]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'iommu-updates-v4.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq, rps);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407                                  unsigned int flags,
408                                  long timeout,
409                                  struct intel_rps_client *rps)
410 {
411         unsigned int seq = __read_seqcount_begin(&resv->seq);
412         struct dma_fence *excl;
413         bool prune_fences = false;
414
415         if (flags & I915_WAIT_ALL) {
416                 struct dma_fence **shared;
417                 unsigned int count, i;
418                 int ret;
419
420                 ret = reservation_object_get_fences_rcu(resv,
421                                                         &excl, &count, &shared);
422                 if (ret)
423                         return ret;
424
425                 for (i = 0; i < count; i++) {
426                         timeout = i915_gem_object_wait_fence(shared[i],
427                                                              flags, timeout,
428                                                              rps);
429                         if (timeout < 0)
430                                 break;
431
432                         dma_fence_put(shared[i]);
433                 }
434
435                 for (; i < count; i++)
436                         dma_fence_put(shared[i]);
437                 kfree(shared);
438
439                 prune_fences = count && timeout >= 0;
440         } else {
441                 excl = reservation_object_get_excl_rcu(resv);
442         }
443
444         if (excl && timeout >= 0) {
445                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446                 prune_fences = timeout >= 0;
447         }
448
449         dma_fence_put(excl);
450
451         /* Oportunistically prune the fences iff we know they have *all* been
452          * signaled and that the reservation object has not been changed (i.e.
453          * no new fences have been added).
454          */
455         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456                 if (reservation_object_trylock(resv)) {
457                         if (!__read_seqcount_retry(&resv->seq, seq))
458                                 reservation_object_add_excl_fence(resv, NULL);
459                         reservation_object_unlock(resv);
460                 }
461         }
462
463         return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468         struct drm_i915_gem_request *rq;
469         struct intel_engine_cs *engine;
470
471         if (!dma_fence_is_i915(fence))
472                 return;
473
474         rq = to_request(fence);
475         engine = rq->engine;
476         if (!engine->schedule)
477                 return;
478
479         engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         /* Recurse once into a fence-array */
485         if (dma_fence_is_array(fence)) {
486                 struct dma_fence_array *array = to_dma_fence_array(fence);
487                 int i;
488
489                 for (i = 0; i < array->num_fences; i++)
490                         __fence_set_priority(array->fences[i], prio);
491         } else {
492                 __fence_set_priority(fence, prio);
493         }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498                               unsigned int flags,
499                               int prio)
500 {
501         struct dma_fence *excl;
502
503         if (flags & I915_WAIT_ALL) {
504                 struct dma_fence **shared;
505                 unsigned int count, i;
506                 int ret;
507
508                 ret = reservation_object_get_fences_rcu(obj->resv,
509                                                         &excl, &count, &shared);
510                 if (ret)
511                         return ret;
512
513                 for (i = 0; i < count; i++) {
514                         fence_set_priority(shared[i], prio);
515                         dma_fence_put(shared[i]);
516                 }
517
518                 kfree(shared);
519         } else {
520                 excl = reservation_object_get_excl_rcu(obj->resv);
521         }
522
523         if (excl) {
524                 fence_set_priority(excl, prio);
525                 dma_fence_put(excl);
526         }
527         return 0;
528 }
529
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539                      unsigned int flags,
540                      long timeout,
541                      struct intel_rps_client *rps)
542 {
543         might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545         GEM_BUG_ON(debug_locks &&
546                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547                    !!(flags & I915_WAIT_LOCKED));
548 #endif
549         GEM_BUG_ON(timeout < 0);
550
551         timeout = i915_gem_object_wait_reservation(obj->resv,
552                                                    flags, timeout,
553                                                    rps);
554         return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559         struct drm_i915_file_private *fpriv = file->driver_priv;
560
561         return &fpriv->rps;
562 }
563
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566                      struct drm_i915_gem_pwrite *args,
567                      struct drm_file *file)
568 {
569         void *vaddr = obj->phys_handle->vaddr + args->offset;
570         char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572         /* We manually control the domain here and pretend that it
573          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574          */
575         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576         if (copy_from_user(vaddr, user_data, args->size))
577                 return -EFAULT;
578
579         drm_clflush_virt_range(vaddr, args->size);
580         i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582         intel_fb_obj_flush(obj, ORIGIN_CPU);
583         return 0;
584 }
585
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594         kmem_cache_free(dev_priv->objects, obj);
595 }
596
597 static int
598 i915_gem_create(struct drm_file *file,
599                 struct drm_i915_private *dev_priv,
600                 uint64_t size,
601                 uint32_t *handle_p)
602 {
603         struct drm_i915_gem_object *obj;
604         int ret;
605         u32 handle;
606
607         size = roundup(size, PAGE_SIZE);
608         if (size == 0)
609                 return -EINVAL;
610
611         /* Allocate the new object */
612         obj = i915_gem_object_create(dev_priv, size);
613         if (IS_ERR(obj))
614                 return PTR_ERR(obj);
615
616         ret = drm_gem_handle_create(file, &obj->base, &handle);
617         /* drop reference from allocate - handle holds it now */
618         i915_gem_object_put(obj);
619         if (ret)
620                 return ret;
621
622         *handle_p = handle;
623         return 0;
624 }
625
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628                      struct drm_device *dev,
629                      struct drm_mode_create_dumb *args)
630 {
631         /* have to work out size/pitch and return them */
632         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633         args->size = args->pitch * args->height;
634         return i915_gem_create(file, to_i915(dev),
635                                args->size, &args->handle);
636 }
637
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640         return !(obj->cache_level == I915_CACHE_NONE ||
641                  obj->cache_level == I915_CACHE_WT);
642 }
643
644 /**
645  * Creates a new mm object and returns a handle to it.
646  * @dev: drm device pointer
647  * @data: ioctl data blob
648  * @file: drm file pointer
649  */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652                       struct drm_file *file)
653 {
654         struct drm_i915_private *dev_priv = to_i915(dev);
655         struct drm_i915_gem_create *args = data;
656
657         i915_gem_flush_free_objects(dev_priv);
658
659         return i915_gem_create(file, dev_priv,
660                                args->size, &args->handle);
661 }
662
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666         return (domain == I915_GEM_DOMAIN_GTT ?
667                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675         if (!(obj->base.write_domain & flush_domains))
676                 return;
677
678         /* No actual flushing is required for the GTT write domain.  Writes
679          * to it "immediately" go to main memory as far as we know, so there's
680          * no chipset flush.  It also doesn't land in render cache.
681          *
682          * However, we do have to enforce the order so that all writes through
683          * the GTT land before any writes to the device, such as updates to
684          * the GATT itself.
685          *
686          * We also have to wait a bit for the writes to land from the GTT.
687          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688          * timing. This issue has only been observed when switching quickly
689          * between GTT writes and CPU reads from inside the kernel on recent hw,
690          * and it appears to only affect discrete GTT blocks (i.e. on LLC
691          * system agents we cannot reproduce this behaviour).
692          */
693         wmb();
694
695         switch (obj->base.write_domain) {
696         case I915_GEM_DOMAIN_GTT:
697                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698                         intel_runtime_pm_get(dev_priv);
699                         spin_lock_irq(&dev_priv->uncore.lock);
700                         POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701                         spin_unlock_irq(&dev_priv->uncore.lock);
702                         intel_runtime_pm_put(dev_priv);
703                 }
704
705                 intel_fb_obj_flush(obj,
706                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707                 break;
708
709         case I915_GEM_DOMAIN_CPU:
710                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711                 break;
712
713         case I915_GEM_DOMAIN_RENDER:
714                 if (gpu_write_needs_clflush(obj))
715                         obj->cache_dirty = true;
716                 break;
717         }
718
719         obj->base.write_domain = 0;
720 }
721
722 static inline int
723 __copy_to_user_swizzled(char __user *cpu_vaddr,
724                         const char *gpu_vaddr, int gpu_offset,
725                         int length)
726 {
727         int ret, cpu_offset = 0;
728
729         while (length > 0) {
730                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731                 int this_length = min(cacheline_end - gpu_offset, length);
732                 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735                                      gpu_vaddr + swizzled_gpu_offset,
736                                      this_length);
737                 if (ret)
738                         return ret + length;
739
740                 cpu_offset += this_length;
741                 gpu_offset += this_length;
742                 length -= this_length;
743         }
744
745         return 0;
746 }
747
748 static inline int
749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750                           const char __user *cpu_vaddr,
751                           int length)
752 {
753         int ret, cpu_offset = 0;
754
755         while (length > 0) {
756                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757                 int this_length = min(cacheline_end - gpu_offset, length);
758                 int swizzled_gpu_offset = gpu_offset ^ 64;
759
760                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761                                        cpu_vaddr + cpu_offset,
762                                        this_length);
763                 if (ret)
764                         return ret + length;
765
766                 cpu_offset += this_length;
767                 gpu_offset += this_length;
768                 length -= this_length;
769         }
770
771         return 0;
772 }
773
774 /*
775  * Pins the specified object's pages and synchronizes the object with
776  * GPU accesses. Sets needs_clflush to non-zero if the caller should
777  * flush the object from the CPU cache.
778  */
779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780                                     unsigned int *needs_clflush)
781 {
782         int ret;
783
784         lockdep_assert_held(&obj->base.dev->struct_mutex);
785
786         *needs_clflush = 0;
787         if (!i915_gem_object_has_struct_page(obj))
788                 return -ENODEV;
789
790         ret = i915_gem_object_wait(obj,
791                                    I915_WAIT_INTERRUPTIBLE |
792                                    I915_WAIT_LOCKED,
793                                    MAX_SCHEDULE_TIMEOUT,
794                                    NULL);
795         if (ret)
796                 return ret;
797
798         ret = i915_gem_object_pin_pages(obj);
799         if (ret)
800                 return ret;
801
802         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805                 if (ret)
806                         goto err_unpin;
807                 else
808                         goto out;
809         }
810
811         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812
813         /* If we're not in the cpu read domain, set ourself into the gtt
814          * read domain and manually flush cachelines (if required). This
815          * optimizes for the case when the gpu will dirty the data
816          * anyway again before the next pread happens.
817          */
818         if (!obj->cache_dirty &&
819             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820                 *needs_clflush = CLFLUSH_BEFORE;
821
822 out:
823         /* return with the pages pinned */
824         return 0;
825
826 err_unpin:
827         i915_gem_object_unpin_pages(obj);
828         return ret;
829 }
830
831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832                                      unsigned int *needs_clflush)
833 {
834         int ret;
835
836         lockdep_assert_held(&obj->base.dev->struct_mutex);
837
838         *needs_clflush = 0;
839         if (!i915_gem_object_has_struct_page(obj))
840                 return -ENODEV;
841
842         ret = i915_gem_object_wait(obj,
843                                    I915_WAIT_INTERRUPTIBLE |
844                                    I915_WAIT_LOCKED |
845                                    I915_WAIT_ALL,
846                                    MAX_SCHEDULE_TIMEOUT,
847                                    NULL);
848         if (ret)
849                 return ret;
850
851         ret = i915_gem_object_pin_pages(obj);
852         if (ret)
853                 return ret;
854
855         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
858                 if (ret)
859                         goto err_unpin;
860                 else
861                         goto out;
862         }
863
864         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865
866         /* If we're not in the cpu write domain, set ourself into the
867          * gtt write domain and manually flush cachelines (as required).
868          * This optimizes for the case when the gpu will use the data
869          * right away and we therefore have to clflush anyway.
870          */
871         if (!obj->cache_dirty) {
872                 *needs_clflush |= CLFLUSH_AFTER;
873
874                 /*
875                  * Same trick applies to invalidate partially written
876                  * cachelines read before writing.
877                  */
878                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879                         *needs_clflush |= CLFLUSH_BEFORE;
880         }
881
882 out:
883         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884         obj->mm.dirty = true;
885         /* return with the pages pinned */
886         return 0;
887
888 err_unpin:
889         i915_gem_object_unpin_pages(obj);
890         return ret;
891 }
892
893 static void
894 shmem_clflush_swizzled_range(char *addr, unsigned long length,
895                              bool swizzled)
896 {
897         if (unlikely(swizzled)) {
898                 unsigned long start = (unsigned long) addr;
899                 unsigned long end = (unsigned long) addr + length;
900
901                 /* For swizzling simply ensure that we always flush both
902                  * channels. Lame, but simple and it works. Swizzled
903                  * pwrite/pread is far from a hotpath - current userspace
904                  * doesn't use it at all. */
905                 start = round_down(start, 128);
906                 end = round_up(end, 128);
907
908                 drm_clflush_virt_range((void *)start, end - start);
909         } else {
910                 drm_clflush_virt_range(addr, length);
911         }
912
913 }
914
915 /* Only difference to the fast-path function is that this can handle bit17
916  * and uses non-atomic copy and kmap functions. */
917 static int
918 shmem_pread_slow(struct page *page, int offset, int length,
919                  char __user *user_data,
920                  bool page_do_bit17_swizzling, bool needs_clflush)
921 {
922         char *vaddr;
923         int ret;
924
925         vaddr = kmap(page);
926         if (needs_clflush)
927                 shmem_clflush_swizzled_range(vaddr + offset, length,
928                                              page_do_bit17_swizzling);
929
930         if (page_do_bit17_swizzling)
931                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932         else
933                 ret = __copy_to_user(user_data, vaddr + offset, length);
934         kunmap(page);
935
936         return ret ? - EFAULT : 0;
937 }
938
939 static int
940 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941             bool page_do_bit17_swizzling, bool needs_clflush)
942 {
943         int ret;
944
945         ret = -ENODEV;
946         if (!page_do_bit17_swizzling) {
947                 char *vaddr = kmap_atomic(page);
948
949                 if (needs_clflush)
950                         drm_clflush_virt_range(vaddr + offset, length);
951                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952                 kunmap_atomic(vaddr);
953         }
954         if (ret == 0)
955                 return 0;
956
957         return shmem_pread_slow(page, offset, length, user_data,
958                                 page_do_bit17_swizzling, needs_clflush);
959 }
960
961 static int
962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963                      struct drm_i915_gem_pread *args)
964 {
965         char __user *user_data;
966         u64 remain;
967         unsigned int obj_do_bit17_swizzling;
968         unsigned int needs_clflush;
969         unsigned int idx, offset;
970         int ret;
971
972         obj_do_bit17_swizzling = 0;
973         if (i915_gem_object_needs_bit17_swizzle(obj))
974                 obj_do_bit17_swizzling = BIT(17);
975
976         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977         if (ret)
978                 return ret;
979
980         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981         mutex_unlock(&obj->base.dev->struct_mutex);
982         if (ret)
983                 return ret;
984
985         remain = args->size;
986         user_data = u64_to_user_ptr(args->data_ptr);
987         offset = offset_in_page(args->offset);
988         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989                 struct page *page = i915_gem_object_get_page(obj, idx);
990                 int length;
991
992                 length = remain;
993                 if (offset + length > PAGE_SIZE)
994                         length = PAGE_SIZE - offset;
995
996                 ret = shmem_pread(page, offset, length, user_data,
997                                   page_to_phys(page) & obj_do_bit17_swizzling,
998                                   needs_clflush);
999                 if (ret)
1000                         break;
1001
1002                 remain -= length;
1003                 user_data += length;
1004                 offset = 0;
1005         }
1006
1007         i915_gem_obj_finish_shmem_access(obj);
1008         return ret;
1009 }
1010
1011 static inline bool
1012 gtt_user_read(struct io_mapping *mapping,
1013               loff_t base, int offset,
1014               char __user *user_data, int length)
1015 {
1016         void *vaddr;
1017         unsigned long unwritten;
1018
1019         /* We can use the cpu mem copy function because this is X86. */
1020         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022         io_mapping_unmap_atomic(vaddr);
1023         if (unwritten) {
1024                 vaddr = (void __force *)
1025                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1027                 io_mapping_unmap(vaddr);
1028         }
1029         return unwritten;
1030 }
1031
1032 static int
1033 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034                    const struct drm_i915_gem_pread *args)
1035 {
1036         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037         struct i915_ggtt *ggtt = &i915->ggtt;
1038         struct drm_mm_node node;
1039         struct i915_vma *vma;
1040         void __user *user_data;
1041         u64 remain, offset;
1042         int ret;
1043
1044         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1045         if (ret)
1046                 return ret;
1047
1048         intel_runtime_pm_get(i915);
1049         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050                                        PIN_MAPPABLE | PIN_NONBLOCK);
1051         if (!IS_ERR(vma)) {
1052                 node.start = i915_ggtt_offset(vma);
1053                 node.allocated = false;
1054                 ret = i915_vma_put_fence(vma);
1055                 if (ret) {
1056                         i915_vma_unpin(vma);
1057                         vma = ERR_PTR(ret);
1058                 }
1059         }
1060         if (IS_ERR(vma)) {
1061                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1062                 if (ret)
1063                         goto out_unlock;
1064                 GEM_BUG_ON(!node.allocated);
1065         }
1066
1067         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068         if (ret)
1069                 goto out_unpin;
1070
1071         mutex_unlock(&i915->drm.struct_mutex);
1072
1073         user_data = u64_to_user_ptr(args->data_ptr);
1074         remain = args->size;
1075         offset = args->offset;
1076
1077         while (remain > 0) {
1078                 /* Operation in this page
1079                  *
1080                  * page_base = page offset within aperture
1081                  * page_offset = offset within page
1082                  * page_length = bytes to copy for this page
1083                  */
1084                 u32 page_base = node.start;
1085                 unsigned page_offset = offset_in_page(offset);
1086                 unsigned page_length = PAGE_SIZE - page_offset;
1087                 page_length = remain < page_length ? remain : page_length;
1088                 if (node.allocated) {
1089                         wmb();
1090                         ggtt->base.insert_page(&ggtt->base,
1091                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092                                                node.start, I915_CACHE_NONE, 0);
1093                         wmb();
1094                 } else {
1095                         page_base += offset & PAGE_MASK;
1096                 }
1097
1098                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099                                   user_data, page_length)) {
1100                         ret = -EFAULT;
1101                         break;
1102                 }
1103
1104                 remain -= page_length;
1105                 user_data += page_length;
1106                 offset += page_length;
1107         }
1108
1109         mutex_lock(&i915->drm.struct_mutex);
1110 out_unpin:
1111         if (node.allocated) {
1112                 wmb();
1113                 ggtt->base.clear_range(&ggtt->base,
1114                                        node.start, node.size);
1115                 remove_mappable_node(&node);
1116         } else {
1117                 i915_vma_unpin(vma);
1118         }
1119 out_unlock:
1120         intel_runtime_pm_put(i915);
1121         mutex_unlock(&i915->drm.struct_mutex);
1122
1123         return ret;
1124 }
1125
1126 /**
1127  * Reads data from the object referenced by handle.
1128  * @dev: drm device pointer
1129  * @data: ioctl data blob
1130  * @file: drm file pointer
1131  *
1132  * On error, the contents of *data are undefined.
