1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
101 /* work_structs for global per-cpu drains */
104 struct work_struct work;
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
115 * Array of node states.
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
129 EXPORT_SYMBOL(node_states);
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
140 * A cached value of the page's pageblock's migratetype, used when the page is
141 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
142 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
143 * Also the migratetype set in the page does not necessarily match the pcplist
144 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
145 * other index - this ensures that it will be put on the correct CMA freelist.
147 static inline int get_pcppage_migratetype(struct page *page)
152 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
154 page->index = migratetype;
157 #ifdef CONFIG_PM_SLEEP
159 * The following functions are used by the suspend/hibernate code to temporarily
160 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
161 * while devices are suspended. To avoid races with the suspend/hibernate code,
162 * they should always be called with system_transition_mutex held
163 * (gfp_allowed_mask also should only be modified with system_transition_mutex
164 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
165 * with that modification).
168 static gfp_t saved_gfp_mask;
170 void pm_restore_gfp_mask(void)
172 WARN_ON(!mutex_is_locked(&system_transition_mutex));
173 if (saved_gfp_mask) {
174 gfp_allowed_mask = saved_gfp_mask;
179 void pm_restrict_gfp_mask(void)
181 WARN_ON(!mutex_is_locked(&system_transition_mutex));
182 WARN_ON(saved_gfp_mask);
183 saved_gfp_mask = gfp_allowed_mask;
184 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
187 bool pm_suspended_storage(void)
189 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
193 #endif /* CONFIG_PM_SLEEP */
195 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
196 unsigned int pageblock_order __read_mostly;
199 static void __free_pages_ok(struct page *page, unsigned int order);
202 * results with 256, 32 in the lowmem_reserve sysctl:
203 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
204 * 1G machine -> (16M dma, 784M normal, 224M high)
205 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
206 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
207 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
209 * TBD: should special case ZONE_DMA32 machines here - in those we normally
210 * don't need any ZONE_NORMAL reservation
212 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
213 #ifdef CONFIG_ZONE_DMA
216 #ifdef CONFIG_ZONE_DMA32
220 #ifdef CONFIG_HIGHMEM
226 static char * const zone_names[MAX_NR_ZONES] = {
227 #ifdef CONFIG_ZONE_DMA
230 #ifdef CONFIG_ZONE_DMA32
234 #ifdef CONFIG_HIGHMEM
238 #ifdef CONFIG_ZONE_DEVICE
243 const char * const migratetype_names[MIGRATE_TYPES] = {
251 #ifdef CONFIG_MEMORY_ISOLATION
256 compound_page_dtor * const compound_page_dtors[] = {
259 #ifdef CONFIG_HUGETLB_PAGE
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
267 int min_free_kbytes = 1024;
268 int user_min_free_kbytes = -1;
269 #ifdef CONFIG_DISCONTIGMEM
271 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
272 * are not on separate NUMA nodes. Functionally this works but with
273 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
274 * quite small. By default, do not boost watermarks on discontigmem as in
275 * many cases very high-order allocations like THP are likely to be
276 * unsupported and the premature reclaim offsets the advantage of long-term
277 * fragmentation avoidance.
279 int watermark_boost_factor __read_mostly;
281 int watermark_boost_factor __read_mostly = 15000;
283 int watermark_scale_factor = 10;
285 static unsigned long nr_kernel_pages __initdata;
286 static unsigned long nr_all_pages __initdata;
287 static unsigned long dma_reserve __initdata;
289 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
290 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
291 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
292 static unsigned long required_kernelcore __initdata;
293 static unsigned long required_kernelcore_percent __initdata;
294 static unsigned long required_movablecore __initdata;
295 static unsigned long required_movablecore_percent __initdata;
296 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
297 static bool mirrored_kernelcore __meminitdata;
299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
301 EXPORT_SYMBOL(movable_zone);
302 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
305 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
306 unsigned int nr_online_nodes __read_mostly = 1;
307 EXPORT_SYMBOL(nr_node_ids);
308 EXPORT_SYMBOL(nr_online_nodes);
311 int page_group_by_mobility_disabled __read_mostly;
313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
315 * During boot we initialize deferred pages on-demand, as needed, but once
316 * page_alloc_init_late() has finished, the deferred pages are all initialized,
317 * and we can permanently disable that path.
319 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
322 * Calling kasan_free_pages() only after deferred memory initialization
323 * has completed. Poisoning pages during deferred memory init will greatly
324 * lengthen the process and cause problem in large memory systems as the
325 * deferred pages initialization is done with interrupt disabled.
327 * Assuming that there will be no reference to those newly initialized
328 * pages before they are ever allocated, this should have no effect on
329 * KASAN memory tracking as the poison will be properly inserted at page
330 * allocation time. The only corner case is when pages are allocated by
331 * on-demand allocation and then freed again before the deferred pages
332 * initialization is done, but this is not likely to happen.
334 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
336 if (!static_branch_unlikely(&deferred_pages))
337 kasan_free_pages(page, order);
340 /* Returns true if the struct page for the pfn is uninitialised */
341 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
343 int nid = early_pfn_to_nid(pfn);
345 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
352 * Returns true when the remaining initialisation should be deferred until
353 * later in the boot cycle when it can be parallelised.
355 static bool __meminit
356 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
358 static unsigned long prev_end_pfn, nr_initialised;
361 * prev_end_pfn static that contains the end of previous zone
362 * No need to protect because called very early in boot before smp_init.
364 if (prev_end_pfn != end_pfn) {
365 prev_end_pfn = end_pfn;
369 /* Always populate low zones for address-constrained allocations */
370 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
374 * We start only with one section of pages, more pages are added as
375 * needed until the rest of deferred pages are initialized.
378 if ((nr_initialised > PAGES_PER_SECTION) &&
379 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
380 NODE_DATA(nid)->first_deferred_pfn = pfn;
386 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
388 static inline bool early_page_uninitialised(unsigned long pfn)
393 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
399 /* Return a pointer to the bitmap storing bits affecting a block of pages */
400 static inline unsigned long *get_pageblock_bitmap(struct page *page,
403 #ifdef CONFIG_SPARSEMEM
404 return __pfn_to_section(pfn)->pageblock_flags;
406 return page_zone(page)->pageblock_flags;
407 #endif /* CONFIG_SPARSEMEM */
410 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
412 #ifdef CONFIG_SPARSEMEM
413 pfn &= (PAGES_PER_SECTION-1);
414 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
416 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418 #endif /* CONFIG_SPARSEMEM */
422 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
423 * @page: The page within the block of interest
424 * @pfn: The target page frame number
425 * @end_bitidx: The last bit of interest to retrieve
426 * @mask: mask of bits that the caller is interested in
428 * Return: pageblock_bits flags
430 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
432 unsigned long end_bitidx,
435 unsigned long *bitmap;
436 unsigned long bitidx, word_bitidx;
439 bitmap = get_pageblock_bitmap(page, pfn);
440 bitidx = pfn_to_bitidx(page, pfn);
441 word_bitidx = bitidx / BITS_PER_LONG;
442 bitidx &= (BITS_PER_LONG-1);
444 word = bitmap[word_bitidx];
445 bitidx += end_bitidx;
446 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
449 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
450 unsigned long end_bitidx,
453 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
456 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
458 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
462 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
463 * @page: The page within the block of interest
464 * @flags: The flags to set
465 * @pfn: The target page frame number
466 * @end_bitidx: The last bit of interest
467 * @mask: mask of bits that the caller is interested in
469 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
471 unsigned long end_bitidx,
474 unsigned long *bitmap;
475 unsigned long bitidx, word_bitidx;
476 unsigned long old_word, word;
478 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
479 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
486 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
488 bitidx += end_bitidx;
489 mask <<= (BITS_PER_LONG - bitidx - 1);
490 flags <<= (BITS_PER_LONG - bitidx - 1);
492 word = READ_ONCE(bitmap[word_bitidx]);
494 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
495 if (word == old_word)
501 void set_pageblock_migratetype(struct page *page, int migratetype)
503 if (unlikely(page_group_by_mobility_disabled &&
504 migratetype < MIGRATE_PCPTYPES))
505 migratetype = MIGRATE_UNMOVABLE;
507 set_pageblock_flags_group(page, (unsigned long)migratetype,
508 PB_migrate, PB_migrate_end);
511 #ifdef CONFIG_DEBUG_VM
512 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
516 unsigned long pfn = page_to_pfn(page);
517 unsigned long sp, start_pfn;
520 seq = zone_span_seqbegin(zone);
521 start_pfn = zone->zone_start_pfn;
522 sp = zone->spanned_pages;
523 if (!zone_spans_pfn(zone, pfn))
525 } while (zone_span_seqretry(zone, seq));
528 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
529 pfn, zone_to_nid(zone), zone->name,
530 start_pfn, start_pfn + sp);
535 static int page_is_consistent(struct zone *zone, struct page *page)
537 if (!pfn_valid_within(page_to_pfn(page)))
539 if (zone != page_zone(page))
545 * Temporary debugging check for pages not lying within a given zone.
547 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
549 if (page_outside_zone_boundaries(zone, page))
551 if (!page_is_consistent(zone, page))
557 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
563 static void bad_page(struct page *page, const char *reason,
564 unsigned long bad_flags)
566 static unsigned long resume;
567 static unsigned long nr_shown;
568 static unsigned long nr_unshown;
571 * Allow a burst of 60 reports, then keep quiet for that minute;
572 * or allow a steady drip of one report per second.
574 if (nr_shown == 60) {
575 if (time_before(jiffies, resume)) {
581 "BUG: Bad page state: %lu messages suppressed\n",
588 resume = jiffies + 60 * HZ;
590 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
591 current->comm, page_to_pfn(page));
592 __dump_page(page, reason);
593 bad_flags &= page->flags;
595 pr_alert("bad because of flags: %#lx(%pGp)\n",
596 bad_flags, &bad_flags);
597 dump_page_owner(page);
602 /* Leave bad fields for debug, except PageBuddy could make trouble */
603 page_mapcount_reset(page); /* remove PageBuddy */
604 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
608 * Higher-order pages are called "compound pages". They are structured thusly:
610 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
612 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
613 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
615 * The first tail page's ->compound_dtor holds the offset in array of compound
616 * page destructors. See compound_page_dtors.
618 * The first tail page's ->compound_order holds the order of allocation.
619 * This usage means that zero-order pages may not be compound.
622 void free_compound_page(struct page *page)
624 __free_pages_ok(page, compound_order(page));
627 void prep_compound_page(struct page *page, unsigned int order)
630 int nr_pages = 1 << order;
632 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
633 set_compound_order(page, order);
635 for (i = 1; i < nr_pages; i++) {
636 struct page *p = page + i;
637 set_page_count(p, 0);
638 p->mapping = TAIL_MAPPING;
639 set_compound_head(p, page);
641 atomic_set(compound_mapcount_ptr(page), -1);
644 #ifdef CONFIG_DEBUG_PAGEALLOC
645 unsigned int _debug_guardpage_minorder;
647 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
648 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
650 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
652 EXPORT_SYMBOL(_debug_pagealloc_enabled);
654 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
656 static int __init early_debug_pagealloc(char *buf)
660 if (kstrtobool(buf, &enable))
664 static_branch_enable(&_debug_pagealloc_enabled);
668 early_param("debug_pagealloc", early_debug_pagealloc);
670 static void init_debug_guardpage(void)
672 if (!debug_pagealloc_enabled())
675 if (!debug_guardpage_minorder())
678 static_branch_enable(&_debug_guardpage_enabled);
681 static int __init debug_guardpage_minorder_setup(char *buf)
685 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
686 pr_err("Bad debug_guardpage_minorder value\n");
689 _debug_guardpage_minorder = res;
690 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
693 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
695 static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype)
698 if (!debug_guardpage_enabled())
701 if (order >= debug_guardpage_minorder())
704 __SetPageGuard(page);
705 INIT_LIST_HEAD(&page->lru);
706 set_page_private(page, order);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype)
716 if (!debug_guardpage_enabled())
719 __ClearPageGuard(page);
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
726 static inline bool set_page_guard(struct zone *zone, struct page *page,
727 unsigned int order, int migratetype) { return false; }
728 static inline void clear_page_guard(struct zone *zone, struct page *page,
729 unsigned int order, int migratetype) {}
732 static inline void set_page_order(struct page *page, unsigned int order)
734 set_page_private(page, order);
735 __SetPageBuddy(page);
739 * This function checks whether a page is free && is the buddy
740 * we can coalesce a page and its buddy if
741 * (a) the buddy is not in a hole (check before calling!) &&
742 * (b) the buddy is in the buddy system &&
743 * (c) a page and its buddy have the same order &&
744 * (d) a page and its buddy are in the same zone.
746 * For recording whether a page is in the buddy system, we set PageBuddy.
747 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
749 * For recording page's order, we use page_private(page).
751 static inline int page_is_buddy(struct page *page, struct page *buddy,
754 if (page_is_guard(buddy) && page_order(buddy) == order) {
755 if (page_zone_id(page) != page_zone_id(buddy))
758 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
763 if (PageBuddy(buddy) && page_order(buddy) == order) {
765 * zone check is done late to avoid uselessly
766 * calculating zone/node ids for pages that could
769 if (page_zone_id(page) != page_zone_id(buddy))
772 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
779 #ifdef CONFIG_COMPACTION
780 static inline struct capture_control *task_capc(struct zone *zone)
782 struct capture_control *capc = current->capture_control;
785 !(current->flags & PF_KTHREAD) &&
787 capc->cc->zone == zone &&
788 capc->cc->direct_compaction ? capc : NULL;
792 compaction_capture(struct capture_control *capc, struct page *page,
793 int order, int migratetype)
795 if (!capc || order != capc->cc->order)
798 /* Do not accidentally pollute CMA or isolated regions*/
799 if (is_migrate_cma(migratetype) ||
800 is_migrate_isolate(migratetype))
804 * Do not let lower order allocations polluate a movable pageblock.
805 * This might let an unmovable request use a reclaimable pageblock
806 * and vice-versa but no more than normal fallback logic which can
807 * have trouble finding a high-order free page.
809 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
817 static inline struct capture_control *task_capc(struct zone *zone)
823 compaction_capture(struct capture_control *capc, struct page *page,
824 int order, int migratetype)
828 #endif /* CONFIG_COMPACTION */
831 * Freeing function for a buddy system allocator.
833 * The concept of a buddy system is to maintain direct-mapped table
834 * (containing bit values) for memory blocks of various "orders".
835 * The bottom level table contains the map for the smallest allocatable
836 * units of memory (here, pages), and each level above it describes
837 * pairs of units from the levels below, hence, "buddies".
838 * At a high level, all that happens here is marking the table entry
839 * at the bottom level available, and propagating the changes upward
840 * as necessary, plus some accounting needed to play nicely with other
841 * parts of the VM system.
842 * At each level, we keep a list of pages, which are heads of continuous
843 * free pages of length of (1 << order) and marked with PageBuddy.
844 * Page's order is recorded in page_private(page) field.
845 * So when we are allocating or freeing one, we can derive the state of the
846 * other. That is, if we allocate a small block, and both were
847 * free, the remainder of the region must be split into blocks.
848 * If a block is freed, and its buddy is also free, then this
849 * triggers coalescing into a block of larger size.
854 static inline void __free_one_page(struct page *page,
856 struct zone *zone, unsigned int order,
859 unsigned long combined_pfn;
860 unsigned long uninitialized_var(buddy_pfn);
862 unsigned int max_order;
863 struct capture_control *capc = task_capc(zone);
865 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
867 VM_BUG_ON(!zone_is_initialized(zone));
868 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
870 VM_BUG_ON(migratetype == -1);
871 if (likely(!is_migrate_isolate(migratetype)))
872 __mod_zone_freepage_state(zone, 1 << order, migratetype);
874 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
875 VM_BUG_ON_PAGE(bad_range(zone, page), page);
878 while (order < max_order - 1) {
879 if (compaction_capture(capc, page, order, migratetype)) {
880 __mod_zone_freepage_state(zone, -(1 << order),
884 buddy_pfn = __find_buddy_pfn(pfn, order);
885 buddy = page + (buddy_pfn - pfn);
887 if (!pfn_valid_within(buddy_pfn))
889 if (!page_is_buddy(page, buddy, order))
892 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
893 * merge with it and move up one order.
895 if (page_is_guard(buddy))
896 clear_page_guard(zone, buddy, order, migratetype);
898 del_page_from_free_area(buddy, &zone->free_area[order]);
899 combined_pfn = buddy_pfn & pfn;
900 page = page + (combined_pfn - pfn);
904 if (max_order < MAX_ORDER) {
905 /* If we are here, it means order is >= pageblock_order.
906 * We want to prevent merge between freepages on isolate
907 * pageblock and normal pageblock. Without this, pageblock
908 * isolation could cause incorrect freepage or CMA accounting.
910 * We don't want to hit this code for the more frequent
913 if (unlikely(has_isolate_pageblock(zone))) {
916 buddy_pfn = __find_buddy_pfn(pfn, order);
917 buddy = page + (buddy_pfn - pfn);
918 buddy_mt = get_pageblock_migratetype(buddy);
920 if (migratetype != buddy_mt
921 && (is_migrate_isolate(migratetype) ||
922 is_migrate_isolate(buddy_mt)))
926 goto continue_merging;
930 set_page_order(page, order);
933 * If this is not the largest possible page, check if the buddy
934 * of the next-highest order is free. If it is, it's possible
935 * that pages are being freed that will coalesce soon. In case,
936 * that is happening, add the free page to the tail of the list
937 * so it's less likely to be used soon and more likely to be merged
938 * as a higher order page
940 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
941 && !is_shuffle_order(order)) {
942 struct page *higher_page, *higher_buddy;
943 combined_pfn = buddy_pfn & pfn;
944 higher_page = page + (combined_pfn - pfn);
945 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
946 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
947 if (pfn_valid_within(buddy_pfn) &&
948 page_is_buddy(higher_page, higher_buddy, order + 1)) {
949 add_to_free_area_tail(page, &zone->free_area[order],
955 if (is_shuffle_order(order))
956 add_to_free_area_random(page, &zone->free_area[order],
959 add_to_free_area(page, &zone->free_area[order], migratetype);
964 * A bad page could be due to a number of fields. Instead of multiple branches,
965 * try and check multiple fields with one check. The caller must do a detailed
966 * check if necessary.
968 static inline bool page_expected_state(struct page *page,
969 unsigned long check_flags)
971 if (unlikely(atomic_read(&page->_mapcount) != -1))
974 if (unlikely((unsigned long)page->mapping |
975 page_ref_count(page) |
977 (unsigned long)page->mem_cgroup |
979 (page->flags & check_flags)))
985 static void free_pages_check_bad(struct page *page)
987 const char *bad_reason;
988 unsigned long bad_flags;
993 if (unlikely(atomic_read(&page->_mapcount) != -1))
994 bad_reason = "nonzero mapcount";
995 if (unlikely(page->mapping != NULL))
996 bad_reason = "non-NULL mapping";
997 if (unlikely(page_ref_count(page) != 0))
998 bad_reason = "nonzero _refcount";
999 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1000 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1001 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1004 if (unlikely(page->mem_cgroup))
1005 bad_reason = "page still charged to cgroup";
1007 bad_page(page, bad_reason, bad_flags);
1010 static inline int free_pages_check(struct page *page)
1012 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1015 /* Something has gone sideways, find it */
1016 free_pages_check_bad(page);
1020 static int free_tail_pages_check(struct page *head_page, struct page *page)
1025 * We rely page->lru.next never has bit 0 set, unless the page
1026 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1028 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1030 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1034 switch (page - head_page) {
1036 /* the first tail page: ->mapping may be compound_mapcount() */
1037 if (unlikely(compound_mapcount(page))) {
1038 bad_page(page, "nonzero compound_mapcount", 0);
1044 * the second tail page: ->mapping is
1045 * deferred_list.next -- ignore value.
1049 if (page->mapping != TAIL_MAPPING) {
1050 bad_page(page, "corrupted mapping in tail page", 0);
1055 if (unlikely(!PageTail(page))) {
1056 bad_page(page, "PageTail not set", 0);
1059 if (unlikely(compound_head(page) != head_page)) {
1060 bad_page(page, "compound_head not consistent", 0);
1065 page->mapping = NULL;
1066 clear_compound_head(page);
1070 static __always_inline bool free_pages_prepare(struct page *page,
1071 unsigned int order, bool check_free)
1075 VM_BUG_ON_PAGE(PageTail(page), page);
1077 trace_mm_page_free(page, order);
1080 * Check tail pages before head page information is cleared to
1081 * avoid checking PageCompound for order-0 pages.
1083 if (unlikely(order)) {
1084 bool compound = PageCompound(page);
1087 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1090 ClearPageDoubleMap(page);
1091 for (i = 1; i < (1 << order); i++) {
1093 bad += free_tail_pages_check(page, page + i);
1094 if (unlikely(free_pages_check(page + i))) {
1098 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1101 if (PageMappingFlags(page))
1102 page->mapping = NULL;
1103 if (memcg_kmem_enabled() && PageKmemcg(page))
1104 __memcg_kmem_uncharge(page, order);
1106 bad += free_pages_check(page);
1110 page_cpupid_reset_last(page);
1111 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1112 reset_page_owner(page, order);
1114 if (!PageHighMem(page)) {
1115 debug_check_no_locks_freed(page_address(page),
1116 PAGE_SIZE << order);
1117 debug_check_no_obj_freed(page_address(page),
1118 PAGE_SIZE << order);
1120 arch_free_page(page, order);
1121 kernel_poison_pages(page, 1 << order, 0);
1122 if (debug_pagealloc_enabled())
1123 kernel_map_pages(page, 1 << order, 0);
1125 kasan_free_nondeferred_pages(page, order);
1130 #ifdef CONFIG_DEBUG_VM
1132 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1133 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1134 * moved from pcp lists to free lists.
1136 static bool free_pcp_prepare(struct page *page)
1138 return free_pages_prepare(page, 0, true);
1141 static bool bulkfree_pcp_prepare(struct page *page)
1143 if (debug_pagealloc_enabled())
1144 return free_pages_check(page);
1150 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1151 * moving from pcp lists to free list in order to reduce overhead. With
1152 * debug_pagealloc enabled, they are checked also immediately when being freed
1155 static bool free_pcp_prepare(struct page *page)
1157 if (debug_pagealloc_enabled())
1158 return free_pages_prepare(page, 0, true);
1160 return free_pages_prepare(page, 0, false);
1163 static bool bulkfree_pcp_prepare(struct page *page)
1165 return free_pages_check(page);
1167 #endif /* CONFIG_DEBUG_VM */
1169 static inline void prefetch_buddy(struct page *page)
1171 unsigned long pfn = page_to_pfn(page);
1172 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1173 struct page *buddy = page + (buddy_pfn - pfn);
1179 * Frees a number of pages from the PCP lists
1180 * Assumes all pages on list are in same zone, and of same order.
1181 * count is the number of pages to free.
1183 * If the zone was previously in an "all pages pinned" state then look to
1184 * see if this freeing clears that state.
1186 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1187 * pinned" detection logic.
1189 static void free_pcppages_bulk(struct zone *zone, int count,
1190 struct per_cpu_pages *pcp)
1192 int migratetype = 0;
1194 int prefetch_nr = 0;
1195 bool isolated_pageblocks;
1196 struct page *page, *tmp;
1200 struct list_head *list;
1203 * Remove pages from lists in a round-robin fashion. A
1204 * batch_free count is maintained that is incremented when an
1205 * empty list is encountered. This is so more pages are freed
1206 * off fuller lists instead of spinning excessively around empty
1211 if (++migratetype == MIGRATE_PCPTYPES)
1213 list = &pcp->lists[migratetype];
1214 } while (list_empty(list));
1216 /* This is the only non-empty list. Free them all. */
1217 if (batch_free == MIGRATE_PCPTYPES)
1221 page = list_last_entry(list, struct page, lru);
1222 /* must delete to avoid corrupting pcp list */
1223 list_del(&page->lru);
1226 if (bulkfree_pcp_prepare(page))
1229 list_add_tail(&page->lru, &head);
1232 * We are going to put the page back to the global
1233 * pool, prefetch its buddy to speed up later access
1234 * under zone->lock. It is believed the overhead of
1235 * an additional test and calculating buddy_pfn here
1236 * can be offset by reduced memory latency later. To
1237 * avoid excessive prefetching due to large count, only
1238 * prefetch buddy for the first pcp->batch nr of pages.
