]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43
44 struct execute_cb {
45         struct list_head link;
46         struct irq_work work;
47         struct i915_sw_fence *fence;
48         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49         struct i915_request *signal;
50 };
51
52 static struct i915_global_request {
53         struct i915_global base;
54         struct kmem_cache *slab_requests;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return dev_name(to_request(fence)->i915->drm.dev);
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         const struct i915_gem_context *ctx;
66
67         /*
68          * The timeline struct (as part of the ppgtt underneath a context)
69          * may be freed when the request is no longer in use by the GPU.
70          * We could extend the life of a context to beyond that of all
71          * fences, possibly keeping the hw resource around indefinitely,
72          * or we just give them a false name. Since
73          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74          * lie seems justifiable.
75          */
76         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77                 return "signaled";
78
79         ctx = i915_request_gem_context(to_request(fence));
80         if (!ctx)
81                 return "[" DRIVER_NAME "]";
82
83         return ctx->name;
84 }
85
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88         return i915_request_completed(to_request(fence));
89 }
90
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93         return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
96 static signed long i915_fence_wait(struct dma_fence *fence,
97                                    bool interruptible,
98                                    signed long timeout)
99 {
100         return i915_request_wait(to_request(fence),
101                                  interruptible | I915_WAIT_PRIORITY,
102                                  timeout);
103 }
104
105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107         return global.slab_requests;
108 }
109
110 static void i915_fence_release(struct dma_fence *fence)
111 {
112         struct i915_request *rq = to_request(fence);
113
114         /*
115          * The request is put onto a RCU freelist (i.e. the address
116          * is immediately reused), mark the fences as being freed now.
117          * Otherwise the debugobjects for the fences are only marked as
118          * freed when the slab cache itself is freed, and so we would get
119          * caught trying to reuse dead objects.
120          */
121         i915_sw_fence_fini(&rq->submit);
122         i915_sw_fence_fini(&rq->semaphore);
123
124         /*
125          * Keep one request on each engine for reserved use under mempressure
126          *
127          * We do not hold a reference to the engine here and so have to be
128          * very careful in what rq->engine we poke. The virtual engine is
129          * referenced via the rq->context and we released that ref during
130          * i915_request_retire(), ergo we must not dereference a virtual
131          * engine here. Not that we would want to, as the only consumer of
132          * the reserved engine->request_pool is the power management parking,
133          * which must-not-fail, and that is only run on the physical engines.
134          *
135          * Since the request must have been executed to be have completed,
136          * we know that it will have been processed by the HW and will
137          * not be unsubmitted again, so rq->engine and rq->execution_mask
138          * at this point is stable. rq->execution_mask will be a single
139          * bit if the last and _only_ engine it could execution on was a
140          * physical engine, if it's multiple bits then it started on and
141          * could still be on a virtual engine. Thus if the mask is not a
142          * power-of-two we assume that rq->engine may still be a virtual
143          * engine and so a dangling invalid pointer that we cannot dereference
144          *
145          * For example, consider the flow of a bonded request through a virtual
146          * engine. The request is created with a wide engine mask (all engines
147          * that we might execute on). On processing the bond, the request mask
148          * is reduced to one or more engines. If the request is subsequently
149          * bound to a single engine, it will then be constrained to only
150          * execute on that engine and never returned to the virtual engine
151          * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152          * know that if the rq->execution_mask is a single bit, rq->engine
153          * can be a physical engine with the exact corresponding mask.
154          */
155         if (is_power_of_2(rq->execution_mask) &&
156             !cmpxchg(&rq->engine->request_pool, NULL, rq))
157                 return;
158
159         kmem_cache_free(global.slab_requests, rq);
160 }
161
162 const struct dma_fence_ops i915_fence_ops = {
163         .get_driver_name = i915_fence_get_driver_name,
164         .get_timeline_name = i915_fence_get_timeline_name,
165         .enable_signaling = i915_fence_enable_signaling,
166         .signaled = i915_fence_signaled,
167         .wait = i915_fence_wait,
168         .release = i915_fence_release,
169 };
170
171 static void irq_execute_cb(struct irq_work *wrk)
172 {
173         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174
175         i915_sw_fence_complete(cb->fence);
176         kmem_cache_free(global.slab_execute_cbs, cb);
177 }
178
179 static void irq_execute_cb_hook(struct irq_work *wrk)
180 {
181         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182
183         cb->hook(container_of(cb->fence, struct i915_request, submit),
184                  &cb->signal->fence);
185         i915_request_put(cb->signal);
186
187         irq_execute_cb(wrk);
188 }
189
190 static void __notify_execute_cb(struct i915_request *rq)
191 {
192         struct execute_cb *cb;
193
194         lockdep_assert_held(&rq->lock);
195
196         if (list_empty(&rq->execute_cb))
197                 return;
198
199         list_for_each_entry(cb, &rq->execute_cb, link)
200                 irq_work_queue(&cb->work);
201
202         /*
203          * XXX Rollback on __i915_request_unsubmit()
204          *
205          * In the future, perhaps when we have an active time-slicing scheduler,
206          * it will be interesting to unsubmit parallel execution and remove
207          * busywaits from the GPU until their master is restarted. This is
208          * quite hairy, we have to carefully rollback the fence and do a
209          * preempt-to-idle cycle on the target engine, all the while the
210          * master execute_cb may refire.
211          */
212         INIT_LIST_HEAD(&rq->execute_cb);
213 }
214
215 static inline void
216 remove_from_client(struct i915_request *request)
217 {
218         struct drm_i915_file_private *file_priv;
219
220         if (!READ_ONCE(request->file_priv))
221                 return;
222
223         rcu_read_lock();
224         file_priv = xchg(&request->file_priv, NULL);
225         if (file_priv) {
226                 spin_lock(&file_priv->mm.lock);
227                 list_del(&request->client_link);
228                 spin_unlock(&file_priv->mm.lock);
229         }
230         rcu_read_unlock();
231 }
232
233 static void free_capture_list(struct i915_request *request)
234 {
235         struct i915_capture_list *capture;
236
237         capture = fetch_and_zero(&request->capture_list);
238         while (capture) {
239                 struct i915_capture_list *next = capture->next;
240
241                 kfree(capture);
242                 capture = next;
243         }
244 }
245
246 static void __i915_request_fill(struct i915_request *rq, u8 val)
247 {
248         void *vaddr = rq->ring->vaddr;
249         u32 head;
250
251         head = rq->infix;
252         if (rq->postfix < head) {
253                 memset(vaddr + head, val, rq->ring->size - head);
254                 head = 0;
255         }
256         memset(vaddr + head, val, rq->postfix - head);
257 }
258
259 static void remove_from_engine(struct i915_request *rq)
260 {
261         struct intel_engine_cs *engine, *locked;
262
263         /*
264          * Virtual engines complicate acquiring the engine timeline lock,
265          * as their rq->engine pointer is not stable until under that
266          * engine lock. The simple ploy we use is to take the lock then
267          * check that the rq still belongs to the newly locked engine.
