]> Git Repo - linux.git/blob - drivers/mtd/lpddr/lpddr_cmds.c
mtd: lpddr: Fix a double free in probe()
[linux.git] / drivers / mtd / lpddr / lpddr_cmds.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * LPDDR flash memory device operations. This module provides read, write,
4  * erase, lock/unlock support for LPDDR flash memories
5  * (C) 2008 Korolev Alexey <[email protected]>
6  * (C) 2008 Vasiliy Leonenko <[email protected]>
7  * Many thanks to Roman Borisov for initial enabling
8  *
9  * TODO:
10  * Implement VPP management
11  * Implement XIP support
12  * Implement OTP support
13  */
14 #include <linux/mtd/pfow.h>
15 #include <linux/mtd/qinfo.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18
19 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
20                                         size_t *retlen, u_char *buf);
21 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
22                                 size_t len, size_t *retlen, const u_char *buf);
23 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
24                                 unsigned long count, loff_t to, size_t *retlen);
25 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
26 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
27 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
28 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
29                         size_t *retlen, void **mtdbuf, resource_size_t *phys);
30 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
31 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
32 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
33 static void put_chip(struct map_info *map, struct flchip *chip);
34
35 struct mtd_info *lpddr_cmdset(struct map_info *map)
36 {
37         struct lpddr_private *lpddr = map->fldrv_priv;
38         struct flchip_shared *shared;
39         struct flchip *chip;
40         struct mtd_info *mtd;
41         int numchips;
42         int i, j;
43
44         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
45         if (!mtd)
46                 return NULL;
47         mtd->priv = map;
48         mtd->type = MTD_NORFLASH;
49
50         /* Fill in the default mtd operations */
51         mtd->_read = lpddr_read;
52         mtd->type = MTD_NORFLASH;
53         mtd->flags = MTD_CAP_NORFLASH;
54         mtd->flags &= ~MTD_BIT_WRITEABLE;
55         mtd->_erase = lpddr_erase;
56         mtd->_write = lpddr_write_buffers;
57         mtd->_writev = lpddr_writev;
58         mtd->_lock = lpddr_lock;
59         mtd->_unlock = lpddr_unlock;
60         if (map_is_linear(map)) {
61                 mtd->_point = lpddr_point;
62                 mtd->_unpoint = lpddr_unpoint;
63         }
64         mtd->size = 1 << lpddr->qinfo->DevSizeShift;
65         mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
66         mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
67
68         shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
69                                                 GFP_KERNEL);
70         if (!shared) {
71                 kfree(mtd);
72                 return NULL;
73         }
74
75         chip = &lpddr->chips[0];
76         numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
77         for (i = 0; i < numchips; i++) {
78                 shared[i].writing = shared[i].erasing = NULL;
79                 mutex_init(&shared[i].lock);
80                 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
81                         *chip = lpddr->chips[i];
82                         chip->start += j << lpddr->chipshift;
83                         chip->oldstate = chip->state = FL_READY;
84                         chip->priv = &shared[i];
85                         /* those should be reset too since
86                            they create memory references. */
87                         init_waitqueue_head(&chip->wq);
88                         mutex_init(&chip->mutex);
89                         chip++;
90                 }
91         }
92
93         return mtd;
94 }
95 EXPORT_SYMBOL(lpddr_cmdset);
96
97 static int wait_for_ready(struct map_info *map, struct flchip *chip,
98                 unsigned int chip_op_time)
99 {
100         unsigned int timeo, reset_timeo, sleep_time;
101         unsigned int dsr;
102         flstate_t chip_state = chip->state;
103         int ret = 0;
104
105         /* set our timeout to 8 times the expected delay */
106         timeo = chip_op_time * 8;
107         if (!timeo)
108                 timeo = 500000;
109         reset_timeo = timeo;
110         sleep_time = chip_op_time / 2;
111
112         for (;;) {
113                 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
114                 if (dsr & DSR_READY_STATUS)
115                         break;
116                 if (!timeo) {
117                         printk(KERN_ERR "%s: Flash timeout error state %d \n",
118                                                         map->name, chip_state);
119                         ret = -ETIME;
120                         break;
121                 }
122
123                 /* OK Still waiting. Drop the lock, wait a while and retry. */
124                 mutex_unlock(&chip->mutex);
125                 if (sleep_time >= 1000000/HZ) {
126                         /*
127                          * Half of the normal delay still remaining
128                          * can be performed with a sleeping delay instead
129                          * of busy waiting.