1240 if (prefetch_nr++ < pcp->batch)
1241 prefetch_buddy(page);
1242 } while (--count && --batch_free && !list_empty(list));
1245 spin_lock(&zone->lock);
1246 isolated_pageblocks = has_isolate_pageblock(zone);
1249 * Use safe version since after __free_one_page(),
1250 * page->lru.next will not point to original list.
1252 list_for_each_entry_safe(page, tmp, &head, lru) {
1253 int mt = get_pcppage_migratetype(page);
1254 /* MIGRATE_ISOLATE page should not go to pcplists */
1255 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1256 /* Pageblock could have been isolated meanwhile */
1257 if (unlikely(isolated_pageblocks))
1258 mt = get_pageblock_migratetype(page);
1260 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1261 trace_mm_page_pcpu_drain(page, 0, mt);
1263 spin_unlock(&zone->lock);
1266 static void free_one_page(struct zone *zone,
1267 struct page *page, unsigned long pfn,
1271 spin_lock(&zone->lock);
1272 if (unlikely(has_isolate_pageblock(zone) ||
1273 is_migrate_isolate(migratetype))) {
1274 migratetype = get_pfnblock_migratetype(page, pfn);
1276 __free_one_page(page, pfn, zone, order, migratetype);
1277 spin_unlock(&zone->lock);
1280 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1281 unsigned long zone, int nid)
1283 mm_zero_struct_page(page);
1284 set_page_links(page, zone, nid, pfn);
1285 init_page_count(page);
1286 page_mapcount_reset(page);
1287 page_cpupid_reset_last(page);
1288 page_kasan_tag_reset(page);
1290 INIT_LIST_HEAD(&page->lru);
1291 #ifdef WANT_PAGE_VIRTUAL
1292 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1293 if (!is_highmem_idx(zone))
1294 set_page_address(page, __va(pfn << PAGE_SHIFT));
1298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1299 static void __meminit init_reserved_page(unsigned long pfn)
1304 if (!early_page_uninitialised(pfn))
1307 nid = early_pfn_to_nid(pfn);
1308 pgdat = NODE_DATA(nid);
1310 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1311 struct zone *zone = &pgdat->node_zones[zid];
1313 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1316 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1319 static inline void init_reserved_page(unsigned long pfn)
1322 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1325 * Initialised pages do not have PageReserved set. This function is
1326 * called for each range allocated by the bootmem allocator and
1327 * marks the pages PageReserved. The remaining valid pages are later
1328 * sent to the buddy page allocator.
1330 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1332 unsigned long start_pfn = PFN_DOWN(start);
1333 unsigned long end_pfn = PFN_UP(end);
1335 for (; start_pfn < end_pfn; start_pfn++) {
1336 if (pfn_valid(start_pfn)) {
1337 struct page *page = pfn_to_page(start_pfn);
1339 init_reserved_page(start_pfn);
1341 /* Avoid false-positive PageTail() */
1342 INIT_LIST_HEAD(&page->lru);
1345 * no need for atomic set_bit because the struct
1346 * page is not visible yet so nobody should
1349 __SetPageReserved(page);
1354 static void __free_pages_ok(struct page *page, unsigned int order)
1356 unsigned long flags;
1358 unsigned long pfn = page_to_pfn(page);
1360 if (!free_pages_prepare(page, order, true))
1363 migratetype = get_pfnblock_migratetype(page, pfn);
1364 local_irq_save(flags);
1365 __count_vm_events(PGFREE, 1 << order);
1366 free_one_page(page_zone(page), page, pfn, order, migratetype);
1367 local_irq_restore(flags);
1370 void __free_pages_core(struct page *page, unsigned int order)
1372 unsigned int nr_pages = 1 << order;
1373 struct page *p = page;
1377 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1379 __ClearPageReserved(p);
1380 set_page_count(p, 0);
1382 __ClearPageReserved(p);
1383 set_page_count(p, 0);
1385 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1386 set_page_refcounted(page);
1387 __free_pages(page, order);
1390 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1391 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1393 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1395 int __meminit early_pfn_to_nid(unsigned long pfn)
1397 static DEFINE_SPINLOCK(early_pfn_lock);
1400 spin_lock(&early_pfn_lock);
1401 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1403 nid = first_online_node;
1404 spin_unlock(&early_pfn_lock);
1410 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1411 /* Only safe to use early in boot when initialisation is single-threaded */
1412 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1416 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1417 if (nid >= 0 && nid != node)
1423 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1430 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1433 if (early_page_uninitialised(pfn))
1435 __free_pages_core(page, order);
1439 * Check that the whole (or subset of) a pageblock given by the interval of
1440 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1441 * with the migration of free compaction scanner. The scanners then need to
1442 * use only pfn_valid_within() check for arches that allow holes within
1445 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1447 * It's possible on some configurations to have a setup like node0 node1 node0
1448 * i.e. it's possible that all pages within a zones range of pages do not
1449 * belong to a single zone. We assume that a border between node0 and node1
1450 * can occur within a single pageblock, but not a node0 node1 node0
1451 * interleaving within a single pageblock. It is therefore sufficient to check
1452 * the first and last page of a pageblock and avoid checking each individual
1453 * page in a pageblock.
1455 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1456 unsigned long end_pfn, struct zone *zone)
1458 struct page *start_page;
1459 struct page *end_page;
1461 /* end_pfn is one past the range we are checking */
1464 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1467 start_page = pfn_to_online_page(start_pfn);
1471 if (page_zone(start_page) != zone)
1474 end_page = pfn_to_page(end_pfn);
1476 /* This gives a shorter code than deriving page_zone(end_page) */
1477 if (page_zone_id(start_page) != page_zone_id(end_page))
1483 void set_zone_contiguous(struct zone *zone)
1485 unsigned long block_start_pfn = zone->zone_start_pfn;
1486 unsigned long block_end_pfn;
1488 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1489 for (; block_start_pfn < zone_end_pfn(zone);
1490 block_start_pfn = block_end_pfn,
1491 block_end_pfn += pageblock_nr_pages) {
1493 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1495 if (!__pageblock_pfn_to_page(block_start_pfn,
1496 block_end_pfn, zone))
1500 /* We confirm that there is no hole */
1501 zone->contiguous = true;
1504 void clear_zone_contiguous(struct zone *zone)
1506 zone->contiguous = false;
1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 static void __init deferred_free_range(unsigned long pfn,
1511 unsigned long nr_pages)
1519 page = pfn_to_page(pfn);
1521 /* Free a large naturally-aligned chunk if possible */
1522 if (nr_pages == pageblock_nr_pages &&
1523 (pfn & (pageblock_nr_pages - 1)) == 0) {
1524 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1525 __free_pages_core(page, pageblock_order);
1529 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1530 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1531 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1532 __free_pages_core(page, 0);
1536 /* Completion tracking for deferred_init_memmap() threads */
1537 static atomic_t pgdat_init_n_undone __initdata;
1538 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1540 static inline void __init pgdat_init_report_one_done(void)
1542 if (atomic_dec_and_test(&pgdat_init_n_undone))
1543 complete(&pgdat_init_all_done_comp);
1547 * Returns true if page needs to be initialized or freed to buddy allocator.
1549 * First we check if pfn is valid on architectures where it is possible to have
1550 * holes within pageblock_nr_pages. On systems where it is not possible, this
1551 * function is optimized out.
1553 * Then, we check if a current large page is valid by only checking the validity
1556 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1558 if (!pfn_valid_within(pfn))
1560 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1566 * Free pages to buddy allocator. Try to free aligned pages in
1567 * pageblock_nr_pages sizes.
1569 static void __init deferred_free_pages(unsigned long pfn,
1570 unsigned long end_pfn)
1572 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1573 unsigned long nr_free = 0;
1575 for (; pfn < end_pfn; pfn++) {
1576 if (!deferred_pfn_valid(pfn)) {
1577 deferred_free_range(pfn - nr_free, nr_free);
1579 } else if (!(pfn & nr_pgmask)) {
1580 deferred_free_range(pfn - nr_free, nr_free);
1582 touch_nmi_watchdog();
1587 /* Free the last block of pages to allocator */
1588 deferred_free_range(pfn - nr_free, nr_free);
1592 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1593 * by performing it only once every pageblock_nr_pages.
1594 * Return number of pages initialized.
1596 static unsigned long __init deferred_init_pages(struct zone *zone,
1598 unsigned long end_pfn)
1600 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1601 int nid = zone_to_nid(zone);
1602 unsigned long nr_pages = 0;
1603 int zid = zone_idx(zone);
1604 struct page *page = NULL;
1606 for (; pfn < end_pfn; pfn++) {
1607 if (!deferred_pfn_valid(pfn)) {
1610 } else if (!page || !(pfn & nr_pgmask)) {
1611 page = pfn_to_page(pfn);
1612 touch_nmi_watchdog();
1616 __init_single_page(page, pfn, zid, nid);
1623 * This function is meant to pre-load the iterator for the zone init.
1624 * Specifically it walks through the ranges until we are caught up to the
1625 * first_init_pfn value and exits there. If we never encounter the value we
1626 * return false indicating there are no valid ranges left.
1629 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1630 unsigned long *spfn, unsigned long *epfn,
1631 unsigned long first_init_pfn)
1636 * Start out by walking through the ranges in this zone that have
1637 * already been initialized. We don't need to do anything with them
1638 * so we just need to flush them out of the system.
1640 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1641 if (*epfn <= first_init_pfn)
1643 if (*spfn < first_init_pfn)
1644 *spfn = first_init_pfn;
1653 * Initialize and free pages. We do it in two loops: first we initialize
1654 * struct page, then free to buddy allocator, because while we are
1655 * freeing pages we can access pages that are ahead (computing buddy
1656 * page in __free_one_page()).
1658 * In order to try and keep some memory in the cache we have the loop
1659 * broken along max page order boundaries. This way we will not cause
1660 * any issues with the buddy page computation.
1662 static unsigned long __init
1663 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1664 unsigned long *end_pfn)
1666 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1667 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1668 unsigned long nr_pages = 0;
1671 /* First we loop through and initialize the page values */
1672 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1675 if (mo_pfn <= *start_pfn)
1678 t = min(mo_pfn, *end_pfn);
1679 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1681 if (mo_pfn < *end_pfn) {
1682 *start_pfn = mo_pfn;
1687 /* Reset values and now loop through freeing pages as needed */
1690 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1696 t = min(mo_pfn, epfn);
1697 deferred_free_pages(spfn, t);
1706 /* Initialise remaining memory on a node */
1707 static int __init deferred_init_memmap(void *data)
1709 pg_data_t *pgdat = data;
1710 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1711 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1712 unsigned long first_init_pfn, flags;
1713 unsigned long start = jiffies;
1718 /* Bind memory initialisation thread to a local node if possible */
1719 if (!cpumask_empty(cpumask))
1720 set_cpus_allowed_ptr(current, cpumask);
1722 pgdat_resize_lock(pgdat, &flags);
1723 first_init_pfn = pgdat->first_deferred_pfn;
1724 if (first_init_pfn == ULONG_MAX) {
1725 pgdat_resize_unlock(pgdat, &flags);
1726 pgdat_init_report_one_done();
1730 /* Sanity check boundaries */
1731 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1732 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1733 pgdat->first_deferred_pfn = ULONG_MAX;
1735 /* Only the highest zone is deferred so find it */
1736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1737 zone = pgdat->node_zones + zid;
1738 if (first_init_pfn < zone_end_pfn(zone))
1742 /* If the zone is empty somebody else may have cleared out the zone */
1743 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1748 * Initialize and free pages in MAX_ORDER sized increments so
1749 * that we can avoid introducing any issues with the buddy
1753 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1755 pgdat_resize_unlock(pgdat, &flags);
1757 /* Sanity check that the next zone really is unpopulated */
1758 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1760 pr_info("node %d initialised, %lu pages in %ums\n",
1761 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1763 pgdat_init_report_one_done();
1768 * If this zone has deferred pages, try to grow it by initializing enough
1769 * deferred pages to satisfy the allocation specified by order, rounded up to
1770 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1771 * of SECTION_SIZE bytes by initializing struct pages in increments of
1772 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1774 * Return true when zone was grown, otherwise return false. We return true even
1775 * when we grow less than requested, to let the caller decide if there are
1776 * enough pages to satisfy the allocation.
1778 * Note: We use noinline because this function is needed only during boot, and
1779 * it is called from a __ref function _deferred_grow_zone. This way we are
1780 * making sure that it is not inlined into permanent text section.
1782 static noinline bool __init
1783 deferred_grow_zone(struct zone *zone, unsigned int order)
1785 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1786 pg_data_t *pgdat = zone->zone_pgdat;
1787 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1788 unsigned long spfn, epfn, flags;
1789 unsigned long nr_pages = 0;
1792 /* Only the last zone may have deferred pages */
1793 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1796 pgdat_resize_lock(pgdat, &flags);
1799 * If deferred pages have been initialized while we were waiting for
1800 * the lock, return true, as the zone was grown. The caller will retry
1801 * this zone. We won't return to this function since the caller also
1802 * has this static branch.
1804 if (!static_branch_unlikely(&deferred_pages)) {
1805 pgdat_resize_unlock(pgdat, &flags);
1810 * If someone grew this zone while we were waiting for spinlock, return
1811 * true, as there might be enough pages already.
1813 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1814 pgdat_resize_unlock(pgdat, &flags);
1818 /* If the zone is empty somebody else may have cleared out the zone */
1819 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1820 first_deferred_pfn)) {
1821 pgdat->first_deferred_pfn = ULONG_MAX;
1822 pgdat_resize_unlock(pgdat, &flags);
1823 /* Retry only once. */
1824 return first_deferred_pfn != ULONG_MAX;
1828 * Initialize and free pages in MAX_ORDER sized increments so
1829 * that we can avoid introducing any issues with the buddy
1832 while (spfn < epfn) {
1833 /* update our first deferred PFN for this section */
1834 first_deferred_pfn = spfn;
1836 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1838 /* We should only stop along section boundaries */
1839 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1842 /* If our quota has been met we can stop here */
1843 if (nr_pages >= nr_pages_needed)
1847 pgdat->first_deferred_pfn = spfn;
1848 pgdat_resize_unlock(pgdat, &flags);
1850 return nr_pages > 0;
1854 * deferred_grow_zone() is __init, but it is called from
1855 * get_page_from_freelist() during early boot until deferred_pages permanently
1856 * disables this call. This is why we have refdata wrapper to avoid warning,
1857 * and to ensure that the function body gets unloaded.
1860 _deferred_grow_zone(struct zone *zone, unsigned int order)
1862 return deferred_grow_zone(zone, order);
1865 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1867 void __init page_alloc_init_late(void)
1872 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1874 /* There will be num_node_state(N_MEMORY) threads */
1875 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1876 for_each_node_state(nid, N_MEMORY) {
1877 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1880 /* Block until all are initialised */
1881 wait_for_completion(&pgdat_init_all_done_comp);
1884 * We initialized the rest of the deferred pages. Permanently disable
1885 * on-demand struct page initialization.
1887 static_branch_disable(&deferred_pages);
1889 /* Reinit limits that are based on free pages after the kernel is up */
1890 files_maxfiles_init();
1893 /* Discard memblock private memory */
1896 for_each_node_state(nid, N_MEMORY)
1897 shuffle_free_memory(NODE_DATA(nid));
1899 for_each_populated_zone(zone)
1900 set_zone_contiguous(zone);
1902 #ifdef CONFIG_DEBUG_PAGEALLOC
1903 init_debug_guardpage();
1908 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1909 void __init init_cma_reserved_pageblock(struct page *page)
1911 unsigned i = pageblock_nr_pages;
1912 struct page *p = page;
1915 __ClearPageReserved(p);
1916 set_page_count(p, 0);
1919 set_pageblock_migratetype(page, MIGRATE_CMA);
1921 if (pageblock_order >= MAX_ORDER) {
1922 i = pageblock_nr_pages;
1925 set_page_refcounted(p);
1926 __free_pages(p, MAX_ORDER - 1);
1927 p += MAX_ORDER_NR_PAGES;
1928 } while (i -= MAX_ORDER_NR_PAGES);
1930 set_page_refcounted(page);
1931 __free_pages(page, pageblock_order);
1934 adjust_managed_page_count(page, pageblock_nr_pages);
1939 * The order of subdivision here is critical for the IO subsystem.
1940 * Please do not alter this order without good reasons and regression
1941 * testing. Specifically, as large blocks of memory are subdivided,
1942 * the order in which smaller blocks are delivered depends on the order
1943 * they're subdivided in this function. This is the primary factor
1944 * influencing the order in which pages are delivered to the IO
1945 * subsystem according to empirical testing, and this is also justified
1946 * by considering the behavior of a buddy system containing a single
1947 * large block of memory acted on by a series of small allocations.
1948 * This behavior is a critical factor in sglist merging's success.
1952 static inline void expand(struct zone *zone, struct page *page,
1953 int low, int high, struct free_area *area,
1956 unsigned long size = 1 << high;
1958 while (high > low) {
1962 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1965 * Mark as guard pages (or page), that will allow to
1966 * merge back to allocator when buddy will be freed.
1967 * Corresponding page table entries will not be touched,
1968 * pages will stay not present in virtual address space
1970 if (set_page_guard(zone, &page[size], high, migratetype))
1973 add_to_free_area(&page[size], area, migratetype);
1974 set_page_order(&page[size], high);
1978 static void check_new_page_bad(struct page *page)
1980 const char *bad_reason = NULL;
1981 unsigned long bad_flags = 0;
1983 if (unlikely(atomic_read(&page->_mapcount) != -1))
1984 bad_reason = "nonzero mapcount";
1985 if (unlikely(page->mapping != NULL))
1986 bad_reason = "non-NULL mapping";
1987 if (unlikely(page_ref_count(page) != 0))
1988 bad_reason = "nonzero _refcount";
1989 if (unlikely(page->flags & __PG_HWPOISON)) {
1990 bad_reason = "HWPoisoned (hardware-corrupted)";
1991 bad_flags = __PG_HWPOISON;
1992 /* Don't complain about hwpoisoned pages */
1993 page_mapcount_reset(page); /* remove PageBuddy */
1996 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1997 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1998 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2001 if (unlikely(page->mem_cgroup))
2002 bad_reason = "page still charged to cgroup";
2004 bad_page(page, bad_reason, bad_flags);
2008 * This page is about to be returned from the page allocator
2010 static inline int check_new_page(struct page *page)
2012 if (likely(page_expected_state(page,
2013 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2016 check_new_page_bad(page);
2020 static inline bool free_pages_prezeroed(void)
2022 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2023 page_poisoning_enabled();
2026 #ifdef CONFIG_DEBUG_VM
2028 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2029 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2030 * also checked when pcp lists are refilled from the free lists.
2032 static inline bool check_pcp_refill(struct page *page)
2034 if (debug_pagealloc_enabled())
2035 return check_new_page(page);
2040 static inline bool check_new_pcp(struct page *page)
2042 return check_new_page(page);
2046 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2047 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2048 * enabled, they are also checked when being allocated from the pcp lists.
2050 static inline bool check_pcp_refill(struct page *page)
2052 return check_new_page(page);
2054 static inline bool check_new_pcp(struct page *page)
2056 if (debug_pagealloc_enabled())
2057 return check_new_page(page);
2061 #endif /* CONFIG_DEBUG_VM */
2063 static bool check_new_pages(struct page *page, unsigned int order)
2066 for (i = 0; i < (1 << order); i++) {
2067 struct page *p = page + i;
2069 if (unlikely(check_new_page(p)))
2076 inline void post_alloc_hook(struct page *page, unsigned int order,
2079 set_page_private(page, 0);
2080 set_page_refcounted(page);
2082 arch_alloc_page(page, order);
2083 if (debug_pagealloc_enabled())
2084 kernel_map_pages(page, 1 << order, 1);
2085 kasan_alloc_pages(page, order);
2086 kernel_poison_pages(page, 1 << order, 1);
2087 set_page_owner(page, order, gfp_flags);
2090 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2091 unsigned int alloc_flags)
2095 post_alloc_hook(page, order, gfp_flags);
2097 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2098 for (i = 0; i < (1 << order); i++)
2099 clear_highpage(page + i);
2101 if (order && (gfp_flags & __GFP_COMP))
2102 prep_compound_page(page, order);
2105 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2106 * allocate the page. The expectation is that the caller is taking
2107 * steps that will free more memory. The caller should avoid the page
2108 * being used for !PFMEMALLOC purposes.
2110 if (alloc_flags & ALLOC_NO_WATERMARKS)
2111 set_page_pfmemalloc(page);
2113 clear_page_pfmemalloc(page);
2117 * Go through the free lists for the given migratetype and remove
2118 * the smallest available page from the freelists
2120 static __always_inline
2121 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2124 unsigned int current_order;
2125 struct free_area *area;
2128 /* Find a page of the appropriate size in the preferred list */
2129 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2130 area = &(zone->free_area[current_order]);
2131 page = get_page_from_free_area(area, migratetype);
2134 del_page_from_free_area(page, area);
2135 expand(zone, page, order, current_order, area, migratetype);
2136 set_pcppage_migratetype(page, migratetype);
2145 * This array describes the order lists are fallen back to when
2146 * the free lists for the desirable migrate type are depleted
2148 static int fallbacks[MIGRATE_TYPES][4] = {
2149 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2150 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2151 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2153 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2155 #ifdef CONFIG_MEMORY_ISOLATION
2156 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2161 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2164 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2167 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2168 unsigned int order) { return NULL; }
2172 * Move the free pages in a range to the free lists of the requested type.
2173 * Note that start_page and end_pages are not aligned on a pageblock
2174 * boundary. If alignment is required, use move_freepages_block()
2176 static int move_freepages(struct zone *zone,
2177 struct page *start_page, struct page *end_page,
2178 int migratetype, int *num_movable)
2182 int pages_moved = 0;
2184 #ifndef CONFIG_HOLES_IN_ZONE
2186 * page_zone is not safe to call in this context when
2187 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2188 * anyway as we check zone boundaries in move_freepages_block().
2189 * Remove at a later date when no bug reports exist related to
2190 * grouping pages by mobility
2192 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2193 pfn_valid(page_to_pfn(end_page)) &&
2194 page_zone(start_page) != page_zone(end_page));
2196 for (page = start_page; page <= end_page;) {
2197 if (!pfn_valid_within(page_to_pfn(page))) {
2202 /* Make sure we are not inadvertently changing nodes */
2203 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2205 if (!PageBuddy(page)) {
2207 * We assume that pages that could be isolated for
2208 * migration are movable. But we don't actually try
2209 * isolating, as that would be expensive.
2212 (PageLRU(page) || __PageMovable(page)))
2219 order = page_order(page);
2220 move_to_free_area(page, &zone->free_area[order], migratetype);
2222 pages_moved += 1 << order;
2228 int move_freepages_block(struct zone *zone, struct page *page,
2229 int migratetype, int *num_movable)
2231 unsigned long start_pfn, end_pfn;
2232 struct page *start_page, *end_page;
2237 start_pfn = page_to_pfn(page);
2238 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2239 start_page = pfn_to_page(start_pfn);
2240 end_page = start_page + pageblock_nr_pages - 1;
2241 end_pfn = start_pfn + pageblock_nr_pages - 1;
2243 /* Do not cross zone boundaries */
2244 if (!zone_spans_pfn(zone, start_pfn))
2246 if (!zone_spans_pfn(zone, end_pfn))
2249 return move_freepages(zone, start_page, end_page, migratetype,
2253 static void change_pageblock_range(struct page *pageblock_page,
2254 int start_order, int migratetype)
2256 int nr_pageblocks = 1 << (start_order - pageblock_order);
2258 while (nr_pageblocks--) {
2259 set_pageblock_migratetype(pageblock_page, migratetype);
2260 pageblock_page += pageblock_nr_pages;
2265 * When we are falling back to another migratetype during allocation, try to
2266 * steal extra free pages from the same pageblocks to satisfy further
2267 * allocations, instead of polluting multiple pageblocks.
2269 * If we are stealing a relatively large buddy page, it is likely there will
2270 * be more free pages in the pageblock, so try to steal them all. For
2271 * reclaimable and unmovable allocations, we steal regardless of page size,
2272 * as fragmentation caused by those allocations polluting movable pageblocks
2273 * is worse than movable allocations stealing from unmovable and reclaimable
2276 static bool can_steal_fallback(unsigned int order, int start_mt)
2279 * Leaving this order check is intended, although there is
2280 * relaxed order check in next check. The reason is that
2281 * we can actually steal whole pageblock if this condition met,
2282 * but, below check doesn't guarantee it and that is just heuristic
2283 * so could be changed anytime.
