1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
62 if ((word & 0xffff0000) == 0)
67 if ((word & 0xff00) == 0)
72 if ((word & 0xf0) == 0)
77 if ((word & 0xc) == 0)
82 if ((word & 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (size <= BITS_PER_LONG)
123 size -= BITS_PER_LONG;
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
149 tmp = __reverse_ulong((unsigned char *)p);
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
158 if (size <= BITS_PER_LONG)
160 size -= BITS_PER_LONG;
166 return result - size + __reverse_ffz(tmp);
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 if (f2fs_lfs_mode(sbi))
177 if (sbi->gc_mode == GC_URGENT_HIGH)
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 struct inmem_pages *new;
190 f2fs_trace_pid(page);
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
196 /* add atomic page indices to the list */
198 INIT_LIST_HEAD(&new->list);
200 /* increase reference count with clean state */
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
207 trace_f2fs_register_inmem_page(page, INMEM);
210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
226 * to avoid deadlock in between page lock and
229 if (!trylock_page(page))
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
238 struct dnode_of_data dn;
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC,
257 err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 if (cur->old_addr == NEW_ADDR) {
264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 cur->old_addr, ni.version, true, true);
272 /* we don't need to invalidate this in the sccessful status */
273 if (drop || recover) {
274 ClearPageUptodate(page);
275 clear_cold_data(page);
277 f2fs_clear_page_private(page);
278 f2fs_put_page(page, 1);
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
319 if (++looped >= count)
325 void f2fs_drop_inmem_pages(struct inode *inode)
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
330 while (!list_empty(&fi->inmem_pages)) {
331 mutex_lock(&fi->inmem_lock);
332 __revoke_inmem_pages(inode, &fi->inmem_pages,
334 mutex_unlock(&fi->inmem_lock);
337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
391 struct list_head revoke_list;
392 bool submit_bio = false;
395 INIT_LIST_HEAD(&revoke_list);
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC,
427 /* record old blkaddr for revoking */
428 cur->old_addr = fio.old_blkaddr;
432 list_move_tail(&cur->list, &revoke_list);
436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
440 * try to revoke all committed pages, but still we could fail
441 * due to no memory or other reason, if that happened, EAGAIN
442 * will be returned, which means in such case, transaction is
443 * already not integrity, caller should use journal to do the
444 * recovery or rewrite & commit last transaction. For other
445 * error number, revoking was done by filesystem itself.
447 err = __revoke_inmem_pages(inode, &revoke_list,
450 /* drop all uncommitted pages */
451 __revoke_inmem_pages(inode, &fi->inmem_pages,
454 __revoke_inmem_pages(inode, &revoke_list,
455 false, false, false);
461 int f2fs_commit_inmem_pages(struct inode *inode)
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct f2fs_inode_info *fi = F2FS_I(inode);
467 f2fs_balance_fs(sbi, true);
469 down_write(&fi->i_gc_rwsem[WRITE]);
472 set_inode_flag(inode, FI_ATOMIC_COMMIT);
474 mutex_lock(&fi->inmem_lock);
475 err = __f2fs_commit_inmem_pages(inode);
476 mutex_unlock(&fi->inmem_lock);
478 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
481 up_write(&fi->i_gc_rwsem[WRITE]);
487 * This function balances dirty node and dentry pages.
488 * In addition, it controls garbage collection.
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 f2fs_stop_checkpoint(sbi, false);
497 /* balance_fs_bg is able to be pending */
498 if (need && excess_cached_nats(sbi))
499 f2fs_balance_fs_bg(sbi, false);
501 if (!f2fs_is_checkpoint_ready(sbi))
505 * We should do GC or end up with checkpoint, if there are so many dirty
506 * dir/node pages without enough free segments.