268          */
269         locked = READ_ONCE(rq->engine);
270         spin_lock_irq(&locked->active.lock);
271         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
272                 spin_unlock(&locked->active.lock);
273                 spin_lock(&engine->active.lock);
274                 locked = engine;
275         }
276         list_del_init(&rq->sched.link);
277         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
278         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279         spin_unlock_irq(&locked->active.lock);
280 }
281
282 bool i915_request_retire(struct i915_request *rq)
283 {
284         if (!i915_request_completed(rq))
285                 return false;
286
287         RQ_TRACE(rq, "\n");
288
289         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
290         trace_i915_request_retire(rq);
291
292         /*
293          * We know the GPU must have read the request to have
294          * sent us the seqno + interrupt, so use the position
295          * of tail of the request to update the last known position
296          * of the GPU head.
297          *
298          * Note this requires that we are always called in request
299          * completion order.
300          */
301         GEM_BUG_ON(!list_is_first(&rq->link,
302                                   &i915_request_timeline(rq)->requests));
303         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
304                 /* Poison before we release our space in the ring */
305                 __i915_request_fill(rq, POISON_FREE);
306         rq->ring->head = rq->postfix;
307
308         /*
309          * We only loosely track inflight requests across preemption,
310          * and so we may find ourselves attempting to retire a _completed_
311          * request that we have removed from the HW and put back on a run
312          * queue.
313          */
314         remove_from_engine(rq);
315
316         spin_lock_irq(&rq->lock);
317         i915_request_mark_complete(rq);
318         if (!i915_request_signaled(rq))
319                 dma_fence_signal_locked(&rq->fence);
320         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
321                 i915_request_cancel_breadcrumb(rq);
322         if (i915_request_has_waitboost(rq)) {
323                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
324                 atomic_dec(&rq->engine->gt->rps.num_waiters);
325         }
326         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
327                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
328                 __notify_execute_cb(rq);
329         }
330         GEM_BUG_ON(!list_empty(&rq->execute_cb));
331         spin_unlock_irq(&rq->lock);
332
333         remove_from_client(rq);
334         __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335
336         intel_context_exit(rq->context);
337         intel_context_unpin(rq->context);
338
339         free_capture_list(rq);
340         i915_sched_node_fini(&rq->sched);
341         i915_request_put(rq);
342
343         return true;
344 }
345
346 void i915_request_retire_upto(struct i915_request *rq)
347 {
348         struct intel_timeline * const tl = i915_request_timeline(rq);
349         struct i915_request *tmp;
350
351         RQ_TRACE(rq, "\n");
352
353         GEM_BUG_ON(!i915_request_completed(rq));
354
355         do {
356                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357         } while (i915_request_retire(tmp) && tmp != rq);
358 }
359
360 static struct i915_request * const *
361 __engine_active(struct intel_engine_cs *engine)
362 {
363         return READ_ONCE(engine->execlists.active);
364 }
365
366 static bool __request_in_flight(const struct i915_request *signal)
367 {
368         struct i915_request * const *port, *rq;
369         bool inflight = false;
370
371         if (!i915_request_is_ready(signal))
372                 return false;
373
374         /*
375          * Even if we have unwound the request, it may still be on
376          * the GPU (preempt-to-busy). If that request is inside an
377          * unpreemptible critical section, it will not be removed. Some
378          * GPU functions may even be stuck waiting for the paired request
379          * (__await_execution) to be submitted and cannot be preempted
380          * until the bond is executing.
381          *
382          * As we know that there are always preemption points between
383          * requests, we know that only the currently executing request
384          * may be still active even though we have cleared the flag.
385          * However, we can't rely on our tracking of ELSP[0] to known
386          * which request is currently active and so maybe stuck, as
387          * the tracking maybe an event behind. Instead assume that
388          * if the context is still inflight, then it is still active
389          * even if the active flag has been cleared.
390          */
391         if (!intel_context_inflight(signal->context))
392                 return false;
393
394         rcu_read_lock();
395         for (port = __engine_active(signal->engine); (rq = *port); port++) {
396                 if (rq->context == signal->context) {
397                         inflight = i915_seqno_passed(rq->fence.seqno,
398                                                      signal->fence.seqno);
399                         break;
400                 }
401         }
402         rcu_read_unlock();
403
404         return inflight;
405 }
406
407 static int
408 __await_execution(struct i915_request *rq,
409                   struct i915_request *signal,
410                   void (*hook)(struct i915_request *rq,
411                                struct dma_fence *signal),
412                   gfp_t gfp)
413 {
414         struct execute_cb *cb;
415
416         if (i915_request_is_active(signal)) {
417                 if (hook)
418                         hook(rq, &signal->fence);
419                 return 0;
420         }
421
422         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
423         if (!cb)
424                 return -ENOMEM;
425
426         cb->fence = &rq->submit;
427         i915_sw_fence_await(cb->fence);
428         init_irq_work(&cb->work, irq_execute_cb);
429
430         if (hook) {
431                 cb->hook = hook;
432                 cb->signal = i915_request_get(signal);
433                 cb->work.func = irq_execute_cb_hook;
434         }
435
436         spin_lock_irq(&signal->lock);
437         if (i915_request_is_active(signal) || __request_in_flight(signal)) {
438                 if (hook) {
439                         hook(rq, &signal->fence);
440                         i915_request_put(signal);
441                 }
442                 i915_sw_fence_complete(cb->fence);
443                 kmem_cache_free(global.slab_execute_cbs, cb);
444         } else {
445                 list_add_tail(&cb->link, &signal->execute_cb);
446         }
447         spin_unlock_irq(&signal->lock);
448
449         return 0;
450 }
451
452 static bool fatal_error(int error)
453 {
454         switch (error) {
455         case 0: /* not an error! */
456         case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
457         case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
458                 return false;
459         default:
460                 return true;
461         }
462 }
463
464 void __i915_request_skip(struct i915_request *rq)
465 {
466         GEM_BUG_ON(!fatal_error(rq->fence.error));
467
468         if (rq->infix == rq->postfix)
469                 return;
470
471         /*
472          * As this request likely depends on state from the lost
473          * context, clear out all the user operations leaving the
474          * breadcrumb at the end (so we get the fence notifications).
475          */
476         __i915_request_fill(rq, 0);
477         rq->infix = rq->postfix;
478 }
479
480 void i915_request_set_error_once(struct i915_request *rq, int error)
481 {
482         int old;
483
484         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
485
486         if (i915_request_signaled(rq))
487                 return;
488
489         old = READ_ONCE(rq->fence.error);
490         do {
491                 if (fatal_error(old))
492                         return;
493         } while (!try_cmpxchg(&rq->fence.error, &old, error));
494 }
495
496 bool __i915_request_submit(struct i915_request *request)
497 {
498         struct intel_engine_cs *engine = request->engine;
499         bool result = false;
500
501         RQ_TRACE(request, "\n");
502
503         GEM_BUG_ON(!irqs_disabled());
504         lockdep_assert_held(&engine->active.lock);
505
506         /*
507          * With the advent of preempt-to-busy, we frequently encounter
508          * requests that we have unsubmitted from HW, but left running
509          * until the next ack and so have completed in the meantime. On
510          * resubmission of that completed request, we can skip
511          * updating the payload, and execlists can even skip submitting
512          * the request.
513          *
514          * We must remove the request from the caller's priority queue,
515          * and the caller must only call us when the request is in their
516          * priority queue, under the active.lock. This ensures that the
517          * request has *not* yet been retired and we can safely move
518          * the request into the engine->active.list where it will be
519          * dropped upon retiring. (Otherwise if resubmit a *retired*
520          * request, this would be a horrible use-after-free.)