2285 if (order >= pageblock_order)
2288 if (order >= pageblock_order / 2 ||
2289 start_mt == MIGRATE_RECLAIMABLE ||
2290 start_mt == MIGRATE_UNMOVABLE ||
2291 page_group_by_mobility_disabled)
2297 static inline void boost_watermark(struct zone *zone)
2299 unsigned long max_boost;
2301 if (!watermark_boost_factor)
2304 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2305 watermark_boost_factor, 10000);
2308 * high watermark may be uninitialised if fragmentation occurs
2309 * very early in boot so do not boost. We do not fall
2310 * through and boost by pageblock_nr_pages as failing
2311 * allocations that early means that reclaim is not going
2312 * to help and it may even be impossible to reclaim the
2313 * boosted watermark resulting in a hang.
2318 max_boost = max(pageblock_nr_pages, max_boost);
2320 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2325 * This function implements actual steal behaviour. If order is large enough,
2326 * we can steal whole pageblock. If not, we first move freepages in this
2327 * pageblock to our migratetype and determine how many already-allocated pages
2328 * are there in the pageblock with a compatible migratetype. If at least half
2329 * of pages are free or compatible, we can change migratetype of the pageblock
2330 * itself, so pages freed in the future will be put on the correct free list.
2332 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2333 unsigned int alloc_flags, int start_type, bool whole_block)
2335 unsigned int current_order = page_order(page);
2336 struct free_area *area;
2337 int free_pages, movable_pages, alike_pages;
2340 old_block_type = get_pageblock_migratetype(page);
2343 * This can happen due to races and we want to prevent broken
2344 * highatomic accounting.
2346 if (is_migrate_highatomic(old_block_type))
2349 /* Take ownership for orders >= pageblock_order */
2350 if (current_order >= pageblock_order) {
2351 change_pageblock_range(page, current_order, start_type);
2356 * Boost watermarks to increase reclaim pressure to reduce the
2357 * likelihood of future fallbacks. Wake kswapd now as the node
2358 * may be balanced overall and kswapd will not wake naturally.
2360 boost_watermark(zone);
2361 if (alloc_flags & ALLOC_KSWAPD)
2362 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2364 /* We are not allowed to try stealing from the whole block */
2368 free_pages = move_freepages_block(zone, page, start_type,
2371 * Determine how many pages are compatible with our allocation.
2372 * For movable allocation, it's the number of movable pages which
2373 * we just obtained. For other types it's a bit more tricky.
2375 if (start_type == MIGRATE_MOVABLE) {
2376 alike_pages = movable_pages;
2379 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2380 * to MOVABLE pageblock, consider all non-movable pages as
2381 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2382 * vice versa, be conservative since we can't distinguish the
2383 * exact migratetype of non-movable pages.
2385 if (old_block_type == MIGRATE_MOVABLE)
2386 alike_pages = pageblock_nr_pages
2387 - (free_pages + movable_pages);
2392 /* moving whole block can fail due to zone boundary conditions */
2397 * If a sufficient number of pages in the block are either free or of
2398 * comparable migratability as our allocation, claim the whole block.
2400 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2401 page_group_by_mobility_disabled)
2402 set_pageblock_migratetype(page, start_type);
2407 area = &zone->free_area[current_order];
2408 move_to_free_area(page, area, start_type);
2412 * Check whether there is a suitable fallback freepage with requested order.
2413 * If only_stealable is true, this function returns fallback_mt only if
2414 * we can steal other freepages all together. This would help to reduce
2415 * fragmentation due to mixed migratetype pages in one pageblock.
2417 int find_suitable_fallback(struct free_area *area, unsigned int order,
2418 int migratetype, bool only_stealable, bool *can_steal)
2423 if (area->nr_free == 0)
2428 fallback_mt = fallbacks[migratetype][i];
2429 if (fallback_mt == MIGRATE_TYPES)
2432 if (free_area_empty(area, fallback_mt))
2435 if (can_steal_fallback(order, migratetype))
2438 if (!only_stealable)
2449 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2450 * there are no empty page blocks that contain a page with a suitable order
2452 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2453 unsigned int alloc_order)
2456 unsigned long max_managed, flags;
2459 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2460 * Check is race-prone but harmless.
2462 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2463 if (zone->nr_reserved_highatomic >= max_managed)
2466 spin_lock_irqsave(&zone->lock, flags);
2468 /* Recheck the nr_reserved_highatomic limit under the lock */
2469 if (zone->nr_reserved_highatomic >= max_managed)
2473 mt = get_pageblock_migratetype(page);
2474 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2475 && !is_migrate_cma(mt)) {
2476 zone->nr_reserved_highatomic += pageblock_nr_pages;
2477 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2478 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2482 spin_unlock_irqrestore(&zone->lock, flags);
2486 * Used when an allocation is about to fail under memory pressure. This
2487 * potentially hurts the reliability of high-order allocations when under
2488 * intense memory pressure but failed atomic allocations should be easier
2489 * to recover from than an OOM.
2491 * If @force is true, try to unreserve a pageblock even though highatomic
2492 * pageblock is exhausted.
2494 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2497 struct zonelist *zonelist = ac->zonelist;
2498 unsigned long flags;
2505 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2508 * Preserve at least one pageblock unless memory pressure
2511 if (!force && zone->nr_reserved_highatomic <=
2515 spin_lock_irqsave(&zone->lock, flags);
2516 for (order = 0; order < MAX_ORDER; order++) {
2517 struct free_area *area = &(zone->free_area[order]);
2519 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2524 * In page freeing path, migratetype change is racy so
2525 * we can counter several free pages in a pageblock
2526 * in this loop althoug we changed the pageblock type
2527 * from highatomic to ac->migratetype. So we should
2528 * adjust the count once.
2530 if (is_migrate_highatomic_page(page)) {
2532 * It should never happen but changes to
2533 * locking could inadvertently allow a per-cpu
2534 * drain to add pages to MIGRATE_HIGHATOMIC
2535 * while unreserving so be safe and watch for
2538 zone->nr_reserved_highatomic -= min(
2540 zone->nr_reserved_highatomic);
2544 * Convert to ac->migratetype and avoid the normal
2545 * pageblock stealing heuristics. Minimally, the caller
2546 * is doing the work and needs the pages. More
2547 * importantly, if the block was always converted to
2548 * MIGRATE_UNMOVABLE or another type then the number
2549 * of pageblocks that cannot be completely freed
2552 set_pageblock_migratetype(page, ac->migratetype);
2553 ret = move_freepages_block(zone, page, ac->migratetype,
2556 spin_unlock_irqrestore(&zone->lock, flags);
2560 spin_unlock_irqrestore(&zone->lock, flags);
2567 * Try finding a free buddy page on the fallback list and put it on the free
2568 * list of requested migratetype, possibly along with other pages from the same
2569 * block, depending on fragmentation avoidance heuristics. Returns true if
2570 * fallback was found so that __rmqueue_smallest() can grab it.
2572 * The use of signed ints for order and current_order is a deliberate
2573 * deviation from the rest of this file, to make the for loop
2574 * condition simpler.
2576 static __always_inline bool
2577 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2578 unsigned int alloc_flags)
2580 struct free_area *area;
2582 int min_order = order;
2588 * Do not steal pages from freelists belonging to other pageblocks
2589 * i.e. orders < pageblock_order. If there are no local zones free,
2590 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2592 if (alloc_flags & ALLOC_NOFRAGMENT)
2593 min_order = pageblock_order;
2596 * Find the largest available free page in the other list. This roughly
2597 * approximates finding the pageblock with the most free pages, which
2598 * would be too costly to do exactly.
2600 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2602 area = &(zone->free_area[current_order]);
2603 fallback_mt = find_suitable_fallback(area, current_order,
2604 start_migratetype, false, &can_steal);
2605 if (fallback_mt == -1)
2609 * We cannot steal all free pages from the pageblock and the
2610 * requested migratetype is movable. In that case it's better to
2611 * steal and split the smallest available page instead of the
2612 * largest available page, because even if the next movable
2613 * allocation falls back into a different pageblock than this
2614 * one, it won't cause permanent fragmentation.
2616 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2617 && current_order > order)
2626 for (current_order = order; current_order < MAX_ORDER;
2628 area = &(zone->free_area[current_order]);
2629 fallback_mt = find_suitable_fallback(area, current_order,
2630 start_migratetype, false, &can_steal);
2631 if (fallback_mt != -1)
2636 * This should not happen - we already found a suitable fallback
2637 * when looking for the largest page.
2639 VM_BUG_ON(current_order == MAX_ORDER);
2642 page = get_page_from_free_area(area, fallback_mt);
2644 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2647 trace_mm_page_alloc_extfrag(page, order, current_order,
2648 start_migratetype, fallback_mt);
2655 * Do the hard work of removing an element from the buddy allocator.
2656 * Call me with the zone->lock already held.
2658 static __always_inline struct page *
2659 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2660 unsigned int alloc_flags)
2665 page = __rmqueue_smallest(zone, order, migratetype);
2666 if (unlikely(!page)) {
2667 if (migratetype == MIGRATE_MOVABLE)
2668 page = __rmqueue_cma_fallback(zone, order);
2670 if (!page && __rmqueue_fallback(zone, order, migratetype,
2675 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2680 * Obtain a specified number of elements from the buddy allocator, all under
2681 * a single hold of the lock, for efficiency. Add them to the supplied list.
2682 * Returns the number of new pages which were placed at *list.
2684 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2685 unsigned long count, struct list_head *list,
2686 int migratetype, unsigned int alloc_flags)
2690 spin_lock(&zone->lock);
2691 for (i = 0; i < count; ++i) {
2692 struct page *page = __rmqueue(zone, order, migratetype,
2694 if (unlikely(page == NULL))
2697 if (unlikely(check_pcp_refill(page)))
2701 * Split buddy pages returned by expand() are received here in
2702 * physical page order. The page is added to the tail of
2703 * caller's list. From the callers perspective, the linked list
2704 * is ordered by page number under some conditions. This is
2705 * useful for IO devices that can forward direction from the
2706 * head, thus also in the physical page order. This is useful
2707 * for IO devices that can merge IO requests if the physical
2708 * pages are ordered properly.
2710 list_add_tail(&page->lru, list);
2712 if (is_migrate_cma(get_pcppage_migratetype(page)))
2713 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2718 * i pages were removed from the buddy list even if some leak due
2719 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2720 * on i. Do not confuse with 'alloced' which is the number of
2721 * pages added to the pcp list.
2723 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2724 spin_unlock(&zone->lock);
2730 * Called from the vmstat counter updater to drain pagesets of this
2731 * currently executing processor on remote nodes after they have
2734 * Note that this function must be called with the thread pinned to
2735 * a single processor.
2737 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2739 unsigned long flags;
2740 int to_drain, batch;
2742 local_irq_save(flags);
2743 batch = READ_ONCE(pcp->batch);
2744 to_drain = min(pcp->count, batch);
2746 free_pcppages_bulk(zone, to_drain, pcp);
2747 local_irq_restore(flags);
2752 * Drain pcplists of the indicated processor and zone.
2754 * The processor must either be the current processor and the
2755 * thread pinned to the current processor or a processor that
2758 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2760 unsigned long flags;
2761 struct per_cpu_pageset *pset;
2762 struct per_cpu_pages *pcp;
2764 local_irq_save(flags);
2765 pset = per_cpu_ptr(zone->pageset, cpu);
2769 free_pcppages_bulk(zone, pcp->count, pcp);
2770 local_irq_restore(flags);
2774 * Drain pcplists of all zones on the indicated processor.
2776 * The processor must either be the current processor and the
2777 * thread pinned to the current processor or a processor that
2780 static void drain_pages(unsigned int cpu)
2784 for_each_populated_zone(zone) {
2785 drain_pages_zone(cpu, zone);
2790 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2792 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2793 * the single zone's pages.
2795 void drain_local_pages(struct zone *zone)
2797 int cpu = smp_processor_id();
2800 drain_pages_zone(cpu, zone);
2805 static void drain_local_pages_wq(struct work_struct *work)
2807 struct pcpu_drain *drain;
2809 drain = container_of(work, struct pcpu_drain, work);
2812 * drain_all_pages doesn't use proper cpu hotplug protection so
2813 * we can race with cpu offline when the WQ can move this from
2814 * a cpu pinned worker to an unbound one. We can operate on a different
2815 * cpu which is allright but we also have to make sure to not move to
2819 drain_local_pages(drain->zone);
2824 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2826 * When zone parameter is non-NULL, spill just the single zone's pages.
2828 * Note that this can be extremely slow as the draining happens in a workqueue.
2830 void drain_all_pages(struct zone *zone)
2835 * Allocate in the BSS so we wont require allocation in
2836 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2838 static cpumask_t cpus_with_pcps;
2841 * Make sure nobody triggers this path before mm_percpu_wq is fully
2844 if (WARN_ON_ONCE(!mm_percpu_wq))
2848 * Do not drain if one is already in progress unless it's specific to
2849 * a zone. Such callers are primarily CMA and memory hotplug and need
2850 * the drain to be complete when the call returns.
2852 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2855 mutex_lock(&pcpu_drain_mutex);
2859 * We don't care about racing with CPU hotplug event
2860 * as offline notification will cause the notified
2861 * cpu to drain that CPU pcps and on_each_cpu_mask
2862 * disables preemption as part of its processing
2864 for_each_online_cpu(cpu) {
2865 struct per_cpu_pageset *pcp;
2867 bool has_pcps = false;
2870 pcp = per_cpu_ptr(zone->pageset, cpu);
2874 for_each_populated_zone(z) {
2875 pcp = per_cpu_ptr(z->pageset, cpu);
2876 if (pcp->pcp.count) {
2884 cpumask_set_cpu(cpu, &cpus_with_pcps);
2886 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2889 for_each_cpu(cpu, &cpus_with_pcps) {
2890 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2893 INIT_WORK(&drain->work, drain_local_pages_wq);
2894 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2896 for_each_cpu(cpu, &cpus_with_pcps)
2897 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2899 mutex_unlock(&pcpu_drain_mutex);
2902 #ifdef CONFIG_HIBERNATION
2905 * Touch the watchdog for every WD_PAGE_COUNT pages.
2907 #define WD_PAGE_COUNT (128*1024)
2909 void mark_free_pages(struct zone *zone)
2911 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2912 unsigned long flags;
2913 unsigned int order, t;
2916 if (zone_is_empty(zone))
2919 spin_lock_irqsave(&zone->lock, flags);
2921 max_zone_pfn = zone_end_pfn(zone);
2922 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2923 if (pfn_valid(pfn)) {
2924 page = pfn_to_page(pfn);
2926 if (!--page_count) {
2927 touch_nmi_watchdog();
2928 page_count = WD_PAGE_COUNT;
2931 if (page_zone(page) != zone)
2934 if (!swsusp_page_is_forbidden(page))
2935 swsusp_unset_page_free(page);
2938 for_each_migratetype_order(order, t) {
2939 list_for_each_entry(page,
2940 &zone->free_area[order].free_list[t], lru) {
2943 pfn = page_to_pfn(page);
2944 for (i = 0; i < (1UL << order); i++) {
2945 if (!--page_count) {
2946 touch_nmi_watchdog();
2947 page_count = WD_PAGE_COUNT;
2949 swsusp_set_page_free(pfn_to_page(pfn + i));
2953 spin_unlock_irqrestore(&zone->lock, flags);
2955 #endif /* CONFIG_PM */
2957 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2961 if (!free_pcp_prepare(page))
2964 migratetype = get_pfnblock_migratetype(page, pfn);
2965 set_pcppage_migratetype(page, migratetype);
2969 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2971 struct zone *zone = page_zone(page);
2972 struct per_cpu_pages *pcp;
2975 migratetype = get_pcppage_migratetype(page);
2976 __count_vm_event(PGFREE);
2979 * We only track unmovable, reclaimable and movable on pcp lists.
2980 * Free ISOLATE pages back to the allocator because they are being
2981 * offlined but treat HIGHATOMIC as movable pages so we can get those
2982 * areas back if necessary. Otherwise, we may have to free
2983 * excessively into the page allocator
2985 if (migratetype >= MIGRATE_PCPTYPES) {
2986 if (unlikely(is_migrate_isolate(migratetype))) {
2987 free_one_page(zone, page, pfn, 0, migratetype);
2990 migratetype = MIGRATE_MOVABLE;
2993 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2994 list_add(&page->lru, &pcp->lists[migratetype]);
2996 if (pcp->count >= pcp->high) {
2997 unsigned long batch = READ_ONCE(pcp->batch);
2998 free_pcppages_bulk(zone, batch, pcp);
3003 * Free a 0-order page
3005 void free_unref_page(struct page *page)
3007 unsigned long flags;
3008 unsigned long pfn = page_to_pfn(page);
3010 if (!free_unref_page_prepare(page, pfn))
3013 local_irq_save(flags);
3014 free_unref_page_commit(page, pfn);
3015 local_irq_restore(flags);
3019 * Free a list of 0-order pages
3021 void free_unref_page_list(struct list_head *list)
3023 struct page *page, *next;
3024 unsigned long flags, pfn;
3025 int batch_count = 0;
3027 /* Prepare pages for freeing */
3028 list_for_each_entry_safe(page, next, list, lru) {
3029 pfn = page_to_pfn(page);
3030 if (!free_unref_page_prepare(page, pfn))
3031 list_del(&page->lru);
3032 set_page_private(page, pfn);
3035 local_irq_save(flags);
3036 list_for_each_entry_safe(page, next, list, lru) {
3037 unsigned long pfn = page_private(page);
3039 set_page_private(page, 0);
3040 trace_mm_page_free_batched(page);
3041 free_unref_page_commit(page, pfn);
3044 * Guard against excessive IRQ disabled times when we get
3045 * a large list of pages to free.
3047 if (++batch_count == SWAP_CLUSTER_MAX) {
3048 local_irq_restore(flags);
3050 local_irq_save(flags);
3053 local_irq_restore(flags);
3057 * split_page takes a non-compound higher-order page, and splits it into
3058 * n (1<<order) sub-pages: page[0..n]
3059 * Each sub-page must be freed individually.
3061 * Note: this is probably too low level an operation for use in drivers.
3062 * Please consult with lkml before using this in your driver.
3064 void split_page(struct page *page, unsigned int order)
3068 VM_BUG_ON_PAGE(PageCompound(page), page);
3069 VM_BUG_ON_PAGE(!page_count(page), page);
3071 for (i = 1; i < (1 << order); i++)
3072 set_page_refcounted(page + i);
3073 split_page_owner(page, order);
3075 EXPORT_SYMBOL_GPL(split_page);
3077 int __isolate_free_page(struct page *page, unsigned int order)
3079 struct free_area *area = &page_zone(page)->free_area[order];
3080 unsigned long watermark;
3084 BUG_ON(!PageBuddy(page));
3086 zone = page_zone(page);
3087 mt = get_pageblock_migratetype(page);
3089 if (!is_migrate_isolate(mt)) {
3091 * Obey watermarks as if the page was being allocated. We can
3092 * emulate a high-order watermark check with a raised order-0
3093 * watermark, because we already know our high-order page
3096 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3097 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3100 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3103 /* Remove page from free list */
3105 del_page_from_free_area(page, area);
3108 * Set the pageblock if the isolated page is at least half of a
3111 if (order >= pageblock_order - 1) {
3112 struct page *endpage = page + (1 << order) - 1;
3113 for (; page < endpage; page += pageblock_nr_pages) {
3114 int mt = get_pageblock_migratetype(page);
3115 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3116 && !is_migrate_highatomic(mt))
3117 set_pageblock_migratetype(page,
3123 return 1UL << order;
3127 * Update NUMA hit/miss statistics
3129 * Must be called with interrupts disabled.
3131 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3134 enum numa_stat_item local_stat = NUMA_LOCAL;
3136 /* skip numa counters update if numa stats is disabled */
3137 if (!static_branch_likely(&vm_numa_stat_key))
3140 if (zone_to_nid(z) != numa_node_id())
3141 local_stat = NUMA_OTHER;
3143 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3144 __inc_numa_state(z, NUMA_HIT);
3146 __inc_numa_state(z, NUMA_MISS);
3147 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3149 __inc_numa_state(z, local_stat);
3153 /* Remove page from the per-cpu list, caller must protect the list */
3154 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3155 unsigned int alloc_flags,
3156 struct per_cpu_pages *pcp,
3157 struct list_head *list)
3162 if (list_empty(list)) {
3163 pcp->count += rmqueue_bulk(zone, 0,
3165 migratetype, alloc_flags);
3166 if (unlikely(list_empty(list)))
3170 page = list_first_entry(list, struct page, lru);
3171 list_del(&page->lru);
3173 } while (check_new_pcp(page));
3178 /* Lock and remove page from the per-cpu list */
3179 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3180 struct zone *zone, gfp_t gfp_flags,
3181 int migratetype, unsigned int alloc_flags)
3183 struct per_cpu_pages *pcp;
3184 struct list_head *list;
3186 unsigned long flags;
3188 local_irq_save(flags);
3189 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3190 list = &pcp->lists[migratetype];
3191 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3193 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3194 zone_statistics(preferred_zone, zone);
3196 local_irq_restore(flags);
3201 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3204 struct page *rmqueue(struct zone *preferred_zone,
3205 struct zone *zone, unsigned int order,
3206 gfp_t gfp_flags, unsigned int alloc_flags,
3209 unsigned long flags;
3212 if (likely(order == 0)) {
3213 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3214 migratetype, alloc_flags);
3219 * We most definitely don't want callers attempting to
3220 * allocate greater than order-1 page units with __GFP_NOFAIL.
3222 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3223 spin_lock_irqsave(&zone->lock, flags);
3227 if (alloc_flags & ALLOC_HARDER) {
3228 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3230 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3233 page = __rmqueue(zone, order, migratetype, alloc_flags);
3234 } while (page && check_new_pages(page, order));
3235 spin_unlock(&zone->lock);
3238 __mod_zone_freepage_state(zone, -(1 << order),
3239 get_pcppage_migratetype(page));
3241 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3242 zone_statistics(preferred_zone, zone);
3243 local_irq_restore(flags);
3246 /* Separate test+clear to avoid unnecessary atomics */
3247 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3248 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3249 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3252 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3256 local_irq_restore(flags);
3260 #ifdef CONFIG_FAIL_PAGE_ALLOC
3263 struct fault_attr attr;
3265 bool ignore_gfp_highmem;
3266 bool ignore_gfp_reclaim;
3268 } fail_page_alloc = {
3269 .attr = FAULT_ATTR_INITIALIZER,
3270 .ignore_gfp_reclaim = true,
3271 .ignore_gfp_highmem = true,
3275 static int __init setup_fail_page_alloc(char *str)
3277 return setup_fault_attr(&fail_page_alloc.attr, str);
3279 __setup("fail_page_alloc=", setup_fail_page_alloc);
3281 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3283 if (order < fail_page_alloc.min_order)
3285 if (gfp_mask & __GFP_NOFAIL)
3287 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3289 if (fail_page_alloc.ignore_gfp_reclaim &&
3290 (gfp_mask & __GFP_DIRECT_RECLAIM))
3293 return should_fail(&fail_page_alloc.attr, 1 << order);
3296 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3298 static int __init fail_page_alloc_debugfs(void)
3300 umode_t mode = S_IFREG | 0600;
3303 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3304 &fail_page_alloc.attr);
3306 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3307 &fail_page_alloc.ignore_gfp_reclaim);
3308 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3309 &fail_page_alloc.ignore_gfp_highmem);
3310 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3315 late_initcall(fail_page_alloc_debugfs);
3317 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3319 #else /* CONFIG_FAIL_PAGE_ALLOC */
3321 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3326 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3328 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3330 return __should_fail_alloc_page(gfp_mask, order);
3332 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3335 * Return true if free base pages are above 'mark'. For high-order checks it
3336 * will return true of the order-0 watermark is reached and there is at least
3337 * one free page of a suitable size. Checking now avoids taking the zone lock
3338 * to check in the allocation paths if no pages are free.
3340 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3341 int classzone_idx, unsigned int alloc_flags,
3346 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3348 /* free_pages may go negative - that's OK */
3349 free_pages -= (1 << order) - 1;
3351 if (alloc_flags & ALLOC_HIGH)
3355 * If the caller does not have rights to ALLOC_HARDER then subtract
3356 * the high-atomic reserves. This will over-estimate the size of the
3357 * atomic reserve but it avoids a search.