1133  */
1134 int
1135 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136                      struct drm_file *file)
1137 {
1138         struct drm_i915_gem_pread *args = data;
1139         struct drm_i915_gem_object *obj;
1140         int ret;
1141
1142         if (args->size == 0)
1143                 return 0;
1144
1145         if (!access_ok(VERIFY_WRITE,
1146                        u64_to_user_ptr(args->data_ptr),
1147                        args->size))
1148                 return -EFAULT;
1149
1150         obj = i915_gem_object_lookup(file, args->handle);
1151         if (!obj)
1152                 return -ENOENT;
1153
1154         /* Bounds check source.  */
1155         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1156                 ret = -EINVAL;
1157                 goto out;
1158         }
1159
1160         trace_i915_gem_object_pread(obj, args->offset, args->size);
1161
1162         ret = i915_gem_object_wait(obj,
1163                                    I915_WAIT_INTERRUPTIBLE,
1164                                    MAX_SCHEDULE_TIMEOUT,
1165                                    to_rps_client(file));
1166         if (ret)
1167                 goto out;
1168
1169         ret = i915_gem_object_pin_pages(obj);
1170         if (ret)
1171                 goto out;
1172
1173         ret = i915_gem_shmem_pread(obj, args);
1174         if (ret == -EFAULT || ret == -ENODEV)
1175                 ret = i915_gem_gtt_pread(obj, args);
1176
1177         i915_gem_object_unpin_pages(obj);
1178 out:
1179         i915_gem_object_put(obj);
1180         return ret;
1181 }
1182
1183 /* This is the fast write path which cannot handle
1184  * page faults in the source data
1185  */
1186
1187 static inline bool
1188 ggtt_write(struct io_mapping *mapping,
1189            loff_t base, int offset,
1190            char __user *user_data, int length)
1191 {
1192         void *vaddr;
1193         unsigned long unwritten;
1194
1195         /* We can use the cpu mem copy function because this is X86. */
1196         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1198                                                       user_data, length);
1199         io_mapping_unmap_atomic(vaddr);
1200         if (unwritten) {
1201                 vaddr = (void __force *)
1202                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1204                 io_mapping_unmap(vaddr);
1205         }
1206
1207         return unwritten;
1208 }
1209
1210 /**
1211  * This is the fast pwrite path, where we copy the data directly from the
1212  * user into the GTT, uncached.
1213  * @obj: i915 GEM object
1214  * @args: pwrite arguments structure
1215  */
1216 static int
1217 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218                          const struct drm_i915_gem_pwrite *args)
1219 {
1220         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221         struct i915_ggtt *ggtt = &i915->ggtt;
1222         struct drm_mm_node node;
1223         struct i915_vma *vma;
1224         u64 remain, offset;
1225         void __user *user_data;
1226         int ret;
1227
1228         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229         if (ret)
1230                 return ret;
1231
1232         intel_runtime_pm_get(i915);
1233         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234                                        PIN_MAPPABLE | PIN_NONBLOCK);
1235         if (!IS_ERR(vma)) {
1236                 node.start = i915_ggtt_offset(vma);
1237                 node.allocated = false;
1238                 ret = i915_vma_put_fence(vma);
1239                 if (ret) {
1240                         i915_vma_unpin(vma);
1241                         vma = ERR_PTR(ret);
1242                 }
1243         }
1244         if (IS_ERR(vma)) {
1245                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1246                 if (ret)
1247                         goto out_unlock;
1248                 GEM_BUG_ON(!node.allocated);
1249         }
1250
1251         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1252         if (ret)
1253                 goto out_unpin;
1254
1255         mutex_unlock(&i915->drm.struct_mutex);
1256
1257         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1258
1259         user_data = u64_to_user_ptr(args->data_ptr);
1260         offset = args->offset;
1261         remain = args->size;
1262         while (remain) {
1263                 /* Operation in this page
1264                  *
1265                  * page_base = page offset within aperture
1266                  * page_offset = offset within page
1267                  * page_length = bytes to copy for this page
1268                  */
1269                 u32 page_base = node.start;
1270                 unsigned int page_offset = offset_in_page(offset);
1271                 unsigned int page_length = PAGE_SIZE - page_offset;
1272                 page_length = remain < page_length ? remain : page_length;
1273                 if (node.allocated) {
1274                         wmb(); /* flush the write before we modify the GGTT */
1275                         ggtt->base.insert_page(&ggtt->base,
1276                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277                                                node.start, I915_CACHE_NONE, 0);
1278                         wmb(); /* flush modifications to the GGTT (insert_page) */
1279                 } else {
1280                         page_base += offset & PAGE_MASK;
1281                 }
1282                 /* If we get a fault while copying data, then (presumably) our
1283                  * source page isn't available.  Return the error and we'll
1284                  * retry in the slow path.
1285                  * If the object is non-shmem backed, we retry again with the
1286                  * path that handles page fault.
1287                  */
1288                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289                                user_data, page_length)) {
1290                         ret = -EFAULT;
1291                         break;
1292                 }
1293
1294                 remain -= page_length;
1295                 user_data += page_length;
1296                 offset += page_length;
1297         }
1298         intel_fb_obj_flush(obj, ORIGIN_CPU);
1299
1300         mutex_lock(&i915->drm.struct_mutex);
1301 out_unpin:
1302         if (node.allocated) {
1303                 wmb();
1304                 ggtt->base.clear_range(&ggtt->base,
1305                                        node.start, node.size);
1306                 remove_mappable_node(&node);
1307         } else {
1308                 i915_vma_unpin(vma);
1309         }
1310 out_unlock:
1311         intel_runtime_pm_put(i915);
1312         mutex_unlock(&i915->drm.struct_mutex);
1313         return ret;
1314 }
1315
1316 static int
1317 shmem_pwrite_slow(struct page *page, int offset, int length,
1318                   char __user *user_data,
1319                   bool page_do_bit17_swizzling,
1320                   bool needs_clflush_before,
1321                   bool needs_clflush_after)
1322 {
1323         char *vaddr;
1324         int ret;
1325
1326         vaddr = kmap(page);
1327         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328                 shmem_clflush_swizzled_range(vaddr + offset, length,
1329                                              page_do_bit17_swizzling);
1330         if (page_do_bit17_swizzling)
1331                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1332                                                 length);
1333         else
1334                 ret = __copy_from_user(vaddr + offset, user_data, length);
1335         if (needs_clflush_after)
1336                 shmem_clflush_swizzled_range(vaddr + offset, length,
1337                                              page_do_bit17_swizzling);
1338         kunmap(page);
1339
1340         return ret ? -EFAULT : 0;
1341 }
1342
1343 /* Per-page copy function for the shmem pwrite fastpath.
1344  * Flushes invalid cachelines before writing to the target if
1345  * needs_clflush_before is set and flushes out any written cachelines after
1346  * writing if needs_clflush is set.
1347  */
1348 static int
1349 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350              bool page_do_bit17_swizzling,
1351              bool needs_clflush_before,
1352              bool needs_clflush_after)
1353 {
1354         int ret;
1355
1356         ret = -ENODEV;
1357         if (!page_do_bit17_swizzling) {
1358                 char *vaddr = kmap_atomic(page);
1359
1360                 if (needs_clflush_before)
1361                         drm_clflush_virt_range(vaddr + offset, len);
1362                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363                 if (needs_clflush_after)
1364                         drm_clflush_virt_range(vaddr + offset, len);
1365
1366                 kunmap_atomic(vaddr);
1367         }
1368         if (ret == 0)
1369                 return ret;
1370
1371         return shmem_pwrite_slow(page, offset, len, user_data,
1372                                  page_do_bit17_swizzling,
1373                                  needs_clflush_before,
1374                                  needs_clflush_after);
1375 }
1376
1377 static int
1378 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379                       const struct drm_i915_gem_pwrite *args)
1380 {
1381         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382         void __user *user_data;
1383         u64 remain;
1384         unsigned int obj_do_bit17_swizzling;
1385         unsigned int partial_cacheline_write;
1386         unsigned int needs_clflush;
1387         unsigned int offset, idx;
1388         int ret;
1389
1390         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1391         if (ret)
1392                 return ret;
1393
1394         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395         mutex_unlock(&i915->drm.struct_mutex);
1396         if (ret)
1397                 return ret;
1398
1399         obj_do_bit17_swizzling = 0;
1400         if (i915_gem_object_needs_bit17_swizzle(obj))
1401                 obj_do_bit17_swizzling = BIT(17);
1402
1403         /* If we don't overwrite a cacheline completely we need to be
1404          * careful to have up-to-date data by first clflushing. Don't
1405          * overcomplicate things and flush the entire patch.
1406          */
1407         partial_cacheline_write = 0;
1408         if (needs_clflush & CLFLUSH_BEFORE)
1409                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1410
1411         user_data = u64_to_user_ptr(args->data_ptr);
1412         remain = args->size;
1413         offset = offset_in_page(args->offset);
1414         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415                 struct page *page = i915_gem_object_get_page(obj, idx);
1416                 int length;
1417
1418                 length = remain;
1419                 if (offset + length > PAGE_SIZE)
1420                         length = PAGE_SIZE - offset;
1421
1422                 ret = shmem_pwrite(page, offset, length, user_data,
1423                                    page_to_phys(page) & obj_do_bit17_swizzling,
1424                                    (offset | length) & partial_cacheline_write,
1425                                    needs_clflush & CLFLUSH_AFTER);
1426                 if (ret)
1427                         break;
1428
1429                 remain -= length;
1430                 user_data += length;
1431                 offset = 0;
1432         }
1433
1434         intel_fb_obj_flush(obj, ORIGIN_CPU);
1435         i915_gem_obj_finish_shmem_access(obj);
1436         return ret;
1437 }
1438
1439 /**
1440  * Writes data to the object referenced by handle.
1441  * @dev: drm device
1442  * @data: ioctl data blob
1443  * @file: drm file
1444  *
1445  * On error, the contents of the buffer that were to be modified are undefined.
1446  */
1447 int
1448 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449                       struct drm_file *file)
1450 {
1451         struct drm_i915_gem_pwrite *args = data;
1452         struct drm_i915_gem_object *obj;
1453         int ret;
1454
1455         if (args->size == 0)
1456                 return 0;
1457
1458         if (!access_ok(VERIFY_READ,
1459                        u64_to_user_ptr(args->data_ptr),
1460                        args->size))
1461                 return -EFAULT;
1462
1463         obj = i915_gem_object_lookup(file, args->handle);
1464         if (!obj)
1465                 return -ENOENT;
1466
1467         /* Bounds check destination. */
1468         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1469                 ret = -EINVAL;
1470                 goto err;
1471         }
1472
1473         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1474
1475         ret = -ENODEV;
1476         if (obj->ops->pwrite)
1477                 ret = obj->ops->pwrite(obj, args);
1478         if (ret != -ENODEV)
1479                 goto err;
1480
1481         ret = i915_gem_object_wait(obj,
1482                                    I915_WAIT_INTERRUPTIBLE |
1483                                    I915_WAIT_ALL,
1484                                    MAX_SCHEDULE_TIMEOUT,
1485                                    to_rps_client(file));
1486         if (ret)
1487                 goto err;
1488
1489         ret = i915_gem_object_pin_pages(obj);
1490         if (ret)
1491                 goto err;
1492
1493         ret = -EFAULT;
1494         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1495          * it would end up going through the fenced access, and we'll get
1496          * different detiling behavior between reading and writing.
1497          * pread/pwrite currently are reading and writing from the CPU
1498          * perspective, requiring manual detiling by the client.
1499          */
1500         if (!i915_gem_object_has_struct_page(obj) ||
1501             cpu_write_needs_clflush(obj))
1502                 /* Note that the gtt paths might fail with non-page-backed user
1503                  * pointers (e.g. gtt mappings when moving data between
1504                  * textures). Fallback to the shmem path in that case.
1505                  */
1506                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1507
1508         if (ret == -EFAULT || ret == -ENOSPC) {
1509                 if (obj->phys_handle)
1510                         ret = i915_gem_phys_pwrite(obj, args, file);
1511                 else
1512                         ret = i915_gem_shmem_pwrite(obj, args);
1513         }
1514
1515         i915_gem_object_unpin_pages(obj);
1516 err:
1517         i915_gem_object_put(obj);
1518         return ret;
1519 }
1520
1521 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1522 {
1523         struct drm_i915_private *i915;
1524         struct list_head *list;
1525         struct i915_vma *vma;
1526
1527         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528                 if (!i915_vma_is_ggtt(vma))
1529                         break;
1530
1531                 if (i915_vma_is_active(vma))
1532                         continue;
1533
1534                 if (!drm_mm_node_allocated(&vma->node))
1535                         continue;
1536
1537                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1538         }
1539
1540         i915 = to_i915(obj->base.dev);
1541         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542         list_move_tail(&obj->global_link, list);
1543 }
1544
1545 /**
1546  * Called when user space prepares to use an object with the CPU, either
1547  * through the mmap ioctl's mapping or a GTT mapping.
1548  * @dev: drm device
1549  * @data: ioctl data blob
1550  * @file: drm file
1551  */
1552 int
1553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554                           struct drm_file *file)
1555 {
1556         struct drm_i915_gem_set_domain *args = data;
1557         struct drm_i915_gem_object *obj;
1558         uint32_t read_domains = args->read_domains;
1559         uint32_t write_domain = args->write_domain;
1560         int err;
1561
1562         /* Only handle setting domains to types used by the CPU. */
1563         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1564                 return -EINVAL;
1565
1566         /* Having something in the write domain implies it's in the read
1567          * domain, and only that read domain.  Enforce that in the request.
1568          */
1569         if (write_domain != 0 && read_domains != write_domain)
1570                 return -EINVAL;
1571
1572         obj = i915_gem_object_lookup(file, args->handle);
1573         if (!obj)
1574                 return -ENOENT;
1575
1576         /* Try to flush the object off the GPU without holding the lock.
1577          * We will repeat the flush holding the lock in the normal manner
1578          * to catch cases where we are gazumped.
1579          */
1580         err = i915_gem_object_wait(obj,
1581                                    I915_WAIT_INTERRUPTIBLE |
1582                                    (write_domain ? I915_WAIT_ALL : 0),
1583                                    MAX_SCHEDULE_TIMEOUT,
1584                                    to_rps_client(file));
1585         if (err)
1586                 goto out;
1587
1588         /* Flush and acquire obj->pages so that we are coherent through
1589          * direct access in memory with previous cached writes through
1590          * shmemfs and that our cache domain tracking remains valid.
1591          * For example, if the obj->filp was moved to swap without us
1592          * being notified and releasing the pages, we would mistakenly
1593          * continue to assume that the obj remained out of the CPU cached
1594          * domain.
1595          */
1596         err = i915_gem_object_pin_pages(obj);
1597         if (err)
1598                 goto out;
1599
1600         err = i915_mutex_lock_interruptible(dev);
1601         if (err)
1602                 goto out_unpin;
1603
1604         if (read_domains & I915_GEM_DOMAIN_WC)
1605                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606         else if (read_domains & I915_GEM_DOMAIN_GTT)
1607                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1608         else
1609                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1610
1611         /* And bump the LRU for this access */
1612         i915_gem_object_bump_inactive_ggtt(obj);
1613
1614         mutex_unlock(&dev->struct_mutex);
1615
1616         if (write_domain != 0)
1617                 intel_fb_obj_invalidate(obj,
1618                                         fb_write_origin(obj, write_domain));
1619
1620 out_unpin:
1621         i915_gem_object_unpin_pages(obj);
1622 out:
1623         i915_gem_object_put(obj);
1624         return err;
1625 }
1626
1627 /**
1628  * Called when user space has done writes to this buffer
1629  * @dev: drm device
1630  * @data: ioctl data blob
1631  * @file: drm file
1632  */
1633 int
1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635                          struct drm_file *file)
1636 {
1637         struct drm_i915_gem_sw_finish *args = data;
1638         struct drm_i915_gem_object *obj;
1639
1640         obj = i915_gem_object_lookup(file, args->handle);
1641         if (!obj)
1642                 return -ENOENT;
1643
1644         /* Pinned buffers may be scanout, so flush the cache */
1645         i915_gem_object_flush_if_display(obj);
1646         i915_gem_object_put(obj);
1647
1648         return 0;
1649 }
1650
1651 /**
1652  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1653  *                       it is mapped to.
1654  * @dev: drm device
1655  * @data: ioctl data blob
1656  * @file: drm file
1657  *
1658  * While the mapping holds a reference on the contents of the object, it doesn't
1659  * imply a ref on the object itself.
1660  *
1661  * IMPORTANT:
1662  *
1663  * DRM driver writers who look a this function as an example for how to do GEM
1664  * mmap support, please don't implement mmap support like here. The modern way
1665  * to implement DRM mmap support is with an mmap offset ioctl (like
1666  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667  * That way debug tooling like valgrind will understand what's going on, hiding
1668  * the mmap call in a driver private ioctl will break that. The i915 driver only
1669  * does cpu mmaps this way because we didn't know better.
1670  */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673                     struct drm_file *file)
1674 {
1675         struct drm_i915_gem_mmap *args = data;
1676         struct drm_i915_gem_object *obj;
1677         unsigned long addr;
1678
1679         if (args->flags & ~(I915_MMAP_WC))
1680                 return -EINVAL;
1681
1682         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1683                 return -ENODEV;
1684
1685         obj = i915_gem_object_lookup(file, args->handle);
1686         if (!obj)
1687                 return -ENOENT;
1688
1689         /* prime objects have no backing filp to GEM mmap
1690          * pages from.
1691          */
1692         if (!obj->base.filp) {
1693                 i915_gem_object_put(obj);
1694                 return -EINVAL;
1695         }
1696
1697         addr = vm_mmap(obj->base.filp, 0, args->size,
1698                        PROT_READ | PROT_WRITE, MAP_SHARED,
1699                        args->offset);
1700         if (args->flags & I915_MMAP_WC) {
1701                 struct mm_struct *mm = current->mm;
1702                 struct vm_area_struct *vma;
1703
1704                 if (down_write_killable(&mm->mmap_sem)) {
1705                         i915_gem_object_put(obj);
1706                         return -EINTR;
1707                 }
1708                 vma = find_vma(mm, addr);
1709                 if (vma)
1710                         vma->vm_page_prot =
1711                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712                 else
1713                         addr = -ENOMEM;
1714                 up_write(&mm->mmap_sem);
1715
1716                 /* This may race, but that's ok, it only gets set */
1717                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1718         }
1719         i915_gem_object_put(obj);
1720         if (IS_ERR((void *)addr))
1721                 return addr;
1722
1723         args->addr_ptr = (uint64_t) addr;
1724
1725         return 0;
1726 }
1727
1728 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1729 {
1730         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1731 }
1732
1733 /**
1734  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735  *
1736  * A history of the GTT mmap interface:
1737  *
1738  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739  *     aligned and suitable for fencing, and still fit into the available
1740  *     mappable space left by the pinned display objects. A classic problem
1741  *     we called the page-fault-of-doom where we would ping-pong between
1742  *     two objects that could not fit inside the GTT and so the memcpy
1743  *     would page one object in at the expense of the other between every
1744  *     single byte.
