1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Internal slab definitions
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
33 #endif /* CONFIG_SLOB */
36 #include <linux/slab_def.h>
40 #include <linux/slub_def.h>
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
51 * State of the slab allocator.
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
66 extern enum slab_state slab_state;
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
93 /* Functions provided by the slab allocators */
94 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
97 slab_flags_t flags, unsigned int useroffset,
98 unsigned int usersize);
99 extern void create_boot_cache(struct kmem_cache *, const char *name,
100 unsigned int size, slab_flags_t flags,
101 unsigned int useroffset, unsigned int usersize);
103 int slab_unmergeable(struct kmem_cache *s);
104 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
105 slab_flags_t flags, const char *name, void (*ctor)(void *));
108 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
109 slab_flags_t flags, void (*ctor)(void *));
111 slab_flags_t kmem_cache_flags(unsigned int object_size,
112 slab_flags_t flags, const char *name,
113 void (*ctor)(void *));
115 static inline struct kmem_cache *
116 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117 slab_flags_t flags, void (*ctor)(void *))
120 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121 slab_flags_t flags, const char *name,
122 void (*ctor)(void *))
129 /* Legal flag mask for kmem_cache_create(), for various configurations */
130 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
131 SLAB_CACHE_DMA32 | SLAB_PANIC | \
132 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
134 #if defined(CONFIG_DEBUG_SLAB)
135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
136 #elif defined(CONFIG_SLUB_DEBUG)
137 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
138 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
140 #define SLAB_DEBUG_FLAGS (0)
143 #if defined(CONFIG_SLAB)
144 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
145 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
147 #elif defined(CONFIG_SLUB)
148 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
149 SLAB_TEMPORARY | SLAB_ACCOUNT)
151 #define SLAB_CACHE_FLAGS (0)
154 /* Common flags available with current configuration */
155 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157 /* Common flags permitted for kmem_cache_create */
158 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
163 SLAB_CONSISTENCY_CHECKS | \
166 SLAB_RECLAIM_ACCOUNT | \
170 bool __kmem_cache_empty(struct kmem_cache *);
171 int __kmem_cache_shutdown(struct kmem_cache *);
172 void __kmem_cache_release(struct kmem_cache *);
173 int __kmem_cache_shrink(struct kmem_cache *);
174 void __kmemcg_cache_deactivate(struct kmem_cache *s);
175 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
176 void slab_kmem_cache_release(struct kmem_cache *);
182 unsigned long active_objs;
183 unsigned long num_objs;
184 unsigned long active_slabs;
185 unsigned long num_slabs;
186 unsigned long shared_avail;
188 unsigned int batchcount;
190 unsigned int objects_per_slab;
191 unsigned int cache_order;
194 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
195 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
196 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
197 size_t count, loff_t *ppos);
200 * Generic implementation of bulk operations
201 * These are useful for situations in which the allocator cannot
202 * perform optimizations. In that case segments of the object listed
203 * may be allocated or freed using these operations.
205 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
206 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
208 static inline int cache_vmstat_idx(struct kmem_cache *s)
210 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
214 #ifdef CONFIG_MEMCG_KMEM
216 /* List of all root caches. */
217 extern struct list_head slab_root_caches;
218 #define root_caches_node memcg_params.__root_caches_node
221 * Iterate over all memcg caches of the given root cache. The caller must hold
224 #define for_each_memcg_cache(iter, root) \
225 list_for_each_entry(iter, &(root)->memcg_params.children, \
226 memcg_params.children_node)
228 static inline bool is_root_cache(struct kmem_cache *s)
230 return !s->memcg_params.root_cache;
233 static inline bool slab_equal_or_root(struct kmem_cache *s,
234 struct kmem_cache *p)
236 return p == s || p == s->memcg_params.root_cache;
240 * We use suffixes to the name in memcg because we can't have caches
241 * created in the system with the same name. But when we print them
242 * locally, better refer to them with the base name
244 static inline const char *cache_name(struct kmem_cache *s)
246 if (!is_root_cache(s))
247 s = s->memcg_params.root_cache;
251 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
253 if (is_root_cache(s))
255 return s->memcg_params.root_cache;
259 * Expects a pointer to a slab page. Please note, that PageSlab() check
260 * isn't sufficient, as it returns true also for tail compound slab pages,
261 * which do not have slab_cache pointer set.
262 * So this function assumes that the page can pass PageHead() and PageSlab()
265 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
267 struct kmem_cache *s;
269 s = READ_ONCE(page->slab_cache);
270 if (s && !is_root_cache(s))
271 return s->memcg_params.memcg;
277 * Charge the slab page belonging to the non-root kmem_cache.
278 * Can be called for non-root kmem_caches only.
280 static __always_inline int memcg_charge_slab(struct page *page,
281 gfp_t gfp, int order,
282 struct kmem_cache *s)
284 struct mem_cgroup *memcg;
285 struct lruvec *lruvec;
288 memcg = s->memcg_params.memcg;
289 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
293 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
294 mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
296 /* transer try_charge() page references to kmem_cache */
297 percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
298 css_put_many(&memcg->css, 1 << order);
304 * Uncharge a slab page belonging to a non-root kmem_cache.
305 * Can be called for non-root kmem_caches only.
