]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29
30 struct eb_vma {
31         struct i915_vma *vma;
32         unsigned int flags;
33
34         /** This vma's place in the execbuf reservation list */
35         struct drm_i915_gem_exec_object2 *exec;
36         struct list_head bind_link;
37         struct list_head reloc_link;
38
39         struct hlist_node node;
40         u32 handle;
41 };
42
43 struct eb_vma_array {
44         struct kref kref;
45         struct eb_vma vma[];
46 };
47
48 enum {
49         FORCE_CPU_RELOC = 1,
50         FORCE_GTT_RELOC,
51         FORCE_GPU_RELOC,
52 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
53 };
54
55 #define __EXEC_OBJECT_HAS_PIN           BIT(31)
56 #define __EXEC_OBJECT_HAS_FENCE         BIT(30)
57 #define __EXEC_OBJECT_NEEDS_MAP         BIT(29)
58 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(28)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 28) /* all of the above */
60
61 #define __EXEC_HAS_RELOC        BIT(31)
62 #define __EXEC_INTERNAL_FLAGS   (~0u << 31)
63 #define UPDATE                  PIN_OFFSET_FIXED
64
65 #define BATCH_OFFSET_BIAS (256*1024)
66
67 #define __I915_EXEC_ILLEGAL_FLAGS \
68         (__I915_EXEC_UNKNOWN_FLAGS | \
69          I915_EXEC_CONSTANTS_MASK  | \
70          I915_EXEC_RESOURCE_STREAMER)
71
72 /* Catch emission of unexpected errors for CI! */
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
74 #undef EINVAL
75 #define EINVAL ({ \
76         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
77         22; \
78 })
79 #endif
80
81 /**
82  * DOC: User command execution
83  *
84  * Userspace submits commands to be executed on the GPU as an instruction
85  * stream within a GEM object we call a batchbuffer. This instructions may
86  * refer to other GEM objects containing auxiliary state such as kernels,
87  * samplers, render targets and even secondary batchbuffers. Userspace does
88  * not know where in the GPU memory these objects reside and so before the
89  * batchbuffer is passed to the GPU for execution, those addresses in the
90  * batchbuffer and auxiliary objects are updated. This is known as relocation,
91  * or patching. To try and avoid having to relocate each object on the next
92  * execution, userspace is told the location of those objects in this pass,
93  * but this remains just a hint as the kernel may choose a new location for
94  * any object in the future.
95  *
96  * At the level of talking to the hardware, submitting a batchbuffer for the
97  * GPU to execute is to add content to a buffer from which the HW
98  * command streamer is reading.
99  *
100  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
101  *    Execlists, this command is not placed on the same buffer as the
102  *    remaining items.
103  *
104  * 2. Add a command to invalidate caches to the buffer.
105  *
106  * 3. Add a batchbuffer start command to the buffer; the start command is
107  *    essentially a token together with the GPU address of the batchbuffer
108  *    to be executed.
109  *
110  * 4. Add a pipeline flush to the buffer.
111  *
112  * 5. Add a memory write command to the buffer to record when the GPU
113  *    is done executing the batchbuffer. The memory write writes the
114  *    global sequence number of the request, ``i915_request::global_seqno``;
115  *    the i915 driver uses the current value in the register to determine
116  *    if the GPU has completed the batchbuffer.
117  *
118  * 6. Add a user interrupt command to the buffer. This command instructs
119  *    the GPU to issue an interrupt when the command, pipeline flush and
120  *    memory write are completed.
121  *
122  * 7. Inform the hardware of the additional commands added to the buffer
123  *    (by updating the tail pointer).
124  *
125  * Processing an execbuf ioctl is conceptually split up into a few phases.
126  *
127  * 1. Validation - Ensure all the pointers, handles and flags are valid.
128  * 2. Reservation - Assign GPU address space for every object
129  * 3. Relocation - Update any addresses to point to the final locations
130  * 4. Serialisation - Order the request with respect to its dependencies
131  * 5. Construction - Construct a request to execute the batchbuffer
132  * 6. Submission (at some point in the future execution)
133  *
134  * Reserving resources for the execbuf is the most complicated phase. We
135  * neither want to have to migrate the object in the address space, nor do
136  * we want to have to update any relocations pointing to this object. Ideally,
137  * we want to leave the object where it is and for all the existing relocations
138  * to match. If the object is given a new address, or if userspace thinks the
139  * object is elsewhere, we have to parse all the relocation entries and update
140  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
141  * all the target addresses in all of its objects match the value in the
142  * relocation entries and that they all match the presumed offsets given by the
143  * list of execbuffer objects. Using this knowledge, we know that if we haven't
144  * moved any buffers, all the relocation entries are valid and we can skip
145  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
146  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
147  *
148  *      The addresses written in the objects must match the corresponding
149  *      reloc.presumed_offset which in turn must match the corresponding
150  *      execobject.offset.
151  *
152  *      Any render targets written to in the batch must be flagged with
153  *      EXEC_OBJECT_WRITE.
154  *
155  *      To avoid stalling, execobject.offset should match the current
156  *      address of that object within the active context.
157  *
158  * The reservation is done is multiple phases. First we try and keep any
159  * object already bound in its current location - so as long as meets the
160  * constraints imposed by the new execbuffer. Any object left unbound after the
161  * first pass is then fitted into any available idle space. If an object does
162  * not fit, all objects are removed from the reservation and the process rerun
163  * after sorting the objects into a priority order (more difficult to fit
164  * objects are tried first). Failing that, the entire VM is cleared and we try
165  * to fit the execbuf once last time before concluding that it simply will not
166  * fit.
167  *
168  * A small complication to all of this is that we allow userspace not only to
169  * specify an alignment and a size for the object in the address space, but
170  * we also allow userspace to specify the exact offset. This objects are
171  * simpler to place (the location is known a priori) all we have to do is make
172  * sure the space is available.
173  *
174  * Once all the objects are in place, patching up the buried pointers to point
175  * to the final locations is a fairly simple job of walking over the relocation
176  * entry arrays, looking up the right address and rewriting the value into
177  * the object. Simple! ... The relocation entries are stored in user memory
178  * and so to access them we have to copy them into a local buffer. That copy
179  * has to avoid taking any pagefaults as they may lead back to a GEM object
180  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
181  * the relocation into multiple passes. First we try to do everything within an
182  * atomic context (avoid the pagefaults) which requires that we never wait. If
183  * we detect that we may wait, or if we need to fault, then we have to fallback
184  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
185  * bells yet?) Dropping the mutex means that we lose all the state we have
186  * built up so far for the execbuf and we must reset any global data. However,
187  * we do leave the objects pinned in their final locations - which is a
188  * potential issue for concurrent execbufs. Once we have left the mutex, we can
189  * allocate and copy all the relocation entries into a large array at our
190  * leisure, reacquire the mutex, reclaim all the objects and other state and
191  * then proceed to update any incorrect addresses with the objects.
192  *
193  * As we process the relocation entries, we maintain a record of whether the
194  * object is being written to. Using NORELOC, we expect userspace to provide
195  * this information instead. We also check whether we can skip the relocation
196  * by comparing the expected value inside the relocation entry with the target's
197  * final address. If they differ, we have to map the current object and rewrite
198  * the 4 or 8 byte pointer within.
199  *
200  * Serialising an execbuf is quite simple according to the rules of the GEM
201  * ABI. Execution within each context is ordered by the order of submission.
202  * Writes to any GEM object are in order of submission and are exclusive. Reads
203  * from a GEM object are unordered with respect to other reads, but ordered by
204  * writes. A write submitted after a read cannot occur before the read, and
205  * similarly any read submitted after a write cannot occur before the write.
206  * Writes are ordered between engines such that only one write occurs at any
207  * time (completing any reads beforehand) - using semaphores where available
208  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
209  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
210  * reads before starting, and any read (either using set-domain or pread) must
211  * flush all GPU writes before starting. (Note we only employ a barrier before,
212  * we currently rely on userspace not concurrently starting a new execution
213  * whilst reading or writing to an object. This may be an advantage or not
214  * depending on how much you trust userspace not to shoot themselves in the
215  * foot.) Serialisation may just result in the request being inserted into
216  * a DAG awaiting its turn, but most simple is to wait on the CPU until
217  * all dependencies are resolved.
218  *
219  * After all of that, is just a matter of closing the request and handing it to
220  * the hardware (well, leaving it in a queue to be executed). However, we also
221  * offer the ability for batchbuffers to be run with elevated privileges so
222  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
223  * Before any batch is given extra privileges we first must check that it
224  * contains no nefarious instructions, we check that each instruction is from
225  * our whitelist and all registers are also from an allowed list. We first
226  * copy the user's batchbuffer to a shadow (so that the user doesn't have
227  * access to it, either by the CPU or GPU as we scan it) and then parse each
228  * instruction. If everything is ok, we set a flag telling the hardware to run
229  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
230  */
231
232 struct i915_execbuffer {
233         struct drm_i915_private *i915; /** i915 backpointer */
234         struct drm_file *file; /** per-file lookup tables and limits */
235         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
236         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
237         struct eb_vma *vma;
238
239         struct intel_engine_cs *engine; /** engine to queue the request to */
240         struct intel_context *context; /* logical state for the request */
241         struct i915_gem_context *gem_context; /** caller's context */
242
243         struct i915_request *request; /** our request to build */
244         struct eb_vma *batch; /** identity of the batch obj/vma */
245         struct i915_vma *trampoline; /** trampoline used for chaining */
246
247         /** actual size of execobj[] as we may extend it for the cmdparser */
248         unsigned int buffer_count;
249
250         /** list of vma not yet bound during reservation phase */
251         struct list_head unbound;
252
253         /** list of vma that have execobj.relocation_count */
254         struct list_head relocs;
255
256         /**
257          * Track the most recently used object for relocations, as we
258          * frequently have to perform multiple relocations within the same
259          * obj/page
260          */
261         struct reloc_cache {
262                 struct drm_mm_node node; /** temporary GTT binding */
263                 unsigned long vaddr; /** Current kmap address */
264                 unsigned long page; /** Currently mapped page index */
265                 unsigned int gen; /** Cached value of INTEL_GEN */
266                 bool use_64bit_reloc : 1;
267                 bool has_llc : 1;
268                 bool has_fence : 1;
269                 bool needs_unfenced : 1;
270
271                 struct i915_vma *target;
272                 struct i915_request *rq;
273                 struct i915_vma *rq_vma;
274                 u32 *rq_cmd;
275                 unsigned int rq_size;
276         } reloc_cache;
277
278         u64 invalid_flags; /** Set of execobj.flags that are invalid */
279         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
280
281         u32 batch_start_offset; /** Location within object of batch */
282         u32 batch_len; /** Length of batch within object */
283         u32 batch_flags; /** Flags composed for emit_bb_start() */
284
285         /**
286          * Indicate either the size of the hastable used to resolve
287          * relocation handles, or if negative that we are using a direct
288          * index into the execobj[].
