2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 return obj->pin_display;
62 insert_mappable_node(struct i915_ggtt *ggtt,
63 struct drm_mm_node *node, u32 size)
65 memset(node, 0, sizeof(*node));
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
73 remove_mappable_node(struct drm_mm_node *node)
75 drm_mm_remove_node(node);
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 spin_lock(&dev_priv->mm.object_stat_lock);
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
94 spin_unlock(&dev_priv->mm.object_stat_lock);
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
109 ret = wait_event_interruptible_timeout(error->reset_queue,
110 !i915_reset_backoff(error),
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 } else if (ret < 0) {
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 struct drm_i915_private *dev_priv = to_i915(dev);
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
142 struct drm_i915_private *dev_priv = to_i915(dev);
143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 struct drm_i915_gem_get_aperture *args = data;
145 struct i915_vma *vma;
148 pinned = ggtt->base.reserved;
149 mutex_lock(&dev->struct_mutex);
150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 if (i915_vma_is_pinned(vma))
152 pinned += vma->node.size;
153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 if (i915_vma_is_pinned(vma))
155 pinned += vma->node.size;
156 mutex_unlock(&dev->struct_mutex);
158 args->aper_size = ggtt->base.total;
159 args->aper_available_size = args->aper_size - pinned;
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
170 struct scatterlist *sg;
174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 return ERR_PTR(-EINVAL);
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
181 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size));
185 return ERR_PTR(-ENOMEM);
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
192 page = shmem_read_mapping_page(mapping, i);
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 i915_gem_chipset_flush(to_i915(obj->base.dev));
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
211 st = ERR_PTR(-ENOMEM);
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 st = ERR_PTR(-ENOMEM);
223 sg->length = obj->base.size;
225 sg_dma_address(sg) = phys->busaddr;
226 sg_dma_len(sg) = obj->base.size;
228 obj->phys_handle = phys;
232 drm_pci_free(obj->base.dev, phys);
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 struct sg_table *pages,
249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 drm_clflush_sg(pages);
259 __start_cpu_write(obj);
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
266 __i915_gem_object_release_shmem(obj, pages, false);
269 struct address_space *mapping = obj->base.filp->f_mapping;
270 char *vaddr = obj->phys_handle->vaddr;
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277 page = shmem_read_mapping_page(mapping, i);
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
286 set_page_dirty(page);
287 if (obj->mm.madv == I915_MADV_WILLNEED)
288 mark_page_accessed(page);
292 obj->mm.dirty = false;
295 sg_free_table(pages);
298 drm_pci_free(obj->base.dev, obj->phys_handle);
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
304 i915_gem_object_unpin_pages(obj);
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
332 MAX_SCHEDULE_TIMEOUT,
337 i915_gem_retire_requests(to_i915(obj->base.dev));
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
347 list_splice(&still_in_list, &obj->vma_list);
353 i915_gem_object_wait_fence(struct dma_fence *fence,
356 struct intel_rps_client *rps)
358 struct drm_i915_gem_request *rq;
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq, rps);
396 timeout = i915_wait_request(rq, flags, timeout);
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
409 struct intel_rps_client *rps)
411 unsigned int seq = __read_seqcount_begin(&resv->seq);
412 struct dma_fence *excl;
413 bool prune_fences = false;
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
432 dma_fence_put(shared[i]);
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
439 prune_fences = count && timeout >= 0;
441 excl = reservation_object_get_excl_rcu(resv);
444 if (excl && timeout >= 0) {
445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 prune_fences = timeout >= 0;
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
471 if (!dma_fence_is_i915(fence))
474 rq = to_request(fence);
476 if (!engine->schedule)
479 engine->schedule(rq, prio);
482 static void fence_set_priority(struct dma_fence *fence, int prio)
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
492 __fence_set_priority(fence, prio);
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
501 struct dma_fence *excl;
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
520 excl = reservation_object_get_excl_rcu(obj->resv);
524 fence_set_priority(excl, prio);
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
541 struct intel_rps_client *rps)
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
549 GEM_BUG_ON(timeout < 0);
551 timeout = i915_gem_object_wait_reservation(obj->resv,
554 return timeout < 0 ? timeout : 0;
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
559 struct drm_i915_file_private *fpriv = file->driver_priv;
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file)
569 void *vaddr = obj->phys_handle->vaddr + args->offset;
570 char __user *user_data = u64_to_user_ptr(args->data_ptr);
572 /* We manually control the domain here and pretend that it
573 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
575 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 if (copy_from_user(vaddr, user_data, args->size))
579 drm_clflush_virt_range(vaddr, args->size);
580 i915_gem_chipset_flush(to_i915(obj->base.dev));
582 intel_fb_obj_flush(obj, ORIGIN_CPU);
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594 kmem_cache_free(dev_priv->objects, obj);
598 i915_gem_create(struct drm_file *file,
599 struct drm_i915_private *dev_priv,
603 struct drm_i915_gem_object *obj;
607 size = roundup(size, PAGE_SIZE);
611 /* Allocate the new object */
612 obj = i915_gem_object_create(dev_priv, size);
616 ret = drm_gem_handle_create(file, &obj->base, &handle);
617 /* drop reference from allocate - handle holds it now */
618 i915_gem_object_put(obj);
627 i915_gem_dumb_create(struct drm_file *file,
628 struct drm_device *dev,
629 struct drm_mode_create_dumb *args)
631 /* have to work out size/pitch and return them */
632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633 args->size = args->pitch * args->height;
634 return i915_gem_create(file, to_i915(dev),
635 args->size, &args->handle);
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
640 return !(obj->cache_level == I915_CACHE_NONE ||
641 obj->cache_level == I915_CACHE_WT);
645 * Creates a new mm object and returns a handle to it.
646 * @dev: drm device pointer
647 * @data: ioctl data blob
648 * @file: drm file pointer
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 struct drm_file *file)
654 struct drm_i915_private *dev_priv = to_i915(dev);
655 struct drm_i915_gem_create *args = data;
657 i915_gem_flush_free_objects(dev_priv);
659 return i915_gem_create(file, dev_priv,
660 args->size, &args->handle);
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
666 return (domain == I915_GEM_DOMAIN_GTT ?
667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
675 if (!(obj->base.write_domain & flush_domains))
678 /* No actual flushing is required for the GTT write domain. Writes
679 * to it "immediately" go to main memory as far as we know, so there's
680 * no chipset flush. It also doesn't land in render cache.
682 * However, we do have to enforce the order so that all writes through
683 * the GTT land before any writes to the device, such as updates to
686 * We also have to wait a bit for the writes to land from the GTT.
687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 * timing. This issue has only been observed when switching quickly
689 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 * system agents we cannot reproduce this behaviour).
695 switch (obj->base.write_domain) {
696 case I915_GEM_DOMAIN_GTT:
697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 intel_runtime_pm_get(dev_priv);
699 spin_lock_irq(&dev_priv->uncore.lock);
700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 spin_unlock_irq(&dev_priv->uncore.lock);
702 intel_runtime_pm_put(dev_priv);
705 intel_fb_obj_flush(obj,
706 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
709 case I915_GEM_DOMAIN_CPU:
710 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
713 case I915_GEM_DOMAIN_RENDER:
714 if (gpu_write_needs_clflush(obj))
715 obj->cache_dirty = true;
719 obj->base.write_domain = 0;
723 __copy_to_user_swizzled(char __user *cpu_vaddr,
724 const char *gpu_vaddr, int gpu_offset,
727 int ret, cpu_offset = 0;
730 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731 int this_length = min(cacheline_end - gpu_offset, length);
732 int swizzled_gpu_offset = gpu_offset ^ 64;
734 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735 gpu_vaddr + swizzled_gpu_offset,
740 cpu_offset += this_length;
741 gpu_offset += this_length;
742 length -= this_length;
749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750 const char __user *cpu_vaddr,
753 int ret, cpu_offset = 0;
756 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757 int this_length = min(cacheline_end - gpu_offset, length);
758 int swizzled_gpu_offset = gpu_offset ^ 64;
760 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761 cpu_vaddr + cpu_offset,
766 cpu_offset += this_length;
767 gpu_offset += this_length;
768 length -= this_length;
775 * Pins the specified object's pages and synchronizes the object with
776 * GPU accesses. Sets needs_clflush to non-zero if the caller should
777 * flush the object from the CPU cache.
779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780 unsigned int *needs_clflush)
784 lockdep_assert_held(&obj->base.dev->struct_mutex);
787 if (!i915_gem_object_has_struct_page(obj))
790 ret = i915_gem_object_wait(obj,
791 I915_WAIT_INTERRUPTIBLE |
793 MAX_SCHEDULE_TIMEOUT,
798 ret = i915_gem_object_pin_pages(obj);
802 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
811 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813 /* If we're not in the cpu read domain, set ourself into the gtt
814 * read domain and manually flush cachelines (if required). This
815 * optimizes for the case when the gpu will dirty the data
816 * anyway again before the next pread happens.
818 if (!obj->cache_dirty &&
819 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820 *needs_clflush = CLFLUSH_BEFORE;
823 /* return with the pages pinned */
827 i915_gem_object_unpin_pages(obj);
831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832 unsigned int *needs_clflush)
836 lockdep_assert_held(&obj->base.dev->struct_mutex);
839 if (!i915_gem_object_has_struct_page(obj))
842 ret = i915_gem_object_wait(obj,
843 I915_WAIT_INTERRUPTIBLE |
846 MAX_SCHEDULE_TIMEOUT,
851 ret = i915_gem_object_pin_pages(obj);
855 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 ret = i915_gem_object_set_to_cpu_domain(obj, true);
864 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866 /* If we're not in the cpu write domain, set ourself into the
867 * gtt write domain and manually flush cachelines (as required).
868 * This optimizes for the case when the gpu will use the data
869 * right away and we therefore have to clflush anyway.
871 if (!obj->cache_dirty) {
872 *needs_clflush |= CLFLUSH_AFTER;
875 * Same trick applies to invalidate partially written
876 * cachelines read before writing.
878 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879 *needs_clflush |= CLFLUSH_BEFORE;
883 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884 obj->mm.dirty = true;
885 /* return with the pages pinned */
889 i915_gem_object_unpin_pages(obj);
894 shmem_clflush_swizzled_range(char *addr, unsigned long length,
897 if (unlikely(swizzled)) {
898 unsigned long start = (unsigned long) addr;
899 unsigned long end = (unsigned long) addr + length;
901 /* For swizzling simply ensure that we always flush both
902 * channels. Lame, but simple and it works. Swizzled
903 * pwrite/pread is far from a hotpath - current userspace
904 * doesn't use it at all. */
905 start = round_down(start, 128);
906 end = round_up(end, 128);
908 drm_clflush_virt_range((void *)start, end - start);
910 drm_clflush_virt_range(addr, length);
915 /* Only difference to the fast-path function is that this can handle bit17
916 * and uses non-atomic copy and kmap functions. */
918 shmem_pread_slow(struct page *page, int offset, int length,
919 char __user *user_data,
920 bool page_do_bit17_swizzling, bool needs_clflush)
927 shmem_clflush_swizzled_range(vaddr + offset, length,
928 page_do_bit17_swizzling);
930 if (page_do_bit17_swizzling)
931 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933 ret = __copy_to_user(user_data, vaddr + offset, length);
936 return ret ? - EFAULT : 0;
940 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941 bool page_do_bit17_swizzling, bool needs_clflush)
946 if (!page_do_bit17_swizzling) {
947 char *vaddr = kmap_atomic(page);
950 drm_clflush_virt_range(vaddr + offset, length);
951 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952 kunmap_atomic(vaddr);
957 return shmem_pread_slow(page, offset, length, user_data,
958 page_do_bit17_swizzling, needs_clflush);
962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963 struct drm_i915_gem_pread *args)
965 char __user *user_data;
967 unsigned int obj_do_bit17_swizzling;
968 unsigned int needs_clflush;
969 unsigned int idx, offset;
972 obj_do_bit17_swizzling = 0;
973 if (i915_gem_object_needs_bit17_swizzle(obj))
974 obj_do_bit17_swizzling = BIT(17);
976 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
980 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981 mutex_unlock(&obj->base.dev->struct_mutex);
986 user_data = u64_to_user_ptr(args->data_ptr);
987 offset = offset_in_page(args->offset);
988 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989 struct page *page = i915_gem_object_get_page(obj, idx);
993 if (offset + length > PAGE_SIZE)
994 length = PAGE_SIZE - offset;
996 ret = shmem_pread(page, offset, length, user_data,
997 page_to_phys(page) & obj_do_bit17_swizzling,
1003 user_data += length;
1007 i915_gem_obj_finish_shmem_access(obj);
1012 gtt_user_read(struct io_mapping *mapping,
1013 loff_t base, int offset,
1014 char __user *user_data, int length)
1017 unsigned long unwritten;
1019 /* We can use the cpu mem copy function because this is X86. */
1020 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022 io_mapping_unmap_atomic(vaddr);
1024 vaddr = (void __force *)
1025 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 unwritten = copy_to_user(user_data, vaddr + offset, length);
1027 io_mapping_unmap(vaddr);
1033 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034 const struct drm_i915_gem_pread *args)
1036 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037 struct i915_ggtt *ggtt = &i915->ggtt;
1038 struct drm_mm_node node;
1039 struct i915_vma *vma;
1040 void __user *user_data;
1044 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1048 intel_runtime_pm_get(i915);
1049 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050 PIN_MAPPABLE | PIN_NONBLOCK);
1052 node.start = i915_ggtt_offset(vma);
1053 node.allocated = false;
1054 ret = i915_vma_put_fence(vma);
1056 i915_vma_unpin(vma);
1061 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1064 GEM_BUG_ON(!node.allocated);
1067 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1071 mutex_unlock(&i915->drm.struct_mutex);
1073 user_data = u64_to_user_ptr(args->data_ptr);
1074 remain = args->size;
1075 offset = args->offset;
1077 while (remain > 0) {
1078 /* Operation in this page
1080 * page_base = page offset within aperture
1081 * page_offset = offset within page
1082 * page_length = bytes to copy for this page
1084 u32 page_base = node.start;
1085 unsigned page_offset = offset_in_page(offset);
1086 unsigned page_length = PAGE_SIZE - page_offset;
1087 page_length = remain < page_length ? remain : page_length;
1088 if (node.allocated) {
1090 ggtt->base.insert_page(&ggtt->base,
1091 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092 node.start, I915_CACHE_NONE, 0);
1095 page_base += offset & PAGE_MASK;
1098 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099 user_data, page_length)) {
1104 remain -= page_length;
1105 user_data += page_length;
1106 offset += page_length;
1109 mutex_lock(&i915->drm.struct_mutex);
1111 if (node.allocated) {
1113 ggtt->base.clear_range(&ggtt->base,
1114 node.start, node.size);
1115 remove_mappable_node(&node);
1117 i915_vma_unpin(vma);
1120 intel_runtime_pm_put(i915);
1121 mutex_unlock(&i915->drm.struct_mutex);
1127 * Reads data from the object referenced by handle.