521          */
522         if (i915_request_completed(request))
523                 goto xfer;
524
525         if (unlikely(intel_context_is_banned(request->context)))
526                 i915_request_set_error_once(request, -EIO);
527         if (unlikely(fatal_error(request->fence.error)))
528                 __i915_request_skip(request);
529
530         /*
531          * Are we using semaphores when the gpu is already saturated?
532          *
533          * Using semaphores incurs a cost in having the GPU poll a
534          * memory location, busywaiting for it to change. The continual
535          * memory reads can have a noticeable impact on the rest of the
536          * system with the extra bus traffic, stalling the cpu as it too
537          * tries to access memory across the bus (perf stat -e bus-cycles).
538          *
539          * If we installed a semaphore on this request and we only submit
540          * the request after the signaler completed, that indicates the
541          * system is overloaded and using semaphores at this time only
542          * increases the amount of work we are doing. If so, we disable
543          * further use of semaphores until we are idle again, whence we
544          * optimistically try again.
545          */
546         if (request->sched.semaphores &&
547             i915_sw_fence_signaled(&request->semaphore))
548                 engine->saturated |= request->sched.semaphores;
549
550         engine->emit_fini_breadcrumb(request,
551                                      request->ring->vaddr + request->postfix);
552
553         trace_i915_request_execute(request);
554         engine->serial++;
555         result = true;
556
557 xfer:   /* We may be recursing from the signal callback of another i915 fence */
558         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
559
560         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
561                 list_move_tail(&request->sched.link, &engine->active.requests);
562                 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
563         }
564
565         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
566             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
567             !i915_request_enable_breadcrumb(request))
568                 intel_engine_signal_breadcrumbs(engine);
569
570         __notify_execute_cb(request);
571
572         spin_unlock(&request->lock);
573
574         return result;
575 }
576
577 void i915_request_submit(struct i915_request *request)
578 {
579         struct intel_engine_cs *engine = request->engine;
580         unsigned long flags;
581
582         /* Will be called from irq-context when using foreign fences. */
583         spin_lock_irqsave(&engine->active.lock, flags);
584
585         __i915_request_submit(request);
586
587         spin_unlock_irqrestore(&engine->active.lock, flags);
588 }
589
590 void __i915_request_unsubmit(struct i915_request *request)
591 {
592         struct intel_engine_cs *engine = request->engine;
593
594         RQ_TRACE(request, "\n");
595
596         GEM_BUG_ON(!irqs_disabled());
597         lockdep_assert_held(&engine->active.lock);
598
599         /*
600          * Only unwind in reverse order, required so that the per-context list
601          * is kept in seqno/ring order.
602          */
603
604         /* We may be recursing from the signal callback of another i915 fence */
605         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
606
607         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
608                 i915_request_cancel_breadcrumb(request);
609
610         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
611         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
612
613         spin_unlock(&request->lock);
614
615         /* We've already spun, don't charge on resubmitting. */
616         if (request->sched.semaphores && i915_request_started(request))
617                 request->sched.semaphores = 0;
618
619         /*
620          * We don't need to wake_up any waiters on request->execute, they
621          * will get woken by any other event or us re-adding this request
622          * to the engine timeline (__i915_request_submit()). The waiters
623          * should be quite adapt at finding that the request now has a new
624          * global_seqno to the one they went to sleep on.
625          */
626 }
627
628 void i915_request_unsubmit(struct i915_request *request)
629 {
630         struct intel_engine_cs *engine = request->engine;
631         unsigned long flags;
632
633         /* Will be called from irq-context when using foreign fences. */
634         spin_lock_irqsave(&engine->active.lock, flags);
635
636         __i915_request_unsubmit(request);
637
638         spin_unlock_irqrestore(&engine->active.lock, flags);
639 }
640
641 static int __i915_sw_fence_call
642 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
643 {
644         struct i915_request *request =
645                 container_of(fence, typeof(*request), submit);
646
647         switch (state) {
648         case FENCE_COMPLETE:
649                 trace_i915_request_submit(request);
650
651                 if (unlikely(fence->error))
652                         i915_request_set_error_once(request, fence->error);
653
654                 /*
655                  * We need to serialize use of the submit_request() callback
656                  * with its hotplugging performed during an emergency
657                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
658                  * critical section in order to force i915_gem_set_wedged() to
659                  * wait until the submit_request() is completed before
660                  * proceeding.
661                  */
662                 rcu_read_lock();
663                 request->engine->submit_request(request);
664                 rcu_read_unlock();
665                 break;
666
667         case FENCE_FREE:
668                 i915_request_put(request);
669                 break;
670         }
671
672         return NOTIFY_DONE;
673 }
674
675 static int __i915_sw_fence_call
676 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
677 {
678         struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
679
680         switch (state) {
681         case FENCE_COMPLETE:
682                 break;
683
684         case FENCE_FREE:
685                 i915_request_put(rq);
686                 break;
687         }
688
689         return NOTIFY_DONE;
690 }
691
692 static void retire_requests(struct intel_timeline *tl)
693 {
694         struct i915_request *rq, *rn;
695
696         list_for_each_entry_safe(rq, rn, &tl->requests, link)
697                 if (!i915_request_retire(rq))
698                         break;
699 }
700
701 static noinline struct i915_request *
702 request_alloc_slow(struct intel_timeline *tl,
703                    struct i915_request **rsvd,
704                    gfp_t gfp)
705 {
706         struct i915_request *rq;
707
708         /* If we cannot wait, dip into our reserves */
709         if (!gfpflags_allow_blocking(gfp)) {
710                 rq = xchg(rsvd, NULL);
711                 if (!rq) /* Use the normal failure path for one final WARN */
712                         goto out;
713
714                 return rq;
715         }
716
717         if (list_empty(&tl->requests))
718                 goto out;
719
720         /* Move our oldest request to the slab-cache (if not in use!) */
721         rq = list_first_entry(&tl->requests, typeof(*rq), link);
722         i915_request_retire(rq);
723
724         rq = kmem_cache_alloc(global.slab_requests,
725                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
726         if (rq)
727                 return rq;
728
729         /* Ratelimit ourselves to prevent oom from malicious clients */
730         rq = list_last_entry(&tl->requests, typeof(*rq), link);
731         cond_synchronize_rcu(rq->rcustate);
732
733         /* Retire our old requests in the hope that we free some */
734         retire_requests(tl);
735
736 out:
737         return kmem_cache_alloc(global.slab_requests, gfp);
738 }
739
740 static void __i915_request_ctor(void *arg)
741 {
742         struct i915_request *rq = arg;
743
744         spin_lock_init(&rq->lock);
745         i915_sched_node_init(&rq->sched);
746         i915_sw_fence_init(&rq->submit, submit_notify);
747         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
748
749         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
750
751         rq->file_priv = NULL;
752         rq->capture_list = NULL;
753
754         INIT_LIST_HEAD(&rq->execute_cb);
755 }
756
757 struct i915_request *
758 __i915_request_create(struct intel_context *ce, gfp_t gfp)
759 {
760         struct intel_timeline *tl = ce->timeline;
761         struct i915_request *rq;
762         u32 seqno;
763         int ret;
764
765         might_sleep_if(gfpflags_allow_blocking(gfp));
766
767         /* Check that the caller provided an already pinned context */
768         __intel_context_pin(ce);
769
770         /*
771          * Beware: Dragons be flying overhead.