289          */
290         int lut_size;
291         struct hlist_head *buckets; /** ht for relocation handles */
292         struct eb_vma_array *array;
293 };
294
295 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
296 {
297         return intel_engine_requires_cmd_parser(eb->engine) ||
298                 (intel_engine_using_cmd_parser(eb->engine) &&
299                  eb->args->batch_len);
300 }
301
302 static struct eb_vma_array *eb_vma_array_create(unsigned int count)
303 {
304         struct eb_vma_array *arr;
305
306         arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
307         if (!arr)
308                 return NULL;
309
310         kref_init(&arr->kref);
311         arr->vma[0].vma = NULL;
312
313         return arr;
314 }
315
316 static inline void eb_unreserve_vma(struct eb_vma *ev)
317 {
318         struct i915_vma *vma = ev->vma;
319
320         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
321                 __i915_vma_unpin_fence(vma);
322
323         if (ev->flags & __EXEC_OBJECT_HAS_PIN)
324                 __i915_vma_unpin(vma);
325
326         ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
327                        __EXEC_OBJECT_HAS_FENCE);
328 }
329
330 static void eb_vma_array_destroy(struct kref *kref)
331 {
332         struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
333         struct eb_vma *ev = arr->vma;
334
335         while (ev->vma) {
336                 eb_unreserve_vma(ev);
337                 i915_vma_put(ev->vma);
338                 ev++;
339         }
340
341         kvfree(arr);
342 }
343
344 static void eb_vma_array_put(struct eb_vma_array *arr)
345 {
346         kref_put(&arr->kref, eb_vma_array_destroy);
347 }
348
349 static int eb_create(struct i915_execbuffer *eb)
350 {
351         /* Allocate an extra slot for use by the command parser + sentinel */
352         eb->array = eb_vma_array_create(eb->buffer_count + 2);
353         if (!eb->array)
354                 return -ENOMEM;
355
356         eb->vma = eb->array->vma;
357
358         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
359                 unsigned int size = 1 + ilog2(eb->buffer_count);
360
361                 /*
362                  * Without a 1:1 association between relocation handles and
363                  * the execobject[] index, we instead create a hashtable.
364                  * We size it dynamically based on available memory, starting
365                  * first with 1:1 assocative hash and scaling back until
366                  * the allocation succeeds.
367                  *
368                  * Later on we use a positive lut_size to indicate we are
369                  * using this hashtable, and a negative value to indicate a
370                  * direct lookup.
371                  */
372                 do {
373                         gfp_t flags;
374
375                         /* While we can still reduce the allocation size, don't
376                          * raise a warning and allow the allocation to fail.
377                          * On the last pass though, we want to try as hard
378                          * as possible to perform the allocation and warn
379                          * if it fails.
380                          */
381                         flags = GFP_KERNEL;
382                         if (size > 1)
383                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
384
385                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
386                                               flags);
387                         if (eb->buckets)
388                                 break;
389                 } while (--size);
390
391                 if (unlikely(!size)) {
392                         eb_vma_array_put(eb->array);
393                         return -ENOMEM;
394                 }
395
396                 eb->lut_size = size;
397         } else {
398                 eb->lut_size = -eb->buffer_count;
399         }
400
401         return 0;
402 }
403
404 static bool
405 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
406                  const struct i915_vma *vma,
407                  unsigned int flags)
408 {
409         if (vma->node.size < entry->pad_to_size)
410                 return true;
411
412         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
413                 return true;
414
415         if (flags & EXEC_OBJECT_PINNED &&
416             vma->node.start != entry->offset)
417                 return true;
418
419         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
420             vma->node.start < BATCH_OFFSET_BIAS)
421                 return true;
422
423         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
424             (vma->node.start + vma->node.size - 1) >> 32)
425                 return true;
426
427         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
428             !i915_vma_is_map_and_fenceable(vma))
429                 return true;
430
431         return false;
432 }
433
434 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
435                         unsigned int exec_flags)
436 {
437         u64 pin_flags = 0;
438
439         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
440                 pin_flags |= PIN_GLOBAL;
441
442         /*
443          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
444          * limit address to the first 4GBs for unflagged objects.
445          */
446         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
447                 pin_flags |= PIN_ZONE_4G;
448
449         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
450                 pin_flags |= PIN_MAPPABLE;
451
452         if (exec_flags & EXEC_OBJECT_PINNED)
453                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
454         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
455                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
456
457         return pin_flags;
458 }
459
460 static inline bool
461 eb_pin_vma(struct i915_execbuffer *eb,
462            const struct drm_i915_gem_exec_object2 *entry,
463            struct eb_vma *ev)
464 {
465         struct i915_vma *vma = ev->vma;
466         u64 pin_flags;
467
468         if (vma->node.size)
469                 pin_flags = vma->node.start;
470         else
471                 pin_flags = entry->offset & PIN_OFFSET_MASK;
472
473         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
474         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
475                 pin_flags |= PIN_GLOBAL;
476
477         /* Attempt to reuse the current location if available */
478         if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
479                 if (entry->flags & EXEC_OBJECT_PINNED)
480                         return false;
481
482                 /* Failing that pick any _free_ space if suitable */
483                 if (unlikely(i915_vma_pin(vma,
484                                           entry->pad_to_size,
485                                           entry->alignment,
486                                           eb_pin_flags(entry, ev->flags) |
487                                           PIN_USER | PIN_NOEVICT)))
488                         return false;
489         }
490
491         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
492                 if (unlikely(i915_vma_pin_fence(vma))) {
493                         i915_vma_unpin(vma);
494                         return false;
495                 }
496
497                 if (vma->fence)
498                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
499         }
500
501         ev->flags |= __EXEC_OBJECT_HAS_PIN;
502         return !eb_vma_misplaced(entry, vma, ev->flags);
503 }
504
505 static int
506 eb_validate_vma(struct i915_execbuffer *eb,
507                 struct drm_i915_gem_exec_object2 *entry,
508                 struct i915_vma *vma)
509 {
510         if (unlikely(entry->flags & eb->invalid_flags))
511                 return -EINVAL;
512
513         if (unlikely(entry->alignment &&
514                      !is_power_of_2_u64(entry->alignment)))
515                 return -EINVAL;
516
517         /*
518          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519          * any non-page-aligned or non-canonical addresses.
520          */
521         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523                 return -EINVAL;
524
525         /* pad_to_size was once a reserved field, so sanitize it */
526         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527                 if (unlikely(offset_in_page(entry->pad_to_size)))
528                         return -EINVAL;
529         } else {
530                 entry->pad_to_size = 0;
531         }
532         /*
533          * From drm_mm perspective address space is continuous,
534          * so from this point we're always using non-canonical
535          * form internally.
536          */
537         entry->offset = gen8_noncanonical_addr(entry->offset);
538
539         if (!eb->reloc_cache.has_fence) {
540                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541         } else {
542                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543                      eb->reloc_cache.needs_unfenced) &&
544                     i915_gem_object_is_tiled(vma->obj))
545                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546         }
547
548         if (!(entry->flags & EXEC_OBJECT_PINNED))
549                 entry->flags |= eb->context_flags;
550
551         return 0;
552 }
553
554 static void
555 eb_add_vma(struct i915_execbuffer *eb,
556            unsigned int i, unsigned batch_idx,
557            struct i915_vma *vma)
558 {
559         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
560         struct eb_vma *ev = &eb->vma[i];
561
562         GEM_BUG_ON(i915_vma_is_closed(vma));
563
564         ev->vma = vma;
565         ev->exec = entry;
566         ev->flags = entry->flags;
567
568         if (eb->lut_size > 0) {
569                 ev->handle = entry->handle;
570                 hlist_add_head(&ev->node,
571                                &eb->buckets[hash_32(entry->handle,
572                                                     eb->lut_size)]);
573         }
574
575         if (entry->relocation_count)
576                 list_add_tail(&ev->reloc_link, &eb->relocs);
577
578         /*
579          * SNA is doing fancy tricks with compressing batch buffers, which leads
580          * to negative relocation deltas. Usually that works out ok since the
581          * relocate address is still positive, except when the batch is placed
582          * very low in the GTT. Ensure this doesn't happen.
583          *
584          * Note that actual hangs have only been observed on gen7, but for
585          * paranoia do it everywhere.
586          */
587         if (i == batch_idx) {
588                 if (entry->relocation_count &&
589                     !(ev->flags & EXEC_OBJECT_PINNED))
590                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
591                 if (eb->reloc_cache.has_fence)
592                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
593
594                 eb->batch = ev;
595         }
596
597         if (eb_pin_vma(eb, entry, ev)) {
598                 if (entry->offset != vma->node.start) {
599                         entry->offset = vma->node.start | UPDATE;
600                         eb->args->flags |= __EXEC_HAS_RELOC;
601                 }
602         } else {
603                 eb_unreserve_vma(ev);
604                 list_add_tail(&ev->bind_link, &eb->unbound);
605         }
606 }
607
608 static inline int use_cpu_reloc(const struct reloc_cache *cache,
609                                 const struct drm_i915_gem_object *obj)
610 {
611         if (!i915_gem_object_has_struct_page(obj))
612                 return false;
613
614         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
615                 return true;
616
617         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
618                 return false;
619
620         return (cache->has_llc ||
621                 obj->cache_dirty ||
622                 obj->cache_level != I915_CACHE_NONE);
623 }
624
625 static int eb_reserve_vma(const struct i915_execbuffer *eb,
626                           struct eb_vma *ev,
627                           u64 pin_flags)
628 {
629         struct drm_i915_gem_exec_object2 *entry = ev->exec;
630         struct i915_vma *vma = ev->vma;
631         int err;
632
633         if (drm_mm_node_allocated(&vma->node) &&
634             eb_vma_misplaced(entry, vma, ev->flags)) {
635                 err = i915_vma_unbind(vma);
636                 if (err)
637                         return err;
638         }
639
640         err = i915_vma_pin(vma,
641                            entry->pad_to_size, entry->alignment,
642                            eb_pin_flags(entry, ev->flags) | pin_flags);
643         if (err)
644                 return err;
645
646         if (entry->offset != vma->node.start) {
647                 entry->offset = vma->node.start | UPDATE;
648                 eb->args->flags |= __EXEC_HAS_RELOC;
649         }
650
651         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
652                 err = i915_vma_pin_fence(vma);
653                 if (unlikely(err)) {
654                         i915_vma_unpin(vma);
655                         return err;
656                 }
657
658                 if (vma->fence)
659                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
660         }
661
662         ev->flags |= __EXEC_OBJECT_HAS_PIN;
663         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
664
665         return 0;
666 }
667
668 static int eb_reserve(struct i915_execbuffer *eb)
669 {
670         const unsigned int count = eb->buffer_count;
671         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
672         struct list_head last;
673         struct eb_vma *ev;
674         unsigned int i, pass;
675         int err = 0;
676
677         /*
678          * Attempt to pin all of the buffers into the GTT.
679          * This is done in 3 phases:
680          *
681          * 1a. Unbind all objects that do not match the GTT constraints for
682          *     the execbuffer (fenceable, mappable, alignment etc).
683          * 1b. Increment pin count for already bound objects.
684          * 2.  Bind new objects.
685          * 3.  Decrement pin count.
686          *
687          * This avoid unnecessary unbinding of later objects in order to make
688          * room for the earlier objects *unless* we need to defragment.
