1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/fs_dax.h>
34 static inline unsigned int pe_order(enum page_entry_size pe_size)
36 if (pe_size == PE_SIZE_PTE)
37 return PAGE_SHIFT - PAGE_SHIFT;
38 if (pe_size == PE_SIZE_PMD)
39 return PMD_SHIFT - PAGE_SHIFT;
40 if (pe_size == PE_SIZE_PUD)
41 return PUD_SHIFT - PAGE_SHIFT;
45 /* We choose 4096 entries - same as per-zone page wait tables */
46 #define DAX_WAIT_TABLE_BITS 12
47 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
49 /* The 'colour' (ie low bits) within a PMD of a page offset. */
50 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
51 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
53 /* The order of a PMD entry */
54 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
56 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
58 static int __init init_dax_wait_table(void)
62 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63 init_waitqueue_head(wait_table + i);
66 fs_initcall(init_dax_wait_table);
69 * DAX pagecache entries use XArray value entries so they can't be mistaken
70 * for pages. We use one bit for locking, one bit for the entry size (PMD)
71 * and two more to tell us if the entry is a zero page or an empty entry that
72 * is just used for locking. In total four special bits.
74 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
79 #define DAX_LOCKED (1UL << 0)
80 #define DAX_PMD (1UL << 1)
81 #define DAX_ZERO_PAGE (1UL << 2)
82 #define DAX_EMPTY (1UL << 3)
84 static unsigned long dax_to_pfn(void *entry)
86 return xa_to_value(entry) >> DAX_SHIFT;
89 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
91 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
94 static bool dax_is_locked(void *entry)
96 return xa_to_value(entry) & DAX_LOCKED;
99 static unsigned int dax_entry_order(void *entry)
101 if (xa_to_value(entry) & DAX_PMD)
106 static unsigned long dax_is_pmd_entry(void *entry)
108 return xa_to_value(entry) & DAX_PMD;
111 static bool dax_is_pte_entry(void *entry)
113 return !(xa_to_value(entry) & DAX_PMD);
116 static int dax_is_zero_entry(void *entry)
118 return xa_to_value(entry) & DAX_ZERO_PAGE;
121 static int dax_is_empty_entry(void *entry)
123 return xa_to_value(entry) & DAX_EMPTY;
127 * DAX page cache entry locking
129 struct exceptional_entry_key {
134 struct wait_exceptional_entry_queue {
135 wait_queue_entry_t wait;
136 struct exceptional_entry_key key;
139 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140 void *entry, struct exceptional_entry_key *key)
143 unsigned long index = xas->xa_index;
146 * If 'entry' is a PMD, align the 'index' that we use for the wait
147 * queue to the start of that PMD. This ensures that all offsets in
148 * the range covered by the PMD map to the same bit lock.
150 if (dax_is_pmd_entry(entry))
151 index &= ~PG_PMD_COLOUR;
153 key->entry_start = index;
155 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
156 return wait_table + hash;
159 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160 unsigned int mode, int sync, void *keyp)
162 struct exceptional_entry_key *key = keyp;
163 struct wait_exceptional_entry_queue *ewait =
164 container_of(wait, struct wait_exceptional_entry_queue, wait);
166 if (key->xa != ewait->key.xa ||
167 key->entry_start != ewait->key.entry_start)
169 return autoremove_wake_function(wait, mode, sync, NULL);
173 * @entry may no longer be the entry at the index in the mapping.
174 * The important information it's conveying is whether the entry at
175 * this index used to be a PMD entry.
177 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
179 struct exceptional_entry_key key;
180 wait_queue_head_t *wq;
182 wq = dax_entry_waitqueue(xas, entry, &key);
185 * Checking for locked entry and prepare_to_wait_exclusive() happens
186 * under the i_pages lock, ditto for entry handling in our callers.
187 * So at this point all tasks that could have seen our entry locked
188 * must be in the waitqueue and the following check will see them.
190 if (waitqueue_active(wq))
191 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
195 * Look up entry in page cache, wait for it to become unlocked if it
196 * is a DAX entry and return it. The caller must subsequently call
197 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
200 * Must be called with the i_pages lock held.