1128 * @dev: drm device pointer
1129 * @data: ioctl data blob
1130 * @file: drm file pointer
1132 * On error, the contents of *data are undefined.
1135 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file)
1138 struct drm_i915_gem_pread *args = data;
1139 struct drm_i915_gem_object *obj;
1142 if (args->size == 0)
1145 if (!access_ok(VERIFY_WRITE,
1146 u64_to_user_ptr(args->data_ptr),
1150 obj = i915_gem_object_lookup(file, args->handle);
1154 /* Bounds check source. */
1155 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1160 trace_i915_gem_object_pread(obj, args->offset, args->size);
1162 ret = i915_gem_object_wait(obj,
1163 I915_WAIT_INTERRUPTIBLE,
1164 MAX_SCHEDULE_TIMEOUT,
1165 to_rps_client(file));
1169 ret = i915_gem_object_pin_pages(obj);
1173 ret = i915_gem_shmem_pread(obj, args);
1174 if (ret == -EFAULT || ret == -ENODEV)
1175 ret = i915_gem_gtt_pread(obj, args);
1177 i915_gem_object_unpin_pages(obj);
1179 i915_gem_object_put(obj);
1183 /* This is the fast write path which cannot handle
1184 * page faults in the source data
1188 ggtt_write(struct io_mapping *mapping,
1189 loff_t base, int offset,
1190 char __user *user_data, int length)
1193 unsigned long unwritten;
1195 /* We can use the cpu mem copy function because this is X86. */
1196 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1199 io_mapping_unmap_atomic(vaddr);
1201 vaddr = (void __force *)
1202 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203 unwritten = copy_from_user(vaddr + offset, user_data, length);
1204 io_mapping_unmap(vaddr);
1211 * This is the fast pwrite path, where we copy the data directly from the
1212 * user into the GTT, uncached.
1213 * @obj: i915 GEM object
1214 * @args: pwrite arguments structure
1217 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218 const struct drm_i915_gem_pwrite *args)
1220 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221 struct i915_ggtt *ggtt = &i915->ggtt;
1222 struct drm_mm_node node;
1223 struct i915_vma *vma;
1225 void __user *user_data;
1228 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1232 intel_runtime_pm_get(i915);
1233 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234 PIN_MAPPABLE | PIN_NONBLOCK);
1236 node.start = i915_ggtt_offset(vma);
1237 node.allocated = false;
1238 ret = i915_vma_put_fence(vma);
1240 i915_vma_unpin(vma);
1245 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1248 GEM_BUG_ON(!node.allocated);
1251 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1255 mutex_unlock(&i915->drm.struct_mutex);
1257 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1259 user_data = u64_to_user_ptr(args->data_ptr);
1260 offset = args->offset;
1261 remain = args->size;
1263 /* Operation in this page
1265 * page_base = page offset within aperture
1266 * page_offset = offset within page
1267 * page_length = bytes to copy for this page
1269 u32 page_base = node.start;
1270 unsigned int page_offset = offset_in_page(offset);
1271 unsigned int page_length = PAGE_SIZE - page_offset;
1272 page_length = remain < page_length ? remain : page_length;
1273 if (node.allocated) {
1274 wmb(); /* flush the write before we modify the GGTT */
1275 ggtt->base.insert_page(&ggtt->base,
1276 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277 node.start, I915_CACHE_NONE, 0);
1278 wmb(); /* flush modifications to the GGTT (insert_page) */
1280 page_base += offset & PAGE_MASK;
1282 /* If we get a fault while copying data, then (presumably) our
1283 * source page isn't available. Return the error and we'll
1284 * retry in the slow path.
1285 * If the object is non-shmem backed, we retry again with the
1286 * path that handles page fault.
1288 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289 user_data, page_length)) {
1294 remain -= page_length;
1295 user_data += page_length;
1296 offset += page_length;
1298 intel_fb_obj_flush(obj, ORIGIN_CPU);
1300 mutex_lock(&i915->drm.struct_mutex);
1302 if (node.allocated) {
1304 ggtt->base.clear_range(&ggtt->base,
1305 node.start, node.size);
1306 remove_mappable_node(&node);
1308 i915_vma_unpin(vma);
1311 intel_runtime_pm_put(i915);
1312 mutex_unlock(&i915->drm.struct_mutex);
1317 shmem_pwrite_slow(struct page *page, int offset, int length,
1318 char __user *user_data,
1319 bool page_do_bit17_swizzling,
1320 bool needs_clflush_before,
1321 bool needs_clflush_after)
1327 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328 shmem_clflush_swizzled_range(vaddr + offset, length,
1329 page_do_bit17_swizzling);
1330 if (page_do_bit17_swizzling)
1331 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1334 ret = __copy_from_user(vaddr + offset, user_data, length);
1335 if (needs_clflush_after)
1336 shmem_clflush_swizzled_range(vaddr + offset, length,
1337 page_do_bit17_swizzling);
1340 return ret ? -EFAULT : 0;
1343 /* Per-page copy function for the shmem pwrite fastpath.
1344 * Flushes invalid cachelines before writing to the target if
1345 * needs_clflush_before is set and flushes out any written cachelines after
1346 * writing if needs_clflush is set.
1349 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350 bool page_do_bit17_swizzling,
1351 bool needs_clflush_before,
1352 bool needs_clflush_after)
1357 if (!page_do_bit17_swizzling) {
1358 char *vaddr = kmap_atomic(page);
1360 if (needs_clflush_before)
1361 drm_clflush_virt_range(vaddr + offset, len);
1362 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363 if (needs_clflush_after)
1364 drm_clflush_virt_range(vaddr + offset, len);
1366 kunmap_atomic(vaddr);
1371 return shmem_pwrite_slow(page, offset, len, user_data,
1372 page_do_bit17_swizzling,
1373 needs_clflush_before,
1374 needs_clflush_after);
1378 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379 const struct drm_i915_gem_pwrite *args)
1381 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382 void __user *user_data;
1384 unsigned int obj_do_bit17_swizzling;
1385 unsigned int partial_cacheline_write;
1386 unsigned int needs_clflush;
1387 unsigned int offset, idx;
1390 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1394 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395 mutex_unlock(&i915->drm.struct_mutex);
1399 obj_do_bit17_swizzling = 0;
1400 if (i915_gem_object_needs_bit17_swizzle(obj))
1401 obj_do_bit17_swizzling = BIT(17);
1403 /* If we don't overwrite a cacheline completely we need to be
1404 * careful to have up-to-date data by first clflushing. Don't
1405 * overcomplicate things and flush the entire patch.
1407 partial_cacheline_write = 0;
1408 if (needs_clflush & CLFLUSH_BEFORE)
1409 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1411 user_data = u64_to_user_ptr(args->data_ptr);
1412 remain = args->size;
1413 offset = offset_in_page(args->offset);
1414 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415 struct page *page = i915_gem_object_get_page(obj, idx);
1419 if (offset + length > PAGE_SIZE)
1420 length = PAGE_SIZE - offset;
1422 ret = shmem_pwrite(page, offset, length, user_data,
1423 page_to_phys(page) & obj_do_bit17_swizzling,
1424 (offset | length) & partial_cacheline_write,
1425 needs_clflush & CLFLUSH_AFTER);
1430 user_data += length;
1434 intel_fb_obj_flush(obj, ORIGIN_CPU);
1435 i915_gem_obj_finish_shmem_access(obj);
1440 * Writes data to the object referenced by handle.
1442 * @data: ioctl data blob
1445 * On error, the contents of the buffer that were to be modified are undefined.
1448 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449 struct drm_file *file)
1451 struct drm_i915_gem_pwrite *args = data;
1452 struct drm_i915_gem_object *obj;
1455 if (args->size == 0)
1458 if (!access_ok(VERIFY_READ,
1459 u64_to_user_ptr(args->data_ptr),
1463 obj = i915_gem_object_lookup(file, args->handle);
1467 /* Bounds check destination. */
1468 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1473 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1476 if (obj->ops->pwrite)
1477 ret = obj->ops->pwrite(obj, args);
1481 ret = i915_gem_object_wait(obj,
1482 I915_WAIT_INTERRUPTIBLE |
1484 MAX_SCHEDULE_TIMEOUT,
1485 to_rps_client(file));
1489 ret = i915_gem_object_pin_pages(obj);
1494 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1495 * it would end up going through the fenced access, and we'll get
1496 * different detiling behavior between reading and writing.
1497 * pread/pwrite currently are reading and writing from the CPU
1498 * perspective, requiring manual detiling by the client.
1500 if (!i915_gem_object_has_struct_page(obj) ||
1501 cpu_write_needs_clflush(obj))
1502 /* Note that the gtt paths might fail with non-page-backed user
1503 * pointers (e.g. gtt mappings when moving data between
1504 * textures). Fallback to the shmem path in that case.
1506 ret = i915_gem_gtt_pwrite_fast(obj, args);
1508 if (ret == -EFAULT || ret == -ENOSPC) {
1509 if (obj->phys_handle)
1510 ret = i915_gem_phys_pwrite(obj, args, file);
1512 ret = i915_gem_shmem_pwrite(obj, args);
1515 i915_gem_object_unpin_pages(obj);
1517 i915_gem_object_put(obj);
1521 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1523 struct drm_i915_private *i915;
1524 struct list_head *list;
1525 struct i915_vma *vma;
1527 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528 if (!i915_vma_is_ggtt(vma))
1531 if (i915_vma_is_active(vma))
1534 if (!drm_mm_node_allocated(&vma->node))
1537 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1540 i915 = to_i915(obj->base.dev);
1541 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542 list_move_tail(&obj->global_link, list);
1546 * Called when user space prepares to use an object with the CPU, either
1547 * through the mmap ioctl's mapping or a GTT mapping.
1549 * @data: ioctl data blob
1553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554 struct drm_file *file)
1556 struct drm_i915_gem_set_domain *args = data;
1557 struct drm_i915_gem_object *obj;
1558 uint32_t read_domains = args->read_domains;
1559 uint32_t write_domain = args->write_domain;
1562 /* Only handle setting domains to types used by the CPU. */
1563 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1566 /* Having something in the write domain implies it's in the read
1567 * domain, and only that read domain. Enforce that in the request.
1569 if (write_domain != 0 && read_domains != write_domain)
1572 obj = i915_gem_object_lookup(file, args->handle);
1576 /* Try to flush the object off the GPU without holding the lock.
1577 * We will repeat the flush holding the lock in the normal manner
1578 * to catch cases where we are gazumped.
1580 err = i915_gem_object_wait(obj,
1581 I915_WAIT_INTERRUPTIBLE |
1582 (write_domain ? I915_WAIT_ALL : 0),
1583 MAX_SCHEDULE_TIMEOUT,
1584 to_rps_client(file));
1588 /* Flush and acquire obj->pages so that we are coherent through
1589 * direct access in memory with previous cached writes through
1590 * shmemfs and that our cache domain tracking remains valid.
1591 * For example, if the obj->filp was moved to swap without us
1592 * being notified and releasing the pages, we would mistakenly
1593 * continue to assume that the obj remained out of the CPU cached
1596 err = i915_gem_object_pin_pages(obj);
1600 err = i915_mutex_lock_interruptible(dev);
1604 if (read_domains & I915_GEM_DOMAIN_WC)
1605 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606 else if (read_domains & I915_GEM_DOMAIN_GTT)
1607 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1609 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1611 /* And bump the LRU for this access */
1612 i915_gem_object_bump_inactive_ggtt(obj);
1614 mutex_unlock(&dev->struct_mutex);
1616 if (write_domain != 0)
1617 intel_fb_obj_invalidate(obj,
1618 fb_write_origin(obj, write_domain));
1621 i915_gem_object_unpin_pages(obj);
1623 i915_gem_object_put(obj);
1628 * Called when user space has done writes to this buffer
1630 * @data: ioctl data blob
1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635 struct drm_file *file)
1637 struct drm_i915_gem_sw_finish *args = data;
1638 struct drm_i915_gem_object *obj;
1640 obj = i915_gem_object_lookup(file, args->handle);
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 i915_gem_object_flush_if_display(obj);
1646 i915_gem_object_put(obj);
1652 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1655 * @data: ioctl data blob
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_i915_gem_object *obj;
1679 if (args->flags & ~(I915_MMAP_WC))
1682 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1685 obj = i915_gem_object_lookup(file, args->handle);
1689 /* prime objects have no backing filp to GEM mmap
1692 if (!obj->base.filp) {
1693 i915_gem_object_put(obj);
1697 addr = vm_mmap(obj->base.filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1704 if (down_write_killable(&mm->mmap_sem)) {
1705 i915_gem_object_put(obj);
1708 vma = find_vma(mm, addr);
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1714 up_write(&mm->mmap_sem);
1716 /* This may race, but that's ok, it only gets set */
1717 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1719 i915_gem_object_put(obj);
1720 if (IS_ERR((void *)addr))
1723 args->addr_ptr = (uint64_t) addr;
1728 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1730 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1734 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1736 * A history of the GTT mmap interface:
1738 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739 * aligned and suitable for fencing, and still fit into the available
1740 * mappable space left by the pinned display objects. A classic problem
1741 * we called the page-fault-of-doom where we would ping-pong between
1742 * two objects that could not fit inside the GTT and so the memcpy
1743 * would page one object in at the expense of the other between every
1746 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748 * object is too large for the available space (or simply too large
1749 * for the mappable aperture!), a view is created instead and faulted
1750 * into userspace. (This view is aligned and sized appropriately for
1753 * 2 - Recognise WC as a separate cache domain so that we can flush the
1754 * delayed writes via GTT before performing direct access via WC.
