP_CACHE_BYTES, goal, limit,
306                                                 nid);
307         if (!p && limit) {
308                 limit = 0;
309                 goto again;
310         }
311         return p;
312 }
313
314 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
315 {
316         unsigned long usemap_snr, pgdat_snr;
317         static unsigned long old_usemap_snr;
318         static unsigned long old_pgdat_snr;
319         struct pglist_data *pgdat = NODE_DATA(nid);
320         int usemap_nid;
321
322         /* First call */
323         if (!old_usemap_snr) {
324                 old_usemap_snr = NR_MEM_SECTIONS;
325                 old_pgdat_snr = NR_MEM_SECTIONS;
326         }
327
328         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
329         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
330         if (usemap_snr == pgdat_snr)
331                 return;
332
333         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
334                 /* skip redundant message */
335                 return;
336
337         old_usemap_snr = usemap_snr;
338         old_pgdat_snr = pgdat_snr;
339
340         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
341         if (usemap_nid != nid) {
342                 pr_info("node %d must be removed before remove section %ld\n",
343                         nid, usemap_snr);
344                 return;
345         }
346         /*
347          * There is a circular dependency.
348          * Some platforms allow un-removable section because they will just
349          * gather other removable sections for dynamic partitioning.
350          * Just notify un-removable section's number here.
351          */
352         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
353                 usemap_snr, pgdat_snr, nid);
354 }
355 #else
356 static unsigned long * __init
357 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
358                                          unsigned long size)
359 {
360         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
361 }
362
363 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
364 {
365 }
366 #endif /* CONFIG_MEMORY_HOTREMOVE */
367
368 static void __init sparse_early_usemaps_alloc_node(void *data,
369                                  unsigned long pnum_begin,
370                                  unsigned long pnum_end,
371                                  unsigned long usemap_count, int nodeid)
372 {
373         void *usemap;
374         unsigned long pnum;
375         unsigned long **usemap_map = (unsigned long **)data;
376         int size = usemap_size();
377
378         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
379                                                           size * usemap_count);
380         if (!usemap) {
381                 pr_warn("%s: allocation failed\n", __func__);
382                 return;
383         }
384
385         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
386                 if (!present_section_nr(pnum))
387                         continue;
388                 usemap_map[pnum] = usemap;
389                 usemap += size;
390                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
391         }
392 }
393
394 #ifndef CONFIG_SPARSEMEM_VMEMMAP
395 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
396                 struct vmem_altmap *altmap)
397 {
398         struct page *map;
399         unsigned long size;
400
401         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
402         map = memblock_virt_alloc_try_nid(size,
403                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
404                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
405         return map;
406 }
407 void __init sparse_mem_maps_populate_node(struct page **map_map,
408                                           unsigned long pnum_begin,
409                                           unsigned long pnum_end,
410                                           unsigned long map_count, int nodeid)
411 {
412         void *map;
413         unsigned long pnum;
414         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
415
416         size = PAGE_ALIGN(size);
417         map = memblock_virt_alloc_try_nid_raw(size * map_count,
418                                               PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
419                                               BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
420         if (map) {
421                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
422                         if (!present_section_nr(pnum))
423                                 continue;
424                         map_map[pnum] = map;