689          */
690
691         if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
692                 return -EINTR;
693
694         pass = 0;
695         do {
696                 list_for_each_entry(ev, &eb->unbound, bind_link) {
697                         err = eb_reserve_vma(eb, ev, pin_flags);
698                         if (err)
699                                 break;
700                 }
701                 if (!(err == -ENOSPC || err == -EAGAIN))
702                         break;
703
704                 /* Resort *all* the objects into priority order */
705                 INIT_LIST_HEAD(&eb->unbound);
706                 INIT_LIST_HEAD(&last);
707                 for (i = 0; i < count; i++) {
708                         unsigned int flags;
709
710                         ev = &eb->vma[i];
711                         flags = ev->flags;
712                         if (flags & EXEC_OBJECT_PINNED &&
713                             flags & __EXEC_OBJECT_HAS_PIN)
714                                 continue;
715
716                         eb_unreserve_vma(ev);
717
718                         if (flags & EXEC_OBJECT_PINNED)
719                                 /* Pinned must have their slot */
720                                 list_add(&ev->bind_link, &eb->unbound);
721                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722                                 /* Map require the lowest 256MiB (aperture) */
723                                 list_add_tail(&ev->bind_link, &eb->unbound);
724                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725                                 /* Prioritise 4GiB region for restricted bo */
726                                 list_add(&ev->bind_link, &last);
727                         else
728                                 list_add_tail(&ev->bind_link, &last);
729                 }
730                 list_splice_tail(&last, &eb->unbound);
731
732                 if (err == -EAGAIN) {
733                         mutex_unlock(&eb->i915->drm.struct_mutex);
734                         flush_workqueue(eb->i915->mm.userptr_wq);
735                         mutex_lock(&eb->i915->drm.struct_mutex);
736                         continue;
737                 }
738
739                 switch (pass++) {
740                 case 0:
741                         break;
742
743                 case 1:
744                         /* Too fragmented, unbind everything and retry */
745                         mutex_lock(&eb->context->vm->mutex);
746                         err = i915_gem_evict_vm(eb->context->vm);
747                         mutex_unlock(&eb->context->vm->mutex);
748                         if (err)
749                                 goto unlock;
750                         break;
751
752                 default:
753                         err = -ENOSPC;
754                         goto unlock;
755                 }
756
757                 pin_flags = PIN_USER;
758         } while (1);
759
760 unlock:
761         mutex_unlock(&eb->i915->drm.struct_mutex);
762         return err;
763 }
764
765 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
766 {
767         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
768                 return 0;
769         else
770                 return eb->buffer_count - 1;
771 }
772
773 static int eb_select_context(struct i915_execbuffer *eb)
774 {
775         struct i915_gem_context *ctx;
776
777         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
778         if (unlikely(!ctx))
779                 return -ENOENT;
780
781         eb->gem_context = ctx;
782         if (rcu_access_pointer(ctx->vm))
783                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
784
785         eb->context_flags = 0;
786         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
787                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
788
789         return 0;
790 }
791
792 static int __eb_add_lut(struct i915_execbuffer *eb,
793                         u32 handle, struct i915_vma *vma)
794 {
795         struct i915_gem_context *ctx = eb->gem_context;
796         struct i915_lut_handle *lut;
797         int err;
798
799         lut = i915_lut_handle_alloc();
800         if (unlikely(!lut))
801                 return -ENOMEM;
802
803         i915_vma_get(vma);
804         if (!atomic_fetch_inc(&vma->open_count))
805                 i915_vma_reopen(vma);
806         lut->handle = handle;
807         lut->ctx = ctx;
808
809         /* Check that the context hasn't been closed in the meantime */
810         err = -EINTR;
811         if (!mutex_lock_interruptible(&ctx->mutex)) {
812                 err = -ENOENT;
813                 if (likely(!i915_gem_context_is_closed(ctx)))
814                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
815                 if (err == 0) { /* And nor has this handle */
816                         struct drm_i915_gem_object *obj = vma->obj;
817
818                         i915_gem_object_lock(obj);
819                         if (idr_find(&eb->file->object_idr, handle) == obj) {
820                                 list_add(&lut->obj_link, &obj->lut_list);
821                         } else {
822                                 radix_tree_delete(&ctx->handles_vma, handle);
823                                 err = -ENOENT;
824                         }
825                         i915_gem_object_unlock(obj);
826                 }
827                 mutex_unlock(&ctx->mutex);
828         }
829         if (unlikely(err))
830                 goto err;
831
832         return 0;
833
834 err:
835         i915_vma_close(vma);
836         i915_vma_put(vma);
837         i915_lut_handle_free(lut);
838         return err;
839 }
840
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842 {
843         do {
844                 struct drm_i915_gem_object *obj;
845                 struct i915_vma *vma;
846                 int err;
847
848                 rcu_read_lock();
849                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
850                 if (likely(vma))
851                         vma = i915_vma_tryget(vma);
852                 rcu_read_unlock();
853                 if (likely(vma))
854                         return vma;
855
856                 obj = i915_gem_object_lookup(eb->file, handle);
857                 if (unlikely(!obj))
858                         return ERR_PTR(-ENOENT);
859
860                 vma = i915_vma_instance(obj, eb->context->vm, NULL);
861                 if (IS_ERR(vma)) {
862                         i915_gem_object_put(obj);
863                         return vma;
864                 }
865
866                 err = __eb_add_lut(eb, handle, vma);
867                 if (likely(!err))
868                         return vma;
869
870                 i915_gem_object_put(obj);
871                 if (err != -EEXIST)
872                         return ERR_PTR(err);
873         } while (1);
874 }
875
876 static int eb_lookup_vmas(struct i915_execbuffer *eb)
877 {
878         unsigned int batch = eb_batch_index(eb);
879         unsigned int i;
880         int err = 0;
881
882         INIT_LIST_HEAD(&eb->relocs);
883         INIT_LIST_HEAD(&eb->unbound);
884
885         for (i = 0; i < eb->buffer_count; i++) {
886                 struct i915_vma *vma;
887
888                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
889                 if (IS_ERR(vma)) {
890                         err = PTR_ERR(vma);
891                         break;
892                 }
893
894                 err = eb_validate_vma(eb, &eb->exec[i], vma);
895                 if (unlikely(err)) {
896                         i915_vma_put(vma);
897                         break;
898                 }
899
900                 eb_add_vma(eb, i, batch, vma);
901         }
902
903         eb->vma[i].vma = NULL;
904         return err;
905 }
906
907 static struct eb_vma *
908 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
909 {
910         if (eb->lut_size < 0) {
911                 if (handle >= -eb->lut_size)
912                         return NULL;
913                 return &eb->vma[handle];
914         } else {
915                 struct hlist_head *head;
916                 struct eb_vma *ev;
917
918                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
919                 hlist_for_each_entry(ev, head, node) {
920                         if (ev->handle == handle)
921                                 return ev;
922                 }
923                 return NULL;
924         }
925 }
926
927 static void eb_destroy(const struct i915_execbuffer *eb)
928 {
929         GEM_BUG_ON(eb->reloc_cache.rq);
930
931         if (eb->array)
932                 eb_vma_array_put(eb->array);
933
934         if (eb->lut_size > 0)
935                 kfree(eb->buckets);
936 }
937
938 static inline u64
939 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
940                   const struct i915_vma *target)
941 {
942         return gen8_canonical_addr((int)reloc->delta + target->node.start);
943 }
944
945 static void reloc_cache_init(struct reloc_cache *cache,
946                              struct drm_i915_private *i915)
947 {
948         cache->page = -1;
949         cache->vaddr = 0;
950         /* Must be a variable in the struct to allow GCC to unroll. */
951         cache->gen = INTEL_GEN(i915);
952         cache->has_llc = HAS_LLC(i915);
953         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
954         cache->has_fence = cache->gen < 4;
955         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
956         cache->node.flags = 0;
957         cache->rq = NULL;
958         cache->target = NULL;
959 }
960
961 static inline void *unmask_page(unsigned long p)
962 {
963         return (void *)(uintptr_t)(p & PAGE_MASK);
964 }
965
966 static inline unsigned int unmask_flags(unsigned long p)
967 {
968         return p & ~PAGE_MASK;
969 }
970
971 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
972
973 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
974 {
975         struct drm_i915_private *i915 =
976                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
977         return &i915->ggtt;
978 }
979
980 #define RELOC_TAIL 4
981
982 static int reloc_gpu_chain(struct reloc_cache *cache)
983 {
984         struct intel_gt_buffer_pool_node *pool;
985         struct i915_request *rq = cache->rq;
986         struct i915_vma *batch;
987         u32 *cmd;
988         int err;
989
990         pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
991         if (IS_ERR(pool))
992                 return PTR_ERR(pool);
993
994         batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
995         if (IS_ERR(batch)) {
996                 err = PTR_ERR(batch);
997                 goto out_pool;
998         }
999
1000         err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1001         if (err)
1002                 goto out_pool;
1003
1004         GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
1005         cmd = cache->rq_cmd + cache->rq_size;
1006         *cmd++ = MI_ARB_CHECK;
1007         if (cache->gen >= 8)
1008                 *cmd++ = MI_BATCH_BUFFER_START_GEN8;
1009         else if (cache->gen >= 6)
1010                 *cmd++ = MI_BATCH_BUFFER_START;
1011         else
1012                 *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1013         *cmd++ = lower_32_bits(batch->node.start);
1014         *cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
1015         i915_gem_object_flush_map(cache->rq_vma->obj);
1016         i915_gem_object_unpin_map(cache->rq_vma->obj);
1017         cache->rq_vma = NULL;
1018
1019         err = intel_gt_buffer_pool_mark_active(pool, rq);
1020         if (err == 0) {
1021                 i915_vma_lock(batch);
1022                 err = i915_request_await_object(rq, batch->obj, false);
1023                 if (err == 0)
1024                         err = i915_vma_move_to_active(batch, rq, 0);
1025                 i915_vma_unlock(batch);
1026         }
1027         i915_vma_unpin(batch);
1028         if (err)
1029                 goto out_pool;
1030
1031         cmd = i915_gem_object_pin_map(batch->obj,
1032                                       cache->has_llc ?
