2 * SPDX-License-Identifier: MIT
4 * Copyright © 2008,2010 Intel Corporation
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
12 #include <drm/drm_syncobj.h>
14 #include "display/intel_frontbuffer.h"
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
34 /** This vma's place in the execbuf reservation list */
35 struct drm_i915_gem_exec_object2 *exec;
36 struct list_head bind_link;
37 struct list_head reloc_link;
39 struct hlist_node node;
52 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
55 #define __EXEC_OBJECT_HAS_PIN BIT(31)
56 #define __EXEC_OBJECT_HAS_FENCE BIT(30)
57 #define __EXEC_OBJECT_NEEDS_MAP BIT(29)
58 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */
61 #define __EXEC_HAS_RELOC BIT(31)
62 #define __EXEC_INTERNAL_FLAGS (~0u << 31)
63 #define UPDATE PIN_OFFSET_FIXED
65 #define BATCH_OFFSET_BIAS (256*1024)
67 #define __I915_EXEC_ILLEGAL_FLAGS \
68 (__I915_EXEC_UNKNOWN_FLAGS | \
69 I915_EXEC_CONSTANTS_MASK | \
70 I915_EXEC_RESOURCE_STREAMER)
72 /* Catch emission of unexpected errors for CI! */
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
76 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
82 * DOC: User command execution
84 * Userspace submits commands to be executed on the GPU as an instruction
85 * stream within a GEM object we call a batchbuffer. This instructions may
86 * refer to other GEM objects containing auxiliary state such as kernels,
87 * samplers, render targets and even secondary batchbuffers. Userspace does
88 * not know where in the GPU memory these objects reside and so before the
89 * batchbuffer is passed to the GPU for execution, those addresses in the
90 * batchbuffer and auxiliary objects are updated. This is known as relocation,
91 * or patching. To try and avoid having to relocate each object on the next
92 * execution, userspace is told the location of those objects in this pass,
93 * but this remains just a hint as the kernel may choose a new location for
94 * any object in the future.
96 * At the level of talking to the hardware, submitting a batchbuffer for the
97 * GPU to execute is to add content to a buffer from which the HW
98 * command streamer is reading.
100 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
101 * Execlists, this command is not placed on the same buffer as the
104 * 2. Add a command to invalidate caches to the buffer.
106 * 3. Add a batchbuffer start command to the buffer; the start command is
107 * essentially a token together with the GPU address of the batchbuffer
110 * 4. Add a pipeline flush to the buffer.
112 * 5. Add a memory write command to the buffer to record when the GPU
113 * is done executing the batchbuffer. The memory write writes the
114 * global sequence number of the request, ``i915_request::global_seqno``;
115 * the i915 driver uses the current value in the register to determine
116 * if the GPU has completed the batchbuffer.
118 * 6. Add a user interrupt command to the buffer. This command instructs
119 * the GPU to issue an interrupt when the command, pipeline flush and
120 * memory write are completed.
122 * 7. Inform the hardware of the additional commands added to the buffer
123 * (by updating the tail pointer).
125 * Processing an execbuf ioctl is conceptually split up into a few phases.
127 * 1. Validation - Ensure all the pointers, handles and flags are valid.
128 * 2. Reservation - Assign GPU address space for every object
129 * 3. Relocation - Update any addresses to point to the final locations
130 * 4. Serialisation - Order the request with respect to its dependencies
131 * 5. Construction - Construct a request to execute the batchbuffer
132 * 6. Submission (at some point in the future execution)
134 * Reserving resources for the execbuf is the most complicated phase. We
135 * neither want to have to migrate the object in the address space, nor do
136 * we want to have to update any relocations pointing to this object. Ideally,
137 * we want to leave the object where it is and for all the existing relocations
138 * to match. If the object is given a new address, or if userspace thinks the
139 * object is elsewhere, we have to parse all the relocation entries and update
140 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
141 * all the target addresses in all of its objects match the value in the
142 * relocation entries and that they all match the presumed offsets given by the
143 * list of execbuffer objects. Using this knowledge, we know that if we haven't
144 * moved any buffers, all the relocation entries are valid and we can skip
145 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
146 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
148 * The addresses written in the objects must match the corresponding
149 * reloc.presumed_offset which in turn must match the corresponding
152 * Any render targets written to in the batch must be flagged with
155 * To avoid stalling, execobject.offset should match the current
156 * address of that object within the active context.
158 * The reservation is done is multiple phases. First we try and keep any
159 * object already bound in its current location - so as long as meets the
160 * constraints imposed by the new execbuffer. Any object left unbound after the
161 * first pass is then fitted into any available idle space. If an object does
162 * not fit, all objects are removed from the reservation and the process rerun
163 * after sorting the objects into a priority order (more difficult to fit
164 * objects are tried first). Failing that, the entire VM is cleared and we try
165 * to fit the execbuf once last time before concluding that it simply will not
168 * A small complication to all of this is that we allow userspace not only to
169 * specify an alignment and a size for the object in the address space, but
170 * we also allow userspace to specify the exact offset. This objects are
171 * simpler to place (the location is known a priori) all we have to do is make
172 * sure the space is available.
174 * Once all the objects are in place, patching up the buried pointers to point
175 * to the final locations is a fairly simple job of walking over the relocation
176 * entry arrays, looking up the right address and rewriting the value into
177 * the object. Simple! ... The relocation entries are stored in user memory
178 * and so to access them we have to copy them into a local buffer. That copy
179 * has to avoid taking any pagefaults as they may lead back to a GEM object
180 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
181 * the relocation into multiple passes. First we try to do everything within an
182 * atomic context (avoid the pagefaults) which requires that we never wait. If
183 * we detect that we may wait, or if we need to fault, then we have to fallback
184 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
185 * bells yet?) Dropping the mutex means that we lose all the state we have
186 * built up so far for the execbuf and we must reset any global data. However,
187 * we do leave the objects pinned in their final locations - which is a
188 * potential issue for concurrent execbufs. Once we have left the mutex, we can
189 * allocate and copy all the relocation entries into a large array at our
190 * leisure, reacquire the mutex, reclaim all the objects and other state and
191 * then proceed to update any incorrect addresses with the objects.
193 * As we process the relocation entries, we maintain a record of whether the
194 * object is being written to. Using NORELOC, we expect userspace to provide
195 * this information instead. We also check whether we can skip the relocation
196 * by comparing the expected value inside the relocation entry with the target's
197 * final address. If they differ, we have to map the current object and rewrite
198 * the 4 or 8 byte pointer within.
200 * Serialising an execbuf is quite simple according to the rules of the GEM
201 * ABI. Execution within each context is ordered by the order of submission.
202 * Writes to any GEM object are in order of submission and are exclusive. Reads
203 * from a GEM object are unordered with respect to other reads, but ordered by
204 * writes. A write submitted after a read cannot occur before the read, and
205 * similarly any read submitted after a write cannot occur before the write.
206 * Writes are ordered between engines such that only one write occurs at any
207 * time (completing any reads beforehand) - using semaphores where available
208 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
209 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
210 * reads before starting, and any read (either using set-domain or pread) must
211 * flush all GPU writes before starting. (Note we only employ a barrier before,
212 * we currently rely on userspace not concurrently starting a new execution
213 * whilst reading or writing to an object. This may be an advantage or not
214 * depending on how much you trust userspace not to shoot themselves in the
215 * foot.) Serialisation may just result in the request being inserted into
216 * a DAG awaiting its turn, but most simple is to wait on the CPU until
217 * all dependencies are resolved.