130                          */
131                         msleep(sleep_time/1000);
132                         timeo -= sleep_time;
133                         sleep_time = 1000000/HZ;
134                 } else {
135                         udelay(1);
136                         cond_resched();
137                         timeo--;
138                 }
139                 mutex_lock(&chip->mutex);
140
141                 while (chip->state != chip_state) {
142                         /* Someone's suspended the operation: sleep */
143                         DECLARE_WAITQUEUE(wait, current);
144                         set_current_state(TASK_UNINTERRUPTIBLE);
145                         add_wait_queue(&chip->wq, &wait);
146                         mutex_unlock(&chip->mutex);
147                         schedule();
148                         remove_wait_queue(&chip->wq, &wait);
149                         mutex_lock(&chip->mutex);
150                 }
151                 if (chip->erase_suspended || chip->write_suspended)  {
152                         /* Suspend has occurred while sleep: reset timeout */
153                         timeo = reset_timeo;
154                         chip->erase_suspended = chip->write_suspended = 0;
155                 }
156         }
157         /* check status for errors */
158         if (dsr & DSR_ERR) {
159                 /* Clear DSR*/
160                 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
161                 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
162                                 map->name, dsr);
163                 print_drs_error(dsr);
164                 ret = -EIO;
165         }
166         chip->state = FL_READY;
167         return ret;
168 }
169
170 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
171 {
172         int ret;
173         DECLARE_WAITQUEUE(wait, current);
174
175  retry:
176         if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
177                 && chip->state != FL_SYNCING) {
178                 /*
179                  * OK. We have possibility for contension on the write/erase
180                  * operations which are global to the real chip and not per
181                  * partition.  So let's fight it over in the partition which
182                  * currently has authority on the operation.
183                  *
184                  * The rules are as follows:
185                  *
186                  * - any write operation must own shared->writing.
187                  *
188                  * - any erase operation must own _both_ shared->writing and
189                  *   shared->erasing.
190                  *
191                  * - contension arbitration is handled in the owner's context.
192                  *
193                  * The 'shared' struct can be read and/or written only when
194                  * its lock is taken.
195                  */
196                 struct flchip_shared *shared = chip->priv;
197                 struct flchip *contender;
198                 mutex_lock(&shared->lock);
199                 contender = shared->writing;
200                 if (contender && contender != chip) {
201                         /*
202                          * The engine to perform desired operation on this
203                          * partition is already in use by someone else.
204                          * Let's fight over it in the context of the chip
205                          * currently using it.  If it is possible to suspend,
206                          * that other partition will do just that, otherwise
207                          * it'll happily send us to sleep.  In any case, when
208                          * get_chip returns success we're clear to go ahead.
209                          */
210                         ret = mutex_trylock(&contender->mutex);
211                         mutex_unlock(&shared->lock);
212                         if (!ret)
213                                 goto retry;
214                         mutex_unlock(&chip->mutex);
215                         ret = chip_ready(map, contender, mode);
216                         mutex_lock(&chip->mutex);
217
218                         if (ret == -EAGAIN) {
219                                 mutex_unlock(&contender->mutex);
220                                 goto retry;
221                         }
222                         if (ret) {
223                                 mutex_unlock(&contender->mutex);
224                                 return ret;
225                         }
226                         mutex_lock(&shared->lock);
227
228                         /* We should not own chip if it is already in FL_SYNCING
229                          * state. Put contender and retry. */
230                         if (chip->state == FL_SYNCING) {
231                                 put_chip(map, contender);
232                                 mutex_unlock(&contender->mutex);
233                                 goto retry;
234                         }
235                         mutex_unlock(&contender->mutex);
236                 }
237
238                 /* Check if we have suspended erase on this chip.