772          *
773          * We use RCU to look up requests in flight. The lookups may
774          * race with the request being allocated from the slab freelist.
775          * That is the request we are writing to here, may be in the process
776          * of being read by __i915_active_request_get_rcu(). As such,
777          * we have to be very careful when overwriting the contents. During
778          * the RCU lookup, we change chase the request->engine pointer,
779          * read the request->global_seqno and increment the reference count.
780          *
781          * The reference count is incremented atomically. If it is zero,
782          * the lookup knows the request is unallocated and complete. Otherwise,
783          * it is either still in use, or has been reallocated and reset
784          * with dma_fence_init(). This increment is safe for release as we
785          * check that the request we have a reference to and matches the active
786          * request.
787          *
788          * Before we increment the refcount, we chase the request->engine
789          * pointer. We must not call kmem_cache_zalloc() or else we set
790          * that pointer to NULL and cause a crash during the lookup. If
791          * we see the request is completed (based on the value of the
792          * old engine and seqno), the lookup is complete and reports NULL.
793          * If we decide the request is not completed (new engine or seqno),
794          * then we grab a reference and double check that it is still the
795          * active request - which it won't be and restart the lookup.
796          *
797          * Do not use kmem_cache_zalloc() here!
798          */
799         rq = kmem_cache_alloc(global.slab_requests,
800                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
801         if (unlikely(!rq)) {
802                 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
803                 if (!rq) {
804                         ret = -ENOMEM;
805                         goto err_unreserve;
806                 }
807         }
808
809         rq->i915 = ce->engine->i915;
810         rq->context = ce;
811         rq->engine = ce->engine;
812         rq->ring = ce->ring;
813         rq->execution_mask = ce->engine->mask;
814
815         kref_init(&rq->fence.refcount);
816         rq->fence.flags = 0;
817         rq->fence.error = 0;
818         INIT_LIST_HEAD(&rq->fence.cb_list);
819
820         ret = intel_timeline_get_seqno(tl, rq, &seqno);
821         if (ret)
822                 goto err_free;
823
824         rq->fence.context = tl->fence_context;
825         rq->fence.seqno = seqno;
826
827         RCU_INIT_POINTER(rq->timeline, tl);
828         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
829         rq->hwsp_seqno = tl->hwsp_seqno;
830         GEM_BUG_ON(i915_request_completed(rq));
831
832         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
833
834         /* We bump the ref for the fence chain */
835         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
836         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
837
838         i915_sched_node_reinit(&rq->sched);
839
840         /* No zalloc, everything must be cleared after use */
841         rq->batch = NULL;
842         GEM_BUG_ON(rq->file_priv);
843         GEM_BUG_ON(rq->capture_list);
844         GEM_BUG_ON(!list_empty(&rq->execute_cb));
845
846         /*
847          * Reserve space in the ring buffer for all the commands required to
848          * eventually emit this request. This is to guarantee that the
849          * i915_request_add() call can't fail. Note that the reserve may need
850          * to be redone if the request is not actually submitted straight
851          * away, e.g. because a GPU scheduler has deferred it.
852          *
853          * Note that due to how we add reserved_space to intel_ring_begin()
854          * we need to double our request to ensure that if we need to wrap
855          * around inside i915_request_add() there is sufficient space at
856          * the beginning of the ring as well.
857          */
858         rq->reserved_space =
859                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
860
861         /*
862          * Record the position of the start of the request so that
863          * should we detect the updated seqno part-way through the
864          * GPU processing the request, we never over-estimate the
865          * position of the head.
866          */
867         rq->head = rq->ring->emit;
868
869         ret = rq->engine->request_alloc(rq);
870         if (ret)
871                 goto err_unwind;
872
873         rq->infix = rq->ring->emit; /* end of header; start of user payload */
874
875         intel_context_mark_active(ce);
876         list_add_tail_rcu(&rq->link, &tl->requests);
877
878         return rq;
879
880 err_unwind:
881         ce->ring->emit = rq->head;
882
883         /* Make sure we didn't add ourselves to external state before freeing */
884         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
885         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
886
887 err_free:
888         kmem_cache_free(global.slab_requests, rq);
889 err_unreserve:
890         intel_context_unpin(ce);
891         return ERR_PTR(ret);
892 }
893
894 struct i915_request *
895 i915_request_create(struct intel_context *ce)
896 {
897         struct i915_request *rq;
898         struct intel_timeline *tl;
899
900         tl = intel_context_timeline_lock(ce);
901         if (IS_ERR(tl))
902                 return ERR_CAST(tl);
903
904         /* Move our oldest request to the slab-cache (if not in use!) */
905         rq = list_first_entry(&tl->requests, typeof(*rq), link);
906         if (!list_is_last(&rq->link, &tl->requests))
907                 i915_request_retire(rq);
908
909         intel_context_enter(ce);
910         rq = __i915_request_create(ce, GFP_KERNEL);
911         intel_context_exit(ce); /* active reference transferred to request */
912         if (IS_ERR(rq))
913                 goto err_unlock;
914
915         /* Check that we do not interrupt ourselves with a new request */
916         rq->cookie = lockdep_pin_lock(&tl->mutex);
917
918         return rq;
919
920 err_unlock:
921         intel_context_timeline_unlock(tl);
922         return rq;
923 }
924
925 static int
926 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
927 {
928         struct dma_fence *fence;
929         int err;
930
931         if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
932                 return 0;
933
934         if (i915_request_started(signal))
935                 return 0;
936
937         fence = NULL;
938         rcu_read_lock();
939         spin_lock_irq(&signal->lock);
940         do {
941                 struct list_head *pos = READ_ONCE(signal->link.prev);
942                 struct i915_request *prev;
943
944                 /* Confirm signal has not been retired, the link is valid */
945                 if (unlikely(i915_request_started(signal)))
946                         break;
947
948                 /* Is signal the earliest request on its timeline? */
949                 if (pos == &rcu_dereference(signal->timeline)->requests)
950                         break;
951
952                 /*
953                  * Peek at the request before us in the timeline. That
954                  * request will only be valid before it is retired, so
955                  * after acquiring a reference to it, confirm that it is
956                  * still part of the signaler's timeline.
957                  */
958                 prev = list_entry(pos, typeof(*prev), link);
959                 if (!i915_request_get_rcu(prev))
960                         break;
961
962                 /* After the strong barrier, confirm prev is still attached */
963                 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
964                         i915_request_put(prev);
965                         break;
966                 }
967
968                 fence = &prev->fence;
969         } while (0);
970         spin_unlock_irq(&signal->lock);
971         rcu_read_unlock();
972         if (!fence)
973                 return 0;
974
975         err = 0;
976         if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
977                 err = i915_sw_fence_await_dma_fence(&rq->submit,
978                                                     fence, 0,
979                                                     I915_FENCE_GFP);
980         dma_fence_put(fence);
981
982         return err;
983 }
984
985 static intel_engine_mask_t
986 already_busywaiting(struct i915_request *rq)
987 {
988         /*
989          * Polling a semaphore causes bus traffic, delaying other users of
990          * both the GPU and CPU. We want to limit the impact on others,
991          * while taking advantage of early submission to reduce GPU
992          * latency. Therefore we restrict ourselves to not using more
993          * than one semaphore from each source, and not using a semaphore
994          * if we have detected the engine is saturated (i.e. would not be
995          * submitted early and cause bus traffic reading an already passed
996          * semaphore).