1745  *
1746  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748  *     object is too large for the available space (or simply too large
1749  *     for the mappable aperture!), a view is created instead and faulted
1750  *     into userspace. (This view is aligned and sized appropriately for
1751  *     fenced access.)
1752  *
1753  * 2 - Recognise WC as a separate cache domain so that we can flush the
1754  *     delayed writes via GTT before performing direct access via WC.
1755  *
1756  * Restrictions:
1757  *
1758  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1759  *    hangs on some architectures, corruption on others. An attempt to service
1760  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1761  *
1762  *  * the object must be able to fit into RAM (physical memory, though no
1763  *    limited to the mappable aperture).
1764  *
1765  *
1766  * Caveats:
1767  *
1768  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1769  *    all data to system memory. Subsequent access will not be synchronized.
1770  *
1771  *  * all mappings are revoked on runtime device suspend.
1772  *
1773  *  * there are only 8, 16 or 32 fence registers to share between all users
1774  *    (older machines require fence register for display and blitter access
1775  *    as well). Contention of the fence registers will cause the previous users
1776  *    to be unmapped and any new access will generate new page faults.
1777  *
1778  *  * running out of memory while servicing a fault may generate a SIGBUS,
1779  *    rather than the expected SIGSEGV.
1780  */
1781 int i915_gem_mmap_gtt_version(void)
1782 {
1783         return 2;
1784 }
1785
1786 static inline struct i915_ggtt_view
1787 compute_partial_view(struct drm_i915_gem_object *obj,
1788                      pgoff_t page_offset,
1789                      unsigned int chunk)
1790 {
1791         struct i915_ggtt_view view;
1792
1793         if (i915_gem_object_is_tiled(obj))
1794                 chunk = roundup(chunk, tile_row_pages(obj));
1795
1796         view.type = I915_GGTT_VIEW_PARTIAL;
1797         view.partial.offset = rounddown(page_offset, chunk);
1798         view.partial.size =
1799                 min_t(unsigned int, chunk,
1800                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1801
1802         /* If the partial covers the entire object, just create a normal VMA. */
1803         if (chunk >= obj->base.size >> PAGE_SHIFT)
1804                 view.type = I915_GGTT_VIEW_NORMAL;
1805
1806         return view;
1807 }
1808
1809 /**
1810  * i915_gem_fault - fault a page into the GTT
1811  * @vmf: fault info
1812  *
1813  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814  * from userspace.  The fault handler takes care of binding the object to
1815  * the GTT (if needed), allocating and programming a fence register (again,
1816  * only if needed based on whether the old reg is still valid or the object
1817  * is tiled) and inserting a new PTE into the faulting process.
1818  *
1819  * Note that the faulting process may involve evicting existing objects
1820  * from the GTT and/or fence registers to make room.  So performance may
1821  * suffer if the GTT working set is large or there are few fence registers
1822  * left.
1823  *
1824  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1826  */
1827 int i915_gem_fault(struct vm_fault *vmf)
1828 {
1829 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830         struct vm_area_struct *area = vmf->vma;
1831         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832         struct drm_device *dev = obj->base.dev;
1833         struct drm_i915_private *dev_priv = to_i915(dev);
1834         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1836         struct i915_vma *vma;
1837         pgoff_t page_offset;
1838         unsigned int flags;
1839         int ret;
1840
1841         /* We don't use vmf->pgoff since that has the fake offset */
1842         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843
1844         trace_i915_gem_object_fault(obj, page_offset, true, write);
1845
1846         /* Try to flush the object off the GPU first without holding the lock.
1847          * Upon acquiring the lock, we will perform our sanity checks and then
1848          * repeat the flush holding the lock in the normal manner to catch cases
1849          * where we are gazumped.
1850          */
1851         ret = i915_gem_object_wait(obj,
1852                                    I915_WAIT_INTERRUPTIBLE,
1853                                    MAX_SCHEDULE_TIMEOUT,
1854                                    NULL);
1855         if (ret)
1856                 goto err;
1857
1858         ret = i915_gem_object_pin_pages(obj);
1859         if (ret)
1860                 goto err;
1861
1862         intel_runtime_pm_get(dev_priv);
1863
1864         ret = i915_mutex_lock_interruptible(dev);
1865         if (ret)
1866                 goto err_rpm;
1867
1868         /* Access to snoopable pages through the GTT is incoherent. */
1869         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870                 ret = -EFAULT;
1871                 goto err_unlock;
1872         }
1873
1874         /* If the object is smaller than a couple of partial vma, it is
1875          * not worth only creating a single partial vma - we may as well
1876          * clear enough space for the full object.
1877          */
1878         flags = PIN_MAPPABLE;
1879         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881
1882         /* Now pin it into the GTT as needed */
1883         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884         if (IS_ERR(vma)) {
1885                 /* Use a partial view if it is bigger than available space */
1886                 struct i915_ggtt_view view =
1887                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888
1889                 /* Userspace is now writing through an untracked VMA, abandon
1890                  * all hope that the hardware is able to track future writes.
1891                  */
1892                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893
1894                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895         }
1896         if (IS_ERR(vma)) {
1897                 ret = PTR_ERR(vma);
1898                 goto err_unlock;
1899         }
1900
1901         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902         if (ret)
1903                 goto err_unpin;
1904
1905         ret = i915_vma_get_fence(vma);
1906         if (ret)
1907                 goto err_unpin;
1908
1909         /* Mark as being mmapped into userspace for later revocation */
1910         assert_rpm_wakelock_held(dev_priv);
1911         if (list_empty(&obj->userfault_link))
1912                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913
1914         /* Finally, remap it using the new GTT offset */
1915         ret = remap_io_mapping(area,
1916                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1919                                &ggtt->mappable);
1920
1921 err_unpin:
1922         __i915_vma_unpin(vma);
1923 err_unlock:
1924         mutex_unlock(&dev->struct_mutex);
1925 err_rpm:
1926         intel_runtime_pm_put(dev_priv);
1927         i915_gem_object_unpin_pages(obj);
1928 err:
1929         switch (ret) {
1930         case -EIO:
1931                 /*
1932                  * We eat errors when the gpu is terminally wedged to avoid
1933                  * userspace unduly crashing (gl has no provisions for mmaps to
1934                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935                  * and so needs to be reported.
1936                  */
1937                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938                         ret = VM_FAULT_SIGBUS;
1939                         break;
1940                 }
1941         case -EAGAIN:
1942                 /*
1943                  * EAGAIN means the gpu is hung and we'll wait for the error
1944                  * handler to reset everything when re-faulting in
1945                  * i915_mutex_lock_interruptible.
1946                  */
1947         case 0:
1948         case -ERESTARTSYS:
1949         case -EINTR:
1950         case -EBUSY:
1951                 /*
1952                  * EBUSY is ok: this just means that another thread
1953                  * already did the job.
1954                  */
1955                 ret = VM_FAULT_NOPAGE;
1956                 break;
1957         case -ENOMEM:
1958                 ret = VM_FAULT_OOM;
1959                 break;
1960         case -ENOSPC:
1961         case -EFAULT:
1962                 ret = VM_FAULT_SIGBUS;
1963                 break;
1964         default:
1965                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966                 ret = VM_FAULT_SIGBUS;
1967                 break;
1968         }
1969         return ret;
1970 }
1971
1972 /**
1973  * i915_gem_release_mmap - remove physical page mappings
1974  * @obj: obj in question
1975  *
1976  * Preserve the reservation of the mmapping with the DRM core code, but
1977  * relinquish ownership of the pages back to the system.
1978  *
1979  * It is vital that we remove the page mapping if we have mapped a tiled
1980  * object through the GTT and then lose the fence register due to
1981  * resource pressure. Similarly if the object has been moved out of the
1982  * aperture, than pages mapped into userspace must be revoked. Removing the
1983  * mapping will then trigger a page fault on the next user access, allowing
1984  * fixup by i915_gem_fault().
1985  */
1986 void
1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988 {
1989         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990
1991         /* Serialisation between user GTT access and our code depends upon
1992          * revoking the CPU's PTE whilst the mutex is held. The next user
1993          * pagefault then has to wait until we release the mutex.
1994          *
1995          * Note that RPM complicates somewhat by adding an additional
1996          * requirement that operations to the GGTT be made holding the RPM
1997          * wakeref.
1998          */
1999         lockdep_assert_held(&i915->drm.struct_mutex);
2000         intel_runtime_pm_get(i915);
2001
2002         if (list_empty(&obj->userfault_link))
2003                 goto out;
2004
2005         list_del_init(&obj->userfault_link);
2006         drm_vma_node_unmap(&obj->base.vma_node,
2007                            obj->base.dev->anon_inode->i_mapping);
2008
2009         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010          * memory transactions from userspace before we return. The TLB
2011          * flushing implied above by changing the PTE above *should* be
2012          * sufficient, an extra barrier here just provides us with a bit
2013          * of paranoid documentation about our requirement to serialise
2014          * memory writes before touching registers / GSM.
2015          */
2016         wmb();
2017
2018 out:
2019         intel_runtime_pm_put(i915);
2020 }
2021
2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023 {
2024         struct drm_i915_gem_object *obj, *on;
2025         int i;
2026
2027         /*
2028          * Only called during RPM suspend. All users of the userfault_list
2029          * must be holding an RPM wakeref to ensure that this can not
2030          * run concurrently with themselves (and use the struct_mutex for
2031          * protection between themselves).
2032          */
2033
2034         list_for_each_entry_safe(obj, on,
2035                                  &dev_priv->mm.userfault_list, userfault_link) {
2036                 list_del_init(&obj->userfault_link);
2037                 drm_vma_node_unmap(&obj->base.vma_node,
2038                                    obj->base.dev->anon_inode->i_mapping);
2039         }
2040
2041         /* The fence will be lost when the device powers down. If any were
2042          * in use by hardware (i.e. they are pinned), we should not be powering
2043          * down! All other fences will be reacquired by the user upon waking.
2044          */
2045         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047
2048                 /* Ideally we want to assert that the fence register is not
2049                  * live at this point (i.e. that no piece of code will be
2050                  * trying to write through fence + GTT, as that both violates
2051                  * our tracking of activity and associated locking/barriers,
2052                  * but also is illegal given that the hw is powered down).
2053                  *
2054                  * Previously we used reg->pin_count as a "liveness" indicator.
2055                  * That is not sufficient, and we need a more fine-grained
2056                  * tool if we want to have a sanity check here.
2057                  */
2058
2059                 if (!reg->vma)
2060                         continue;
2061
2062                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063                 reg->dirty = true;
2064         }
2065 }
2066
2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070         int err;
2071
2072         err = drm_gem_create_mmap_offset(&obj->base);
2073         if (likely(!err))
2074                 return 0;
2075
2076         /* Attempt to reap some mmap space from dead objects */
2077         do {
2078                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079                 if (err)
2080                         break;
2081
2082                 i915_gem_drain_freed_objects(dev_priv);
2083                 err = drm_gem_create_mmap_offset(&obj->base);
2084                 if (!err)
2085                         break;
2086
2087         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2088
2089         return err;
2090 }
2091
2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093 {
2094         drm_gem_free_mmap_offset(&obj->base);
2095 }
2096
2097 int
2098 i915_gem_mmap_gtt(struct drm_file *file,
2099                   struct drm_device *dev,
2100                   uint32_t handle,
2101                   uint64_t *offset)
2102 {
2103         struct drm_i915_gem_object *obj;
2104         int ret;
2105
2106         obj = i915_gem_object_lookup(file, handle);
2107         if (!obj)
2108                 return -ENOENT;
2109
2110         ret = i915_gem_object_create_mmap_offset(obj);
2111         if (ret == 0)
2112                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113
2114         i915_gem_object_put(obj);
2115         return ret;
2116 }
2117
2118 /**
2119  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120  * @dev: DRM device
2121  * @data: GTT mapping ioctl data
2122  * @file: GEM object info
2123  *
2124  * Simply returns the fake offset to userspace so it can mmap it.
2125  * The mmap call will end up in drm_gem_mmap(), which will set things
2126  * up so we can get faults in the handler above.
2127  *
2128  * The fault handler will take care of binding the object into the GTT
2129  * (since it may have been evicted to make room for something), allocating
2130  * a fence register, and mapping the appropriate aperture address into
2131  * userspace.
2132  */
2133 int
2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135                         struct drm_file *file)
2136 {
2137         struct drm_i915_gem_mmap_gtt *args = data;
2138
2139         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 }
2141
2142 /* Immediately discard the backing storage */
2143 static void
2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145 {
2146         i915_gem_object_free_mmap_offset(obj);
2147
2148         if (obj->base.filp == NULL)
2149                 return;
2150
2151         /* Our goal here is to return as much of the memory as
2152          * is possible back to the system as we are called from OOM.
2153          * To do this we must instruct the shmfs to drop all of its
2154          * backing pages, *now*.
2155          */
2156         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157         obj->mm.madv = __I915_MADV_PURGED;
2158         obj->mm.pages = ERR_PTR(-EFAULT);
2159 }
2160
2161 /* Try to discard unwanted pages */
2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163 {
2164         struct address_space *mapping;
2165
2166         lockdep_assert_held(&obj->mm.lock);
2167         GEM_BUG_ON(obj->mm.pages);
2168
2169         switch (obj->mm.madv) {
2170         case I915_MADV_DONTNEED:
2171                 i915_gem_object_truncate(obj);
2172         case __I915_MADV_PURGED:
2173                 return;
2174         }
2175
2176         if (obj->base.filp == NULL)
2177                 return;
2178
2179         mapping = obj->base.filp->f_mapping,
2180         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 }
2182
2183 static void
2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185                               struct sg_table *pages)
2186 {
2187         struct sgt_iter sgt_iter;
2188         struct page *page;
2189
2190         __i915_gem_object_release_shmem(obj, pages, true);
2191
2192         i915_gem_gtt_finish_pages(obj, pages);
2193
2194         if (i915_gem_object_needs_bit17_swizzle(obj))
2195                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2196
2197         for_each_sgt_page(page, sgt_iter, pages) {
2198                 if (obj->mm.dirty)
2199                         set_page_dirty(page);
2200
2201                 if (obj->mm.madv == I915_MADV_WILLNEED)
2202                         mark_page_accessed(page);
2203
2204                 put_page(page);
2205         }
2206         obj->mm.dirty = false;
2207
2208         sg_free_table(pages);
2209         kfree(pages);
2210 }
2211
2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213 {
2214         struct radix_tree_iter iter;
2215         void __rcu **slot;
2216
2217         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2218                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2219 }
2220
2221 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2222                                  enum i915_mm_subclass subclass)
2223 {
2224         struct sg_table *pages;
2225
2226         if (i915_gem_object_has_pinned_pages(obj))
2227                 return;
2228
2229         GEM_BUG_ON(obj->bind_count);
2230         if (!READ_ONCE(obj->mm.pages))
2231                 return;
2232
2233         /* May be called by shrinker from within get_pages() (on another bo) */
2234         mutex_lock_nested(&obj->mm.lock, subclass);
2235         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2236                 goto unlock;
2237
2238         /* ->put_pages might need to allocate memory for the bit17 swizzle
2239          * array, hence protect them from being reaped by removing them from gtt
2240          * lists early. */
2241         pages = fetch_and_zero(&obj->mm.pages);
2242         GEM_BUG_ON(!pages);
2243
2244         if (obj->mm.mapping) {
2245                 void *ptr;
2246
2247                 ptr = page_mask_bits(obj->mm.mapping);
2248                 if (is_vmalloc_addr(ptr))
2249                         vunmap(ptr);
2250                 else
2251                         kunmap(kmap_to_page(ptr));
2252
2253                 obj->mm.mapping = NULL;
2254         }
2255
2256         __i915_gem_object_reset_page_iter(obj);
2257
2258         if (!IS_ERR(pages))
2259                 obj->ops->put_pages(obj, pages);
2260
2261 unlock:
2262         mutex_unlock(&obj->mm.lock);
2263 }
2264
2265 static bool i915_sg_trim(struct sg_table *orig_st)
2266 {
2267         struct sg_table new_st;
2268         struct scatterlist *sg, *new_sg;
2269         unsigned int i;
2270
2271         if (orig_st->nents == orig_st->orig_nents)
2272                 return false;
2273
2274         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2275                 return false;
2276
2277         new_sg = new_st.sgl;
2278         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2279                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2280                 /* called before being DMA mapped, no need to copy sg->dma_* */
2281                 new_sg = sg_next(new_sg);
2282         }
2283         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2284
2285         sg_free_table(orig_st);
2286
2287         *orig_st = new_st;
2288         return true;
2289 }
2290
2291 static struct sg_table *
2292 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2293 {
2294         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2296         unsigned long i;
2297         struct address_space *mapping;
2298         struct sg_table *st;
2299         struct scatterlist *sg;
2300         struct sgt_iter sgt_iter;
2301         struct page *page;
2302         unsigned long last_pfn = 0;     /* suppress gcc warning */
2303         unsigned int max_segment;
2304         gfp_t noreclaim;
2305         int ret;
2306
2307         /* Assert that the object is not currently in any GPU domain. As it
2308          * wasn't in the GTT, there shouldn't be any way it could have been in
2309          * a GPU cache
2310          */
2311         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2312         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2313
2314         max_segment = swiotlb_max_segment();
2315         if (!max_segment)
2316                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2317
2318         st = kmalloc(sizeof(*st), GFP_KERNEL);
2319         if (st == NULL)
2320                 return ERR_PTR(-ENOMEM);
2321
2322 rebuild_st:
2323         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2324                 kfree(st);
2325                 return ERR_PTR(-ENOMEM);
2326         }
2327
2328         /* Get the list of pages out of our struct file.  They'll be pinned
2329          * at this point until we release them.
2330          *
2331          * Fail silently without starting the shrinker
2332          */
2333         mapping = obj->base.filp->f_mapping;
2334         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2335         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2336
2337         sg = st->sgl;
2338         st->nents = 0;
2339         for (i = 0; i < page_count; i++) {
2340                 const unsigned int shrink[] = {
2341                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2342                         0,
2343                 }, *s = shrink;
2344                 gfp_t gfp = noreclaim;
2345
2346                 do {
2347                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2348                         if (likely(!IS_ERR(page)))
2349                                 break;
2350
2351                         if (!*s) {
2352                                 ret = PTR_ERR(page);
2353                                 goto err_sg;
2354                         }
2355
2356                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2357                         cond_resched();
2358
2359                         /* We've tried hard to allocate the memory by reaping
2360                          * our own buffer, now let the real VM do its job and
2361                          * go down in flames if truly OOM.