1033                                       I915_MAP_FORCE_WB :
1034                                       I915_MAP_FORCE_WC);
1035         if (IS_ERR(cmd)) {
1036                 err = PTR_ERR(cmd);
1037                 goto out_pool;
1038         }
1039
1040         /* Return with batch mapping (cmd) still pinned */
1041         cache->rq_cmd = cmd;
1042         cache->rq_size = 0;
1043         cache->rq_vma = batch;
1044
1045 out_pool:
1046         intel_gt_buffer_pool_put(pool);
1047         return err;
1048 }
1049
1050 static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
1051 {
1052         return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
1053 }
1054
1055 static int reloc_gpu_flush(struct reloc_cache *cache)
1056 {
1057         struct i915_request *rq;
1058         int err;
1059
1060         rq = fetch_and_zero(&cache->rq);
1061         if (!rq)
1062                 return 0;
1063
1064         if (cache->rq_vma) {
1065                 struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1066
1067                 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1068                 cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1069
1070                 __i915_gem_object_flush_map(obj,
1071                                             0, sizeof(u32) * cache->rq_size);
1072                 i915_gem_object_unpin_map(obj);
1073         }
1074
1075         err = 0;
1076         if (rq->engine->emit_init_breadcrumb)
1077                 err = rq->engine->emit_init_breadcrumb(rq);
1078         if (!err)
1079                 err = rq->engine->emit_bb_start(rq,
1080                                                 rq->batch->node.start,
1081                                                 PAGE_SIZE,
1082                                                 reloc_bb_flags(cache));
1083         if (err)
1084                 i915_request_set_error_once(rq, err);
1085
1086         intel_gt_chipset_flush(rq->engine->gt);
1087         i915_request_add(rq);
1088
1089         return err;
1090 }
1091
1092 static void reloc_cache_reset(struct reloc_cache *cache)
1093 {
1094         void *vaddr;
1095
1096         if (!cache->vaddr)
1097                 return;
1098
1099         vaddr = unmask_page(cache->vaddr);
1100         if (cache->vaddr & KMAP) {
1101                 if (cache->vaddr & CLFLUSH_AFTER)
1102                         mb();
1103
1104                 kunmap_atomic(vaddr);
1105                 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1106         } else {
1107                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1108
1109                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1110                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1111
1112                 if (drm_mm_node_allocated(&cache->node)) {
1113                         ggtt->vm.clear_range(&ggtt->vm,
1114                                              cache->node.start,
1115                                              cache->node.size);
1116                         mutex_lock(&ggtt->vm.mutex);
1117                         drm_mm_remove_node(&cache->node);
1118                         mutex_unlock(&ggtt->vm.mutex);
1119                 } else {
1120                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1121                 }
1122         }
1123
1124         cache->vaddr = 0;
1125         cache->page = -1;
1126 }
1127
1128 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1129                         struct reloc_cache *cache,
1130                         unsigned long page)
1131 {
1132         void *vaddr;
1133
1134         if (cache->vaddr) {
1135                 kunmap_atomic(unmask_page(cache->vaddr));
1136         } else {
1137                 unsigned int flushes;
1138                 int err;
1139
1140                 err = i915_gem_object_prepare_write(obj, &flushes);
1141                 if (err)
1142                         return ERR_PTR(err);
1143
1144                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1145                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1146
1147                 cache->vaddr = flushes | KMAP;
1148                 cache->node.mm = (void *)obj;
1149                 if (flushes)
1150                         mb();
1151         }
1152
1153         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1154         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1155         cache->page = page;
1156
1157         return vaddr;
1158 }
1159
1160 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1161                          struct reloc_cache *cache,
1162                          unsigned long page)
1163 {
1164         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1165         unsigned long offset;
1166         void *vaddr;
1167
1168         if (cache->vaddr) {
1169                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1170                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1171         } else {
1172                 struct i915_vma *vma;
1173                 int err;
1174
1175                 if (i915_gem_object_is_tiled(obj))
1176                         return ERR_PTR(-EINVAL);
1177
1178                 if (use_cpu_reloc(cache, obj))
1179                         return NULL;
1180
1181                 i915_gem_object_lock(obj);
1182                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1183                 i915_gem_object_unlock(obj);
1184                 if (err)
1185                         return ERR_PTR(err);
1186
1187                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1188                                                PIN_MAPPABLE |
1189                                                PIN_NONBLOCK /* NOWARN */ |
1190                                                PIN_NOEVICT);
1191                 if (IS_ERR(vma)) {
1192                         memset(&cache->node, 0, sizeof(cache->node));
1193                         mutex_lock(&ggtt->vm.mutex);
1194                         err = drm_mm_insert_node_in_range
1195                                 (&ggtt->vm.mm, &cache->node,
1196                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1197                                  0, ggtt->mappable_end,
1198                                  DRM_MM_INSERT_LOW);
1199                         mutex_unlock(&ggtt->vm.mutex);
1200                         if (err) /* no inactive aperture space, use cpu reloc */
1201                                 return NULL;
1202                 } else {
1203                         cache->node.start = vma->node.start;
1204                         cache->node.mm = (void *)vma;
1205                 }
1206         }
1207
1208         offset = cache->node.start;
1209         if (drm_mm_node_allocated(&cache->node)) {
1210                 ggtt->vm.insert_page(&ggtt->vm,
1211                                      i915_gem_object_get_dma_address(obj, page),
1212                                      offset, I915_CACHE_NONE, 0);
1213         } else {
1214                 offset += page << PAGE_SHIFT;
1215         }
1216
1217         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1218                                                          offset);
1219         cache->page = page;
1220         cache->vaddr = (unsigned long)vaddr;
1221
1222         return vaddr;
1223 }
1224
1225 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1226                          struct reloc_cache *cache,
1227                          unsigned long page)
1228 {
1229         void *vaddr;
1230
1231         if (cache->page == page) {
1232                 vaddr = unmask_page(cache->vaddr);
1233         } else {
1234                 vaddr = NULL;
1235                 if ((cache->vaddr & KMAP) == 0)
1236                         vaddr = reloc_iomap(obj, cache, page);
1237                 if (!vaddr)
1238                         vaddr = reloc_kmap(obj, cache, page);
1239         }
1240
1241         return vaddr;
1242 }
1243
1244 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1245 {
1246         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1247                 if (flushes & CLFLUSH_BEFORE) {
1248                         clflushopt(addr);
1249                         mb();
1250                 }
1251
1252                 *addr = value;
1253
1254                 /*
1255                  * Writes to the same cacheline are serialised by the CPU
1256                  * (including clflush). On the write path, we only require
1257                  * that it hits memory in an orderly fashion and place
1258                  * mb barriers at the start and end of the relocation phase
1259                  * to ensure ordering of clflush wrt to the system.
1260                  */
1261                 if (flushes & CLFLUSH_AFTER)
1262                         clflushopt(addr);
1263         } else
1264                 *addr = value;
1265 }
1266
1267 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1268 {
1269         struct drm_i915_gem_object *obj = vma->obj;
1270         int err;
1271
1272         i915_vma_lock(vma);
1273
1274         if (obj->cache_dirty & ~obj->cache_coherent)
1275                 i915_gem_clflush_object(obj, 0);
1276         obj->write_domain = 0;
1277
1278         err = i915_request_await_object(rq, vma->obj, true);
1279         if (err == 0)
1280                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1281
1282         i915_vma_unlock(vma);
1283
1284         return err;
1285 }
1286
1287 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1288                              struct intel_engine_cs *engine,
1289                              unsigned int len)
1290 {
1291         struct reloc_cache *cache = &eb->reloc_cache;
1292         struct intel_gt_buffer_pool_node *pool;
1293         struct i915_request *rq;
1294         struct i915_vma *batch;
1295         u32 *cmd;
1296         int err;
1297
1298         pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1299         if (IS_ERR(pool))
1300                 return PTR_ERR(pool);
1301
1302         cmd = i915_gem_object_pin_map(pool->obj,
1303                                       cache->has_llc ?
1304                                       I915_MAP_FORCE_WB :
1305                                       I915_MAP_FORCE_WC);
1306         if (IS_ERR(cmd)) {
1307                 err = PTR_ERR(cmd);
1308                 goto out_pool;
1309         }
1310
1311         batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1312         if (IS_ERR(batch)) {
1313                 err = PTR_ERR(batch);
1314                 goto err_unmap;
1315         }
1316
1317         err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1318         if (err)
1319                 goto err_unmap;
1320
1321         if (engine == eb->context->engine) {
1322                 rq = i915_request_create(eb->context);
1323         } else {
1324                 struct intel_context *ce;
1325
1326                 ce = intel_context_create(engine);
1327                 if (IS_ERR(ce)) {
1328                         err = PTR_ERR(ce);
1329                         goto err_unpin;
1330                 }
1331
1332                 i915_vm_put(ce->vm);
1333                 ce->vm = i915_vm_get(eb->context->vm);
1334
1335                 rq = intel_context_create_request(ce);
1336                 intel_context_put(ce);
1337         }
1338         if (IS_ERR(rq)) {
1339                 err = PTR_ERR(rq);
1340                 goto err_unpin;
1341         }
1342
1343         err = intel_gt_buffer_pool_mark_active(pool, rq);
1344         if (err)
1345                 goto err_request;
1346
1347         i915_vma_lock(batch);
1348         err = i915_request_await_object(rq, batch->obj, false);
1349         if (err == 0)
1350                 err = i915_vma_move_to_active(batch, rq, 0);
1351         i915_vma_unlock(batch);
1352         if (err)
1353                 goto skip_request;
1354
1355         rq->batch = batch;
1356         i915_vma_unpin(batch);
1357
1358         cache->rq = rq;
1359         cache->rq_cmd = cmd;
1360         cache->rq_size = 0;
1361         cache->rq_vma = batch;
1362
1363         /* Return with batch mapping (cmd) still pinned */
1364         goto out_pool;
1365
1366 skip_request:
1367         i915_request_set_error_once(rq, err);
1368 err_request:
1369         i915_request_add(rq);
1370 err_unpin:
1371         i915_vma_unpin(batch);
1372 err_unmap:
1373         i915_gem_object_unpin_map(pool->obj);
1374 out_pool:
1375         intel_gt_buffer_pool_put(pool);
1376         return err;
1377 }
1378
1379 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1380 {
1381         return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1382 }
1383
1384 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1385                       struct i915_vma *vma,
1386                       unsigned int len)
1387 {
1388         struct reloc_cache *cache = &eb->reloc_cache;
1389         u32 *cmd;
1390         int err;
1391
1392         if (unlikely(!cache->rq)) {
1393                 struct intel_engine_cs *engine = eb->engine;
1394
1395                 if (!reloc_can_use_engine(engine)) {
1396                         engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1397                         if (!engine)
1398                                 return ERR_PTR(-ENODEV);
1399                 }
1400
1401                 err = __reloc_gpu_alloc(eb, engine, len);
1402                 if (unlikely(err))
1403                         return ERR_PTR(err);
1404         }
1405
1406         if (vma != cache->target) {
1407                 err = reloc_move_to_gpu(cache->rq, vma);
1408                 if (unlikely(err)) {
1409                         i915_request_set_error_once(cache->rq, err);
1410                         return ERR_PTR(err);
1411                 }
1412
1413                 cache->target = vma;
1414         }
1415
1416         if (unlikely(cache->rq_size + len >
1417                      PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
1418                 err = reloc_gpu_chain(cache);
1419                 if (unlikely(err)) {
1420                         i915_request_set_error_once(cache->rq, err);
1421                         return ERR_PTR(err);
1422                 }
1423         }
1424
1425         GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1426         cmd = cache->rq_cmd + cache->rq_size;
1427         cache->rq_size += len;
1428
1429         return cmd;
1430 }
1431
1432 static inline bool use_reloc_gpu(struct i915_vma *vma)
1433 {
1434         if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1435                 return true;
1436
1437         if (DBG_FORCE_RELOC)
1438                 return false;
1439
1440         return !dma_resv_test_signaled_rcu(vma->resv, true);
1441 }
1442
1443 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1444 {
1445         struct page *page;
1446         unsigned long addr;
1447
1448         GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1449
1450         page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1451         addr = PFN_PHYS(page_to_pfn(page));
1452         GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1453
1454         return addr + offset_in_page(offset);
1455 }
1456
1457 static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
1458                               struct i915_vma *vma,
1459                               u64 offset,
1460                               u64 target_addr)
1461 {
1462         const unsigned int gen = eb->reloc_cache.gen;
1463         unsigned int len;
1464         u32 *batch;
1465         u64 addr;
1466
1467         if (gen >= 8)
1468                 len = offset & 7 ? 8 : 5;
1469         else if (gen >= 4)
1470                 len = 4;
1471         else
1472                 len = 3;
1473
1474         batch = reloc_gpu(eb, vma, len);
1475         if (IS_ERR(batch))
1476                 return false;
1477
1478         addr = gen8_canonical_addr(vma->node.start + offset);
1479         if (gen >= 8) {
1480                 if (offset & 7) {
1481                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1482                         *batch++ = lower_32_bits(addr);
1483                         *batch++ = upper_32_bits(addr);
1484                         *batch++ = lower_32_bits(target_addr);
1485
1486                         addr = gen8_canonical_addr(addr + 4);
1487
1488                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1489                         *batch++ = lower_32_bits(addr);
1490                         *batch++ = upper_32_bits(addr);
1491                         *batch++ = upper_32_bits(target_addr);
1492                 } else {
1493                         *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1494                         *batch++ = lower_32_bits(addr);
1495                         *batch++ = upper_32_bits(addr);
1496                         *batch++ = lower_32_bits(target_addr);
1497                         *batch++ = upper_32_bits(target_addr);
1498                 }
1499         } else if (gen >= 6) {
1500                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1501                 *batch++ = 0;
1502                 *batch++ = addr;
1503                 *batch++ = target_addr;
1504         } else if (IS_I965G(eb->i915)) {
1505                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1506                 *batch++ = 0;
1507                 *batch++ = vma_phys_addr(vma, offset);
1508                 *batch++ = target_addr;
1509         } else if (gen >= 4) {
1510                 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1511                 *batch++ = 0;
1512                 *batch++ = addr;
1513                 *batch++ = target_addr;
1514         } else if (gen >= 3 &&
1515                    !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1516                 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1517                 *batch++ = addr;
1518                 *batch++ = target_addr;
1519         } else {
1520                 *batch++ = MI_STORE_DWORD_IMM;
1521                 *batch++ = vma_phys_addr(vma, offset);
1522                 *batch++ = target_addr;
1523         }
1524
1525         return true;
1526 }
1527
1528 static bool reloc_entry_gpu(struct i915_execbuffer *eb,
1529                             struct i915_vma *vma,
1530                             u64 offset,
1531                             u64 target_addr)
1532 {
1533         if (eb->reloc_cache.vaddr)
1534                 return false;
1535
1536         if (!use_reloc_gpu(vma))
1537                 return false;
1538
1539         return __reloc_entry_gpu(eb, vma, offset, target_addr);
1540 }
1541
1542 static u64
1543 relocate_entry(struct i915_vma *vma,
1544                const struct drm_i915_gem_relocation_entry *reloc,
1545                struct i915_execbuffer *eb,
1546                const struct i915_vma *target)
1547 {
1548         u64 target_addr = relocation_target(reloc, target);
1549         u64 offset = reloc->offset;
1550
1551         if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
1552                 bool wide = eb->reloc_cache.use_64bit_reloc;
1553                 void *vaddr;
1554
1555 repeat:
1556                 vaddr = reloc_vaddr(vma->obj,
1557                                     &eb->reloc_cache,
1558                                     offset >> PAGE_SHIFT);
1559                 if (IS_ERR(vaddr))
1560                         return PTR_ERR(vaddr);
1561
1562                 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1563                 clflush_write32(vaddr + offset_in_page(offset),
1564                                 lower_32_bits(target_addr),
1565                                 eb->reloc_cache.vaddr);
1566
1567                 if (wide) {
1568                         offset += sizeof(u32);
1569                         target_addr >>= 32;
1570                         wide = false;
1571                         goto repeat;
1572                 }
1573         }
1574
1575         return target->node.start | UPDATE;
1576 }
1577
1578 static u64
1579 eb_relocate_entry(struct i915_execbuffer *eb,
1580                   struct eb_vma *ev,
1581                   const struct drm_i915_gem_relocation_entry *reloc)
1582 {
1583         struct drm_i915_private *i915 = eb->i915;
1584         struct eb_vma *target;
1585         int err;
1586
1587         /* we've already hold a reference to all valid objects */
1588         target = eb_get_vma(eb, reloc->target_handle);
1589         if (unlikely(!target))
1590                 return -ENOENT;
1591
1592         /* Validate that the target is in a valid r/w GPU domain */
1593         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1594                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1595                           "target %d offset %d "
1596                           "read %08x write %08x",
1597                           reloc->target_handle,
1598                           (int) reloc->offset,
1599                           reloc->read_domains,
1600                           reloc->write_domain);
1601                 return -EINVAL;
1602         }
1603         if (unlikely((reloc->write_domain | reloc->read_domains)
1604                      & ~I915_GEM_GPU_DOMAINS)) {
1605                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1606                           "target %d offset %d "
1607                           "read %08x write %08x",
1608                           reloc->target_handle,
1609                           (int) reloc->offset,
1610                           reloc->read_domains,
1611                           reloc->write_domain);
1612                 return -EINVAL;
1613         }
1614
1615         if (reloc->write_domain) {
1616                 target->flags |= EXEC_OBJECT_WRITE;
1617
1618                 /*
1619                  * Sandybridge PPGTT errata: We need a global gtt mapping
1620                  * for MI and pipe_control writes because the gpu doesn't
1621                  * properly redirect them through the ppgtt for non_secure
1622                  * batchbuffers.