997          *
998          * See the are-we-too-late? check in __i915_request_submit().
999          */
1000         return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1001 }
1002
1003 static int
1004 __emit_semaphore_wait(struct i915_request *to,
1005                       struct i915_request *from,
1006                       u32 seqno)
1007 {
1008         const int has_token = INTEL_GEN(to->i915) >= 12;
1009         u32 hwsp_offset;
1010         int len, err;
1011         u32 *cs;
1012
1013         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
1014         GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1015
1016         /* We need to pin the signaler's HWSP until we are finished reading. */
1017         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1018         if (err)
1019                 return err;
1020
1021         len = 4;
1022         if (has_token)
1023                 len += 2;
1024
1025         cs = intel_ring_begin(to, len);
1026         if (IS_ERR(cs))
1027                 return PTR_ERR(cs);
1028
1029         /*
1030          * Using greater-than-or-equal here means we have to worry
1031          * about seqno wraparound. To side step that issue, we swap
1032          * the timeline HWSP upon wrapping, so that everyone listening
1033          * for the old (pre-wrap) values do not see the much smaller
1034          * (post-wrap) values than they were expecting (and so wait
1035          * forever).
1036          */
1037         *cs++ = (MI_SEMAPHORE_WAIT |
1038                  MI_SEMAPHORE_GLOBAL_GTT |
1039                  MI_SEMAPHORE_POLL |
1040                  MI_SEMAPHORE_SAD_GTE_SDD) +
1041                 has_token;
1042         *cs++ = seqno;
1043         *cs++ = hwsp_offset;
1044         *cs++ = 0;
1045         if (has_token) {
1046                 *cs++ = 0;
1047                 *cs++ = MI_NOOP;
1048         }
1049
1050         intel_ring_advance(to, cs);
1051         return 0;
1052 }
1053
1054 static int
1055 emit_semaphore_wait(struct i915_request *to,
1056                     struct i915_request *from,
1057                     gfp_t gfp)
1058 {
1059         const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1060         struct i915_sw_fence *wait = &to->submit;
1061
1062         if (!intel_context_use_semaphores(to->context))
1063                 goto await_fence;
1064
1065         if (i915_request_has_initial_breadcrumb(to))
1066                 goto await_fence;
1067
1068         if (!rcu_access_pointer(from->hwsp_cacheline))
1069                 goto await_fence;
1070
1071         /*
1072          * If this or its dependents are waiting on an external fence
1073          * that may fail catastrophically, then we want to avoid using
1074          * sempahores as they bypass the fence signaling metadata, and we
1075          * lose the fence->error propagation.
1076          */
1077         if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1078                 goto await_fence;
1079
1080         /* Just emit the first semaphore we see as request space is limited. */
1081         if (already_busywaiting(to) & mask)
1082                 goto await_fence;
1083
1084         if (i915_request_await_start(to, from) < 0)
1085                 goto await_fence;
1086
1087         /* Only submit our spinner after the signaler is running! */
1088         if (__await_execution(to, from, NULL, gfp))
1089                 goto await_fence;
1090
1091         if (__emit_semaphore_wait(to, from, from->fence.seqno))
1092                 goto await_fence;
1093
1094         to->sched.semaphores |= mask;
1095         wait = &to->semaphore;
1096
1097 await_fence:
1098         return i915_sw_fence_await_dma_fence(wait,
1099                                              &from->fence, 0,
1100                                              I915_FENCE_GFP);
1101 }
1102
1103 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1104                                           struct dma_fence *fence)
1105 {
1106         return __intel_timeline_sync_is_later(tl,
1107                                               fence->context,
1108                                               fence->seqno - 1);
1109 }
1110
1111 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1112                                          const struct dma_fence *fence)
1113 {
1114         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1115 }
1116
1117 static int
1118 __i915_request_await_execution(struct i915_request *to,
1119                                struct i915_request *from,
1120                                void (*hook)(struct i915_request *rq,
1121                                             struct dma_fence *signal))
1122 {
1123         int err;
1124
1125         GEM_BUG_ON(intel_context_is_barrier(from->context));
1126
1127         /* Submit both requests at the same time */
1128         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1129         if (err)
1130                 return err;
1131
1132         /* Squash repeated depenendices to the same timelines */
1133         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1134                                           &from->fence))
1135                 return 0;
1136
1137         /*
1138          * Wait until the start of this request.
1139          *
1140          * The execution cb fires when we submit the request to HW. But in
1141          * many cases this may be long before the request itself is ready to
1142          * run (consider that we submit 2 requests for the same context, where
1143          * the request of interest is behind an indefinite spinner). So we hook
1144          * up to both to reduce our queues and keep the execution lag minimised
1145          * in the worst case, though we hope that the await_start is elided.
1146          */
1147         err = i915_request_await_start(to, from);
1148         if (err < 0)
1149                 return err;
1150
1151         /*
1152          * Ensure both start together [after all semaphores in signal]
1153          *
1154          * Now that we are queued to the HW at roughly the same time (thanks
1155          * to the execute cb) and are ready to run at roughly the same time
1156          * (thanks to the await start), our signaler may still be indefinitely
1157          * delayed by waiting on a semaphore from a remote engine. If our
1158          * signaler depends on a semaphore, so indirectly do we, and we do not
1159          * want to start our payload until our signaler also starts theirs.
1160          * So we wait.
1161          *
1162          * However, there is also a second condition for which we need to wait
1163          * for the precise start of the signaler. Consider that the signaler
1164          * was submitted in a chain of requests following another context
1165          * (with just an ordinary intra-engine fence dependency between the
1166          * two). In this case the signaler is queued to HW, but not for
1167          * immediate execution, and so we must wait until it reaches the
1168          * active slot.
1169          */
1170         if (intel_engine_has_semaphores(to->engine) &&
1171             !i915_request_has_initial_breadcrumb(to)) {
1172                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1173                 if (err < 0)
1174                         return err;
1175         }
1176
1177         /* Couple the dependency tree for PI on this exposed to->fence */
1178         if (to->engine->schedule) {
1179                 err = i915_sched_node_add_dependency(&to->sched,
1180                                                      &from->sched,
1181                                                      I915_DEPENDENCY_WEAK);
1182                 if (err < 0)
1183                         return err;
1184         }
1185
1186         return intel_timeline_sync_set_start(i915_request_timeline(to),
1187                                              &from->fence);
1188 }
1189
1190 static void mark_external(struct i915_request *rq)
1191 {
1192         /*
1193          * The downside of using semaphores is that we lose metadata passing
1194          * along the signaling chain. This is particularly nasty when we
1195          * need to pass along a fatal error such as EFAULT or EDEADLK. For
1196          * fatal errors we want to scrub the request before it is executed,
1197          * which means that we cannot preload the request onto HW and have
1198          * it wait upon a semaphore.