3359 if (likely(!alloc_harder)) {
3360 free_pages -= z->nr_reserved_highatomic;
3363 * OOM victims can try even harder than normal ALLOC_HARDER
3364 * users on the grounds that it's definitely going to be in
3365 * the exit path shortly and free memory. Any allocation it
3366 * makes during the free path will be small and short-lived.
3368 if (alloc_flags & ALLOC_OOM)
3376 /* If allocation can't use CMA areas don't use free CMA pages */
3377 if (!(alloc_flags & ALLOC_CMA))
3378 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3382 * Check watermarks for an order-0 allocation request. If these
3383 * are not met, then a high-order request also cannot go ahead
3384 * even if a suitable page happened to be free.
3386 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3389 /* If this is an order-0 request then the watermark is fine */
3393 /* For a high-order request, check at least one suitable page is free */
3394 for (o = order; o < MAX_ORDER; o++) {
3395 struct free_area *area = &z->free_area[o];
3401 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3402 if (!free_area_empty(area, mt))
3407 if ((alloc_flags & ALLOC_CMA) &&
3408 !free_area_empty(area, MIGRATE_CMA)) {
3413 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3419 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3420 int classzone_idx, unsigned int alloc_flags)
3422 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3423 zone_page_state(z, NR_FREE_PAGES));
3426 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3427 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3429 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3433 /* If allocation can't use CMA areas don't use free CMA pages */
3434 if (!(alloc_flags & ALLOC_CMA))
3435 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3439 * Fast check for order-0 only. If this fails then the reserves
3440 * need to be calculated. There is a corner case where the check
3441 * passes but only the high-order atomic reserve are free. If
3442 * the caller is !atomic then it'll uselessly search the free
3443 * list. That corner case is then slower but it is harmless.
3445 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3448 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3452 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3453 unsigned long mark, int classzone_idx)
3455 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3457 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3458 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3460 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3465 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3467 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3470 #else /* CONFIG_NUMA */
3471 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3475 #endif /* CONFIG_NUMA */
3478 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3479 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3480 * premature use of a lower zone may cause lowmem pressure problems that
3481 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3482 * probably too small. It only makes sense to spread allocations to avoid
3483 * fragmentation between the Normal and DMA32 zones.
3485 static inline unsigned int
3486 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3488 unsigned int alloc_flags = 0;
3490 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3491 alloc_flags |= ALLOC_KSWAPD;
3493 #ifdef CONFIG_ZONE_DMA32
3497 if (zone_idx(zone) != ZONE_NORMAL)
3501 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3502 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3503 * on UMA that if Normal is populated then so is DMA32.
3505 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3506 if (nr_online_nodes > 1 && !populated_zone(--zone))
3509 alloc_flags |= ALLOC_NOFRAGMENT;
3510 #endif /* CONFIG_ZONE_DMA32 */
3515 * get_page_from_freelist goes through the zonelist trying to allocate
3518 static struct page *
3519 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3520 const struct alloc_context *ac)
3524 struct pglist_data *last_pgdat_dirty_limit = NULL;
3529 * Scan zonelist, looking for a zone with enough free.
3530 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3532 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3533 z = ac->preferred_zoneref;
3534 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3539 if (cpusets_enabled() &&
3540 (alloc_flags & ALLOC_CPUSET) &&
3541 !__cpuset_zone_allowed(zone, gfp_mask))
3544 * When allocating a page cache page for writing, we
3545 * want to get it from a node that is within its dirty
3546 * limit, such that no single node holds more than its
3547 * proportional share of globally allowed dirty pages.
3548 * The dirty limits take into account the node's
3549 * lowmem reserves and high watermark so that kswapd
3550 * should be able to balance it without having to
3551 * write pages from its LRU list.
3553 * XXX: For now, allow allocations to potentially
3554 * exceed the per-node dirty limit in the slowpath
3555 * (spread_dirty_pages unset) before going into reclaim,
3556 * which is important when on a NUMA setup the allowed
3557 * nodes are together not big enough to reach the
3558 * global limit. The proper fix for these situations
3559 * will require awareness of nodes in the
3560 * dirty-throttling and the flusher threads.
3562 if (ac->spread_dirty_pages) {
3563 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3566 if (!node_dirty_ok(zone->zone_pgdat)) {
3567 last_pgdat_dirty_limit = zone->zone_pgdat;
3572 if (no_fallback && nr_online_nodes > 1 &&
3573 zone != ac->preferred_zoneref->zone) {
3577 * If moving to a remote node, retry but allow
3578 * fragmenting fallbacks. Locality is more important
3579 * than fragmentation avoidance.
3581 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3582 if (zone_to_nid(zone) != local_nid) {
3583 alloc_flags &= ~ALLOC_NOFRAGMENT;
3588 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3589 if (!zone_watermark_fast(zone, order, mark,
3590 ac_classzone_idx(ac), alloc_flags)) {
3593 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3595 * Watermark failed for this zone, but see if we can
3596 * grow this zone if it contains deferred pages.
3598 if (static_branch_unlikely(&deferred_pages)) {
3599 if (_deferred_grow_zone(zone, order))
3603 /* Checked here to keep the fast path fast */
3604 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3605 if (alloc_flags & ALLOC_NO_WATERMARKS)
3608 if (node_reclaim_mode == 0 ||
3609 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3612 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3614 case NODE_RECLAIM_NOSCAN:
3617 case NODE_RECLAIM_FULL:
3618 /* scanned but unreclaimable */
3621 /* did we reclaim enough */
3622 if (zone_watermark_ok(zone, order, mark,
3623 ac_classzone_idx(ac), alloc_flags))
3631 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3632 gfp_mask, alloc_flags, ac->migratetype);
3634 prep_new_page(page, order, gfp_mask, alloc_flags);
3637 * If this is a high-order atomic allocation then check
3638 * if the pageblock should be reserved for the future
3640 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3641 reserve_highatomic_pageblock(page, zone, order);
3645 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3646 /* Try again if zone has deferred pages */
3647 if (static_branch_unlikely(&deferred_pages)) {
3648 if (_deferred_grow_zone(zone, order))
3656 * It's possible on a UMA machine to get through all zones that are
3657 * fragmented. If avoiding fragmentation, reset and try again.
3660 alloc_flags &= ~ALLOC_NOFRAGMENT;
3667 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3669 unsigned int filter = SHOW_MEM_FILTER_NODES;
3670 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3672 if (!__ratelimit(&show_mem_rs))
3676 * This documents exceptions given to allocations in certain
3677 * contexts that are allowed to allocate outside current's set
3680 if (!(gfp_mask & __GFP_NOMEMALLOC))
3681 if (tsk_is_oom_victim(current) ||
3682 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3683 filter &= ~SHOW_MEM_FILTER_NODES;
3684 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3685 filter &= ~SHOW_MEM_FILTER_NODES;
3687 show_mem(filter, nodemask);
3690 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3692 struct va_format vaf;
3694 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3695 DEFAULT_RATELIMIT_BURST);
3697 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3700 va_start(args, fmt);
3703 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3704 current->comm, &vaf, gfp_mask, &gfp_mask,
3705 nodemask_pr_args(nodemask));
3708 cpuset_print_current_mems_allowed();
3711 warn_alloc_show_mem(gfp_mask, nodemask);
3714 static inline struct page *
3715 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3716 unsigned int alloc_flags,
3717 const struct alloc_context *ac)
3721 page = get_page_from_freelist(gfp_mask, order,
3722 alloc_flags|ALLOC_CPUSET, ac);
3724 * fallback to ignore cpuset restriction if our nodes
3728 page = get_page_from_freelist(gfp_mask, order,
3734 static inline struct page *
3735 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3736 const struct alloc_context *ac, unsigned long *did_some_progress)
3738 struct oom_control oc = {
3739 .zonelist = ac->zonelist,
3740 .nodemask = ac->nodemask,
3742 .gfp_mask = gfp_mask,
3747 *did_some_progress = 0;
3750 * Acquire the oom lock. If that fails, somebody else is
3751 * making progress for us.
3753 if (!mutex_trylock(&oom_lock)) {
3754 *did_some_progress = 1;
3755 schedule_timeout_uninterruptible(1);
3760 * Go through the zonelist yet one more time, keep very high watermark
3761 * here, this is only to catch a parallel oom killing, we must fail if
3762 * we're still under heavy pressure. But make sure that this reclaim
3763 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3764 * allocation which will never fail due to oom_lock already held.
3766 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3767 ~__GFP_DIRECT_RECLAIM, order,
3768 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3772 /* Coredumps can quickly deplete all memory reserves */
3773 if (current->flags & PF_DUMPCORE)
3775 /* The OOM killer will not help higher order allocs */
3776 if (order > PAGE_ALLOC_COSTLY_ORDER)
3779 * We have already exhausted all our reclaim opportunities without any
3780 * success so it is time to admit defeat. We will skip the OOM killer
3781 * because it is very likely that the caller has a more reasonable
3782 * fallback than shooting a random task.
3784 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3786 /* The OOM killer does not needlessly kill tasks for lowmem */
3787 if (ac->high_zoneidx < ZONE_NORMAL)
3789 if (pm_suspended_storage())
3792 * XXX: GFP_NOFS allocations should rather fail than rely on
3793 * other request to make a forward progress.
3794 * We are in an unfortunate situation where out_of_memory cannot
3795 * do much for this context but let's try it to at least get
3796 * access to memory reserved if the current task is killed (see
3797 * out_of_memory). Once filesystems are ready to handle allocation
3798 * failures more gracefully we should just bail out here.
3801 /* The OOM killer may not free memory on a specific node */
3802 if (gfp_mask & __GFP_THISNODE)
3805 /* Exhausted what can be done so it's blame time */
3806 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3807 *did_some_progress = 1;
3810 * Help non-failing allocations by giving them access to memory
3813 if (gfp_mask & __GFP_NOFAIL)
3814 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3815 ALLOC_NO_WATERMARKS, ac);
3818 mutex_unlock(&oom_lock);
3823 * Maximum number of compaction retries wit a progress before OOM
3824 * killer is consider as the only way to move forward.
3826 #define MAX_COMPACT_RETRIES 16
3828 #ifdef CONFIG_COMPACTION
3829 /* Try memory compaction for high-order allocations before reclaim */
3830 static struct page *
3831 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3832 unsigned int alloc_flags, const struct alloc_context *ac,
3833 enum compact_priority prio, enum compact_result *compact_result)
3835 struct page *page = NULL;
3836 unsigned long pflags;
3837 unsigned int noreclaim_flag;
3842 psi_memstall_enter(&pflags);
3843 noreclaim_flag = memalloc_noreclaim_save();
3845 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3848 memalloc_noreclaim_restore(noreclaim_flag);
3849 psi_memstall_leave(&pflags);
3852 * At least in one zone compaction wasn't deferred or skipped, so let's
3853 * count a compaction stall
3855 count_vm_event(COMPACTSTALL);
3857 /* Prep a captured page if available */
3859 prep_new_page(page, order, gfp_mask, alloc_flags);
3861 /* Try get a page from the freelist if available */
3863 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3866 struct zone *zone = page_zone(page);
3868 zone->compact_blockskip_flush = false;
3869 compaction_defer_reset(zone, order, true);
3870 count_vm_event(COMPACTSUCCESS);
3875 * It's bad if compaction run occurs and fails. The most likely reason
3876 * is that pages exist, but not enough to satisfy watermarks.
3878 count_vm_event(COMPACTFAIL);
3886 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3887 enum compact_result compact_result,
3888 enum compact_priority *compact_priority,
3889 int *compaction_retries)
3891 int max_retries = MAX_COMPACT_RETRIES;
3894 int retries = *compaction_retries;
3895 enum compact_priority priority = *compact_priority;
3900 if (compaction_made_progress(compact_result))
3901 (*compaction_retries)++;
3904 * compaction considers all the zone as desperately out of memory
3905 * so it doesn't really make much sense to retry except when the
3906 * failure could be caused by insufficient priority
3908 if (compaction_failed(compact_result))
3909 goto check_priority;
3912 * make sure the compaction wasn't deferred or didn't bail out early
3913 * due to locks contention before we declare that we should give up.
3914 * But do not retry if the given zonelist is not suitable for
3917 if (compaction_withdrawn(compact_result)) {
3918 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3923 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3924 * costly ones because they are de facto nofail and invoke OOM
3925 * killer to move on while costly can fail and users are ready
3926 * to cope with that. 1/4 retries is rather arbitrary but we
3927 * would need much more detailed feedback from compaction to
3928 * make a better decision.
3930 if (order > PAGE_ALLOC_COSTLY_ORDER)
3932 if (*compaction_retries <= max_retries) {
3938 * Make sure there are attempts at the highest priority if we exhausted
3939 * all retries or failed at the lower priorities.
3942 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3943 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3945 if (*compact_priority > min_priority) {
3946 (*compact_priority)--;
3947 *compaction_retries = 0;
3951 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3955 static inline struct page *
3956 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3957 unsigned int alloc_flags, const struct alloc_context *ac,
3958 enum compact_priority prio, enum compact_result *compact_result)
3960 *compact_result = COMPACT_SKIPPED;
3965 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3966 enum compact_result compact_result,
3967 enum compact_priority *compact_priority,
3968 int *compaction_retries)
3973 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3977 * There are setups with compaction disabled which would prefer to loop
3978 * inside the allocator rather than hit the oom killer prematurely.
3979 * Let's give them a good hope and keep retrying while the order-0
3980 * watermarks are OK.
3982 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3984 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3985 ac_classzone_idx(ac), alloc_flags))
3990 #endif /* CONFIG_COMPACTION */
3992 #ifdef CONFIG_LOCKDEP
3993 static struct lockdep_map __fs_reclaim_map =
3994 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3996 static bool __need_fs_reclaim(gfp_t gfp_mask)
3998 gfp_mask = current_gfp_context(gfp_mask);
4000 /* no reclaim without waiting on it */
4001 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4004 /* this guy won't enter reclaim */
4005 if (current->flags & PF_MEMALLOC)
4008 /* We're only interested __GFP_FS allocations for now */
4009 if (!(gfp_mask & __GFP_FS))
4012 if (gfp_mask & __GFP_NOLOCKDEP)
4018 void __fs_reclaim_acquire(void)
4020 lock_map_acquire(&__fs_reclaim_map);
4023 void __fs_reclaim_release(void)
4025 lock_map_release(&__fs_reclaim_map);
4028 void fs_reclaim_acquire(gfp_t gfp_mask)
4030 if (__need_fs_reclaim(gfp_mask))
4031 __fs_reclaim_acquire();
4033 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4035 void fs_reclaim_release(gfp_t gfp_mask)
4037 if (__need_fs_reclaim(gfp_mask))
4038 __fs_reclaim_release();
4040 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4043 /* Perform direct synchronous page reclaim */
4045 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4046 const struct alloc_context *ac)
4048 struct reclaim_state reclaim_state;
4050 unsigned int noreclaim_flag;
4051 unsigned long pflags;
4055 /* We now go into synchronous reclaim */
4056 cpuset_memory_pressure_bump();
4057 psi_memstall_enter(&pflags);
4058 fs_reclaim_acquire(gfp_mask);
4059 noreclaim_flag = memalloc_noreclaim_save();
4060 reclaim_state.reclaimed_slab = 0;
4061 current->reclaim_state = &reclaim_state;
4063 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4066 current->reclaim_state = NULL;
4067 memalloc_noreclaim_restore(noreclaim_flag);
4068 fs_reclaim_release(gfp_mask);
4069 psi_memstall_leave(&pflags);
4076 /* The really slow allocator path where we enter direct reclaim */
4077 static inline struct page *
4078 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4079 unsigned int alloc_flags, const struct alloc_context *ac,
4080 unsigned long *did_some_progress)
4082 struct page *page = NULL;
4083 bool drained = false;
4085 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4086 if (unlikely(!(*did_some_progress)))
4090 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4093 * If an allocation failed after direct reclaim, it could be because
4094 * pages are pinned on the per-cpu lists or in high alloc reserves.
4095 * Shrink them them and try again
4097 if (!page && !drained) {
4098 unreserve_highatomic_pageblock(ac, false);
4099 drain_all_pages(NULL);
4107 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4108 const struct alloc_context *ac)
4112 pg_data_t *last_pgdat = NULL;
4113 enum zone_type high_zoneidx = ac->high_zoneidx;
4115 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4117 if (last_pgdat != zone->zone_pgdat)
4118 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4119 last_pgdat = zone->zone_pgdat;
4123 static inline unsigned int
4124 gfp_to_alloc_flags(gfp_t gfp_mask)
4126 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4128 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4129 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4132 * The caller may dip into page reserves a bit more if the caller
4133 * cannot run direct reclaim, or if the caller has realtime scheduling
4134 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4135 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4137 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4139 if (gfp_mask & __GFP_ATOMIC) {
4141 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4142 * if it can't schedule.
4144 if (!(gfp_mask & __GFP_NOMEMALLOC))
4145 alloc_flags |= ALLOC_HARDER;
4147 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4148 * comment for __cpuset_node_allowed().
4150 alloc_flags &= ~ALLOC_CPUSET;
4151 } else if (unlikely(rt_task(current)) && !in_interrupt())
4152 alloc_flags |= ALLOC_HARDER;
4154 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4155 alloc_flags |= ALLOC_KSWAPD;
4158 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4159 alloc_flags |= ALLOC_CMA;
4164 static bool oom_reserves_allowed(struct task_struct *tsk)
4166 if (!tsk_is_oom_victim(tsk))
4170 * !MMU doesn't have oom reaper so give access to memory reserves
4171 * only to the thread with TIF_MEMDIE set
4173 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4180 * Distinguish requests which really need access to full memory
4181 * reserves from oom victims which can live with a portion of it
4183 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4185 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4187 if (gfp_mask & __GFP_MEMALLOC)
4188 return ALLOC_NO_WATERMARKS;
4189 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4190 return ALLOC_NO_WATERMARKS;
4191 if (!in_interrupt()) {
4192 if (current->flags & PF_MEMALLOC)
4193 return ALLOC_NO_WATERMARKS;
4194 else if (oom_reserves_allowed(current))
4201 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4203 return !!__gfp_pfmemalloc_flags(gfp_mask);
4207 * Checks whether it makes sense to retry the reclaim to make a forward progress
4208 * for the given allocation request.
4210 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4211 * without success, or when we couldn't even meet the watermark if we
4212 * reclaimed all remaining pages on the LRU lists.
4214 * Returns true if a retry is viable or false to enter the oom path.
4217 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4218 struct alloc_context *ac, int alloc_flags,
4219 bool did_some_progress, int *no_progress_loops)
4226 * Costly allocations might have made a progress but this doesn't mean
4227 * their order will become available due to high fragmentation so
4228 * always increment the no progress counter for them
4230 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4231 *no_progress_loops = 0;
4233 (*no_progress_loops)++;
4236 * Make sure we converge to OOM if we cannot make any progress
4237 * several times in the row.
4239 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4240 /* Before OOM, exhaust highatomic_reserve */
4241 return unreserve_highatomic_pageblock(ac, true);
4245 * Keep reclaiming pages while there is a chance this will lead
4246 * somewhere. If none of the target zones can satisfy our allocation
4247 * request even if all reclaimable pages are considered then we are
4248 * screwed and have to go OOM.
4250 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4252 unsigned long available;
4253 unsigned long reclaimable;
4254 unsigned long min_wmark = min_wmark_pages(zone);
4257 available = reclaimable = zone_reclaimable_pages(zone);
4258 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4261 * Would the allocation succeed if we reclaimed all
4262 * reclaimable pages?
4264 wmark = __zone_watermark_ok(zone, order, min_wmark,
4265 ac_classzone_idx(ac), alloc_flags, available);
4266 trace_reclaim_retry_zone(z, order, reclaimable,
4267 available, min_wmark, *no_progress_loops, wmark);
4270 * If we didn't make any progress and have a lot of
4271 * dirty + writeback pages then we should wait for
4272 * an IO to complete to slow down the reclaim and
4273 * prevent from pre mature OOM
4275 if (!did_some_progress) {
4276 unsigned long write_pending;
4278 write_pending = zone_page_state_snapshot(zone,
4279 NR_ZONE_WRITE_PENDING);
4281 if (2 * write_pending > reclaimable) {
4282 congestion_wait(BLK_RW_ASYNC, HZ/10);
4294 * Memory allocation/reclaim might be called from a WQ context and the
4295 * current implementation of the WQ concurrency control doesn't
4296 * recognize that a particular WQ is congested if the worker thread is
4297 * looping without ever sleeping. Therefore we have to do a short sleep
4298 * here rather than calling cond_resched().
4300 if (current->flags & PF_WQ_WORKER)
4301 schedule_timeout_uninterruptible(1);
4308 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4311 * It's possible that cpuset's mems_allowed and the nodemask from
4312 * mempolicy don't intersect. This should be normally dealt with by
4313 * policy_nodemask(), but it's possible to race with cpuset update in
4314 * such a way the check therein was true, and then it became false
4315 * before we got our cpuset_mems_cookie here.
4316 * This assumes that for all allocations, ac->nodemask can come only
4317 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4318 * when it does not intersect with the cpuset restrictions) or the
4319 * caller can deal with a violated nodemask.
4321 if (cpusets_enabled() && ac->nodemask &&
4322 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4323 ac->nodemask = NULL;
4328 * When updating a task's mems_allowed or mempolicy nodemask, it is
4329 * possible to race with parallel threads in such a way that our
4330 * allocation can fail while the mask is being updated. If we are about
4331 * to fail, check if the cpuset changed during allocation and if so,
4334 if (read_mems_allowed_retry(cpuset_mems_cookie))
4340 static inline struct page *
4341 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4342 struct alloc_context *ac)
4344 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4345 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4346 struct page *page = NULL;
4347 unsigned int alloc_flags;
4348 unsigned long did_some_progress;
4349 enum compact_priority compact_priority;
4350 enum compact_result compact_result;
4351 int compaction_retries;
4352 int no_progress_loops;
4353 unsigned int cpuset_mems_cookie;
4357 * We also sanity check to catch abuse of atomic reserves being used by
4358 * callers that are not in atomic context.
4360 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4361 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4362 gfp_mask &= ~__GFP_ATOMIC;
4365 compaction_retries = 0;
4366 no_progress_loops = 0;
4367 compact_priority = DEF_COMPACT_PRIORITY;
4368 cpuset_mems_cookie = read_mems_allowed_begin();
4371 * The fast path uses conservative alloc_flags to succeed only until
4372 * kswapd needs to be woken up, and to avoid the cost of setting up
4373 * alloc_flags precisely. So we do that now.
4375 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4378 * We need to recalculate the starting point for the zonelist iterator
4379 * because we might have used different nodemask in the fast path, or
4380 * there was a cpuset modification and we are retrying - otherwise we
4381 * could end up iterating over non-eligible zones endlessly.
4383 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4384 ac->high_zoneidx, ac->nodemask);
4385 if (!ac->preferred_zoneref->zone)
4388 if (alloc_flags & ALLOC_KSWAPD)
4389 wake_all_kswapds(order, gfp_mask, ac);
4392 * The adjusted alloc_flags might result in immediate success, so try
4395 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4400 * For costly allocations, try direct compaction first, as it's likely
4401 * that we have enough base pages and don't need to reclaim. For non-
4402 * movable high-order allocations, do that as well, as compaction will
4403 * try prevent permanent fragmentation by migrating from blocks of the
4405 * Don't try this for allocations that are allowed to ignore
4406 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4408 if (can_direct_reclaim &&
4410 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4411 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4412 page = __alloc_pages_direct_compact(gfp_mask, order,
4414 INIT_COMPACT_PRIORITY,
4420 * Checks for costly allocations with __GFP_NORETRY, which
4421 * includes THP page fault allocations
4423 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4425 * If compaction is deferred for high-order allocations,
4426 * it is because sync compaction recently failed. If
4427 * this is the case and the caller requested a THP
4428 * allocation, we do not want to heavily disrupt the
4429 * system, so we fail the allocation instead of entering
4432 if (compact_result == COMPACT_DEFERRED)
4436 * Looks like reclaim/compaction is worth trying, but
4437 * sync compaction could be very expensive, so keep
4438 * using async compaction.