239                    Must sleep in such a case. */
240                 if (mode == FL_ERASING && shared->erasing
241                     && shared->erasing->oldstate == FL_ERASING) {
242                         mutex_unlock(&shared->lock);
243                         set_current_state(TASK_UNINTERRUPTIBLE);
244                         add_wait_queue(&chip->wq, &wait);
245                         mutex_unlock(&chip->mutex);
246                         schedule();
247                         remove_wait_queue(&chip->wq, &wait);
248                         mutex_lock(&chip->mutex);
249                         goto retry;
250                 }
251
252                 /* We now own it */
253                 shared->writing = chip;
254                 if (mode == FL_ERASING)
255                         shared->erasing = chip;
256                 mutex_unlock(&shared->lock);
257         }
258
259         ret = chip_ready(map, chip, mode);
260         if (ret == -EAGAIN)
261                 goto retry;
262
263         return ret;
264 }
265
266 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
267 {
268         struct lpddr_private *lpddr = map->fldrv_priv;
269         int ret = 0;
270         DECLARE_WAITQUEUE(wait, current);
271
272         /* Prevent setting state FL_SYNCING for chip in suspended state. */
273         if (FL_SYNCING == mode && FL_READY != chip->oldstate)
274                 goto sleep;
275
276         switch (chip->state) {
277         case FL_READY:
278         case FL_JEDEC_QUERY:
279                 return 0;
280
281         case FL_ERASING:
282                 if (!lpddr->qinfo->SuspEraseSupp ||
283                         !(mode == FL_READY || mode == FL_POINT))
284                         goto sleep;
285
286                 map_write(map, CMD(LPDDR_SUSPEND),
287                         map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
288                 chip->oldstate = FL_ERASING;
289                 chip->state = FL_ERASE_SUSPENDING;
290                 ret = wait_for_ready(map, chip, 0);
291                 if (ret) {
292                         /* Oops. something got wrong. */
293                         /* Resume and pretend we weren't here.  */
294                         put_chip(map, chip);
295                         printk(KERN_ERR "%s: suspend operation failed."
296                                         "State may be wrong \n", map->name);
297                         return -EIO;
298                 }
299                 chip->erase_suspended = 1;
300                 chip->state = FL_READY;
301                 return 0;
302                 /* Erase suspend */
303         case FL_POINT:
304                 /* Only if there's no operation suspended... */
305                 if (mode == FL_READY && chip->oldstate == FL_READY)
306                         return 0;
307                 /* fall through */
308
309         default:
310 sleep:
311                 set_current_state(TASK_UNINTERRUPTIBLE);
312                 add_wait_queue(&chip->wq, &wait);
313                 mutex_unlock(&chip->mutex);
314                 schedule();
315                 remove_wait_queue(&chip->wq, &wait);
316                 mutex_lock(&chip->mutex);
317                 return -EAGAIN;
318         }
319 }
320
321 static void put_chip(struct map_info *map, struct flchip *chip)
322 {
323         if (chip->priv) {
324                 struct flchip_shared *shared = chip->priv;
325                 mutex_lock(&shared->lock);
326                 if (shared->writing == chip && chip->oldstate == FL_READY) {
327                         /* We own the ability to write, but we're done */
328                         shared->writing = shared->erasing;
329                         if (shared->writing && shared->writing != chip) {
330                                 /* give back the ownership */
331                                 struct flchip *loaner = shared->writing;
332                                 mutex_lock(&loaner->mutex);
333                                 mutex_unlock(&shared->lock);
334                                 mutex_unlock(&chip->mutex);
335                                 put_chip(map, loaner);
336                                 mutex_lock(&chip->mutex);
337                                 mutex_unlock(&loaner->mutex);
338                                 wake_up(&chip->wq);
339                                 return;
340                         }
341                         shared->erasing = NULL;
342                         shared->writing = NULL;
343                 } else if (shared->erasing == chip && shared->writing != chip) {
344                         /*
345                          * We own the ability to erase without the ability
346                          * to write, which means the erase was suspended
347                          * and some other partition is currently writing.