1199          */
1200         rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1201 }
1202
1203 static int
1204 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1205 {
1206         mark_external(rq);
1207         return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1208                                              i915_fence_context_timeout(rq->i915,
1209                                                                         fence->context),
1210                                              I915_FENCE_GFP);
1211 }
1212
1213 static int
1214 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1215 {
1216         struct dma_fence *iter;
1217         int err = 0;
1218
1219         if (!to_dma_fence_chain(fence))
1220                 return __i915_request_await_external(rq, fence);
1221
1222         dma_fence_chain_for_each(iter, fence) {
1223                 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1224
1225                 if (!dma_fence_is_i915(chain->fence)) {
1226                         err = __i915_request_await_external(rq, iter);
1227                         break;
1228                 }
1229
1230                 err = i915_request_await_dma_fence(rq, chain->fence);
1231                 if (err < 0)
1232                         break;
1233         }
1234
1235         dma_fence_put(iter);
1236         return err;
1237 }
1238
1239 int
1240 i915_request_await_execution(struct i915_request *rq,
1241                              struct dma_fence *fence,
1242                              void (*hook)(struct i915_request *rq,
1243                                           struct dma_fence *signal))
1244 {
1245         struct dma_fence **child = &fence;
1246         unsigned int nchild = 1;
1247         int ret;
1248
1249         if (dma_fence_is_array(fence)) {
1250                 struct dma_fence_array *array = to_dma_fence_array(fence);
1251
1252                 /* XXX Error for signal-on-any fence arrays */
1253
1254                 child = array->fences;
1255                 nchild = array->num_fences;
1256                 GEM_BUG_ON(!nchild);
1257         }
1258
1259         do {
1260                 fence = *child++;
1261                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1262                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1263                         continue;
1264                 }
1265
1266                 if (fence->context == rq->fence.context)
1267                         continue;
1268
1269                 /*
1270                  * We don't squash repeated fence dependencies here as we
1271                  * want to run our callback in all cases.
1272                  */
1273
1274                 if (dma_fence_is_i915(fence))
1275                         ret = __i915_request_await_execution(rq,
1276                                                              to_request(fence),
1277                                                              hook);
1278                 else
1279                         ret = i915_request_await_external(rq, fence);
1280                 if (ret < 0)
1281                         return ret;
1282         } while (--nchild);
1283
1284         return 0;
1285 }
1286
1287 static int
1288 await_request_submit(struct i915_request *to, struct i915_request *from)
1289 {
1290         /*
1291          * If we are waiting on a virtual engine, then it may be
1292          * constrained to execute on a single engine *prior* to submission.
1293          * When it is submitted, it will be first submitted to the virtual
1294          * engine and then passed to the physical engine. We cannot allow
1295          * the waiter to be submitted immediately to the physical engine
1296          * as it may then bypass the virtual request.
1297          */
1298         if (to->engine == READ_ONCE(from->engine))
1299                 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1300                                                         &from->submit,
1301                                                         I915_FENCE_GFP);
1302         else
1303                 return __i915_request_await_execution(to, from, NULL);
1304 }
1305
1306 static int
1307 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1308 {
1309         int ret;
1310
1311         GEM_BUG_ON(to == from);
1312         GEM_BUG_ON(to->timeline == from->timeline);
1313
1314         if (i915_request_completed(from)) {
1315                 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1316                 return 0;
1317         }
1318
1319         if (to->engine->schedule) {
1320                 ret = i915_sched_node_add_dependency(&to->sched,
1321                                                      &from->sched,
1322                                                      I915_DEPENDENCY_EXTERNAL);
1323                 if (ret < 0)
1324                         return ret;
1325         }
1326
1327         if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1328                 ret = await_request_submit(to, from);
1329         else
1330                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1331         if (ret < 0)
1332                 return ret;
1333
1334         return 0;
1335 }
1336
1337 int
1338 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1339 {
1340         struct dma_fence **child = &fence;
1341         unsigned int nchild = 1;
1342         int ret;
1343
1344         /*
1345          * Note that if the fence-array was created in signal-on-any mode,
1346          * we should *not* decompose it into its individual fences. However,
1347          * we don't currently store which mode the fence-array is operating
1348          * in. Fortunately, the only user of signal-on-any is private to
1349          * amdgpu and we should not see any incoming fence-array from
1350          * sync-file being in signal-on-any mode.
1351          */
1352         if (dma_fence_is_array(fence)) {
1353                 struct dma_fence_array *array = to_dma_fence_array(fence);
1354
1355                 child = array->fences;
1356                 nchild = array->num_fences;
1357                 GEM_BUG_ON(!nchild);
1358         }
1359
1360         do {
1361                 fence = *child++;
1362                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1363                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1364                         continue;
1365                 }
1366
1367                 /*
1368                  * Requests on the same timeline are explicitly ordered, along
1369                  * with their dependencies, by i915_request_add() which ensures
1370                  * that requests are submitted in-order through each ring.
1371                  */
1372                 if (fence->context == rq->fence.context)
1373                         continue;
1374
1375                 /* Squash repeated waits to the same timelines */
1376                 if (fence->context &&
1377                     intel_timeline_sync_is_later(i915_request_timeline(rq),
1378                                                  fence))
1379                         continue;
1380
1381                 if (dma_fence_is_i915(fence))
1382                         ret = i915_request_await_request(rq, to_request(fence));
1383                 else
1384                         ret = i915_request_await_external(rq, fence);
1385                 if (ret < 0)
1386                         return ret;
1387
1388                 /* Record the latest fence used against each timeline */
1389                 if (fence->context)
1390                         intel_timeline_sync_set(i915_request_timeline(rq),
1391                                                 fence);
1392         } while (--nchild);
1393
1394         return 0;
1395 }
1396
1397 /**
1398  * i915_request_await_object - set this request to (async) wait upon a bo
1399  * @to: request we are wishing to use
1400  * @obj: object which may be in use on another ring.
1401  * @write: whether the wait is on behalf of a writer
1402  *
1403  * This code is meant to abstract object synchronization with the GPU.
1404  * Conceptually we serialise writes between engines inside the GPU.
1405  * We only allow one engine to write into a buffer at any time, but
1406  * multiple readers. To ensure each has a coherent view of memory, we must:
1407  *
1408  * - If there is an outstanding write request to the object, the new
1409  *   request must wait for it to complete (either CPU or in hw, requests
1410  *   on the same ring will be naturally ordered).
1411  *
1412  * - If we are a write request (pending_write_domain is set), the new
1413  *   request must wait for outstanding read requests to complete.
1414  *
1415  * Returns 0 if successful, else propagates up the lower layer error.