202 static void *get_unlocked_entry(struct xa_state *xas)
205 struct wait_exceptional_entry_queue ewait;
206 wait_queue_head_t *wq;
208 init_wait(&ewait.wait);
209 ewait.wait.func = wake_exceptional_entry_func;
212 entry = xas_find_conflict(xas);
213 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
214 !dax_is_locked(entry))
217 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
218 prepare_to_wait_exclusive(wq, &ewait.wait,
219 TASK_UNINTERRUPTIBLE);
223 finish_wait(wq, &ewait.wait);
229 * The only thing keeping the address space around is the i_pages lock
230 * (it's cycled in clear_inode() after removing the entries from i_pages)
231 * After we call xas_unlock_irq(), we cannot touch xas->xa.
233 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
235 struct wait_exceptional_entry_queue ewait;
236 wait_queue_head_t *wq;
238 init_wait(&ewait.wait);
239 ewait.wait.func = wake_exceptional_entry_func;
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
243 * Unlike get_unlocked_entry() there is no guarantee that this
244 * path ever successfully retrieves an unlocked entry before an
245 * inode dies. Perform a non-exclusive wait in case this path
246 * never successfully performs its own wake up.
248 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
251 finish_wait(wq, &ewait.wait);
254 static void put_unlocked_entry(struct xa_state *xas, void *entry)
256 /* If we were the only waiter woken, wake the next one */
258 dax_wake_entry(xas, entry, false);
262 * We used the xa_state to get the entry, but then we locked the entry and
263 * dropped the xa_lock, so we know the xa_state is stale and must be reset
266 static void dax_unlock_entry(struct xa_state *xas, void *entry)
270 BUG_ON(dax_is_locked(entry));
273 old = xas_store(xas, entry);
275 BUG_ON(!dax_is_locked(old));
276 dax_wake_entry(xas, entry, false);
280 * Return: The entry stored at this location before it was locked.
282 static void *dax_lock_entry(struct xa_state *xas, void *entry)
284 unsigned long v = xa_to_value(entry);
285 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
288 static unsigned long dax_entry_size(void *entry)
290 if (dax_is_zero_entry(entry))
292 else if (dax_is_empty_entry(entry))
294 else if (dax_is_pmd_entry(entry))
300 static unsigned long dax_end_pfn(void *entry)
302 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
306 * Iterate through all mapped pfns represented by an entry, i.e. skip
307 * 'empty' and 'zero' entries.
309 #define for_each_mapped_pfn(entry, pfn) \
310 for (pfn = dax_to_pfn(entry); \
311 pfn < dax_end_pfn(entry); pfn++)
314 * TODO: for reflink+dax we need a way to associate a single page with
315 * multiple address_space instances at different linear_page_index()
318 static void dax_associate_entry(void *entry, struct address_space *mapping,
319 struct vm_area_struct *vma, unsigned long address)
321 unsigned long size = dax_entry_size(entry), pfn, index;
324 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
327 index = linear_page_index(vma, address & ~(size - 1));
328 for_each_mapped_pfn(entry, pfn) {
329 struct page *page = pfn_to_page(pfn);
331 WARN_ON_ONCE(page->mapping);
332 page->mapping = mapping;
333 page->index = index + i++;
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
355 static struct page *dax_busy_page(void *entry)
359 for_each_mapped_pfn(entry, pfn) {
360 struct page *page = pfn_to_page(pfn);
362 if (page_ref_count(page) > 1)
369 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370 * @page: The page whose entry we want to lock
372 * Context: Process context.
373 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
376 dax_entry_t dax_lock_page(struct page *page)
378 XA_STATE(xas, NULL, 0);
381 /* Ensure page->mapping isn't freed while we look at it */
384 struct address_space *mapping = READ_ONCE(page->mapping);
387 if (!mapping || !dax_mapping(mapping))
391 * In the device-dax case there's no need to lock, a
392 * struct dev_pagemap pin is sufficient to keep the
393 * inode alive, and we assume we have dev_pagemap pin
394 * otherwise we would not have a valid pfn_to_page()
397 entry = (void *)~0UL;
398 if (S_ISCHR(mapping->host->i_mode))
401 xas.xa = &mapping->i_pages;
403 if (mapping != page->mapping) {
404 xas_unlock_irq(&xas);
407 xas_set(&xas, page->index);
408 entry = xas_load(&xas);
409 if (dax_is_locked(entry)) {
411 wait_entry_unlocked(&xas, entry);
415 dax_lock_entry(&xas, entry);
416 xas_unlock_irq(&xas);
420 return (dax_entry_t)entry;
423 void dax_unlock_page(struct page *page, dax_entry_t cookie)
425 struct address_space *mapping = page->mapping;
426 XA_STATE(xas, &mapping->i_pages, page->index);
428 if (S_ISCHR(mapping->host->i_mode))
431 dax_unlock_entry(&xas, (void *)cookie);
435 * Find page cache entry at given index. If it is a DAX entry, return it
436 * with the entry locked. If the page cache doesn't contain an entry at
437 * that index, add a locked empty entry.