2362                          *
2363                          * However, since graphics tend to be disposable,
2364                          * defer the oom here by reporting the ENOMEM back
2365                          * to userspace.
2366                          */
2367                         if (!*s) {
2368                                 /* reclaim and warn, but no oom */
2369                                 gfp = mapping_gfp_mask(mapping);
2370
2371                                 /* Our bo are always dirty and so we require
2372                                  * kswapd to reclaim our pages (direct reclaim
2373                                  * does not effectively begin pageout of our
2374                                  * buffers on its own). However, direct reclaim
2375                                  * only waits for kswapd when under allocation
2376                                  * congestion. So as a result __GFP_RECLAIM is
2377                                  * unreliable and fails to actually reclaim our
2378                                  * dirty pages -- unless you try over and over
2379                                  * again with !__GFP_NORETRY. However, we still
2380                                  * want to fail this allocation rather than
2381                                  * trigger the out-of-memory killer and for
2382                                  * this we want __GFP_RETRY_MAYFAIL.
2383                                  */
2384                                 gfp |= __GFP_RETRY_MAYFAIL;
2385                         }
2386                 } while (1);
2387
2388                 if (!i ||
2389                     sg->length >= max_segment ||
2390                     page_to_pfn(page) != last_pfn + 1) {
2391                         if (i)
2392                                 sg = sg_next(sg);
2393                         st->nents++;
2394                         sg_set_page(sg, page, PAGE_SIZE, 0);
2395                 } else {
2396                         sg->length += PAGE_SIZE;
2397                 }
2398                 last_pfn = page_to_pfn(page);
2399
2400                 /* Check that the i965g/gm workaround works. */
2401                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2402         }
2403         if (sg) /* loop terminated early; short sg table */
2404                 sg_mark_end(sg);
2405
2406         /* Trim unused sg entries to avoid wasting memory. */
2407         i915_sg_trim(st);
2408
2409         ret = i915_gem_gtt_prepare_pages(obj, st);
2410         if (ret) {
2411                 /* DMA remapping failed? One possible cause is that
2412                  * it could not reserve enough large entries, asking
2413                  * for PAGE_SIZE chunks instead may be helpful.
2414                  */
2415                 if (max_segment > PAGE_SIZE) {
2416                         for_each_sgt_page(page, sgt_iter, st)
2417                                 put_page(page);
2418                         sg_free_table(st);
2419
2420                         max_segment = PAGE_SIZE;
2421                         goto rebuild_st;
2422                 } else {
2423                         dev_warn(&dev_priv->drm.pdev->dev,
2424                                  "Failed to DMA remap %lu pages\n",
2425                                  page_count);
2426                         goto err_pages;
2427                 }
2428         }
2429
2430         if (i915_gem_object_needs_bit17_swizzle(obj))
2431                 i915_gem_object_do_bit_17_swizzle(obj, st);
2432
2433         return st;
2434
2435 err_sg:
2436         sg_mark_end(sg);
2437 err_pages:
2438         for_each_sgt_page(page, sgt_iter, st)
2439                 put_page(page);
2440         sg_free_table(st);
2441         kfree(st);
2442
2443         /* shmemfs first checks if there is enough memory to allocate the page
2444          * and reports ENOSPC should there be insufficient, along with the usual
2445          * ENOMEM for a genuine allocation failure.
2446          *
2447          * We use ENOSPC in our driver to mean that we have run out of aperture
2448          * space and so want to translate the error from shmemfs back to our
2449          * usual understanding of ENOMEM.
2450          */
2451         if (ret == -ENOSPC)
2452                 ret = -ENOMEM;
2453
2454         return ERR_PTR(ret);
2455 }
2456
2457 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2458                                  struct sg_table *pages)
2459 {
2460         lockdep_assert_held(&obj->mm.lock);
2461
2462         obj->mm.get_page.sg_pos = pages->sgl;
2463         obj->mm.get_page.sg_idx = 0;
2464
2465         obj->mm.pages = pages;
2466
2467         if (i915_gem_object_is_tiled(obj) &&
2468             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2469                 GEM_BUG_ON(obj->mm.quirked);
2470                 __i915_gem_object_pin_pages(obj);
2471                 obj->mm.quirked = true;
2472         }
2473 }
2474
2475 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2476 {
2477         struct sg_table *pages;
2478
2479         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2480
2481         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2482                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2483                 return -EFAULT;
2484         }
2485
2486         pages = obj->ops->get_pages(obj);
2487         if (unlikely(IS_ERR(pages)))
2488                 return PTR_ERR(pages);
2489
2490         __i915_gem_object_set_pages(obj, pages);
2491         return 0;
2492 }
2493
2494 /* Ensure that the associated pages are gathered from the backing storage
2495  * and pinned into our object. i915_gem_object_pin_pages() may be called
2496  * multiple times before they are released by a single call to
2497  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2498  * either as a result of memory pressure (reaping pages under the shrinker)
2499  * or as the object is itself released.
2500  */
2501 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2502 {
2503         int err;
2504
2505         err = mutex_lock_interruptible(&obj->mm.lock);
2506         if (err)
2507                 return err;
2508
2509         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2510                 err = ____i915_gem_object_get_pages(obj);
2511                 if (err)
2512                         goto unlock;
2513
2514                 smp_mb__before_atomic();
2515         }
2516         atomic_inc(&obj->mm.pages_pin_count);
2517
2518 unlock:
2519         mutex_unlock(&obj->mm.lock);
2520         return err;
2521 }
2522
2523 /* The 'mapping' part of i915_gem_object_pin_map() below */
2524 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2525                                  enum i915_map_type type)
2526 {
2527         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2528         struct sg_table *sgt = obj->mm.pages;
2529         struct sgt_iter sgt_iter;
2530         struct page *page;
2531         struct page *stack_pages[32];
2532         struct page **pages = stack_pages;
2533         unsigned long i = 0;
2534         pgprot_t pgprot;
2535         void *addr;
2536
2537         /* A single page can always be kmapped */
2538         if (n_pages == 1 && type == I915_MAP_WB)
2539                 return kmap(sg_page(sgt->sgl));
2540
2541         if (n_pages > ARRAY_SIZE(stack_pages)) {
2542                 /* Too big for stack -- allocate temporary array instead */
2543                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2544                 if (!pages)
2545                         return NULL;
2546         }
2547
2548         for_each_sgt_page(page, sgt_iter, sgt)
2549                 pages[i++] = page;
2550
2551         /* Check that we have the expected number of pages */
2552         GEM_BUG_ON(i != n_pages);
2553
2554         switch (type) {
2555         default:
2556                 MISSING_CASE(type);
2557                 /* fallthrough to use PAGE_KERNEL anyway */
2558         case I915_MAP_WB:
2559                 pgprot = PAGE_KERNEL;
2560                 break;
2561         case I915_MAP_WC:
2562                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2563                 break;
2564         }
2565         addr = vmap(pages, n_pages, 0, pgprot);
2566
2567         if (pages != stack_pages)
2568                 kvfree(pages);
2569
2570         return addr;
2571 }
2572
2573 /* get, pin, and map the pages of the object into kernel space */
2574 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2575                               enum i915_map_type type)
2576 {
2577         enum i915_map_type has_type;
2578         bool pinned;
2579         void *ptr;
2580         int ret;
2581
2582         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2583
2584         ret = mutex_lock_interruptible(&obj->mm.lock);
2585         if (ret)
2586                 return ERR_PTR(ret);
2587
2588         pinned = !(type & I915_MAP_OVERRIDE);
2589         type &= ~I915_MAP_OVERRIDE;
2590
2591         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2592                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2593                         ret = ____i915_gem_object_get_pages(obj);
2594                         if (ret)
2595                                 goto err_unlock;
2596
2597                         smp_mb__before_atomic();
2598                 }
2599                 atomic_inc(&obj->mm.pages_pin_count);
2600                 pinned = false;
2601         }
2602         GEM_BUG_ON(!obj->mm.pages);
2603
2604         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2605         if (ptr && has_type != type) {
2606                 if (pinned) {
2607                         ret = -EBUSY;
2608                         goto err_unpin;
2609                 }
2610
2611                 if (is_vmalloc_addr(ptr))
2612                         vunmap(ptr);
2613                 else
2614                         kunmap(kmap_to_page(ptr));
2615
2616                 ptr = obj->mm.mapping = NULL;
2617         }
2618
2619         if (!ptr) {
2620                 ptr = i915_gem_object_map(obj, type);
2621                 if (!ptr) {
2622                         ret = -ENOMEM;
2623                         goto err_unpin;
2624                 }
2625
2626                 obj->mm.mapping = page_pack_bits(ptr, type);
2627         }
2628
2629 out_unlock:
2630         mutex_unlock(&obj->mm.lock);
2631         return ptr;
2632
2633 err_unpin:
2634         atomic_dec(&obj->mm.pages_pin_count);
2635 err_unlock:
2636         ptr = ERR_PTR(ret);
2637         goto out_unlock;
2638 }
2639
2640 static int
2641 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2642                            const struct drm_i915_gem_pwrite *arg)
2643 {
2644         struct address_space *mapping = obj->base.filp->f_mapping;
2645         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2646         u64 remain, offset;
2647         unsigned int pg;
2648
2649         /* Before we instantiate/pin the backing store for our use, we
2650          * can prepopulate the shmemfs filp efficiently using a write into
2651          * the pagecache. We avoid the penalty of instantiating all the
2652          * pages, important if the user is just writing to a few and never
2653          * uses the object on the GPU, and using a direct write into shmemfs
2654          * allows it to avoid the cost of retrieving a page (either swapin
2655          * or clearing-before-use) before it is overwritten.
2656          */
2657         if (READ_ONCE(obj->mm.pages))
2658                 return -ENODEV;
2659
2660         /* Before the pages are instantiated the object is treated as being
2661          * in the CPU domain. The pages will be clflushed as required before
2662          * use, and we can freely write into the pages directly. If userspace
2663          * races pwrite with any other operation; corruption will ensue -
2664          * that is userspace's prerogative!
2665          */
2666
2667         remain = arg->size;
2668         offset = arg->offset;
2669         pg = offset_in_page(offset);
2670
2671         do {
2672                 unsigned int len, unwritten;
2673                 struct page *page;
2674                 void *data, *vaddr;
2675                 int err;
2676
2677                 len = PAGE_SIZE - pg;
2678                 if (len > remain)
2679                         len = remain;
2680
2681                 err = pagecache_write_begin(obj->base.filp, mapping,
2682                                             offset, len, 0,
2683                                             &page, &data);
2684                 if (err < 0)
2685                         return err;
2686
2687                 vaddr = kmap(page);
2688                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2689                 kunmap(page);
2690
2691                 err = pagecache_write_end(obj->base.filp, mapping,
2692                                           offset, len, len - unwritten,
2693                                           page, data);
2694                 if (err < 0)
2695                         return err;
2696
2697                 if (unwritten)
2698                         return -EFAULT;
2699
2700                 remain -= len;
2701                 user_data += len;
2702                 offset += len;
2703                 pg = 0;
2704         } while (remain);
2705
2706         return 0;
2707 }
2708
2709 static bool ban_context(const struct i915_gem_context *ctx,
2710                         unsigned int score)
2711 {
2712         return (i915_gem_context_is_bannable(ctx) &&
2713                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2714 }
2715
2716 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2717 {
2718         unsigned int score;
2719         bool banned;
2720
2721         atomic_inc(&ctx->guilty_count);
2722
2723         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2724         banned = ban_context(ctx, score);
2725         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2726                          ctx->name, score, yesno(banned));
2727         if (!banned)
2728                 return;
2729
2730         i915_gem_context_set_banned(ctx);
2731         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2732                 atomic_inc(&ctx->file_priv->context_bans);
2733                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2734                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2735         }
2736 }
2737
2738 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2739 {
2740         atomic_inc(&ctx->active_count);
2741 }
2742
2743 struct drm_i915_gem_request *
2744 i915_gem_find_active_request(struct intel_engine_cs *engine)
2745 {
2746         struct drm_i915_gem_request *request, *active = NULL;
2747         unsigned long flags;
2748
2749         /* We are called by the error capture and reset at a random
2750          * point in time. In particular, note that neither is crucially
2751          * ordered with an interrupt. After a hang, the GPU is dead and we
2752          * assume that no more writes can happen (we waited long enough for
2753          * all writes that were in transaction to be flushed) - adding an
2754          * extra delay for a recent interrupt is pointless. Hence, we do
2755          * not need an engine->irq_seqno_barrier() before the seqno reads.
2756          */
2757         spin_lock_irqsave(&engine->timeline->lock, flags);
2758         list_for_each_entry(request, &engine->timeline->requests, link) {
2759                 if (__i915_gem_request_completed(request,
2760                                                  request->global_seqno))
2761                         continue;
2762
2763                 GEM_BUG_ON(request->engine != engine);
2764                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2765                                     &request->fence.flags));
2766
2767                 active = request;
2768                 break;
2769         }
2770         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2771
2772         return active;
2773 }
2774
2775 static bool engine_stalled(struct intel_engine_cs *engine)
2776 {
2777         if (!engine->hangcheck.stalled)
2778                 return false;
2779
2780         /* Check for possible seqno movement after hang declaration */
2781         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2782                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2783                 return false;
2784         }
2785
2786         return true;
2787 }
2788
2789 /*
2790  * Ensure irq handler finishes, and not run again.
2791  * Also return the active request so that we only search for it once.
2792  */
2793 struct drm_i915_gem_request *
2794 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2795 {
2796         struct drm_i915_gem_request *request = NULL;
2797
2798         /* Prevent the signaler thread from updating the request
2799          * state (by calling dma_fence_signal) as we are processing
2800          * the reset. The write from the GPU of the seqno is
2801          * asynchronous and the signaler thread may see a different
2802          * value to us and declare the request complete, even though
2803          * the reset routine have picked that request as the active
2804          * (incomplete) request. This conflict is not handled
2805          * gracefully!
2806          */
2807         kthread_park(engine->breadcrumbs.signaler);
2808
2809         /* Prevent request submission to the hardware until we have
2810          * completed the reset in i915_gem_reset_finish(). If a request
2811          * is completed by one engine, it may then queue a request
2812          * to a second via its engine->irq_tasklet *just* as we are
2813          * calling engine->init_hw() and also writing the ELSP.
2814          * Turning off the engine->irq_tasklet until the reset is over
2815          * prevents the race.
2816          */
2817         tasklet_kill(&engine->irq_tasklet);
2818         tasklet_disable(&engine->irq_tasklet);
2819
2820         if (engine->irq_seqno_barrier)
2821                 engine->irq_seqno_barrier(engine);
2822
2823         request = i915_gem_find_active_request(engine);
2824         if (request && request->fence.error == -EIO)
2825                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2826
2827         return request;
2828 }
2829
2830 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2831 {
2832         struct intel_engine_cs *engine;
2833         struct drm_i915_gem_request *request;
2834         enum intel_engine_id id;
2835         int err = 0;
2836
2837         for_each_engine(engine, dev_priv, id) {
2838                 request = i915_gem_reset_prepare_engine(engine);
2839                 if (IS_ERR(request)) {
2840                         err = PTR_ERR(request);
2841                         continue;
2842                 }
2843
2844                 engine->hangcheck.active_request = request;
2845         }
2846
2847         i915_gem_revoke_fences(dev_priv);
2848
2849         return err;
2850 }
2851
2852 static void skip_request(struct drm_i915_gem_request *request)
2853 {
2854         void *vaddr = request->ring->vaddr;
2855         u32 head;
2856
2857         /* As this request likely depends on state from the lost
2858          * context, clear out all the user operations leaving the
2859          * breadcrumb at the end (so we get the fence notifications).
2860          */
2861         head = request->head;
2862         if (request->postfix < head) {
2863                 memset(vaddr + head, 0, request->ring->size - head);
2864                 head = 0;
2865         }
2866         memset(vaddr + head, 0, request->postfix - head);
2867
2868         dma_fence_set_error(&request->fence, -EIO);
2869 }
2870
2871 static void engine_skip_context(struct drm_i915_gem_request *request)
2872 {
2873         struct intel_engine_cs *engine = request->engine;
2874         struct i915_gem_context *hung_ctx = request->ctx;
2875         struct intel_timeline *timeline;
2876         unsigned long flags;
2877
2878         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2879
2880         spin_lock_irqsave(&engine->timeline->lock, flags);
2881         spin_lock(&timeline->lock);
2882
2883         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2884                 if (request->ctx == hung_ctx)
2885                         skip_request(request);
2886
2887         list_for_each_entry(request, &timeline->requests, link)
2888                 skip_request(request);
2889
2890         spin_unlock(&timeline->lock);
2891         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2892 }
2893
2894 /* Returns the request if it was guilty of the hang */
2895 static struct drm_i915_gem_request *
2896 i915_gem_reset_request(struct intel_engine_cs *engine,
2897                        struct drm_i915_gem_request *request)
2898 {
2899         /* The guilty request will get skipped on a hung engine.
2900          *
2901          * Users of client default contexts do not rely on logical
2902          * state preserved between batches so it is safe to execute
2903          * queued requests following the hang. Non default contexts
2904          * rely on preserved state, so skipping a batch loses the
2905          * evolution of the state and it needs to be considered corrupted.
2906          * Executing more queued batches on top of corrupted state is
2907          * risky. But we take the risk by trying to advance through
2908          * the queued requests in order to make the client behaviour
2909          * more predictable around resets, by not throwing away random
2910          * amount of batches it has prepared for execution. Sophisticated
2911          * clients can use gem_reset_stats_ioctl and dma fence status
2912          * (exported via sync_file info ioctl on explicit fences) to observe
2913          * when it loses the context state and should rebuild accordingly.
2914          *
2915          * The context ban, and ultimately the client ban, mechanism are safety
2916          * valves if client submission ends up resulting in nothing more than
2917          * subsequent hangs.
2918          */
2919
2920         if (engine_stalled(engine)) {
2921                 i915_gem_context_mark_guilty(request->ctx);
2922                 skip_request(request);
2923
2924                 /* If this context is now banned, skip all pending requests. */
2925                 if (i915_gem_context_is_banned(request->ctx))
2926                         engine_skip_context(request);
2927         } else {
2928                 /*
2929                  * Since this is not the hung engine, it may have advanced
2930                  * since the hang declaration. Double check by refinding
2931                  * the active request at the time of the reset.