219 * After all of that, is just a matter of closing the request and handing it to
220 * the hardware (well, leaving it in a queue to be executed). However, we also
221 * offer the ability for batchbuffers to be run with elevated privileges so
222 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
223 * Before any batch is given extra privileges we first must check that it
224 * contains no nefarious instructions, we check that each instruction is from
225 * our whitelist and all registers are also from an allowed list. We first
226 * copy the user's batchbuffer to a shadow (so that the user doesn't have
227 * access to it, either by the CPU or GPU as we scan it) and then parse each
228 * instruction. If everything is ok, we set a flag telling the hardware to run
229 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
232 struct i915_execbuffer {
233 struct drm_i915_private *i915; /** i915 backpointer */
234 struct drm_file *file; /** per-file lookup tables and limits */
235 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
236 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
239 struct intel_engine_cs *engine; /** engine to queue the request to */
240 struct intel_context *context; /* logical state for the request */
241 struct i915_gem_context *gem_context; /** caller's context */
243 struct i915_request *request; /** our request to build */
244 struct eb_vma *batch; /** identity of the batch obj/vma */
245 struct i915_vma *trampoline; /** trampoline used for chaining */
247 /** actual size of execobj[] as we may extend it for the cmdparser */
248 unsigned int buffer_count;
250 /** list of vma not yet bound during reservation phase */
251 struct list_head unbound;
253 /** list of vma that have execobj.relocation_count */
254 struct list_head relocs;
257 * Track the most recently used object for relocations, as we
258 * frequently have to perform multiple relocations within the same
262 struct drm_mm_node node; /** temporary GTT binding */
263 unsigned long vaddr; /** Current kmap address */
264 unsigned long page; /** Currently mapped page index */
265 unsigned int gen; /** Cached value of INTEL_GEN */
266 bool use_64bit_reloc : 1;
269 bool needs_unfenced : 1;
271 struct i915_vma *target;
272 struct i915_request *rq;
273 struct i915_vma *rq_vma;
275 unsigned int rq_size;
278 u64 invalid_flags; /** Set of execobj.flags that are invalid */
279 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
281 u32 batch_start_offset; /** Location within object of batch */
282 u32 batch_len; /** Length of batch within object */
283 u32 batch_flags; /** Flags composed for emit_bb_start() */
286 * Indicate either the size of the hastable used to resolve
287 * relocation handles, or if negative that we are using a direct
288 * index into the execobj[].
291 struct hlist_head *buckets; /** ht for relocation handles */
292 struct eb_vma_array *array;
295 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
297 return intel_engine_requires_cmd_parser(eb->engine) ||
298 (intel_engine_using_cmd_parser(eb->engine) &&
299 eb->args->batch_len);
302 static struct eb_vma_array *eb_vma_array_create(unsigned int count)
304 struct eb_vma_array *arr;
306 arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
310 kref_init(&arr->kref);
311 arr->vma[0].vma = NULL;
316 static inline void eb_unreserve_vma(struct eb_vma *ev)
318 struct i915_vma *vma = ev->vma;
320 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
321 __i915_vma_unpin_fence(vma);
323 if (ev->flags & __EXEC_OBJECT_HAS_PIN)
324 __i915_vma_unpin(vma);
326 ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
327 __EXEC_OBJECT_HAS_FENCE);
330 static void eb_vma_array_destroy(struct kref *kref)
332 struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
333 struct eb_vma *ev = arr->vma;
336 eb_unreserve_vma(ev);
337 i915_vma_put(ev->vma);
344 static void eb_vma_array_put(struct eb_vma_array *arr)
346 kref_put(&arr->kref, eb_vma_array_destroy);
349 static int eb_create(struct i915_execbuffer *eb)
351 /* Allocate an extra slot for use by the command parser + sentinel */
352 eb->array = eb_vma_array_create(eb->buffer_count + 2);
356 eb->vma = eb->array->vma;
358 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
359 unsigned int size = 1 + ilog2(eb->buffer_count);
362 * Without a 1:1 association between relocation handles and
363 * the execobject[] index, we instead create a hashtable.
364 * We size it dynamically based on available memory, starting
365 * first with 1:1 assocative hash and scaling back until
366 * the allocation succeeds.
368 * Later on we use a positive lut_size to indicate we are
369 * using this hashtable, and a negative value to indicate a
375 /* While we can still reduce the allocation size, don't
376 * raise a warning and allow the allocation to fail.
377 * On the last pass though, we want to try as hard
378 * as possible to perform the allocation and warn
383 flags |= __GFP_NORETRY | __GFP_NOWARN;
385 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
391 if (unlikely(!size)) {
392 eb_vma_array_put(eb->array);
398 eb->lut_size = -eb->buffer_count;
405 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
406 const struct i915_vma *vma,
409 if (vma->node.size < entry->pad_to_size)
412 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
415 if (flags & EXEC_OBJECT_PINNED &&
416 vma->node.start != entry->offset)
419 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
420 vma->node.start < BATCH_OFFSET_BIAS)
423 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
424 (vma->node.start + vma->node.size - 1) >> 32)
427 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
428 !i915_vma_is_map_and_fenceable(vma))
434 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
435 unsigned int exec_flags)
439 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
440 pin_flags |= PIN_GLOBAL;
443 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
444 * limit address to the first 4GBs for unflagged objects.
446 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
447 pin_flags |= PIN_ZONE_4G;
449 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
450 pin_flags |= PIN_MAPPABLE;
452 if (exec_flags & EXEC_OBJECT_PINNED)
453 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
454 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
455 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
461 eb_pin_vma(struct i915_execbuffer *eb,
462 const struct drm_i915_gem_exec_object2 *entry,
465 struct i915_vma *vma = ev->vma;
469 pin_flags = vma->node.start;
471 pin_flags = entry->offset & PIN_OFFSET_MASK;
473 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
475 pin_flags |= PIN_GLOBAL;
477 /* Attempt to reuse the current location if available */
478 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
479 if (entry->flags & EXEC_OBJECT_PINNED)
482 /* Failing that pick any _free_ space if suitable */
483 if (unlikely(i915_vma_pin(vma,
486 eb_pin_flags(entry, ev->flags) |
487 PIN_USER | PIN_NOEVICT)))
491 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
492 if (unlikely(i915_vma_pin_fence(vma))) {
498 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
501 ev->flags |= __EXEC_OBJECT_HAS_PIN;
502 return !eb_vma_misplaced(entry, vma, ev->flags);
506 eb_validate_vma(struct i915_execbuffer *eb,
507 struct drm_i915_gem_exec_object2 *entry,
508 struct i915_vma *vma)
510 if (unlikely(entry->flags & eb->invalid_flags))
513 if (unlikely(entry->alignment &&
514 !is_power_of_2_u64(entry->alignment)))
518 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519 * any non-page-aligned or non-canonical addresses.
521 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
525 /* pad_to_size was once a reserved field, so sanitize it */
526 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527 if (unlikely(offset_in_page(entry->pad_to_size)))
530 entry->pad_to_size = 0;
533 * From drm_mm perspective address space is continuous,
534 * so from this point we're always using non-canonical
537 entry->offset = gen8_noncanonical_addr(entry->offset);
539 if (!eb->reloc_cache.has_fence) {
540 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
542 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543 eb->reloc_cache.needs_unfenced) &&
544 i915_gem_object_is_tiled(vma->obj))
545 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
548 if (!(entry->flags & EXEC_OBJECT_PINNED))
549 entry->flags |= eb->context_flags;
555 eb_add_vma(struct i915_execbuffer *eb,
556 unsigned int i, unsigned batch_idx,
557 struct i915_vma *vma)
559 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
560 struct eb_vma *ev = &eb->vma[i];
562 GEM_BUG_ON(i915_vma_is_closed(vma));
566 ev->flags = entry->flags;
568 if (eb->lut_size > 0) {
569 ev->handle = entry->handle;
570 hlist_add_head(&ev->node,
571 &eb->buckets[hash_32(entry->handle,
575 if (entry->relocation_count)
576 list_add_tail(&ev->reloc_link, &eb->relocs);
579 * SNA is doing fancy tricks with compressing batch buffers, which leads
580 * to negative relocation deltas. Usually that works out ok since the
581 * relocate address is still positive, except when the batch is placed
582 * very low in the GTT. Ensure this doesn't happen.
584 * Note that actual hangs have only been observed on gen7, but for
585 * paranoia do it everywhere.
587 if (i == batch_idx) {
588 if (entry->relocation_count &&
589 !(ev->flags & EXEC_OBJECT_PINNED))
590 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
591 if (eb->reloc_cache.has_fence)
592 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
597 if (eb_pin_vma(eb, entry, ev)) {
598 if (entry->offset != vma->node.start) {
599 entry->offset = vma->node.start | UPDATE;
600 eb->args->flags |= __EXEC_HAS_RELOC;
603 eb_unreserve_vma(ev);
604 list_add_tail(&ev->bind_link, &eb->unbound);
608 static inline int use_cpu_reloc(const struct reloc_cache *cache,
609 const struct drm_i915_gem_object *obj)
611 if (!i915_gem_object_has_struct_page(obj))
614 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
617 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
620 return (cache->has_llc ||
622 obj->cache_level != I915_CACHE_NONE);
625 static int eb_reserve_vma(const struct i915_execbuffer *eb,
629 struct drm_i915_gem_exec_object2 *entry = ev->exec;
630 struct i915_vma *vma = ev->vma;
633 if (drm_mm_node_allocated(&vma->node) &&
634 eb_vma_misplaced(entry, vma, ev->flags)) {
635 err = i915_vma_unbind(vma);
640 err = i915_vma_pin(vma,
641 entry->pad_to_size, entry->alignment,
642 eb_pin_flags(entry, ev->flags) | pin_flags);
646 if (entry->offset != vma->node.start) {
647 entry->offset = vma->node.start | UPDATE;
648 eb->args->flags |= __EXEC_HAS_RELOC;
651 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
652 err = i915_vma_pin_fence(vma);
659 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
662 ev->flags |= __EXEC_OBJECT_HAS_PIN;
663 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
668 static int eb_reserve(struct i915_execbuffer *eb)
670 const unsigned int count = eb->buffer_count;
671 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
672 struct list_head last;
674 unsigned int i, pass;
678 * Attempt to pin all of the buffers into the GTT.