439 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
440 * either return that locked entry or will return VM_FAULT_FALLBACK.
441 * This will happen if there are any PTE entries within the PMD range
442 * that we are requesting.
444 * We always favor PTE entries over PMD entries. There isn't a flow where we
445 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
446 * insertion will fail if it finds any PTE entries already in the tree, and a
447 * PTE insertion will cause an existing PMD entry to be unmapped and
448 * downgraded to PTE entries. This happens for both PMD zero pages as
449 * well as PMD empty entries.
451 * The exception to this downgrade path is for PMD entries that have
452 * real storage backing them. We will leave these real PMD entries in
453 * the tree, and PTE writes will simply dirty the entire PMD entry.
455 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456 * persistent memory the benefit is doubtful. We can add that later if we can
459 * On error, this function does not return an ERR_PTR. Instead it returns
460 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
461 * overlap with xarray value entries.
463 static void *grab_mapping_entry(struct xa_state *xas,
464 struct address_space *mapping, unsigned long size_flag)
466 unsigned long index = xas->xa_index;
467 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
472 entry = get_unlocked_entry(xas);
475 if (!xa_is_value(entry)) {
476 xas_set_err(xas, EIO);
480 if (size_flag & DAX_PMD) {
481 if (dax_is_pte_entry(entry)) {
482 put_unlocked_entry(xas, entry);
485 } else { /* trying to grab a PTE entry */
486 if (dax_is_pmd_entry(entry) &&
487 (dax_is_zero_entry(entry) ||
488 dax_is_empty_entry(entry))) {
489 pmd_downgrade = true;
496 * Make sure 'entry' remains valid while we drop
499 dax_lock_entry(xas, entry);
502 * Besides huge zero pages the only other thing that gets
503 * downgraded are empty entries which don't need to be
506 if (dax_is_zero_entry(entry)) {
508 unmap_mapping_pages(mapping,
509 xas->xa_index & ~PG_PMD_COLOUR,
515 dax_disassociate_entry(entry, mapping, false);
516 xas_store(xas, NULL); /* undo the PMD join */
517 dax_wake_entry(xas, entry, true);
518 mapping->nrexceptional--;
524 dax_lock_entry(xas, entry);
526 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527 dax_lock_entry(xas, entry);
530 mapping->nrexceptional++;
535 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
537 if (xas->xa_node == XA_ERROR(-ENOMEM))
538 return xa_mk_internal(VM_FAULT_OOM);
540 return xa_mk_internal(VM_FAULT_SIGBUS);
544 return xa_mk_internal(VM_FAULT_FALLBACK);
548 * dax_layout_busy_page - find first pinned page in @mapping
549 * @mapping: address space to scan for a page with ref count > 1
551 * DAX requires ZONE_DEVICE mapped pages. These pages are never
552 * 'onlined' to the page allocator so they are considered idle when
553 * page->count == 1. A filesystem uses this interface to determine if
554 * any page in the mapping is busy, i.e. for DMA, or other
555 * get_user_pages() usages.
557 * It is expected that the filesystem is holding locks to block the
558 * establishment of new mappings in this address_space. I.e. it expects
559 * to be able to run unmap_mapping_range() and subsequently not race
560 * mapping_mapped() becoming true.
562 struct page *dax_layout_busy_page(struct address_space *mapping)
564 XA_STATE(xas, &mapping->i_pages, 0);
566 unsigned int scanned = 0;
567 struct page *page = NULL;
570 * In the 'limited' case get_user_pages() for dax is disabled.
572 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
575 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
579 * If we race get_user_pages_fast() here either we'll see the
580 * elevated page count in the iteration and wait, or
581 * get_user_pages_fast() will see that the page it took a reference
582 * against is no longer mapped in the page tables and bail to the
583 * get_user_pages() slow path. The slow path is protected by
584 * pte_lock() and pmd_lock(). New references are not taken without
585 * holding those locks, and unmap_mapping_range() will not zero the
586 * pte or pmd without holding the respective lock, so we are
587 * guaranteed to either see new references or prevent new
588 * references from being established.