348                          * Don't let the switch below mess things up since
349                          * we don't have ownership to resume anything.
350                          */
351                         mutex_unlock(&shared->lock);
352                         wake_up(&chip->wq);
353                         return;
354                 }
355                 mutex_unlock(&shared->lock);
356         }
357
358         switch (chip->oldstate) {
359         case FL_ERASING:
360                 map_write(map, CMD(LPDDR_RESUME),
361                                 map->pfow_base + PFOW_COMMAND_CODE);
362                 map_write(map, CMD(LPDDR_START_EXECUTION),
363                                 map->pfow_base + PFOW_COMMAND_EXECUTE);
364                 chip->oldstate = FL_READY;
365                 chip->state = FL_ERASING;
366                 break;
367         case FL_READY:
368                 break;
369         default:
370                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
371                                 map->name, chip->oldstate);
372         }
373         wake_up(&chip->wq);
374 }
375
376 static int do_write_buffer(struct map_info *map, struct flchip *chip,
377                         unsigned long adr, const struct kvec **pvec,
378                         unsigned long *pvec_seek, int len)
379 {
380         struct lpddr_private *lpddr = map->fldrv_priv;
381         map_word datum;
382         int ret, wbufsize, word_gap, words;
383         const struct kvec *vec;
384         unsigned long vec_seek;
385         unsigned long prog_buf_ofs;
386
387         wbufsize = 1 << lpddr->qinfo->BufSizeShift;
388
389         mutex_lock(&chip->mutex);
390         ret = get_chip(map, chip, FL_WRITING);
391         if (ret) {
392                 mutex_unlock(&chip->mutex);
393                 return ret;
394         }
395         /* Figure out the number of words to write */
396         word_gap = (-adr & (map_bankwidth(map)-1));
397         words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
398         if (!word_gap) {
399                 words--;
400         } else {
401                 word_gap = map_bankwidth(map) - word_gap;
402                 adr -= word_gap;
403                 datum = map_word_ff(map);
404         }
405         /* Write data */
406         /* Get the program buffer offset from PFOW register data first*/
407         prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
408                                 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
409         vec = *pvec;
410         vec_seek = *pvec_seek;
411         do {
412                 int n = map_bankwidth(map) - word_gap;
413
414                 if (n > vec->iov_len - vec_seek)
415                         n = vec->iov_len - vec_seek;
416                 if (n > len)
417                         n = len;
418
419                 if (!word_gap && (len < map_bankwidth(map)))
420                         datum = map_word_ff(map);
421
422                 datum = map_word_load_partial(map, datum,
423                                 vec->iov_base + vec_seek, word_gap, n);
424
425                 len -= n;
426                 word_gap += n;
427                 if (!len || word_gap == map_bankwidth(map)) {
428                         map_write(map, datum, prog_buf_ofs);
429                         prog_buf_ofs += map_bankwidth(map);
430                         word_gap = 0;
431                 }
432
433                 vec_seek += n;
434                 if (vec_seek == vec->iov_len) {
435                         vec++;
436                         vec_seek = 0;
437                 }
438         } while (len);
439         *pvec = vec;
440         *pvec_seek = vec_seek;
441
442         /* GO GO GO */
443         send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
444         chip->state = FL_WRITING;
445         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
446         if (ret)        {
447                 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
448                         map->name, ret, adr);
449                 goto out;
450         }
451
452  out:   put_chip(map, chip);
453         mutex_unlock(&chip->mutex);
454         return ret;
455 }
456
457 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
458 {
459         struct map_info *map = mtd->priv;
460         struct lpddr_private *lpddr = map->fldrv_priv;
461         int chipnum = adr >> lpddr->chipshift;
462         struct flchip *chip = &lpddr->chips[chipnum];
463         int ret;
464
465         mutex_lock(&chip->mutex);