307 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
308 struct kmem_cache *s)
310 struct mem_cgroup *memcg;
311 struct lruvec *lruvec;
313 memcg = s->memcg_params.memcg;
314 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
315 mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
316 memcg_kmem_uncharge_memcg(page, order, memcg);
318 percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
321 extern void slab_init_memcg_params(struct kmem_cache *);
322 extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
324 #else /* CONFIG_MEMCG_KMEM */
326 /* If !memcg, all caches are root. */
327 #define slab_root_caches slab_caches
328 #define root_caches_node list
330 #define for_each_memcg_cache(iter, root) \
331 for ((void)(iter), (void)(root); 0; )
333 static inline bool is_root_cache(struct kmem_cache *s)
338 static inline bool slab_equal_or_root(struct kmem_cache *s,
339 struct kmem_cache *p)
344 static inline const char *cache_name(struct kmem_cache *s)
349 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
354 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
359 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
360 struct kmem_cache *s)
365 static inline void memcg_uncharge_slab(struct page *page, int order,
366 struct kmem_cache *s)
370 static inline void slab_init_memcg_params(struct kmem_cache *s)
374 static inline void memcg_link_cache(struct kmem_cache *s,
375 struct mem_cgroup *memcg)
379 #endif /* CONFIG_MEMCG_KMEM */
381 static inline struct kmem_cache *virt_to_cache(const void *obj)
385 page = virt_to_head_page(obj);
386 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
389 return page->slab_cache;
392 static __always_inline int charge_slab_page(struct page *page,
393 gfp_t gfp, int order,
394 struct kmem_cache *s)
396 if (is_root_cache(s)) {
397 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
402 return memcg_charge_slab(page, gfp, order, s);
405 static __always_inline void uncharge_slab_page(struct page *page, int order,
406 struct kmem_cache *s)
408 if (is_root_cache(s)) {
409 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
414 memcg_uncharge_slab(page, order, s);
417 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
419 struct kmem_cache *cachep;
422 * When kmemcg is not being used, both assignments should return the
423 * same value. but we don't want to pay the assignment price in that
424 * case. If it is not compiled in, the compiler should be smart enough
425 * to not do even the assignment. In that case, slab_equal_or_root
426 * will also be a constant.
428 if (!memcg_kmem_enabled() &&
429 !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
430 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
433 cachep = virt_to_cache(x);
434 WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
435 "%s: Wrong slab cache. %s but object is from %s\n",
436 __func__, s->name, cachep->name);
440 static inline size_t slab_ksize(const struct kmem_cache *s)
443 return s->object_size;
445 #else /* CONFIG_SLUB */
446 # ifdef CONFIG_SLUB_DEBUG
448 * Debugging requires use of the padding between object
449 * and whatever may come after it.
451 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
452 return s->object_size;
454 if (s->flags & SLAB_KASAN)
455 return s->object_size;
457 * If we have the need to store the freelist pointer
458 * back there or track user information then we can
459 * only use the space before that information.
461 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
464 * Else we can use all the padding etc for the allocation
470 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
473 flags &= gfp_allowed_mask;
475 fs_reclaim_acquire(flags);
476 fs_reclaim_release(flags);
478 might_sleep_if(gfpflags_allow_blocking(flags));
480 if (should_failslab(s, flags))
483 if (memcg_kmem_enabled() &&
484 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
485 return memcg_kmem_get_cache(s);
490 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
491 size_t size, void **p)
495 flags &= gfp_allowed_mask;
496 for (i = 0; i < size; i++) {
497 p[i] = kasan_slab_alloc(s, p[i], flags);
498 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
499 kmemleak_alloc_recursive(p[i], s->object_size, 1,
503 if (memcg_kmem_enabled())
504 memcg_kmem_put_cache(s);
509 * The slab lists for all objects.
511 struct kmem_cache_node {
512 spinlock_t list_lock;
515 struct list_head slabs_partial; /* partial list first, better asm code */
516 struct list_head slabs_full;
517 struct list_head slabs_free;
518 unsigned long total_slabs; /* length of all slab lists */
519 unsigned long free_slabs; /* length of free slab list only */
520 unsigned long free_objects;
521 unsigned int free_limit;
522 unsigned int colour_next; /* Per-node cache coloring */
523 struct array_cache *shared; /* shared per node */
524 struct alien_cache **alien; /* on other nodes */
525 unsigned long next_reap; /* updated without locking */
526 int free_touched; /* updated without locking */
530 unsigned long nr_partial;
531 struct list_head partial;
532 #ifdef CONFIG_SLUB_DEBUG
533 atomic_long_t nr_slabs;
534 atomic_long_t total_objects;
535 struct list_head full;
541 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
543 return s->node[node];
547 * Iterator over all nodes. The body will be executed for each node that has
548 * a kmem_cache_node structure allocated (which is true for all online nodes)
550 #define for_each_kmem_cache_node(__s, __node, __n) \
551 for (__node = 0; __node < nr_node_ids; __node++) \
552 if ((__n = get_node(__s, __node)))
556 void *slab_start(struct seq_file *m, loff_t *pos);
557 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
558 void slab_stop(struct seq_file *m, void *p);
559 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
560 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
561 void memcg_slab_stop(struct seq_file *m, void *p);
562 int memcg_slab_show(struct seq_file *m, void *p);
564 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
565 void dump_unreclaimable_slab(void);
567 static inline void dump_unreclaimable_slab(void)
572 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
574 #ifdef CONFIG_SLAB_FREELIST_RANDOM
575 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
577 void cache_random_seq_destroy(struct kmem_cache *cachep);
579 static inline int cache_random_seq_create(struct kmem_cache *cachep,
580 unsigned int count, gfp_t gfp)
584 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
585 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
587 #endif /* MM_SLAB_H */