590 unmap_mapping_range(mapping, 0, 0, 1);
593 xas_for_each(&xas, entry, ULONG_MAX) {
594 if (WARN_ON_ONCE(!xa_is_value(entry)))
596 if (unlikely(dax_is_locked(entry)))
597 entry = get_unlocked_entry(&xas);
599 page = dax_busy_page(entry);
600 put_unlocked_entry(&xas, entry);
603 if (++scanned % XA_CHECK_SCHED)
607 xas_unlock_irq(&xas);
611 xas_unlock_irq(&xas);
614 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
616 static int __dax_invalidate_entry(struct address_space *mapping,
617 pgoff_t index, bool trunc)
619 XA_STATE(xas, &mapping->i_pages, index);
624 entry = get_unlocked_entry(&xas);
625 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
628 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
631 dax_disassociate_entry(entry, mapping, trunc);
632 xas_store(&xas, NULL);
633 mapping->nrexceptional--;
636 put_unlocked_entry(&xas, entry);
637 xas_unlock_irq(&xas);
642 * Delete DAX entry at @index from @mapping. Wait for it
643 * to be unlocked before deleting it.
645 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
647 int ret = __dax_invalidate_entry(mapping, index, true);
650 * This gets called from truncate / punch_hole path. As such, the caller
651 * must hold locks protecting against concurrent modifications of the
652 * page cache (usually fs-private i_mmap_sem for writing). Since the
653 * caller has seen a DAX entry for this index, we better find it
654 * at that index as well...
661 * Invalidate DAX entry if it is clean.
663 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
666 return __dax_invalidate_entry(mapping, index, false);
669 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670 sector_t sector, size_t size, struct page *to,
678 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
682 id = dax_read_lock();
683 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
688 vto = kmap_atomic(to);
689 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
696 * By this point grab_mapping_entry() has ensured that we have a locked entry
697 * of the appropriate size so we don't have to worry about downgrading PMDs to
698 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
699 * already in the tree, we will skip the insertion and just dirty the PMD as
702 static void *dax_insert_entry(struct xa_state *xas,
703 struct address_space *mapping, struct vm_fault *vmf,
704 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
706 void *new_entry = dax_make_entry(pfn, flags);
709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
711 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
712 unsigned long index = xas->xa_index;
713 /* we are replacing a zero page with block mapping */
714 if (dax_is_pmd_entry(entry))
715 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
718 unmap_mapping_pages(mapping, index, 1, false);
723 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
726 dax_disassociate_entry(entry, mapping, false);
727 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
729 * Only swap our new entry into the page cache if the current
730 * entry is a zero page or an empty entry. If a normal PTE or
731 * PMD entry is already in the cache, we leave it alone. This
732 * means that if we are trying to insert a PTE and the
733 * existing entry is a PMD, we will just leave the PMD in the
734 * tree and dirty it if necessary.
736 old = dax_lock_entry(xas, new_entry);
737 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
741 xas_load(xas); /* Walk the xa_state */
745 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
752 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
754 unsigned long address;
756 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
757 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
761 /* Walk all mappings of a given index of a file and writeprotect them */
762 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
765 struct vm_area_struct *vma;
766 pte_t pte, *ptep = NULL;
770 i_mmap_lock_read(mapping);
771 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
772 struct mmu_notifier_range range;
773 unsigned long address;
777 if (!(vma->vm_flags & VM_SHARED))
780 address = pgoff_address(index, vma);
783 * Note because we provide range to follow_pte_pmd it will
784 * call mmu_notifier_invalidate_range_start() on our behalf
785 * before taking any lock.
787 if (follow_pte_pmd(vma->vm_mm, address, &range,
792 * No need to call mmu_notifier_invalidate_range() as we are
793 * downgrading page table protection not changing it to point
796 * See Documentation/vm/mmu_notifier.rst
799 #ifdef CONFIG_FS_DAX_PMD
802 if (pfn != pmd_pfn(*pmdp))
804 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
807 flush_cache_page(vma, address, pfn);
808 pmd = pmdp_invalidate(vma, address, pmdp);
809 pmd = pmd_wrprotect(pmd);
810 pmd = pmd_mkclean(pmd);
811 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
816 if (pfn != pte_pfn(*ptep))
818 if (!pte_dirty(*ptep) && !pte_write(*ptep))
821 flush_cache_page(vma, address, pfn);
822 pte = ptep_clear_flush(vma, address, ptep);
823 pte = pte_wrprotect(pte);
824 pte = pte_mkclean(pte);
825 set_pte_at(vma->vm_mm, address, ptep, pte);
827 pte_unmap_unlock(ptep, ptl);
830 mmu_notifier_invalidate_range_end(&range);
832 i_mmap_unlock_read(mapping);
835 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
836 struct address_space *mapping, void *entry)
838 unsigned long pfn, index, count;
842 * A page got tagged dirty in DAX mapping? Something is seriously
845 if (WARN_ON(!xa_is_value(entry)))
848 if (unlikely(dax_is_locked(entry))) {
849 void *old_entry = entry;
851 entry = get_unlocked_entry(xas);
853 /* Entry got punched out / reallocated? */
854 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
857 * Entry got reallocated elsewhere? No need to writeback.