425                         map += size;
426                 }
427                 return;
428         }
429
430         /* fallback */
431         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
432                 struct mem_section *ms;
433
434                 if (!present_section_nr(pnum))
435                         continue;
436                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
437                 if (map_map[pnum])
438                         continue;
439                 ms = __nr_to_section(pnum);
440                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
441                        __func__);
442                 ms->section_mem_map = 0;
443         }
444 }
445 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
446
447 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
448 static void __init sparse_early_mem_maps_alloc_node(void *data,
449                                  unsigned long pnum_begin,
450                                  unsigned long pnum_end,
451                                  unsigned long map_count, int nodeid)
452 {
453         struct page **map_map = (struct page **)data;
454         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
455                                          map_count, nodeid);
456 }
457 #else
458 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
459 {
460         struct page *map;
461         struct mem_section *ms = __nr_to_section(pnum);
462         int nid = sparse_early_nid(ms);
463
464         map = sparse_mem_map_populate(pnum, nid, NULL);
465         if (map)
466                 return map;
467
468         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
469                __func__);
470         ms->section_mem_map = 0;
471         return NULL;
472 }
473 #endif
474
475 void __weak __meminit vmemmap_populate_print_last(void)
476 {
477 }
478
479 /**
480  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
481  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
482  */
483 static void __init alloc_usemap_and_memmap(void (*alloc_func)
484                                         (void *, unsigned long, unsigned long,
485                                         unsigned long, int), void *data)
486 {
487         unsigned long pnum;
488         unsigned long map_count;
489         int nodeid_begin = 0;
490         unsigned long pnum_begin = 0;
491
492         for_each_present_section_nr(0, pnum) {
493                 struct mem_section *ms;
494
495                 ms = __nr_to_section(pnum);
496                 nodeid_begin = sparse_early_nid(ms);
497                 pnum_begin = pnum;
498                 break;
499         }
500         map_count = 1;
501         for_each_present_section_nr(pnum_begin + 1, pnum) {
502                 struct mem_section *ms;
503                 int nodeid;
504
505                 ms = __nr_to_section(pnum);
506                 nodeid = sparse_early_nid(ms);
507                 if (nodeid == nodeid_begin) {
508                         map_count++;
509                         continue;
510                 }
511                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
512                 alloc_func(data, pnum_begin, pnum,
513                                                 map_count, nodeid_begin);
514                 /* new start, update count etc*/
515                 nodeid_begin = nodeid;
516                 pnum_begin = pnum;
517                 map_count = 1;
518         }
519         /* ok, last chunk */
520         alloc_func(data, pnum_begin, __highest_present_section_nr+1,
521                                                 map_count, nodeid_begin);
522 }
523
524 /*
525  * Allocate the accumulated non-linear sections, allocate a mem_map
526  * for each and record the physical to section mapping.
527  */
528 void __init sparse_init(void)
529 {
530         unsigned long pnum;
531         struct page *map;
532         unsigned long *usemap;
533         unsigned long **usemap_map;
534         int size;
535 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
536         int size2;
537         struct page **map_map;
538 #endif
539
540         /* see include/linux/mmzone.h 'struct mem_section' definition */
541         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
542
543         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
544         set_pageblock_order();
545
546         /*
547          * map is using big page (aka 2M in x86 64 bit)
548          * usemap is less one page (aka 24 bytes)
549          * so alloc 2M (with 2M align) and 24 bytes in turn will
550          * make next 2M slip to one more 2M later.
551          * then in big system, the memory will have a lot of holes...
552          * here try to allocate 2M pages continuously.