1416  */
1417 int
1418 i915_request_await_object(struct i915_request *to,
1419                           struct drm_i915_gem_object *obj,
1420                           bool write)
1421 {
1422         struct dma_fence *excl;
1423         int ret = 0;
1424
1425         if (write) {
1426                 struct dma_fence **shared;
1427                 unsigned int count, i;
1428
1429                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1430                                                         &excl, &count, &shared);
1431                 if (ret)
1432                         return ret;
1433
1434                 for (i = 0; i < count; i++) {
1435                         ret = i915_request_await_dma_fence(to, shared[i]);
1436                         if (ret)
1437                                 break;
1438
1439                         dma_fence_put(shared[i]);
1440                 }
1441
1442                 for (; i < count; i++)
1443                         dma_fence_put(shared[i]);
1444                 kfree(shared);
1445         } else {
1446                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1447         }
1448
1449         if (excl) {
1450                 if (ret == 0)
1451                         ret = i915_request_await_dma_fence(to, excl);
1452
1453                 dma_fence_put(excl);
1454         }
1455
1456         return ret;
1457 }
1458
1459 static struct i915_request *
1460 __i915_request_add_to_timeline(struct i915_request *rq)
1461 {
1462         struct intel_timeline *timeline = i915_request_timeline(rq);
1463         struct i915_request *prev;
1464
1465         /*
1466          * Dependency tracking and request ordering along the timeline
1467          * is special cased so that we can eliminate redundant ordering
1468          * operations while building the request (we know that the timeline
1469          * itself is ordered, and here we guarantee it).
1470          *
1471          * As we know we will need to emit tracking along the timeline,
1472          * we embed the hooks into our request struct -- at the cost of
1473          * having to have specialised no-allocation interfaces (which will
1474          * be beneficial elsewhere).
1475          *
1476          * A second benefit to open-coding i915_request_await_request is
1477          * that we can apply a slight variant of the rules specialised
1478          * for timelines that jump between engines (such as virtual engines).
1479          * If we consider the case of virtual engine, we must emit a dma-fence
1480          * to prevent scheduling of the second request until the first is
1481          * complete (to maximise our greedy late load balancing) and this
1482          * precludes optimising to use semaphores serialisation of a single
1483          * timeline across engines.
1484          */
1485         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1486                                                   &rq->fence));
1487         if (prev && !i915_request_completed(prev)) {
1488                 /*
1489                  * The requests are supposed to be kept in order. However,
1490                  * we need to be wary in case the timeline->last_request
1491                  * is used as a barrier for external modification to this
1492                  * context.
1493                  */
1494                 GEM_BUG_ON(prev->context == rq->context &&
1495                            i915_seqno_passed(prev->fence.seqno,
1496                                              rq->fence.seqno));
1497
1498                 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1499                         i915_sw_fence_await_sw_fence(&rq->submit,
1500                                                      &prev->submit,
1501                                                      &rq->submitq);
1502                 else
1503                         __i915_sw_fence_await_dma_fence(&rq->submit,
1504                                                         &prev->fence,
1505                                                         &rq->dmaq);
1506                 if (rq->engine->schedule)
1507                         __i915_sched_node_add_dependency(&rq->sched,
1508                                                          &prev->sched,
1509                                                          &rq->dep,
1510                                                          0);
1511         }
1512
1513         /*
1514          * Make sure that no request gazumped us - if it was allocated after
1515          * our i915_request_alloc() and called __i915_request_add() before
1516          * us, the timeline will hold its seqno which is later than ours.
1517          */
1518         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1519
1520         return prev;
1521 }
1522
1523 /*
1524  * NB: This function is not allowed to fail. Doing so would mean the the
1525  * request is not being tracked for completion but the work itself is
1526  * going to happen on the hardware. This would be a Bad Thing(tm).
1527  */
1528 struct i915_request *__i915_request_commit(struct i915_request *rq)
1529 {
1530         struct intel_engine_cs *engine = rq->engine;
1531         struct intel_ring *ring = rq->ring;
1532         u32 *cs;
1533
1534         RQ_TRACE(rq, "\n");
1535
1536         /*
1537          * To ensure that this call will not fail, space for its emissions
1538          * should already have been reserved in the ring buffer. Let the ring
1539          * know that it is time to use that space up.
1540          */
1541         GEM_BUG_ON(rq->reserved_space > ring->space);
1542         rq->reserved_space = 0;
1543         rq->emitted_jiffies = jiffies;
1544
1545         /*
1546          * Record the position of the start of the breadcrumb so that
1547          * should we detect the updated seqno part-way through the
1548          * GPU processing the request, we never over-estimate the
1549          * position of the ring's HEAD.
1550          */
1551         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1552         GEM_BUG_ON(IS_ERR(cs));
1553         rq->postfix = intel_ring_offset(rq, cs);
1554
1555         return __i915_request_add_to_timeline(rq);
1556 }
1557
1558 void __i915_request_queue(struct i915_request *rq,
1559                           const struct i915_sched_attr *attr)
1560 {
1561         /*
1562          * Let the backend know a new request has arrived that may need
1563          * to adjust the existing execution schedule due to a high priority
1564          * request - i.e. we may want to preempt the current request in order
1565          * to run a high priority dependency chain *before* we can execute this
1566          * request.
1567          *
1568          * This is called before the request is ready to run so that we can
1569          * decide whether to preempt the entire chain so that it is ready to
1570          * run at the earliest possible convenience.
1571          */
1572         if (attr && rq->engine->schedule)
1573                 rq->engine->schedule(rq, attr);
1574         i915_sw_fence_commit(&rq->semaphore);
1575         i915_sw_fence_commit(&rq->submit);
1576 }
1577
1578 void i915_request_add(struct i915_request *rq)
1579 {
1580         struct intel_timeline * const tl = i915_request_timeline(rq);
1581         struct i915_sched_attr attr = {};
1582         struct i915_gem_context *ctx;
1583
1584         lockdep_assert_held(&tl->mutex);
1585         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1586
1587         trace_i915_request_add(rq);
1588         __i915_request_commit(rq);
1589
1590         /* XXX placeholder for selftests */
1591         rcu_read_lock();
1592         ctx = rcu_dereference(rq->context->gem_context);
1593         if (ctx)
1594                 attr = ctx->sched;
1595         rcu_read_unlock();
1596
1597         __i915_request_queue(rq, &attr);
1598
1599         mutex_unlock(&tl->mutex);
1600 }
1601
1602 static unsigned long local_clock_ns(unsigned int *cpu)
1603 {
1604         unsigned long t;
1605
1606         /*
1607          * Cheaply and approximately convert from nanoseconds to microseconds.
1608          * The result and subsequent calculations are also defined in the same
1609          * approximate microseconds units. The principal source of timing
1610          * error here is from the simple truncation.
1611          *
1612          * Note that local_clock() is only defined wrt to the current CPU;
1613          * the comparisons are no longer valid if we switch CPUs. Instead of
1614          * blocking preemption for the entire busywait, we can detect the CPU
1615          * switch and use that as indicator of system load and a reason to
1616          * stop busywaiting, see busywait_stop().
1617          */
1618         *cpu = get_cpu();
1619         t = local_clock();
1620         put_cpu();
1621
1622         return t;
1623 }
1624
1625 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1626 {
1627         unsigned int this_cpu;
1628
1629         if (time_after(local_clock_ns(&this_cpu), timeout))
1630                 return true;
1631
1632         return this_cpu != cpu;
1633 }
1634
1635 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1636 {
1637         unsigned long timeout_ns;
1638         unsigned int cpu;
1639
1640         /*
1641          * Only wait for the request if we know it is likely to complete.
1642          *
1643          * We don't track the timestamps around requests, nor the average
1644          * request length, so we do not have a good indicator that this
1645          * request will complete within the timeout. What we do know is the
1646          * order in which requests are executed by the context and so we can
1647          * tell if the request has been started. If the request is not even
1648          * running yet, it is a fair assumption that it will not complete
1649          * within our relatively short timeout.