858 * We have to compare pfns as we must not bail out due to
859 * difference in lockbit or entry type.
861 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
863 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
864 dax_is_zero_entry(entry))) {
869 /* Another fsync thread may have already done this entry */
870 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
874 /* Lock the entry to serialize with page faults */
875 dax_lock_entry(xas, entry);
878 * We can clear the tag now but we have to be careful so that concurrent
879 * dax_writeback_one() calls for the same index cannot finish before we
880 * actually flush the caches. This is achieved as the calls will look
881 * at the entry only under the i_pages lock and once they do that
882 * they will see the entry locked and wait for it to unlock.
884 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
888 * If dax_writeback_mapping_range() was given a wbc->range_start
889 * in the middle of a PMD, the 'index' we use needs to be
890 * aligned to the start of the PMD.
891 * This allows us to flush for PMD_SIZE and not have to worry about
892 * partial PMD writebacks.
894 pfn = dax_to_pfn(entry);
895 count = 1UL << dax_entry_order(entry);
896 index = xas->xa_index & ~(count - 1);
898 dax_entry_mkclean(mapping, index, pfn);
899 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
901 * After we have flushed the cache, we can clear the dirty tag. There
902 * cannot be new dirty data in the pfn after the flush has completed as
903 * the pfn mappings are writeprotected and fault waits for mapping
908 xas_store(xas, entry);
909 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
910 dax_wake_entry(xas, entry, false);
912 trace_dax_writeback_one(mapping->host, index, count);
916 put_unlocked_entry(xas, entry);
921 * Flush the mapping to the persistent domain within the byte range of [start,
922 * end]. This is required by data integrity operations to ensure file data is
923 * on persistent storage prior to completion of the operation.
925 int dax_writeback_mapping_range(struct address_space *mapping,
926 struct block_device *bdev, struct writeback_control *wbc)
928 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
929 struct inode *inode = mapping->host;
930 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
931 struct dax_device *dax_dev;
934 unsigned int scanned = 0;
936 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
939 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
942 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
946 trace_dax_writeback_range(inode, xas.xa_index, end_index);
948 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
951 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
952 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
954 mapping_set_error(mapping, ret);
957 if (++scanned % XA_CHECK_SCHED)
961 xas_unlock_irq(&xas);
965 xas_unlock_irq(&xas);
967 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
970 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
972 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
974 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
977 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
980 const sector_t sector = dax_iomap_sector(iomap, pos);
985 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
988 id = dax_read_lock();
989 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
996 if (PFN_PHYS(length) < size)
998 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1000 /* For larger pages we need devmap */
1001 if (length > 1 && !pfn_t_devmap(*pfnp))
1005 dax_read_unlock(id);
1010 * The user has performed a load from a hole in the file. Allocating a new
1011 * page in the file would cause excessive storage usage for workloads with
1012 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1013 * If this page is ever written to we will re-fault and change the mapping to
1014 * point to real DAX storage instead.
1016 static vm_fault_t dax_load_hole(struct xa_state *xas,
1017 struct address_space *mapping, void **entry,
1018 struct vm_fault *vmf)
1020 struct inode *inode = mapping->host;
1021 unsigned long vaddr = vmf->address;
1022 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1025 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1026 DAX_ZERO_PAGE, false);
1028 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1029 trace_dax_load_hole(inode, vmf, ret);
1033 static bool dax_range_is_aligned(struct block_device *bdev,
1034 unsigned int offset, unsigned int length)
1036 unsigned short sector_size = bdev_logical_block_size(bdev);
1038 if (!IS_ALIGNED(offset, sector_size))
1040 if (!IS_ALIGNED(length, sector_size))
1046 int __dax_zero_page_range(struct block_device *bdev,
1047 struct dax_device *dax_dev, sector_t sector,
1048 unsigned int offset, unsigned int size)
1050 if (dax_range_is_aligned(bdev, offset, size)) {
1051 sector_t start_sector = sector + (offset >> 9);
1053 return blkdev_issue_zeroout(bdev, start_sector,
1054 size >> 9, GFP_NOFS, 0);
1060 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1064 id = dax_read_lock();
1065 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1067 dax_read_unlock(id);
1070 memset(kaddr + offset, 0, size);
1071 dax_flush(dax_dev, kaddr + offset, size);
1072 dax_read_unlock(id);
1076 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1079 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1080 struct iomap *iomap)
1082 struct block_device *bdev = iomap->bdev;
1083 struct dax_device *dax_dev = iomap->dax_dev;
1084 struct iov_iter *iter = data;
1085 loff_t end = pos + length, done = 0;
1090 if (iov_iter_rw(iter) == READ) {
1091 end = min(end, i_size_read(inode));
1095 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1096 return iov_iter_zero(min(length, end - pos), iter);
1099 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1103 * Write can allocate block for an area which has a hole page mapped
1104 * into page tables. We have to tear down these mappings so that data
1105 * written by write(2) is visible in mmap.