553          *
554          * powerpc need to call sparse_init_one_section right after each
555          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
556          */
557         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
558         usemap_map = memblock_virt_alloc(size, 0);
559         if (!usemap_map)
560                 panic("can not allocate usemap_map\n");
561         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
562                                                         (void *)usemap_map);
563
564 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
565         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
566         map_map = memblock_virt_alloc(size2, 0);
567         if (!map_map)
568                 panic("can not allocate map_map\n");
569         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
570                                                         (void *)map_map);
571 #endif
572
573         for_each_present_section_nr(0, pnum) {
574                 usemap = usemap_map[pnum];
575                 if (!usemap)
576                         continue;
577
578 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
579                 map = map_map[pnum];
580 #else
581                 map = sparse_early_mem_map_alloc(pnum);
582 #endif
583                 if (!map)
584                         continue;
585
586                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
587                                                                 usemap);
588         }
589
590         vmemmap_populate_print_last();
591
592 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
593         memblock_free_early(__pa(map_map), size2);
594 #endif
595         memblock_free_early(__pa(usemap_map), size);
596 }
597
598 #ifdef CONFIG_MEMORY_HOTPLUG
599
600 /* Mark all memory sections within the pfn range as online */
601 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
602 {
603         unsigned long pfn;
604
605         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
606                 unsigned long section_nr = pfn_to_section_nr(pfn);
607                 struct mem_section *ms;
608
609                 /* onlining code should never touch invalid ranges */
610                 if (WARN_ON(!valid_section_nr(section_nr)))
611                         continue;
612
613                 ms = __nr_to_section(section_nr);
614                 ms->section_mem_map |= SECTION_IS_ONLINE;
615         }
616 }
617
618 #ifdef CONFIG_MEMORY_HOTREMOVE
619 /* Mark all memory sections within the pfn range as online */
620 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621 {
622         unsigned long pfn;
623
624         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625                 unsigned long section_nr = pfn_to_section_nr(pfn);
626                 struct mem_section *ms;
627
628                 /*
629                  * TODO this needs some double checking. Offlining code makes
630                  * sure to check pfn_valid but those checks might be just bogus
631                  */
632                 if (WARN_ON(!valid_section_nr(section_nr)))
633                         continue;
634
635                 ms = __nr_to_section(section_nr);
636                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
637         }
638 }
639 #endif
640
641 #ifdef CONFIG_SPARSEMEM_VMEMMAP
642 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
643                 struct vmem_altmap *altmap)
644 {
645         /* This will make the necessary allocations eventually. */
646         return sparse_mem_map_populate(pnum, nid, altmap);
647 }
648 static void __kfree_section_memmap(struct page *memmap,
649                 struct vmem_altmap *altmap)
650 {
651         unsigned long start = (unsigned long)memmap;
652         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
653
654         vmemmap_free(start, end, altmap);
655 }
656 #ifdef CONFIG_MEMORY_HOTREMOVE
657 static void free_map_bootmem(struct page *memmap)
658 {
659         unsigned long start = (unsigned long)memmap;
660         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
661
662         vmemmap_free(start, end, NULL);
663 }
664 #endif /* CONFIG_MEMORY_HOTREMOVE */
665 #else
666 static struct page *__kmalloc_section_memmap(void)
667 {
668         struct page *page, *ret;
669         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
670
671         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
672         if (page)
673                 goto got_map_page;
674
675         ret = vmalloc(memmap_size);
676         if (ret)
677                 goto got_map_ptr;
678
679         return NULL;
680 got_map_page:
681         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
682 got_map_ptr:
683
684         return ret;
685 }
686
687 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
688                 struct vmem_altmap *altmap)
689 {
690         return __kmalloc_section_memmap();
691 }
692
693 static void __kfree_section_memmap(struct page *memmap,
694                 struct vmem_altmap *altmap)
695 {
696         if (is_vmalloc_addr(memmap))
697                 vfree(memmap);
698         else
699                 free_pages((unsigned long)memmap,
700                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
701 }
702
703 #ifdef CONFIG_MEMORY_HOTREMOVE
704 static void free_map_bootmem(struct page *memmap)
705 {
706         unsigned long maps_section_nr, removing_section_nr, i;
707         unsigned long magic, nr_pages;
708         struct page *page = virt_to_page(memmap);
709
710         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
711                 >> PAGE_SHIFT;
712
713         for (i = 0; i < nr_pages; i++, page++) {
714                 magic = (unsigned long) page->freelist;
715
716                 BUG_ON(magic == NODE_INFO);
717
718                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
719                 removing_section_nr = page_private(page);
720
721                 /*
722                  * When this function is called, the removing section is
723                  * logical offlined state. This means all pages are isolated
724                  * from page allocator. If removing section's memmap is placed
725                  * on the same section, it must not be freed.
726                  * If it is freed, page allocator may allocate it which will
727                  * be removed physically soon.
728                  */
729                 if (maps_section_nr != removing_section_nr)
730                         put_page_bootmem(page);
731         }
732 }
733 #endif /* CONFIG_MEMORY_HOTREMOVE */
734 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
735
736 /*
737  * returns the number of sections whose mem_maps were properly
738  * set.  If this is <=0, then that means that the passed-in
739  * map was not consumed and must be freed.