1623                  */
1624                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1625                     IS_GEN(eb->i915, 6)) {
1626                         err = i915_vma_bind(target->vma,
1627                                             target->vma->obj->cache_level,
1628                                             PIN_GLOBAL, NULL);
1629                         if (WARN_ONCE(err,
1630                                       "Unexpected failure to bind target VMA!"))
1631                                 return err;
1632                 }
1633         }
1634
1635         /*
1636          * If the relocation already has the right value in it, no
1637          * more work needs to be done.
1638          */
1639         if (!DBG_FORCE_RELOC &&
1640             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1641                 return 0;
1642
1643         /* Check that the relocation address is valid... */
1644         if (unlikely(reloc->offset >
1645                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1646                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1647                           "target %d offset %d size %d.\n",
1648                           reloc->target_handle,
1649                           (int)reloc->offset,
1650                           (int)ev->vma->size);
1651                 return -EINVAL;
1652         }
1653         if (unlikely(reloc->offset & 3)) {
1654                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1655                           "target %d offset %d.\n",
1656                           reloc->target_handle,
1657                           (int)reloc->offset);
1658                 return -EINVAL;
1659         }
1660
1661         /*
1662          * If we write into the object, we need to force the synchronisation
1663          * barrier, either with an asynchronous clflush or if we executed the
1664          * patching using the GPU (though that should be serialised by the
1665          * timeline). To be completely sure, and since we are required to
1666          * do relocations we are already stalling, disable the user's opt
1667          * out of our synchronisation.
1668          */
1669         ev->flags &= ~EXEC_OBJECT_ASYNC;
1670
1671         /* and update the user's relocation entry */
1672         return relocate_entry(ev->vma, reloc, eb, target->vma);
1673 }
1674
1675 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1676 {
1677 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1678         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1679         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1680         struct drm_i915_gem_relocation_entry __user *urelocs =
1681                 u64_to_user_ptr(entry->relocs_ptr);
1682         unsigned long remain = entry->relocation_count;
1683
1684         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1685                 return -EINVAL;
1686
1687         /*
1688          * We must check that the entire relocation array is safe
1689          * to read. However, if the array is not writable the user loses
1690          * the updated relocation values.
1691          */
1692         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1693                 return -EFAULT;
1694
1695         do {
1696                 struct drm_i915_gem_relocation_entry *r = stack;
1697                 unsigned int count =
1698                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1699                 unsigned int copied;
1700
1701                 /*
1702                  * This is the fast path and we cannot handle a pagefault
1703                  * whilst holding the struct mutex lest the user pass in the
1704                  * relocations contained within a mmaped bo. For in such a case
1705                  * we, the page fault handler would call i915_gem_fault() and
1706                  * we would try to acquire the struct mutex again. Obviously
1707                  * this is bad and so lockdep complains vehemently.
1708                  */
1709                 copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1710                 if (unlikely(copied)) {
1711                         remain = -EFAULT;
1712                         goto out;
1713                 }
1714
1715                 remain -= count;
1716                 do {
1717                         u64 offset = eb_relocate_entry(eb, ev, r);
1718
1719                         if (likely(offset == 0)) {
1720                         } else if ((s64)offset < 0) {
1721                                 remain = (int)offset;
1722                                 goto out;
1723                         } else {
1724                                 /*
1725                                  * Note that reporting an error now
1726                                  * leaves everything in an inconsistent
1727                                  * state as we have *already* changed
1728                                  * the relocation value inside the
1729                                  * object. As we have not changed the
1730                                  * reloc.presumed_offset or will not
1731                                  * change the execobject.offset, on the
1732                                  * call we may not rewrite the value
1733                                  * inside the object, leaving it
1734                                  * dangling and causing a GPU hang. Unless
1735                                  * userspace dynamically rebuilds the
1736                                  * relocations on each execbuf rather than
1737                                  * presume a static tree.
1738                                  *
1739                                  * We did previously check if the relocations
1740                                  * were writable (access_ok), an error now
1741                                  * would be a strange race with mprotect,
1742                                  * having already demonstrated that we
1743                                  * can read from this userspace address.
1744                                  */
1745                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1746                                 __put_user(offset,
1747                                            &urelocs[r - stack].presumed_offset);
1748                         }
1749                 } while (r++, --count);
1750                 urelocs += ARRAY_SIZE(stack);
1751         } while (remain);
1752 out:
1753         reloc_cache_reset(&eb->reloc_cache);
1754         return remain;
1755 }
1756
1757 static int eb_relocate(struct i915_execbuffer *eb)
1758 {
1759         int err;
1760
1761         err = eb_lookup_vmas(eb);
1762         if (err)
1763                 return err;
1764
1765         if (!list_empty(&eb->unbound)) {
1766                 err = eb_reserve(eb);
1767                 if (err)
1768                         return err;
1769         }
1770
1771         /* The objects are in their final locations, apply the relocations. */
1772         if (eb->args->flags & __EXEC_HAS_RELOC) {
1773                 struct eb_vma *ev;
1774                 int flush;
1775
1776                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1777                         err = eb_relocate_vma(eb, ev);
1778                         if (err)
1779                                 break;
1780                 }
1781
1782                 flush = reloc_gpu_flush(&eb->reloc_cache);
1783                 if (!err)
1784                         err = flush;
1785         }
1786
1787         return err;
1788 }
1789
1790 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1791 {
1792         const unsigned int count = eb->buffer_count;
1793         struct ww_acquire_ctx acquire;
1794         unsigned int i;
1795         int err = 0;
1796
1797         ww_acquire_init(&acquire, &reservation_ww_class);
1798
1799         for (i = 0; i < count; i++) {
1800                 struct eb_vma *ev = &eb->vma[i];
1801                 struct i915_vma *vma = ev->vma;
1802
1803                 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1804                 if (err == -EDEADLK) {
1805                         GEM_BUG_ON(i == 0);
1806                         do {
1807                                 int j = i - 1;
1808
1809                                 ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1810
1811                                 swap(eb->vma[i],  eb->vma[j]);
1812                         } while (--i);
1813
1814                         err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1815                                                                &acquire);
1816                 }
1817                 if (err)
1818                         break;
1819         }
1820         ww_acquire_done(&acquire);
1821
1822         while (i--) {
1823                 struct eb_vma *ev = &eb->vma[i];
1824                 struct i915_vma *vma = ev->vma;
1825                 unsigned int flags = ev->flags;
1826                 struct drm_i915_gem_object *obj = vma->obj;
1827
1828                 assert_vma_held(vma);
1829
1830                 if (flags & EXEC_OBJECT_CAPTURE) {
1831                         struct i915_capture_list *capture;
1832
1833                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1834                         if (capture) {
1835                                 capture->next = eb->request->capture_list;
1836                                 capture->vma = vma;
1837                                 eb->request->capture_list = capture;
1838                         }
1839                 }
1840
1841                 /*
1842                  * If the GPU is not _reading_ through the CPU cache, we need
1843                  * to make sure that any writes (both previous GPU writes from
1844                  * before a change in snooping levels and normal CPU writes)
1845                  * caught in that cache are flushed to main memory.
1846                  *
1847                  * We want to say
1848                  *   obj->cache_dirty &&
1849                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1850                  * but gcc's optimiser doesn't handle that as well and emits
1851                  * two jumps instead of one. Maybe one day...