466         ret = get_chip(map, chip, FL_ERASING);
467         if (ret) {
468                 mutex_unlock(&chip->mutex);
469                 return ret;
470         }
471         send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
472         chip->state = FL_ERASING;
473         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
474         if (ret) {
475                 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
476                         map->name, ret, adr);
477                 goto out;
478         }
479  out:   put_chip(map, chip);
480         mutex_unlock(&chip->mutex);
481         return ret;
482 }
483
484 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
485                         size_t *retlen, u_char *buf)
486 {
487         struct map_info *map = mtd->priv;
488         struct lpddr_private *lpddr = map->fldrv_priv;
489         int chipnum = adr >> lpddr->chipshift;
490         struct flchip *chip = &lpddr->chips[chipnum];
491         int ret = 0;
492
493         mutex_lock(&chip->mutex);
494         ret = get_chip(map, chip, FL_READY);
495         if (ret) {
496                 mutex_unlock(&chip->mutex);
497                 return ret;
498         }
499
500         map_copy_from(map, buf, adr, len);
501         *retlen = len;
502
503         put_chip(map, chip);
504         mutex_unlock(&chip->mutex);
505         return ret;
506 }
507
508 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
509                         size_t *retlen, void **mtdbuf, resource_size_t *phys)
510 {
511         struct map_info *map = mtd->priv;
512         struct lpddr_private *lpddr = map->fldrv_priv;
513         int chipnum = adr >> lpddr->chipshift;
514         unsigned long ofs, last_end = 0;
515         struct flchip *chip = &lpddr->chips[chipnum];
516         int ret = 0;
517
518         if (!map->virt)
519                 return -EINVAL;
520
521         /* ofs: offset within the first chip that the first read should start */
522         ofs = adr - (chipnum << lpddr->chipshift);
523         *mtdbuf = (void *)map->virt + chip->start + ofs;
524
525         while (len) {
526                 unsigned long thislen;
527
528                 if (chipnum >= lpddr->numchips)
529                         break;
530
531                 /* We cannot point across chips that are virtually disjoint */
532                 if (!last_end)
533                         last_end = chip->start;
534                 else if (chip->start != last_end)
535                         break;
536
537                 if ((len + ofs - 1) >> lpddr->chipshift)
538                         thislen = (1<<lpddr->chipshift) - ofs;
539                 else
540                         thislen = len;
541                 /* get the chip */
542                 mutex_lock(&chip->mutex);
543                 ret = get_chip(map, chip, FL_POINT);
544                 mutex_unlock(&chip->mutex);
545                 if (ret)
546                         break;
547
548                 chip->state = FL_POINT;
549                 chip->ref_point_counter++;
550                 *retlen += thislen;
551                 len -= thislen;
552
553                 ofs = 0;
554                 last_end += 1 << lpddr->chipshift;
555                 chipnum++;
556                 chip = &lpddr->chips[chipnum];
557         }
558         return 0;
559 }
560
561 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
562 {
563         struct map_info *map = mtd->priv;
564         struct lpddr_private *lpddr = map->fldrv_priv;
565         int chipnum = adr >> lpddr->chipshift, err = 0;
566         unsigned long ofs;
567
568         /* ofs: offset within the first chip that the first read should start */
569         ofs = adr - (chipnum << lpddr->chipshift);
570
571         while (len) {
572                 unsigned long thislen;
573                 struct flchip *chip;
574
575                 chip = &lpddr->chips[chipnum];
576                 if (chipnum >= lpddr->numchips)
577                         break;
578
579                 if ((len + ofs - 1) >> lpddr->chipshift)
580                         thislen = (1<<lpddr->chipshift) - ofs;
581                 else
582                         thislen = len;
583
584                 mutex_lock(&chip->mutex);
585                 if (chip->state == FL_POINT) {
586                         chip->ref_point_counter--;
587                         if (chip->ref_point_counter == 0)
588                                 chip->state = FL_READY;
589                 } else {
590                         printk(KERN_WARNING "%s: Warning: unpoint called on non"