679 * This is done in 3 phases:
681 * 1a. Unbind all objects that do not match the GTT constraints for
682 * the execbuffer (fenceable, mappable, alignment etc).
683 * 1b. Increment pin count for already bound objects.
684 * 2. Bind new objects.
685 * 3. Decrement pin count.
687 * This avoid unnecessary unbinding of later objects in order to make
688 * room for the earlier objects *unless* we need to defragment.
691 if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
696 list_for_each_entry(ev, &eb->unbound, bind_link) {
697 err = eb_reserve_vma(eb, ev, pin_flags);
701 if (!(err == -ENOSPC || err == -EAGAIN))
704 /* Resort *all* the objects into priority order */
705 INIT_LIST_HEAD(&eb->unbound);
706 INIT_LIST_HEAD(&last);
707 for (i = 0; i < count; i++) {
712 if (flags & EXEC_OBJECT_PINNED &&
713 flags & __EXEC_OBJECT_HAS_PIN)
716 eb_unreserve_vma(ev);
718 if (flags & EXEC_OBJECT_PINNED)
719 /* Pinned must have their slot */
720 list_add(&ev->bind_link, &eb->unbound);
721 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722 /* Map require the lowest 256MiB (aperture) */
723 list_add_tail(&ev->bind_link, &eb->unbound);
724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725 /* Prioritise 4GiB region for restricted bo */
726 list_add(&ev->bind_link, &last);
728 list_add_tail(&ev->bind_link, &last);
730 list_splice_tail(&last, &eb->unbound);
732 if (err == -EAGAIN) {
733 mutex_unlock(&eb->i915->drm.struct_mutex);
734 flush_workqueue(eb->i915->mm.userptr_wq);
735 mutex_lock(&eb->i915->drm.struct_mutex);
744 /* Too fragmented, unbind everything and retry */
745 mutex_lock(&eb->context->vm->mutex);
746 err = i915_gem_evict_vm(eb->context->vm);
747 mutex_unlock(&eb->context->vm->mutex);
757 pin_flags = PIN_USER;
761 mutex_unlock(&eb->i915->drm.struct_mutex);
765 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
767 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
770 return eb->buffer_count - 1;
773 static int eb_select_context(struct i915_execbuffer *eb)
775 struct i915_gem_context *ctx;
777 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781 eb->gem_context = ctx;
782 if (rcu_access_pointer(ctx->vm))
783 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
785 eb->context_flags = 0;
786 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
787 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
792 static int __eb_add_lut(struct i915_execbuffer *eb,
793 u32 handle, struct i915_vma *vma)
795 struct i915_gem_context *ctx = eb->gem_context;
796 struct i915_lut_handle *lut;
799 lut = i915_lut_handle_alloc();
804 if (!atomic_fetch_inc(&vma->open_count))
805 i915_vma_reopen(vma);
806 lut->handle = handle;
809 /* Check that the context hasn't been closed in the meantime */
811 if (!mutex_lock_interruptible(&ctx->mutex)) {
813 if (likely(!i915_gem_context_is_closed(ctx)))
814 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
815 if (err == 0) { /* And nor has this handle */
816 struct drm_i915_gem_object *obj = vma->obj;
818 i915_gem_object_lock(obj);
819 if (idr_find(&eb->file->object_idr, handle) == obj) {
820 list_add(&lut->obj_link, &obj->lut_list);
822 radix_tree_delete(&ctx->handles_vma, handle);
825 i915_gem_object_unlock(obj);
827 mutex_unlock(&ctx->mutex);
837 i915_lut_handle_free(lut);
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
844 struct drm_i915_gem_object *obj;
845 struct i915_vma *vma;
849 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
851 vma = i915_vma_tryget(vma);
856 obj = i915_gem_object_lookup(eb->file, handle);
858 return ERR_PTR(-ENOENT);
860 vma = i915_vma_instance(obj, eb->context->vm, NULL);
862 i915_gem_object_put(obj);
866 err = __eb_add_lut(eb, handle, vma);
870 i915_gem_object_put(obj);
876 static int eb_lookup_vmas(struct i915_execbuffer *eb)
878 unsigned int batch = eb_batch_index(eb);
882 INIT_LIST_HEAD(&eb->relocs);
883 INIT_LIST_HEAD(&eb->unbound);
885 for (i = 0; i < eb->buffer_count; i++) {
886 struct i915_vma *vma;
888 vma = eb_lookup_vma(eb, eb->exec[i].handle);
894 err = eb_validate_vma(eb, &eb->exec[i], vma);
900 eb_add_vma(eb, i, batch, vma);
903 eb->vma[i].vma = NULL;
907 static struct eb_vma *
908 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
910 if (eb->lut_size < 0) {
911 if (handle >= -eb->lut_size)
913 return &eb->vma[handle];
915 struct hlist_head *head;
918 head = &eb->buckets[hash_32(handle, eb->lut_size)];
919 hlist_for_each_entry(ev, head, node) {
920 if (ev->handle == handle)
927 static void eb_destroy(const struct i915_execbuffer *eb)
929 GEM_BUG_ON(eb->reloc_cache.rq);
932 eb_vma_array_put(eb->array);
934 if (eb->lut_size > 0)
939 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
940 const struct i915_vma *target)
942 return gen8_canonical_addr((int)reloc->delta + target->node.start);
945 static void reloc_cache_init(struct reloc_cache *cache,
946 struct drm_i915_private *i915)
950 /* Must be a variable in the struct to allow GCC to unroll. */
951 cache->gen = INTEL_GEN(i915);
952 cache->has_llc = HAS_LLC(i915);
953 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
954 cache->has_fence = cache->gen < 4;
955 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
956 cache->node.flags = 0;
958 cache->target = NULL;
961 static inline void *unmask_page(unsigned long p)
963 return (void *)(uintptr_t)(p & PAGE_MASK);
966 static inline unsigned int unmask_flags(unsigned long p)
968 return p & ~PAGE_MASK;
971 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
973 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
975 struct drm_i915_private *i915 =
976 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
982 static int reloc_gpu_chain(struct reloc_cache *cache)
984 struct intel_gt_buffer_pool_node *pool;
985 struct i915_request *rq = cache->rq;
986 struct i915_vma *batch;
990 pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
992 return PTR_ERR(pool);
994 batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
996 err = PTR_ERR(batch);
1000 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1004 GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE / sizeof(u32));
1005 cmd = cache->rq_cmd + cache->rq_size;
1006 *cmd++ = MI_ARB_CHECK;
1007 if (cache->gen >= 8)
1008 *cmd++ = MI_BATCH_BUFFER_START_GEN8;
1009 else if (cache->gen >= 6)
1010 *cmd++ = MI_BATCH_BUFFER_START;
1012 *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1013 *cmd++ = lower_32_bits(batch->node.start);
1014 *cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
1015 i915_gem_object_flush_map(cache->rq_vma->obj);
1016 i915_gem_object_unpin_map(cache->rq_vma->obj);
1017 cache->rq_vma = NULL;
1019 err = intel_gt_buffer_pool_mark_active(pool, rq);
1021 i915_vma_lock(batch);
1022 err = i915_request_await_object(rq, batch->obj, false);
1024 err = i915_vma_move_to_active(batch, rq, 0);
1025 i915_vma_unlock(batch);
1027 i915_vma_unpin(batch);
1031 cmd = i915_gem_object_pin_map(batch->obj,
1040 /* Return with batch mapping (cmd) still pinned */
1041 cache->rq_cmd = cmd;
1043 cache->rq_vma = batch;
1046 intel_gt_buffer_pool_put(pool);
1050 static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
1052 return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
1055 static int reloc_gpu_flush(struct reloc_cache *cache)
1057 struct i915_request *rq;
1060 rq = fetch_and_zero(&cache->rq);
1064 if (cache->rq_vma) {
1065 struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1067 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1068 cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1070 __i915_gem_object_flush_map(obj,
1071 0, sizeof(u32) * cache->rq_size);
1072 i915_gem_object_unpin_map(obj);
1076 if (rq->engine->emit_init_breadcrumb)
1077 err = rq->engine->emit_init_breadcrumb(rq);
1079 err = rq->engine->emit_bb_start(rq,
1080 rq->batch->node.start,
1082 reloc_bb_flags(cache));
1084 i915_request_set_error_once(rq, err);
1086 intel_gt_chipset_flush(rq->engine->gt);
1087 i915_request_add(rq);
1092 static void reloc_cache_reset(struct reloc_cache *cache)
1099 vaddr = unmask_page(cache->vaddr);
1100 if (cache->vaddr & KMAP) {