2932                  */
2933                 request = i915_gem_find_active_request(engine);
2934                 if (request) {
2935                         i915_gem_context_mark_innocent(request->ctx);
2936                         dma_fence_set_error(&request->fence, -EAGAIN);
2937
2938                         /* Rewind the engine to replay the incomplete rq */
2939                         spin_lock_irq(&engine->timeline->lock);
2940                         request = list_prev_entry(request, link);
2941                         if (&request->link == &engine->timeline->requests)
2942                                 request = NULL;
2943                         spin_unlock_irq(&engine->timeline->lock);
2944                 }
2945         }
2946
2947         return request;
2948 }
2949
2950 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2951                            struct drm_i915_gem_request *request)
2952 {
2953         engine->irq_posted = 0;
2954
2955         if (request)
2956                 request = i915_gem_reset_request(engine, request);
2957
2958         if (request) {
2959                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2960                                  engine->name, request->global_seqno);
2961         }
2962
2963         /* Setup the CS to resume from the breadcrumb of the hung request */
2964         engine->reset_hw(engine, request);
2965 }
2966
2967 void i915_gem_reset(struct drm_i915_private *dev_priv)
2968 {
2969         struct intel_engine_cs *engine;
2970         enum intel_engine_id id;
2971
2972         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2973
2974         i915_gem_retire_requests(dev_priv);
2975
2976         for_each_engine(engine, dev_priv, id) {
2977                 struct i915_gem_context *ctx;
2978
2979                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2980                 ctx = fetch_and_zero(&engine->last_retired_context);
2981                 if (ctx)
2982                         engine->context_unpin(engine, ctx);
2983         }
2984
2985         i915_gem_restore_fences(dev_priv);
2986
2987         if (dev_priv->gt.awake) {
2988                 intel_sanitize_gt_powersave(dev_priv);
2989                 intel_enable_gt_powersave(dev_priv);
2990                 if (INTEL_GEN(dev_priv) >= 6)
2991                         gen6_rps_busy(dev_priv);
2992         }
2993 }
2994
2995 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2996 {
2997         tasklet_enable(&engine->irq_tasklet);
2998         kthread_unpark(engine->breadcrumbs.signaler);
2999 }
3000
3001 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3002 {
3003         struct intel_engine_cs *engine;
3004         enum intel_engine_id id;
3005
3006         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3007
3008         for_each_engine(engine, dev_priv, id) {
3009                 engine->hangcheck.active_request = NULL;
3010                 i915_gem_reset_finish_engine(engine);
3011         }
3012 }
3013
3014 static void nop_submit_request(struct drm_i915_gem_request *request)
3015 {
3016         GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3017         dma_fence_set_error(&request->fence, -EIO);
3018         i915_gem_request_submit(request);
3019         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3020 }
3021
3022 static void engine_set_wedged(struct intel_engine_cs *engine)
3023 {
3024         struct drm_i915_gem_request *request;
3025         unsigned long flags;
3026
3027         /* We need to be sure that no thread is running the old callback as
3028          * we install the nop handler (otherwise we would submit a request
3029          * to hardware that will never complete). In order to prevent this
3030          * race, we wait until the machine is idle before making the swap
3031          * (using stop_machine()).
3032          */
3033         engine->submit_request = nop_submit_request;
3034
3035         /* Mark all executing requests as skipped */
3036         spin_lock_irqsave(&engine->timeline->lock, flags);
3037         list_for_each_entry(request, &engine->timeline->requests, link)
3038                 if (!i915_gem_request_completed(request))
3039                         dma_fence_set_error(&request->fence, -EIO);
3040         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3041
3042         /*
3043          * Clear the execlists queue up before freeing the requests, as those
3044          * are the ones that keep the context and ringbuffer backing objects
3045          * pinned in place.
3046          */
3047
3048         if (i915.enable_execlists) {
3049                 struct execlist_port *port = engine->execlist_port;
3050                 unsigned long flags;
3051                 unsigned int n;
3052
3053                 spin_lock_irqsave(&engine->timeline->lock, flags);
3054
3055                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3056                         i915_gem_request_put(port_request(&port[n]));
3057                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3058                 engine->execlist_queue = RB_ROOT;
3059                 engine->execlist_first = NULL;
3060
3061                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3062
3063                 /* The port is checked prior to scheduling a tasklet, but
3064                  * just in case we have suspended the tasklet to do the
3065                  * wedging make sure that when it wakes, it decides there
3066                  * is no work to do by clearing the irq_posted bit.
3067                  */
3068                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3069         }
3070
3071         /* Mark all pending requests as complete so that any concurrent
3072          * (lockless) lookup doesn't try and wait upon the request as we
3073          * reset it.
3074          */
3075         intel_engine_init_global_seqno(engine,
3076                                        intel_engine_last_submit(engine));
3077 }
3078
3079 static int __i915_gem_set_wedged_BKL(void *data)
3080 {
3081         struct drm_i915_private *i915 = data;
3082         struct intel_engine_cs *engine;
3083         enum intel_engine_id id;
3084
3085         for_each_engine(engine, i915, id)
3086                 engine_set_wedged(engine);
3087
3088         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3089         wake_up_all(&i915->gpu_error.reset_queue);
3090
3091         return 0;
3092 }
3093
3094 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3095 {
3096         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3097 }
3098
3099 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3100 {
3101         struct i915_gem_timeline *tl;
3102         int i;
3103
3104         lockdep_assert_held(&i915->drm.struct_mutex);
3105         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3106                 return true;
3107
3108         /* Before unwedging, make sure that all pending operations
3109          * are flushed and errored out - we may have requests waiting upon
3110          * third party fences. We marked all inflight requests as EIO, and
3111          * every execbuf since returned EIO, for consistency we want all
3112          * the currently pending requests to also be marked as EIO, which
3113          * is done inside our nop_submit_request - and so we must wait.
3114          *
3115          * No more can be submitted until we reset the wedged bit.
3116          */
3117         list_for_each_entry(tl, &i915->gt.timelines, link) {
3118                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3119                         struct drm_i915_gem_request *rq;
3120
3121                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3122                                                   &i915->drm.struct_mutex);
3123                         if (!rq)
3124                                 continue;
3125
3126                         /* We can't use our normal waiter as we want to
3127                          * avoid recursively trying to handle the current
3128                          * reset. The basic dma_fence_default_wait() installs
3129                          * a callback for dma_fence_signal(), which is
3130                          * triggered by our nop handler (indirectly, the
3131                          * callback enables the signaler thread which is
3132                          * woken by the nop_submit_request() advancing the seqno
3133                          * and when the seqno passes the fence, the signaler
3134                          * then signals the fence waking us up).
3135                          */
3136                         if (dma_fence_default_wait(&rq->fence, true,
3137                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3138                                 return false;
3139                 }
3140         }
3141
3142         /* Undo nop_submit_request. We prevent all new i915 requests from
3143          * being queued (by disallowing execbuf whilst wedged) so having
3144          * waited for all active requests above, we know the system is idle
3145          * and do not have to worry about a thread being inside
3146          * engine->submit_request() as we swap over. So unlike installing
3147          * the nop_submit_request on reset, we can do this from normal
3148          * context and do not require stop_machine().
3149          */
3150         intel_engines_reset_default_submission(i915);
3151         i915_gem_contexts_lost(i915);
3152
3153         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3154         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3155
3156         return true;
3157 }
3158
3159 static void
3160 i915_gem_retire_work_handler(struct work_struct *work)
3161 {
3162         struct drm_i915_private *dev_priv =
3163                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3164         struct drm_device *dev = &dev_priv->drm;
3165
3166         /* Come back later if the device is busy... */
3167         if (mutex_trylock(&dev->struct_mutex)) {
3168                 i915_gem_retire_requests(dev_priv);
3169                 mutex_unlock(&dev->struct_mutex);
3170         }
3171
3172         /* Keep the retire handler running until we are finally idle.
3173          * We do not need to do this test under locking as in the worst-case
3174          * we queue the retire worker once too often.
3175          */
3176         if (READ_ONCE(dev_priv->gt.awake)) {
3177                 i915_queue_hangcheck(dev_priv);
3178                 queue_delayed_work(dev_priv->wq,
3179                                    &dev_priv->gt.retire_work,
3180                                    round_jiffies_up_relative(HZ));
3181         }
3182 }
3183
3184 static void
3185 i915_gem_idle_work_handler(struct work_struct *work)
3186 {
3187         struct drm_i915_private *dev_priv =
3188                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3189         struct drm_device *dev = &dev_priv->drm;
3190         bool rearm_hangcheck;
3191
3192         if (!READ_ONCE(dev_priv->gt.awake))
3193                 return;
3194
3195         /*
3196          * Wait for last execlists context complete, but bail out in case a
3197          * new request is submitted.
3198          */
3199         wait_for(intel_engines_are_idle(dev_priv), 10);
3200         if (READ_ONCE(dev_priv->gt.active_requests))
3201                 return;
3202
3203         rearm_hangcheck =
3204                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3205
3206         if (!mutex_trylock(&dev->struct_mutex)) {
3207                 /* Currently busy, come back later */
3208                 mod_delayed_work(dev_priv->wq,
3209                                  &dev_priv->gt.idle_work,
3210                                  msecs_to_jiffies(50));
3211                 goto out_rearm;
3212         }
3213
3214         /*
3215          * New request retired after this work handler started, extend active
3216          * period until next instance of the work.
3217          */
3218         if (work_pending(work))
3219                 goto out_unlock;
3220
3221         if (dev_priv->gt.active_requests)
3222                 goto out_unlock;
3223
3224         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3225                 DRM_ERROR("Timeout waiting for engines to idle\n");
3226
3227         intel_engines_mark_idle(dev_priv);
3228         i915_gem_timelines_mark_idle(dev_priv);
3229
3230         GEM_BUG_ON(!dev_priv->gt.awake);
3231         dev_priv->gt.awake = false;
3232         rearm_hangcheck = false;
3233
3234         if (INTEL_GEN(dev_priv) >= 6)
3235                 gen6_rps_idle(dev_priv);
3236         intel_runtime_pm_put(dev_priv);
3237 out_unlock:
3238         mutex_unlock(&dev->struct_mutex);
3239
3240 out_rearm:
3241         if (rearm_hangcheck) {
3242                 GEM_BUG_ON(!dev_priv->gt.awake);
3243                 i915_queue_hangcheck(dev_priv);
3244         }
3245 }
3246
3247 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3248 {
3249         struct drm_i915_private *i915 = to_i915(gem->dev);
3250         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3251         struct drm_i915_file_private *fpriv = file->driver_priv;
3252         struct i915_lut_handle *lut, *ln;
3253
3254         mutex_lock(&i915->drm.struct_mutex);
3255
3256         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3257                 struct i915_gem_context *ctx = lut->ctx;
3258                 struct i915_vma *vma;
3259
3260                 if (ctx->file_priv != fpriv)
3261                         continue;
3262
3263                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3264
3265                 GEM_BUG_ON(vma->obj != obj);
3266
3267                 /* We allow the process to have multiple handles to the same
3268                  * vma, in the same fd namespace, by virtue of flink/open.
3269                  */
3270                 GEM_BUG_ON(!vma->open_count);
3271                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3272                         i915_vma_close(vma);
3273
3274                 list_del(&lut->obj_link);
3275                 list_del(&lut->ctx_link);
3276
3277                 kmem_cache_free(i915->luts, lut);
3278                 __i915_gem_object_release_unless_active(obj);
3279         }
3280
3281         mutex_unlock(&i915->drm.struct_mutex);
3282 }
3283
3284 static unsigned long to_wait_timeout(s64 timeout_ns)
3285 {
3286         if (timeout_ns < 0)
3287                 return MAX_SCHEDULE_TIMEOUT;
3288
3289         if (timeout_ns == 0)
3290                 return 0;
3291
3292         return nsecs_to_jiffies_timeout(timeout_ns);
3293 }
3294
3295 /**
3296  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3297  * @dev: drm device pointer
3298  * @data: ioctl data blob
3299  * @file: drm file pointer
3300  *
3301  * Returns 0 if successful, else an error is returned with the remaining time in
3302  * the timeout parameter.
3303  *  -ETIME: object is still busy after timeout
3304  *  -ERESTARTSYS: signal interrupted the wait
3305  *  -ENONENT: object doesn't exist
3306  * Also possible, but rare:
3307  *  -EAGAIN: incomplete, restart syscall
3308  *  -ENOMEM: damn
3309  *  -ENODEV: Internal IRQ fail
3310  *  -E?: The add request failed
3311  *
3312  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3313  * non-zero timeout parameter the wait ioctl will wait for the given number of
3314  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3315  * without holding struct_mutex the object may become re-busied before this
3316  * function completes. A similar but shorter * race condition exists in the busy
3317  * ioctl
3318  */
3319 int
3320 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3321 {
3322         struct drm_i915_gem_wait *args = data;
3323         struct drm_i915_gem_object *obj;
3324         ktime_t start;
3325         long ret;
3326
3327         if (args->flags != 0)
3328                 return -EINVAL;
3329
3330         obj = i915_gem_object_lookup(file, args->bo_handle);
3331         if (!obj)
3332                 return -ENOENT;
3333
3334         start = ktime_get();
3335
3336         ret = i915_gem_object_wait(obj,
3337                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3338                                    to_wait_timeout(args->timeout_ns),
3339                                    to_rps_client(file));
3340
3341         if (args->timeout_ns > 0) {
3342                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3343                 if (args->timeout_ns < 0)
3344                         args->timeout_ns = 0;
3345
3346                 /*
3347                  * Apparently ktime isn't accurate enough and occasionally has a
3348                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3349                  * things up to make the test happy. We allow up to 1 jiffy.
3350                  *
3351                  * This is a regression from the timespec->ktime conversion.
3352                  */
3353                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3354                         args->timeout_ns = 0;
3355
3356                 /* Asked to wait beyond the jiffie/scheduler precision? */
3357                 if (ret == -ETIME && args->timeout_ns)
3358                         ret = -EAGAIN;
3359         }
3360
3361         i915_gem_object_put(obj);
3362         return ret;
3363 }
3364
3365 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3366 {
3367         int ret, i;
3368
3369         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3370                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3371                 if (ret)
3372                         return ret;
3373         }
3374
3375         return 0;
3376 }
3377
3378 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3379 {
3380         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3381 }
3382
3383 static int wait_for_engines(struct drm_i915_private *i915)
3384 {
3385         struct intel_engine_cs *engine;
3386         enum intel_engine_id id;
3387
3388         for_each_engine(engine, i915, id) {
3389                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3390                         i915_gem_set_wedged(i915);
3391                         return -EIO;
3392                 }
3393
3394                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3395                            intel_engine_last_submit(engine));
3396         }
3397
3398         return 0;
3399 }
3400
3401 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3402 {
3403         int ret;
3404
3405         /* If the device is asleep, we have no requests outstanding */
3406         if (!READ_ONCE(i915->gt.awake))
3407                 return 0;
3408
3409         if (flags & I915_WAIT_LOCKED) {
3410                 struct i915_gem_timeline *tl;
3411
3412                 lockdep_assert_held(&i915->drm.struct_mutex);
3413
3414                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3415                         ret = wait_for_timeline(tl, flags);
3416                         if (ret)
3417                                 return ret;
3418                 }
3419
3420                 i915_gem_retire_requests(i915);
3421                 GEM_BUG_ON(i915->gt.active_requests);
3422
3423                 ret = wait_for_engines(i915);
3424         } else {
3425                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3426         }
3427
3428         return ret;
3429 }
3430
3431 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3432 {
3433         /*
3434          * We manually flush the CPU domain so that we can override and
3435          * force the flush for the display, and perform it asyncrhonously.
3436          */
3437         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3438         if (obj->cache_dirty)
3439                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3440         obj->base.write_domain = 0;
3441 }
3442
3443 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3444 {
3445         if (!READ_ONCE(obj->pin_display))
3446                 return;
3447
3448         mutex_lock(&obj->base.dev->struct_mutex);
3449         __i915_gem_object_flush_for_display(obj);
3450         mutex_unlock(&obj->base.dev->struct_mutex);
3451 }
3452
3453 /**
3454  * Moves a single object to the WC read, and possibly write domain.
3455  * @obj: object to act on
3456  * @write: ask for write access or read only
3457  *
3458  * This function returns when the move is complete, including waiting on
3459  * flushes to occur.
3460  */
3461 int
3462 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3463 {
3464         int ret;
3465
3466         lockdep_assert_held(&obj->base.dev->struct_mutex);
3467
3468         ret = i915_gem_object_wait(obj,
3469                                    I915_WAIT_INTERRUPTIBLE |
3470                                    I915_WAIT_LOCKED |
3471                                    (write ? I915_WAIT_ALL : 0),
3472                                    MAX_SCHEDULE_TIMEOUT,
3473                                    NULL);
3474         if (ret)
3475                 return ret;
3476
3477         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3478                 return 0;
3479
3480         /* Flush and acquire obj->pages so that we are coherent through
3481          * direct access in memory with previous cached writes through
3482          * shmemfs and that our cache domain tracking remains valid.
3483          * For example, if the obj->filp was moved to swap without us
3484          * being notified and releasing the pages, we would mistakenly
3485          * continue to assume that the obj remained out of the CPU cached
3486          * domain.
3487          */
3488         ret = i915_gem_object_pin_pages(obj);
3489         if (ret)
3490                 return ret;
3491
3492         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3493
3494         /* Serialise direct access to this object with the barriers for
3495          * coherent writes from the GPU, by effectively invalidating the
3496          * WC domain upon first access.
3497          */
3498         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3499                 mb();
3500
3501         /* It should now be out of any other write domains, and we can update
3502          * the domain values for our changes.
3503          */
3504         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3505         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3506         if (write) {
3507                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3508                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3509                 obj->mm.dirty = true;
3510         }
3511
3512         i915_gem_object_unpin_pages(obj);
3513         return 0;
3514 }
3515
3516 /**
3517  * Moves a single object to the GTT read, and possibly write domain.
3518  * @obj: object to act on
3519  * @write: ask for write access or read only
3520  *
3521  * This function returns when the move is complete, including waiting on
3522  * flushes to occur.
3523  */
3524 int
3525 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3526 {
3527         int ret;
3528
3529         lockdep_assert_held(&obj->base.dev->struct_mutex);
3530
3531         ret = i915_gem_object_wait(obj,
3532                                    I915_WAIT_INTERRUPTIBLE |
3533                                    I915_WAIT_LOCKED |
3534                                    (write ? I915_WAIT_ALL : 0),
3535                                    MAX_SCHEDULE_TIMEOUT,
3536                                    NULL);
3537         if (ret)
3538                 return ret;
3539
3540         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3541                 return 0;
3542
3543         /* Flush and acquire obj->pages so that we are coherent through
3544          * direct access in memory with previous cached writes through
3545          * shmemfs and that our cache domain tracking remains valid.
3546          * For example, if the obj->filp was moved to swap without us
3547          * being notified and releasing the pages, we would mistakenly
3548          * continue to assume that the obj remained out of the CPU cached
3549          * domain.
3550          */
3551         ret = i915_gem_object_pin_pages(obj);
3552         if (ret)
3553                 return ret;
3554
3555         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3556
3557         /* Serialise direct access to this object with the barriers for
3558          * coherent writes from the GPU, by effectively invalidating the
3559          * GTT domain upon first access.
3560          */
3561         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3562                 mb();
3563
3564         /* It should now be out of any other write domains, and we can update
3565          * the domain values for our changes.