1650          */
1651         if (!i915_request_is_running(rq))
1652                 return false;
1653
1654         /*
1655          * When waiting for high frequency requests, e.g. during synchronous
1656          * rendering split between the CPU and GPU, the finite amount of time
1657          * required to set up the irq and wait upon it limits the response
1658          * rate. By busywaiting on the request completion for a short while we
1659          * can service the high frequency waits as quick as possible. However,
1660          * if it is a slow request, we want to sleep as quickly as possible.
1661          * The tradeoff between waiting and sleeping is roughly the time it
1662          * takes to sleep on a request, on the order of a microsecond.
1663          */
1664
1665         timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1666         timeout_ns += local_clock_ns(&cpu);
1667         do {
1668                 if (i915_request_completed(rq))
1669                         return true;
1670
1671                 if (signal_pending_state(state, current))
1672                         break;
1673
1674                 if (busywait_stop(timeout_ns, cpu))
1675                         break;
1676
1677                 cpu_relax();
1678         } while (!need_resched());
1679
1680         return false;
1681 }
1682
1683 struct request_wait {
1684         struct dma_fence_cb cb;
1685         struct task_struct *tsk;
1686 };
1687
1688 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1689 {
1690         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1691
1692         wake_up_process(wait->tsk);
1693 }
1694
1695 /**
1696  * i915_request_wait - wait until execution of request has finished
1697  * @rq: the request to wait upon
1698  * @flags: how to wait
1699  * @timeout: how long to wait in jiffies
1700  *
1701  * i915_request_wait() waits for the request to be completed, for a
1702  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1703  * unbounded wait).
1704  *
1705  * Returns the remaining time (in jiffies) if the request completed, which may
1706  * be zero or -ETIME if the request is unfinished after the timeout expires.
1707  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1708  * pending before the request completes.
1709  */
1710 long i915_request_wait(struct i915_request *rq,
1711                        unsigned int flags,
1712                        long timeout)
1713 {
1714         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1715                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1716         struct request_wait wait;
1717
1718         might_sleep();
1719         GEM_BUG_ON(timeout < 0);
1720
1721         if (dma_fence_is_signaled(&rq->fence))
1722                 return timeout;
1723
1724         if (!timeout)
1725                 return -ETIME;
1726
1727         trace_i915_request_wait_begin(rq, flags);
1728
1729         /*
1730          * We must never wait on the GPU while holding a lock as we
1731          * may need to perform a GPU reset. So while we don't need to
1732          * serialise wait/reset with an explicit lock, we do want
1733          * lockdep to detect potential dependency cycles.
1734          */
1735         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1736
1737         /*
1738          * Optimistic spin before touching IRQs.
1739          *
1740          * We may use a rather large value here to offset the penalty of
1741          * switching away from the active task. Frequently, the client will
1742          * wait upon an old swapbuffer to throttle itself to remain within a
1743          * frame of the gpu. If the client is running in lockstep with the gpu,
1744          * then it should not be waiting long at all, and a sleep now will incur
1745          * extra scheduler latency in producing the next frame. To try to
1746          * avoid adding the cost of enabling/disabling the interrupt to the
1747          * short wait, we first spin to see if the request would have completed
1748          * in the time taken to setup the interrupt.
1749          *
1750          * We need upto 5us to enable the irq, and upto 20us to hide the
1751          * scheduler latency of a context switch, ignoring the secondary
1752          * impacts from a context switch such as cache eviction.
1753          *
1754          * The scheme used for low-latency IO is called "hybrid interrupt
1755          * polling". The suggestion there is to sleep until just before you
1756          * expect to be woken by the device interrupt and then poll for its
1757          * completion. That requires having a good predictor for the request
1758          * duration, which we currently lack.
1759          */
1760         if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1761             __i915_spin_request(rq, state)) {
1762                 dma_fence_signal(&rq->fence);
1763                 goto out;
1764         }
1765
1766         /*
1767          * This client is about to stall waiting for the GPU. In many cases
1768          * this is undesirable and limits the throughput of the system, as
1769          * many clients cannot continue processing user input/output whilst
1770          * blocked. RPS autotuning may take tens of milliseconds to respond
1771          * to the GPU load and thus incurs additional latency for the client.
1772          * We can circumvent that by promoting the GPU frequency to maximum
1773          * before we sleep. This makes the GPU throttle up much more quickly
1774          * (good for benchmarks and user experience, e.g. window animations),
1775          * but at a cost of spending more power processing the workload
1776          * (bad for battery).
1777          */
1778         if (flags & I915_WAIT_PRIORITY) {
1779                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1780                         intel_rps_boost(rq);
1781         }
1782
1783         wait.tsk = current;
1784         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1785                 goto out;
1786
1787         for (;;) {
1788                 set_current_state(state);
1789
1790                 if (i915_request_completed(rq)) {
1791                         dma_fence_signal(&rq->fence);
1792                         break;
1793                 }
1794
1795                 intel_engine_flush_submission(rq->engine);
1796
1797                 if (signal_pending_state(state, current)) {
1798                         timeout = -ERESTARTSYS;
1799                         break;
1800                 }
1801
1802                 if (!timeout) {
1803                         timeout = -ETIME;
1804                         break;
1805                 }
1806
1807                 timeout = io_schedule_timeout(timeout);
1808         }
1809         __set_current_state(TASK_RUNNING);
1810
1811         dma_fence_remove_callback(&rq->fence, &wait.cb);
1812
1813 out:
1814         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1815         trace_i915_request_wait_end(rq);
1816         return timeout;
1817 }
1818
1819 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1820 #include "selftests/mock_request.c"
1821 #include "selftests/i915_request.c"
1822 #endif
1823
1824 static void i915_global_request_shrink(void)
1825 {
1826         kmem_cache_shrink(global.slab_execute_cbs);
1827         kmem_cache_shrink(global.slab_requests);
1828 }
1829
1830 static void i915_global_request_exit(void)
1831 {
1832         kmem_cache_destroy(global.slab_execute_cbs);
1833         kmem_cache_destroy(global.slab_requests);
1834 }
1835
1836 static struct i915_global_request global = { {
1837         .shrink = i915_global_request_shrink,
1838         .exit = i915_global_request_exit,
1839 } };
1840
1841 int __init i915_global_request_init(void)
1842 {
1843         global.slab_requests =
1844                 kmem_cache_create("i915_request",
1845                                   sizeof(struct i915_request),
1846                                   __alignof__(struct i915_request),
1847                                   SLAB_HWCACHE_ALIGN |
1848                                   SLAB_RECLAIM_ACCOUNT |
1849                                   SLAB_TYPESAFE_BY_RCU,
1850                                   __i915_request_ctor);
1851         if (!global.slab_requests)
1852                 return -ENOMEM;
1853
1854         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1855                                              SLAB_HWCACHE_ALIGN |
1856                                              SLAB_RECLAIM_ACCOUNT |
1857                                              SLAB_TYPESAFE_BY_RCU);
1858         if (!global.slab_execute_cbs)
1859                 goto err_requests;
1860
1861         i915_global_register(&global.base);
1862         return 0;
1863
1864 err_requests:
1865         kmem_cache_destroy(global.slab_requests);
1866         return -ENOMEM;
1867 }
This page took 0.145269 seconds and 4 git commands to generate.