1101 if (cache->vaddr & CLFLUSH_AFTER)
1104 kunmap_atomic(vaddr);
1105 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1107 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1109 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1110 io_mapping_unmap_atomic((void __iomem *)vaddr);
1112 if (drm_mm_node_allocated(&cache->node)) {
1113 ggtt->vm.clear_range(&ggtt->vm,
1116 mutex_lock(&ggtt->vm.mutex);
1117 drm_mm_remove_node(&cache->node);
1118 mutex_unlock(&ggtt->vm.mutex);
1120 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1128 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1129 struct reloc_cache *cache,
1135 kunmap_atomic(unmask_page(cache->vaddr));
1137 unsigned int flushes;
1140 err = i915_gem_object_prepare_write(obj, &flushes);
1142 return ERR_PTR(err);
1144 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1145 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1147 cache->vaddr = flushes | KMAP;
1148 cache->node.mm = (void *)obj;
1153 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1154 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1160 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1161 struct reloc_cache *cache,
1164 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1165 unsigned long offset;
1169 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1170 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1172 struct i915_vma *vma;
1175 if (i915_gem_object_is_tiled(obj))
1176 return ERR_PTR(-EINVAL);
1178 if (use_cpu_reloc(cache, obj))
1181 i915_gem_object_lock(obj);
1182 err = i915_gem_object_set_to_gtt_domain(obj, true);
1183 i915_gem_object_unlock(obj);
1185 return ERR_PTR(err);
1187 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 PIN_NONBLOCK /* NOWARN */ |
1192 memset(&cache->node, 0, sizeof(cache->node));
1193 mutex_lock(&ggtt->vm.mutex);
1194 err = drm_mm_insert_node_in_range
1195 (&ggtt->vm.mm, &cache->node,
1196 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1197 0, ggtt->mappable_end,
1199 mutex_unlock(&ggtt->vm.mutex);
1200 if (err) /* no inactive aperture space, use cpu reloc */
1203 cache->node.start = vma->node.start;
1204 cache->node.mm = (void *)vma;
1208 offset = cache->node.start;
1209 if (drm_mm_node_allocated(&cache->node)) {
1210 ggtt->vm.insert_page(&ggtt->vm,
1211 i915_gem_object_get_dma_address(obj, page),
1212 offset, I915_CACHE_NONE, 0);
1214 offset += page << PAGE_SHIFT;
1217 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1220 cache->vaddr = (unsigned long)vaddr;
1225 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1226 struct reloc_cache *cache,
1231 if (cache->page == page) {
1232 vaddr = unmask_page(cache->vaddr);
1235 if ((cache->vaddr & KMAP) == 0)
1236 vaddr = reloc_iomap(obj, cache, page);
1238 vaddr = reloc_kmap(obj, cache, page);
1244 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1246 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1247 if (flushes & CLFLUSH_BEFORE) {
1255 * Writes to the same cacheline are serialised by the CPU
1256 * (including clflush). On the write path, we only require
1257 * that it hits memory in an orderly fashion and place
1258 * mb barriers at the start and end of the relocation phase
1259 * to ensure ordering of clflush wrt to the system.
1261 if (flushes & CLFLUSH_AFTER)
1267 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1269 struct drm_i915_gem_object *obj = vma->obj;
1274 if (obj->cache_dirty & ~obj->cache_coherent)
1275 i915_gem_clflush_object(obj, 0);
1276 obj->write_domain = 0;
1278 err = i915_request_await_object(rq, vma->obj, true);
1280 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1282 i915_vma_unlock(vma);
1287 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1288 struct intel_engine_cs *engine,
1291 struct reloc_cache *cache = &eb->reloc_cache;
1292 struct intel_gt_buffer_pool_node *pool;
1293 struct i915_request *rq;
1294 struct i915_vma *batch;
1298 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1300 return PTR_ERR(pool);
1302 cmd = i915_gem_object_pin_map(pool->obj,
1311 batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1312 if (IS_ERR(batch)) {
1313 err = PTR_ERR(batch);
1317 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1321 if (engine == eb->context->engine) {
1322 rq = i915_request_create(eb->context);
1324 struct intel_context *ce;
1326 ce = intel_context_create(engine);
1332 i915_vm_put(ce->vm);
1333 ce->vm = i915_vm_get(eb->context->vm);
1335 rq = intel_context_create_request(ce);
1336 intel_context_put(ce);
1343 err = intel_gt_buffer_pool_mark_active(pool, rq);
1347 i915_vma_lock(batch);
1348 err = i915_request_await_object(rq, batch->obj, false);
1350 err = i915_vma_move_to_active(batch, rq, 0);
1351 i915_vma_unlock(batch);
1356 i915_vma_unpin(batch);
1359 cache->rq_cmd = cmd;
1361 cache->rq_vma = batch;
1363 /* Return with batch mapping (cmd) still pinned */
1367 i915_request_set_error_once(rq, err);
1369 i915_request_add(rq);
1371 i915_vma_unpin(batch);
1373 i915_gem_object_unpin_map(pool->obj);
1375 intel_gt_buffer_pool_put(pool);
1379 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1381 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1384 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1385 struct i915_vma *vma,
1388 struct reloc_cache *cache = &eb->reloc_cache;
1392 if (unlikely(!cache->rq)) {
1393 struct intel_engine_cs *engine = eb->engine;
1395 if (!reloc_can_use_engine(engine)) {
1396 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1398 return ERR_PTR(-ENODEV);
1401 err = __reloc_gpu_alloc(eb, engine, len);
1403 return ERR_PTR(err);
1406 if (vma != cache->target) {
1407 err = reloc_move_to_gpu(cache->rq, vma);
1408 if (unlikely(err)) {
1409 i915_request_set_error_once(cache->rq, err);
1410 return ERR_PTR(err);
1413 cache->target = vma;
1416 if (unlikely(cache->rq_size + len >
1417 PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
1418 err = reloc_gpu_chain(cache);
1419 if (unlikely(err)) {
1420 i915_request_set_error_once(cache->rq, err);
1421 return ERR_PTR(err);
1425 GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE / sizeof(u32));
1426 cmd = cache->rq_cmd + cache->rq_size;
1427 cache->rq_size += len;
1432 static inline bool use_reloc_gpu(struct i915_vma *vma)
1434 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1437 if (DBG_FORCE_RELOC)
1440 return !dma_resv_test_signaled_rcu(vma->resv, true);
1443 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1448 GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1450 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1451 addr = PFN_PHYS(page_to_pfn(page));
1452 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1454 return addr + offset_in_page(offset);
1457 static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
1458 struct i915_vma *vma,
1462 const unsigned int gen = eb->reloc_cache.gen;
1468 len = offset & 7 ? 8 : 5;
1474 batch = reloc_gpu(eb, vma, len);
1478 addr = gen8_canonical_addr(vma->node.start + offset);
1481 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1482 *batch++ = lower_32_bits(addr);
1483 *batch++ = upper_32_bits(addr);
1484 *batch++ = lower_32_bits(target_addr);
1486 addr = gen8_canonical_addr(addr + 4);
1488 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1489 *batch++ = lower_32_bits(addr);
1490 *batch++ = upper_32_bits(addr);
1491 *batch++ = upper_32_bits(target_addr);
1493 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1494 *batch++ = lower_32_bits(addr);
1495 *batch++ = upper_32_bits(addr);
1496 *batch++ = lower_32_bits(target_addr);
1497 *batch++ = upper_32_bits(target_addr);
1499 } else if (gen >= 6) {
1500 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1503 *batch++ = target_addr;
1504 } else if (IS_I965G(eb->i915)) {
1505 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1507 *batch++ = vma_phys_addr(vma, offset);
1508 *batch++ = target_addr;
1509 } else if (gen >= 4) {
1510 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1513 *batch++ = target_addr;
1514 } else if (gen >= 3 &&