3566          */
3567         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3568         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3569         if (write) {
3570                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3571                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3572                 obj->mm.dirty = true;
3573         }
3574
3575         i915_gem_object_unpin_pages(obj);
3576         return 0;
3577 }
3578
3579 /**
3580  * Changes the cache-level of an object across all VMA.
3581  * @obj: object to act on
3582  * @cache_level: new cache level to set for the object
3583  *
3584  * After this function returns, the object will be in the new cache-level
3585  * across all GTT and the contents of the backing storage will be coherent,
3586  * with respect to the new cache-level. In order to keep the backing storage
3587  * coherent for all users, we only allow a single cache level to be set
3588  * globally on the object and prevent it from being changed whilst the
3589  * hardware is reading from the object. That is if the object is currently
3590  * on the scanout it will be set to uncached (or equivalent display
3591  * cache coherency) and all non-MOCS GPU access will also be uncached so
3592  * that all direct access to the scanout remains coherent.
3593  */
3594 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3595                                     enum i915_cache_level cache_level)
3596 {
3597         struct i915_vma *vma;
3598         int ret;
3599
3600         lockdep_assert_held(&obj->base.dev->struct_mutex);
3601
3602         if (obj->cache_level == cache_level)
3603                 return 0;
3604
3605         /* Inspect the list of currently bound VMA and unbind any that would
3606          * be invalid given the new cache-level. This is principally to
3607          * catch the issue of the CS prefetch crossing page boundaries and
3608          * reading an invalid PTE on older architectures.
3609          */
3610 restart:
3611         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3612                 if (!drm_mm_node_allocated(&vma->node))
3613                         continue;
3614
3615                 if (i915_vma_is_pinned(vma)) {
3616                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3617                         return -EBUSY;
3618                 }
3619
3620                 if (i915_gem_valid_gtt_space(vma, cache_level))
3621                         continue;
3622
3623                 ret = i915_vma_unbind(vma);
3624                 if (ret)
3625                         return ret;
3626
3627                 /* As unbinding may affect other elements in the
3628                  * obj->vma_list (due to side-effects from retiring
3629                  * an active vma), play safe and restart the iterator.
3630                  */
3631                 goto restart;
3632         }
3633
3634         /* We can reuse the existing drm_mm nodes but need to change the
3635          * cache-level on the PTE. We could simply unbind them all and
3636          * rebind with the correct cache-level on next use. However since
3637          * we already have a valid slot, dma mapping, pages etc, we may as
3638          * rewrite the PTE in the belief that doing so tramples upon less
3639          * state and so involves less work.
3640          */
3641         if (obj->bind_count) {
3642                 /* Before we change the PTE, the GPU must not be accessing it.
3643                  * If we wait upon the object, we know that all the bound
3644                  * VMA are no longer active.
3645                  */
3646                 ret = i915_gem_object_wait(obj,
3647                                            I915_WAIT_INTERRUPTIBLE |
3648                                            I915_WAIT_LOCKED |
3649                                            I915_WAIT_ALL,
3650                                            MAX_SCHEDULE_TIMEOUT,
3651                                            NULL);
3652                 if (ret)
3653                         return ret;
3654
3655                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3656                     cache_level != I915_CACHE_NONE) {
3657                         /* Access to snoopable pages through the GTT is
3658                          * incoherent and on some machines causes a hard
3659                          * lockup. Relinquish the CPU mmaping to force
3660                          * userspace to refault in the pages and we can
3661                          * then double check if the GTT mapping is still
3662                          * valid for that pointer access.
3663                          */
3664                         i915_gem_release_mmap(obj);
3665
3666                         /* As we no longer need a fence for GTT access,
3667                          * we can relinquish it now (and so prevent having
3668                          * to steal a fence from someone else on the next
3669                          * fence request). Note GPU activity would have
3670                          * dropped the fence as all snoopable access is
3671                          * supposed to be linear.
3672                          */
3673                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3674                                 ret = i915_vma_put_fence(vma);
3675                                 if (ret)
3676                                         return ret;
3677                         }
3678                 } else {
3679                         /* We either have incoherent backing store and
3680                          * so no GTT access or the architecture is fully
3681                          * coherent. In such cases, existing GTT mmaps
3682                          * ignore the cache bit in the PTE and we can
3683                          * rewrite it without confusing the GPU or having
3684                          * to force userspace to fault back in its mmaps.
3685                          */
3686                 }
3687
3688                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3689                         if (!drm_mm_node_allocated(&vma->node))
3690                                 continue;
3691
3692                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3693                         if (ret)
3694                                 return ret;
3695                 }
3696         }
3697
3698         list_for_each_entry(vma, &obj->vma_list, obj_link)
3699                 vma->node.color = cache_level;
3700         i915_gem_object_set_cache_coherency(obj, cache_level);
3701         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3702
3703         return 0;
3704 }
3705
3706 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3707                                struct drm_file *file)
3708 {
3709         struct drm_i915_gem_caching *args = data;
3710         struct drm_i915_gem_object *obj;
3711         int err = 0;
3712
3713         rcu_read_lock();
3714         obj = i915_gem_object_lookup_rcu(file, args->handle);
3715         if (!obj) {
3716                 err = -ENOENT;
3717                 goto out;
3718         }
3719
3720         switch (obj->cache_level) {
3721         case I915_CACHE_LLC:
3722         case I915_CACHE_L3_LLC:
3723                 args->caching = I915_CACHING_CACHED;
3724                 break;
3725
3726         case I915_CACHE_WT:
3727                 args->caching = I915_CACHING_DISPLAY;
3728                 break;
3729
3730         default:
3731                 args->caching = I915_CACHING_NONE;
3732                 break;
3733         }
3734 out:
3735         rcu_read_unlock();
3736         return err;
3737 }
3738
3739 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3740                                struct drm_file *file)
3741 {
3742         struct drm_i915_private *i915 = to_i915(dev);
3743         struct drm_i915_gem_caching *args = data;
3744         struct drm_i915_gem_object *obj;
3745         enum i915_cache_level level;
3746         int ret = 0;
3747
3748         switch (args->caching) {
3749         case I915_CACHING_NONE:
3750                 level = I915_CACHE_NONE;
3751                 break;
3752         case I915_CACHING_CACHED:
3753                 /*
3754                  * Due to a HW issue on BXT A stepping, GPU stores via a
3755                  * snooped mapping may leave stale data in a corresponding CPU
3756                  * cacheline, whereas normally such cachelines would get
3757                  * invalidated.
3758                  */
3759                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3760                         return -ENODEV;
3761
3762                 level = I915_CACHE_LLC;
3763                 break;
3764         case I915_CACHING_DISPLAY:
3765                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3766                 break;
3767         default:
3768                 return -EINVAL;
3769         }
3770
3771         obj = i915_gem_object_lookup(file, args->handle);
3772         if (!obj)
3773                 return -ENOENT;
3774
3775         if (obj->cache_level == level)
3776                 goto out;
3777
3778         ret = i915_gem_object_wait(obj,
3779                                    I915_WAIT_INTERRUPTIBLE,
3780                                    MAX_SCHEDULE_TIMEOUT,
3781                                    to_rps_client(file));
3782         if (ret)
3783                 goto out;
3784
3785         ret = i915_mutex_lock_interruptible(dev);
3786         if (ret)
3787                 goto out;
3788
3789         ret = i915_gem_object_set_cache_level(obj, level);
3790         mutex_unlock(&dev->struct_mutex);
3791
3792 out:
3793         i915_gem_object_put(obj);
3794         return ret;
3795 }
3796
3797 /*
3798  * Prepare buffer for display plane (scanout, cursors, etc).
3799  * Can be called from an uninterruptible phase (modesetting) and allows
3800  * any flushes to be pipelined (for pageflips).
3801  */
3802 struct i915_vma *
3803 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3804                                      u32 alignment,
3805                                      const struct i915_ggtt_view *view)
3806 {
3807         struct i915_vma *vma;
3808         int ret;
3809
3810         lockdep_assert_held(&obj->base.dev->struct_mutex);
3811
3812         /* Mark the pin_display early so that we account for the
3813          * display coherency whilst setting up the cache domains.
3814          */
3815         obj->pin_display++;
3816
3817         /* The display engine is not coherent with the LLC cache on gen6.  As
3818          * a result, we make sure that the pinning that is about to occur is
3819          * done with uncached PTEs. This is lowest common denominator for all
3820          * chipsets.
3821          *
3822          * However for gen6+, we could do better by using the GFDT bit instead
3823          * of uncaching, which would allow us to flush all the LLC-cached data
3824          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3825          */
3826         ret = i915_gem_object_set_cache_level(obj,
3827                                               HAS_WT(to_i915(obj->base.dev)) ?
3828                                               I915_CACHE_WT : I915_CACHE_NONE);
3829         if (ret) {
3830                 vma = ERR_PTR(ret);
3831                 goto err_unpin_display;
3832         }
3833
3834         /* As the user may map the buffer once pinned in the display plane
3835          * (e.g. libkms for the bootup splash), we have to ensure that we
3836          * always use map_and_fenceable for all scanout buffers. However,
3837          * it may simply be too big to fit into mappable, in which case
3838          * put it anyway and hope that userspace can cope (but always first
3839          * try to preserve the existing ABI).
3840          */
3841         vma = ERR_PTR(-ENOSPC);
3842         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3843                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3844                                                PIN_MAPPABLE | PIN_NONBLOCK);
3845         if (IS_ERR(vma)) {
3846                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3847                 unsigned int flags;
3848
3849                 /* Valleyview is definitely limited to scanning out the first
3850                  * 512MiB. Lets presume this behaviour was inherited from the
3851                  * g4x display engine and that all earlier gen are similarly
3852                  * limited. Testing suggests that it is a little more
3853                  * complicated than this. For example, Cherryview appears quite
3854                  * happy to scanout from anywhere within its global aperture.
3855                  */
3856                 flags = 0;
3857                 if (HAS_GMCH_DISPLAY(i915))
3858                         flags = PIN_MAPPABLE;
3859                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3860         }
3861         if (IS_ERR(vma))
3862                 goto err_unpin_display;
3863
3864         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3865
3866         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3867         __i915_gem_object_flush_for_display(obj);
3868         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3869
3870         /* It should now be out of any other write domains, and we can update
3871          * the domain values for our changes.
3872          */
3873         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3874
3875         return vma;
3876
3877 err_unpin_display:
3878         obj->pin_display--;
3879         return vma;
3880 }
3881
3882 void
3883 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3884 {
3885         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3886
3887         if (WARN_ON(vma->obj->pin_display == 0))
3888                 return;
3889
3890         if (--vma->obj->pin_display == 0)
3891                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3892
3893         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3894         i915_gem_object_bump_inactive_ggtt(vma->obj);
3895
3896         i915_vma_unpin(vma);
3897 }
3898
3899 /**
3900  * Moves a single object to the CPU read, and possibly write domain.
3901  * @obj: object to act on
3902  * @write: requesting write or read-only access
3903  *
3904  * This function returns when the move is complete, including waiting on
3905  * flushes to occur.
3906  */
3907 int
3908 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3909 {
3910         int ret;
3911
3912         lockdep_assert_held(&obj->base.dev->struct_mutex);
3913
3914         ret = i915_gem_object_wait(obj,
3915                                    I915_WAIT_INTERRUPTIBLE |
3916                                    I915_WAIT_LOCKED |
3917                                    (write ? I915_WAIT_ALL : 0),
3918                                    MAX_SCHEDULE_TIMEOUT,
3919                                    NULL);
3920         if (ret)
3921                 return ret;
3922
3923         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3924
3925         /* Flush the CPU cache if it's still invalid. */
3926         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3927                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3928                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3929         }
3930
3931         /* It should now be out of any other write domains, and we can update
3932          * the domain values for our changes.
3933          */
3934         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3935
3936         /* If we're writing through the CPU, then the GPU read domains will
3937          * need to be invalidated at next use.
3938          */
3939         if (write)
3940                 __start_cpu_write(obj);
3941
3942         return 0;
3943 }
3944
3945 /* Throttle our rendering by waiting until the ring has completed our requests
3946  * emitted over 20 msec ago.
3947  *
3948  * Note that if we were to use the current jiffies each time around the loop,
3949  * we wouldn't escape the function with any frames outstanding if the time to
3950  * render a frame was over 20ms.
3951  *
3952  * This should get us reasonable parallelism between CPU and GPU but also
3953  * relatively low latency when blocking on a particular request to finish.
3954  */
3955 static int
3956 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3957 {
3958         struct drm_i915_private *dev_priv = to_i915(dev);
3959         struct drm_i915_file_private *file_priv = file->driver_priv;
3960         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3961         struct drm_i915_gem_request *request, *target = NULL;
3962         long ret;
3963
3964         /* ABI: return -EIO if already wedged */
3965         if (i915_terminally_wedged(&dev_priv->gpu_error))
3966                 return -EIO;
3967
3968         spin_lock(&file_priv->mm.lock);
3969         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3970                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3971                         break;
3972
3973                 if (target) {
3974                         list_del(&target->client_link);
3975                         target->file_priv = NULL;
3976                 }
3977
3978                 target = request;
3979         }
3980         if (target)
3981                 i915_gem_request_get(target);
3982         spin_unlock(&file_priv->mm.lock);
3983
3984         if (target == NULL)
3985                 return 0;
3986
3987         ret = i915_wait_request(target,
3988                                 I915_WAIT_INTERRUPTIBLE,
3989                                 MAX_SCHEDULE_TIMEOUT);
3990         i915_gem_request_put(target);
3991
3992         return ret < 0 ? ret : 0;
3993 }
3994
3995 struct i915_vma *
3996 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3997                          const struct i915_ggtt_view *view,
3998                          u64 size,
3999                          u64 alignment,
4000                          u64 flags)
4001 {
4002         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4003         struct i915_address_space *vm = &dev_priv->ggtt.base;
4004         struct i915_vma *vma;
4005         int ret;
4006
4007         lockdep_assert_held(&obj->base.dev->struct_mutex);
4008
4009         vma = i915_vma_instance(obj, vm, view);
4010         if (unlikely(IS_ERR(vma)))
4011                 return vma;
4012
4013         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4014                 if (flags & PIN_NONBLOCK &&
4015                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4016                         return ERR_PTR(-ENOSPC);
4017
4018                 if (flags & PIN_MAPPABLE) {
4019                         /* If the required space is larger than the available
4020                          * aperture, we will not able to find a slot for the
4021                          * object and unbinding the object now will be in
4022                          * vain. Worse, doing so may cause us to ping-pong
4023                          * the object in and out of the Global GTT and
4024                          * waste a lot of cycles under the mutex.
4025                          */
4026                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4027                                 return ERR_PTR(-E2BIG);
4028
4029                         /* If NONBLOCK is set the caller is optimistically
4030                          * trying to cache the full object within the mappable
4031                          * aperture, and *must* have a fallback in place for
4032                          * situations where we cannot bind the object. We
4033                          * can be a little more lax here and use the fallback
4034                          * more often to avoid costly migrations of ourselves
4035                          * and other objects within the aperture.
4036                          *
4037                          * Half-the-aperture is used as a simple heuristic.
4038                          * More interesting would to do search for a free
4039                          * block prior to making the commitment to unbind.
4040                          * That caters for the self-harm case, and with a
4041                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4042                          * we could try to minimise harm to others.
4043                          */
4044                         if (flags & PIN_NONBLOCK &&
4045                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4046                                 return ERR_PTR(-ENOSPC);
4047                 }
4048
4049                 WARN(i915_vma_is_pinned(vma),
4050                      "bo is already pinned in ggtt with incorrect alignment:"
4051                      " offset=%08x, req.alignment=%llx,"
4052                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4053                      i915_ggtt_offset(vma), alignment,
4054                      !!(flags & PIN_MAPPABLE),
4055                      i915_vma_is_map_and_fenceable(vma));
4056                 ret = i915_vma_unbind(vma);
4057                 if (ret)
4058                         return ERR_PTR(ret);
4059         }
4060
4061         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4062         if (ret)
4063                 return ERR_PTR(ret);
4064
4065         return vma;
4066 }
4067
4068 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4069 {
4070         /* Note that we could alias engines in the execbuf API, but
4071          * that would be very unwise as it prevents userspace from
4072          * fine control over engine selection. Ahem.
4073          *
4074          * This should be something like EXEC_MAX_ENGINE instead of
4075          * I915_NUM_ENGINES.
4076          */
4077         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4078         return 0x10000 << id;
4079 }
4080
4081 static __always_inline unsigned int __busy_write_id(unsigned int id)
4082 {
4083         /* The uABI guarantees an active writer is also amongst the read
4084          * engines. This would be true if we accessed the activity tracking
4085          * under the lock, but as we perform the lookup of the object and
4086          * its activity locklessly we can not guarantee that the last_write
4087          * being active implies that we have set the same engine flag from
4088          * last_read - hence we always set both read and write busy for
4089          * last_write.
4090          */
4091         return id | __busy_read_flag(id);
4092 }
4093
4094 static __always_inline unsigned int
4095 __busy_set_if_active(const struct dma_fence *fence,
4096                      unsigned int (*flag)(unsigned int id))
4097 {
4098         struct drm_i915_gem_request *rq;
4099
4100         /* We have to check the current hw status of the fence as the uABI
4101          * guarantees forward progress. We could rely on the idle worker
4102          * to eventually flush us, but to minimise latency just ask the
4103          * hardware.
4104          *
4105          * Note we only report on the status of native fences.
4106          */
4107         if (!dma_fence_is_i915(fence))
4108                 return 0;
4109
4110         /* opencode to_request() in order to avoid const warnings */
4111         rq = container_of(fence, struct drm_i915_gem_request, fence);
4112         if (i915_gem_request_completed(rq))
4113                 return 0;
4114
4115         return flag(rq->engine->uabi_id);
4116 }
4117
4118 static __always_inline unsigned int
4119 busy_check_reader(const struct dma_fence *fence)
4120 {
4121         return __busy_set_if_active(fence, __busy_read_flag);
4122 }
4123
4124 static __always_inline unsigned int
4125 busy_check_writer(const struct dma_fence *fence)
4126 {
4127         if (!fence)
4128                 return 0;
4129
4130         return __busy_set_if_active(fence, __busy_write_id);
4131 }
4132
4133 int
4134 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4135                     struct drm_file *file)
4136 {
4137         struct drm_i915_gem_busy *args = data;
4138         struct drm_i915_gem_object *obj;
4139         struct reservation_object_list *list;
4140         unsigned int seq;
4141         int err;
4142
4143         err = -ENOENT;
4144         rcu_read_lock();
4145         obj = i915_gem_object_lookup_rcu(file, args->handle);
4146         if (!obj)
4147                 goto out;
4148
4149         /* A discrepancy here is that we do not report the status of
4150          * non-i915 fences, i.e. even though we may report the object as idle,
4151          * a call to set-domain may still stall waiting for foreign rendering.
4152          * This also means that wait-ioctl may report an object as busy,
4153          * where busy-ioctl considers it idle.