4440 compact_priority = INIT_COMPACT_PRIORITY;
4445 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4446 if (alloc_flags & ALLOC_KSWAPD)
4447 wake_all_kswapds(order, gfp_mask, ac);
4449 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4451 alloc_flags = reserve_flags;
4454 * Reset the nodemask and zonelist iterators if memory policies can be
4455 * ignored. These allocations are high priority and system rather than
4458 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4459 ac->nodemask = NULL;
4460 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4461 ac->high_zoneidx, ac->nodemask);
4464 /* Attempt with potentially adjusted zonelist and alloc_flags */
4465 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4469 /* Caller is not willing to reclaim, we can't balance anything */
4470 if (!can_direct_reclaim)
4473 /* Avoid recursion of direct reclaim */
4474 if (current->flags & PF_MEMALLOC)
4477 /* Try direct reclaim and then allocating */
4478 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4479 &did_some_progress);
4483 /* Try direct compaction and then allocating */
4484 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4485 compact_priority, &compact_result);
4489 /* Do not loop if specifically requested */
4490 if (gfp_mask & __GFP_NORETRY)
4494 * Do not retry costly high order allocations unless they are
4495 * __GFP_RETRY_MAYFAIL
4497 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4500 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4501 did_some_progress > 0, &no_progress_loops))
4505 * It doesn't make any sense to retry for the compaction if the order-0
4506 * reclaim is not able to make any progress because the current
4507 * implementation of the compaction depends on the sufficient amount
4508 * of free memory (see __compaction_suitable)
4510 if (did_some_progress > 0 &&
4511 should_compact_retry(ac, order, alloc_flags,
4512 compact_result, &compact_priority,
4513 &compaction_retries))
4517 /* Deal with possible cpuset update races before we start OOM killing */
4518 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4521 /* Reclaim has failed us, start killing things */
4522 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4526 /* Avoid allocations with no watermarks from looping endlessly */
4527 if (tsk_is_oom_victim(current) &&
4528 (alloc_flags == ALLOC_OOM ||
4529 (gfp_mask & __GFP_NOMEMALLOC)))
4532 /* Retry as long as the OOM killer is making progress */
4533 if (did_some_progress) {
4534 no_progress_loops = 0;
4539 /* Deal with possible cpuset update races before we fail */
4540 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4544 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4547 if (gfp_mask & __GFP_NOFAIL) {
4549 * All existing users of the __GFP_NOFAIL are blockable, so warn
4550 * of any new users that actually require GFP_NOWAIT
4552 if (WARN_ON_ONCE(!can_direct_reclaim))
4556 * PF_MEMALLOC request from this context is rather bizarre
4557 * because we cannot reclaim anything and only can loop waiting
4558 * for somebody to do a work for us
4560 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4563 * non failing costly orders are a hard requirement which we
4564 * are not prepared for much so let's warn about these users
4565 * so that we can identify them and convert them to something
4568 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4571 * Help non-failing allocations by giving them access to memory
4572 * reserves but do not use ALLOC_NO_WATERMARKS because this
4573 * could deplete whole memory reserves which would just make
4574 * the situation worse
4576 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4584 warn_alloc(gfp_mask, ac->nodemask,
4585 "page allocation failure: order:%u", order);
4590 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4591 int preferred_nid, nodemask_t *nodemask,
4592 struct alloc_context *ac, gfp_t *alloc_mask,
4593 unsigned int *alloc_flags)
4595 ac->high_zoneidx = gfp_zone(gfp_mask);
4596 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4597 ac->nodemask = nodemask;
4598 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4600 if (cpusets_enabled()) {
4601 *alloc_mask |= __GFP_HARDWALL;
4603 ac->nodemask = &cpuset_current_mems_allowed;
4605 *alloc_flags |= ALLOC_CPUSET;
4608 fs_reclaim_acquire(gfp_mask);
4609 fs_reclaim_release(gfp_mask);
4611 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4613 if (should_fail_alloc_page(gfp_mask, order))
4616 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4617 *alloc_flags |= ALLOC_CMA;
4622 /* Determine whether to spread dirty pages and what the first usable zone */
4623 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4625 /* Dirty zone balancing only done in the fast path */
4626 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4629 * The preferred zone is used for statistics but crucially it is
4630 * also used as the starting point for the zonelist iterator. It
4631 * may get reset for allocations that ignore memory policies.
4633 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4634 ac->high_zoneidx, ac->nodemask);
4638 * This is the 'heart' of the zoned buddy allocator.
4641 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4642 nodemask_t *nodemask)
4645 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4646 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4647 struct alloc_context ac = { };
4650 * There are several places where we assume that the order value is sane
4651 * so bail out early if the request is out of bound.
4653 if (unlikely(order >= MAX_ORDER)) {
4654 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4658 gfp_mask &= gfp_allowed_mask;
4659 alloc_mask = gfp_mask;
4660 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4663 finalise_ac(gfp_mask, &ac);
4666 * Forbid the first pass from falling back to types that fragment
4667 * memory until all local zones are considered.
4669 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4671 /* First allocation attempt */
4672 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4677 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4678 * resp. GFP_NOIO which has to be inherited for all allocation requests
4679 * from a particular context which has been marked by
4680 * memalloc_no{fs,io}_{save,restore}.
4682 alloc_mask = current_gfp_context(gfp_mask);
4683 ac.spread_dirty_pages = false;
4686 * Restore the original nodemask if it was potentially replaced with
4687 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4689 if (unlikely(ac.nodemask != nodemask))
4690 ac.nodemask = nodemask;
4692 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4695 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4696 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4697 __free_pages(page, order);
4701 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4705 EXPORT_SYMBOL(__alloc_pages_nodemask);
4708 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4709 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4710 * you need to access high mem.
4712 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4716 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4719 return (unsigned long) page_address(page);
4721 EXPORT_SYMBOL(__get_free_pages);
4723 unsigned long get_zeroed_page(gfp_t gfp_mask)
4725 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4727 EXPORT_SYMBOL(get_zeroed_page);
4729 static inline void free_the_page(struct page *page, unsigned int order)
4731 if (order == 0) /* Via pcp? */
4732 free_unref_page(page);
4734 __free_pages_ok(page, order);
4737 void __free_pages(struct page *page, unsigned int order)
4739 if (put_page_testzero(page))
4740 free_the_page(page, order);
4742 EXPORT_SYMBOL(__free_pages);
4744 void free_pages(unsigned long addr, unsigned int order)
4747 VM_BUG_ON(!virt_addr_valid((void *)addr));
4748 __free_pages(virt_to_page((void *)addr), order);
4752 EXPORT_SYMBOL(free_pages);
4756 * An arbitrary-length arbitrary-offset area of memory which resides
4757 * within a 0 or higher order page. Multiple fragments within that page
4758 * are individually refcounted, in the page's reference counter.
4760 * The page_frag functions below provide a simple allocation framework for
4761 * page fragments. This is used by the network stack and network device
4762 * drivers to provide a backing region of memory for use as either an
4763 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4765 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4768 struct page *page = NULL;
4769 gfp_t gfp = gfp_mask;
4771 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4772 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4774 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4775 PAGE_FRAG_CACHE_MAX_ORDER);
4776 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4778 if (unlikely(!page))
4779 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4781 nc->va = page ? page_address(page) : NULL;
4786 void __page_frag_cache_drain(struct page *page, unsigned int count)
4788 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4790 if (page_ref_sub_and_test(page, count))
4791 free_the_page(page, compound_order(page));
4793 EXPORT_SYMBOL(__page_frag_cache_drain);
4795 void *page_frag_alloc(struct page_frag_cache *nc,
4796 unsigned int fragsz, gfp_t gfp_mask)
4798 unsigned int size = PAGE_SIZE;
4802 if (unlikely(!nc->va)) {
4804 page = __page_frag_cache_refill(nc, gfp_mask);
4808 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4809 /* if size can vary use size else just use PAGE_SIZE */
4812 /* Even if we own the page, we do not use atomic_set().
4813 * This would break get_page_unless_zero() users.
4815 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4817 /* reset page count bias and offset to start of new frag */
4818 nc->pfmemalloc = page_is_pfmemalloc(page);
4819 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4823 offset = nc->offset - fragsz;
4824 if (unlikely(offset < 0)) {
4825 page = virt_to_page(nc->va);
4827 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4830 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4831 /* if size can vary use size else just use PAGE_SIZE */
4834 /* OK, page count is 0, we can safely set it */
4835 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4837 /* reset page count bias and offset to start of new frag */
4838 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4839 offset = size - fragsz;
4843 nc->offset = offset;
4845 return nc->va + offset;
4847 EXPORT_SYMBOL(page_frag_alloc);
4850 * Frees a page fragment allocated out of either a compound or order 0 page.
4852 void page_frag_free(void *addr)
4854 struct page *page = virt_to_head_page(addr);
4856 if (unlikely(put_page_testzero(page)))
4857 free_the_page(page, compound_order(page));
4859 EXPORT_SYMBOL(page_frag_free);
4861 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4865 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4866 unsigned long used = addr + PAGE_ALIGN(size);
4868 split_page(virt_to_page((void *)addr), order);
4869 while (used < alloc_end) {
4874 return (void *)addr;
4878 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4879 * @size: the number of bytes to allocate
4880 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4882 * This function is similar to alloc_pages(), except that it allocates the
4883 * minimum number of pages to satisfy the request. alloc_pages() can only
4884 * allocate memory in power-of-two pages.
4886 * This function is also limited by MAX_ORDER.
4888 * Memory allocated by this function must be released by free_pages_exact().
4890 * Return: pointer to the allocated area or %NULL in case of error.
4892 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4894 unsigned int order = get_order(size);
4897 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4898 gfp_mask &= ~__GFP_COMP;
4900 addr = __get_free_pages(gfp_mask, order);
4901 return make_alloc_exact(addr, order, size);
4903 EXPORT_SYMBOL(alloc_pages_exact);
4906 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4908 * @nid: the preferred node ID where memory should be allocated
4909 * @size: the number of bytes to allocate
4910 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4912 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4915 * Return: pointer to the allocated area or %NULL in case of error.
4917 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4919 unsigned int order = get_order(size);
4922 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4923 gfp_mask &= ~__GFP_COMP;
4925 p = alloc_pages_node(nid, gfp_mask, order);
4928 return make_alloc_exact((unsigned long)page_address(p), order, size);
4932 * free_pages_exact - release memory allocated via alloc_pages_exact()
4933 * @virt: the value returned by alloc_pages_exact.
4934 * @size: size of allocation, same value as passed to alloc_pages_exact().
4936 * Release the memory allocated by a previous call to alloc_pages_exact.
4938 void free_pages_exact(void *virt, size_t size)
4940 unsigned long addr = (unsigned long)virt;
4941 unsigned long end = addr + PAGE_ALIGN(size);
4943 while (addr < end) {
4948 EXPORT_SYMBOL(free_pages_exact);
4951 * nr_free_zone_pages - count number of pages beyond high watermark
4952 * @offset: The zone index of the highest zone
4954 * nr_free_zone_pages() counts the number of pages which are beyond the
4955 * high watermark within all zones at or below a given zone index. For each
4956 * zone, the number of pages is calculated as:
4958 * nr_free_zone_pages = managed_pages - high_pages
4960 * Return: number of pages beyond high watermark.
4962 static unsigned long nr_free_zone_pages(int offset)
4967 /* Just pick one node, since fallback list is circular */
4968 unsigned long sum = 0;
4970 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4972 for_each_zone_zonelist(zone, z, zonelist, offset) {
4973 unsigned long size = zone_managed_pages(zone);
4974 unsigned long high = high_wmark_pages(zone);
4983 * nr_free_buffer_pages - count number of pages beyond high watermark
4985 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4986 * watermark within ZONE_DMA and ZONE_NORMAL.
4988 * Return: number of pages beyond high watermark within ZONE_DMA and
4991 unsigned long nr_free_buffer_pages(void)
4993 return nr_free_zone_pages(gfp_zone(GFP_USER));
4995 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4998 * nr_free_pagecache_pages - count number of pages beyond high watermark
5000 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5001 * high watermark within all zones.
5003 * Return: number of pages beyond high watermark within all zones.
5005 unsigned long nr_free_pagecache_pages(void)
5007 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5010 static inline void show_node(struct zone *zone)
5012 if (IS_ENABLED(CONFIG_NUMA))
5013 printk("Node %d ", zone_to_nid(zone));
5016 long si_mem_available(void)
5019 unsigned long pagecache;
5020 unsigned long wmark_low = 0;
5021 unsigned long pages[NR_LRU_LISTS];
5022 unsigned long reclaimable;
5026 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5027 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5030 wmark_low += low_wmark_pages(zone);
5033 * Estimate the amount of memory available for userspace allocations,
5034 * without causing swapping.
5036 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5039 * Not all the page cache can be freed, otherwise the system will
5040 * start swapping. Assume at least half of the page cache, or the
5041 * low watermark worth of cache, needs to stay.
5043 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5044 pagecache -= min(pagecache / 2, wmark_low);
5045 available += pagecache;
5048 * Part of the reclaimable slab and other kernel memory consists of
5049 * items that are in use, and cannot be freed. Cap this estimate at the
5052 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5053 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5054 available += reclaimable - min(reclaimable / 2, wmark_low);
5060 EXPORT_SYMBOL_GPL(si_mem_available);
5062 void si_meminfo(struct sysinfo *val)
5064 val->totalram = totalram_pages();
5065 val->sharedram = global_node_page_state(NR_SHMEM);
5066 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5067 val->bufferram = nr_blockdev_pages();
5068 val->totalhigh = totalhigh_pages();
5069 val->freehigh = nr_free_highpages();
5070 val->mem_unit = PAGE_SIZE;
5073 EXPORT_SYMBOL(si_meminfo);
5076 void si_meminfo_node(struct sysinfo *val, int nid)
5078 int zone_type; /* needs to be signed */
5079 unsigned long managed_pages = 0;
5080 unsigned long managed_highpages = 0;
5081 unsigned long free_highpages = 0;
5082 pg_data_t *pgdat = NODE_DATA(nid);
5084 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5085 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5086 val->totalram = managed_pages;
5087 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5088 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5089 #ifdef CONFIG_HIGHMEM
5090 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5091 struct zone *zone = &pgdat->node_zones[zone_type];
5093 if (is_highmem(zone)) {
5094 managed_highpages += zone_managed_pages(zone);
5095 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5098 val->totalhigh = managed_highpages;
5099 val->freehigh = free_highpages;
5101 val->totalhigh = managed_highpages;
5102 val->freehigh = free_highpages;
5104 val->mem_unit = PAGE_SIZE;
5109 * Determine whether the node should be displayed or not, depending on whether
5110 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5112 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5114 if (!(flags & SHOW_MEM_FILTER_NODES))
5118 * no node mask - aka implicit memory numa policy. Do not bother with
5119 * the synchronization - read_mems_allowed_begin - because we do not
5120 * have to be precise here.
5123 nodemask = &cpuset_current_mems_allowed;
5125 return !node_isset(nid, *nodemask);
5128 #define K(x) ((x) << (PAGE_SHIFT-10))
5130 static void show_migration_types(unsigned char type)
5132 static const char types[MIGRATE_TYPES] = {
5133 [MIGRATE_UNMOVABLE] = 'U',
5134 [MIGRATE_MOVABLE] = 'M',
5135 [MIGRATE_RECLAIMABLE] = 'E',
5136 [MIGRATE_HIGHATOMIC] = 'H',
5138 [MIGRATE_CMA] = 'C',
5140 #ifdef CONFIG_MEMORY_ISOLATION
5141 [MIGRATE_ISOLATE] = 'I',
5144 char tmp[MIGRATE_TYPES + 1];
5148 for (i = 0; i < MIGRATE_TYPES; i++) {
5149 if (type & (1 << i))
5154 printk(KERN_CONT "(%s) ", tmp);
5158 * Show free area list (used inside shift_scroll-lock stuff)
5159 * We also calculate the percentage fragmentation. We do this by counting the
5160 * memory on each free list with the exception of the first item on the list.
5163 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5166 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5168 unsigned long free_pcp = 0;
5173 for_each_populated_zone(zone) {
5174 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5177 for_each_online_cpu(cpu)
5178 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5181 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5182 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5183 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5184 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5185 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5186 " free:%lu free_pcp:%lu free_cma:%lu\n",
5187 global_node_page_state(NR_ACTIVE_ANON),
5188 global_node_page_state(NR_INACTIVE_ANON),
5189 global_node_page_state(NR_ISOLATED_ANON),
5190 global_node_page_state(NR_ACTIVE_FILE),
5191 global_node_page_state(NR_INACTIVE_FILE),
5192 global_node_page_state(NR_ISOLATED_FILE),
5193 global_node_page_state(NR_UNEVICTABLE),
5194 global_node_page_state(NR_FILE_DIRTY),
5195 global_node_page_state(NR_WRITEBACK),
5196 global_node_page_state(NR_UNSTABLE_NFS),
5197 global_node_page_state(NR_SLAB_RECLAIMABLE),
5198 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5199 global_node_page_state(NR_FILE_MAPPED),
5200 global_node_page_state(NR_SHMEM),
5201 global_zone_page_state(NR_PAGETABLE),
5202 global_zone_page_state(NR_BOUNCE),
5203 global_zone_page_state(NR_FREE_PAGES),
5205 global_zone_page_state(NR_FREE_CMA_PAGES));
5207 for_each_online_pgdat(pgdat) {
5208 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5212 " active_anon:%lukB"
5213 " inactive_anon:%lukB"
5214 " active_file:%lukB"
5215 " inactive_file:%lukB"
5216 " unevictable:%lukB"
5217 " isolated(anon):%lukB"
5218 " isolated(file):%lukB"
5223 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5225 " shmem_pmdmapped: %lukB"
5228 " writeback_tmp:%lukB"
5230 " all_unreclaimable? %s"
5233 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5234 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5235 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5236 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5237 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5238 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5239 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5240 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5241 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5242 K(node_page_state(pgdat, NR_WRITEBACK)),
5243 K(node_page_state(pgdat, NR_SHMEM)),
5244 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5245 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5246 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5248 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5250 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5251 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5252 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5256 for_each_populated_zone(zone) {
5259 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5263 for_each_online_cpu(cpu)
5264 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5273 " active_anon:%lukB"
5274 " inactive_anon:%lukB"
5275 " active_file:%lukB"
5276 " inactive_file:%lukB"
5277 " unevictable:%lukB"
5278 " writepending:%lukB"
5282 " kernel_stack:%lukB"
5290 K(zone_page_state(zone, NR_FREE_PAGES)),
5291 K(min_wmark_pages(zone)),
5292 K(low_wmark_pages(zone)),
5293 K(high_wmark_pages(zone)),
5294 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5295 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5296 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5297 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5298 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5299 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5300 K(zone->present_pages),
5301 K(zone_managed_pages(zone)),
5302 K(zone_page_state(zone, NR_MLOCK)),
5303 zone_page_state(zone, NR_KERNEL_STACK_KB),
5304 K(zone_page_state(zone, NR_PAGETABLE)),
5305 K(zone_page_state(zone, NR_BOUNCE)),
5307 K(this_cpu_read(zone->pageset->pcp.count)),
5308 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5309 printk("lowmem_reserve[]:");
5310 for (i = 0; i < MAX_NR_ZONES; i++)
5311 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5312 printk(KERN_CONT "\n");
5315 for_each_populated_zone(zone) {
5317 unsigned long nr[MAX_ORDER], flags, total = 0;
5318 unsigned char types[MAX_ORDER];
5320 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5323 printk(KERN_CONT "%s: ", zone->name);
5325 spin_lock_irqsave(&zone->lock, flags);
5326 for (order = 0; order < MAX_ORDER; order++) {
5327 struct free_area *area = &zone->free_area[order];
5330 nr[order] = area->nr_free;
5331 total += nr[order] << order;
5334 for (type = 0; type < MIGRATE_TYPES; type++) {
5335 if (!free_area_empty(area, type))
5336 types[order] |= 1 << type;
5339 spin_unlock_irqrestore(&zone->lock, flags);
5340 for (order = 0; order < MAX_ORDER; order++) {
5341 printk(KERN_CONT "%lu*%lukB ",
5342 nr[order], K(1UL) << order);
5344 show_migration_types(types[order]);
5346 printk(KERN_CONT "= %lukB\n", K(total));
5349 hugetlb_show_meminfo();
5351 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5353 show_swap_cache_info();
5356 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5358 zoneref->zone = zone;
5359 zoneref->zone_idx = zone_idx(zone);
5363 * Builds allocation fallback zone lists.
5365 * Add all populated zones of a node to the zonelist.
5367 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5370 enum zone_type zone_type = MAX_NR_ZONES;
5375 zone = pgdat->node_zones + zone_type;
5376 if (managed_zone(zone)) {
5377 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5378 check_highest_zone(zone_type);
5380 } while (zone_type);
5387 static int __parse_numa_zonelist_order(char *s)
5390 * We used to support different zonlists modes but they turned
5391 * out to be just not useful. Let's keep the warning in place
5392 * if somebody still use the cmd line parameter so that we do
5393 * not fail it silently
5395 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5396 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5402 static __init int setup_numa_zonelist_order(char *s)
5407 return __parse_numa_zonelist_order(s);
5409 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5411 char numa_zonelist_order[] = "Node";
5414 * sysctl handler for numa_zonelist_order
5416 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5417 void __user *buffer, size_t *length,
5424 return proc_dostring(table, write, buffer, length, ppos);
5425 str = memdup_user_nul(buffer, 16);
5427 return PTR_ERR(str);
5429 ret = __parse_numa_zonelist_order(str);
5435 #define MAX_NODE_LOAD (nr_online_nodes)
5436 static int node_load[MAX_NUMNODES];
5439 * find_next_best_node - find the next node that should appear in a given node's fallback list
5440 * @node: node whose fallback list we're appending
5441 * @used_node_mask: nodemask_t of already used nodes
5443 * We use a number of factors to determine which is the next node that should
5444 * appear on a given node's fallback list. The node should not have appeared
5445 * already in @node's fallback list, and it should be the next closest node
5446 * according to the distance array (which contains arbitrary distance values
5447 * from each node to each node in the system), and should also prefer nodes
5448 * with no CPUs, since presumably they'll have very little allocation pressure
5449 * on them otherwise.
5451 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5453 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5456 int min_val = INT_MAX;
5457 int best_node = NUMA_NO_NODE;
5458 const struct cpumask *tmp = cpumask_of_node(0);
5460 /* Use the local node if we haven't already */
5461 if (!node_isset(node, *used_node_mask)) {
5462 node_set(node, *used_node_mask);
5466 for_each_node_state(n, N_MEMORY) {
5468 /* Don't want a node to appear more than once */
5469 if (node_isset(n, *used_node_mask))
5472 /* Use the distance array to find the distance */
5473 val = node_distance(node, n);
5475 /* Penalize nodes under us ("prefer the next node") */
5478 /* Give preference to headless and unused nodes */
5479 tmp = cpumask_of_node(n);
5480 if (!cpumask_empty(tmp))
5481 val += PENALTY_FOR_NODE_WITH_CPUS;
5483 /* Slight preference for less loaded node */
5484 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5485 val += node_load[n];
5487 if (val < min_val) {
5494 node_set(best_node, *used_node_mask);
5501 * Build zonelists ordered by node and zones within node.
5502 * This results in maximum locality--normal zone overflows into local
5503 * DMA zone, if any--but risks exhausting DMA zone.
5505 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5508 struct zoneref *zonerefs;
5511 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5513 for (i = 0; i < nr_nodes; i++) {
5516 pg_data_t *node = NODE_DATA(node_order[i]);
5518 nr_zones = build_zonerefs_node(node, zonerefs);
5519 zonerefs += nr_zones;
5521 zonerefs->zone = NULL;
5522 zonerefs->zone_idx = 0;
5526 * Build gfp_thisnode zonelists
5528 static void build_thisnode_zonelists(pg_data_t *pgdat)
5530 struct zoneref *zonerefs;
5533 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5534 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5535 zonerefs += nr_zones;
5536 zonerefs->zone = NULL;
5537 zonerefs->zone_idx = 0;
5541 * Build zonelists ordered by zone and nodes within zones.
5542 * This results in conserving DMA zone[s] until all Normal memory is
5543 * exhausted, but results in overflowing to remote node while memory
5544 * may still exist in local DMA zone.
5547 static void build_zonelists(pg_data_t *pgdat)
5549 static int node_order[MAX_NUMNODES];
5550 int node, load, nr_nodes = 0;
5551 nodemask_t used_mask;
5552 int local_node, prev_node;
5554 /* NUMA-aware ordering of nodes */
5555 local_node = pgdat->node_id;
5556 load = nr_online_nodes;
5557 prev_node = local_node;
5558 nodes_clear(used_mask);
5560 memset(node_order, 0, sizeof(node_order));
5561 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5563 * We don't want to pressure a particular node.