1107 if (iomap->flags & IOMAP_F_NEW) {
1108 invalidate_inode_pages2_range(inode->i_mapping,
1110 (end - 1) >> PAGE_SHIFT);
1113 id = dax_read_lock();
1115 unsigned offset = pos & (PAGE_SIZE - 1);
1116 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1117 const sector_t sector = dax_iomap_sector(iomap, pos);
1122 if (fatal_signal_pending(current)) {
1127 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1131 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1138 map_len = PFN_PHYS(map_len);
1141 if (map_len > end - pos)
1142 map_len = end - pos;
1145 * The userspace address for the memory copy has already been
1146 * validated via access_ok() in either vfs_read() or
1147 * vfs_write(), depending on which operation we are doing.
1149 if (iov_iter_rw(iter) == WRITE)
1150 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1153 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1165 dax_read_unlock(id);
1167 return done ? done : ret;
1171 * dax_iomap_rw - Perform I/O to a DAX file
1172 * @iocb: The control block for this I/O
1173 * @iter: The addresses to do I/O from or to
1174 * @ops: iomap ops passed from the file system
1176 * This function performs read and write operations to directly mapped
1177 * persistent memory. The callers needs to take care of read/write exclusion
1178 * and evicting any page cache pages in the region under I/O.
1181 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1182 const struct iomap_ops *ops)
1184 struct address_space *mapping = iocb->ki_filp->f_mapping;
1185 struct inode *inode = mapping->host;
1186 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1189 if (iov_iter_rw(iter) == WRITE) {
1190 lockdep_assert_held_write(&inode->i_rwsem);
1191 flags |= IOMAP_WRITE;
1193 lockdep_assert_held(&inode->i_rwsem);
1196 while (iov_iter_count(iter)) {
1197 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1198 iter, dax_iomap_actor);
1205 iocb->ki_pos += done;
1206 return done ? done : ret;
1208 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1210 static vm_fault_t dax_fault_return(int error)
1213 return VM_FAULT_NOPAGE;
1214 return vmf_error(error);
1218 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1219 * flushed on write-faults (non-cow), but not read-faults.
1221 static bool dax_fault_is_synchronous(unsigned long flags,
1222 struct vm_area_struct *vma, struct iomap *iomap)
1224 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1225 && (iomap->flags & IOMAP_F_DIRTY);
1228 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1229 int *iomap_errp, const struct iomap_ops *ops)
1231 struct vm_area_struct *vma = vmf->vma;
1232 struct address_space *mapping = vma->vm_file->f_mapping;
1233 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1234 struct inode *inode = mapping->host;
1235 unsigned long vaddr = vmf->address;
1236 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1237 struct iomap iomap = { 0 };
1238 unsigned flags = IOMAP_FAULT;
1239 int error, major = 0;
1240 bool write = vmf->flags & FAULT_FLAG_WRITE;
1246 trace_dax_pte_fault(inode, vmf, ret);
1248 * Check whether offset isn't beyond end of file now. Caller is supposed
1249 * to hold locks serializing us with truncate / punch hole so this is
1252 if (pos >= i_size_read(inode)) {
1253 ret = VM_FAULT_SIGBUS;
1257 if (write && !vmf->cow_page)
1258 flags |= IOMAP_WRITE;
1260 entry = grab_mapping_entry(&xas, mapping, 0);
1261 if (xa_is_internal(entry)) {
1262 ret = xa_to_internal(entry);
1267 * It is possible, particularly with mixed reads & writes to private
1268 * mappings, that we have raced with a PMD fault that overlaps with
1269 * the PTE we need to set up. If so just return and the fault will be
1272 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1273 ret = VM_FAULT_NOPAGE;
1278 * Note that we don't bother to use iomap_apply here: DAX required
1279 * the file system block size to be equal the page size, which means
1280 * that we never have to deal with more than a single extent here.