4154          *
4155          * We trade the ability to warn of foreign fences to report on which
4156          * i915 engines are active for the object.
4157          *
4158          * Alternatively, we can trade that extra information on read/write
4159          * activity with
4160          *      args->busy =
4161          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4162          * to report the overall busyness. This is what the wait-ioctl does.
4163          *
4164          */
4165 retry:
4166         seq = raw_read_seqcount(&obj->resv->seq);
4167
4168         /* Translate the exclusive fence to the READ *and* WRITE engine */
4169         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4170
4171         /* Translate shared fences to READ set of engines */
4172         list = rcu_dereference(obj->resv->fence);
4173         if (list) {
4174                 unsigned int shared_count = list->shared_count, i;
4175
4176                 for (i = 0; i < shared_count; ++i) {
4177                         struct dma_fence *fence =
4178                                 rcu_dereference(list->shared[i]);
4179
4180                         args->busy |= busy_check_reader(fence);
4181                 }
4182         }
4183
4184         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4185                 goto retry;
4186
4187         err = 0;
4188 out:
4189         rcu_read_unlock();
4190         return err;
4191 }
4192
4193 int
4194 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4195                         struct drm_file *file_priv)
4196 {
4197         return i915_gem_ring_throttle(dev, file_priv);
4198 }
4199
4200 int
4201 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4202                        struct drm_file *file_priv)
4203 {
4204         struct drm_i915_private *dev_priv = to_i915(dev);
4205         struct drm_i915_gem_madvise *args = data;
4206         struct drm_i915_gem_object *obj;
4207         int err;
4208
4209         switch (args->madv) {
4210         case I915_MADV_DONTNEED:
4211         case I915_MADV_WILLNEED:
4212             break;
4213         default:
4214             return -EINVAL;
4215         }
4216
4217         obj = i915_gem_object_lookup(file_priv, args->handle);
4218         if (!obj)
4219                 return -ENOENT;
4220
4221         err = mutex_lock_interruptible(&obj->mm.lock);
4222         if (err)
4223                 goto out;
4224
4225         if (obj->mm.pages &&
4226             i915_gem_object_is_tiled(obj) &&
4227             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4228                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4229                         GEM_BUG_ON(!obj->mm.quirked);
4230                         __i915_gem_object_unpin_pages(obj);
4231                         obj->mm.quirked = false;
4232                 }
4233                 if (args->madv == I915_MADV_WILLNEED) {
4234                         GEM_BUG_ON(obj->mm.quirked);
4235                         __i915_gem_object_pin_pages(obj);
4236                         obj->mm.quirked = true;
4237                 }
4238         }
4239
4240         if (obj->mm.madv != __I915_MADV_PURGED)
4241                 obj->mm.madv = args->madv;
4242
4243         /* if the object is no longer attached, discard its backing storage */
4244         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4245                 i915_gem_object_truncate(obj);
4246
4247         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4248         mutex_unlock(&obj->mm.lock);
4249
4250 out:
4251         i915_gem_object_put(obj);
4252         return err;
4253 }
4254
4255 static void
4256 frontbuffer_retire(struct i915_gem_active *active,
4257                    struct drm_i915_gem_request *request)
4258 {
4259         struct drm_i915_gem_object *obj =
4260                 container_of(active, typeof(*obj), frontbuffer_write);
4261
4262         intel_fb_obj_flush(obj, ORIGIN_CS);
4263 }
4264
4265 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4266                           const struct drm_i915_gem_object_ops *ops)
4267 {
4268         mutex_init(&obj->mm.lock);
4269
4270         INIT_LIST_HEAD(&obj->global_link);
4271         INIT_LIST_HEAD(&obj->userfault_link);
4272         INIT_LIST_HEAD(&obj->vma_list);
4273         INIT_LIST_HEAD(&obj->lut_list);
4274         INIT_LIST_HEAD(&obj->batch_pool_link);
4275
4276         obj->ops = ops;
4277
4278         reservation_object_init(&obj->__builtin_resv);
4279         obj->resv = &obj->__builtin_resv;
4280
4281         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4282         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4283
4284         obj->mm.madv = I915_MADV_WILLNEED;
4285         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4286         mutex_init(&obj->mm.get_page.lock);
4287
4288         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4289 }
4290
4291 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4292         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4293                  I915_GEM_OBJECT_IS_SHRINKABLE,
4294
4295         .get_pages = i915_gem_object_get_pages_gtt,
4296         .put_pages = i915_gem_object_put_pages_gtt,
4297
4298         .pwrite = i915_gem_object_pwrite_gtt,
4299 };
4300
4301 struct drm_i915_gem_object *
4302 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4303 {
4304         struct drm_i915_gem_object *obj;
4305         struct address_space *mapping;
4306         unsigned int cache_level;
4307         gfp_t mask;
4308         int ret;
4309
4310         /* There is a prevalence of the assumption that we fit the object's
4311          * page count inside a 32bit _signed_ variable. Let's document this and
4312          * catch if we ever need to fix it. In the meantime, if you do spot
4313          * such a local variable, please consider fixing!
4314          */
4315         if (size >> PAGE_SHIFT > INT_MAX)
4316                 return ERR_PTR(-E2BIG);
4317
4318         if (overflows_type(size, obj->base.size))
4319                 return ERR_PTR(-E2BIG);
4320
4321         obj = i915_gem_object_alloc(dev_priv);
4322         if (obj == NULL)
4323                 return ERR_PTR(-ENOMEM);
4324
4325         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4326         if (ret)
4327                 goto fail;
4328
4329         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4330         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4331                 /* 965gm cannot relocate objects above 4GiB. */
4332                 mask &= ~__GFP_HIGHMEM;
4333                 mask |= __GFP_DMA32;
4334         }
4335
4336         mapping = obj->base.filp->f_mapping;
4337         mapping_set_gfp_mask(mapping, mask);
4338         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4339
4340         i915_gem_object_init(obj, &i915_gem_object_ops);
4341
4342         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4343         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4344
4345         if (HAS_LLC(dev_priv))
4346                 /* On some devices, we can have the GPU use the LLC (the CPU
4347                  * cache) for about a 10% performance improvement
4348                  * compared to uncached.  Graphics requests other than
4349                  * display scanout are coherent with the CPU in
4350                  * accessing this cache.  This means in this mode we
4351                  * don't need to clflush on the CPU side, and on the
4352                  * GPU side we only need to flush internal caches to
4353                  * get data visible to the CPU.
4354                  *
4355                  * However, we maintain the display planes as UC, and so
4356                  * need to rebind when first used as such.
4357                  */
4358                 cache_level = I915_CACHE_LLC;
4359         else
4360                 cache_level = I915_CACHE_NONE;
4361
4362         i915_gem_object_set_cache_coherency(obj, cache_level);
4363
4364         trace_i915_gem_object_create(obj);
4365
4366         return obj;
4367
4368 fail:
4369         i915_gem_object_free(obj);
4370         return ERR_PTR(ret);
4371 }
4372
4373 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4374 {
4375         /* If we are the last user of the backing storage (be it shmemfs
4376          * pages or stolen etc), we know that the pages are going to be
4377          * immediately released. In this case, we can then skip copying
4378          * back the contents from the GPU.
4379          */
4380
4381         if (obj->mm.madv != I915_MADV_WILLNEED)
4382                 return false;
4383
4384         if (obj->base.filp == NULL)
4385                 return true;
4386
4387         /* At first glance, this looks racy, but then again so would be
4388          * userspace racing mmap against close. However, the first external
4389          * reference to the filp can only be obtained through the
4390          * i915_gem_mmap_ioctl() which safeguards us against the user
4391          * acquiring such a reference whilst we are in the middle of
4392          * freeing the object.
4393          */
4394         return atomic_long_read(&obj->base.filp->f_count) == 1;
4395 }
4396
4397 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4398                                     struct llist_node *freed)
4399 {
4400         struct drm_i915_gem_object *obj, *on;
4401
4402         mutex_lock(&i915->drm.struct_mutex);
4403         intel_runtime_pm_get(i915);
4404         llist_for_each_entry(obj, freed, freed) {
4405                 struct i915_vma *vma, *vn;
4406
4407                 trace_i915_gem_object_destroy(obj);
4408
4409                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4410                 list_for_each_entry_safe(vma, vn,
4411                                          &obj->vma_list, obj_link) {
4412                         GEM_BUG_ON(i915_vma_is_active(vma));
4413                         vma->flags &= ~I915_VMA_PIN_MASK;
4414                         i915_vma_close(vma);
4415                 }
4416                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4417                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4418
4419                 list_del(&obj->global_link);
4420         }
4421         intel_runtime_pm_put(i915);
4422         mutex_unlock(&i915->drm.struct_mutex);
4423
4424         cond_resched();
4425
4426         llist_for_each_entry_safe(obj, on, freed, freed) {
4427                 GEM_BUG_ON(obj->bind_count);
4428                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4429
4430                 if (obj->ops->release)
4431                         obj->ops->release(obj);
4432
4433                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4434                         atomic_set(&obj->mm.pages_pin_count, 0);
4435                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4436                 GEM_BUG_ON(obj->mm.pages);
4437
4438                 if (obj->base.import_attach)
4439                         drm_prime_gem_destroy(&obj->base, NULL);
4440
4441                 reservation_object_fini(&obj->__builtin_resv);
4442                 drm_gem_object_release(&obj->base);
4443                 i915_gem_info_remove_obj(i915, obj->base.size);
4444
4445                 kfree(obj->bit_17);
4446                 i915_gem_object_free(obj);
4447         }
4448 }
4449
4450 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4451 {
4452         struct llist_node *freed;
4453
4454         freed = llist_del_all(&i915->mm.free_list);
4455         if (unlikely(freed))
4456                 __i915_gem_free_objects(i915, freed);
4457 }
4458
4459 static void __i915_gem_free_work(struct work_struct *work)
4460 {
4461         struct drm_i915_private *i915 =
4462                 container_of(work, struct drm_i915_private, mm.free_work);
4463         struct llist_node *freed;
4464
4465         /* All file-owned VMA should have been released by this point through
4466          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4467          * However, the object may also be bound into the global GTT (e.g.
4468          * older GPUs without per-process support, or for direct access through
4469          * the GTT either for the user or for scanout). Those VMA still need to
4470          * unbound now.
4471          */
4472
4473         while ((freed = llist_del_all(&i915->mm.free_list))) {
4474                 __i915_gem_free_objects(i915, freed);
4475                 if (need_resched())
4476                         break;
4477         }
4478 }
4479
4480 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4481 {
4482         struct drm_i915_gem_object *obj =
4483                 container_of(head, typeof(*obj), rcu);
4484         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4485
4486         /* We can't simply use call_rcu() from i915_gem_free_object()
4487          * as we need to block whilst unbinding, and the call_rcu
4488          * task may be called from softirq context. So we take a
4489          * detour through a worker.
4490          */
4491         if (llist_add(&obj->freed, &i915->mm.free_list))
4492                 schedule_work(&i915->mm.free_work);
4493 }
4494
4495 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4496 {
4497         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4498
4499         if (obj->mm.quirked)
4500                 __i915_gem_object_unpin_pages(obj);
4501
4502         if (discard_backing_storage(obj))
4503                 obj->mm.madv = I915_MADV_DONTNEED;
4504
4505         /* Before we free the object, make sure any pure RCU-only
4506          * read-side critical sections are complete, e.g.
4507          * i915_gem_busy_ioctl(). For the corresponding synchronized
4508          * lookup see i915_gem_object_lookup_rcu().
4509          */
4510         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4511 }
4512
4513 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4514 {
4515         lockdep_assert_held(&obj->base.dev->struct_mutex);
4516
4517         if (!i915_gem_object_has_active_reference(obj) &&
4518             i915_gem_object_is_active(obj))
4519                 i915_gem_object_set_active_reference(obj);
4520         else
4521                 i915_gem_object_put(obj);
4522 }
4523
4524 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4525 {
4526         struct intel_engine_cs *engine;
4527         enum intel_engine_id id;
4528
4529         for_each_engine(engine, dev_priv, id)
4530                 GEM_BUG_ON(engine->last_retired_context &&
4531                            !i915_gem_context_is_kernel(engine->last_retired_context));
4532 }
4533
4534 void i915_gem_sanitize(struct drm_i915_private *i915)
4535 {
4536         /*
4537          * If we inherit context state from the BIOS or earlier occupants
4538          * of the GPU, the GPU may be in an inconsistent state when we
4539          * try to take over. The only way to remove the earlier state
4540          * is by resetting. However, resetting on earlier gen is tricky as
4541          * it may impact the display and we are uncertain about the stability
4542          * of the reset, so this could be applied to even earlier gen.
4543          */
4544         if (INTEL_GEN(i915) >= 5) {
4545                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4546                 WARN_ON(reset && reset != -ENODEV);
4547         }
4548 }
4549
4550 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4551 {
4552         struct drm_device *dev = &dev_priv->drm;
4553         int ret;
4554
4555         intel_runtime_pm_get(dev_priv);
4556         intel_suspend_gt_powersave(dev_priv);
4557
4558         mutex_lock(&dev->struct_mutex);
4559
4560         /* We have to flush all the executing contexts to main memory so
4561          * that they can saved in the hibernation image. To ensure the last
4562          * context image is coherent, we have to switch away from it. That
4563          * leaves the dev_priv->kernel_context still active when
4564          * we actually suspend, and its image in memory may not match the GPU
4565          * state. Fortunately, the kernel_context is disposable and we do
4566          * not rely on its state.
4567          */
4568         ret = i915_gem_switch_to_kernel_context(dev_priv);
4569         if (ret)
4570                 goto err_unlock;
4571
4572         ret = i915_gem_wait_for_idle(dev_priv,
4573                                      I915_WAIT_INTERRUPTIBLE |
4574                                      I915_WAIT_LOCKED);
4575         if (ret)
4576                 goto err_unlock;
4577
4578         assert_kernel_context_is_current(dev_priv);
4579         i915_gem_contexts_lost(dev_priv);
4580         mutex_unlock(&dev->struct_mutex);
4581
4582         intel_guc_suspend(dev_priv);
4583
4584         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4585         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4586
4587         /* As the idle_work is rearming if it detects a race, play safe and
4588          * repeat the flush until it is definitely idle.
4589          */
4590         while (flush_delayed_work(&dev_priv->gt.idle_work))
4591                 ;
4592
4593         /* Assert that we sucessfully flushed all the work and
4594          * reset the GPU back to its idle, low power state.
4595          */
4596         WARN_ON(dev_priv->gt.awake);
4597         WARN_ON(!intel_engines_are_idle(dev_priv));
4598
4599         /*
4600          * Neither the BIOS, ourselves or any other kernel
4601          * expects the system to be in execlists mode on startup,
4602          * so we need to reset the GPU back to legacy mode. And the only
4603          * known way to disable logical contexts is through a GPU reset.
4604          *
4605          * So in order to leave the system in a known default configuration,
4606          * always reset the GPU upon unload and suspend. Afterwards we then
4607          * clean up the GEM state tracking, flushing off the requests and
4608          * leaving the system in a known idle state.
4609          *
4610          * Note that is of the upmost importance that the GPU is idle and
4611          * all stray writes are flushed *before* we dismantle the backing
4612          * storage for the pinned objects.
4613          *
4614          * However, since we are uncertain that resetting the GPU on older
4615          * machines is a good idea, we don't - just in case it leaves the
4616          * machine in an unusable condition.
4617          */
4618         i915_gem_sanitize(dev_priv);
4619         goto out_rpm_put;
4620
4621 err_unlock:
4622         mutex_unlock(&dev->struct_mutex);
4623 out_rpm_put:
4624         intel_runtime_pm_put(dev_priv);
4625         return ret;
4626 }
4627
4628 void i915_gem_resume(struct drm_i915_private *dev_priv)
4629 {
4630         struct drm_device *dev = &dev_priv->drm;
4631
4632         WARN_ON(dev_priv->gt.awake);
4633
4634         mutex_lock(&dev->struct_mutex);
4635         i915_gem_restore_gtt_mappings(dev_priv);
4636
4637         /* As we didn't flush the kernel context before suspend, we cannot
4638          * guarantee that the context image is complete. So let's just reset
4639          * it and start again.
4640          */
4641         dev_priv->gt.resume(dev_priv);
4642
4643         mutex_unlock(&dev->struct_mutex);
4644 }
4645
4646 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4647 {
4648         if (INTEL_GEN(dev_priv) < 5 ||
4649             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4650                 return;
4651
4652         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4653                                  DISP_TILE_SURFACE_SWIZZLING);
4654
4655         if (IS_GEN5(dev_priv))
4656                 return;
4657
4658         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4659         if (IS_GEN6(dev_priv))
4660                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4661         else if (IS_GEN7(dev_priv))
4662                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4663         else if (IS_GEN8(dev_priv))
4664                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4665         else
4666                 BUG();
4667 }
4668
4669 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4670 {
4671         I915_WRITE(RING_CTL(base), 0);
4672         I915_WRITE(RING_HEAD(base), 0);
4673         I915_WRITE(RING_TAIL(base), 0);
4674         I915_WRITE(RING_START(base), 0);
4675 }
4676
4677 static void init_unused_rings(struct drm_i915_private *dev_priv)
4678 {
4679         if (IS_I830(dev_priv)) {
4680                 init_unused_ring(dev_priv, PRB1_BASE);
4681                 init_unused_ring(dev_priv, SRB0_BASE);
4682                 init_unused_ring(dev_priv, SRB1_BASE);
4683                 init_unused_ring(dev_priv, SRB2_BASE);
4684                 init_unused_ring(dev_priv, SRB3_BASE);
4685         } else if (IS_GEN2(dev_priv)) {
4686                 init_unused_ring(dev_priv, SRB0_BASE);
4687                 init_unused_ring(dev_priv, SRB1_BASE);
4688         } else if (IS_GEN3(dev_priv)) {
4689                 init_unused_ring(dev_priv, PRB1_BASE);
4690                 init_unused_ring(dev_priv, PRB2_BASE);
4691         }
4692 }
4693
4694 static int __i915_gem_restart_engines(void *data)
4695 {
4696         struct drm_i915_private *i915 = data;
4697         struct intel_engine_cs *engine;
4698         enum intel_engine_id id;
4699         int err;
4700
4701         for_each_engine(engine, i915, id) {
4702                 err = engine->init_hw(engine);
4703                 if (err)
4704                         return err;
4705         }
4706
4707         return 0;
4708 }
4709
4710 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4711 {
4712         int ret;
4713
4714         dev_priv->gt.last_init_time = ktime_get();
4715
4716         /* Double layer security blanket, see i915_gem_init() */
4717         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4718
4719         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4720                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4721
4722         if (IS_HASWELL(dev_priv))
4723                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4724                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4725
4726         if (HAS_PCH_NOP(dev_priv)) {
4727                 if (IS_IVYBRIDGE(dev_priv)) {
4728                         u32 temp = I915_READ(GEN7_MSG_CTL);
4729                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4730                         I915_WRITE(GEN7_MSG_CTL, temp);
4731                 } else if (INTEL_GEN(dev_priv) >= 7) {
4732                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4733                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4734                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4735                 }
4736         }
4737
4738         i915_gem_init_swizzling(dev_priv);
4739
4740         /*
4741          * At least 830 can leave some of the unused rings
4742          * "active" (ie. head != tail) after resume which
4743          * will prevent c3 entry. Makes sure all unused rings
4744          * are totally idle.