508 if (has_not_enough_free_secs(sbi, 0, 0)) {
509 down_write(&sbi->gc_lock);
510 f2fs_gc(sbi, false, false, NULL_SEGNO);
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
519 /* try to shrink extent cache when there is no enough memory */
520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
523 /* check the # of cached NAT entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
527 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
530 f2fs_build_free_nids(sbi, false, false);
532 if (!is_idle(sbi, REQ_TIME) &&
533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
536 /* checkpoint is the only way to shrink partial cached entries */
537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539 excess_prefree_segs(sbi) ||
540 excess_dirty_nats(sbi) ||
541 excess_dirty_nodes(sbi) ||
542 f2fs_time_over(sbi, CP_TIME)) {
543 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544 struct blk_plug plug;
546 mutex_lock(&sbi->flush_lock);
548 blk_start_plug(&plug);
549 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550 blk_finish_plug(&plug);
552 mutex_unlock(&sbi->flush_lock);
554 f2fs_sync_fs(sbi->sb, true);
555 stat_inc_bg_cp_count(sbi->stat_info);
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560 struct block_device *bdev)
565 bio = f2fs_bio_alloc(sbi, 0, false);
569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570 bio_set_dev(bio, bdev);
571 ret = submit_bio_wait(bio);
574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575 test_opt(sbi, FLUSH_MERGE), ret);
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
584 if (!f2fs_is_multi_device(sbi))
585 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
587 for (i = 0; i < sbi->s_ndevs; i++) {
588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
590 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
597 static int issue_flush_thread(void *data)
599 struct f2fs_sb_info *sbi = data;
600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601 wait_queue_head_t *q = &fcc->flush_wait_queue;
603 if (kthread_should_stop())
606 sb_start_intwrite(sbi->sb);
608 if (!llist_empty(&fcc->issue_list)) {
609 struct flush_cmd *cmd, *next;
612 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
617 ret = submit_flush_wait(sbi, cmd->ino);
618 atomic_inc(&fcc->issued_flush);
620 llist_for_each_entry_safe(cmd, next,
621 fcc->dispatch_list, llnode) {
623 complete(&cmd->wait);
625 fcc->dispatch_list = NULL;
628 sb_end_intwrite(sbi->sb);
630 wait_event_interruptible(*q,
631 kthread_should_stop() || !llist_empty(&fcc->issue_list));
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638 struct flush_cmd cmd;
641 if (test_opt(sbi, NOBARRIER))
644 if (!test_opt(sbi, FLUSH_MERGE)) {
645 atomic_inc(&fcc->queued_flush);
646 ret = submit_flush_wait(sbi, ino);
647 atomic_dec(&fcc->queued_flush);
648 atomic_inc(&fcc->issued_flush);
652 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653 f2fs_is_multi_device(sbi)) {
654 ret = submit_flush_wait(sbi, ino);
655 atomic_dec(&fcc->queued_flush);
657 atomic_inc(&fcc->issued_flush);
662 init_completion(&cmd.wait);
664 llist_add(&cmd.llnode, &fcc->issue_list);
666 /* update issue_list before we wake up issue_flush thread */
669 if (waitqueue_active(&fcc->flush_wait_queue))
670 wake_up(&fcc->flush_wait_queue);
672 if (fcc->f2fs_issue_flush) {
673 wait_for_completion(&cmd.wait);
674 atomic_dec(&fcc->queued_flush);
676 struct llist_node *list;
678 list = llist_del_all(&fcc->issue_list);
680 wait_for_completion(&cmd.wait);
681 atomic_dec(&fcc->queued_flush);
683 struct flush_cmd *tmp, *next;
685 ret = submit_flush_wait(sbi, ino);
687 llist_for_each_entry_safe(tmp, next, list, llnode) {
690 atomic_dec(&fcc->queued_flush);
694 complete(&tmp->wait);
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
704 dev_t dev = sbi->sb->s_bdev->bd_dev;
705 struct flush_cmd_control *fcc;
708 if (SM_I(sbi)->fcc_info) {
709 fcc = SM_I(sbi)->fcc_info;
710 if (fcc->f2fs_issue_flush)
715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
718 atomic_set(&fcc->issued_flush, 0);
719 atomic_set(&fcc->queued_flush, 0);
720 init_waitqueue_head(&fcc->flush_wait_queue);
721 init_llist_head(&fcc->issue_list);
722 SM_I(sbi)->fcc_info = fcc;
723 if (!test_opt(sbi, FLUSH_MERGE))
727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729 if (IS_ERR(fcc->f2fs_issue_flush)) {
730 err = PTR_ERR(fcc->f2fs_issue_flush);
732 SM_I(sbi)->fcc_info = NULL;
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
743 if (fcc && fcc->f2fs_issue_flush) {
744 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
746 fcc->f2fs_issue_flush = NULL;
747 kthread_stop(flush_thread);
751 SM_I(sbi)->fcc_info = NULL;
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
759 if (!f2fs_is_multi_device(sbi))
762 for (i = 1; i < sbi->s_ndevs; i++) {
763 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
765 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
769 spin_lock(&sbi->dev_lock);
770 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771 spin_unlock(&sbi->dev_lock);
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 enum dirty_type dirty_type)
780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
782 /* need not be added */
783 if (IS_CURSEG(sbi, segno))
786 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 dirty_i->nr_dirty[dirty_type]++;
789 if (dirty_type == DIRTY) {
790 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 enum dirty_type t = sentry->type;
793 if (unlikely(t >= DIRTY)) {
797 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798 dirty_i->nr_dirty[t]++;
800 if (__is_large_section(sbi)) {
801 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
802 block_t valid_blocks =
803 get_valid_blocks(sbi, segno, true);
805 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
806 valid_blocks == BLKS_PER_SEC(sbi)));
808 if (!IS_CURSEC(sbi, secno))
809 set_bit(secno, dirty_i->dirty_secmap);
814 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
815 enum dirty_type dirty_type)
817 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
818 block_t valid_blocks;
820 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
821 dirty_i->nr_dirty[dirty_type]--;
823 if (dirty_type == DIRTY) {
824 struct seg_entry *sentry = get_seg_entry(sbi, segno);
825 enum dirty_type t = sentry->type;
827 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
828 dirty_i->nr_dirty[t]--;
830 valid_blocks = get_valid_blocks(sbi, segno, true);
831 if (valid_blocks == 0) {
832 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
833 dirty_i->victim_secmap);
834 #ifdef CONFIG_F2FS_CHECK_FS
835 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
838 if (__is_large_section(sbi)) {
839 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
842 valid_blocks == BLKS_PER_SEC(sbi)) {
843 clear_bit(secno, dirty_i->dirty_secmap);
847 if (!IS_CURSEC(sbi, secno))
848 set_bit(secno, dirty_i->dirty_secmap);
854 * Should not occur error such as -ENOMEM.