1758 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1759 * hangs on some architectures, corruption on others. An attempt to service
1760 * a GTT page fault from a snoopable object will generate a SIGBUS.
1762 * * the object must be able to fit into RAM (physical memory, though no
1763 * limited to the mappable aperture).
1768 * * a new GTT page fault will synchronize rendering from the GPU and flush
1769 * all data to system memory. Subsequent access will not be synchronized.
1771 * * all mappings are revoked on runtime device suspend.
1773 * * there are only 8, 16 or 32 fence registers to share between all users
1774 * (older machines require fence register for display and blitter access
1775 * as well). Contention of the fence registers will cause the previous users
1776 * to be unmapped and any new access will generate new page faults.
1778 * * running out of memory while servicing a fault may generate a SIGBUS,
1779 * rather than the expected SIGSEGV.
1781 int i915_gem_mmap_gtt_version(void)
1786 static inline struct i915_ggtt_view
1787 compute_partial_view(struct drm_i915_gem_object *obj,
1788 pgoff_t page_offset,
1791 struct i915_ggtt_view view;
1793 if (i915_gem_object_is_tiled(obj))
1794 chunk = roundup(chunk, tile_row_pages(obj));
1796 view.type = I915_GGTT_VIEW_PARTIAL;
1797 view.partial.offset = rounddown(page_offset, chunk);
1799 min_t(unsigned int, chunk,
1800 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1802 /* If the partial covers the entire object, just create a normal VMA. */
1803 if (chunk >= obj->base.size >> PAGE_SHIFT)
1804 view.type = I915_GGTT_VIEW_NORMAL;
1810 * i915_gem_fault - fault a page into the GTT
1813 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814 * from userspace. The fault handler takes care of binding the object to
1815 * the GTT (if needed), allocating and programming a fence register (again,
1816 * only if needed based on whether the old reg is still valid or the object
1817 * is tiled) and inserting a new PTE into the faulting process.
1819 * Note that the faulting process may involve evicting existing objects
1820 * from the GTT and/or fence registers to make room. So performance may
1821 * suffer if the GTT working set is large or there are few fence registers
1824 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1827 int i915_gem_fault(struct vm_fault *vmf)
1829 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830 struct vm_area_struct *area = vmf->vma;
1831 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832 struct drm_device *dev = obj->base.dev;
1833 struct drm_i915_private *dev_priv = to_i915(dev);
1834 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1836 struct i915_vma *vma;
1837 pgoff_t page_offset;
1841 /* We don't use vmf->pgoff since that has the fake offset */
1842 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1844 trace_i915_gem_object_fault(obj, page_offset, true, write);
1846 /* Try to flush the object off the GPU first without holding the lock.
1847 * Upon acquiring the lock, we will perform our sanity checks and then
1848 * repeat the flush holding the lock in the normal manner to catch cases
1849 * where we are gazumped.
1851 ret = i915_gem_object_wait(obj,
1852 I915_WAIT_INTERRUPTIBLE,
1853 MAX_SCHEDULE_TIMEOUT,
1858 ret = i915_gem_object_pin_pages(obj);
1862 intel_runtime_pm_get(dev_priv);
1864 ret = i915_mutex_lock_interruptible(dev);
1868 /* Access to snoopable pages through the GTT is incoherent. */
1869 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1874 /* If the object is smaller than a couple of partial vma, it is
1875 * not worth only creating a single partial vma - we may as well
1876 * clear enough space for the full object.
1878 flags = PIN_MAPPABLE;
1879 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1882 /* Now pin it into the GTT as needed */
1883 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1885 /* Use a partial view if it is bigger than available space */
1886 struct i915_ggtt_view view =
1887 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1889 /* Userspace is now writing through an untracked VMA, abandon
1890 * all hope that the hardware is able to track future writes.
1892 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1894 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1901 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1905 ret = i915_vma_get_fence(vma);
1909 /* Mark as being mmapped into userspace for later revocation */
1910 assert_rpm_wakelock_held(dev_priv);
1911 if (list_empty(&obj->userfault_link))
1912 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1914 /* Finally, remap it using the new GTT offset */
1915 ret = remap_io_mapping(area,
1916 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 min_t(u64, vma->size, area->vm_end - area->vm_start),
1922 __i915_vma_unpin(vma);
1924 mutex_unlock(&dev->struct_mutex);
1926 intel_runtime_pm_put(dev_priv);
1927 i915_gem_object_unpin_pages(obj);
1932 * We eat errors when the gpu is terminally wedged to avoid
1933 * userspace unduly crashing (gl has no provisions for mmaps to
1934 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 * and so needs to be reported.
1937 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 ret = VM_FAULT_SIGBUS;
1943 * EAGAIN means the gpu is hung and we'll wait for the error
1944 * handler to reset everything when re-faulting in
1945 * i915_mutex_lock_interruptible.
1952 * EBUSY is ok: this just means that another thread
1953 * already did the job.
1955 ret = VM_FAULT_NOPAGE;
1962 ret = VM_FAULT_SIGBUS;
1965 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 ret = VM_FAULT_SIGBUS;
1973 * i915_gem_release_mmap - remove physical page mappings
1974 * @obj: obj in question
1976 * Preserve the reservation of the mmapping with the DRM core code, but
1977 * relinquish ownership of the pages back to the system.
1979 * It is vital that we remove the page mapping if we have mapped a tiled
1980 * object through the GTT and then lose the fence register due to
1981 * resource pressure. Similarly if the object has been moved out of the
1982 * aperture, than pages mapped into userspace must be revoked. Removing the
1983 * mapping will then trigger a page fault on the next user access, allowing
1984 * fixup by i915_gem_fault().
1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1989 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1991 /* Serialisation between user GTT access and our code depends upon
1992 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 * pagefault then has to wait until we release the mutex.
1995 * Note that RPM complicates somewhat by adding an additional
1996 * requirement that operations to the GGTT be made holding the RPM
1999 lockdep_assert_held(&i915->drm.struct_mutex);
2000 intel_runtime_pm_get(i915);
2002 if (list_empty(&obj->userfault_link))
2005 list_del_init(&obj->userfault_link);
2006 drm_vma_node_unmap(&obj->base.vma_node,
2007 obj->base.dev->anon_inode->i_mapping);
2009 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 * memory transactions from userspace before we return. The TLB
2011 * flushing implied above by changing the PTE above *should* be
2012 * sufficient, an extra barrier here just provides us with a bit
2013 * of paranoid documentation about our requirement to serialise
2014 * memory writes before touching registers / GSM.
2019 intel_runtime_pm_put(i915);
2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024 struct drm_i915_gem_object *obj, *on;
2028 * Only called during RPM suspend. All users of the userfault_list
2029 * must be holding an RPM wakeref to ensure that this can not
2030 * run concurrently with themselves (and use the struct_mutex for
2031 * protection between themselves).
2034 list_for_each_entry_safe(obj, on,
2035 &dev_priv->mm.userfault_list, userfault_link) {
2036 list_del_init(&obj->userfault_link);
2037 drm_vma_node_unmap(&obj->base.vma_node,
2038 obj->base.dev->anon_inode->i_mapping);
2041 /* The fence will be lost when the device powers down. If any were
2042 * in use by hardware (i.e. they are pinned), we should not be powering
2043 * down! All other fences will be reacquired by the user upon waking.
2045 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2048 /* Ideally we want to assert that the fence register is not
2049 * live at this point (i.e. that no piece of code will be
2050 * trying to write through fence + GTT, as that both violates
2051 * our tracking of activity and associated locking/barriers,
2052 * but also is illegal given that the hw is powered down).
2054 * Previously we used reg->pin_count as a "liveness" indicator.
2055 * That is not sufficient, and we need a more fine-grained
2056 * tool if we want to have a sanity check here.
2062 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link));
2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2069 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2072 err = drm_gem_create_mmap_offset(&obj->base);
2076 /* Attempt to reap some mmap space from dead objects */
2078 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2082 i915_gem_drain_freed_objects(dev_priv);
2083 err = drm_gem_create_mmap_offset(&obj->base);
2087 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2094 drm_gem_free_mmap_offset(&obj->base);
2098 i915_gem_mmap_gtt(struct drm_file *file,
2099 struct drm_device *dev,
2103 struct drm_i915_gem_object *obj;
2106 obj = i915_gem_object_lookup(file, handle);
2110 ret = i915_gem_object_create_mmap_offset(obj);
2112 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2114 i915_gem_object_put(obj);
2119 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2121 * @data: GTT mapping ioctl data
2122 * @file: GEM object info
2124 * Simply returns the fake offset to userspace so it can mmap it.
2125 * The mmap call will end up in drm_gem_mmap(), which will set things
2126 * up so we can get faults in the handler above.
2128 * The fault handler will take care of binding the object into the GTT
2129 * (since it may have been evicted to make room for something), allocating
2130 * a fence register, and mapping the appropriate aperture address into
2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 struct drm_file *file)
2137 struct drm_i915_gem_mmap_gtt *args = data;
2139 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2142 /* Immediately discard the backing storage */
2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2146 i915_gem_object_free_mmap_offset(obj);
2148 if (obj->base.filp == NULL)
2151 /* Our goal here is to return as much of the memory as
2152 * is possible back to the system as we are called from OOM.
2153 * To do this we must instruct the shmfs to drop all of its
2154 * backing pages, *now*.
2156 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157 obj->mm.madv = __I915_MADV_PURGED;
2158 obj->mm.pages = ERR_PTR(-EFAULT);
2161 /* Try to discard unwanted pages */
2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2164 struct address_space *mapping;
2166 lockdep_assert_held(&obj->mm.lock);
2167 GEM_BUG_ON(obj->mm.pages);
2169 switch (obj->mm.madv) {
2170 case I915_MADV_DONTNEED:
2171 i915_gem_object_truncate(obj);
2172 case __I915_MADV_PURGED:
2176 if (obj->base.filp == NULL)
2179 mapping = obj->base.filp->f_mapping,
2180 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 struct sg_table *pages)
2187 struct sgt_iter sgt_iter;
2190 __i915_gem_object_release_shmem(obj, pages, true);
2192 i915_gem_gtt_finish_pages(obj, pages);
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj, pages);
2197 for_each_sgt_page(page, sgt_iter, pages) {
2199 set_page_dirty(page);
2201 if (obj->mm.madv == I915_MADV_WILLNEED)
2202 mark_page_accessed(page);
2206 obj->mm.dirty = false;
2208 sg_free_table(pages);
2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2214 struct radix_tree_iter iter;
2217 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2218 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2221 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2222 enum i915_mm_subclass subclass)
2224 struct sg_table *pages;
2226 if (i915_gem_object_has_pinned_pages(obj))
2229 GEM_BUG_ON(obj->bind_count);
2230 if (!READ_ONCE(obj->mm.pages))
2233 /* May be called by shrinker from within get_pages() (on another bo) */
2234 mutex_lock_nested(&obj->mm.lock, subclass);
2235 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2238 /* ->put_pages might need to allocate memory for the bit17 swizzle
2239 * array, hence protect them from being reaped by removing them from gtt
2241 pages = fetch_and_zero(&obj->mm.pages);
2244 if (obj->mm.mapping) {
2247 ptr = page_mask_bits(obj->mm.mapping);
2248 if (is_vmalloc_addr(ptr))
2251 kunmap(kmap_to_page(ptr));
2253 obj->mm.mapping = NULL;
2256 __i915_gem_object_reset_page_iter(obj);
2259 obj->ops->put_pages(obj, pages);
2262 mutex_unlock(&obj->mm.lock);
2265 static bool i915_sg_trim(struct sg_table *orig_st)
2267 struct sg_table new_st;
2268 struct scatterlist *sg, *new_sg;
2271 if (orig_st->nents == orig_st->orig_nents)
2274 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2277 new_sg = new_st.sgl;
2278 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2279 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2280 /* called before being DMA mapped, no need to copy sg->dma_* */
2281 new_sg = sg_next(new_sg);
2283 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2285 sg_free_table(orig_st);
2291 static struct sg_table *
2292 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2297 struct address_space *mapping;
2298 struct sg_table *st;
2299 struct scatterlist *sg;
2300 struct sgt_iter sgt_iter;
2302 unsigned long last_pfn = 0; /* suppress gcc warning */
2303 unsigned int max_segment;
2307 /* Assert that the object is not currently in any GPU domain. As it
2308 * wasn't in the GTT, there shouldn't be any way it could have been in
2311 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2312 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2314 max_segment = swiotlb_max_segment();
2316 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2318 st = kmalloc(sizeof(*st), GFP_KERNEL);
2320 return ERR_PTR(-ENOMEM);
2323 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2325 return ERR_PTR(-ENOMEM);
2328 /* Get the list of pages out of our struct file. They'll be pinned
2329 * at this point until we release them.
2331 * Fail silently without starting the shrinker
2333 mapping = obj->base.filp->f_mapping;
2334 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2335 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2339 for (i = 0; i < page_count; i++) {
2340 const unsigned int shrink[] = {
2341 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2344 gfp_t gfp = noreclaim;
2347 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2348 if (likely(!IS_ERR(page)))
2352 ret = PTR_ERR(page);
2356 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2359 /* We've tried hard to allocate the memory by reaping
2360 * our own buffer, now let the real VM do its job and
2361 * go down in flames if truly OOM.
2363 * However, since graphics tend to be disposable,
2364 * defer the oom here by reporting the ENOMEM back
2368 /* reclaim and warn, but no oom */
2369 gfp = mapping_gfp_mask(mapping);
2371 /* Our bo are always dirty and so we require
2372 * kswapd to reclaim our pages (direct reclaim
2373 * does not effectively begin pageout of our
2374 * buffers on its own). However, direct reclaim
2375 * only waits for kswapd when under allocation
2376 * congestion. So as a result __GFP_RECLAIM is
2377 * unreliable and fails to actually reclaim our
2378 * dirty pages -- unless you try over and over
2379 * again with !__GFP_NORETRY. However, we still
2380 * want to fail this allocation rather than
2381 * trigger the out-of-memory killer and for
2382 * this we want __GFP_RETRY_MAYFAIL.