4745          */
4746         init_unused_rings(dev_priv);
4747
4748         BUG_ON(!dev_priv->kernel_context);
4749
4750         ret = i915_ppgtt_init_hw(dev_priv);
4751         if (ret) {
4752                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4753                 goto out;
4754         }
4755
4756         /* Need to do basic initialisation of all rings first: */
4757         ret = __i915_gem_restart_engines(dev_priv);
4758         if (ret)
4759                 goto out;
4760
4761         intel_mocs_init_l3cc_table(dev_priv);
4762
4763         /* We can't enable contexts until all firmware is loaded */
4764         ret = intel_uc_init_hw(dev_priv);
4765         if (ret)
4766                 goto out;
4767
4768 out:
4769         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4770         return ret;
4771 }
4772
4773 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4774 {
4775         if (INTEL_INFO(dev_priv)->gen < 6)
4776                 return false;
4777
4778         /* TODO: make semaphores and Execlists play nicely together */
4779         if (i915.enable_execlists)
4780                 return false;
4781
4782         if (value >= 0)
4783                 return value;
4784
4785         /* Enable semaphores on SNB when IO remapping is off */
4786         if (IS_GEN6(dev_priv) && intel_vtd_active())
4787                 return false;
4788
4789         return true;
4790 }
4791
4792 int i915_gem_init(struct drm_i915_private *dev_priv)
4793 {
4794         int ret;
4795
4796         mutex_lock(&dev_priv->drm.struct_mutex);
4797
4798         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4799
4800         if (!i915.enable_execlists) {
4801                 dev_priv->gt.resume = intel_legacy_submission_resume;
4802                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4803         } else {
4804                 dev_priv->gt.resume = intel_lr_context_resume;
4805                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4806         }
4807
4808         /* This is just a security blanket to placate dragons.
4809          * On some systems, we very sporadically observe that the first TLBs
4810          * used by the CS may be stale, despite us poking the TLB reset. If
4811          * we hold the forcewake during initialisation these problems
4812          * just magically go away.
4813          */
4814         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4815
4816         ret = i915_gem_init_userptr(dev_priv);
4817         if (ret)
4818                 goto out_unlock;
4819
4820         ret = i915_gem_init_ggtt(dev_priv);
4821         if (ret)
4822                 goto out_unlock;
4823
4824         ret = i915_gem_contexts_init(dev_priv);
4825         if (ret)
4826                 goto out_unlock;
4827
4828         ret = intel_engines_init(dev_priv);
4829         if (ret)
4830                 goto out_unlock;
4831
4832         ret = i915_gem_init_hw(dev_priv);
4833         if (ret == -EIO) {
4834                 /* Allow engine initialisation to fail by marking the GPU as
4835                  * wedged. But we only want to do this where the GPU is angry,
4836                  * for all other failure, such as an allocation failure, bail.
4837                  */
4838                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4839                 i915_gem_set_wedged(dev_priv);
4840                 ret = 0;
4841         }
4842
4843 out_unlock:
4844         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4845         mutex_unlock(&dev_priv->drm.struct_mutex);
4846
4847         return ret;
4848 }
4849
4850 void i915_gem_init_mmio(struct drm_i915_private *i915)
4851 {
4852         i915_gem_sanitize(i915);
4853 }
4854
4855 void
4856 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4857 {
4858         struct intel_engine_cs *engine;
4859         enum intel_engine_id id;
4860
4861         for_each_engine(engine, dev_priv, id)
4862                 dev_priv->gt.cleanup_engine(engine);
4863 }
4864
4865 void
4866 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4867 {
4868         int i;
4869
4870         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4871             !IS_CHERRYVIEW(dev_priv))
4872                 dev_priv->num_fence_regs = 32;
4873         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4874                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4875                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4876                 dev_priv->num_fence_regs = 16;
4877         else
4878                 dev_priv->num_fence_regs = 8;
4879
4880         if (intel_vgpu_active(dev_priv))
4881                 dev_priv->num_fence_regs =
4882                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4883
4884         /* Initialize fence registers to zero */
4885         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4886                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4887
4888                 fence->i915 = dev_priv;
4889                 fence->id = i;
4890                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4891         }
4892         i915_gem_restore_fences(dev_priv);
4893
4894         i915_gem_detect_bit_6_swizzle(dev_priv);
4895 }
4896
4897 int
4898 i915_gem_load_init(struct drm_i915_private *dev_priv)
4899 {
4900         int err = -ENOMEM;
4901
4902         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4903         if (!dev_priv->objects)
4904                 goto err_out;
4905
4906         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4907         if (!dev_priv->vmas)
4908                 goto err_objects;
4909
4910         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4911         if (!dev_priv->luts)
4912                 goto err_vmas;
4913
4914         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4915                                         SLAB_HWCACHE_ALIGN |
4916                                         SLAB_RECLAIM_ACCOUNT |
4917                                         SLAB_TYPESAFE_BY_RCU);
4918         if (!dev_priv->requests)
4919                 goto err_luts;
4920
4921         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4922                                             SLAB_HWCACHE_ALIGN |
4923                                             SLAB_RECLAIM_ACCOUNT);
4924         if (!dev_priv->dependencies)
4925                 goto err_requests;
4926
4927         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4928         if (!dev_priv->priorities)
4929                 goto err_dependencies;
4930
4931         mutex_lock(&dev_priv->drm.struct_mutex);
4932         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4933         err = i915_gem_timeline_init__global(dev_priv);
4934         mutex_unlock(&dev_priv->drm.struct_mutex);
4935         if (err)
4936                 goto err_priorities;
4937
4938         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4939         init_llist_head(&dev_priv->mm.free_list);
4940         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4941         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4942         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4943         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4944         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4945                           i915_gem_retire_work_handler);
4946         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4947                           i915_gem_idle_work_handler);
4948         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4949         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4950
4951         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4952
4953         spin_lock_init(&dev_priv->fb_tracking.lock);
4954
4955         return 0;
4956
4957 err_priorities:
4958         kmem_cache_destroy(dev_priv->priorities);
4959 err_dependencies:
4960         kmem_cache_destroy(dev_priv->dependencies);
4961 err_requests:
4962         kmem_cache_destroy(dev_priv->requests);
4963 err_luts:
4964         kmem_cache_destroy(dev_priv->luts);
4965 err_vmas:
4966         kmem_cache_destroy(dev_priv->vmas);
4967 err_objects:
4968         kmem_cache_destroy(dev_priv->objects);
4969 err_out:
4970         return err;
4971 }
4972
4973 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4974 {
4975         i915_gem_drain_freed_objects(dev_priv);
4976         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4977         WARN_ON(dev_priv->mm.object_count);
4978
4979         mutex_lock(&dev_priv->drm.struct_mutex);
4980         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4981         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4982         mutex_unlock(&dev_priv->drm.struct_mutex);
4983
4984         kmem_cache_destroy(dev_priv->priorities);
4985         kmem_cache_destroy(dev_priv->dependencies);
4986         kmem_cache_destroy(dev_priv->requests);
4987         kmem_cache_destroy(dev_priv->luts);
4988         kmem_cache_destroy(dev_priv->vmas);
4989         kmem_cache_destroy(dev_priv->objects);
4990
4991         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4992         rcu_barrier();
4993 }
4994
4995 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4996 {
4997         /* Discard all purgeable objects, let userspace recover those as
4998          * required after resuming.
4999          */
5000         i915_gem_shrink_all(dev_priv);
5001
5002         return 0;
5003 }
5004
5005 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5006 {
5007         struct drm_i915_gem_object *obj;
5008         struct list_head *phases[] = {
5009                 &dev_priv->mm.unbound_list,
5010                 &dev_priv->mm.bound_list,
5011                 NULL
5012         }, **p;
5013
5014         /* Called just before we write the hibernation image.
5015          *
5016          * We need to update the domain tracking to reflect that the CPU
5017          * will be accessing all the pages to create and restore from the
5018          * hibernation, and so upon restoration those pages will be in the
5019          * CPU domain.
5020          *
5021          * To make sure the hibernation image contains the latest state,
5022          * we update that state just before writing out the image.
5023          *
5024          * To try and reduce the hibernation image, we manually shrink
5025          * the objects as well, see i915_gem_freeze()
5026          */
5027
5028         i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5029         i915_gem_drain_freed_objects(dev_priv);
5030
5031         mutex_lock(&dev_priv->drm.struct_mutex);
5032         for (p = phases; *p; p++) {
5033                 list_for_each_entry(obj, *p, global_link)
5034                         __start_cpu_write(obj);
5035         }
5036         mutex_unlock(&dev_priv->drm.struct_mutex);
5037
5038         return 0;
5039 }
5040
5041 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5042 {
5043         struct drm_i915_file_private *file_priv = file->driver_priv;
5044         struct drm_i915_gem_request *request;
5045
5046         /* Clean up our request list when the client is going away, so that
5047          * later retire_requests won't dereference our soon-to-be-gone
5048          * file_priv.
5049          */
5050         spin_lock(&file_priv->mm.lock);
5051         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5052                 request->file_priv = NULL;
5053         spin_unlock(&file_priv->mm.lock);
5054 }
5055
5056 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5057 {
5058         struct drm_i915_file_private *file_priv;
5059         int ret;
5060
5061         DRM_DEBUG("\n");
5062
5063         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064         if (!file_priv)
5065                 return -ENOMEM;
5066
5067         file->driver_priv = file_priv;
5068         file_priv->dev_priv = i915;
5069         file_priv->file = file;
5070
5071         spin_lock_init(&file_priv->mm.lock);
5072         INIT_LIST_HEAD(&file_priv->mm.request_list);
5073
5074         file_priv->bsd_engine = -1;
5075
5076         ret = i915_gem_context_open(i915, file);
5077         if (ret)
5078                 kfree(file_priv);
5079
5080         return ret;
5081 }
5082
5083 /**
5084  * i915_gem_track_fb - update frontbuffer tracking
5085  * @old: current GEM buffer for the frontbuffer slots
5086  * @new: new GEM buffer for the frontbuffer slots
5087  * @frontbuffer_bits: bitmask of frontbuffer slots
5088  *
5089  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090  * from @old and setting them in @new. Both @old and @new can be NULL.
5091  */
5092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093                        struct drm_i915_gem_object *new,
5094                        unsigned frontbuffer_bits)
5095 {
5096         /* Control of individual bits within the mask are guarded by
5097          * the owning plane->mutex, i.e. we can never see concurrent
5098          * manipulation of individual bits. But since the bitfield as a whole
5099          * is updated using RMW, we need to use atomics in order to update
5100          * the bits.
5101          */
5102         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5103                      sizeof(atomic_t) * BITS_PER_BYTE);
5104
5105         if (old) {
5106                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5107                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5108         }
5109
5110         if (new) {
5111                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5112                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5113         }
5114 }
5115
5116 /* Allocate a new GEM object and fill it with the supplied data */
5117 struct drm_i915_gem_object *
5118 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5119                                  const void *data, size_t size)
5120 {
5121         struct drm_i915_gem_object *obj;
5122         struct file *file;
5123         size_t offset;
5124         int err;
5125
5126         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5127         if (IS_ERR(obj))
5128                 return obj;
5129
5130         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5131
5132         file = obj->base.filp;
5133         offset = 0;
5134         do {
5135                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5136                 struct page *page;
5137                 void *pgdata, *vaddr;
5138
5139                 err = pagecache_write_begin(file, file->f_mapping,
5140                                             offset, len, 0,
5141                                             &page, &pgdata);
5142                 if (err < 0)
5143                         goto fail;
5144
5145                 vaddr = kmap(page);
5146                 memcpy(vaddr, data, len);
5147                 kunmap(page);
5148
5149                 err = pagecache_write_end(file, file->f_mapping,
5150                                           offset, len, len,
5151                                           page, pgdata);
5152                 if (err < 0)
5153                         goto fail;
5154
5155                 size -= len;
5156                 data += len;
5157                 offset += len;
5158         } while (size);
5159
5160         return obj;
5161
5162 fail:
5163         i915_gem_object_put(obj);
5164         return ERR_PTR(err);
5165 }
5166
5167 struct scatterlist *
5168 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5169                        unsigned int n,
5170                        unsigned int *offset)
5171 {
5172         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5173         struct scatterlist *sg;
5174         unsigned int idx, count;
5175
5176         might_sleep();
5177         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5178         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5179
5180         /* As we iterate forward through the sg, we record each entry in a
5181          * radixtree for quick repeated (backwards) lookups. If we have seen
5182          * this index previously, we will have an entry for it.
5183          *
5184          * Initial lookup is O(N), but this is amortized to O(1) for
5185          * sequential page access (where each new request is consecutive
5186          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5187          * i.e. O(1) with a large constant!
5188          */
5189         if (n < READ_ONCE(iter->sg_idx))
5190                 goto lookup;
5191
5192         mutex_lock(&iter->lock);
5193
5194         /* We prefer to reuse the last sg so that repeated lookup of this
5195          * (or the subsequent) sg are fast - comparing against the last
5196          * sg is faster than going through the radixtree.
5197          */
5198
5199         sg = iter->sg_pos;
5200         idx = iter->sg_idx;
5201         count = __sg_page_count(sg);
5202
5203         while (idx + count <= n) {
5204                 unsigned long exception, i;
5205                 int ret;
5206
5207                 /* If we cannot allocate and insert this entry, or the
5208                  * individual pages from this range, cancel updating the
5209                  * sg_idx so that on this lookup we are forced to linearly
5210                  * scan onwards, but on future lookups we will try the
5211                  * insertion again (in which case we need to be careful of
5212                  * the error return reporting that we have already inserted
5213                  * this index).
5214                  */
5215                 ret = radix_tree_insert(&iter->radix, idx, sg);
5216                 if (ret && ret != -EEXIST)
5217                         goto scan;
5218
5219                 exception =
5220                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5221                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5222                 for (i = 1; i < count; i++) {
5223                         ret = radix_tree_insert(&iter->radix, idx + i,
5224                                                 (void *)exception);
5225                         if (ret && ret != -EEXIST)
5226                                 goto scan;
5227                 }
5228
5229                 idx += count;
5230                 sg = ____sg_next(sg);
5231                 count = __sg_page_count(sg);
5232         }
5233
5234 scan:
5235         iter->sg_pos = sg;
5236         iter->sg_idx = idx;
5237
5238         mutex_unlock(&iter->lock);
5239
5240         if (unlikely(n < idx)) /* insertion completed by another thread */
5241                 goto lookup;
5242
5243         /* In case we failed to insert the entry into the radixtree, we need
5244          * to look beyond the current sg.
5245          */
5246         while (idx + count <= n) {
5247                 idx += count;
5248                 sg = ____sg_next(sg);
5249                 count = __sg_page_count(sg);
5250         }
5251
5252         *offset = n - idx;
5253         return sg;
5254
5255 lookup:
5256         rcu_read_lock();
5257
5258         sg = radix_tree_lookup(&iter->radix, n);
5259         GEM_BUG_ON(!sg);
5260
5261         /* If this index is in the middle of multi-page sg entry,
5262          * the radixtree will contain an exceptional entry that points
5263          * to the start of that range. We will return the pointer to
5264          * the base page and the offset of this page within the
5265          * sg entry's range.
5266          */
5267         *offset = 0;
5268         if (unlikely(radix_tree_exception(sg))) {
5269                 unsigned long base =
5270                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5271
5272                 sg = radix_tree_lookup(&iter->radix, base);
5273                 GEM_BUG_ON(!sg);
5274
5275                 *offset = n - base;
5276         }
5277
5278         rcu_read_unlock();
5279
5280         return sg;
5281 }
5282
5283 struct page *
5284 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5285 {
5286         struct scatterlist *sg;
5287         unsigned int offset;
5288
5289         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5290
5291         sg = i915_gem_object_get_sg(obj, n, &offset);
5292         return nth_page(sg_page(sg), offset);
5293 }
5294
5295 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5296 struct page *
5297 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5298                                unsigned int n)
5299 {
5300         struct page *page;
5301
5302         page = i915_gem_object_get_page(obj, n);
5303         if (!obj->mm.dirty)
5304                 set_page_dirty(page);
5305
5306         return page;
5307 }
5308
5309 dma_addr_t
5310 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5311                                 unsigned long n)
5312 {
5313         struct scatterlist *sg;
5314         unsigned int offset;
5315
5316         sg = i915_gem_object_get_sg(obj, n, &offset);
5317         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5318 }
5319
5320 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5321 {
5322         struct sg_table *pages;
5323         int err;
5324
5325         if (align > obj->base.size)
5326                 return -EINVAL;
5327
5328         if (obj->ops == &i915_gem_phys_ops)
5329                 return 0;
5330
5331         if (obj->ops != &i915_gem_object_ops)
5332                 return -EINVAL;
5333
5334         err = i915_gem_object_unbind(obj);
5335         if (err)
5336                 return err;
5337
5338         mutex_lock(&obj->mm.lock);
5339
5340         if (obj->mm.madv != I915_MADV_WILLNEED) {
5341                 err = -EFAULT;
5342                 goto err_unlock;
5343         }
5344
5345         if (obj->mm.quirked) {
5346                 err = -EFAULT;
5347                 goto err_unlock;
5348         }
5349
5350         if (obj->mm.mapping) {
5351                 err = -EBUSY;
5352                 goto err_unlock;
5353         }
5354
5355         pages = obj->mm.pages;
5356         obj->ops = &i915_gem_phys_ops;
5357
5358         err = ____i915_gem_object_get_pages(obj);
5359         if (err)
5360                 goto err_xfer;
5361
5362         /* Perma-pin (until release) the physical set of pages */
5363         __i915_gem_object_pin_pages(obj);
5364
5365         if (!IS_ERR_OR_NULL(pages))
5366                 i915_gem_object_ops.put_pages(obj, pages);
5367         mutex_unlock(&obj->mm.lock);
5368         return 0;
5369
5370 err_xfer:
5371         obj->ops = &i915_gem_object_ops;
5372         obj->mm.pages = pages;
5373 err_unlock:
5374         mutex_unlock(&obj->mm.lock);
5375         return err;
5376 }
5377
5378 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5379 #include "selftests/scatterlist.c"
5380 #include "selftests/mock_gem_device.c"
5381 #include "selftests/huge_gem_object.c"
5382 #include "selftests/i915_gem_object.c"
5383 #include "selftests/i915_gem_coherency.c"
5384 #endif
This page took 0.346484 seconds and 4 git commands to generate.