1515 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1516 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1518 *batch++ = target_addr;
1520 *batch++ = MI_STORE_DWORD_IMM;
1521 *batch++ = vma_phys_addr(vma, offset);
1522 *batch++ = target_addr;
1528 static bool reloc_entry_gpu(struct i915_execbuffer *eb,
1529 struct i915_vma *vma,
1533 if (eb->reloc_cache.vaddr)
1536 if (!use_reloc_gpu(vma))
1539 return __reloc_entry_gpu(eb, vma, offset, target_addr);
1543 relocate_entry(struct i915_vma *vma,
1544 const struct drm_i915_gem_relocation_entry *reloc,
1545 struct i915_execbuffer *eb,
1546 const struct i915_vma *target)
1548 u64 target_addr = relocation_target(reloc, target);
1549 u64 offset = reloc->offset;
1551 if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
1552 bool wide = eb->reloc_cache.use_64bit_reloc;
1556 vaddr = reloc_vaddr(vma->obj,
1558 offset >> PAGE_SHIFT);
1560 return PTR_ERR(vaddr);
1562 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1563 clflush_write32(vaddr + offset_in_page(offset),
1564 lower_32_bits(target_addr),
1565 eb->reloc_cache.vaddr);
1568 offset += sizeof(u32);
1575 return target->node.start | UPDATE;
1579 eb_relocate_entry(struct i915_execbuffer *eb,
1581 const struct drm_i915_gem_relocation_entry *reloc)
1583 struct drm_i915_private *i915 = eb->i915;
1584 struct eb_vma *target;
1587 /* we've already hold a reference to all valid objects */
1588 target = eb_get_vma(eb, reloc->target_handle);
1589 if (unlikely(!target))
1592 /* Validate that the target is in a valid r/w GPU domain */
1593 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1594 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1595 "target %d offset %d "
1596 "read %08x write %08x",
1597 reloc->target_handle,
1598 (int) reloc->offset,
1599 reloc->read_domains,
1600 reloc->write_domain);
1603 if (unlikely((reloc->write_domain | reloc->read_domains)
1604 & ~I915_GEM_GPU_DOMAINS)) {
1605 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1606 "target %d offset %d "
1607 "read %08x write %08x",
1608 reloc->target_handle,
1609 (int) reloc->offset,
1610 reloc->read_domains,
1611 reloc->write_domain);
1615 if (reloc->write_domain) {
1616 target->flags |= EXEC_OBJECT_WRITE;
1619 * Sandybridge PPGTT errata: We need a global gtt mapping
1620 * for MI and pipe_control writes because the gpu doesn't
1621 * properly redirect them through the ppgtt for non_secure
1624 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1625 IS_GEN(eb->i915, 6)) {
1626 err = i915_vma_bind(target->vma,
1627 target->vma->obj->cache_level,
1630 "Unexpected failure to bind target VMA!"))
1636 * If the relocation already has the right value in it, no
1637 * more work needs to be done.
1639 if (!DBG_FORCE_RELOC &&
1640 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1643 /* Check that the relocation address is valid... */
1644 if (unlikely(reloc->offset >
1645 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1646 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1647 "target %d offset %d size %d.\n",
1648 reloc->target_handle,
1650 (int)ev->vma->size);
1653 if (unlikely(reloc->offset & 3)) {
1654 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1655 "target %d offset %d.\n",
1656 reloc->target_handle,
1657 (int)reloc->offset);
1662 * If we write into the object, we need to force the synchronisation
1663 * barrier, either with an asynchronous clflush or if we executed the
1664 * patching using the GPU (though that should be serialised by the
1665 * timeline). To be completely sure, and since we are required to
1666 * do relocations we are already stalling, disable the user's opt
1667 * out of our synchronisation.
1669 ev->flags &= ~EXEC_OBJECT_ASYNC;
1671 /* and update the user's relocation entry */
1672 return relocate_entry(ev->vma, reloc, eb, target->vma);
1675 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1677 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1678 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1679 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1680 struct drm_i915_gem_relocation_entry __user *urelocs =
1681 u64_to_user_ptr(entry->relocs_ptr);
1682 unsigned long remain = entry->relocation_count;
1684 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1688 * We must check that the entire relocation array is safe
1689 * to read. However, if the array is not writable the user loses
1690 * the updated relocation values.
1692 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1696 struct drm_i915_gem_relocation_entry *r = stack;
1697 unsigned int count =
1698 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1699 unsigned int copied;
1702 * This is the fast path and we cannot handle a pagefault
1703 * whilst holding the struct mutex lest the user pass in the
1704 * relocations contained within a mmaped bo. For in such a case
1705 * we, the page fault handler would call i915_gem_fault() and
1706 * we would try to acquire the struct mutex again. Obviously
1707 * this is bad and so lockdep complains vehemently.
1709 copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1710 if (unlikely(copied)) {
1717 u64 offset = eb_relocate_entry(eb, ev, r);
1719 if (likely(offset == 0)) {
1720 } else if ((s64)offset < 0) {
1721 remain = (int)offset;
1725 * Note that reporting an error now
1726 * leaves everything in an inconsistent
1727 * state as we have *already* changed
1728 * the relocation value inside the
1729 * object. As we have not changed the
1730 * reloc.presumed_offset or will not
1731 * change the execobject.offset, on the
1732 * call we may not rewrite the value
1733 * inside the object, leaving it
1734 * dangling and causing a GPU hang. Unless
1735 * userspace dynamically rebuilds the
1736 * relocations on each execbuf rather than
1737 * presume a static tree.
1739 * We did previously check if the relocations
1740 * were writable (access_ok), an error now
1741 * would be a strange race with mprotect,
1742 * having already demonstrated that we
1743 * can read from this userspace address.
1745 offset = gen8_canonical_addr(offset & ~UPDATE);
1747 &urelocs[r - stack].presumed_offset);
1749 } while (r++, --count);
1750 urelocs += ARRAY_SIZE(stack);
1753 reloc_cache_reset(&eb->reloc_cache);
1757 static int eb_relocate(struct i915_execbuffer *eb)
1761 err = eb_lookup_vmas(eb);
1765 if (!list_empty(&eb->unbound)) {
1766 err = eb_reserve(eb);
1771 /* The objects are in their final locations, apply the relocations. */
1772 if (eb->args->flags & __EXEC_HAS_RELOC) {
1776 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1777 err = eb_relocate_vma(eb, ev);
1782 flush = reloc_gpu_flush(&eb->reloc_cache);
1790 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1792 const unsigned int count = eb->buffer_count;
1793 struct ww_acquire_ctx acquire;
1797 ww_acquire_init(&acquire, &reservation_ww_class);
1799 for (i = 0; i < count; i++) {
1800 struct eb_vma *ev = &eb->vma[i];
1801 struct i915_vma *vma = ev->vma;
1803 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1804 if (err == -EDEADLK) {
1809 ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1811 swap(eb->vma[i], eb->vma[j]);
1814 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1820 ww_acquire_done(&acquire);
1823 struct eb_vma *ev = &eb->vma[i];
1824 struct i915_vma *vma = ev->vma;
1825 unsigned int flags = ev->flags;
1826 struct drm_i915_gem_object *obj = vma->obj;
1828 assert_vma_held(vma);
1830 if (flags & EXEC_OBJECT_CAPTURE) {
1831 struct i915_capture_list *capture;
1833 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1835 capture->next = eb->request->capture_list;
1837 eb->request->capture_list = capture;
1842 * If the GPU is not _reading_ through the CPU cache, we need
1843 * to make sure that any writes (both previous GPU writes from
1844 * before a change in snooping levels and normal CPU writes)
1845 * caught in that cache are flushed to main memory.
1848 * obj->cache_dirty &&
1849 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1850 * but gcc's optimiser doesn't handle that as well and emits
1851 * two jumps instead of one. Maybe one day...