2384 gfp |= __GFP_RETRY_MAYFAIL;
2389 sg->length >= max_segment ||
2390 page_to_pfn(page) != last_pfn + 1) {
2394 sg_set_page(sg, page, PAGE_SIZE, 0);
2396 sg->length += PAGE_SIZE;
2398 last_pfn = page_to_pfn(page);
2400 /* Check that the i965g/gm workaround works. */
2401 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2403 if (sg) /* loop terminated early; short sg table */
2406 /* Trim unused sg entries to avoid wasting memory. */
2409 ret = i915_gem_gtt_prepare_pages(obj, st);
2411 /* DMA remapping failed? One possible cause is that
2412 * it could not reserve enough large entries, asking
2413 * for PAGE_SIZE chunks instead may be helpful.
2415 if (max_segment > PAGE_SIZE) {
2416 for_each_sgt_page(page, sgt_iter, st)
2420 max_segment = PAGE_SIZE;
2423 dev_warn(&dev_priv->drm.pdev->dev,
2424 "Failed to DMA remap %lu pages\n",
2430 if (i915_gem_object_needs_bit17_swizzle(obj))
2431 i915_gem_object_do_bit_17_swizzle(obj, st);
2438 for_each_sgt_page(page, sgt_iter, st)
2443 /* shmemfs first checks if there is enough memory to allocate the page
2444 * and reports ENOSPC should there be insufficient, along with the usual
2445 * ENOMEM for a genuine allocation failure.
2447 * We use ENOSPC in our driver to mean that we have run out of aperture
2448 * space and so want to translate the error from shmemfs back to our
2449 * usual understanding of ENOMEM.
2454 return ERR_PTR(ret);
2457 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2458 struct sg_table *pages)
2460 lockdep_assert_held(&obj->mm.lock);
2462 obj->mm.get_page.sg_pos = pages->sgl;
2463 obj->mm.get_page.sg_idx = 0;
2465 obj->mm.pages = pages;
2467 if (i915_gem_object_is_tiled(obj) &&
2468 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2469 GEM_BUG_ON(obj->mm.quirked);
2470 __i915_gem_object_pin_pages(obj);
2471 obj->mm.quirked = true;
2475 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2477 struct sg_table *pages;
2479 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2481 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2482 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2486 pages = obj->ops->get_pages(obj);
2487 if (unlikely(IS_ERR(pages)))
2488 return PTR_ERR(pages);
2490 __i915_gem_object_set_pages(obj, pages);
2494 /* Ensure that the associated pages are gathered from the backing storage
2495 * and pinned into our object. i915_gem_object_pin_pages() may be called
2496 * multiple times before they are released by a single call to
2497 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2498 * either as a result of memory pressure (reaping pages under the shrinker)
2499 * or as the object is itself released.
2501 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2505 err = mutex_lock_interruptible(&obj->mm.lock);
2509 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2510 err = ____i915_gem_object_get_pages(obj);
2514 smp_mb__before_atomic();
2516 atomic_inc(&obj->mm.pages_pin_count);
2519 mutex_unlock(&obj->mm.lock);
2523 /* The 'mapping' part of i915_gem_object_pin_map() below */
2524 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2525 enum i915_map_type type)
2527 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2528 struct sg_table *sgt = obj->mm.pages;
2529 struct sgt_iter sgt_iter;
2531 struct page *stack_pages[32];
2532 struct page **pages = stack_pages;
2533 unsigned long i = 0;
2537 /* A single page can always be kmapped */
2538 if (n_pages == 1 && type == I915_MAP_WB)
2539 return kmap(sg_page(sgt->sgl));
2541 if (n_pages > ARRAY_SIZE(stack_pages)) {
2542 /* Too big for stack -- allocate temporary array instead */
2543 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2548 for_each_sgt_page(page, sgt_iter, sgt)
2551 /* Check that we have the expected number of pages */
2552 GEM_BUG_ON(i != n_pages);
2557 /* fallthrough to use PAGE_KERNEL anyway */
2559 pgprot = PAGE_KERNEL;
2562 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2565 addr = vmap(pages, n_pages, 0, pgprot);
2567 if (pages != stack_pages)
2573 /* get, pin, and map the pages of the object into kernel space */
2574 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2575 enum i915_map_type type)
2577 enum i915_map_type has_type;
2582 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2584 ret = mutex_lock_interruptible(&obj->mm.lock);
2586 return ERR_PTR(ret);
2588 pinned = !(type & I915_MAP_OVERRIDE);
2589 type &= ~I915_MAP_OVERRIDE;
2591 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2592 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2593 ret = ____i915_gem_object_get_pages(obj);
2597 smp_mb__before_atomic();
2599 atomic_inc(&obj->mm.pages_pin_count);
2602 GEM_BUG_ON(!obj->mm.pages);
2604 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2605 if (ptr && has_type != type) {
2611 if (is_vmalloc_addr(ptr))
2614 kunmap(kmap_to_page(ptr));
2616 ptr = obj->mm.mapping = NULL;
2620 ptr = i915_gem_object_map(obj, type);
2626 obj->mm.mapping = page_pack_bits(ptr, type);
2630 mutex_unlock(&obj->mm.lock);
2634 atomic_dec(&obj->mm.pages_pin_count);
2641 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2642 const struct drm_i915_gem_pwrite *arg)
2644 struct address_space *mapping = obj->base.filp->f_mapping;
2645 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2649 /* Before we instantiate/pin the backing store for our use, we
2650 * can prepopulate the shmemfs filp efficiently using a write into
2651 * the pagecache. We avoid the penalty of instantiating all the
2652 * pages, important if the user is just writing to a few and never
2653 * uses the object on the GPU, and using a direct write into shmemfs
2654 * allows it to avoid the cost of retrieving a page (either swapin
2655 * or clearing-before-use) before it is overwritten.
2657 if (READ_ONCE(obj->mm.pages))
2660 /* Before the pages are instantiated the object is treated as being
2661 * in the CPU domain. The pages will be clflushed as required before
2662 * use, and we can freely write into the pages directly. If userspace
2663 * races pwrite with any other operation; corruption will ensue -
2664 * that is userspace's prerogative!
2668 offset = arg->offset;
2669 pg = offset_in_page(offset);
2672 unsigned int len, unwritten;
2677 len = PAGE_SIZE - pg;
2681 err = pagecache_write_begin(obj->base.filp, mapping,
2688 unwritten = copy_from_user(vaddr + pg, user_data, len);
2691 err = pagecache_write_end(obj->base.filp, mapping,
2692 offset, len, len - unwritten,
2709 static bool ban_context(const struct i915_gem_context *ctx,
2712 return (i915_gem_context_is_bannable(ctx) &&
2713 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2716 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2721 atomic_inc(&ctx->guilty_count);
2723 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2724 banned = ban_context(ctx, score);
2725 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2726 ctx->name, score, yesno(banned));
2730 i915_gem_context_set_banned(ctx);
2731 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2732 atomic_inc(&ctx->file_priv->context_bans);
2733 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2734 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2738 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2740 atomic_inc(&ctx->active_count);
2743 struct drm_i915_gem_request *
2744 i915_gem_find_active_request(struct intel_engine_cs *engine)
2746 struct drm_i915_gem_request *request, *active = NULL;
2747 unsigned long flags;
2749 /* We are called by the error capture and reset at a random
2750 * point in time. In particular, note that neither is crucially
2751 * ordered with an interrupt. After a hang, the GPU is dead and we
2752 * assume that no more writes can happen (we waited long enough for
2753 * all writes that were in transaction to be flushed) - adding an
2754 * extra delay for a recent interrupt is pointless. Hence, we do
2755 * not need an engine->irq_seqno_barrier() before the seqno reads.
2757 spin_lock_irqsave(&engine->timeline->lock, flags);
2758 list_for_each_entry(request, &engine->timeline->requests, link) {
2759 if (__i915_gem_request_completed(request,
2760 request->global_seqno))
2763 GEM_BUG_ON(request->engine != engine);
2764 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2765 &request->fence.flags));
2770 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2775 static bool engine_stalled(struct intel_engine_cs *engine)
2777 if (!engine->hangcheck.stalled)
2780 /* Check for possible seqno movement after hang declaration */
2781 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2782 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2790 * Ensure irq handler finishes, and not run again.
2791 * Also return the active request so that we only search for it once.
2793 struct drm_i915_gem_request *
2794 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2796 struct drm_i915_gem_request *request = NULL;
2798 /* Prevent the signaler thread from updating the request
2799 * state (by calling dma_fence_signal) as we are processing
2800 * the reset. The write from the GPU of the seqno is
2801 * asynchronous and the signaler thread may see a different
2802 * value to us and declare the request complete, even though
2803 * the reset routine have picked that request as the active
2804 * (incomplete) request. This conflict is not handled
2807 kthread_park(engine->breadcrumbs.signaler);
2809 /* Prevent request submission to the hardware until we have
2810 * completed the reset in i915_gem_reset_finish(). If a request
2811 * is completed by one engine, it may then queue a request
2812 * to a second via its engine->irq_tasklet *just* as we are
2813 * calling engine->init_hw() and also writing the ELSP.
2814 * Turning off the engine->irq_tasklet until the reset is over
2815 * prevents the race.
2817 tasklet_kill(&engine->irq_tasklet);
2818 tasklet_disable(&engine->irq_tasklet);
2820 if (engine->irq_seqno_barrier)
2821 engine->irq_seqno_barrier(engine);
2823 request = i915_gem_find_active_request(engine);
2824 if (request && request->fence.error == -EIO)
2825 request = ERR_PTR(-EIO); /* Previous reset failed! */
2830 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2832 struct intel_engine_cs *engine;
2833 struct drm_i915_gem_request *request;
2834 enum intel_engine_id id;
2837 for_each_engine(engine, dev_priv, id) {
2838 request = i915_gem_reset_prepare_engine(engine);
2839 if (IS_ERR(request)) {
2840 err = PTR_ERR(request);
2844 engine->hangcheck.active_request = request;
2847 i915_gem_revoke_fences(dev_priv);
2852 static void skip_request(struct drm_i915_gem_request *request)
2854 void *vaddr = request->ring->vaddr;
2857 /* As this request likely depends on state from the lost
2858 * context, clear out all the user operations leaving the
2859 * breadcrumb at the end (so we get the fence notifications).
2861 head = request->head;
2862 if (request->postfix < head) {
2863 memset(vaddr + head, 0, request->ring->size - head);
2866 memset(vaddr + head, 0, request->postfix - head);
2868 dma_fence_set_error(&request->fence, -EIO);
2871 static void engine_skip_context(struct drm_i915_gem_request *request)
2873 struct intel_engine_cs *engine = request->engine;
2874 struct i915_gem_context *hung_ctx = request->ctx;
2875 struct intel_timeline *timeline;
2876 unsigned long flags;
2878 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2880 spin_lock_irqsave(&engine->timeline->lock, flags);
2881 spin_lock(&timeline->lock);
2883 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2884 if (request->ctx == hung_ctx)
2885 skip_request(request);
2887 list_for_each_entry(request, &timeline->requests, link)
2888 skip_request(request);
2890 spin_unlock(&timeline->lock);
2891 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2894 /* Returns the request if it was guilty of the hang */
2895 static struct drm_i915_gem_request *
2896 i915_gem_reset_request(struct intel_engine_cs *engine,
2897 struct drm_i915_gem_request *request)
2899 /* The guilty request will get skipped on a hung engine.
2901 * Users of client default contexts do not rely on logical
2902 * state preserved between batches so it is safe to execute
2903 * queued requests following the hang. Non default contexts
2904 * rely on preserved state, so skipping a batch loses the
2905 * evolution of the state and it needs to be considered corrupted.
2906 * Executing more queued batches on top of corrupted state is
2907 * risky. But we take the risk by trying to advance through
2908 * the queued requests in order to make the client behaviour
2909 * more predictable around resets, by not throwing away random
2910 * amount of batches it has prepared for execution. Sophisticated
2911 * clients can use gem_reset_stats_ioctl and dma fence status
2912 * (exported via sync_file info ioctl on explicit fences) to observe
2913 * when it loses the context state and should rebuild accordingly.
2915 * The context ban, and ultimately the client ban, mechanism are safety
2916 * valves if client submission ends up resulting in nothing more than
2920 if (engine_stalled(engine)) {
2921 i915_gem_context_mark_guilty(request->ctx);
2922 skip_request(request);
2924 /* If this context is now banned, skip all pending requests. */
2925 if (i915_gem_context_is_banned(request->ctx))
2926 engine_skip_context(request);
2929 * Since this is not the hung engine, it may have advanced
2930 * since the hang declaration. Double check by refinding
2931 * the active request at the time of the reset.
2933 request = i915_gem_find_active_request(engine);
2935 i915_gem_context_mark_innocent(request->ctx);
2936 dma_fence_set_error(&request->fence, -EAGAIN);
2938 /* Rewind the engine to replay the incomplete rq */
2939 spin_lock_irq(&engine->timeline->lock);
2940 request = list_prev_entry(request, link);
2941 if (&request->link == &engine->timeline->requests)
2943 spin_unlock_irq(&engine->timeline->lock);
2950 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2951 struct drm_i915_gem_request *request)
2953 engine->irq_posted = 0;
2956 request = i915_gem_reset_request(engine, request);
2959 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2960 engine->name, request->global_seqno);
2963 /* Setup the CS to resume from the breadcrumb of the hung request */
2964 engine->reset_hw(engine, request);
2967 void i915_gem_reset(struct drm_i915_private *dev_priv)
2969 struct intel_engine_cs *engine;
2970 enum intel_engine_id id;
2972 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2974 i915_gem_retire_requests(dev_priv);
2976 for_each_engine(engine, dev_priv, id) {
2977 struct i915_gem_context *ctx;
2979 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2980 ctx = fetch_and_zero(&engine->last_retired_context);
2982 engine->context_unpin(engine, ctx);
2985 i915_gem_restore_fences(dev_priv);
2987 if (dev_priv->gt.awake) {
2988 intel_sanitize_gt_powersave(dev_priv);
2989 intel_enable_gt_powersave(dev_priv);
2990 if (INTEL_GEN(dev_priv) >= 6)
2991 gen6_rps_busy(dev_priv);
2995 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2997 tasklet_enable(&engine->irq_tasklet);
2998 kthread_unpark(engine->breadcrumbs.signaler);
3001 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3003 struct intel_engine_cs *engine;
3004 enum intel_engine_id id;
3006 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3008 for_each_engine(engine, dev_priv, id) {
3009 engine->hangcheck.active_request = NULL;
3010 i915_gem_reset_finish_engine(engine);
3014 static void nop_submit_request(struct drm_i915_gem_request *request)
3016 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3017 dma_fence_set_error(&request->fence, -EIO);
3018 i915_gem_request_submit(request);
3019 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3022 static void engine_set_wedged(struct intel_engine_cs *engine)
3024 struct drm_i915_gem_request *request;
3025 unsigned long flags;
3027 /* We need to be sure that no thread is running the old callback as
3028 * we install the nop handler (otherwise we would submit a request
3029 * to hardware that will never complete). In order to prevent this
3030 * race, we wait until the machine is idle before making the swap
3031 * (using stop_machine()).