1282 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1284 *iomap_errp = error;
1286 ret = dax_fault_return(error);
1289 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1290 error = -EIO; /* fs corruption? */
1291 goto error_finish_iomap;
1294 if (vmf->cow_page) {
1295 sector_t sector = dax_iomap_sector(&iomap, pos);
1297 switch (iomap.type) {
1299 case IOMAP_UNWRITTEN:
1300 clear_user_highpage(vmf->cow_page, vaddr);
1303 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1304 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1313 goto error_finish_iomap;
1315 __SetPageUptodate(vmf->cow_page);
1316 ret = finish_fault(vmf);
1318 ret = VM_FAULT_DONE_COW;
1322 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1324 switch (iomap.type) {
1326 if (iomap.flags & IOMAP_F_NEW) {
1327 count_vm_event(PGMAJFAULT);
1328 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1329 major = VM_FAULT_MAJOR;
1331 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1333 goto error_finish_iomap;
1335 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1339 * If we are doing synchronous page fault and inode needs fsync,
1340 * we can insert PTE into page tables only after that happens.
1341 * Skip insertion for now and return the pfn so that caller can
1342 * insert it after fsync is done.
1345 if (WARN_ON_ONCE(!pfnp)) {
1347 goto error_finish_iomap;
1350 ret = VM_FAULT_NEEDDSYNC | major;
1353 trace_dax_insert_mapping(inode, vmf, entry);
1355 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1357 ret = vmf_insert_mixed(vma, vaddr, pfn);
1360 case IOMAP_UNWRITTEN:
1363 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1374 ret = dax_fault_return(error);
1376 if (ops->iomap_end) {
1377 int copied = PAGE_SIZE;
1379 if (ret & VM_FAULT_ERROR)
1382 * The fault is done by now and there's no way back (other
1383 * thread may be already happily using PTE we have installed).
1384 * Just ignore error from ->iomap_end since we cannot do much
1387 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1390 dax_unlock_entry(&xas, entry);
1392 trace_dax_pte_fault_done(inode, vmf, ret);
1396 #ifdef CONFIG_FS_DAX_PMD
1397 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1398 struct iomap *iomap, void **entry)
1400 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401 unsigned long pmd_addr = vmf->address & PMD_MASK;
1402 struct vm_area_struct *vma = vmf->vma;
1403 struct inode *inode = mapping->host;
1404 pgtable_t pgtable = NULL;
1405 struct page *zero_page;
1410 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1412 if (unlikely(!zero_page))
1415 pfn = page_to_pfn_t(zero_page);
1416 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1417 DAX_PMD | DAX_ZERO_PAGE, false);
1419 if (arch_needs_pgtable_deposit()) {
1420 pgtable = pte_alloc_one(vma->vm_mm);
1422 return VM_FAULT_OOM;
1425 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1426 if (!pmd_none(*(vmf->pmd))) {
1432 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1433 mm_inc_nr_ptes(vma->vm_mm);
1435 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1436 pmd_entry = pmd_mkhuge(pmd_entry);
1437 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1439 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1440 return VM_FAULT_NOPAGE;
1444 pte_free(vma->vm_mm, pgtable);
1445 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1446 return VM_FAULT_FALLBACK;
1449 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1450 const struct iomap_ops *ops)
1452 struct vm_area_struct *vma = vmf->vma;
1453 struct address_space *mapping = vma->vm_file->f_mapping;
1454 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1455 unsigned long pmd_addr = vmf->address & PMD_MASK;
1456 bool write = vmf->flags & FAULT_FLAG_WRITE;
1458 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1459 struct inode *inode = mapping->host;
1460 vm_fault_t result = VM_FAULT_FALLBACK;
1461 struct iomap iomap = { 0 };
1469 * Check whether offset isn't beyond end of file now. Caller is
1470 * supposed to hold locks serializing us with truncate / punch hole so
1471 * this is a reliable test.
1473 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1475 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1478 * Make sure that the faulting address's PMD offset (color) matches
1479 * the PMD offset from the start of the file. This is necessary so
1480 * that a PMD range in the page table overlaps exactly with a PMD
1481 * range in the page cache.