855 * Adding dirty entry into seglist is not critical operation.
856 * If a given segment is one of current working segments, it won't be added.
858 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
860 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
861 unsigned short valid_blocks, ckpt_valid_blocks;
863 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
866 mutex_lock(&dirty_i->seglist_lock);
868 valid_blocks = get_valid_blocks(sbi, segno, false);
869 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
871 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
872 ckpt_valid_blocks == sbi->blocks_per_seg)) {
873 __locate_dirty_segment(sbi, segno, PRE);
874 __remove_dirty_segment(sbi, segno, DIRTY);
875 } else if (valid_blocks < sbi->blocks_per_seg) {
876 __locate_dirty_segment(sbi, segno, DIRTY);
878 /* Recovery routine with SSR needs this */
879 __remove_dirty_segment(sbi, segno, DIRTY);
882 mutex_unlock(&dirty_i->seglist_lock);
885 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
886 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
888 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
891 mutex_lock(&dirty_i->seglist_lock);
892 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
893 if (get_valid_blocks(sbi, segno, false))
895 if (IS_CURSEG(sbi, segno))
897 __locate_dirty_segment(sbi, segno, PRE);
898 __remove_dirty_segment(sbi, segno, DIRTY);
900 mutex_unlock(&dirty_i->seglist_lock);
903 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
906 (overprovision_segments(sbi) - reserved_segments(sbi));
907 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
909 block_t holes[2] = {0, 0}; /* DATA and NODE */
911 struct seg_entry *se;
914 mutex_lock(&dirty_i->seglist_lock);
915 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
916 se = get_seg_entry(sbi, segno);
917 if (IS_NODESEG(se->type))
918 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
920 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
922 mutex_unlock(&dirty_i->seglist_lock);
924 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
925 if (unusable > ovp_holes)
926 return unusable - ovp_holes;
930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
933 (overprovision_segments(sbi) - reserved_segments(sbi));
934 if (unusable > F2FS_OPTION(sbi).unusable_cap)
936 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
937 dirty_segments(sbi) > ovp_hole_segs)
942 /* This is only used by SBI_CP_DISABLED */
943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
945 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
946 unsigned int segno = 0;
948 mutex_lock(&dirty_i->seglist_lock);
949 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
950 if (get_valid_blocks(sbi, segno, false))
952 if (get_ckpt_valid_blocks(sbi, segno))
954 mutex_unlock(&dirty_i->seglist_lock);
957 mutex_unlock(&dirty_i->seglist_lock);
961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
962 struct block_device *bdev, block_t lstart,
963 block_t start, block_t len)
965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966 struct list_head *pend_list;
967 struct discard_cmd *dc;
969 f2fs_bug_on(sbi, !len);
971 pend_list = &dcc->pend_list[plist_idx(len)];
973 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
974 INIT_LIST_HEAD(&dc->list);
983 init_completion(&dc->wait);
984 list_add_tail(&dc->list, pend_list);
985 spin_lock_init(&dc->lock);
987 atomic_inc(&dcc->discard_cmd_cnt);
988 dcc->undiscard_blks += len;
993 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
994 struct block_device *bdev, block_t lstart,
995 block_t start, block_t len,
996 struct rb_node *parent, struct rb_node **p,
999 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000 struct discard_cmd *dc;
1002 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1004 rb_link_node(&dc->rb_node, parent, p);
1005 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1010 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1011 struct discard_cmd *dc)
1013 if (dc->state == D_DONE)
1014 atomic_sub(dc->queued, &dcc->queued_discard);
1016 list_del(&dc->list);
1017 rb_erase_cached(&dc->rb_node, &dcc->root);
1018 dcc->undiscard_blks -= dc->len;
1020 kmem_cache_free(discard_cmd_slab, dc);
1022 atomic_dec(&dcc->discard_cmd_cnt);
1025 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1026 struct discard_cmd *dc)
1028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 unsigned long flags;
1031 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1033 spin_lock_irqsave(&dc->lock, flags);
1035 spin_unlock_irqrestore(&dc->lock, flags);
1038 spin_unlock_irqrestore(&dc->lock, flags);
1040 f2fs_bug_on(sbi, dc->ref);
1042 if (dc->error == -EOPNOTSUPP)
1047 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1048 KERN_INFO, sbi->sb->s_id,
1049 dc->lstart, dc->start, dc->len, dc->error);
1050 __detach_discard_cmd(dcc, dc);
1053 static void f2fs_submit_discard_endio(struct bio *bio)
1055 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1056 unsigned long flags;
1058 spin_lock_irqsave(&dc->lock, flags);
1060 dc->error = blk_status_to_errno(bio->bi_status);