5564 * So adding penalty to the first node in same
5565 * distance group to make it round-robin.
5567 if (node_distance(local_node, node) !=
5568 node_distance(local_node, prev_node))
5569 node_load[node] = load;
5571 node_order[nr_nodes++] = node;
5576 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5577 build_thisnode_zonelists(pgdat);
5580 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5582 * Return node id of node used for "local" allocations.
5583 * I.e., first node id of first zone in arg node's generic zonelist.
5584 * Used for initializing percpu 'numa_mem', which is used primarily
5585 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5587 int local_memory_node(int node)
5591 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5592 gfp_zone(GFP_KERNEL),
5594 return zone_to_nid(z->zone);
5598 static void setup_min_unmapped_ratio(void);
5599 static void setup_min_slab_ratio(void);
5600 #else /* CONFIG_NUMA */
5602 static void build_zonelists(pg_data_t *pgdat)
5604 int node, local_node;
5605 struct zoneref *zonerefs;
5608 local_node = pgdat->node_id;
5610 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5611 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5612 zonerefs += nr_zones;
5615 * Now we build the zonelist so that it contains the zones
5616 * of all the other nodes.
5617 * We don't want to pressure a particular node, so when
5618 * building the zones for node N, we make sure that the
5619 * zones coming right after the local ones are those from
5620 * node N+1 (modulo N)
5622 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5623 if (!node_online(node))
5625 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5626 zonerefs += nr_zones;
5628 for (node = 0; node < local_node; node++) {
5629 if (!node_online(node))
5631 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5632 zonerefs += nr_zones;
5635 zonerefs->zone = NULL;
5636 zonerefs->zone_idx = 0;
5639 #endif /* CONFIG_NUMA */
5642 * Boot pageset table. One per cpu which is going to be used for all
5643 * zones and all nodes. The parameters will be set in such a way
5644 * that an item put on a list will immediately be handed over to
5645 * the buddy list. This is safe since pageset manipulation is done
5646 * with interrupts disabled.
5648 * The boot_pagesets must be kept even after bootup is complete for
5649 * unused processors and/or zones. They do play a role for bootstrapping
5650 * hotplugged processors.
5652 * zoneinfo_show() and maybe other functions do
5653 * not check if the processor is online before following the pageset pointer.
5654 * Other parts of the kernel may not check if the zone is available.
5656 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5657 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5658 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5660 static void __build_all_zonelists(void *data)
5663 int __maybe_unused cpu;
5664 pg_data_t *self = data;
5665 static DEFINE_SPINLOCK(lock);
5670 memset(node_load, 0, sizeof(node_load));
5674 * This node is hotadded and no memory is yet present. So just
5675 * building zonelists is fine - no need to touch other nodes.
5677 if (self && !node_online(self->node_id)) {
5678 build_zonelists(self);
5680 for_each_online_node(nid) {
5681 pg_data_t *pgdat = NODE_DATA(nid);
5683 build_zonelists(pgdat);
5686 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5688 * We now know the "local memory node" for each node--
5689 * i.e., the node of the first zone in the generic zonelist.
5690 * Set up numa_mem percpu variable for on-line cpus. During
5691 * boot, only the boot cpu should be on-line; we'll init the
5692 * secondary cpus' numa_mem as they come on-line. During
5693 * node/memory hotplug, we'll fixup all on-line cpus.
5695 for_each_online_cpu(cpu)
5696 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5703 static noinline void __init
5704 build_all_zonelists_init(void)
5708 __build_all_zonelists(NULL);
5711 * Initialize the boot_pagesets that are going to be used
5712 * for bootstrapping processors. The real pagesets for
5713 * each zone will be allocated later when the per cpu
5714 * allocator is available.
5716 * boot_pagesets are used also for bootstrapping offline
5717 * cpus if the system is already booted because the pagesets
5718 * are needed to initialize allocators on a specific cpu too.
5719 * F.e. the percpu allocator needs the page allocator which
5720 * needs the percpu allocator in order to allocate its pagesets
5721 * (a chicken-egg dilemma).
5723 for_each_possible_cpu(cpu)
5724 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5726 mminit_verify_zonelist();
5727 cpuset_init_current_mems_allowed();
5731 * unless system_state == SYSTEM_BOOTING.
5733 * __ref due to call of __init annotated helper build_all_zonelists_init
5734 * [protected by SYSTEM_BOOTING].
5736 void __ref build_all_zonelists(pg_data_t *pgdat)
5738 if (system_state == SYSTEM_BOOTING) {
5739 build_all_zonelists_init();
5741 __build_all_zonelists(pgdat);
5742 /* cpuset refresh routine should be here */
5744 vm_total_pages = nr_free_pagecache_pages();
5746 * Disable grouping by mobility if the number of pages in the
5747 * system is too low to allow the mechanism to work. It would be
5748 * more accurate, but expensive to check per-zone. This check is
5749 * made on memory-hotadd so a system can start with mobility
5750 * disabled and enable it later
5752 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5753 page_group_by_mobility_disabled = 1;
5755 page_group_by_mobility_disabled = 0;
5757 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5759 page_group_by_mobility_disabled ? "off" : "on",
5762 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5766 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5767 static bool __meminit
5768 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5770 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5771 static struct memblock_region *r;
5773 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5774 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5775 for_each_memblock(memory, r) {
5776 if (*pfn < memblock_region_memory_end_pfn(r))
5780 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5781 memblock_is_mirror(r)) {
5782 *pfn = memblock_region_memory_end_pfn(r);
5791 * Initially all pages are reserved - free ones are freed
5792 * up by memblock_free_all() once the early boot process is
5793 * done. Non-atomic initialization, single-pass.
5795 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5796 unsigned long start_pfn, enum memmap_context context,
5797 struct vmem_altmap *altmap)
5799 unsigned long pfn, end_pfn = start_pfn + size;
5802 if (highest_memmap_pfn < end_pfn - 1)
5803 highest_memmap_pfn = end_pfn - 1;
5805 #ifdef CONFIG_ZONE_DEVICE
5807 * Honor reservation requested by the driver for this ZONE_DEVICE
5808 * memory. We limit the total number of pages to initialize to just
5809 * those that might contain the memory mapping. We will defer the
5810 * ZONE_DEVICE page initialization until after we have released
5813 if (zone == ZONE_DEVICE) {
5817 if (start_pfn == altmap->base_pfn)
5818 start_pfn += altmap->reserve;
5819 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5823 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5825 * There can be holes in boot-time mem_map[]s handed to this
5826 * function. They do not exist on hotplugged memory.
5828 if (context == MEMMAP_EARLY) {
5829 if (!early_pfn_valid(pfn))
5831 if (!early_pfn_in_nid(pfn, nid))
5833 if (overlap_memmap_init(zone, &pfn))
5835 if (defer_init(nid, pfn, end_pfn))
5839 page = pfn_to_page(pfn);
5840 __init_single_page(page, pfn, zone, nid);
5841 if (context == MEMMAP_HOTPLUG)
5842 __SetPageReserved(page);
5845 * Mark the block movable so that blocks are reserved for
5846 * movable at startup. This will force kernel allocations
5847 * to reserve their blocks rather than leaking throughout
5848 * the address space during boot when many long-lived
5849 * kernel allocations are made.
5851 * bitmap is created for zone's valid pfn range. but memmap
5852 * can be created for invalid pages (for alignment)
5853 * check here not to call set_pageblock_migratetype() against
5856 if (!(pfn & (pageblock_nr_pages - 1))) {
5857 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5863 #ifdef CONFIG_ZONE_DEVICE
5864 void __ref memmap_init_zone_device(struct zone *zone,
5865 unsigned long start_pfn,
5867 struct dev_pagemap *pgmap)
5869 unsigned long pfn, end_pfn = start_pfn + size;
5870 struct pglist_data *pgdat = zone->zone_pgdat;
5871 unsigned long zone_idx = zone_idx(zone);
5872 unsigned long start = jiffies;
5873 int nid = pgdat->node_id;
5875 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5879 * The call to memmap_init_zone should have already taken care
5880 * of the pages reserved for the memmap, so we can just jump to
5881 * the end of that region and start processing the device pages.
5883 if (pgmap->altmap_valid) {
5884 struct vmem_altmap *altmap = &pgmap->altmap;
5886 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5887 size = end_pfn - start_pfn;
5890 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5891 struct page *page = pfn_to_page(pfn);
5893 __init_single_page(page, pfn, zone_idx, nid);
5896 * Mark page reserved as it will need to wait for onlining
5897 * phase for it to be fully associated with a zone.
5899 * We can use the non-atomic __set_bit operation for setting
5900 * the flag as we are still initializing the pages.
5902 __SetPageReserved(page);
5905 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5906 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5907 * page is ever freed or placed on a driver-private list.
5909 page->pgmap = pgmap;
5913 * Mark the block movable so that blocks are reserved for
5914 * movable at startup. This will force kernel allocations
5915 * to reserve their blocks rather than leaking throughout
5916 * the address space during boot when many long-lived
5917 * kernel allocations are made.
5919 * bitmap is created for zone's valid pfn range. but memmap
5920 * can be created for invalid pages (for alignment)
5921 * check here not to call set_pageblock_migratetype() against
5924 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5925 * because this is done early in sparse_add_one_section
5927 if (!(pfn & (pageblock_nr_pages - 1))) {
5928 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5933 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5934 size, jiffies_to_msecs(jiffies - start));
5938 static void __meminit zone_init_free_lists(struct zone *zone)
5940 unsigned int order, t;
5941 for_each_migratetype_order(order, t) {
5942 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5943 zone->free_area[order].nr_free = 0;
5947 void __meminit __weak memmap_init(unsigned long size, int nid,
5948 unsigned long zone, unsigned long start_pfn)
5950 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5953 static int zone_batchsize(struct zone *zone)
5959 * The per-cpu-pages pools are set to around 1000th of the
5962 batch = zone_managed_pages(zone) / 1024;
5963 /* But no more than a meg. */
5964 if (batch * PAGE_SIZE > 1024 * 1024)
5965 batch = (1024 * 1024) / PAGE_SIZE;
5966 batch /= 4; /* We effectively *= 4 below */
5971 * Clamp the batch to a 2^n - 1 value. Having a power
5972 * of 2 value was found to be more likely to have
5973 * suboptimal cache aliasing properties in some cases.
5975 * For example if 2 tasks are alternately allocating
5976 * batches of pages, one task can end up with a lot
5977 * of pages of one half of the possible page colors
5978 * and the other with pages of the other colors.
5980 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5985 /* The deferral and batching of frees should be suppressed under NOMMU
5988 * The problem is that NOMMU needs to be able to allocate large chunks
5989 * of contiguous memory as there's no hardware page translation to
5990 * assemble apparent contiguous memory from discontiguous pages.
5992 * Queueing large contiguous runs of pages for batching, however,
5993 * causes the pages to actually be freed in smaller chunks. As there
5994 * can be a significant delay between the individual batches being
5995 * recycled, this leads to the once large chunks of space being
5996 * fragmented and becoming unavailable for high-order allocations.
6003 * pcp->high and pcp->batch values are related and dependent on one another:
6004 * ->batch must never be higher then ->high.
6005 * The following function updates them in a safe manner without read side
6008 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6009 * those fields changing asynchronously (acording the the above rule).
6011 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6012 * outside of boot time (or some other assurance that no concurrent updaters
6015 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6016 unsigned long batch)
6018 /* start with a fail safe value for batch */
6022 /* Update high, then batch, in order */
6029 /* a companion to pageset_set_high() */
6030 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6032 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6035 static void pageset_init(struct per_cpu_pageset *p)
6037 struct per_cpu_pages *pcp;
6040 memset(p, 0, sizeof(*p));
6043 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6044 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6047 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6050 pageset_set_batch(p, batch);
6054 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6055 * to the value high for the pageset p.
6057 static void pageset_set_high(struct per_cpu_pageset *p,
6060 unsigned long batch = max(1UL, high / 4);
6061 if ((high / 4) > (PAGE_SHIFT * 8))
6062 batch = PAGE_SHIFT * 8;
6064 pageset_update(&p->pcp, high, batch);
6067 static void pageset_set_high_and_batch(struct zone *zone,
6068 struct per_cpu_pageset *pcp)
6070 if (percpu_pagelist_fraction)
6071 pageset_set_high(pcp,
6072 (zone_managed_pages(zone) /
6073 percpu_pagelist_fraction));
6075 pageset_set_batch(pcp, zone_batchsize(zone));
6078 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6080 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6083 pageset_set_high_and_batch(zone, pcp);
6086 void __meminit setup_zone_pageset(struct zone *zone)
6089 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6090 for_each_possible_cpu(cpu)
6091 zone_pageset_init(zone, cpu);
6095 * Allocate per cpu pagesets and initialize them.
6096 * Before this call only boot pagesets were available.
6098 void __init setup_per_cpu_pageset(void)
6100 struct pglist_data *pgdat;
6103 for_each_populated_zone(zone)
6104 setup_zone_pageset(zone);
6106 for_each_online_pgdat(pgdat)
6107 pgdat->per_cpu_nodestats =
6108 alloc_percpu(struct per_cpu_nodestat);
6111 static __meminit void zone_pcp_init(struct zone *zone)
6114 * per cpu subsystem is not up at this point. The following code
6115 * relies on the ability of the linker to provide the
6116 * offset of a (static) per cpu variable into the per cpu area.
6118 zone->pageset = &boot_pageset;
6120 if (populated_zone(zone))
6121 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6122 zone->name, zone->present_pages,
6123 zone_batchsize(zone));
6126 void __meminit init_currently_empty_zone(struct zone *zone,
6127 unsigned long zone_start_pfn,
6130 struct pglist_data *pgdat = zone->zone_pgdat;
6131 int zone_idx = zone_idx(zone) + 1;
6133 if (zone_idx > pgdat->nr_zones)
6134 pgdat->nr_zones = zone_idx;
6136 zone->zone_start_pfn = zone_start_pfn;
6138 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6139 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6141 (unsigned long)zone_idx(zone),
6142 zone_start_pfn, (zone_start_pfn + size));
6144 zone_init_free_lists(zone);
6145 zone->initialized = 1;
6148 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6149 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6152 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6154 int __meminit __early_pfn_to_nid(unsigned long pfn,
6155 struct mminit_pfnnid_cache *state)
6157 unsigned long start_pfn, end_pfn;
6160 if (state->last_start <= pfn && pfn < state->last_end)
6161 return state->last_nid;
6163 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6164 if (nid != NUMA_NO_NODE) {
6165 state->last_start = start_pfn;
6166 state->last_end = end_pfn;
6167 state->last_nid = nid;
6172 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6175 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6176 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6177 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6179 * If an architecture guarantees that all ranges registered contain no holes
6180 * and may be freed, this this function may be used instead of calling
6181 * memblock_free_early_nid() manually.
6183 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6185 unsigned long start_pfn, end_pfn;
6188 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6189 start_pfn = min(start_pfn, max_low_pfn);
6190 end_pfn = min(end_pfn, max_low_pfn);
6192 if (start_pfn < end_pfn)
6193 memblock_free_early_nid(PFN_PHYS(start_pfn),
6194 (end_pfn - start_pfn) << PAGE_SHIFT,
6200 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6201 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6203 * If an architecture guarantees that all ranges registered contain no holes and may
6204 * be freed, this function may be used instead of calling memory_present() manually.
6206 void __init sparse_memory_present_with_active_regions(int nid)
6208 unsigned long start_pfn, end_pfn;
6211 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6212 memory_present(this_nid, start_pfn, end_pfn);
6216 * get_pfn_range_for_nid - Return the start and end page frames for a node
6217 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6218 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6219 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6221 * It returns the start and end page frame of a node based on information
6222 * provided by memblock_set_node(). If called for a node
6223 * with no available memory, a warning is printed and the start and end
6226 void __init get_pfn_range_for_nid(unsigned int nid,
6227 unsigned long *start_pfn, unsigned long *end_pfn)
6229 unsigned long this_start_pfn, this_end_pfn;
6235 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6236 *start_pfn = min(*start_pfn, this_start_pfn);
6237 *end_pfn = max(*end_pfn, this_end_pfn);
6240 if (*start_pfn == -1UL)
6245 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6246 * assumption is made that zones within a node are ordered in monotonic
6247 * increasing memory addresses so that the "highest" populated zone is used
6249 static void __init find_usable_zone_for_movable(void)
6252 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6253 if (zone_index == ZONE_MOVABLE)
6256 if (arch_zone_highest_possible_pfn[zone_index] >
6257 arch_zone_lowest_possible_pfn[zone_index])
6261 VM_BUG_ON(zone_index == -1);
6262 movable_zone = zone_index;
6266 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6267 * because it is sized independent of architecture. Unlike the other zones,
6268 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6269 * in each node depending on the size of each node and how evenly kernelcore
6270 * is distributed. This helper function adjusts the zone ranges
6271 * provided by the architecture for a given node by using the end of the
6272 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6273 * zones within a node are in order of monotonic increases memory addresses
6275 static void __init adjust_zone_range_for_zone_movable(int nid,
6276 unsigned long zone_type,
6277 unsigned long node_start_pfn,
6278 unsigned long node_end_pfn,
6279 unsigned long *zone_start_pfn,
6280 unsigned long *zone_end_pfn)
6282 /* Only adjust if ZONE_MOVABLE is on this node */
6283 if (zone_movable_pfn[nid]) {
6284 /* Size ZONE_MOVABLE */
6285 if (zone_type == ZONE_MOVABLE) {
6286 *zone_start_pfn = zone_movable_pfn[nid];
6287 *zone_end_pfn = min(node_end_pfn,
6288 arch_zone_highest_possible_pfn[movable_zone]);
6290 /* Adjust for ZONE_MOVABLE starting within this range */
6291 } else if (!mirrored_kernelcore &&
6292 *zone_start_pfn < zone_movable_pfn[nid] &&
6293 *zone_end_pfn > zone_movable_pfn[nid]) {
6294 *zone_end_pfn = zone_movable_pfn[nid];
6296 /* Check if this whole range is within ZONE_MOVABLE */
6297 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6298 *zone_start_pfn = *zone_end_pfn;
6303 * Return the number of pages a zone spans in a node, including holes
6304 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6306 static unsigned long __init zone_spanned_pages_in_node(int nid,
6307 unsigned long zone_type,
6308 unsigned long node_start_pfn,
6309 unsigned long node_end_pfn,
6310 unsigned long *zone_start_pfn,
6311 unsigned long *zone_end_pfn,
6312 unsigned long *ignored)
6314 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6315 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6316 /* When hotadd a new node from cpu_up(), the node should be empty */
6317 if (!node_start_pfn && !node_end_pfn)
6320 /* Get the start and end of the zone */
6321 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6322 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6323 adjust_zone_range_for_zone_movable(nid, zone_type,
6324 node_start_pfn, node_end_pfn,
6325 zone_start_pfn, zone_end_pfn);
6327 /* Check that this node has pages within the zone's required range */
6328 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6331 /* Move the zone boundaries inside the node if necessary */
6332 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6333 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6335 /* Return the spanned pages */
6336 return *zone_end_pfn - *zone_start_pfn;
6340 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6341 * then all holes in the requested range will be accounted for.
6343 unsigned long __init __absent_pages_in_range(int nid,
6344 unsigned long range_start_pfn,
6345 unsigned long range_end_pfn)
6347 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6348 unsigned long start_pfn, end_pfn;
6351 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6352 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6353 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6354 nr_absent -= end_pfn - start_pfn;
6360 * absent_pages_in_range - Return number of page frames in holes within a range
6361 * @start_pfn: The start PFN to start searching for holes
6362 * @end_pfn: The end PFN to stop searching for holes
6364 * Return: the number of pages frames in memory holes within a range.
6366 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6367 unsigned long end_pfn)
6369 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6372 /* Return the number of page frames in holes in a zone on a node */
6373 static unsigned long __init zone_absent_pages_in_node(int nid,
6374 unsigned long zone_type,
6375 unsigned long node_start_pfn,
6376 unsigned long node_end_pfn,
6377 unsigned long *ignored)
6379 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6380 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6381 unsigned long zone_start_pfn, zone_end_pfn;
6382 unsigned long nr_absent;
6384 /* When hotadd a new node from cpu_up(), the node should be empty */
6385 if (!node_start_pfn && !node_end_pfn)
6388 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6389 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6391 adjust_zone_range_for_zone_movable(nid, zone_type,
6392 node_start_pfn, node_end_pfn,
6393 &zone_start_pfn, &zone_end_pfn);
6394 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6397 * ZONE_MOVABLE handling.
6398 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6401 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6402 unsigned long start_pfn, end_pfn;
6403 struct memblock_region *r;
6405 for_each_memblock(memory, r) {
6406 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6407 zone_start_pfn, zone_end_pfn);
6408 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6409 zone_start_pfn, zone_end_pfn);
6411 if (zone_type == ZONE_MOVABLE &&
6412 memblock_is_mirror(r))
6413 nr_absent += end_pfn - start_pfn;
6415 if (zone_type == ZONE_NORMAL &&
6416 !memblock_is_mirror(r))
6417 nr_absent += end_pfn - start_pfn;
6424 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6425 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6426 unsigned long zone_type,
6427 unsigned long node_start_pfn,
6428 unsigned long node_end_pfn,
6429 unsigned long *zone_start_pfn,
6430 unsigned long *zone_end_pfn,
6431 unsigned long *zones_size)
6435 *zone_start_pfn = node_start_pfn;
6436 for (zone = 0; zone < zone_type; zone++)
6437 *zone_start_pfn += zones_size[zone];
6439 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6441 return zones_size[zone_type];
6444 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6445 unsigned long zone_type,
6446 unsigned long node_start_pfn,
6447 unsigned long node_end_pfn,
6448 unsigned long *zholes_size)
6453 return zholes_size[zone_type];
6456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6458 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6459 unsigned long node_start_pfn,
6460 unsigned long node_end_pfn,
6461 unsigned long *zones_size,
6462 unsigned long *zholes_size)
6464 unsigned long realtotalpages = 0, totalpages = 0;
6467 for (i = 0; i < MAX_NR_ZONES; i++) {
6468 struct zone *zone = pgdat->node_zones + i;
6469 unsigned long zone_start_pfn, zone_end_pfn;
6470 unsigned long size, real_size;
6472 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6478 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6479 node_start_pfn, node_end_pfn,
6482 zone->zone_start_pfn = zone_start_pfn;
6484 zone->zone_start_pfn = 0;
6485 zone->spanned_pages = size;
6486 zone->present_pages = real_size;
6489 realtotalpages += real_size;
6492 pgdat->node_spanned_pages = totalpages;
6493 pgdat->node_present_pages = realtotalpages;
6494 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6498 #ifndef CONFIG_SPARSEMEM
6500 * Calculate the size of the zone->blockflags rounded to an unsigned long
6501 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6502 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6503 * round what is now in bits to nearest long in bits, then return it in
6506 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6508 unsigned long usemapsize;
6510 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6511 usemapsize = roundup(zonesize, pageblock_nr_pages);
6512 usemapsize = usemapsize >> pageblock_order;
6513 usemapsize *= NR_PAGEBLOCK_BITS;
6514 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6516 return usemapsize / 8;
6519 static void __ref setup_usemap(struct pglist_data *pgdat,
6521 unsigned long zone_start_pfn,
6522 unsigned long zonesize)
6524 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6525 zone->pageblock_flags = NULL;
6527 zone->pageblock_flags =
6528 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6530 if (!zone->pageblock_flags)
6531 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6532 usemapsize, zone->name, pgdat->node_id);
6536 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6537 unsigned long zone_start_pfn, unsigned long zonesize) {}
6538 #endif /* CONFIG_SPARSEMEM */
6540 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6542 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6543 void __init set_pageblock_order(void)
6547 /* Check that pageblock_nr_pages has not already been setup */
6548 if (pageblock_order)
6551 if (HPAGE_SHIFT > PAGE_SHIFT)
6552 order = HUGETLB_PAGE_ORDER;
6554 order = MAX_ORDER - 1;
6557 * Assume the largest contiguous order of interest is a huge page.
6558 * This value may be variable depending on boot parameters on IA64 and
6561 pageblock_order = order;
6563 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6566 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6567 * is unused as pageblock_order is set at compile-time. See
6568 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6571 void __init set_pageblock_order(void)
6575 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6577 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6578 unsigned long present_pages)
6580 unsigned long pages = spanned_pages;
6583 * Provide a more accurate estimation if there are holes within
6584 * the zone and SPARSEMEM is in use. If there are holes within the
6585 * zone, each populated memory region may cost us one or two extra
6586 * memmap pages due to alignment because memmap pages for each
6587 * populated regions may not be naturally aligned on page boundary.