3033 engine->submit_request = nop_submit_request;
3035 /* Mark all executing requests as skipped */
3036 spin_lock_irqsave(&engine->timeline->lock, flags);
3037 list_for_each_entry(request, &engine->timeline->requests, link)
3038 if (!i915_gem_request_completed(request))
3039 dma_fence_set_error(&request->fence, -EIO);
3040 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3043 * Clear the execlists queue up before freeing the requests, as those
3044 * are the ones that keep the context and ringbuffer backing objects
3048 if (i915.enable_execlists) {
3049 struct execlist_port *port = engine->execlist_port;
3050 unsigned long flags;
3053 spin_lock_irqsave(&engine->timeline->lock, flags);
3055 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3056 i915_gem_request_put(port_request(&port[n]));
3057 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3058 engine->execlist_queue = RB_ROOT;
3059 engine->execlist_first = NULL;
3061 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3063 /* The port is checked prior to scheduling a tasklet, but
3064 * just in case we have suspended the tasklet to do the
3065 * wedging make sure that when it wakes, it decides there
3066 * is no work to do by clearing the irq_posted bit.
3068 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3071 /* Mark all pending requests as complete so that any concurrent
3072 * (lockless) lookup doesn't try and wait upon the request as we
3075 intel_engine_init_global_seqno(engine,
3076 intel_engine_last_submit(engine));
3079 static int __i915_gem_set_wedged_BKL(void *data)
3081 struct drm_i915_private *i915 = data;
3082 struct intel_engine_cs *engine;
3083 enum intel_engine_id id;
3085 for_each_engine(engine, i915, id)
3086 engine_set_wedged(engine);
3088 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3089 wake_up_all(&i915->gpu_error.reset_queue);
3094 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3096 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3099 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3101 struct i915_gem_timeline *tl;
3104 lockdep_assert_held(&i915->drm.struct_mutex);
3105 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3108 /* Before unwedging, make sure that all pending operations
3109 * are flushed and errored out - we may have requests waiting upon
3110 * third party fences. We marked all inflight requests as EIO, and
3111 * every execbuf since returned EIO, for consistency we want all
3112 * the currently pending requests to also be marked as EIO, which
3113 * is done inside our nop_submit_request - and so we must wait.
3115 * No more can be submitted until we reset the wedged bit.
3117 list_for_each_entry(tl, &i915->gt.timelines, link) {
3118 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3119 struct drm_i915_gem_request *rq;
3121 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3122 &i915->drm.struct_mutex);
3126 /* We can't use our normal waiter as we want to
3127 * avoid recursively trying to handle the current
3128 * reset. The basic dma_fence_default_wait() installs
3129 * a callback for dma_fence_signal(), which is
3130 * triggered by our nop handler (indirectly, the
3131 * callback enables the signaler thread which is
3132 * woken by the nop_submit_request() advancing the seqno
3133 * and when the seqno passes the fence, the signaler
3134 * then signals the fence waking us up).
3136 if (dma_fence_default_wait(&rq->fence, true,
3137 MAX_SCHEDULE_TIMEOUT) < 0)
3142 /* Undo nop_submit_request. We prevent all new i915 requests from
3143 * being queued (by disallowing execbuf whilst wedged) so having
3144 * waited for all active requests above, we know the system is idle
3145 * and do not have to worry about a thread being inside
3146 * engine->submit_request() as we swap over. So unlike installing
3147 * the nop_submit_request on reset, we can do this from normal
3148 * context and do not require stop_machine().
3150 intel_engines_reset_default_submission(i915);
3151 i915_gem_contexts_lost(i915);
3153 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3154 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3160 i915_gem_retire_work_handler(struct work_struct *work)
3162 struct drm_i915_private *dev_priv =
3163 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3164 struct drm_device *dev = &dev_priv->drm;
3166 /* Come back later if the device is busy... */
3167 if (mutex_trylock(&dev->struct_mutex)) {
3168 i915_gem_retire_requests(dev_priv);
3169 mutex_unlock(&dev->struct_mutex);
3172 /* Keep the retire handler running until we are finally idle.
3173 * We do not need to do this test under locking as in the worst-case
3174 * we queue the retire worker once too often.
3176 if (READ_ONCE(dev_priv->gt.awake)) {
3177 i915_queue_hangcheck(dev_priv);
3178 queue_delayed_work(dev_priv->wq,
3179 &dev_priv->gt.retire_work,
3180 round_jiffies_up_relative(HZ));
3185 i915_gem_idle_work_handler(struct work_struct *work)
3187 struct drm_i915_private *dev_priv =
3188 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3189 struct drm_device *dev = &dev_priv->drm;
3190 bool rearm_hangcheck;
3192 if (!READ_ONCE(dev_priv->gt.awake))
3196 * Wait for last execlists context complete, but bail out in case a
3197 * new request is submitted.
3199 wait_for(intel_engines_are_idle(dev_priv), 10);
3200 if (READ_ONCE(dev_priv->gt.active_requests))
3204 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3206 if (!mutex_trylock(&dev->struct_mutex)) {
3207 /* Currently busy, come back later */
3208 mod_delayed_work(dev_priv->wq,
3209 &dev_priv->gt.idle_work,
3210 msecs_to_jiffies(50));
3215 * New request retired after this work handler started, extend active
3216 * period until next instance of the work.
3218 if (work_pending(work))
3221 if (dev_priv->gt.active_requests)
3224 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3225 DRM_ERROR("Timeout waiting for engines to idle\n");
3227 intel_engines_mark_idle(dev_priv);
3228 i915_gem_timelines_mark_idle(dev_priv);
3230 GEM_BUG_ON(!dev_priv->gt.awake);
3231 dev_priv->gt.awake = false;
3232 rearm_hangcheck = false;
3234 if (INTEL_GEN(dev_priv) >= 6)
3235 gen6_rps_idle(dev_priv);
3236 intel_runtime_pm_put(dev_priv);
3238 mutex_unlock(&dev->struct_mutex);
3241 if (rearm_hangcheck) {
3242 GEM_BUG_ON(!dev_priv->gt.awake);
3243 i915_queue_hangcheck(dev_priv);
3247 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3249 struct drm_i915_private *i915 = to_i915(gem->dev);
3250 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3251 struct drm_i915_file_private *fpriv = file->driver_priv;
3252 struct i915_lut_handle *lut, *ln;
3254 mutex_lock(&i915->drm.struct_mutex);
3256 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3257 struct i915_gem_context *ctx = lut->ctx;
3258 struct i915_vma *vma;
3260 if (ctx->file_priv != fpriv)
3263 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3265 GEM_BUG_ON(vma->obj != obj);
3267 /* We allow the process to have multiple handles to the same
3268 * vma, in the same fd namespace, by virtue of flink/open.
3270 GEM_BUG_ON(!vma->open_count);
3271 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3272 i915_vma_close(vma);
3274 list_del(&lut->obj_link);
3275 list_del(&lut->ctx_link);
3277 kmem_cache_free(i915->luts, lut);
3278 __i915_gem_object_release_unless_active(obj);
3281 mutex_unlock(&i915->drm.struct_mutex);
3284 static unsigned long to_wait_timeout(s64 timeout_ns)
3287 return MAX_SCHEDULE_TIMEOUT;
3289 if (timeout_ns == 0)
3292 return nsecs_to_jiffies_timeout(timeout_ns);
3296 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3297 * @dev: drm device pointer
3298 * @data: ioctl data blob
3299 * @file: drm file pointer
3301 * Returns 0 if successful, else an error is returned with the remaining time in
3302 * the timeout parameter.
3303 * -ETIME: object is still busy after timeout
3304 * -ERESTARTSYS: signal interrupted the wait
3305 * -ENONENT: object doesn't exist
3306 * Also possible, but rare:
3307 * -EAGAIN: incomplete, restart syscall
3309 * -ENODEV: Internal IRQ fail
3310 * -E?: The add request failed
3312 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3313 * non-zero timeout parameter the wait ioctl will wait for the given number of
3314 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3315 * without holding struct_mutex the object may become re-busied before this
3316 * function completes. A similar but shorter * race condition exists in the busy
3320 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3322 struct drm_i915_gem_wait *args = data;
3323 struct drm_i915_gem_object *obj;
3327 if (args->flags != 0)
3330 obj = i915_gem_object_lookup(file, args->bo_handle);
3334 start = ktime_get();
3336 ret = i915_gem_object_wait(obj,
3337 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3338 to_wait_timeout(args->timeout_ns),
3339 to_rps_client(file));
3341 if (args->timeout_ns > 0) {
3342 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3343 if (args->timeout_ns < 0)
3344 args->timeout_ns = 0;
3347 * Apparently ktime isn't accurate enough and occasionally has a
3348 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3349 * things up to make the test happy. We allow up to 1 jiffy.
3351 * This is a regression from the timespec->ktime conversion.
3353 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3354 args->timeout_ns = 0;
3356 /* Asked to wait beyond the jiffie/scheduler precision? */
3357 if (ret == -ETIME && args->timeout_ns)
3361 i915_gem_object_put(obj);
3365 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3369 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3370 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3378 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3380 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3383 static int wait_for_engines(struct drm_i915_private *i915)
3385 struct intel_engine_cs *engine;
3386 enum intel_engine_id id;
3388 for_each_engine(engine, i915, id) {
3389 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3390 i915_gem_set_wedged(i915);
3394 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3395 intel_engine_last_submit(engine));
3401 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3405 /* If the device is asleep, we have no requests outstanding */
3406 if (!READ_ONCE(i915->gt.awake))
3409 if (flags & I915_WAIT_LOCKED) {
3410 struct i915_gem_timeline *tl;
3412 lockdep_assert_held(&i915->drm.struct_mutex);
3414 list_for_each_entry(tl, &i915->gt.timelines, link) {
3415 ret = wait_for_timeline(tl, flags);
3420 i915_gem_retire_requests(i915);
3421 GEM_BUG_ON(i915->gt.active_requests);
3423 ret = wait_for_engines(i915);
3425 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3431 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3434 * We manually flush the CPU domain so that we can override and
3435 * force the flush for the display, and perform it asyncrhonously.
3437 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3438 if (obj->cache_dirty)
3439 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3440 obj->base.write_domain = 0;
3443 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3445 if (!READ_ONCE(obj->pin_display))
3448 mutex_lock(&obj->base.dev->struct_mutex);
3449 __i915_gem_object_flush_for_display(obj);
3450 mutex_unlock(&obj->base.dev->struct_mutex);
3454 * Moves a single object to the WC read, and possibly write domain.
3455 * @obj: object to act on
3456 * @write: ask for write access or read only
3458 * This function returns when the move is complete, including waiting on
3462 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3466 lockdep_assert_held(&obj->base.dev->struct_mutex);
3468 ret = i915_gem_object_wait(obj,
3469 I915_WAIT_INTERRUPTIBLE |
3471 (write ? I915_WAIT_ALL : 0),
3472 MAX_SCHEDULE_TIMEOUT,
3477 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3480 /* Flush and acquire obj->pages so that we are coherent through
3481 * direct access in memory with previous cached writes through
3482 * shmemfs and that our cache domain tracking remains valid.
3483 * For example, if the obj->filp was moved to swap without us
3484 * being notified and releasing the pages, we would mistakenly
3485 * continue to assume that the obj remained out of the CPU cached
3488 ret = i915_gem_object_pin_pages(obj);
3492 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3494 /* Serialise direct access to this object with the barriers for
3495 * coherent writes from the GPU, by effectively invalidating the
3496 * WC domain upon first access.
3498 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3501 /* It should now be out of any other write domains, and we can update
3502 * the domain values for our changes.
3504 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3505 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3507 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3508 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3509 obj->mm.dirty = true;
3512 i915_gem_object_unpin_pages(obj);
3517 * Moves a single object to the GTT read, and possibly write domain.
3518 * @obj: object to act on
3519 * @write: ask for write access or read only
3521 * This function returns when the move is complete, including waiting on
3525 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3529 lockdep_assert_held(&obj->base.dev->struct_mutex);
3531 ret = i915_gem_object_wait(obj,
3532 I915_WAIT_INTERRUPTIBLE |
3534 (write ? I915_WAIT_ALL : 0),
3535 MAX_SCHEDULE_TIMEOUT,
3540 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3543 /* Flush and acquire obj->pages so that we are coherent through
3544 * direct access in memory with previous cached writes through
3545 * shmemfs and that our cache domain tracking remains valid.
3546 * For example, if the obj->filp was moved to swap without us
3547 * being notified and releasing the pages, we would mistakenly
3548 * continue to assume that the obj remained out of the CPU cached
3551 ret = i915_gem_object_pin_pages(obj);
3555 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3557 /* Serialise direct access to this object with the barriers for
3558 * coherent writes from the GPU, by effectively invalidating the
3559 * GTT domain upon first access.
3561 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3567 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3568 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3570 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3571 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3572 obj->mm.dirty = true;
3575 i915_gem_object_unpin_pages(obj);
3580 * Changes the cache-level of an object across all VMA.
3581 * @obj: object to act on
3582 * @cache_level: new cache level to set for the object
3584 * After this function returns, the object will be in the new cache-level
3585 * across all GTT and the contents of the backing storage will be coherent,
3586 * with respect to the new cache-level. In order to keep the backing storage
3587 * coherent for all users, we only allow a single cache level to be set
3588 * globally on the object and prevent it from being changed whilst the
3589 * hardware is reading from the object. That is if the object is currently
3590 * on the scanout it will be set to uncached (or equivalent display
3591 * cache coherency) and all non-MOCS GPU access will also be uncached so
3592 * that all direct access to the scanout remains coherent.