740  */
741 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
742                 unsigned long start_pfn, struct vmem_altmap *altmap)
743 {
744         unsigned long section_nr = pfn_to_section_nr(start_pfn);
745         struct mem_section *ms;
746         struct page *memmap;
747         unsigned long *usemap;
748         unsigned long flags;
749         int ret;
750
751         /*
752          * no locking for this, because it does its own
753          * plus, it does a kmalloc
754          */
755         ret = sparse_index_init(section_nr, pgdat->node_id);
756         if (ret < 0 && ret != -EEXIST)
757                 return ret;
758         ret = 0;
759         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
760         if (!memmap)
761                 return -ENOMEM;
762         usemap = __kmalloc_section_usemap();
763         if (!usemap) {
764                 __kfree_section_memmap(memmap, altmap);
765                 return -ENOMEM;
766         }
767
768         pgdat_resize_lock(pgdat, &flags);
769
770         ms = __pfn_to_section(start_pfn);
771         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
772                 ret = -EEXIST;
773                 goto out;
774         }
775
776 #ifdef CONFIG_DEBUG_VM
777         /*
778          * Poison uninitialized struct pages in order to catch invalid flags
779          * combinations.
780          */
781         memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
782 #endif
783
784         section_mark_present(ms);
785         sparse_init_one_section(ms, section_nr, memmap, usemap);
786
787 out:
788         pgdat_resize_unlock(pgdat, &flags);
789         if (ret < 0) {
790                 kfree(usemap);
791                 __kfree_section_memmap(memmap, altmap);
792         }
793         return ret;
794 }
795
796 #ifdef CONFIG_MEMORY_HOTREMOVE
797 #ifdef CONFIG_MEMORY_FAILURE
798 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
799 {
800         int i;
801
802         if (!memmap)
803                 return;
804
805         for (i = 0; i < nr_pages; i++) {
806                 if (PageHWPoison(&memmap[i])) {
807                         atomic_long_sub(1, &num_poisoned_pages);
808                         ClearPageHWPoison(&memmap[i]);
809                 }
810         }
811 }
812 #else
813 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
814 {
815 }
816 #endif
817
818 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
819                 struct vmem_altmap *altmap)
820 {
821         struct page *usemap_page;
822
823         if (!usemap)
824                 return;
825
826         usemap_page = virt_to_page(usemap);
827         /*
828          * Check to see if allocation came from hot-plug-add
829          */
830         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
831                 kfree(usemap);
832                 if (memmap)
833                         __kfree_section_memmap(memmap, altmap);
834                 return;
835         }
836
837         /*
838          * The usemap came from bootmem. This is packed with other usemaps
839          * on the section which has pgdat at boot time. Just keep it as is now.
840          */
841
842         if (memmap)
843                 free_map_bootmem(memmap);
844 }
845
846 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
847                 unsigned long map_offset, struct vmem_altmap *altmap)
848 {
849         struct page *memmap = NULL;
850         unsigned long *usemap = NULL, flags;
851         struct pglist_data *pgdat = zone->zone_pgdat;
852
853         pgdat_resize_lock(pgdat, &flags);
854         if (ms->section_mem_map) {
855                 usemap = ms->pageblock_flags;
856                 memmap = sparse_decode_mem_map(ms->section_mem_map,
857                                                 __section_nr(ms));
858                 ms->section_mem_map = 0;
859                 ms->pageblock_flags = NULL;
860         }
861         pgdat_resize_unlock(pgdat, &flags);
862
863         clear_hwpoisoned_pages(memmap + map_offset,
864                         PAGES_PER_SECTION - map_offset);
865         free_section_usemap(memmap, usemap, altmap);
866 }
867 #endif /* CONFIG_MEMORY_HOTREMOVE */
868 #endif /* CONFIG_MEMORY_HOTPLUG */
This page took 0.084994 seconds and 4 git commands to generate.