1853 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1854 if (i915_gem_clflush_object(obj, 0))
1855 flags &= ~EXEC_OBJECT_ASYNC;
1858 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1859 err = i915_request_await_object
1860 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1864 err = i915_vma_move_to_active(vma, eb->request, flags);
1866 i915_vma_unlock(vma);
1867 eb_unreserve_vma(ev);
1869 ww_acquire_fini(&acquire);
1871 eb_vma_array_put(fetch_and_zero(&eb->array));
1876 /* Unconditionally flush any chipset caches (for streaming writes). */
1877 intel_gt_chipset_flush(eb->engine->gt);
1881 i915_request_set_error_once(eb->request, err);
1885 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1887 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1890 /* Kernel clipping was a DRI1 misfeature */
1891 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1892 if (exec->num_cliprects || exec->cliprects_ptr)
1896 if (exec->DR4 == 0xffffffff) {
1897 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1900 if (exec->DR1 || exec->DR4)
1903 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1909 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1914 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1915 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1919 cs = intel_ring_begin(rq, 4 * 2 + 2);
1923 *cs++ = MI_LOAD_REGISTER_IMM(4);
1924 for (i = 0; i < 4; i++) {
1925 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1929 intel_ring_advance(rq, cs);
1934 static struct i915_vma *
1935 shadow_batch_pin(struct drm_i915_gem_object *obj,
1936 struct i915_address_space *vm,
1939 struct i915_vma *vma;
1942 vma = i915_vma_instance(obj, vm, NULL);
1946 err = i915_vma_pin(vma, 0, 0, flags);
1948 return ERR_PTR(err);
1953 struct eb_parse_work {
1954 struct dma_fence_work base;
1955 struct intel_engine_cs *engine;
1956 struct i915_vma *batch;
1957 struct i915_vma *shadow;
1958 struct i915_vma *trampoline;
1959 unsigned int batch_offset;
1960 unsigned int batch_length;
1963 static int __eb_parse(struct dma_fence_work *work)
1965 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1967 return intel_engine_cmd_parser(pw->engine,
1975 static void __eb_parse_release(struct dma_fence_work *work)
1977 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1980 i915_active_release(&pw->trampoline->active);
1981 i915_active_release(&pw->shadow->active);
1982 i915_active_release(&pw->batch->active);
1985 static const struct dma_fence_work_ops eb_parse_ops = {
1988 .release = __eb_parse_release,
1991 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1992 struct i915_vma *shadow,
1993 struct i915_vma *trampoline)
1995 struct eb_parse_work *pw;
1998 pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2002 err = i915_active_acquire(&eb->batch->vma->active);
2006 err = i915_active_acquire(&shadow->active);
2011 err = i915_active_acquire(&trampoline->active);
2016 dma_fence_work_init(&pw->base, &eb_parse_ops);
2018 pw->engine = eb->engine;
2019 pw->batch = eb->batch->vma;
2020 pw->batch_offset = eb->batch_start_offset;
2021 pw->batch_length = eb->batch_len;
2022 pw->shadow = shadow;
2023 pw->trampoline = trampoline;
2025 err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2027 goto err_trampoline;
2029 err = dma_resv_reserve_shared(pw->batch->resv, 1);
2031 goto err_batch_unlock;
2033 /* Wait for all writes (and relocs) into the batch to complete */
2034 err = i915_sw_fence_await_reservation(&pw->base.chain,
2035 pw->batch->resv, NULL, false,
2038 goto err_batch_unlock;
2040 /* Keep the batch alive and unwritten as we parse */
2041 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2043 dma_resv_unlock(pw->batch->resv);
2045 /* Force execution to wait for completion of the parser */
2046 dma_resv_lock(shadow->resv, NULL);
2047 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2048 dma_resv_unlock(shadow->resv);
2050 dma_fence_work_commit_imm(&pw->base);
2054 dma_resv_unlock(pw->batch->resv);
2057 i915_active_release(&trampoline->active);
2059 i915_active_release(&shadow->active);
2061 i915_active_release(&eb->batch->vma->active);
2067 static int eb_parse(struct i915_execbuffer *eb)
2069 struct drm_i915_private *i915 = eb->i915;
2070 struct intel_gt_buffer_pool_node *pool;
2071 struct i915_vma *shadow, *trampoline;
2075 if (!eb_use_cmdparser(eb))
2078 len = eb->batch_len;
2079 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2081 * ppGTT backed shadow buffers must be mapped RO, to prevent
2082 * post-scan tampering
2084 if (!eb->context->vm->has_read_only) {
2086 "Cannot prevent post-scan tampering without RO capable vm\n");
2090 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2093 pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2095 return PTR_ERR(pool);
2097 shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2098 if (IS_ERR(shadow)) {
2099 err = PTR_ERR(shadow);
2102 i915_gem_object_set_readonly(shadow->obj);
2105 if (CMDPARSER_USES_GGTT(eb->i915)) {
2106 trampoline = shadow;
2108 shadow = shadow_batch_pin(pool->obj,
2109 &eb->engine->gt->ggtt->vm,
2111 if (IS_ERR(shadow)) {
2112 err = PTR_ERR(shadow);
2113 shadow = trampoline;
2117 eb->batch_flags |= I915_DISPATCH_SECURE;
2120 err = eb_parse_pipeline(eb, shadow, trampoline);
2122 goto err_trampoline;
2124 eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2125 eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2126 eb->batch = &eb->vma[eb->buffer_count++];
2127 eb->vma[eb->buffer_count].vma = NULL;
2129 eb->trampoline = trampoline;
2130 eb->batch_start_offset = 0;
2132 shadow->private = pool;
2137 i915_vma_unpin(trampoline);
2139 i915_vma_unpin(shadow);
2141 intel_gt_buffer_pool_put(pool);
2146 add_to_client(struct i915_request *rq, struct drm_file *file)
2148 struct drm_i915_file_private *file_priv = file->driver_priv;
2150 rq->file_priv = file_priv;
2152 spin_lock(&file_priv->mm.lock);
2153 list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2154 spin_unlock(&file_priv->mm.lock);
2157 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2161 err = eb_move_to_gpu(eb);
2165 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2166 err = i915_reset_gen7_sol_offsets(eb->request);
2172 * After we completed waiting for other engines (using HW semaphores)
2173 * then we can signal that this request/batch is ready to run. This
2174 * allows us to determine if the batch is still waiting on the GPU
2175 * or actually running by checking the breadcrumb.
2177 if (eb->engine->emit_init_breadcrumb) {
2178 err = eb->engine->emit_init_breadcrumb(eb->request);
2183 err = eb->engine->emit_bb_start(eb->request,
2185 eb->batch_start_offset,
2191 if (eb->trampoline) {
2192 GEM_BUG_ON(eb->batch_start_offset);
2193 err = eb->engine->emit_bb_start(eb->request,
2194 eb->trampoline->node.start +
2201 if (intel_context_nopreempt(eb->context))
2202 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2207 static int num_vcs_engines(const struct drm_i915_private *i915)
2209 return hweight64(INTEL_INFO(i915)->engine_mask &
2210 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2214 * Find one BSD ring to dispatch the corresponding BSD command.
2215 * The engine index is returned.
2218 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2219 struct drm_file *file)
2221 struct drm_i915_file_private *file_priv = file->driver_priv;
2223 /* Check whether the file_priv has already selected one ring. */
2224 if ((int)file_priv->bsd_engine < 0)
2225 file_priv->bsd_engine =
2226 get_random_int() % num_vcs_engines(dev_priv);
2228 return file_priv->bsd_engine;
2231 static const enum intel_engine_id user_ring_map[] = {
2232 [I915_EXEC_DEFAULT] = RCS0,
2233 [I915_EXEC_RENDER] = RCS0,
2234 [I915_EXEC_BLT] = BCS0,
2235 [I915_EXEC_BSD] = VCS0,
2236 [I915_EXEC_VEBOX] = VECS0
2239 static struct i915_request *eb_throttle(struct intel_context *ce)
2241 struct intel_ring *ring = ce->ring;
2242 struct intel_timeline *tl = ce->timeline;
2243 struct i915_request *rq;
2246 * Completely unscientific finger-in-the-air estimates for suitable
2247 * maximum user request size (to avoid blocking) and then backoff.
2249 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2253 * Find a request that after waiting upon, there will be at least half
2254 * the ring available. The hysteresis allows us to compete for the
2255 * shared ring and should mean that we sleep less often prior to
2256 * claiming our resources, but not so long that the ring completely
2257 * drains before we can submit our next request.
2259 list_for_each_entry(rq, &tl->requests, link) {
2260 if (rq->ring != ring)
2263 if (__intel_ring_space(rq->postfix,
2264 ring->emit, ring->size) > ring->size / 2)
2267 if (&rq->link == &tl->requests)
2268 return NULL; /* weird, we will check again later for real */
2270 return i915_request_get(rq);
2273 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2275 struct intel_timeline *tl;
2276 struct i915_request *rq;
2280 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2281 * EIO if the GPU is already wedged.