6588 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6590 if (spanned_pages > present_pages + (present_pages >> 4) &&
6591 IS_ENABLED(CONFIG_SPARSEMEM))
6592 pages = present_pages;
6594 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6598 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6600 spin_lock_init(&pgdat->split_queue_lock);
6601 INIT_LIST_HEAD(&pgdat->split_queue);
6602 pgdat->split_queue_len = 0;
6605 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6608 #ifdef CONFIG_COMPACTION
6609 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6611 init_waitqueue_head(&pgdat->kcompactd_wait);
6614 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6617 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6619 pgdat_resize_init(pgdat);
6621 pgdat_init_split_queue(pgdat);
6622 pgdat_init_kcompactd(pgdat);
6624 init_waitqueue_head(&pgdat->kswapd_wait);
6625 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6627 pgdat_page_ext_init(pgdat);
6628 spin_lock_init(&pgdat->lru_lock);
6629 lruvec_init(node_lruvec(pgdat));
6632 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6633 unsigned long remaining_pages)
6635 atomic_long_set(&zone->managed_pages, remaining_pages);
6636 zone_set_nid(zone, nid);
6637 zone->name = zone_names[idx];
6638 zone->zone_pgdat = NODE_DATA(nid);
6639 spin_lock_init(&zone->lock);
6640 zone_seqlock_init(zone);
6641 zone_pcp_init(zone);
6645 * Set up the zone data structures
6646 * - init pgdat internals
6647 * - init all zones belonging to this node
6649 * NOTE: this function is only called during memory hotplug
6651 #ifdef CONFIG_MEMORY_HOTPLUG
6652 void __ref free_area_init_core_hotplug(int nid)
6655 pg_data_t *pgdat = NODE_DATA(nid);
6657 pgdat_init_internals(pgdat);
6658 for (z = 0; z < MAX_NR_ZONES; z++)
6659 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6664 * Set up the zone data structures:
6665 * - mark all pages reserved
6666 * - mark all memory queues empty
6667 * - clear the memory bitmaps
6669 * NOTE: pgdat should get zeroed by caller.
6670 * NOTE: this function is only called during early init.
6672 static void __init free_area_init_core(struct pglist_data *pgdat)
6675 int nid = pgdat->node_id;
6677 pgdat_init_internals(pgdat);
6678 pgdat->per_cpu_nodestats = &boot_nodestats;
6680 for (j = 0; j < MAX_NR_ZONES; j++) {
6681 struct zone *zone = pgdat->node_zones + j;
6682 unsigned long size, freesize, memmap_pages;
6683 unsigned long zone_start_pfn = zone->zone_start_pfn;
6685 size = zone->spanned_pages;
6686 freesize = zone->present_pages;
6689 * Adjust freesize so that it accounts for how much memory
6690 * is used by this zone for memmap. This affects the watermark
6691 * and per-cpu initialisations
6693 memmap_pages = calc_memmap_size(size, freesize);
6694 if (!is_highmem_idx(j)) {
6695 if (freesize >= memmap_pages) {
6696 freesize -= memmap_pages;
6699 " %s zone: %lu pages used for memmap\n",
6700 zone_names[j], memmap_pages);
6702 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6703 zone_names[j], memmap_pages, freesize);
6706 /* Account for reserved pages */
6707 if (j == 0 && freesize > dma_reserve) {
6708 freesize -= dma_reserve;
6709 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6710 zone_names[0], dma_reserve);
6713 if (!is_highmem_idx(j))
6714 nr_kernel_pages += freesize;
6715 /* Charge for highmem memmap if there are enough kernel pages */
6716 else if (nr_kernel_pages > memmap_pages * 2)
6717 nr_kernel_pages -= memmap_pages;
6718 nr_all_pages += freesize;
6721 * Set an approximate value for lowmem here, it will be adjusted
6722 * when the bootmem allocator frees pages into the buddy system.
6723 * And all highmem pages will be managed by the buddy system.
6725 zone_init_internals(zone, j, nid, freesize);
6730 set_pageblock_order();
6731 setup_usemap(pgdat, zone, zone_start_pfn, size);
6732 init_currently_empty_zone(zone, zone_start_pfn, size);
6733 memmap_init(size, nid, j, zone_start_pfn);
6737 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6738 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6740 unsigned long __maybe_unused start = 0;
6741 unsigned long __maybe_unused offset = 0;
6743 /* Skip empty nodes */
6744 if (!pgdat->node_spanned_pages)
6747 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6748 offset = pgdat->node_start_pfn - start;
6749 /* ia64 gets its own node_mem_map, before this, without bootmem */
6750 if (!pgdat->node_mem_map) {
6751 unsigned long size, end;
6755 * The zone's endpoints aren't required to be MAX_ORDER
6756 * aligned but the node_mem_map endpoints must be in order
6757 * for the buddy allocator to function correctly.
6759 end = pgdat_end_pfn(pgdat);
6760 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6761 size = (end - start) * sizeof(struct page);
6762 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6765 panic("Failed to allocate %ld bytes for node %d memory map\n",
6766 size, pgdat->node_id);
6767 pgdat->node_mem_map = map + offset;
6769 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6770 __func__, pgdat->node_id, (unsigned long)pgdat,
6771 (unsigned long)pgdat->node_mem_map);
6772 #ifndef CONFIG_NEED_MULTIPLE_NODES
6774 * With no DISCONTIG, the global mem_map is just set as node 0's
6776 if (pgdat == NODE_DATA(0)) {
6777 mem_map = NODE_DATA(0)->node_mem_map;
6778 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6779 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6781 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6786 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6787 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6789 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6790 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6792 pgdat->first_deferred_pfn = ULONG_MAX;
6795 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6798 void __init free_area_init_node(int nid, unsigned long *zones_size,
6799 unsigned long node_start_pfn,
6800 unsigned long *zholes_size)
6802 pg_data_t *pgdat = NODE_DATA(nid);
6803 unsigned long start_pfn = 0;
6804 unsigned long end_pfn = 0;
6806 /* pg_data_t should be reset to zero when it's allocated */
6807 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6809 pgdat->node_id = nid;
6810 pgdat->node_start_pfn = node_start_pfn;
6811 pgdat->per_cpu_nodestats = NULL;
6812 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6813 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6814 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6815 (u64)start_pfn << PAGE_SHIFT,
6816 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6818 start_pfn = node_start_pfn;
6820 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6821 zones_size, zholes_size);
6823 alloc_node_mem_map(pgdat);
6824 pgdat_set_deferred_range(pgdat);
6826 free_area_init_core(pgdat);
6829 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6831 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6834 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6839 for (pfn = spfn; pfn < epfn; pfn++) {
6840 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6841 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6842 + pageblock_nr_pages - 1;
6845 mm_zero_struct_page(pfn_to_page(pfn));
6853 * Only struct pages that are backed by physical memory are zeroed and
6854 * initialized by going through __init_single_page(). But, there are some
6855 * struct pages which are reserved in memblock allocator and their fields
6856 * may be accessed (for example page_to_pfn() on some configuration accesses
6857 * flags). We must explicitly zero those struct pages.
6859 * This function also addresses a similar issue where struct pages are left
6860 * uninitialized because the physical address range is not covered by
6861 * memblock.memory or memblock.reserved. That could happen when memblock
6862 * layout is manually configured via memmap=.
6864 void __init zero_resv_unavail(void)
6866 phys_addr_t start, end;
6868 phys_addr_t next = 0;
6871 * Loop through unavailable ranges not covered by memblock.memory.
6874 for_each_mem_range(i, &memblock.memory, NULL,
6875 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6877 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6880 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6883 * Struct pages that do not have backing memory. This could be because
6884 * firmware is using some of this memory, or for some other reasons.
6887 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6889 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6891 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6893 #if MAX_NUMNODES > 1
6895 * Figure out the number of possible node ids.
6897 void __init setup_nr_node_ids(void)
6899 unsigned int highest;
6901 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6902 nr_node_ids = highest + 1;
6907 * node_map_pfn_alignment - determine the maximum internode alignment
6909 * This function should be called after node map is populated and sorted.
6910 * It calculates the maximum power of two alignment which can distinguish
6913 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6914 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6915 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6916 * shifted, 1GiB is enough and this function will indicate so.
6918 * This is used to test whether pfn -> nid mapping of the chosen memory
6919 * model has fine enough granularity to avoid incorrect mapping for the
6920 * populated node map.
6922 * Return: the determined alignment in pfn's. 0 if there is no alignment
6923 * requirement (single node).
6925 unsigned long __init node_map_pfn_alignment(void)
6927 unsigned long accl_mask = 0, last_end = 0;
6928 unsigned long start, end, mask;
6929 int last_nid = NUMA_NO_NODE;
6932 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6933 if (!start || last_nid < 0 || last_nid == nid) {
6940 * Start with a mask granular enough to pin-point to the
6941 * start pfn and tick off bits one-by-one until it becomes
6942 * too coarse to separate the current node from the last.
6944 mask = ~((1 << __ffs(start)) - 1);
6945 while (mask && last_end <= (start & (mask << 1)))
6948 /* accumulate all internode masks */
6952 /* convert mask to number of pages */
6953 return ~accl_mask + 1;
6956 /* Find the lowest pfn for a node */
6957 static unsigned long __init find_min_pfn_for_node(int nid)
6959 unsigned long min_pfn = ULONG_MAX;
6960 unsigned long start_pfn;
6963 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6964 min_pfn = min(min_pfn, start_pfn);
6966 if (min_pfn == ULONG_MAX) {
6967 pr_warn("Could not find start_pfn for node %d\n", nid);
6975 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6977 * Return: the minimum PFN based on information provided via
6978 * memblock_set_node().
6980 unsigned long __init find_min_pfn_with_active_regions(void)
6982 return find_min_pfn_for_node(MAX_NUMNODES);
6986 * early_calculate_totalpages()
6987 * Sum pages in active regions for movable zone.
6988 * Populate N_MEMORY for calculating usable_nodes.
6990 static unsigned long __init early_calculate_totalpages(void)
6992 unsigned long totalpages = 0;
6993 unsigned long start_pfn, end_pfn;
6996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6997 unsigned long pages = end_pfn - start_pfn;
6999 totalpages += pages;
7001 node_set_state(nid, N_MEMORY);
7007 * Find the PFN the Movable zone begins in each node. Kernel memory
7008 * is spread evenly between nodes as long as the nodes have enough
7009 * memory. When they don't, some nodes will have more kernelcore than
7012 static void __init find_zone_movable_pfns_for_nodes(void)
7015 unsigned long usable_startpfn;
7016 unsigned long kernelcore_node, kernelcore_remaining;
7017 /* save the state before borrow the nodemask */
7018 nodemask_t saved_node_state = node_states[N_MEMORY];
7019 unsigned long totalpages = early_calculate_totalpages();
7020 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7021 struct memblock_region *r;
7023 /* Need to find movable_zone earlier when movable_node is specified. */
7024 find_usable_zone_for_movable();
7027 * If movable_node is specified, ignore kernelcore and movablecore
7030 if (movable_node_is_enabled()) {
7031 for_each_memblock(memory, r) {
7032 if (!memblock_is_hotpluggable(r))
7037 usable_startpfn = PFN_DOWN(r->base);
7038 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7039 min(usable_startpfn, zone_movable_pfn[nid]) :
7047 * If kernelcore=mirror is specified, ignore movablecore option
7049 if (mirrored_kernelcore) {
7050 bool mem_below_4gb_not_mirrored = false;
7052 for_each_memblock(memory, r) {
7053 if (memblock_is_mirror(r))
7058 usable_startpfn = memblock_region_memory_base_pfn(r);
7060 if (usable_startpfn < 0x100000) {
7061 mem_below_4gb_not_mirrored = true;
7065 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7066 min(usable_startpfn, zone_movable_pfn[nid]) :
7070 if (mem_below_4gb_not_mirrored)
7071 pr_warn("This configuration results in unmirrored kernel memory.");
7077 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7078 * amount of necessary memory.
7080 if (required_kernelcore_percent)
7081 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7083 if (required_movablecore_percent)
7084 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7088 * If movablecore= was specified, calculate what size of
7089 * kernelcore that corresponds so that memory usable for
7090 * any allocation type is evenly spread. If both kernelcore
7091 * and movablecore are specified, then the value of kernelcore
7092 * will be used for required_kernelcore if it's greater than
7093 * what movablecore would have allowed.
7095 if (required_movablecore) {
7096 unsigned long corepages;
7099 * Round-up so that ZONE_MOVABLE is at least as large as what
7100 * was requested by the user
7102 required_movablecore =
7103 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7104 required_movablecore = min(totalpages, required_movablecore);
7105 corepages = totalpages - required_movablecore;
7107 required_kernelcore = max(required_kernelcore, corepages);
7111 * If kernelcore was not specified or kernelcore size is larger
7112 * than totalpages, there is no ZONE_MOVABLE.
7114 if (!required_kernelcore || required_kernelcore >= totalpages)
7117 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7118 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7121 /* Spread kernelcore memory as evenly as possible throughout nodes */
7122 kernelcore_node = required_kernelcore / usable_nodes;
7123 for_each_node_state(nid, N_MEMORY) {
7124 unsigned long start_pfn, end_pfn;
7127 * Recalculate kernelcore_node if the division per node
7128 * now exceeds what is necessary to satisfy the requested
7129 * amount of memory for the kernel
7131 if (required_kernelcore < kernelcore_node)
7132 kernelcore_node = required_kernelcore / usable_nodes;
7135 * As the map is walked, we track how much memory is usable
7136 * by the kernel using kernelcore_remaining. When it is
7137 * 0, the rest of the node is usable by ZONE_MOVABLE
7139 kernelcore_remaining = kernelcore_node;
7141 /* Go through each range of PFNs within this node */
7142 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7143 unsigned long size_pages;
7145 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7146 if (start_pfn >= end_pfn)
7149 /* Account for what is only usable for kernelcore */
7150 if (start_pfn < usable_startpfn) {
7151 unsigned long kernel_pages;
7152 kernel_pages = min(end_pfn, usable_startpfn)
7155 kernelcore_remaining -= min(kernel_pages,
7156 kernelcore_remaining);
7157 required_kernelcore -= min(kernel_pages,
7158 required_kernelcore);
7160 /* Continue if range is now fully accounted */
7161 if (end_pfn <= usable_startpfn) {
7164 * Push zone_movable_pfn to the end so
7165 * that if we have to rebalance
7166 * kernelcore across nodes, we will
7167 * not double account here
7169 zone_movable_pfn[nid] = end_pfn;
7172 start_pfn = usable_startpfn;
7176 * The usable PFN range for ZONE_MOVABLE is from
7177 * start_pfn->end_pfn. Calculate size_pages as the
7178 * number of pages used as kernelcore
7180 size_pages = end_pfn - start_pfn;
7181 if (size_pages > kernelcore_remaining)
7182 size_pages = kernelcore_remaining;
7183 zone_movable_pfn[nid] = start_pfn + size_pages;
7186 * Some kernelcore has been met, update counts and
7187 * break if the kernelcore for this node has been
7190 required_kernelcore -= min(required_kernelcore,
7192 kernelcore_remaining -= size_pages;
7193 if (!kernelcore_remaining)
7199 * If there is still required_kernelcore, we do another pass with one
7200 * less node in the count. This will push zone_movable_pfn[nid] further
7201 * along on the nodes that still have memory until kernelcore is
7205 if (usable_nodes && required_kernelcore > usable_nodes)
7209 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7210 for (nid = 0; nid < MAX_NUMNODES; nid++)
7211 zone_movable_pfn[nid] =
7212 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7215 /* restore the node_state */
7216 node_states[N_MEMORY] = saved_node_state;
7219 /* Any regular or high memory on that node ? */
7220 static void check_for_memory(pg_data_t *pgdat, int nid)
7222 enum zone_type zone_type;
7224 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7225 struct zone *zone = &pgdat->node_zones[zone_type];
7226 if (populated_zone(zone)) {
7227 if (IS_ENABLED(CONFIG_HIGHMEM))
7228 node_set_state(nid, N_HIGH_MEMORY);
7229 if (zone_type <= ZONE_NORMAL)
7230 node_set_state(nid, N_NORMAL_MEMORY);
7237 * free_area_init_nodes - Initialise all pg_data_t and zone data
7238 * @max_zone_pfn: an array of max PFNs for each zone
7240 * This will call free_area_init_node() for each active node in the system.
7241 * Using the page ranges provided by memblock_set_node(), the size of each
7242 * zone in each node and their holes is calculated. If the maximum PFN
7243 * between two adjacent zones match, it is assumed that the zone is empty.
7244 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7245 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7246 * starts where the previous one ended. For example, ZONE_DMA32 starts
7247 * at arch_max_dma_pfn.
7249 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7251 unsigned long start_pfn, end_pfn;
7254 /* Record where the zone boundaries are */
7255 memset(arch_zone_lowest_possible_pfn, 0,
7256 sizeof(arch_zone_lowest_possible_pfn));
7257 memset(arch_zone_highest_possible_pfn, 0,
7258 sizeof(arch_zone_highest_possible_pfn));
7260 start_pfn = find_min_pfn_with_active_regions();
7262 for (i = 0; i < MAX_NR_ZONES; i++) {
7263 if (i == ZONE_MOVABLE)
7266 end_pfn = max(max_zone_pfn[i], start_pfn);
7267 arch_zone_lowest_possible_pfn[i] = start_pfn;
7268 arch_zone_highest_possible_pfn[i] = end_pfn;
7270 start_pfn = end_pfn;
7273 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7274 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7275 find_zone_movable_pfns_for_nodes();
7277 /* Print out the zone ranges */
7278 pr_info("Zone ranges:\n");
7279 for (i = 0; i < MAX_NR_ZONES; i++) {
7280 if (i == ZONE_MOVABLE)
7282 pr_info(" %-8s ", zone_names[i]);
7283 if (arch_zone_lowest_possible_pfn[i] ==
7284 arch_zone_highest_possible_pfn[i])
7287 pr_cont("[mem %#018Lx-%#018Lx]\n",
7288 (u64)arch_zone_lowest_possible_pfn[i]
7290 ((u64)arch_zone_highest_possible_pfn[i]
7291 << PAGE_SHIFT) - 1);
7294 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7295 pr_info("Movable zone start for each node\n");
7296 for (i = 0; i < MAX_NUMNODES; i++) {
7297 if (zone_movable_pfn[i])
7298 pr_info(" Node %d: %#018Lx\n", i,
7299 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7302 /* Print out the early node map */
7303 pr_info("Early memory node ranges\n");
7304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7305 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7306 (u64)start_pfn << PAGE_SHIFT,
7307 ((u64)end_pfn << PAGE_SHIFT) - 1);
7309 /* Initialise every node */
7310 mminit_verify_pageflags_layout();
7311 setup_nr_node_ids();
7312 zero_resv_unavail();
7313 for_each_online_node(nid) {
7314 pg_data_t *pgdat = NODE_DATA(nid);
7315 free_area_init_node(nid, NULL,
7316 find_min_pfn_for_node(nid), NULL);
7318 /* Any memory on that node */
7319 if (pgdat->node_present_pages)
7320 node_set_state(nid, N_MEMORY);
7321 check_for_memory(pgdat, nid);
7325 static int __init cmdline_parse_core(char *p, unsigned long *core,
7326 unsigned long *percent)
7328 unsigned long long coremem;
7334 /* Value may be a percentage of total memory, otherwise bytes */
7335 coremem = simple_strtoull(p, &endptr, 0);
7336 if (*endptr == '%') {
7337 /* Paranoid check for percent values greater than 100 */
7338 WARN_ON(coremem > 100);
7342 coremem = memparse(p, &p);
7343 /* Paranoid check that UL is enough for the coremem value */
7344 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7346 *core = coremem >> PAGE_SHIFT;
7353 * kernelcore=size sets the amount of memory for use for allocations that
7354 * cannot be reclaimed or migrated.
7356 static int __init cmdline_parse_kernelcore(char *p)
7358 /* parse kernelcore=mirror */
7359 if (parse_option_str(p, "mirror")) {
7360 mirrored_kernelcore = true;
7364 return cmdline_parse_core(p, &required_kernelcore,
7365 &required_kernelcore_percent);
7369 * movablecore=size sets the amount of memory for use for allocations that
7370 * can be reclaimed or migrated.
7372 static int __init cmdline_parse_movablecore(char *p)
7374 return cmdline_parse_core(p, &required_movablecore,
7375 &required_movablecore_percent);
7378 early_param("kernelcore", cmdline_parse_kernelcore);
7379 early_param("movablecore", cmdline_parse_movablecore);
7381 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7383 void adjust_managed_page_count(struct page *page, long count)
7385 atomic_long_add(count, &page_zone(page)->managed_pages);
7386 totalram_pages_add(count);
7387 #ifdef CONFIG_HIGHMEM
7388 if (PageHighMem(page))
7389 totalhigh_pages_add(count);
7392 EXPORT_SYMBOL(adjust_managed_page_count);
7394 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7397 unsigned long pages = 0;
7399 start = (void *)PAGE_ALIGN((unsigned long)start);
7400 end = (void *)((unsigned long)end & PAGE_MASK);
7401 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7402 struct page *page = virt_to_page(pos);
7403 void *direct_map_addr;
7406 * 'direct_map_addr' might be different from 'pos'
7407 * because some architectures' virt_to_page()
7408 * work with aliases. Getting the direct map
7409 * address ensures that we get a _writeable_
7410 * alias for the memset().
7412 direct_map_addr = page_address(page);
7413 if ((unsigned int)poison <= 0xFF)
7414 memset(direct_map_addr, poison, PAGE_SIZE);
7416 free_reserved_page(page);
7420 pr_info("Freeing %s memory: %ldK\n",
7421 s, pages << (PAGE_SHIFT - 10));
7426 #ifdef CONFIG_HIGHMEM
7427 void free_highmem_page(struct page *page)
7429 __free_reserved_page(page);
7430 totalram_pages_inc();
7431 atomic_long_inc(&page_zone(page)->managed_pages);
7432 totalhigh_pages_inc();
7437 void __init mem_init_print_info(const char *str)
7439 unsigned long physpages, codesize, datasize, rosize, bss_size;
7440 unsigned long init_code_size, init_data_size;
7442 physpages = get_num_physpages();
7443 codesize = _etext - _stext;
7444 datasize = _edata - _sdata;
7445 rosize = __end_rodata - __start_rodata;
7446 bss_size = __bss_stop - __bss_start;
7447 init_data_size = __init_end - __init_begin;
7448 init_code_size = _einittext - _sinittext;
7451 * Detect special cases and adjust section sizes accordingly:
7452 * 1) .init.* may be embedded into .data sections
7453 * 2) .init.text.* may be out of [__init_begin, __init_end],
7454 * please refer to arch/tile/kernel/vmlinux.lds.S.
7455 * 3) .rodata.* may be embedded into .text or .data sections.
7457 #define adj_init_size(start, end, size, pos, adj) \
7459 if (start <= pos && pos < end && size > adj) \
7463 adj_init_size(__init_begin, __init_end, init_data_size,
7464 _sinittext, init_code_size);
7465 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7466 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7467 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7468 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7470 #undef adj_init_size
7472 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7473 #ifdef CONFIG_HIGHMEM
7477 nr_free_pages() << (PAGE_SHIFT - 10),
7478 physpages << (PAGE_SHIFT - 10),
7479 codesize >> 10, datasize >> 10, rosize >> 10,
7480 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7481 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7482 totalcma_pages << (PAGE_SHIFT - 10),
7483 #ifdef CONFIG_HIGHMEM
7484 totalhigh_pages() << (PAGE_SHIFT - 10),
7486 str ? ", " : "", str ? str : "");
7490 * set_dma_reserve - set the specified number of pages reserved in the first zone
7491 * @new_dma_reserve: The number of pages to mark reserved
7493 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7494 * In the DMA zone, a significant percentage may be consumed by kernel image
7495 * and other unfreeable allocations which can skew the watermarks badly. This
7496 * function may optionally be used to account for unfreeable pages in the
7497 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7498 * smaller per-cpu batchsize.
7500 void __init set_dma_reserve(unsigned long new_dma_reserve)
7502 dma_reserve = new_dma_reserve;
7505 void __init free_area_init(unsigned long *zones_size)
7507 zero_resv_unavail();
7508 free_area_init_node(0, zones_size,
7509 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7512 static int page_alloc_cpu_dead(unsigned int cpu)
7515 lru_add_drain_cpu(cpu);
7519 * Spill the event counters of the dead processor
7520 * into the current processors event counters.