1062 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1064 complete_all(&dc->wait);
1066 spin_unlock_irqrestore(&dc->lock, flags);
1070 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1071 block_t start, block_t end)
1073 #ifdef CONFIG_F2FS_CHECK_FS
1074 struct seg_entry *sentry;
1076 block_t blk = start;
1077 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1081 segno = GET_SEGNO(sbi, blk);
1082 sentry = get_seg_entry(sbi, segno);
1083 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1085 if (end < START_BLOCK(sbi, segno + 1))
1086 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1089 map = (unsigned long *)(sentry->cur_valid_map);
1090 offset = __find_rev_next_bit(map, size, offset);
1091 f2fs_bug_on(sbi, offset != size);
1092 blk = START_BLOCK(sbi, segno + 1);
1097 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1098 struct discard_policy *dpolicy,
1099 int discard_type, unsigned int granularity)
1102 dpolicy->type = discard_type;
1103 dpolicy->sync = true;
1104 dpolicy->ordered = false;
1105 dpolicy->granularity = granularity;
1107 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1108 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1109 dpolicy->timeout = false;
1111 if (discard_type == DPOLICY_BG) {
1112 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1113 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1114 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1115 dpolicy->io_aware = true;
1116 dpolicy->sync = false;
1117 dpolicy->ordered = true;
1118 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1119 dpolicy->granularity = 1;
1120 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1122 } else if (discard_type == DPOLICY_FORCE) {
1123 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1124 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1125 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1126 dpolicy->io_aware = false;
1127 } else if (discard_type == DPOLICY_FSTRIM) {
1128 dpolicy->io_aware = false;
1129 } else if (discard_type == DPOLICY_UMOUNT) {
1130 dpolicy->io_aware = false;
1131 /* we need to issue all to keep CP_TRIMMED_FLAG */
1132 dpolicy->granularity = 1;
1133 dpolicy->timeout = true;
1137 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1138 struct block_device *bdev, block_t lstart,
1139 block_t start, block_t len);
1140 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1141 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1142 struct discard_policy *dpolicy,
1143 struct discard_cmd *dc,
1144 unsigned int *issued)
1146 struct block_device *bdev = dc->bdev;
1147 struct request_queue *q = bdev_get_queue(bdev);
1148 unsigned int max_discard_blocks =
1149 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1152 &(dcc->fstrim_list) : &(dcc->wait_list);
1153 int flag = dpolicy->sync ? REQ_SYNC : 0;
1154 block_t lstart, start, len, total_len;
1157 if (dc->state != D_PREP)
1160 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1163 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1165 lstart = dc->lstart;
1172 while (total_len && *issued < dpolicy->max_requests && !err) {
1173 struct bio *bio = NULL;
1174 unsigned long flags;
1177 if (len > max_discard_blocks) {
1178 len = max_discard_blocks;
1183 if (*issued == dpolicy->max_requests)
1188 if (time_to_inject(sbi, FAULT_DISCARD)) {
1189 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1193 err = __blkdev_issue_discard(bdev,
1194 SECTOR_FROM_BLOCK(start),
1195 SECTOR_FROM_BLOCK(len),
1199 spin_lock_irqsave(&dc->lock, flags);
1200 if (dc->state == D_PARTIAL)
1201 dc->state = D_SUBMIT;
1202 spin_unlock_irqrestore(&dc->lock, flags);
1207 f2fs_bug_on(sbi, !bio);
1210 * should keep before submission to avoid D_DONE
1213 spin_lock_irqsave(&dc->lock, flags);
1215 dc->state = D_SUBMIT;
1217 dc->state = D_PARTIAL;
1219 spin_unlock_irqrestore(&dc->lock, flags);
1221 atomic_inc(&dcc->queued_discard);
1223 list_move_tail(&dc->list, wait_list);
1225 /* sanity check on discard range */
1226 __check_sit_bitmap(sbi, lstart, lstart + len);
1228 bio->bi_private = dc;
1229 bio->bi_end_io = f2fs_submit_discard_endio;
1230 bio->bi_opf |= flag;
1233 atomic_inc(&dcc->issued_discard);
1235 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1244 dcc->undiscard_blks -= len;
1245 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1250 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1251 struct block_device *bdev, block_t lstart,
1252 block_t start, block_t len,
1253 struct rb_node **insert_p,
1254 struct rb_node *insert_parent)
1256 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1258 struct rb_node *parent = NULL;
1259 bool leftmost = true;
1261 if (insert_p && insert_parent) {
1262 parent = insert_parent;
1267 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1270 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1274 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1275 struct discard_cmd *dc)
1277 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1280 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1281 struct discard_cmd *dc, block_t blkaddr)