591                                         "pointed region\n", map->name);
592                         err = -EINVAL;
593                 }
594
595                 put_chip(map, chip);
596                 mutex_unlock(&chip->mutex);
597
598                 len -= thislen;
599                 ofs = 0;
600                 chipnum++;
601         }
602
603         return err;
604 }
605
606 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
607                                 size_t *retlen, const u_char *buf)
608 {
609         struct kvec vec;
610
611         vec.iov_base = (void *) buf;
612         vec.iov_len = len;
613
614         return lpddr_writev(mtd, &vec, 1, to, retlen);
615 }
616
617
618 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
619                                 unsigned long count, loff_t to, size_t *retlen)
620 {
621         struct map_info *map = mtd->priv;
622         struct lpddr_private *lpddr = map->fldrv_priv;
623         int ret = 0;
624         int chipnum;
625         unsigned long ofs, vec_seek, i;
626         int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
627         size_t len = 0;
628
629         for (i = 0; i < count; i++)
630                 len += vecs[i].iov_len;
631
632         if (!len)
633                 return 0;
634
635         chipnum = to >> lpddr->chipshift;
636
637         ofs = to;
638         vec_seek = 0;
639
640         do {
641                 /* We must not cross write block boundaries */
642                 int size = wbufsize - (ofs & (wbufsize-1));
643
644                 if (size > len)
645                         size = len;
646
647                 ret = do_write_buffer(map, &lpddr->chips[chipnum],
648                                           ofs, &vecs, &vec_seek, size);
649                 if (ret)
650                         return ret;
651
652                 ofs += size;
653                 (*retlen) += size;
654                 len -= size;
655
656                 /* Be nice and reschedule with the chip in a usable
657                  * state for other processes */
658                 cond_resched();
659
660         } while (len);
661
662         return 0;
663 }
664
665 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
666 {
667         unsigned long ofs, len;
668         int ret;
669         struct map_info *map = mtd->priv;
670         struct lpddr_private *lpddr = map->fldrv_priv;
671         int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
672
673         ofs = instr->addr;
674         len = instr->len;
675
676         while (len > 0) {
677                 ret = do_erase_oneblock(mtd, ofs);
678                 if (ret)
679                         return ret;
680                 ofs += size;
681                 len -= size;
682         }
683
684         return 0;
685 }
686
687 #define DO_XXLOCK_LOCK          1
688 #define DO_XXLOCK_UNLOCK        2
689 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
690 {
691         int ret = 0;
692         struct map_info *map = mtd->priv;
693         struct lpddr_private *lpddr = map->fldrv_priv;
694         int chipnum = adr >> lpddr->chipshift;
695         struct flchip *chip = &lpddr->chips[chipnum];
696
697         mutex_lock(&chip->mutex);
698         ret = get_chip(map, chip, FL_LOCKING);
699         if (ret) {
700                 mutex_unlock(&chip->mutex);
701                 return ret;
702         }
703
704         if (thunk == DO_XXLOCK_LOCK) {
705                 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
706                 chip->state = FL_LOCKING;
707         } else if (thunk == DO_XXLOCK_UNLOCK) {
708                 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
709                 chip->state = FL_UNLOCKING;
710         } else
711                 BUG();
712
713         ret = wait_for_ready(map, chip, 1);
714         if (ret)        {
715                 printk(KERN_ERR "%s: block unlock error status %d \n",
716                                 map->name, ret);
717                 goto out;
718         }
719 out:    put_chip(map, chip);
720         mutex_unlock(&chip->mutex);
721         return ret;
722 }
723
724 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
725 {
726         return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
727 }
728
729 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
730 {
731         return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
732 }
733
734 MODULE_LICENSE("GPL");
735 MODULE_AUTHOR("Alexey Korolev <[email protected]>");
736 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
This page took 0.085353 seconds and 4 git commands to generate.