1852                  */
1853                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1854                         if (i915_gem_clflush_object(obj, 0))
1855                                 flags &= ~EXEC_OBJECT_ASYNC;
1856                 }
1857
1858                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1859                         err = i915_request_await_object
1860                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1861                 }
1862
1863                 if (err == 0)
1864                         err = i915_vma_move_to_active(vma, eb->request, flags);
1865
1866                 i915_vma_unlock(vma);
1867                 eb_unreserve_vma(ev);
1868         }
1869         ww_acquire_fini(&acquire);
1870
1871         eb_vma_array_put(fetch_and_zero(&eb->array));
1872
1873         if (unlikely(err))
1874                 goto err_skip;
1875
1876         /* Unconditionally flush any chipset caches (for streaming writes). */
1877         intel_gt_chipset_flush(eb->engine->gt);
1878         return 0;
1879
1880 err_skip:
1881         i915_request_set_error_once(eb->request, err);
1882         return err;
1883 }
1884
1885 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1886 {
1887         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1888                 return -EINVAL;
1889
1890         /* Kernel clipping was a DRI1 misfeature */
1891         if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1892                 if (exec->num_cliprects || exec->cliprects_ptr)
1893                         return -EINVAL;
1894         }
1895
1896         if (exec->DR4 == 0xffffffff) {
1897                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1898                 exec->DR4 = 0;
1899         }
1900         if (exec->DR1 || exec->DR4)
1901                 return -EINVAL;
1902
1903         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1904                 return -EINVAL;
1905
1906         return 0;
1907 }
1908
1909 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1910 {
1911         u32 *cs;
1912         int i;
1913
1914         if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1915                 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1916                 return -EINVAL;
1917         }
1918
1919         cs = intel_ring_begin(rq, 4 * 2 + 2);
1920         if (IS_ERR(cs))
1921                 return PTR_ERR(cs);
1922
1923         *cs++ = MI_LOAD_REGISTER_IMM(4);
1924         for (i = 0; i < 4; i++) {
1925                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1926                 *cs++ = 0;
1927         }
1928         *cs++ = MI_NOOP;
1929         intel_ring_advance(rq, cs);
1930
1931         return 0;
1932 }
1933
1934 static struct i915_vma *
1935 shadow_batch_pin(struct drm_i915_gem_object *obj,
1936                  struct i915_address_space *vm,
1937                  unsigned int flags)
1938 {
1939         struct i915_vma *vma;
1940         int err;
1941
1942         vma = i915_vma_instance(obj, vm, NULL);
1943         if (IS_ERR(vma))
1944                 return vma;
1945
1946         err = i915_vma_pin(vma, 0, 0, flags);
1947         if (err)
1948                 return ERR_PTR(err);
1949
1950         return vma;
1951 }
1952
1953 struct eb_parse_work {
1954         struct dma_fence_work base;
1955         struct intel_engine_cs *engine;
1956         struct i915_vma *batch;
1957         struct i915_vma *shadow;
1958         struct i915_vma *trampoline;
1959         unsigned int batch_offset;
1960         unsigned int batch_length;
1961 };
1962
1963 static int __eb_parse(struct dma_fence_work *work)
1964 {
1965         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1966
1967         return intel_engine_cmd_parser(pw->engine,
1968                                        pw->batch,
1969                                        pw->batch_offset,
1970                                        pw->batch_length,
1971                                        pw->shadow,
1972                                        pw->trampoline);
1973 }
1974
1975 static void __eb_parse_release(struct dma_fence_work *work)
1976 {
1977         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1978
1979         if (pw->trampoline)
1980                 i915_active_release(&pw->trampoline->active);
1981         i915_active_release(&pw->shadow->active);
1982         i915_active_release(&pw->batch->active);
1983 }
1984
1985 static const struct dma_fence_work_ops eb_parse_ops = {
1986         .name = "eb_parse",
1987         .work = __eb_parse,
1988         .release = __eb_parse_release,
1989 };
1990
1991 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1992                              struct i915_vma *shadow,
1993                              struct i915_vma *trampoline)
1994 {
1995         struct eb_parse_work *pw;
1996         int err;
1997
1998         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1999         if (!pw)
2000                 return -ENOMEM;
2001
2002         err = i915_active_acquire(&eb->batch->vma->active);
2003         if (err)
2004                 goto err_free;
2005
2006         err = i915_active_acquire(&shadow->active);
2007         if (err)
2008                 goto err_batch;
2009
2010         if (trampoline) {
2011                 err = i915_active_acquire(&trampoline->active);
2012                 if (err)
2013                         goto err_shadow;
2014         }
2015
2016         dma_fence_work_init(&pw->base, &eb_parse_ops);
2017
2018         pw->engine = eb->engine;
2019         pw->batch = eb->batch->vma;
2020         pw->batch_offset = eb->batch_start_offset;
2021         pw->batch_length = eb->batch_len;
2022         pw->shadow = shadow;
2023         pw->trampoline = trampoline;
2024
2025         err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2026         if (err)
2027                 goto err_trampoline;
2028
2029         err = dma_resv_reserve_shared(pw->batch->resv, 1);
2030         if (err)
2031                 goto err_batch_unlock;
2032
2033         /* Wait for all writes (and relocs) into the batch to complete */
2034         err = i915_sw_fence_await_reservation(&pw->base.chain,
2035                                               pw->batch->resv, NULL, false,
2036                                               0, I915_FENCE_GFP);
2037         if (err < 0)
2038                 goto err_batch_unlock;
2039
2040         /* Keep the batch alive and unwritten as we parse */
2041         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2042
2043         dma_resv_unlock(pw->batch->resv);
2044
2045         /* Force execution to wait for completion of the parser */
2046         dma_resv_lock(shadow->resv, NULL);
2047         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2048         dma_resv_unlock(shadow->resv);
2049
2050         dma_fence_work_commit_imm(&pw->base);
2051         return 0;
2052
2053 err_batch_unlock:
2054         dma_resv_unlock(pw->batch->resv);
2055 err_trampoline:
2056         if (trampoline)
2057                 i915_active_release(&trampoline->active);
2058 err_shadow:
2059         i915_active_release(&shadow->active);
2060 err_batch:
2061         i915_active_release(&eb->batch->vma->active);
2062 err_free:
2063         kfree(pw);
2064         return err;
2065 }
2066
2067 static int eb_parse(struct i915_execbuffer *eb)
2068 {
2069         struct drm_i915_private *i915 = eb->i915;
2070         struct intel_gt_buffer_pool_node *pool;
2071         struct i915_vma *shadow, *trampoline;
2072         unsigned int len;
2073         int err;
2074
2075         if (!eb_use_cmdparser(eb))
2076                 return 0;
2077
2078         len = eb->batch_len;
2079         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2080                 /*
2081                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2082                  * post-scan tampering
2083                  */
2084                 if (!eb->context->vm->has_read_only) {
2085                         drm_dbg(&i915->drm,
2086                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2087                         return -EINVAL;
2088                 }
2089         } else {
2090                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2091         }
2092
2093         pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2094         if (IS_ERR(pool))
2095                 return PTR_ERR(pool);
2096
2097         shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2098         if (IS_ERR(shadow)) {
2099                 err = PTR_ERR(shadow);
2100                 goto err;
2101         }
2102         i915_gem_object_set_readonly(shadow->obj);
2103
2104         trampoline = NULL;
2105         if (CMDPARSER_USES_GGTT(eb->i915)) {
2106                 trampoline = shadow;
2107
2108                 shadow = shadow_batch_pin(pool->obj,
2109                                           &eb->engine->gt->ggtt->vm,
2110                                           PIN_GLOBAL);
2111                 if (IS_ERR(shadow)) {
2112                         err = PTR_ERR(shadow);
2113                         shadow = trampoline;
2114                         goto err_shadow;
2115                 }
2116
2117                 eb->batch_flags |= I915_DISPATCH_SECURE;
2118         }
2119
2120         err = eb_parse_pipeline(eb, shadow, trampoline);
2121         if (err)
2122                 goto err_trampoline;
2123
2124         eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2125         eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2126         eb->batch = &eb->vma[eb->buffer_count++];
2127         eb->vma[eb->buffer_count].vma = NULL;
2128
2129         eb->trampoline = trampoline;
2130         eb->batch_start_offset = 0;
2131
2132         shadow->private = pool;
2133         return 0;
2134
2135 err_trampoline:
2136         if (trampoline)
2137                 i915_vma_unpin(trampoline);
2138 err_shadow:
2139         i915_vma_unpin(shadow);
2140 err:
2141         intel_gt_buffer_pool_put(pool);
2142         return err;
2143 }
2144
2145 static void
2146 add_to_client(struct i915_request *rq, struct drm_file *file)
2147 {
2148         struct drm_i915_file_private *file_priv = file->driver_priv;
2149
2150         rq->file_priv = file_priv;
2151
2152         spin_lock(&file_priv->mm.lock);
2153         list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2154         spin_unlock(&file_priv->mm.lock);
2155 }
2156
2157 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2158 {
2159         int err;
2160
2161         err = eb_move_to_gpu(eb);
2162         if (err)
2163                 return err;
2164
2165         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2166                 err = i915_reset_gen7_sol_offsets(eb->request);
2167                 if (err)
2168                         return err;
2169         }
2170
2171         /*
2172          * After we completed waiting for other engines (using HW semaphores)
2173          * then we can signal that this request/batch is ready to run. This
2174          * allows us to determine if the batch is still waiting on the GPU
2175          * or actually running by checking the breadcrumb.
2176          */
2177         if (eb->engine->emit_init_breadcrumb) {
2178                 err = eb->engine->emit_init_breadcrumb(eb->request);
2179                 if (err)
2180                         return err;
2181         }
2182
2183         err = eb->engine->emit_bb_start(eb->request,
2184                                         batch->node.start +
2185                                         eb->batch_start_offset,
2186                                         eb->batch_len,
2187                                         eb->batch_flags);
2188         if (err)
2189                 return err;
2190
2191         if (eb->trampoline) {
2192                 GEM_BUG_ON(eb->batch_start_offset);
2193                 err = eb->engine->emit_bb_start(eb->request,
2194                                                 eb->trampoline->node.start +
2195                                                 eb->batch_len,
2196                                                 0, 0);
2197                 if (err)
2198                         return err;
2199         }
2200
2201         if (intel_context_nopreempt(eb->context))
2202                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2203
2204         return 0;
2205 }
2206
2207 static int num_vcs_engines(const struct drm_i915_private *i915)
2208 {
2209         return hweight64(INTEL_INFO(i915)->engine_mask &
2210                          GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2211 }
2212
2213 /*
2214  * Find one BSD ring to dispatch the corresponding BSD command.
2215  * The engine index is returned.
2216  */
2217 static unsigned int
2218 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2219                          struct drm_file *file)
2220 {
2221         struct drm_i915_file_private *file_priv = file->driver_priv;
2222
2223         /* Check whether the file_priv has already selected one ring. */
2224         if ((int)file_priv->bsd_engine < 0)
2225                 file_priv->bsd_engine =
2226                         get_random_int() % num_vcs_engines(dev_priv);
2227
2228         return file_priv->bsd_engine;
2229 }
2230
2231 static const enum intel_engine_id user_ring_map[] = {
2232         [I915_EXEC_DEFAULT]     = RCS0,
2233         [I915_EXEC_RENDER]      = RCS0,
2234         [I915_EXEC_BLT]         = BCS0,
2235         [I915_EXEC_BSD]         = VCS0,
2236         [I915_EXEC_VEBOX]       = VECS0
2237 };
2238
2239 static struct i915_request *eb_throttle(struct intel_context *ce)
2240 {
2241         struct intel_ring *ring = ce->ring;
2242         struct intel_timeline *tl = ce->timeline;
2243         struct i915_request *rq;
2244
2245         /*
2246          * Completely unscientific finger-in-the-air estimates for suitable
2247          * maximum user request size (to avoid blocking) and then backoff.
2248          */
2249         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2250                 return NULL;
2251
2252         /*
2253          * Find a request that after waiting upon, there will be at least half
2254          * the ring available. The hysteresis allows us to compete for the
2255          * shared ring and should mean that we sleep less often prior to
2256          * claiming our resources, but not so long that the ring completely
2257          * drains before we can submit our next request.
2258          */
2259         list_for_each_entry(rq, &tl->requests, link) {
2260                 if (rq->ring != ring)
2261                         continue;
2262
2263                 if (__intel_ring_space(rq->postfix,
2264                                        ring->emit, ring->size) > ring->size / 2)
2265                         break;
2266         }
2267         if (&rq->link == &tl->requests)
2268                 return NULL; /* weird, we will check again later for real */
2269
2270         return i915_request_get(rq);
2271 }
2272
2273 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2274 {
2275         struct intel_timeline *tl;
2276         struct i915_request *rq;
2277         int err;
2278
2279         /*
2280          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2281          * EIO if the GPU is already wedged.
2282          */
2283         err = intel_gt_terminally_wedged(ce->engine->gt);
2284         if (err)
2285                 return err;
2286
2287         if (unlikely(intel_context_is_banned(ce)))
2288                 return -EIO;
2289
2290         /*
2291          * Pinning the contexts may generate requests in order to acquire
2292          * GGTT space, so do this first before we reserve a seqno for
2293          * ourselves.
2294          */
2295         err = intel_context_pin(ce);
2296         if (err)
2297                 return err;
2298
2299         /*
2300          * Take a local wakeref for preparing to dispatch the execbuf as
2301          * we expect to access the hardware fairly frequently in the
2302          * process, and require the engine to be kept awake between accesses.
2303          * Upon dispatch, we acquire another prolonged wakeref that we hold
2304          * until the timeline is idle, which in turn releases the wakeref
2305          * taken on the engine, and the parent device.