1283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284 struct discard_info di = dc->di;
1285 bool modified = false;
1287 if (dc->state == D_DONE || dc->len == 1) {
1288 __remove_discard_cmd(sbi, dc);
1292 dcc->undiscard_blks -= di.len;
1294 if (blkaddr > di.lstart) {
1295 dc->len = blkaddr - dc->lstart;
1296 dcc->undiscard_blks += dc->len;
1297 __relocate_discard_cmd(dcc, dc);
1301 if (blkaddr < di.lstart + di.len - 1) {
1303 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1304 di.start + blkaddr + 1 - di.lstart,
1305 di.lstart + di.len - 1 - blkaddr,
1311 dcc->undiscard_blks += dc->len;
1312 __relocate_discard_cmd(dcc, dc);
1317 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1318 struct block_device *bdev, block_t lstart,
1319 block_t start, block_t len)
1321 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1322 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1323 struct discard_cmd *dc;
1324 struct discard_info di = {0};
1325 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1326 struct request_queue *q = bdev_get_queue(bdev);
1327 unsigned int max_discard_blocks =
1328 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1329 block_t end = lstart + len;
1331 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1333 (struct rb_entry **)&prev_dc,
1334 (struct rb_entry **)&next_dc,
1335 &insert_p, &insert_parent, true, NULL);
1341 di.len = next_dc ? next_dc->lstart - lstart : len;
1342 di.len = min(di.len, len);
1347 struct rb_node *node;
1348 bool merged = false;
1349 struct discard_cmd *tdc = NULL;
1352 di.lstart = prev_dc->lstart + prev_dc->len;
1353 if (di.lstart < lstart)
1355 if (di.lstart >= end)
1358 if (!next_dc || next_dc->lstart > end)
1359 di.len = end - di.lstart;
1361 di.len = next_dc->lstart - di.lstart;
1362 di.start = start + di.lstart - lstart;
1368 if (prev_dc && prev_dc->state == D_PREP &&
1369 prev_dc->bdev == bdev &&
1370 __is_discard_back_mergeable(&di, &prev_dc->di,
1371 max_discard_blocks)) {
1372 prev_dc->di.len += di.len;
1373 dcc->undiscard_blks += di.len;
1374 __relocate_discard_cmd(dcc, prev_dc);
1380 if (next_dc && next_dc->state == D_PREP &&
1381 next_dc->bdev == bdev &&
1382 __is_discard_front_mergeable(&di, &next_dc->di,
1383 max_discard_blocks)) {
1384 next_dc->di.lstart = di.lstart;
1385 next_dc->di.len += di.len;
1386 next_dc->di.start = di.start;
1387 dcc->undiscard_blks += di.len;
1388 __relocate_discard_cmd(dcc, next_dc);
1390 __remove_discard_cmd(sbi, tdc);
1395 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1396 di.len, NULL, NULL);
1403 node = rb_next(&prev_dc->rb_node);
1404 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1408 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1409 struct block_device *bdev, block_t blkstart, block_t blklen)
1411 block_t lblkstart = blkstart;
1413 if (!f2fs_bdev_support_discard(bdev))
1416 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1418 if (f2fs_is_multi_device(sbi)) {
1419 int devi = f2fs_target_device_index(sbi, blkstart);
1421 blkstart -= FDEV(devi).start_blk;
1423 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1424 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1425 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1429 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1430 struct discard_policy *dpolicy)
1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1434 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1435 struct discard_cmd *dc;
1436 struct blk_plug plug;
1437 unsigned int pos = dcc->next_pos;
1438 unsigned int issued = 0;
1439 bool io_interrupted = false;
1441 mutex_lock(&dcc->cmd_lock);
1442 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1444 (struct rb_entry **)&prev_dc,
1445 (struct rb_entry **)&next_dc,
1446 &insert_p, &insert_parent, true, NULL);
1450 blk_start_plug(&plug);
1453 struct rb_node *node;
1456 if (dc->state != D_PREP)
1459 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1460 io_interrupted = true;
1464 dcc->next_pos = dc->lstart + dc->len;
1465 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1467 if (issued >= dpolicy->max_requests)
1470 node = rb_next(&dc->rb_node);
1472 __remove_discard_cmd(sbi, dc);
1473 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1476 blk_finish_plug(&plug);
1481 mutex_unlock(&dcc->cmd_lock);
1483 if (!issued && io_interrupted)
1488 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1489 struct discard_policy *dpolicy);
1491 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1492 struct discard_policy *dpolicy)
1494 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1495 struct list_head *pend_list;
1496 struct discard_cmd *dc, *tmp;
1497 struct blk_plug plug;
1499 bool io_interrupted = false;
1501 if (dpolicy->timeout)
1502 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1506 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1507 if (dpolicy->timeout &&
1508 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1511 if (i + 1 < dpolicy->granularity)
1514 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1515 return __issue_discard_cmd_orderly(sbi, dpolicy);