7521 * This artificially elevates the count of the current
7524 vm_events_fold_cpu(cpu);
7527 * Zero the differential counters of the dead processor
7528 * so that the vm statistics are consistent.
7530 * This is only okay since the processor is dead and cannot
7531 * race with what we are doing.
7533 cpu_vm_stats_fold(cpu);
7537 void __init page_alloc_init(void)
7541 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7542 "mm/page_alloc:dead", NULL,
7543 page_alloc_cpu_dead);
7548 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7549 * or min_free_kbytes changes.
7551 static void calculate_totalreserve_pages(void)
7553 struct pglist_data *pgdat;
7554 unsigned long reserve_pages = 0;
7555 enum zone_type i, j;
7557 for_each_online_pgdat(pgdat) {
7559 pgdat->totalreserve_pages = 0;
7561 for (i = 0; i < MAX_NR_ZONES; i++) {
7562 struct zone *zone = pgdat->node_zones + i;
7564 unsigned long managed_pages = zone_managed_pages(zone);
7566 /* Find valid and maximum lowmem_reserve in the zone */
7567 for (j = i; j < MAX_NR_ZONES; j++) {
7568 if (zone->lowmem_reserve[j] > max)
7569 max = zone->lowmem_reserve[j];
7572 /* we treat the high watermark as reserved pages. */
7573 max += high_wmark_pages(zone);
7575 if (max > managed_pages)
7576 max = managed_pages;
7578 pgdat->totalreserve_pages += max;
7580 reserve_pages += max;
7583 totalreserve_pages = reserve_pages;
7587 * setup_per_zone_lowmem_reserve - called whenever
7588 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7589 * has a correct pages reserved value, so an adequate number of
7590 * pages are left in the zone after a successful __alloc_pages().
7592 static void setup_per_zone_lowmem_reserve(void)
7594 struct pglist_data *pgdat;
7595 enum zone_type j, idx;
7597 for_each_online_pgdat(pgdat) {
7598 for (j = 0; j < MAX_NR_ZONES; j++) {
7599 struct zone *zone = pgdat->node_zones + j;
7600 unsigned long managed_pages = zone_managed_pages(zone);
7602 zone->lowmem_reserve[j] = 0;
7606 struct zone *lower_zone;
7609 lower_zone = pgdat->node_zones + idx;
7611 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7612 sysctl_lowmem_reserve_ratio[idx] = 0;
7613 lower_zone->lowmem_reserve[j] = 0;
7615 lower_zone->lowmem_reserve[j] =
7616 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7618 managed_pages += zone_managed_pages(lower_zone);
7623 /* update totalreserve_pages */
7624 calculate_totalreserve_pages();
7627 static void __setup_per_zone_wmarks(void)
7629 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7630 unsigned long lowmem_pages = 0;
7632 unsigned long flags;
7634 /* Calculate total number of !ZONE_HIGHMEM pages */
7635 for_each_zone(zone) {
7636 if (!is_highmem(zone))
7637 lowmem_pages += zone_managed_pages(zone);
7640 for_each_zone(zone) {
7643 spin_lock_irqsave(&zone->lock, flags);
7644 tmp = (u64)pages_min * zone_managed_pages(zone);
7645 do_div(tmp, lowmem_pages);
7646 if (is_highmem(zone)) {
7648 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7649 * need highmem pages, so cap pages_min to a small
7652 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7653 * deltas control async page reclaim, and so should
7654 * not be capped for highmem.
7656 unsigned long min_pages;
7658 min_pages = zone_managed_pages(zone) / 1024;
7659 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7660 zone->_watermark[WMARK_MIN] = min_pages;
7663 * If it's a lowmem zone, reserve a number of pages
7664 * proportionate to the zone's size.
7666 zone->_watermark[WMARK_MIN] = tmp;
7670 * Set the kswapd watermarks distance according to the
7671 * scale factor in proportion to available memory, but
7672 * ensure a minimum size on small systems.
7674 tmp = max_t(u64, tmp >> 2,
7675 mult_frac(zone_managed_pages(zone),
7676 watermark_scale_factor, 10000));
7678 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7679 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7680 zone->watermark_boost = 0;
7682 spin_unlock_irqrestore(&zone->lock, flags);
7685 /* update totalreserve_pages */
7686 calculate_totalreserve_pages();
7690 * setup_per_zone_wmarks - called when min_free_kbytes changes
7691 * or when memory is hot-{added|removed}
7693 * Ensures that the watermark[min,low,high] values for each zone are set
7694 * correctly with respect to min_free_kbytes.
7696 void setup_per_zone_wmarks(void)
7698 static DEFINE_SPINLOCK(lock);
7701 __setup_per_zone_wmarks();
7706 * Initialise min_free_kbytes.
7708 * For small machines we want it small (128k min). For large machines
7709 * we want it large (64MB max). But it is not linear, because network
7710 * bandwidth does not increase linearly with machine size. We use
7712 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7713 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7729 int __meminit init_per_zone_wmark_min(void)
7731 unsigned long lowmem_kbytes;
7732 int new_min_free_kbytes;
7734 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7735 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7737 if (new_min_free_kbytes > user_min_free_kbytes) {
7738 min_free_kbytes = new_min_free_kbytes;
7739 if (min_free_kbytes < 128)
7740 min_free_kbytes = 128;
7741 if (min_free_kbytes > 65536)
7742 min_free_kbytes = 65536;
7744 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7745 new_min_free_kbytes, user_min_free_kbytes);
7747 setup_per_zone_wmarks();
7748 refresh_zone_stat_thresholds();
7749 setup_per_zone_lowmem_reserve();
7752 setup_min_unmapped_ratio();
7753 setup_min_slab_ratio();
7758 core_initcall(init_per_zone_wmark_min)
7761 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7762 * that we can call two helper functions whenever min_free_kbytes
7765 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7766 void __user *buffer, size_t *length, loff_t *ppos)
7770 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7775 user_min_free_kbytes = min_free_kbytes;
7776 setup_per_zone_wmarks();
7781 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7782 void __user *buffer, size_t *length, loff_t *ppos)
7786 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7793 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7794 void __user *buffer, size_t *length, loff_t *ppos)
7798 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7803 setup_per_zone_wmarks();
7809 static void setup_min_unmapped_ratio(void)
7814 for_each_online_pgdat(pgdat)
7815 pgdat->min_unmapped_pages = 0;
7818 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7819 sysctl_min_unmapped_ratio) / 100;
7823 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7824 void __user *buffer, size_t *length, loff_t *ppos)
7828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7832 setup_min_unmapped_ratio();
7837 static void setup_min_slab_ratio(void)
7842 for_each_online_pgdat(pgdat)
7843 pgdat->min_slab_pages = 0;
7846 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7847 sysctl_min_slab_ratio) / 100;
7850 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7851 void __user *buffer, size_t *length, loff_t *ppos)
7855 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7859 setup_min_slab_ratio();
7866 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7867 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7868 * whenever sysctl_lowmem_reserve_ratio changes.
7870 * The reserve ratio obviously has absolutely no relation with the
7871 * minimum watermarks. The lowmem reserve ratio can only make sense
7872 * if in function of the boot time zone sizes.
7874 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7875 void __user *buffer, size_t *length, loff_t *ppos)
7877 proc_dointvec_minmax(table, write, buffer, length, ppos);
7878 setup_per_zone_lowmem_reserve();
7883 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7884 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7885 * pagelist can have before it gets flushed back to buddy allocator.
7887 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7888 void __user *buffer, size_t *length, loff_t *ppos)
7891 int old_percpu_pagelist_fraction;
7894 mutex_lock(&pcp_batch_high_lock);
7895 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7897 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7898 if (!write || ret < 0)
7901 /* Sanity checking to avoid pcp imbalance */
7902 if (percpu_pagelist_fraction &&
7903 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7904 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7910 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7913 for_each_populated_zone(zone) {
7916 for_each_possible_cpu(cpu)
7917 pageset_set_high_and_batch(zone,
7918 per_cpu_ptr(zone->pageset, cpu));
7921 mutex_unlock(&pcp_batch_high_lock);
7926 int hashdist = HASHDIST_DEFAULT;
7928 static int __init set_hashdist(char *str)
7932 hashdist = simple_strtoul(str, &str, 0);
7935 __setup("hashdist=", set_hashdist);
7938 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7940 * Returns the number of pages that arch has reserved but
7941 * is not known to alloc_large_system_hash().
7943 static unsigned long __init arch_reserved_kernel_pages(void)
7950 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7951 * machines. As memory size is increased the scale is also increased but at
7952 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7953 * quadruples the scale is increased by one, which means the size of hash table
7954 * only doubles, instead of quadrupling as well.
7955 * Because 32-bit systems cannot have large physical memory, where this scaling
7956 * makes sense, it is disabled on such platforms.
7958 #if __BITS_PER_LONG > 32
7959 #define ADAPT_SCALE_BASE (64ul << 30)
7960 #define ADAPT_SCALE_SHIFT 2
7961 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7965 * allocate a large system hash table from bootmem
7966 * - it is assumed that the hash table must contain an exact power-of-2
7967 * quantity of entries
7968 * - limit is the number of hash buckets, not the total allocation size
7970 void *__init alloc_large_system_hash(const char *tablename,
7971 unsigned long bucketsize,
7972 unsigned long numentries,
7975 unsigned int *_hash_shift,
7976 unsigned int *_hash_mask,
7977 unsigned long low_limit,
7978 unsigned long high_limit)
7980 unsigned long long max = high_limit;
7981 unsigned long log2qty, size;
7985 /* allow the kernel cmdline to have a say */
7987 /* round applicable memory size up to nearest megabyte */
7988 numentries = nr_kernel_pages;
7989 numentries -= arch_reserved_kernel_pages();
7991 /* It isn't necessary when PAGE_SIZE >= 1MB */
7992 if (PAGE_SHIFT < 20)
7993 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7995 #if __BITS_PER_LONG > 32
7997 unsigned long adapt;
7999 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8000 adapt <<= ADAPT_SCALE_SHIFT)
8005 /* limit to 1 bucket per 2^scale bytes of low memory */
8006 if (scale > PAGE_SHIFT)
8007 numentries >>= (scale - PAGE_SHIFT);
8009 numentries <<= (PAGE_SHIFT - scale);
8011 /* Make sure we've got at least a 0-order allocation.. */
8012 if (unlikely(flags & HASH_SMALL)) {
8013 /* Makes no sense without HASH_EARLY */
8014 WARN_ON(!(flags & HASH_EARLY));
8015 if (!(numentries >> *_hash_shift)) {
8016 numentries = 1UL << *_hash_shift;
8017 BUG_ON(!numentries);
8019 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8020 numentries = PAGE_SIZE / bucketsize;
8022 numentries = roundup_pow_of_two(numentries);
8024 /* limit allocation size to 1/16 total memory by default */
8026 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8027 do_div(max, bucketsize);
8029 max = min(max, 0x80000000ULL);
8031 if (numentries < low_limit)
8032 numentries = low_limit;
8033 if (numentries > max)
8036 log2qty = ilog2(numentries);
8038 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8040 size = bucketsize << log2qty;
8041 if (flags & HASH_EARLY) {
8042 if (flags & HASH_ZERO)
8043 table = memblock_alloc(size, SMP_CACHE_BYTES);
8045 table = memblock_alloc_raw(size,
8047 } else if (hashdist) {
8048 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8051 * If bucketsize is not a power-of-two, we may free
8052 * some pages at the end of hash table which
8053 * alloc_pages_exact() automatically does
8055 if (get_order(size) < MAX_ORDER) {
8056 table = alloc_pages_exact(size, gfp_flags);
8057 kmemleak_alloc(table, size, 1, gfp_flags);
8060 } while (!table && size > PAGE_SIZE && --log2qty);
8063 panic("Failed to allocate %s hash table\n", tablename);
8065 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8066 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8069 *_hash_shift = log2qty;
8071 *_hash_mask = (1 << log2qty) - 1;
8077 * This function checks whether pageblock includes unmovable pages or not.
8078 * If @count is not zero, it is okay to include less @count unmovable pages
8080 * PageLRU check without isolation or lru_lock could race so that
8081 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8082 * check without lock_page also may miss some movable non-lru pages at
8083 * race condition. So you can't expect this function should be exact.
8085 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8086 int migratetype, int flags)
8088 unsigned long found;
8089 unsigned long iter = 0;
8090 unsigned long pfn = page_to_pfn(page);
8091 const char *reason = "unmovable page";
8094 * TODO we could make this much more efficient by not checking every
8095 * page in the range if we know all of them are in MOVABLE_ZONE and
8096 * that the movable zone guarantees that pages are migratable but
8097 * the later is not the case right now unfortunatelly. E.g. movablecore
8098 * can still lead to having bootmem allocations in zone_movable.
8101 if (is_migrate_cma_page(page)) {
8103 * CMA allocations (alloc_contig_range) really need to mark
8104 * isolate CMA pageblocks even when they are not movable in fact
8105 * so consider them movable here.
8107 if (is_migrate_cma(migratetype))
8110 reason = "CMA page";
8114 for (found = 0; iter < pageblock_nr_pages; iter++) {
8115 unsigned long check = pfn + iter;
8117 if (!pfn_valid_within(check))
8120 page = pfn_to_page(check);
8122 if (PageReserved(page))
8126 * If the zone is movable and we have ruled out all reserved
8127 * pages then it should be reasonably safe to assume the rest
8130 if (zone_idx(zone) == ZONE_MOVABLE)
8134 * Hugepages are not in LRU lists, but they're movable.
8135 * We need not scan over tail pages because we don't
8136 * handle each tail page individually in migration.
8138 if (PageHuge(page)) {
8139 struct page *head = compound_head(page);
8140 unsigned int skip_pages;
8142 if (!hugepage_migration_supported(page_hstate(head)))
8145 skip_pages = (1 << compound_order(head)) - (page - head);
8146 iter += skip_pages - 1;
8151 * We can't use page_count without pin a page
8152 * because another CPU can free compound page.
8153 * This check already skips compound tails of THP
8154 * because their page->_refcount is zero at all time.
8156 if (!page_ref_count(page)) {
8157 if (PageBuddy(page))
8158 iter += (1 << page_order(page)) - 1;
8163 * The HWPoisoned page may be not in buddy system, and
8164 * page_count() is not 0.
8166 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8169 if (__PageMovable(page))
8175 * If there are RECLAIMABLE pages, we need to check
8176 * it. But now, memory offline itself doesn't call
8177 * shrink_node_slabs() and it still to be fixed.
8180 * If the page is not RAM, page_count()should be 0.
8181 * we don't need more check. This is an _used_ not-movable page.
8183 * The problematic thing here is PG_reserved pages. PG_reserved
8184 * is set to both of a memory hole page and a _used_ kernel
8192 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8193 if (flags & REPORT_FAILURE)
8194 dump_page(pfn_to_page(pfn + iter), reason);
8198 #ifdef CONFIG_CONTIG_ALLOC
8199 static unsigned long pfn_max_align_down(unsigned long pfn)
8201 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8202 pageblock_nr_pages) - 1);
8205 static unsigned long pfn_max_align_up(unsigned long pfn)
8207 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8208 pageblock_nr_pages));
8211 /* [start, end) must belong to a single zone. */
8212 static int __alloc_contig_migrate_range(struct compact_control *cc,
8213 unsigned long start, unsigned long end)
8215 /* This function is based on compact_zone() from compaction.c. */
8216 unsigned long nr_reclaimed;
8217 unsigned long pfn = start;
8218 unsigned int tries = 0;
8223 while (pfn < end || !list_empty(&cc->migratepages)) {
8224 if (fatal_signal_pending(current)) {
8229 if (list_empty(&cc->migratepages)) {
8230 cc->nr_migratepages = 0;
8231 pfn = isolate_migratepages_range(cc, pfn, end);
8237 } else if (++tries == 5) {
8238 ret = ret < 0 ? ret : -EBUSY;
8242 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8244 cc->nr_migratepages -= nr_reclaimed;
8246 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8247 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8250 putback_movable_pages(&cc->migratepages);
8257 * alloc_contig_range() -- tries to allocate given range of pages
8258 * @start: start PFN to allocate
8259 * @end: one-past-the-last PFN to allocate
8260 * @migratetype: migratetype of the underlaying pageblocks (either
8261 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8262 * in range must have the same migratetype and it must
8263 * be either of the two.
8264 * @gfp_mask: GFP mask to use during compaction
8266 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8267 * aligned. The PFN range must belong to a single zone.
8269 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8270 * pageblocks in the range. Once isolated, the pageblocks should not
8271 * be modified by others.
8273 * Return: zero on success or negative error code. On success all
8274 * pages which PFN is in [start, end) are allocated for the caller and
8275 * need to be freed with free_contig_range().
8277 int alloc_contig_range(unsigned long start, unsigned long end,
8278 unsigned migratetype, gfp_t gfp_mask)
8280 unsigned long outer_start, outer_end;
8284 struct compact_control cc = {
8285 .nr_migratepages = 0,
8287 .zone = page_zone(pfn_to_page(start)),
8288 .mode = MIGRATE_SYNC,
8289 .ignore_skip_hint = true,
8290 .no_set_skip_hint = true,
8291 .gfp_mask = current_gfp_context(gfp_mask),
8293 INIT_LIST_HEAD(&cc.migratepages);
8296 * What we do here is we mark all pageblocks in range as
8297 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8298 * have different sizes, and due to the way page allocator
8299 * work, we align the range to biggest of the two pages so
8300 * that page allocator won't try to merge buddies from
8301 * different pageblocks and change MIGRATE_ISOLATE to some
8302 * other migration type.
8304 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8305 * migrate the pages from an unaligned range (ie. pages that
8306 * we are interested in). This will put all the pages in
8307 * range back to page allocator as MIGRATE_ISOLATE.
8309 * When this is done, we take the pages in range from page
8310 * allocator removing them from the buddy system. This way
8311 * page allocator will never consider using them.
8313 * This lets us mark the pageblocks back as
8314 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8315 * aligned range but not in the unaligned, original range are
8316 * put back to page allocator so that buddy can use them.
8319 ret = start_isolate_page_range(pfn_max_align_down(start),
8320 pfn_max_align_up(end), migratetype, 0);
8325 * In case of -EBUSY, we'd like to know which page causes problem.
8326 * So, just fall through. test_pages_isolated() has a tracepoint
8327 * which will report the busy page.
8329 * It is possible that busy pages could become available before
8330 * the call to test_pages_isolated, and the range will actually be
8331 * allocated. So, if we fall through be sure to clear ret so that
8332 * -EBUSY is not accidentally used or returned to caller.
8334 ret = __alloc_contig_migrate_range(&cc, start, end);
8335 if (ret && ret != -EBUSY)
8340 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8341 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8342 * more, all pages in [start, end) are free in page allocator.
8343 * What we are going to do is to allocate all pages from
8344 * [start, end) (that is remove them from page allocator).
8346 * The only problem is that pages at the beginning and at the
8347 * end of interesting range may be not aligned with pages that
8348 * page allocator holds, ie. they can be part of higher order
8349 * pages. Because of this, we reserve the bigger range and
8350 * once this is done free the pages we are not interested in.
8352 * We don't have to hold zone->lock here because the pages are
8353 * isolated thus they won't get removed from buddy.
8356 lru_add_drain_all();
8359 outer_start = start;
8360 while (!PageBuddy(pfn_to_page(outer_start))) {
8361 if (++order >= MAX_ORDER) {
8362 outer_start = start;
8365 outer_start &= ~0UL << order;
8368 if (outer_start != start) {
8369 order = page_order(pfn_to_page(outer_start));
8372 * outer_start page could be small order buddy page and
8373 * it doesn't include start page. Adjust outer_start
8374 * in this case to report failed page properly
8375 * on tracepoint in test_pages_isolated()
8377 if (outer_start + (1UL << order) <= start)
8378 outer_start = start;
8381 /* Make sure the range is really isolated. */
8382 if (test_pages_isolated(outer_start, end, false)) {
8383 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8384 __func__, outer_start, end);
8389 /* Grab isolated pages from freelists. */
8390 outer_end = isolate_freepages_range(&cc, outer_start, end);
8396 /* Free head and tail (if any) */
8397 if (start != outer_start)
8398 free_contig_range(outer_start, start - outer_start);
8399 if (end != outer_end)
8400 free_contig_range(end, outer_end - end);
8403 undo_isolate_page_range(pfn_max_align_down(start),
8404 pfn_max_align_up(end), migratetype);
8407 #endif /* CONFIG_CONTIG_ALLOC */
8409 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8411 unsigned int count = 0;
8413 for (; nr_pages--; pfn++) {
8414 struct page *page = pfn_to_page(pfn);
8416 count += page_count(page) != 1;
8419 WARN(count != 0, "%d pages are still in use!\n", count);
8422 #ifdef CONFIG_MEMORY_HOTPLUG
8424 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8425 * page high values need to be recalulated.
8427 void __meminit zone_pcp_update(struct zone *zone)
8430 mutex_lock(&pcp_batch_high_lock);
8431 for_each_possible_cpu(cpu)
8432 pageset_set_high_and_batch(zone,
8433 per_cpu_ptr(zone->pageset, cpu));
8434 mutex_unlock(&pcp_batch_high_lock);
8438 void zone_pcp_reset(struct zone *zone)
8440 unsigned long flags;
8442 struct per_cpu_pageset *pset;
8444 /* avoid races with drain_pages() */
8445 local_irq_save(flags);
8446 if (zone->pageset != &boot_pageset) {
8447 for_each_online_cpu(cpu) {
8448 pset = per_cpu_ptr(zone->pageset, cpu);
8449 drain_zonestat(zone, pset);
8451 free_percpu(zone->pageset);
8452 zone->pageset = &boot_pageset;
8454 local_irq_restore(flags);
8457 #ifdef CONFIG_MEMORY_HOTREMOVE
8459 * All pages in the range must be in a single zone and isolated
8460 * before calling this.
8463 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8467 unsigned int order, i;
8469 unsigned long flags;
8470 unsigned long offlined_pages = 0;
8472 /* find the first valid pfn */
8473 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8477 return offlined_pages;
8479 offline_mem_sections(pfn, end_pfn);
8480 zone = page_zone(pfn_to_page(pfn));
8481 spin_lock_irqsave(&zone->lock, flags);
8483 while (pfn < end_pfn) {
8484 if (!pfn_valid(pfn)) {
8488 page = pfn_to_page(pfn);
8490 * The HWPoisoned page may be not in buddy system, and
8491 * page_count() is not 0.
8493 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8495 SetPageReserved(page);
8500 BUG_ON(page_count(page));
8501 BUG_ON(!PageBuddy(page));
8502 order = page_order(page);
8503 offlined_pages += 1 << order;
8504 #ifdef CONFIG_DEBUG_VM
8505 pr_info("remove from free list %lx %d %lx\n",
8506 pfn, 1 << order, end_pfn);
8508 del_page_from_free_area(page, &zone->free_area[order]);
8509 for (i = 0; i < (1 << order); i++)
8510 SetPageReserved((page+i));
8511 pfn += (1 << order);
8513 spin_unlock_irqrestore(&zone->lock, flags);
8515 return offlined_pages;
8519 bool is_free_buddy_page(struct page *page)
8521 struct zone *zone = page_zone(page);
8522 unsigned long pfn = page_to_pfn(page);
8523 unsigned long flags;
8526 spin_lock_irqsave(&zone->lock, flags);
8527 for (order = 0; order < MAX_ORDER; order++) {
8528 struct page *page_head = page - (pfn & ((1 << order) - 1));
8530 if (PageBuddy(page_head) && page_order(page_head) >= order)
8533 spin_unlock_irqrestore(&zone->lock, flags);
8535 return order < MAX_ORDER;
8538 #ifdef CONFIG_MEMORY_FAILURE
8540 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8541 * test is performed under the zone lock to prevent a race against page
8544 bool set_hwpoison_free_buddy_page(struct page *page)
8546 struct zone *zone = page_zone(page);
8547 unsigned long pfn = page_to_pfn(page);
8548 unsigned long flags;
8550 bool hwpoisoned = false;
8552 spin_lock_irqsave(&zone->lock, flags);
8553 for (order = 0; order < MAX_ORDER; order++) {
8554 struct page *page_head = page - (pfn & ((1 << order) - 1));
8556 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8557 if (!TestSetPageHWPoison(page))
8562 spin_unlock_irqrestore(&zone->lock, flags);