3594 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3595 enum i915_cache_level cache_level)
3597 struct i915_vma *vma;
3600 lockdep_assert_held(&obj->base.dev->struct_mutex);
3602 if (obj->cache_level == cache_level)
3605 /* Inspect the list of currently bound VMA and unbind any that would
3606 * be invalid given the new cache-level. This is principally to
3607 * catch the issue of the CS prefetch crossing page boundaries and
3608 * reading an invalid PTE on older architectures.
3611 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3612 if (!drm_mm_node_allocated(&vma->node))
3615 if (i915_vma_is_pinned(vma)) {
3616 DRM_DEBUG("can not change the cache level of pinned objects\n");
3620 if (i915_gem_valid_gtt_space(vma, cache_level))
3623 ret = i915_vma_unbind(vma);
3627 /* As unbinding may affect other elements in the
3628 * obj->vma_list (due to side-effects from retiring
3629 * an active vma), play safe and restart the iterator.
3634 /* We can reuse the existing drm_mm nodes but need to change the
3635 * cache-level on the PTE. We could simply unbind them all and
3636 * rebind with the correct cache-level on next use. However since
3637 * we already have a valid slot, dma mapping, pages etc, we may as
3638 * rewrite the PTE in the belief that doing so tramples upon less
3639 * state and so involves less work.
3641 if (obj->bind_count) {
3642 /* Before we change the PTE, the GPU must not be accessing it.
3643 * If we wait upon the object, we know that all the bound
3644 * VMA are no longer active.
3646 ret = i915_gem_object_wait(obj,
3647 I915_WAIT_INTERRUPTIBLE |
3650 MAX_SCHEDULE_TIMEOUT,
3655 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3656 cache_level != I915_CACHE_NONE) {
3657 /* Access to snoopable pages through the GTT is
3658 * incoherent and on some machines causes a hard
3659 * lockup. Relinquish the CPU mmaping to force
3660 * userspace to refault in the pages and we can
3661 * then double check if the GTT mapping is still
3662 * valid for that pointer access.
3664 i915_gem_release_mmap(obj);
3666 /* As we no longer need a fence for GTT access,
3667 * we can relinquish it now (and so prevent having
3668 * to steal a fence from someone else on the next
3669 * fence request). Note GPU activity would have
3670 * dropped the fence as all snoopable access is
3671 * supposed to be linear.
3673 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3674 ret = i915_vma_put_fence(vma);
3679 /* We either have incoherent backing store and
3680 * so no GTT access or the architecture is fully
3681 * coherent. In such cases, existing GTT mmaps
3682 * ignore the cache bit in the PTE and we can
3683 * rewrite it without confusing the GPU or having
3684 * to force userspace to fault back in its mmaps.
3688 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3689 if (!drm_mm_node_allocated(&vma->node))
3692 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3698 list_for_each_entry(vma, &obj->vma_list, obj_link)
3699 vma->node.color = cache_level;
3700 i915_gem_object_set_cache_coherency(obj, cache_level);
3701 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3706 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3707 struct drm_file *file)
3709 struct drm_i915_gem_caching *args = data;
3710 struct drm_i915_gem_object *obj;
3714 obj = i915_gem_object_lookup_rcu(file, args->handle);
3720 switch (obj->cache_level) {
3721 case I915_CACHE_LLC:
3722 case I915_CACHE_L3_LLC:
3723 args->caching = I915_CACHING_CACHED;
3727 args->caching = I915_CACHING_DISPLAY;
3731 args->caching = I915_CACHING_NONE;
3739 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3740 struct drm_file *file)
3742 struct drm_i915_private *i915 = to_i915(dev);
3743 struct drm_i915_gem_caching *args = data;
3744 struct drm_i915_gem_object *obj;
3745 enum i915_cache_level level;
3748 switch (args->caching) {
3749 case I915_CACHING_NONE:
3750 level = I915_CACHE_NONE;
3752 case I915_CACHING_CACHED:
3754 * Due to a HW issue on BXT A stepping, GPU stores via a
3755 * snooped mapping may leave stale data in a corresponding CPU
3756 * cacheline, whereas normally such cachelines would get
3759 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3762 level = I915_CACHE_LLC;
3764 case I915_CACHING_DISPLAY:
3765 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3771 obj = i915_gem_object_lookup(file, args->handle);
3775 if (obj->cache_level == level)
3778 ret = i915_gem_object_wait(obj,
3779 I915_WAIT_INTERRUPTIBLE,
3780 MAX_SCHEDULE_TIMEOUT,
3781 to_rps_client(file));
3785 ret = i915_mutex_lock_interruptible(dev);
3789 ret = i915_gem_object_set_cache_level(obj, level);
3790 mutex_unlock(&dev->struct_mutex);
3793 i915_gem_object_put(obj);
3798 * Prepare buffer for display plane (scanout, cursors, etc).
3799 * Can be called from an uninterruptible phase (modesetting) and allows
3800 * any flushes to be pipelined (for pageflips).
3803 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3805 const struct i915_ggtt_view *view)
3807 struct i915_vma *vma;
3810 lockdep_assert_held(&obj->base.dev->struct_mutex);
3812 /* Mark the pin_display early so that we account for the
3813 * display coherency whilst setting up the cache domains.
3817 /* The display engine is not coherent with the LLC cache on gen6. As
3818 * a result, we make sure that the pinning that is about to occur is
3819 * done with uncached PTEs. This is lowest common denominator for all
3822 * However for gen6+, we could do better by using the GFDT bit instead
3823 * of uncaching, which would allow us to flush all the LLC-cached data
3824 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3826 ret = i915_gem_object_set_cache_level(obj,
3827 HAS_WT(to_i915(obj->base.dev)) ?
3828 I915_CACHE_WT : I915_CACHE_NONE);
3831 goto err_unpin_display;
3834 /* As the user may map the buffer once pinned in the display plane
3835 * (e.g. libkms for the bootup splash), we have to ensure that we
3836 * always use map_and_fenceable for all scanout buffers. However,
3837 * it may simply be too big to fit into mappable, in which case
3838 * put it anyway and hope that userspace can cope (but always first
3839 * try to preserve the existing ABI).
3841 vma = ERR_PTR(-ENOSPC);
3842 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3843 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3844 PIN_MAPPABLE | PIN_NONBLOCK);
3846 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3849 /* Valleyview is definitely limited to scanning out the first
3850 * 512MiB. Lets presume this behaviour was inherited from the
3851 * g4x display engine and that all earlier gen are similarly
3852 * limited. Testing suggests that it is a little more
3853 * complicated than this. For example, Cherryview appears quite
3854 * happy to scanout from anywhere within its global aperture.
3857 if (HAS_GMCH_DISPLAY(i915))
3858 flags = PIN_MAPPABLE;
3859 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3862 goto err_unpin_display;
3864 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3866 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3867 __i915_gem_object_flush_for_display(obj);
3868 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3870 /* It should now be out of any other write domains, and we can update
3871 * the domain values for our changes.
3873 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3883 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3885 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3887 if (WARN_ON(vma->obj->pin_display == 0))
3890 if (--vma->obj->pin_display == 0)
3891 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3893 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3894 i915_gem_object_bump_inactive_ggtt(vma->obj);
3896 i915_vma_unpin(vma);
3900 * Moves a single object to the CPU read, and possibly write domain.
3901 * @obj: object to act on
3902 * @write: requesting write or read-only access
3904 * This function returns when the move is complete, including waiting on
3908 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3912 lockdep_assert_held(&obj->base.dev->struct_mutex);
3914 ret = i915_gem_object_wait(obj,
3915 I915_WAIT_INTERRUPTIBLE |
3917 (write ? I915_WAIT_ALL : 0),
3918 MAX_SCHEDULE_TIMEOUT,
3923 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3925 /* Flush the CPU cache if it's still invalid. */
3926 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3927 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3928 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3931 /* It should now be out of any other write domains, and we can update
3932 * the domain values for our changes.
3934 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3936 /* If we're writing through the CPU, then the GPU read domains will
3937 * need to be invalidated at next use.
3940 __start_cpu_write(obj);
3945 /* Throttle our rendering by waiting until the ring has completed our requests
3946 * emitted over 20 msec ago.
3948 * Note that if we were to use the current jiffies each time around the loop,
3949 * we wouldn't escape the function with any frames outstanding if the time to
3950 * render a frame was over 20ms.
3952 * This should get us reasonable parallelism between CPU and GPU but also
3953 * relatively low latency when blocking on a particular request to finish.
3956 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3958 struct drm_i915_private *dev_priv = to_i915(dev);
3959 struct drm_i915_file_private *file_priv = file->driver_priv;
3960 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3961 struct drm_i915_gem_request *request, *target = NULL;
3964 /* ABI: return -EIO if already wedged */
3965 if (i915_terminally_wedged(&dev_priv->gpu_error))
3968 spin_lock(&file_priv->mm.lock);
3969 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3970 if (time_after_eq(request->emitted_jiffies, recent_enough))
3974 list_del(&target->client_link);
3975 target->file_priv = NULL;
3981 i915_gem_request_get(target);
3982 spin_unlock(&file_priv->mm.lock);
3987 ret = i915_wait_request(target,
3988 I915_WAIT_INTERRUPTIBLE,
3989 MAX_SCHEDULE_TIMEOUT);
3990 i915_gem_request_put(target);
3992 return ret < 0 ? ret : 0;
3996 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3997 const struct i915_ggtt_view *view,
4002 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4003 struct i915_address_space *vm = &dev_priv->ggtt.base;
4004 struct i915_vma *vma;
4007 lockdep_assert_held(&obj->base.dev->struct_mutex);
4009 vma = i915_vma_instance(obj, vm, view);
4010 if (unlikely(IS_ERR(vma)))
4013 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4014 if (flags & PIN_NONBLOCK &&
4015 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4016 return ERR_PTR(-ENOSPC);
4018 if (flags & PIN_MAPPABLE) {
4019 /* If the required space is larger than the available
4020 * aperture, we will not able to find a slot for the
4021 * object and unbinding the object now will be in
4022 * vain. Worse, doing so may cause us to ping-pong
4023 * the object in and out of the Global GTT and
4024 * waste a lot of cycles under the mutex.
4026 if (vma->fence_size > dev_priv->ggtt.mappable_end)
4027 return ERR_PTR(-E2BIG);
4029 /* If NONBLOCK is set the caller is optimistically
4030 * trying to cache the full object within the mappable
4031 * aperture, and *must* have a fallback in place for
4032 * situations where we cannot bind the object. We
4033 * can be a little more lax here and use the fallback
4034 * more often to avoid costly migrations of ourselves
4035 * and other objects within the aperture.
4037 * Half-the-aperture is used as a simple heuristic.
4038 * More interesting would to do search for a free
4039 * block prior to making the commitment to unbind.
4040 * That caters for the self-harm case, and with a
4041 * little more heuristics (e.g. NOFAULT, NOEVICT)
4042 * we could try to minimise harm to others.
4044 if (flags & PIN_NONBLOCK &&
4045 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4046 return ERR_PTR(-ENOSPC);
4049 WARN(i915_vma_is_pinned(vma),
4050 "bo is already pinned in ggtt with incorrect alignment:"
4051 " offset=%08x, req.alignment=%llx,"
4052 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4053 i915_ggtt_offset(vma), alignment,
4054 !!(flags & PIN_MAPPABLE),
4055 i915_vma_is_map_and_fenceable(vma));
4056 ret = i915_vma_unbind(vma);
4058 return ERR_PTR(ret);
4061 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4063 return ERR_PTR(ret);
4068 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4070 /* Note that we could alias engines in the execbuf API, but
4071 * that would be very unwise as it prevents userspace from
4072 * fine control over engine selection. Ahem.
4074 * This should be something like EXEC_MAX_ENGINE instead of
4077 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4078 return 0x10000 << id;
4081 static __always_inline unsigned int __busy_write_id(unsigned int id)
4083 /* The uABI guarantees an active writer is also amongst the read
4084 * engines. This would be true if we accessed the activity tracking
4085 * under the lock, but as we perform the lookup of the object and
4086 * its activity locklessly we can not guarantee that the last_write
4087 * being active implies that we have set the same engine flag from
4088 * last_read - hence we always set both read and write busy for
4091 return id | __busy_read_flag(id);
4094 static __always_inline unsigned int
4095 __busy_set_if_active(const struct dma_fence *fence,
4096 unsigned int (*flag)(unsigned int id))
4098 struct drm_i915_gem_request *rq;
4100 /* We have to check the current hw status of the fence as the uABI
4101 * guarantees forward progress. We could rely on the idle worker
4102 * to eventually flush us, but to minimise latency just ask the
4105 * Note we only report on the status of native fences.
4107 if (!dma_fence_is_i915(fence))
4110 /* opencode to_request() in order to avoid const warnings */
4111 rq = container_of(fence, struct drm_i915_gem_request, fence);
4112 if (i915_gem_request_completed(rq))
4115 return flag(rq->engine->uabi_id);
4118 static __always_inline unsigned int
4119 busy_check_reader(const struct dma_fence *fence)
4121 return __busy_set_if_active(fence, __busy_read_flag);
4124 static __always_inline unsigned int
4125 busy_check_writer(const struct dma_fence *fence)
4130 return __busy_set_if_active(fence, __busy_write_id);
4134 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4135 struct drm_file *file)
4137 struct drm_i915_gem_busy *args = data;
4138 struct drm_i915_gem_object *obj;
4139 struct reservation_object_list *list;
4145 obj = i915_gem_object_lookup_rcu(file, args->handle);
4149 /* A discrepancy here is that we do not report the status of
4150 * non-i915 fences, i.e. even though we may report the object as idle,
4151 * a call to set-domain may still stall waiting for foreign rendering.
4152 * This also means that wait-ioctl may report an object as busy,
4153 * where busy-ioctl considers it idle.
4155 * We trade the ability to warn of foreign fences to report on which
4156 * i915 engines are active for the object.
4158 * Alternatively, we can trade that extra information on read/write
4161 * !reservation_object_test_signaled_rcu(obj->resv, true);
4162 * to report the overall busyness. This is what the wait-ioctl does.