1483 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1484 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1487 /* Fall back to PTEs if we're going to COW */
1488 if (write && !(vma->vm_flags & VM_SHARED))
1491 /* If the PMD would extend outside the VMA */
1492 if (pmd_addr < vma->vm_start)
1494 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1497 if (xas.xa_index >= max_pgoff) {
1498 result = VM_FAULT_SIGBUS;
1502 /* If the PMD would extend beyond the file size */
1503 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1507 * grab_mapping_entry() will make sure we get an empty PMD entry,
1508 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1509 * entry is already in the array, for instance), it will return
1510 * VM_FAULT_FALLBACK.
1512 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1513 if (xa_is_internal(entry)) {
1514 result = xa_to_internal(entry);
1519 * It is possible, particularly with mixed reads & writes to private
1520 * mappings, that we have raced with a PTE fault that overlaps with
1521 * the PMD we need to set up. If so just return and the fault will be
1524 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1525 !pmd_devmap(*vmf->pmd)) {
1531 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1532 * setting up a mapping, so really we're using iomap_begin() as a way
1533 * to look up our filesystem block.
1535 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1536 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1540 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1543 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1545 switch (iomap.type) {
1547 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1551 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1552 DAX_PMD, write && !sync);
1555 * If we are doing synchronous page fault and inode needs fsync,
1556 * we can insert PMD into page tables only after that happens.
1557 * Skip insertion for now and return the pfn so that caller can
1558 * insert it after fsync is done.
1561 if (WARN_ON_ONCE(!pfnp))
1564 result = VM_FAULT_NEEDDSYNC;
1568 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1569 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1571 case IOMAP_UNWRITTEN:
1573 if (WARN_ON_ONCE(write))
1575 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1583 if (ops->iomap_end) {
1584 int copied = PMD_SIZE;
1586 if (result == VM_FAULT_FALLBACK)
1589 * The fault is done by now and there's no way back (other
1590 * thread may be already happily using PMD we have installed).
1591 * Just ignore error from ->iomap_end since we cannot do much
1594 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1598 dax_unlock_entry(&xas, entry);
1600 if (result == VM_FAULT_FALLBACK) {
1601 split_huge_pmd(vma, vmf->pmd, vmf->address);
1602 count_vm_event(THP_FAULT_FALLBACK);
1605 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1609 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1610 const struct iomap_ops *ops)
1612 return VM_FAULT_FALLBACK;
1614 #endif /* CONFIG_FS_DAX_PMD */
1617 * dax_iomap_fault - handle a page fault on a DAX file
1618 * @vmf: The description of the fault
1619 * @pe_size: Size of the page to fault in
1620 * @pfnp: PFN to insert for synchronous faults if fsync is required
1621 * @iomap_errp: Storage for detailed error code in case of error
1622 * @ops: Iomap ops passed from the file system
1624 * When a page fault occurs, filesystems may call this helper in
1625 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1626 * has done all the necessary locking for page fault to proceed
1629 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1630 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1634 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1636 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1638 return VM_FAULT_FALLBACK;
1641 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1644 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1645 * @vmf: The description of the fault
1646 * @pfn: PFN to insert
1647 * @order: Order of entry to insert.
1649 * This function inserts a writeable PTE or PMD entry into the page tables
1650 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1653 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1655 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1656 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1661 entry = get_unlocked_entry(&xas);
1662 /* Did we race with someone splitting entry or so? */
1664 (order == 0 && !dax_is_pte_entry(entry)) ||
1665 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1666 put_unlocked_entry(&xas, entry);
1667 xas_unlock_irq(&xas);
1668 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1670 return VM_FAULT_NOPAGE;
1672 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1673 dax_lock_entry(&xas, entry);
1674 xas_unlock_irq(&xas);
1676 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1677 #ifdef CONFIG_FS_DAX_PMD
1678 else if (order == PMD_ORDER)
1679 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1682 ret = VM_FAULT_FALLBACK;
1683 dax_unlock_entry(&xas, entry);
1684 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1689 * dax_finish_sync_fault - finish synchronous page fault
1690 * @vmf: The description of the fault
1691 * @pe_size: Size of entry to be inserted
1692 * @pfn: PFN to insert
1694 * This function ensures that the file range touched by the page fault is
1695 * stored persistently on the media and handles inserting of appropriate page
1698 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1699 enum page_entry_size pe_size, pfn_t pfn)
1702 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1703 unsigned int order = pe_order(pe_size);
1704 size_t len = PAGE_SIZE << order;
1706 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1708 return VM_FAULT_SIGBUS;
1709 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1711 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);