2306          */
2307         tl = intel_context_timeline_lock(ce);
2308         if (IS_ERR(tl)) {
2309                 err = PTR_ERR(tl);
2310                 goto err_unpin;
2311         }
2312
2313         intel_context_enter(ce);
2314         rq = eb_throttle(ce);
2315
2316         intel_context_timeline_unlock(tl);
2317
2318         if (rq) {
2319                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2320                 long timeout;
2321
2322                 timeout = MAX_SCHEDULE_TIMEOUT;
2323                 if (nonblock)
2324                         timeout = 0;
2325
2326                 timeout = i915_request_wait(rq,
2327                                             I915_WAIT_INTERRUPTIBLE,
2328                                             timeout);
2329                 i915_request_put(rq);
2330
2331                 if (timeout < 0) {
2332                         err = nonblock ? -EWOULDBLOCK : timeout;
2333                         goto err_exit;
2334                 }
2335         }
2336
2337         eb->engine = ce->engine;
2338         eb->context = ce;
2339         return 0;
2340
2341 err_exit:
2342         mutex_lock(&tl->mutex);
2343         intel_context_exit(ce);
2344         intel_context_timeline_unlock(tl);
2345 err_unpin:
2346         intel_context_unpin(ce);
2347         return err;
2348 }
2349
2350 static void eb_unpin_engine(struct i915_execbuffer *eb)
2351 {
2352         struct intel_context *ce = eb->context;
2353         struct intel_timeline *tl = ce->timeline;
2354
2355         mutex_lock(&tl->mutex);
2356         intel_context_exit(ce);
2357         mutex_unlock(&tl->mutex);
2358
2359         intel_context_unpin(ce);
2360 }
2361
2362 static unsigned int
2363 eb_select_legacy_ring(struct i915_execbuffer *eb,
2364                       struct drm_file *file,
2365                       struct drm_i915_gem_execbuffer2 *args)
2366 {
2367         struct drm_i915_private *i915 = eb->i915;
2368         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2369
2370         if (user_ring_id != I915_EXEC_BSD &&
2371             (args->flags & I915_EXEC_BSD_MASK)) {
2372                 drm_dbg(&i915->drm,
2373                         "execbuf with non bsd ring but with invalid "
2374                         "bsd dispatch flags: %d\n", (int)(args->flags));
2375                 return -1;
2376         }
2377
2378         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2379                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2380
2381                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2382                         bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2383                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2384                            bsd_idx <= I915_EXEC_BSD_RING2) {
2385                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2386                         bsd_idx--;
2387                 } else {
2388                         drm_dbg(&i915->drm,
2389                                 "execbuf with unknown bsd ring: %u\n",
2390                                 bsd_idx);
2391                         return -1;
2392                 }
2393
2394                 return _VCS(bsd_idx);
2395         }
2396
2397         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2398                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2399                         user_ring_id);
2400                 return -1;
2401         }
2402
2403         return user_ring_map[user_ring_id];
2404 }
2405
2406 static int
2407 eb_pin_engine(struct i915_execbuffer *eb,
2408               struct drm_file *file,
2409               struct drm_i915_gem_execbuffer2 *args)
2410 {
2411         struct intel_context *ce;
2412         unsigned int idx;
2413         int err;
2414
2415         if (i915_gem_context_user_engines(eb->gem_context))
2416                 idx = args->flags & I915_EXEC_RING_MASK;
2417         else
2418                 idx = eb_select_legacy_ring(eb, file, args);
2419
2420         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2421         if (IS_ERR(ce))
2422                 return PTR_ERR(ce);
2423
2424         err = __eb_pin_engine(eb, ce);
2425         intel_context_put(ce);
2426
2427         return err;
2428 }
2429
2430 static void
2431 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2432 {
2433         while (n--)
2434                 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2435         kvfree(fences);
2436 }
2437
2438 static struct drm_syncobj **
2439 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2440                 struct drm_file *file)
2441 {
2442         const unsigned long nfences = args->num_cliprects;
2443         struct drm_i915_gem_exec_fence __user *user;
2444         struct drm_syncobj **fences;
2445         unsigned long n;
2446         int err;
2447
2448         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2449                 return NULL;
2450
2451         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2452         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2453         if (nfences > min_t(unsigned long,
2454                             ULONG_MAX / sizeof(*user),
2455                             SIZE_MAX / sizeof(*fences)))
2456                 return ERR_PTR(-EINVAL);
2457
2458         user = u64_to_user_ptr(args->cliprects_ptr);
2459         if (!access_ok(user, nfences * sizeof(*user)))
2460                 return ERR_PTR(-EFAULT);
2461
2462         fences = kvmalloc_array(nfences, sizeof(*fences),
2463                                 __GFP_NOWARN | GFP_KERNEL);
2464         if (!fences)
2465                 return ERR_PTR(-ENOMEM);
2466
2467         for (n = 0; n < nfences; n++) {
2468                 struct drm_i915_gem_exec_fence fence;
2469                 struct drm_syncobj *syncobj;
2470
2471                 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2472                         err = -EFAULT;
2473                         goto err;
2474                 }
2475
2476                 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2477                         err = -EINVAL;
2478                         goto err;
2479                 }
2480
2481                 syncobj = drm_syncobj_find(file, fence.handle);
2482                 if (!syncobj) {
2483                         DRM_DEBUG("Invalid syncobj handle provided\n");
2484                         err = -ENOENT;
2485                         goto err;
2486                 }
2487
2488                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2489                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2490
2491                 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2492         }
2493
2494         return fences;
2495
2496 err:
2497         __free_fence_array(fences, n);
2498         return ERR_PTR(err);
2499 }
2500
2501 static void
2502 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2503                 struct drm_syncobj **fences)
2504 {
2505         if (fences)
2506                 __free_fence_array(fences, args->num_cliprects);
2507 }
2508
2509 static int
2510 await_fence_array(struct i915_execbuffer *eb,
2511                   struct drm_syncobj **fences)
2512 {
2513         const unsigned int nfences = eb->args->num_cliprects;
2514         unsigned int n;
2515         int err;
2516
2517         for (n = 0; n < nfences; n++) {
2518                 struct drm_syncobj *syncobj;
2519                 struct dma_fence *fence;
2520                 unsigned int flags;
2521
2522                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2523                 if (!(flags & I915_EXEC_FENCE_WAIT))
2524                         continue;
2525
2526                 fence = drm_syncobj_fence_get(syncobj);
2527                 if (!fence)
2528                         return -EINVAL;
2529
2530                 err = i915_request_await_dma_fence(eb->request, fence);
2531                 dma_fence_put(fence);
2532                 if (err < 0)
2533                         return err;
2534         }
2535
2536         return 0;
2537 }
2538
2539 static void
2540 signal_fence_array(struct i915_execbuffer *eb,
2541                    struct drm_syncobj **fences)
2542 {
2543         const unsigned int nfences = eb->args->num_cliprects;
2544         struct dma_fence * const fence = &eb->request->fence;
2545         unsigned int n;
2546
2547         for (n = 0; n < nfences; n++) {
2548                 struct drm_syncobj *syncobj;
2549                 unsigned int flags;
2550
2551                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2552                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2553                         continue;
2554
2555                 drm_syncobj_replace_fence(syncobj, fence);
2556         }
2557 }
2558
2559 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2560 {
2561         struct i915_request *rq, *rn;
2562
2563         list_for_each_entry_safe(rq, rn, &tl->requests, link)
2564                 if (rq == end || !i915_request_retire(rq))
2565                         break;
2566 }
2567
2568 static void eb_request_add(struct i915_execbuffer *eb)
2569 {
2570         struct i915_request *rq = eb->request;
2571         struct intel_timeline * const tl = i915_request_timeline(rq);
2572         struct i915_sched_attr attr = {};
2573         struct i915_request *prev;
2574
2575         lockdep_assert_held(&tl->mutex);
2576         lockdep_unpin_lock(&tl->mutex, rq->cookie);
2577
2578         trace_i915_request_add(rq);
2579
2580         prev = __i915_request_commit(rq);
2581
2582         /* Check that the context wasn't destroyed before submission */
2583         if (likely(!intel_context_is_closed(eb->context))) {
2584                 attr = eb->gem_context->sched;
2585         } else {
2586                 /* Serialise with context_close via the add_to_timeline */
2587                 i915_request_set_error_once(rq, -ENOENT);
2588                 __i915_request_skip(rq);
2589         }
2590
2591         __i915_request_queue(rq, &attr);
2592
2593         /* Try to clean up the client's timeline after submitting the request */
2594         if (prev)
2595                 retire_requests(tl, prev);
2596
2597         mutex_unlock(&tl->mutex);
2598 }
2599
2600 static int
2601 i915_gem_do_execbuffer(struct drm_device *dev,
2602                        struct drm_file *file,
2603                        struct drm_i915_gem_execbuffer2 *args,
2604                        struct drm_i915_gem_exec_object2 *exec,
2605                        struct drm_syncobj **fences)
2606 {
2607         struct drm_i915_private *i915 = to_i915(dev);
2608         struct i915_execbuffer eb;
2609         struct dma_fence *in_fence = NULL;
2610         struct sync_file *out_fence = NULL;
2611         struct i915_vma *batch;
2612         int out_fence_fd = -1;
2613         int err;
2614
2615         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2616         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2617                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2618
2619         eb.i915 = i915;
2620         eb.file = file;
2621         eb.args = args;
2622         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2623                 args->flags |= __EXEC_HAS_RELOC;
2624
2625         eb.exec = exec;
2626
2627         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2628         reloc_cache_init(&eb.reloc_cache, eb.i915);
2629
2630         eb.buffer_count = args->buffer_count;
2631         eb.batch_start_offset = args->batch_start_offset;
2632         eb.batch_len = args->batch_len;
2633         eb.trampoline = NULL;
2634
2635         eb.batch_flags = 0;
2636         if (args->flags & I915_EXEC_SECURE) {
2637                 if (INTEL_GEN(i915) >= 11)
2638                         return -ENODEV;
2639
2640                 /* Return -EPERM to trigger fallback code on old binaries. */
2641                 if (!HAS_SECURE_BATCHES(i915))
2642                         return -EPERM;
2643
2644                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2645                         return -EPERM;
2646
2647                 eb.batch_flags |= I915_DISPATCH_SECURE;
2648         }
2649         if (args->flags & I915_EXEC_IS_PINNED)
2650                 eb.batch_flags |= I915_DISPATCH_PINNED;
2651
2652 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
2653         if (args->flags & IN_FENCES) {
2654                 if ((args->flags & IN_FENCES) == IN_FENCES)
2655                         return -EINVAL;
2656
2657                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2658                 if (!in_fence)
2659                         return -EINVAL;
2660         }
2661 #undef IN_FENCES
2662
2663         if (args->flags & I915_EXEC_FENCE_OUT) {
2664                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2665                 if (out_fence_fd < 0) {
2666                         err = out_fence_fd;
2667                         goto err_in_fence;
2668                 }
2669         }
2670
2671         err = eb_create(&eb);
2672         if (err)
2673                 goto err_out_fence;
2674
2675         GEM_BUG_ON(!eb.lut_size);
2676
2677         err = eb_select_context(&eb);
2678         if (unlikely(err))
2679                 goto err_destroy;
2680
2681         err = eb_pin_engine(&eb, file, args);
2682         if (unlikely(err))
2683                 goto err_context;
2684
2685         err = eb_relocate(&eb);
2686         if (err) {
2687                 /*
2688                  * If the user expects the execobject.offset and
2689                  * reloc.presumed_offset to be an exact match,
2690                  * as for using NO_RELOC, then we cannot update
2691                  * the execobject.offset until we have completed
2692                  * relocation.