1517 pend_list = &dcc->pend_list[i];
1519 mutex_lock(&dcc->cmd_lock);
1520 if (list_empty(pend_list))
1522 if (unlikely(dcc->rbtree_check))
1523 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1525 blk_start_plug(&plug);
1526 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527 f2fs_bug_on(sbi, dc->state != D_PREP);
1529 if (dpolicy->timeout &&
1530 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1534 !is_idle(sbi, DISCARD_TIME)) {
1535 io_interrupted = true;
1539 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1541 if (issued >= dpolicy->max_requests)
1544 blk_finish_plug(&plug);
1546 mutex_unlock(&dcc->cmd_lock);
1548 if (issued >= dpolicy->max_requests || io_interrupted)
1552 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1553 __wait_all_discard_cmd(sbi, dpolicy);
1557 if (!issued && io_interrupted)
1563 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1565 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1566 struct list_head *pend_list;
1567 struct discard_cmd *dc, *tmp;
1569 bool dropped = false;
1571 mutex_lock(&dcc->cmd_lock);
1572 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1573 pend_list = &dcc->pend_list[i];
1574 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1575 f2fs_bug_on(sbi, dc->state != D_PREP);
1576 __remove_discard_cmd(sbi, dc);
1580 mutex_unlock(&dcc->cmd_lock);
1585 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1587 __drop_discard_cmd(sbi);
1590 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1591 struct discard_cmd *dc)
1593 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1594 unsigned int len = 0;
1596 wait_for_completion_io(&dc->wait);
1597 mutex_lock(&dcc->cmd_lock);
1598 f2fs_bug_on(sbi, dc->state != D_DONE);
1603 __remove_discard_cmd(sbi, dc);
1605 mutex_unlock(&dcc->cmd_lock);
1610 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1611 struct discard_policy *dpolicy,
1612 block_t start, block_t end)
1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1615 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1616 &(dcc->fstrim_list) : &(dcc->wait_list);
1617 struct discard_cmd *dc, *tmp;
1619 unsigned int trimmed = 0;
1624 mutex_lock(&dcc->cmd_lock);
1625 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1626 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1628 if (dc->len < dpolicy->granularity)
1630 if (dc->state == D_DONE && !dc->ref) {
1631 wait_for_completion_io(&dc->wait);
1634 __remove_discard_cmd(sbi, dc);
1641 mutex_unlock(&dcc->cmd_lock);
1644 trimmed += __wait_one_discard_bio(sbi, dc);
1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652 struct discard_policy *dpolicy)
1654 struct discard_policy dp;
1655 unsigned int discard_blks;
1658 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1661 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1662 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1663 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1664 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1666 return discard_blks;
1669 /* This should be covered by global mutex, &sit_i->sentry_lock */
1670 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1672 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1673 struct discard_cmd *dc;
1674 bool need_wait = false;
1676 mutex_lock(&dcc->cmd_lock);
1677 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1680 if (dc->state == D_PREP) {
1681 __punch_discard_cmd(sbi, dc, blkaddr);
1687 mutex_unlock(&dcc->cmd_lock);
1690 __wait_one_discard_bio(sbi, dc);
1693 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 if (dcc && dcc->f2fs_issue_discard) {
1698 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1700 dcc->f2fs_issue_discard = NULL;
1701 kthread_stop(discard_thread);
1705 /* This comes from f2fs_put_super */
1706 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1708 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1709 struct discard_policy dpolicy;
1712 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1713 dcc->discard_granularity);
1714 __issue_discard_cmd(sbi, &dpolicy);
1715 dropped = __drop_discard_cmd(sbi);
1717 /* just to make sure there is no pending discard commands */
1718 __wait_all_discard_cmd(sbi, NULL);
1720 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1724 static int issue_discard_thread(void *data)
1726 struct f2fs_sb_info *sbi = data;
1727 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1728 wait_queue_head_t *q = &dcc->discard_wait_queue;
1729 struct discard_policy dpolicy;
1730 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1737 dcc->discard_granularity);
1739 wait_event_interruptible_timeout(*q,
1740 kthread_should_stop() || freezing(current) ||
1742 msecs_to_jiffies(wait_ms));
1744 if (dcc->discard_wake)
1745 dcc->discard_wake = 0;
1747 /* clean up pending candidates before going to sleep */
1748 if (atomic_read(&dcc->queued_discard))
1749 __wait_all_discard_cmd(sbi, NULL);
1751 if (try_to_freeze())
1753 if (f2fs_readonly(sbi->sb))
1755 if (kthread_should_stop())
1757 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1758 wait_ms = dpolicy.max_interval;