2283 err = intel_gt_terminally_wedged(ce->engine->gt);
2287 if (unlikely(intel_context_is_banned(ce)))
2291 * Pinning the contexts may generate requests in order to acquire
2292 * GGTT space, so do this first before we reserve a seqno for
2295 err = intel_context_pin(ce);
2300 * Take a local wakeref for preparing to dispatch the execbuf as
2301 * we expect to access the hardware fairly frequently in the
2302 * process, and require the engine to be kept awake between accesses.
2303 * Upon dispatch, we acquire another prolonged wakeref that we hold
2304 * until the timeline is idle, which in turn releases the wakeref
2305 * taken on the engine, and the parent device.
2307 tl = intel_context_timeline_lock(ce);
2313 intel_context_enter(ce);
2314 rq = eb_throttle(ce);
2316 intel_context_timeline_unlock(tl);
2319 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2322 timeout = MAX_SCHEDULE_TIMEOUT;
2326 timeout = i915_request_wait(rq,
2327 I915_WAIT_INTERRUPTIBLE,
2329 i915_request_put(rq);
2332 err = nonblock ? -EWOULDBLOCK : timeout;
2337 eb->engine = ce->engine;
2342 mutex_lock(&tl->mutex);
2343 intel_context_exit(ce);
2344 intel_context_timeline_unlock(tl);
2346 intel_context_unpin(ce);
2350 static void eb_unpin_engine(struct i915_execbuffer *eb)
2352 struct intel_context *ce = eb->context;
2353 struct intel_timeline *tl = ce->timeline;
2355 mutex_lock(&tl->mutex);
2356 intel_context_exit(ce);
2357 mutex_unlock(&tl->mutex);
2359 intel_context_unpin(ce);
2363 eb_select_legacy_ring(struct i915_execbuffer *eb,
2364 struct drm_file *file,
2365 struct drm_i915_gem_execbuffer2 *args)
2367 struct drm_i915_private *i915 = eb->i915;
2368 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2370 if (user_ring_id != I915_EXEC_BSD &&
2371 (args->flags & I915_EXEC_BSD_MASK)) {
2373 "execbuf with non bsd ring but with invalid "
2374 "bsd dispatch flags: %d\n", (int)(args->flags));
2378 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2379 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2381 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2382 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2383 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2384 bsd_idx <= I915_EXEC_BSD_RING2) {
2385 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2389 "execbuf with unknown bsd ring: %u\n",
2394 return _VCS(bsd_idx);
2397 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2398 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2403 return user_ring_map[user_ring_id];
2407 eb_pin_engine(struct i915_execbuffer *eb,
2408 struct drm_file *file,
2409 struct drm_i915_gem_execbuffer2 *args)
2411 struct intel_context *ce;
2415 if (i915_gem_context_user_engines(eb->gem_context))
2416 idx = args->flags & I915_EXEC_RING_MASK;
2418 idx = eb_select_legacy_ring(eb, file, args);
2420 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2424 err = __eb_pin_engine(eb, ce);
2425 intel_context_put(ce);
2431 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2434 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2438 static struct drm_syncobj **
2439 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2440 struct drm_file *file)
2442 const unsigned long nfences = args->num_cliprects;
2443 struct drm_i915_gem_exec_fence __user *user;
2444 struct drm_syncobj **fences;
2448 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2451 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2452 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2453 if (nfences > min_t(unsigned long,
2454 ULONG_MAX / sizeof(*user),
2455 SIZE_MAX / sizeof(*fences)))
2456 return ERR_PTR(-EINVAL);
2458 user = u64_to_user_ptr(args->cliprects_ptr);
2459 if (!access_ok(user, nfences * sizeof(*user)))
2460 return ERR_PTR(-EFAULT);
2462 fences = kvmalloc_array(nfences, sizeof(*fences),
2463 __GFP_NOWARN | GFP_KERNEL);
2465 return ERR_PTR(-ENOMEM);
2467 for (n = 0; n < nfences; n++) {
2468 struct drm_i915_gem_exec_fence fence;
2469 struct drm_syncobj *syncobj;
2471 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2476 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2481 syncobj = drm_syncobj_find(file, fence.handle);
2483 DRM_DEBUG("Invalid syncobj handle provided\n");
2488 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2489 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2491 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2497 __free_fence_array(fences, n);
2498 return ERR_PTR(err);
2502 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2503 struct drm_syncobj **fences)
2506 __free_fence_array(fences, args->num_cliprects);
2510 await_fence_array(struct i915_execbuffer *eb,
2511 struct drm_syncobj **fences)
2513 const unsigned int nfences = eb->args->num_cliprects;
2517 for (n = 0; n < nfences; n++) {
2518 struct drm_syncobj *syncobj;
2519 struct dma_fence *fence;
2522 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2523 if (!(flags & I915_EXEC_FENCE_WAIT))
2526 fence = drm_syncobj_fence_get(syncobj);
2530 err = i915_request_await_dma_fence(eb->request, fence);
2531 dma_fence_put(fence);
2540 signal_fence_array(struct i915_execbuffer *eb,
2541 struct drm_syncobj **fences)
2543 const unsigned int nfences = eb->args->num_cliprects;
2544 struct dma_fence * const fence = &eb->request->fence;
2547 for (n = 0; n < nfences; n++) {
2548 struct drm_syncobj *syncobj;
2551 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2552 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2555 drm_syncobj_replace_fence(syncobj, fence);
2559 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2561 struct i915_request *rq, *rn;
2563 list_for_each_entry_safe(rq, rn, &tl->requests, link)
2564 if (rq == end || !i915_request_retire(rq))
2568 static void eb_request_add(struct i915_execbuffer *eb)
2570 struct i915_request *rq = eb->request;
2571 struct intel_timeline * const tl = i915_request_timeline(rq);
2572 struct i915_sched_attr attr = {};
2573 struct i915_request *prev;
2575 lockdep_assert_held(&tl->mutex);
2576 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2578 trace_i915_request_add(rq);
2580 prev = __i915_request_commit(rq);
2582 /* Check that the context wasn't destroyed before submission */
2583 if (likely(!intel_context_is_closed(eb->context))) {
2584 attr = eb->gem_context->sched;
2586 /* Serialise with context_close via the add_to_timeline */
2587 i915_request_set_error_once(rq, -ENOENT);
2588 __i915_request_skip(rq);
2591 __i915_request_queue(rq, &attr);
2593 /* Try to clean up the client's timeline after submitting the request */
2595 retire_requests(tl, prev);
2597 mutex_unlock(&tl->mutex);
2601 i915_gem_do_execbuffer(struct drm_device *dev,
2602 struct drm_file *file,
2603 struct drm_i915_gem_execbuffer2 *args,
2604 struct drm_i915_gem_exec_object2 *exec,
2605 struct drm_syncobj **fences)
2607 struct drm_i915_private *i915 = to_i915(dev);
2608 struct i915_execbuffer eb;
2609 struct dma_fence *in_fence = NULL;
2610 struct sync_file *out_fence = NULL;
2611 struct i915_vma *batch;
2612 int out_fence_fd = -1;
2615 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2616 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2617 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2622 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2623 args->flags |= __EXEC_HAS_RELOC;
2627 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2628 reloc_cache_init(&eb.reloc_cache, eb.i915);
2630 eb.buffer_count = args->buffer_count;
2631 eb.batch_start_offset = args->batch_start_offset;
2632 eb.batch_len = args->batch_len;
2633 eb.trampoline = NULL;
2636 if (args->flags & I915_EXEC_SECURE) {
2637 if (INTEL_GEN(i915) >= 11)
2640 /* Return -EPERM to trigger fallback code on old binaries. */
2641 if (!HAS_SECURE_BATCHES(i915))
2644 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2647 eb.batch_flags |= I915_DISPATCH_SECURE;
2649 if (args->flags & I915_EXEC_IS_PINNED)
2650 eb.batch_flags |= I915_DISPATCH_PINNED;
2652 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
2653 if (args->flags & IN_FENCES) {
2654 if ((args->flags & IN_FENCES) == IN_FENCES)
2657 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2663 if (args->flags & I915_EXEC_FENCE_OUT) {
2664 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2665 if (out_fence_fd < 0) {
2671 err = eb_create(&eb);
2675 GEM_BUG_ON(!eb.lut_size);
2677 err = eb_select_context(&eb);
2681 err = eb_pin_engine(&eb, file, args);
2685 err = eb_relocate(&eb);
2688 * If the user expects the execobject.offset and
2689 * reloc.presumed_offset to be an exact match,
2690 * as for using NO_RELOC, then we cannot update
2691 * the execobject.offset until we have completed
2694 args->flags &= ~__EXEC_HAS_RELOC;
2698 if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2700 "Attempting to use self-modifying batch buffer\n");
2705 if (range_overflows_t(u64,
2706 eb.batch_start_offset, eb.batch_len,
2707 eb.batch->vma->size)) {
2708 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2713 if (eb.batch_len == 0)
2714 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2716 err = eb_parse(&eb);
2721 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2722 * batch" bit. Hence we need to pin secure batches into the global gtt.