4166 seq = raw_read_seqcount(&obj->resv->seq);
4168 /* Translate the exclusive fence to the READ *and* WRITE engine */
4169 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4171 /* Translate shared fences to READ set of engines */
4172 list = rcu_dereference(obj->resv->fence);
4174 unsigned int shared_count = list->shared_count, i;
4176 for (i = 0; i < shared_count; ++i) {
4177 struct dma_fence *fence =
4178 rcu_dereference(list->shared[i]);
4180 args->busy |= busy_check_reader(fence);
4184 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4194 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4195 struct drm_file *file_priv)
4197 return i915_gem_ring_throttle(dev, file_priv);
4201 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4202 struct drm_file *file_priv)
4204 struct drm_i915_private *dev_priv = to_i915(dev);
4205 struct drm_i915_gem_madvise *args = data;
4206 struct drm_i915_gem_object *obj;
4209 switch (args->madv) {
4210 case I915_MADV_DONTNEED:
4211 case I915_MADV_WILLNEED:
4217 obj = i915_gem_object_lookup(file_priv, args->handle);
4221 err = mutex_lock_interruptible(&obj->mm.lock);
4225 if (obj->mm.pages &&
4226 i915_gem_object_is_tiled(obj) &&
4227 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4228 if (obj->mm.madv == I915_MADV_WILLNEED) {
4229 GEM_BUG_ON(!obj->mm.quirked);
4230 __i915_gem_object_unpin_pages(obj);
4231 obj->mm.quirked = false;
4233 if (args->madv == I915_MADV_WILLNEED) {
4234 GEM_BUG_ON(obj->mm.quirked);
4235 __i915_gem_object_pin_pages(obj);
4236 obj->mm.quirked = true;
4240 if (obj->mm.madv != __I915_MADV_PURGED)
4241 obj->mm.madv = args->madv;
4243 /* if the object is no longer attached, discard its backing storage */
4244 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4245 i915_gem_object_truncate(obj);
4247 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4248 mutex_unlock(&obj->mm.lock);
4251 i915_gem_object_put(obj);
4256 frontbuffer_retire(struct i915_gem_active *active,
4257 struct drm_i915_gem_request *request)
4259 struct drm_i915_gem_object *obj =
4260 container_of(active, typeof(*obj), frontbuffer_write);
4262 intel_fb_obj_flush(obj, ORIGIN_CS);
4265 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4266 const struct drm_i915_gem_object_ops *ops)
4268 mutex_init(&obj->mm.lock);
4270 INIT_LIST_HEAD(&obj->global_link);
4271 INIT_LIST_HEAD(&obj->userfault_link);
4272 INIT_LIST_HEAD(&obj->vma_list);
4273 INIT_LIST_HEAD(&obj->lut_list);
4274 INIT_LIST_HEAD(&obj->batch_pool_link);
4278 reservation_object_init(&obj->__builtin_resv);
4279 obj->resv = &obj->__builtin_resv;
4281 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4282 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4284 obj->mm.madv = I915_MADV_WILLNEED;
4285 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4286 mutex_init(&obj->mm.get_page.lock);
4288 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4291 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4292 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4293 I915_GEM_OBJECT_IS_SHRINKABLE,
4295 .get_pages = i915_gem_object_get_pages_gtt,
4296 .put_pages = i915_gem_object_put_pages_gtt,
4298 .pwrite = i915_gem_object_pwrite_gtt,
4301 struct drm_i915_gem_object *
4302 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4304 struct drm_i915_gem_object *obj;
4305 struct address_space *mapping;
4306 unsigned int cache_level;
4310 /* There is a prevalence of the assumption that we fit the object's
4311 * page count inside a 32bit _signed_ variable. Let's document this and
4312 * catch if we ever need to fix it. In the meantime, if you do spot
4313 * such a local variable, please consider fixing!
4315 if (size >> PAGE_SHIFT > INT_MAX)
4316 return ERR_PTR(-E2BIG);
4318 if (overflows_type(size, obj->base.size))
4319 return ERR_PTR(-E2BIG);
4321 obj = i915_gem_object_alloc(dev_priv);
4323 return ERR_PTR(-ENOMEM);
4325 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4329 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4330 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4331 /* 965gm cannot relocate objects above 4GiB. */
4332 mask &= ~__GFP_HIGHMEM;
4333 mask |= __GFP_DMA32;
4336 mapping = obj->base.filp->f_mapping;
4337 mapping_set_gfp_mask(mapping, mask);
4338 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4340 i915_gem_object_init(obj, &i915_gem_object_ops);
4342 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4343 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4345 if (HAS_LLC(dev_priv))
4346 /* On some devices, we can have the GPU use the LLC (the CPU
4347 * cache) for about a 10% performance improvement
4348 * compared to uncached. Graphics requests other than
4349 * display scanout are coherent with the CPU in
4350 * accessing this cache. This means in this mode we
4351 * don't need to clflush on the CPU side, and on the
4352 * GPU side we only need to flush internal caches to
4353 * get data visible to the CPU.
4355 * However, we maintain the display planes as UC, and so
4356 * need to rebind when first used as such.
4358 cache_level = I915_CACHE_LLC;
4360 cache_level = I915_CACHE_NONE;
4362 i915_gem_object_set_cache_coherency(obj, cache_level);
4364 trace_i915_gem_object_create(obj);
4369 i915_gem_object_free(obj);
4370 return ERR_PTR(ret);
4373 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4375 /* If we are the last user of the backing storage (be it shmemfs
4376 * pages or stolen etc), we know that the pages are going to be
4377 * immediately released. In this case, we can then skip copying
4378 * back the contents from the GPU.
4381 if (obj->mm.madv != I915_MADV_WILLNEED)
4384 if (obj->base.filp == NULL)
4387 /* At first glance, this looks racy, but then again so would be
4388 * userspace racing mmap against close. However, the first external
4389 * reference to the filp can only be obtained through the
4390 * i915_gem_mmap_ioctl() which safeguards us against the user
4391 * acquiring such a reference whilst we are in the middle of
4392 * freeing the object.
4394 return atomic_long_read(&obj->base.filp->f_count) == 1;
4397 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4398 struct llist_node *freed)
4400 struct drm_i915_gem_object *obj, *on;
4402 mutex_lock(&i915->drm.struct_mutex);
4403 intel_runtime_pm_get(i915);
4404 llist_for_each_entry(obj, freed, freed) {
4405 struct i915_vma *vma, *vn;
4407 trace_i915_gem_object_destroy(obj);
4409 GEM_BUG_ON(i915_gem_object_is_active(obj));
4410 list_for_each_entry_safe(vma, vn,
4411 &obj->vma_list, obj_link) {
4412 GEM_BUG_ON(i915_vma_is_active(vma));
4413 vma->flags &= ~I915_VMA_PIN_MASK;
4414 i915_vma_close(vma);
4416 GEM_BUG_ON(!list_empty(&obj->vma_list));
4417 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4419 list_del(&obj->global_link);
4421 intel_runtime_pm_put(i915);
4422 mutex_unlock(&i915->drm.struct_mutex);
4426 llist_for_each_entry_safe(obj, on, freed, freed) {
4427 GEM_BUG_ON(obj->bind_count);
4428 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4430 if (obj->ops->release)
4431 obj->ops->release(obj);
4433 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4434 atomic_set(&obj->mm.pages_pin_count, 0);
4435 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4436 GEM_BUG_ON(obj->mm.pages);
4438 if (obj->base.import_attach)
4439 drm_prime_gem_destroy(&obj->base, NULL);
4441 reservation_object_fini(&obj->__builtin_resv);
4442 drm_gem_object_release(&obj->base);
4443 i915_gem_info_remove_obj(i915, obj->base.size);
4446 i915_gem_object_free(obj);
4450 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4452 struct llist_node *freed;
4454 freed = llist_del_all(&i915->mm.free_list);
4455 if (unlikely(freed))
4456 __i915_gem_free_objects(i915, freed);
4459 static void __i915_gem_free_work(struct work_struct *work)
4461 struct drm_i915_private *i915 =
4462 container_of(work, struct drm_i915_private, mm.free_work);
4463 struct llist_node *freed;
4465 /* All file-owned VMA should have been released by this point through
4466 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4467 * However, the object may also be bound into the global GTT (e.g.
4468 * older GPUs without per-process support, or for direct access through
4469 * the GTT either for the user or for scanout). Those VMA still need to
4473 while ((freed = llist_del_all(&i915->mm.free_list))) {
4474 __i915_gem_free_objects(i915, freed);
4480 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4482 struct drm_i915_gem_object *obj =
4483 container_of(head, typeof(*obj), rcu);
4484 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4486 /* We can't simply use call_rcu() from i915_gem_free_object()
4487 * as we need to block whilst unbinding, and the call_rcu
4488 * task may be called from softirq context. So we take a
4489 * detour through a worker.
4491 if (llist_add(&obj->freed, &i915->mm.free_list))
4492 schedule_work(&i915->mm.free_work);
4495 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4497 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4499 if (obj->mm.quirked)
4500 __i915_gem_object_unpin_pages(obj);
4502 if (discard_backing_storage(obj))
4503 obj->mm.madv = I915_MADV_DONTNEED;
4505 /* Before we free the object, make sure any pure RCU-only
4506 * read-side critical sections are complete, e.g.
4507 * i915_gem_busy_ioctl(). For the corresponding synchronized
4508 * lookup see i915_gem_object_lookup_rcu().
4510 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4513 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4515 lockdep_assert_held(&obj->base.dev->struct_mutex);
4517 if (!i915_gem_object_has_active_reference(obj) &&
4518 i915_gem_object_is_active(obj))
4519 i915_gem_object_set_active_reference(obj);
4521 i915_gem_object_put(obj);
4524 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4526 struct intel_engine_cs *engine;
4527 enum intel_engine_id id;
4529 for_each_engine(engine, dev_priv, id)
4530 GEM_BUG_ON(engine->last_retired_context &&
4531 !i915_gem_context_is_kernel(engine->last_retired_context));
4534 void i915_gem_sanitize(struct drm_i915_private *i915)
4537 * If we inherit context state from the BIOS or earlier occupants
4538 * of the GPU, the GPU may be in an inconsistent state when we
4539 * try to take over. The only way to remove the earlier state
4540 * is by resetting. However, resetting on earlier gen is tricky as
4541 * it may impact the display and we are uncertain about the stability
4542 * of the reset, so this could be applied to even earlier gen.
4544 if (INTEL_GEN(i915) >= 5) {
4545 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4546 WARN_ON(reset && reset != -ENODEV);
4550 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4552 struct drm_device *dev = &dev_priv->drm;
4555 intel_runtime_pm_get(dev_priv);
4556 intel_suspend_gt_powersave(dev_priv);
4558 mutex_lock(&dev->struct_mutex);
4560 /* We have to flush all the executing contexts to main memory so
4561 * that they can saved in the hibernation image. To ensure the last
4562 * context image is coherent, we have to switch away from it. That
4563 * leaves the dev_priv->kernel_context still active when
4564 * we actually suspend, and its image in memory may not match the GPU
4565 * state. Fortunately, the kernel_context is disposable and we do
4566 * not rely on its state.
4568 ret = i915_gem_switch_to_kernel_context(dev_priv);
4572 ret = i915_gem_wait_for_idle(dev_priv,
4573 I915_WAIT_INTERRUPTIBLE |
4578 assert_kernel_context_is_current(dev_priv);
4579 i915_gem_contexts_lost(dev_priv);
4580 mutex_unlock(&dev->struct_mutex);
4582 intel_guc_suspend(dev_priv);
4584 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4585 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4587 /* As the idle_work is rearming if it detects a race, play safe and
4588 * repeat the flush until it is definitely idle.
4590 while (flush_delayed_work(&dev_priv->gt.idle_work))
4593 /* Assert that we sucessfully flushed all the work and
4594 * reset the GPU back to its idle, low power state.
4596 WARN_ON(dev_priv->gt.awake);
4597 WARN_ON(!intel_engines_are_idle(dev_priv));
4600 * Neither the BIOS, ourselves or any other kernel
4601 * expects the system to be in execlists mode on startup,
4602 * so we need to reset the GPU back to legacy mode. And the only
4603 * known way to disable logical contexts is through a GPU reset.
4605 * So in order to leave the system in a known default configuration,
4606 * always reset the GPU upon unload and suspend. Afterwards we then
4607 * clean up the GEM state tracking, flushing off the requests and
4608 * leaving the system in a known idle state.
4610 * Note that is of the upmost importance that the GPU is idle and
4611 * all stray writes are flushed *before* we dismantle the backing
4612 * storage for the pinned objects.
4614 * However, since we are uncertain that resetting the GPU on older
4615 * machines is a good idea, we don't - just in case it leaves the
4616 * machine in an unusable condition.
4618 i915_gem_sanitize(dev_priv);
4622 mutex_unlock(&dev->struct_mutex);
4624 intel_runtime_pm_put(dev_priv);
4628 void i915_gem_resume(struct drm_i915_private *dev_priv)
4630 struct drm_device *dev = &dev_priv->drm;
4632 WARN_ON(dev_priv->gt.awake);
4634 mutex_lock(&dev->struct_mutex);
4635 i915_gem_restore_gtt_mappings(dev_priv);
4637 /* As we didn't flush the kernel context before suspend, we cannot
4638 * guarantee that the context image is complete. So let's just reset
4639 * it and start again.