1762 if (sbi->gc_mode == GC_URGENT_HIGH)
1763 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1765 sb_start_intwrite(sbi->sb);
1767 issued = __issue_discard_cmd(sbi, &dpolicy);
1769 __wait_all_discard_cmd(sbi, &dpolicy);
1770 wait_ms = dpolicy.min_interval;
1771 } else if (issued == -1){
1772 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1774 wait_ms = dpolicy.mid_interval;
1776 wait_ms = dpolicy.max_interval;
1779 sb_end_intwrite(sbi->sb);
1781 } while (!kthread_should_stop());
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1787 struct block_device *bdev, block_t blkstart, block_t blklen)
1789 sector_t sector, nr_sects;
1790 block_t lblkstart = blkstart;
1793 if (f2fs_is_multi_device(sbi)) {
1794 devi = f2fs_target_device_index(sbi, blkstart);
1795 if (blkstart < FDEV(devi).start_blk ||
1796 blkstart > FDEV(devi).end_blk) {
1797 f2fs_err(sbi, "Invalid block %x", blkstart);
1800 blkstart -= FDEV(devi).start_blk;
1803 /* For sequential zones, reset the zone write pointer */
1804 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1805 sector = SECTOR_FROM_BLOCK(blkstart);
1806 nr_sects = SECTOR_FROM_BLOCK(blklen);
1808 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1809 nr_sects != bdev_zone_sectors(bdev)) {
1810 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1811 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1815 trace_f2fs_issue_reset_zone(bdev, blkstart);
1816 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1817 sector, nr_sects, GFP_NOFS);
1820 /* For conventional zones, use regular discard if supported */
1821 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1825 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1826 struct block_device *bdev, block_t blkstart, block_t blklen)
1828 #ifdef CONFIG_BLK_DEV_ZONED
1829 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1830 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1832 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1835 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1836 block_t blkstart, block_t blklen)
1838 sector_t start = blkstart, len = 0;
1839 struct block_device *bdev;
1840 struct seg_entry *se;
1841 unsigned int offset;
1845 bdev = f2fs_target_device(sbi, blkstart, NULL);
1847 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1849 struct block_device *bdev2 =
1850 f2fs_target_device(sbi, i, NULL);
1852 if (bdev2 != bdev) {
1853 err = __issue_discard_async(sbi, bdev,
1863 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1864 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1866 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1867 sbi->discard_blks--;
1871 err = __issue_discard_async(sbi, bdev, start, len);
1875 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1878 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1879 int max_blocks = sbi->blocks_per_seg;
1880 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1881 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1882 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1883 unsigned long *discard_map = (unsigned long *)se->discard_map;
1884 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1885 unsigned int start = 0, end = -1;
1886 bool force = (cpc->reason & CP_DISCARD);
1887 struct discard_entry *de = NULL;
1888 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1891 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1895 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1896 SM_I(sbi)->dcc_info->nr_discards >=
1897 SM_I(sbi)->dcc_info->max_discards)
1901 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1902 for (i = 0; i < entries; i++)
1903 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1904 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1906 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1907 SM_I(sbi)->dcc_info->max_discards) {
1908 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1909 if (start >= max_blocks)
1912 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1913 if (force && start && end != max_blocks
1914 && (end - start) < cpc->trim_minlen)
1921 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1923 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1924 list_add_tail(&de->list, head);
1927 for (i = start; i < end; i++)
1928 __set_bit_le(i, (void *)de->discard_map);
1930 SM_I(sbi)->dcc_info->nr_discards += end - start;
1935 static void release_discard_addr(struct discard_entry *entry)
1937 list_del(&entry->list);
1938 kmem_cache_free(discard_entry_slab, entry);
1941 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1943 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1944 struct discard_entry *entry, *this;
1947 list_for_each_entry_safe(entry, this, head, list)
1948 release_discard_addr(entry);
1952 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1954 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1956 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1959 mutex_lock(&dirty_i->seglist_lock);
1960 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1961 __set_test_and_free(sbi, segno);