2723 * hsw should have this fixed, but bdw mucks it up again. */
2724 batch = eb.batch->vma;
2725 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2726 struct i915_vma *vma;
2729 * So on first glance it looks freaky that we pin the batch here
2730 * outside of the reservation loop. But:
2731 * - The batch is already pinned into the relevant ppgtt, so we
2732 * already have the backing storage fully allocated.
2733 * - No other BO uses the global gtt (well contexts, but meh),
2734 * so we don't really have issues with multiple objects not
2735 * fitting due to fragmentation.
2736 * So this is actually safe.
2738 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2747 /* All GPU relocation batches must be submitted prior to the user rq */
2748 GEM_BUG_ON(eb.reloc_cache.rq);
2750 /* Allocate a request for this batch buffer nice and early. */
2751 eb.request = i915_request_create(eb.context);
2752 if (IS_ERR(eb.request)) {
2753 err = PTR_ERR(eb.request);
2754 goto err_batch_unpin;
2758 if (args->flags & I915_EXEC_FENCE_SUBMIT)
2759 err = i915_request_await_execution(eb.request,
2761 eb.engine->bond_execute);
2763 err = i915_request_await_dma_fence(eb.request,
2770 err = await_fence_array(&eb, fences);
2775 if (out_fence_fd != -1) {
2776 out_fence = sync_file_create(&eb.request->fence);
2784 * Whilst this request exists, batch_obj will be on the
2785 * active_list, and so will hold the active reference. Only when this
2786 * request is retired will the the batch_obj be moved onto the
2787 * inactive_list and lose its active reference. Hence we do not need
2788 * to explicitly hold another reference here.
2790 eb.request->batch = batch;
2792 intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2794 trace_i915_request_queue(eb.request, eb.batch_flags);
2795 err = eb_submit(&eb, batch);
2797 add_to_client(eb.request, file);
2798 i915_request_get(eb.request);
2799 eb_request_add(&eb);
2802 signal_fence_array(&eb, fences);
2806 fd_install(out_fence_fd, out_fence->file);
2807 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2808 args->rsvd2 |= (u64)out_fence_fd << 32;
2811 fput(out_fence->file);
2814 i915_request_put(eb.request);
2817 if (eb.batch_flags & I915_DISPATCH_SECURE)
2818 i915_vma_unpin(batch);
2821 intel_gt_buffer_pool_put(batch->private);
2824 i915_vma_unpin(eb.trampoline);
2825 eb_unpin_engine(&eb);
2827 i915_gem_context_put(eb.gem_context);
2831 if (out_fence_fd != -1)
2832 put_unused_fd(out_fence_fd);
2834 dma_fence_put(in_fence);
2838 static size_t eb_element_size(void)
2840 return sizeof(struct drm_i915_gem_exec_object2);
2843 static bool check_buffer_count(size_t count)
2845 const size_t sz = eb_element_size();
2848 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2849 * array size (see eb_create()). Otherwise, we can accept an array as
2850 * large as can be addressed (though use large arrays at your peril)!
2853 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2857 * Legacy execbuffer just creates an exec2 list from the original exec object
2858 * list array and passes it to the real function.
2861 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2862 struct drm_file *file)
2864 struct drm_i915_private *i915 = to_i915(dev);
2865 struct drm_i915_gem_execbuffer *args = data;
2866 struct drm_i915_gem_execbuffer2 exec2;
2867 struct drm_i915_gem_exec_object *exec_list = NULL;
2868 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2869 const size_t count = args->buffer_count;
2873 if (!check_buffer_count(count)) {
2874 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2878 exec2.buffers_ptr = args->buffers_ptr;
2879 exec2.buffer_count = args->buffer_count;
2880 exec2.batch_start_offset = args->batch_start_offset;
2881 exec2.batch_len = args->batch_len;
2882 exec2.DR1 = args->DR1;
2883 exec2.DR4 = args->DR4;
2884 exec2.num_cliprects = args->num_cliprects;
2885 exec2.cliprects_ptr = args->cliprects_ptr;
2886 exec2.flags = I915_EXEC_RENDER;
2887 i915_execbuffer2_set_context_id(exec2, 0);
2889 err = i915_gem_check_execbuffer(&exec2);
2893 /* Copy in the exec list from userland */
2894 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2895 __GFP_NOWARN | GFP_KERNEL);
2896 exec2_list = kvmalloc_array(count, eb_element_size(),
2897 __GFP_NOWARN | GFP_KERNEL);
2898 if (exec_list == NULL || exec2_list == NULL) {
2900 "Failed to allocate exec list for %d buffers\n",
2901 args->buffer_count);
2906 err = copy_from_user(exec_list,
2907 u64_to_user_ptr(args->buffers_ptr),
2908 sizeof(*exec_list) * count);
2910 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2911 args->buffer_count, err);
2917 for (i = 0; i < args->buffer_count; i++) {
2918 exec2_list[i].handle = exec_list[i].handle;
2919 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2920 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2921 exec2_list[i].alignment = exec_list[i].alignment;
2922 exec2_list[i].offset = exec_list[i].offset;
2923 if (INTEL_GEN(to_i915(dev)) < 4)
2924 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2926 exec2_list[i].flags = 0;
2929 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2930 if (exec2.flags & __EXEC_HAS_RELOC) {
2931 struct drm_i915_gem_exec_object __user *user_exec_list =
2932 u64_to_user_ptr(args->buffers_ptr);
2934 /* Copy the new buffer offsets back to the user's exec list. */
2935 for (i = 0; i < args->buffer_count; i++) {
2936 if (!(exec2_list[i].offset & UPDATE))
2939 exec2_list[i].offset =
2940 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2941 exec2_list[i].offset &= PIN_OFFSET_MASK;
2942 if (__copy_to_user(&user_exec_list[i].offset,
2943 &exec2_list[i].offset,
2944 sizeof(user_exec_list[i].offset)))
2955 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2956 struct drm_file *file)
2958 struct drm_i915_private *i915 = to_i915(dev);
2959 struct drm_i915_gem_execbuffer2 *args = data;
2960 struct drm_i915_gem_exec_object2 *exec2_list;
2961 struct drm_syncobj **fences = NULL;
2962 const size_t count = args->buffer_count;
2965 if (!check_buffer_count(count)) {
2966 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2970 err = i915_gem_check_execbuffer(args);
2974 exec2_list = kvmalloc_array(count, eb_element_size(),
2975 __GFP_NOWARN | GFP_KERNEL);
2976 if (exec2_list == NULL) {
2977 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2981 if (copy_from_user(exec2_list,
2982 u64_to_user_ptr(args->buffers_ptr),
2983 sizeof(*exec2_list) * count)) {
2984 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2989 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2990 fences = get_fence_array(args, file);
2991 if (IS_ERR(fences)) {
2993 return PTR_ERR(fences);
2997 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
3000 * Now that we have begun execution of the batchbuffer, we ignore
3001 * any new error after this point. Also given that we have already
3002 * updated the associated relocations, we try to write out the current
3003 * object locations irrespective of any error.
3005 if (args->flags & __EXEC_HAS_RELOC) {
3006 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3007 u64_to_user_ptr(args->buffers_ptr);
3010 /* Copy the new buffer offsets back to the user's exec list. */
3012 * Note: count * sizeof(*user_exec_list) does not overflow,
3013 * because we checked 'count' in check_buffer_count().
3015 * And this range already got effectively checked earlier
3016 * when we did the "copy_from_user()" above.
3018 if (!user_write_access_begin(user_exec_list,
3019 count * sizeof(*user_exec_list)))
3022 for (i = 0; i < args->buffer_count; i++) {
3023 if (!(exec2_list[i].offset & UPDATE))
3026 exec2_list[i].offset =
3027 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3028 unsafe_put_user(exec2_list[i].offset,
3029 &user_exec_list[i].offset,
3033 user_write_access_end();
3037 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3038 put_fence_array(args, fences);
3043 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3044 #include "selftests/i915_gem_execbuffer.c"