2693                  */
2694                 args->flags &= ~__EXEC_HAS_RELOC;
2695                 goto err_vma;
2696         }
2697
2698         if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2699                 drm_dbg(&i915->drm,
2700                         "Attempting to use self-modifying batch buffer\n");
2701                 err = -EINVAL;
2702                 goto err_vma;
2703         }
2704
2705         if (range_overflows_t(u64,
2706                               eb.batch_start_offset, eb.batch_len,
2707                               eb.batch->vma->size)) {
2708                 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2709                 err = -EINVAL;
2710                 goto err_vma;
2711         }
2712
2713         if (eb.batch_len == 0)
2714                 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2715
2716         err = eb_parse(&eb);
2717         if (err)
2718                 goto err_vma;
2719
2720         /*
2721          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2722          * batch" bit. Hence we need to pin secure batches into the global gtt.
2723          * hsw should have this fixed, but bdw mucks it up again. */
2724         batch = eb.batch->vma;
2725         if (eb.batch_flags & I915_DISPATCH_SECURE) {
2726                 struct i915_vma *vma;
2727
2728                 /*
2729                  * So on first glance it looks freaky that we pin the batch here
2730                  * outside of the reservation loop. But:
2731                  * - The batch is already pinned into the relevant ppgtt, so we
2732                  *   already have the backing storage fully allocated.
2733                  * - No other BO uses the global gtt (well contexts, but meh),
2734                  *   so we don't really have issues with multiple objects not
2735                  *   fitting due to fragmentation.
2736                  * So this is actually safe.
2737                  */
2738                 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2739                 if (IS_ERR(vma)) {
2740                         err = PTR_ERR(vma);
2741                         goto err_parse;
2742                 }
2743
2744                 batch = vma;
2745         }
2746
2747         /* All GPU relocation batches must be submitted prior to the user rq */
2748         GEM_BUG_ON(eb.reloc_cache.rq);
2749
2750         /* Allocate a request for this batch buffer nice and early. */
2751         eb.request = i915_request_create(eb.context);
2752         if (IS_ERR(eb.request)) {
2753                 err = PTR_ERR(eb.request);
2754                 goto err_batch_unpin;
2755         }
2756
2757         if (in_fence) {
2758                 if (args->flags & I915_EXEC_FENCE_SUBMIT)
2759                         err = i915_request_await_execution(eb.request,
2760                                                            in_fence,
2761                                                            eb.engine->bond_execute);
2762                 else
2763                         err = i915_request_await_dma_fence(eb.request,
2764                                                            in_fence);
2765                 if (err < 0)
2766                         goto err_request;
2767         }
2768
2769         if (fences) {
2770                 err = await_fence_array(&eb, fences);
2771                 if (err)
2772                         goto err_request;
2773         }
2774
2775         if (out_fence_fd != -1) {
2776                 out_fence = sync_file_create(&eb.request->fence);
2777                 if (!out_fence) {
2778                         err = -ENOMEM;
2779                         goto err_request;
2780                 }
2781         }
2782
2783         /*
2784          * Whilst this request exists, batch_obj will be on the
2785          * active_list, and so will hold the active reference. Only when this
2786          * request is retired will the the batch_obj be moved onto the
2787          * inactive_list and lose its active reference. Hence we do not need
2788          * to explicitly hold another reference here.
2789          */
2790         eb.request->batch = batch;
2791         if (batch->private)
2792                 intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2793
2794         trace_i915_request_queue(eb.request, eb.batch_flags);
2795         err = eb_submit(&eb, batch);
2796 err_request:
2797         add_to_client(eb.request, file);
2798         i915_request_get(eb.request);
2799         eb_request_add(&eb);
2800
2801         if (fences)
2802                 signal_fence_array(&eb, fences);
2803
2804         if (out_fence) {
2805                 if (err == 0) {
2806                         fd_install(out_fence_fd, out_fence->file);
2807                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2808                         args->rsvd2 |= (u64)out_fence_fd << 32;
2809                         out_fence_fd = -1;
2810                 } else {
2811                         fput(out_fence->file);
2812                 }
2813         }
2814         i915_request_put(eb.request);
2815
2816 err_batch_unpin:
2817         if (eb.batch_flags & I915_DISPATCH_SECURE)
2818                 i915_vma_unpin(batch);
2819 err_parse:
2820         if (batch->private)
2821                 intel_gt_buffer_pool_put(batch->private);
2822 err_vma:
2823         if (eb.trampoline)
2824                 i915_vma_unpin(eb.trampoline);
2825         eb_unpin_engine(&eb);
2826 err_context:
2827         i915_gem_context_put(eb.gem_context);
2828 err_destroy:
2829         eb_destroy(&eb);
2830 err_out_fence:
2831         if (out_fence_fd != -1)
2832                 put_unused_fd(out_fence_fd);
2833 err_in_fence:
2834         dma_fence_put(in_fence);
2835         return err;
2836 }
2837
2838 static size_t eb_element_size(void)
2839 {
2840         return sizeof(struct drm_i915_gem_exec_object2);
2841 }
2842
2843 static bool check_buffer_count(size_t count)
2844 {
2845         const size_t sz = eb_element_size();
2846
2847         /*
2848          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2849          * array size (see eb_create()). Otherwise, we can accept an array as
2850          * large as can be addressed (though use large arrays at your peril)!
2851          */
2852
2853         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2854 }
2855
2856 /*
2857  * Legacy execbuffer just creates an exec2 list from the original exec object
2858  * list array and passes it to the real function.
2859  */
2860 int
2861 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2862                           struct drm_file *file)
2863 {
2864         struct drm_i915_private *i915 = to_i915(dev);
2865         struct drm_i915_gem_execbuffer *args = data;
2866         struct drm_i915_gem_execbuffer2 exec2;
2867         struct drm_i915_gem_exec_object *exec_list = NULL;
2868         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2869         const size_t count = args->buffer_count;
2870         unsigned int i;
2871         int err;
2872
2873         if (!check_buffer_count(count)) {
2874                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2875                 return -EINVAL;
2876         }
2877
2878         exec2.buffers_ptr = args->buffers_ptr;
2879         exec2.buffer_count = args->buffer_count;
2880         exec2.batch_start_offset = args->batch_start_offset;
2881         exec2.batch_len = args->batch_len;
2882         exec2.DR1 = args->DR1;
2883         exec2.DR4 = args->DR4;
2884         exec2.num_cliprects = args->num_cliprects;
2885         exec2.cliprects_ptr = args->cliprects_ptr;
2886         exec2.flags = I915_EXEC_RENDER;
2887         i915_execbuffer2_set_context_id(exec2, 0);
2888
2889         err = i915_gem_check_execbuffer(&exec2);
2890         if (err)
2891                 return err;
2892
2893         /* Copy in the exec list from userland */
2894         exec_list = kvmalloc_array(count, sizeof(*exec_list),
2895                                    __GFP_NOWARN | GFP_KERNEL);
2896         exec2_list = kvmalloc_array(count, eb_element_size(),
2897                                     __GFP_NOWARN | GFP_KERNEL);
2898         if (exec_list == NULL || exec2_list == NULL) {
2899                 drm_dbg(&i915->drm,
2900                         "Failed to allocate exec list for %d buffers\n",
2901                         args->buffer_count);
2902                 kvfree(exec_list);
2903                 kvfree(exec2_list);
2904                 return -ENOMEM;
2905         }
2906         err = copy_from_user(exec_list,
2907                              u64_to_user_ptr(args->buffers_ptr),
2908                              sizeof(*exec_list) * count);
2909         if (err) {
2910                 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2911                         args->buffer_count, err);
2912                 kvfree(exec_list);
2913                 kvfree(exec2_list);
2914                 return -EFAULT;
2915         }
2916
2917         for (i = 0; i < args->buffer_count; i++) {
2918                 exec2_list[i].handle = exec_list[i].handle;
2919                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2920                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2921                 exec2_list[i].alignment = exec_list[i].alignment;
2922                 exec2_list[i].offset = exec_list[i].offset;
2923                 if (INTEL_GEN(to_i915(dev)) < 4)
2924                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2925                 else
2926                         exec2_list[i].flags = 0;
2927         }
2928
2929         err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2930         if (exec2.flags & __EXEC_HAS_RELOC) {
2931                 struct drm_i915_gem_exec_object __user *user_exec_list =
2932                         u64_to_user_ptr(args->buffers_ptr);
2933
2934                 /* Copy the new buffer offsets back to the user's exec list. */
2935                 for (i = 0; i < args->buffer_count; i++) {
2936                         if (!(exec2_list[i].offset & UPDATE))
2937                                 continue;
2938
2939                         exec2_list[i].offset =
2940                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2941                         exec2_list[i].offset &= PIN_OFFSET_MASK;
2942                         if (__copy_to_user(&user_exec_list[i].offset,
2943                                            &exec2_list[i].offset,
2944                                            sizeof(user_exec_list[i].offset)))
2945                                 break;
2946                 }
2947         }
2948
2949         kvfree(exec_list);
2950         kvfree(exec2_list);
2951         return err;
2952 }
2953
2954 int
2955 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2956                            struct drm_file *file)
2957 {
2958         struct drm_i915_private *i915 = to_i915(dev);
2959         struct drm_i915_gem_execbuffer2 *args = data;
2960         struct drm_i915_gem_exec_object2 *exec2_list;
2961         struct drm_syncobj **fences = NULL;
2962         const size_t count = args->buffer_count;
2963         int err;
2964
2965         if (!check_buffer_count(count)) {
2966                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2967                 return -EINVAL;
2968         }
2969
2970         err = i915_gem_check_execbuffer(args);
2971         if (err)
2972                 return err;
2973
2974         exec2_list = kvmalloc_array(count, eb_element_size(),
2975                                     __GFP_NOWARN | GFP_KERNEL);
2976         if (exec2_list == NULL) {
2977                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2978                         count);
2979                 return -ENOMEM;
2980         }
2981         if (copy_from_user(exec2_list,
2982                            u64_to_user_ptr(args->buffers_ptr),
2983                            sizeof(*exec2_list) * count)) {
2984                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2985                 kvfree(exec2_list);
2986                 return -EFAULT;
2987         }
2988
2989         if (args->flags & I915_EXEC_FENCE_ARRAY) {
2990                 fences = get_fence_array(args, file);
2991                 if (IS_ERR(fences)) {
2992                         kvfree(exec2_list);
2993                         return PTR_ERR(fences);
2994                 }
2995         }
2996
2997         err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2998
2999         /*
3000          * Now that we have begun execution of the batchbuffer, we ignore
3001          * any new error after this point. Also given that we have already
3002          * updated the associated relocations, we try to write out the current
3003          * object locations irrespective of any error.
3004          */
3005         if (args->flags & __EXEC_HAS_RELOC) {
3006                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3007                         u64_to_user_ptr(args->buffers_ptr);
3008                 unsigned int i;
3009
3010                 /* Copy the new buffer offsets back to the user's exec list. */
3011                 /*
3012                  * Note: count * sizeof(*user_exec_list) does not overflow,
3013                  * because we checked 'count' in check_buffer_count().
3014                  *
3015                  * And this range already got effectively checked earlier
3016                  * when we did the "copy_from_user()" above.
3017                  */
3018                 if (!user_write_access_begin(user_exec_list,
3019                                              count * sizeof(*user_exec_list)))
3020                         goto end;
3021
3022                 for (i = 0; i < args->buffer_count; i++) {
3023                         if (!(exec2_list[i].offset & UPDATE))
3024                                 continue;
3025
3026                         exec2_list[i].offset =
3027                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3028                         unsafe_put_user(exec2_list[i].offset,
3029                                         &user_exec_list[i].offset,
3030                                         end_user);
3031                 }
3032 end_user:
3033                 user_write_access_end();
3034 end:;
3035         }
3036
3037         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3038         put_fence_array(args, fences);
3039         kvfree(exec2_list);
3040         return err;
3041 }
3042
3043 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3044 #include "selftests/i915_gem_execbuffer.c"
3045 #endif
This page took 0.215697 seconds and 4 git commands to generate.