4641 dev_priv->gt.resume(dev_priv);
4643 mutex_unlock(&dev->struct_mutex);
4646 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4648 if (INTEL_GEN(dev_priv) < 5 ||
4649 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4652 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4653 DISP_TILE_SURFACE_SWIZZLING);
4655 if (IS_GEN5(dev_priv))
4658 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4659 if (IS_GEN6(dev_priv))
4660 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4661 else if (IS_GEN7(dev_priv))
4662 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4663 else if (IS_GEN8(dev_priv))
4664 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4669 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4671 I915_WRITE(RING_CTL(base), 0);
4672 I915_WRITE(RING_HEAD(base), 0);
4673 I915_WRITE(RING_TAIL(base), 0);
4674 I915_WRITE(RING_START(base), 0);
4677 static void init_unused_rings(struct drm_i915_private *dev_priv)
4679 if (IS_I830(dev_priv)) {
4680 init_unused_ring(dev_priv, PRB1_BASE);
4681 init_unused_ring(dev_priv, SRB0_BASE);
4682 init_unused_ring(dev_priv, SRB1_BASE);
4683 init_unused_ring(dev_priv, SRB2_BASE);
4684 init_unused_ring(dev_priv, SRB3_BASE);
4685 } else if (IS_GEN2(dev_priv)) {
4686 init_unused_ring(dev_priv, SRB0_BASE);
4687 init_unused_ring(dev_priv, SRB1_BASE);
4688 } else if (IS_GEN3(dev_priv)) {
4689 init_unused_ring(dev_priv, PRB1_BASE);
4690 init_unused_ring(dev_priv, PRB2_BASE);
4694 static int __i915_gem_restart_engines(void *data)
4696 struct drm_i915_private *i915 = data;
4697 struct intel_engine_cs *engine;
4698 enum intel_engine_id id;
4701 for_each_engine(engine, i915, id) {
4702 err = engine->init_hw(engine);
4710 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4714 dev_priv->gt.last_init_time = ktime_get();
4716 /* Double layer security blanket, see i915_gem_init() */
4717 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4719 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4720 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4722 if (IS_HASWELL(dev_priv))
4723 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4724 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4726 if (HAS_PCH_NOP(dev_priv)) {
4727 if (IS_IVYBRIDGE(dev_priv)) {
4728 u32 temp = I915_READ(GEN7_MSG_CTL);
4729 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4730 I915_WRITE(GEN7_MSG_CTL, temp);
4731 } else if (INTEL_GEN(dev_priv) >= 7) {
4732 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4733 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4734 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4738 i915_gem_init_swizzling(dev_priv);
4741 * At least 830 can leave some of the unused rings
4742 * "active" (ie. head != tail) after resume which
4743 * will prevent c3 entry. Makes sure all unused rings
4746 init_unused_rings(dev_priv);
4748 BUG_ON(!dev_priv->kernel_context);
4750 ret = i915_ppgtt_init_hw(dev_priv);
4752 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4756 /* Need to do basic initialisation of all rings first: */
4757 ret = __i915_gem_restart_engines(dev_priv);
4761 intel_mocs_init_l3cc_table(dev_priv);
4763 /* We can't enable contexts until all firmware is loaded */
4764 ret = intel_uc_init_hw(dev_priv);
4769 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4773 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4775 if (INTEL_INFO(dev_priv)->gen < 6)
4778 /* TODO: make semaphores and Execlists play nicely together */
4779 if (i915.enable_execlists)
4785 /* Enable semaphores on SNB when IO remapping is off */
4786 if (IS_GEN6(dev_priv) && intel_vtd_active())
4792 int i915_gem_init(struct drm_i915_private *dev_priv)
4796 mutex_lock(&dev_priv->drm.struct_mutex);
4798 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4800 if (!i915.enable_execlists) {
4801 dev_priv->gt.resume = intel_legacy_submission_resume;
4802 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4804 dev_priv->gt.resume = intel_lr_context_resume;
4805 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4808 /* This is just a security blanket to placate dragons.
4809 * On some systems, we very sporadically observe that the first TLBs
4810 * used by the CS may be stale, despite us poking the TLB reset. If
4811 * we hold the forcewake during initialisation these problems
4812 * just magically go away.
4814 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4816 ret = i915_gem_init_userptr(dev_priv);
4820 ret = i915_gem_init_ggtt(dev_priv);
4824 ret = i915_gem_contexts_init(dev_priv);
4828 ret = intel_engines_init(dev_priv);
4832 ret = i915_gem_init_hw(dev_priv);
4834 /* Allow engine initialisation to fail by marking the GPU as
4835 * wedged. But we only want to do this where the GPU is angry,
4836 * for all other failure, such as an allocation failure, bail.
4838 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4839 i915_gem_set_wedged(dev_priv);
4844 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4845 mutex_unlock(&dev_priv->drm.struct_mutex);
4850 void i915_gem_init_mmio(struct drm_i915_private *i915)
4852 i915_gem_sanitize(i915);
4856 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4858 struct intel_engine_cs *engine;
4859 enum intel_engine_id id;
4861 for_each_engine(engine, dev_priv, id)
4862 dev_priv->gt.cleanup_engine(engine);
4866 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4870 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4871 !IS_CHERRYVIEW(dev_priv))
4872 dev_priv->num_fence_regs = 32;
4873 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4874 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4875 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4876 dev_priv->num_fence_regs = 16;
4878 dev_priv->num_fence_regs = 8;
4880 if (intel_vgpu_active(dev_priv))
4881 dev_priv->num_fence_regs =
4882 I915_READ(vgtif_reg(avail_rs.fence_num));
4884 /* Initialize fence registers to zero */
4885 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4886 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4888 fence->i915 = dev_priv;
4890 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4892 i915_gem_restore_fences(dev_priv);
4894 i915_gem_detect_bit_6_swizzle(dev_priv);
4898 i915_gem_load_init(struct drm_i915_private *dev_priv)
4902 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4903 if (!dev_priv->objects)
4906 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4907 if (!dev_priv->vmas)
4910 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4911 if (!dev_priv->luts)
4914 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4915 SLAB_HWCACHE_ALIGN |
4916 SLAB_RECLAIM_ACCOUNT |
4917 SLAB_TYPESAFE_BY_RCU);
4918 if (!dev_priv->requests)
4921 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4922 SLAB_HWCACHE_ALIGN |
4923 SLAB_RECLAIM_ACCOUNT);
4924 if (!dev_priv->dependencies)
4927 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4928 if (!dev_priv->priorities)
4929 goto err_dependencies;
4931 mutex_lock(&dev_priv->drm.struct_mutex);
4932 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4933 err = i915_gem_timeline_init__global(dev_priv);
4934 mutex_unlock(&dev_priv->drm.struct_mutex);
4936 goto err_priorities;
4938 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4939 init_llist_head(&dev_priv->mm.free_list);
4940 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4941 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4942 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4943 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4944 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4945 i915_gem_retire_work_handler);
4946 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4947 i915_gem_idle_work_handler);
4948 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4949 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4951 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4953 spin_lock_init(&dev_priv->fb_tracking.lock);
4958 kmem_cache_destroy(dev_priv->priorities);
4960 kmem_cache_destroy(dev_priv->dependencies);
4962 kmem_cache_destroy(dev_priv->requests);
4964 kmem_cache_destroy(dev_priv->luts);
4966 kmem_cache_destroy(dev_priv->vmas);
4968 kmem_cache_destroy(dev_priv->objects);
4973 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4975 i915_gem_drain_freed_objects(dev_priv);
4976 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4977 WARN_ON(dev_priv->mm.object_count);
4979 mutex_lock(&dev_priv->drm.struct_mutex);
4980 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4981 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4982 mutex_unlock(&dev_priv->drm.struct_mutex);
4984 kmem_cache_destroy(dev_priv->priorities);
4985 kmem_cache_destroy(dev_priv->dependencies);
4986 kmem_cache_destroy(dev_priv->requests);
4987 kmem_cache_destroy(dev_priv->luts);
4988 kmem_cache_destroy(dev_priv->vmas);
4989 kmem_cache_destroy(dev_priv->objects);
4991 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4995 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4997 /* Discard all purgeable objects, let userspace recover those as
4998 * required after resuming.
5000 i915_gem_shrink_all(dev_priv);
5005 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5007 struct drm_i915_gem_object *obj;
5008 struct list_head *phases[] = {
5009 &dev_priv->mm.unbound_list,
5010 &dev_priv->mm.bound_list,
5014 /* Called just before we write the hibernation image.
5016 * We need to update the domain tracking to reflect that the CPU
5017 * will be accessing all the pages to create and restore from the
5018 * hibernation, and so upon restoration those pages will be in the
5021 * To make sure the hibernation image contains the latest state,
5022 * we update that state just before writing out the image.
5024 * To try and reduce the hibernation image, we manually shrink
5025 * the objects as well, see i915_gem_freeze()
5028 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5029 i915_gem_drain_freed_objects(dev_priv);
5031 mutex_lock(&dev_priv->drm.struct_mutex);
5032 for (p = phases; *p; p++) {
5033 list_for_each_entry(obj, *p, global_link)
5034 __start_cpu_write(obj);
5036 mutex_unlock(&dev_priv->drm.struct_mutex);
5041 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5043 struct drm_i915_file_private *file_priv = file->driver_priv;
5044 struct drm_i915_gem_request *request;
5046 /* Clean up our request list when the client is going away, so that
5047 * later retire_requests won't dereference our soon-to-be-gone
5050 spin_lock(&file_priv->mm.lock);
5051 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5052 request->file_priv = NULL;
5053 spin_unlock(&file_priv->mm.lock);
5056 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5058 struct drm_i915_file_private *file_priv;
5063 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5067 file->driver_priv = file_priv;
5068 file_priv->dev_priv = i915;
5069 file_priv->file = file;
5071 spin_lock_init(&file_priv->mm.lock);
5072 INIT_LIST_HEAD(&file_priv->mm.request_list);
5074 file_priv->bsd_engine = -1;
5076 ret = i915_gem_context_open(i915, file);
5084 * i915_gem_track_fb - update frontbuffer tracking
5085 * @old: current GEM buffer for the frontbuffer slots
5086 * @new: new GEM buffer for the frontbuffer slots
5087 * @frontbuffer_bits: bitmask of frontbuffer slots
5089 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090 * from @old and setting them in @new. Both @old and @new can be NULL.
5092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093 struct drm_i915_gem_object *new,
5094 unsigned frontbuffer_bits)
5096 /* Control of individual bits within the mask are guarded by
5097 * the owning plane->mutex, i.e. we can never see concurrent
5098 * manipulation of individual bits. But since the bitfield as a whole
5099 * is updated using RMW, we need to use atomics in order to update
5102 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5103 sizeof(atomic_t) * BITS_PER_BYTE);
5106 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5107 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5111 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5112 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5116 /* Allocate a new GEM object and fill it with the supplied data */
5117 struct drm_i915_gem_object *
5118 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5119 const void *data, size_t size)
5121 struct drm_i915_gem_object *obj;
5126 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5130 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5132 file = obj->base.filp;
5135 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5137 void *pgdata, *vaddr;
5139 err = pagecache_write_begin(file, file->f_mapping,
5146 memcpy(vaddr, data, len);
5149 err = pagecache_write_end(file, file->f_mapping,
5163 i915_gem_object_put(obj);
5164 return ERR_PTR(err);
5167 struct scatterlist *
5168 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5170 unsigned int *offset)
5172 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5173 struct scatterlist *sg;
5174 unsigned int idx, count;
5177 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5178 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5180 /* As we iterate forward through the sg, we record each entry in a
5181 * radixtree for quick repeated (backwards) lookups. If we have seen
5182 * this index previously, we will have an entry for it.
5184 * Initial lookup is O(N), but this is amortized to O(1) for
5185 * sequential page access (where each new request is consecutive
5186 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5187 * i.e. O(1) with a large constant!
5189 if (n < READ_ONCE(iter->sg_idx))
5192 mutex_lock(&iter->lock);
5194 /* We prefer to reuse the last sg so that repeated lookup of this
5195 * (or the subsequent) sg are fast - comparing against the last
5196 * sg is faster than going through the radixtree.
5201 count = __sg_page_count(sg);
5203 while (idx + count <= n) {
5204 unsigned long exception, i;
5207 /* If we cannot allocate and insert this entry, or the
5208 * individual pages from this range, cancel updating the
5209 * sg_idx so that on this lookup we are forced to linearly
5210 * scan onwards, but on future lookups we will try the
5211 * insertion again (in which case we need to be careful of
5212 * the error return reporting that we have already inserted
5215 ret = radix_tree_insert(&iter->radix, idx, sg);
5216 if (ret && ret != -EEXIST)
5220 RADIX_TREE_EXCEPTIONAL_ENTRY |
5221 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5222 for (i = 1; i < count; i++) {
5223 ret = radix_tree_insert(&iter->radix, idx + i,
5225 if (ret && ret != -EEXIST)
5230 sg = ____sg_next(sg);
5231 count = __sg_page_count(sg);
5238 mutex_unlock(&iter->lock);
5240 if (unlikely(n < idx)) /* insertion completed by another thread */
5243 /* In case we failed to insert the entry into the radixtree, we need
5244 * to look beyond the current sg.
5246 while (idx + count <= n) {
5248 sg = ____sg_next(sg);
5249 count = __sg_page_count(sg);
5258 sg = radix_tree_lookup(&iter->radix, n);
5261 /* If this index is in the middle of multi-page sg entry,
5262 * the radixtree will contain an exceptional entry that points
5263 * to the start of that range. We will return the pointer to
5264 * the base page and the offset of this page within the
5268 if (unlikely(radix_tree_exception(sg))) {
5269 unsigned long base =
5270 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5272 sg = radix_tree_lookup(&iter->radix, base);
5284 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5286 struct scatterlist *sg;
5287 unsigned int offset;
5289 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5291 sg = i915_gem_object_get_sg(obj, n, &offset);
5292 return nth_page(sg_page(sg), offset);
5295 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5297 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5302 page = i915_gem_object_get_page(obj, n);
5304 set_page_dirty(page);
5310 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5313 struct scatterlist *sg;
5314 unsigned int offset;
5316 sg = i915_gem_object_get_sg(obj, n, &offset);
5317 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5320 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5322 struct sg_table *pages;
5325 if (align > obj->base.size)
5328 if (obj->ops == &i915_gem_phys_ops)
5331 if (obj->ops != &i915_gem_object_ops)
5334 err = i915_gem_object_unbind(obj);
5338 mutex_lock(&obj->mm.lock);
5340 if (obj->mm.madv != I915_MADV_WILLNEED) {
5345 if (obj->mm.quirked) {
5350 if (obj->mm.mapping) {
5355 pages = obj->mm.pages;
5356 obj->ops = &i915_gem_phys_ops;
5358 err = ____i915_gem_object_get_pages(obj);
5362 /* Perma-pin (until release) the physical set of pages */
5363 __i915_gem_object_pin_pages(obj);
5365 if (!IS_ERR_OR_NULL(pages))
5366 i915_gem_object_ops.put_pages(obj, pages);
5367 mutex_unlock(&obj->mm.lock);
5371 obj->ops = &i915_gem_object_ops;
5372 obj->mm.pages = pages;
5374 mutex_unlock(&obj->mm.lock);
5378 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5379 #include "selftests/scatterlist.c"
5380 #include "selftests/mock_gem_device.c"
5381 #include "selftests/huge_gem_object.c"
5382 #include "selftests/i915_gem_object.c"
5383 #include "selftests/i915_gem_coherency.c"