1962 mutex_unlock(&dirty_i->seglist_lock);
1965 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1966 struct cp_control *cpc)
1968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1969 struct list_head *head = &dcc->entry_list;
1970 struct discard_entry *entry, *this;
1971 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1972 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1973 unsigned int start = 0, end = -1;
1974 unsigned int secno, start_segno;
1975 bool force = (cpc->reason & CP_DISCARD);
1976 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1978 mutex_lock(&dirty_i->seglist_lock);
1983 if (need_align && end != -1)
1985 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1986 if (start >= MAIN_SEGS(sbi))
1988 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1992 start = rounddown(start, sbi->segs_per_sec);
1993 end = roundup(end, sbi->segs_per_sec);
1996 for (i = start; i < end; i++) {
1997 if (test_and_clear_bit(i, prefree_map))
1998 dirty_i->nr_dirty[PRE]--;
2001 if (!f2fs_realtime_discard_enable(sbi))
2004 if (force && start >= cpc->trim_start &&
2005 (end - 1) <= cpc->trim_end)
2008 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2009 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2010 (end - start) << sbi->log_blocks_per_seg);
2014 secno = GET_SEC_FROM_SEG(sbi, start);
2015 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2016 if (!IS_CURSEC(sbi, secno) &&
2017 !get_valid_blocks(sbi, start, true))
2018 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2019 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2021 start = start_segno + sbi->segs_per_sec;
2027 mutex_unlock(&dirty_i->seglist_lock);
2029 /* send small discards */
2030 list_for_each_entry_safe(entry, this, head, list) {
2031 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2032 bool is_valid = test_bit_le(0, entry->discard_map);
2036 next_pos = find_next_zero_bit_le(entry->discard_map,
2037 sbi->blocks_per_seg, cur_pos);
2038 len = next_pos - cur_pos;
2040 if (f2fs_sb_has_blkzoned(sbi) ||
2041 (force && len < cpc->trim_minlen))
2044 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2048 next_pos = find_next_bit_le(entry->discard_map,
2049 sbi->blocks_per_seg, cur_pos);
2053 is_valid = !is_valid;
2055 if (cur_pos < sbi->blocks_per_seg)
2058 release_discard_addr(entry);
2059 dcc->nr_discards -= total_len;
2062 wake_up_discard_thread(sbi, false);
2065 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2067 dev_t dev = sbi->sb->s_bdev->bd_dev;
2068 struct discard_cmd_control *dcc;
2071 if (SM_I(sbi)->dcc_info) {
2072 dcc = SM_I(sbi)->dcc_info;
2076 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2080 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2081 INIT_LIST_HEAD(&dcc->entry_list);
2082 for (i = 0; i < MAX_PLIST_NUM; i++)
2083 INIT_LIST_HEAD(&dcc->pend_list[i]);
2084 INIT_LIST_HEAD(&dcc->wait_list);
2085 INIT_LIST_HEAD(&dcc->fstrim_list);
2086 mutex_init(&dcc->cmd_lock);
2087 atomic_set(&dcc->issued_discard, 0);
2088 atomic_set(&dcc->queued_discard, 0);
2089 atomic_set(&dcc->discard_cmd_cnt, 0);
2090 dcc->nr_discards = 0;
2091 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2092 dcc->undiscard_blks = 0;
2094 dcc->root = RB_ROOT_CACHED;
2095 dcc->rbtree_check = false;
2097 init_waitqueue_head(&dcc->discard_wait_queue);
2098 SM_I(sbi)->dcc_info = dcc;
2100 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2101 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2102 if (IS_ERR(dcc->f2fs_issue_discard)) {
2103 err = PTR_ERR(dcc->f2fs_issue_discard);
2105 SM_I(sbi)->dcc_info = NULL;
2112 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2114 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2119 f2fs_stop_discard_thread(sbi);
2122 * Recovery can cache discard commands, so in error path of
2123 * fill_super(), it needs to give a chance to handle them.
2125 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2126 f2fs_issue_discard_timeout(sbi);
2129 SM_I(sbi)->dcc_info = NULL;
2132 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2134 struct sit_info *sit_i = SIT_I(sbi);
2136 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2137 sit_i->dirty_sentries++;
2144 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2145 unsigned int segno, int modified)
2147 struct seg_entry *se = get_seg_entry(sbi, segno);
2150 __mark_sit_entry_dirty(sbi, segno);
2153 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2155 struct seg_entry *se;
2156 unsigned int segno, offset;
2157 long int new_vblocks;
2159 #ifdef CONFIG_F2FS_CHECK_FS
2163 segno = GET_SEGNO(sbi, blkaddr);
2165 se = get_seg_entry(sbi, segno);
2166 new_vblocks = se->valid_blocks + del;
2167 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2169 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2170 (new_vblocks > sbi->blocks_per_seg)));
2172 se->valid_blocks = new_vblocks;
2173 se->mtime = get_mtime(sbi, false);
2174 if (se->mtime > SIT_I(sbi)->max_mtime)
2175 SIT_I(sbi)->max_mtime = se->mtime;
2177 /* Update valid block bitmap */
2179 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2180 #ifdef CONFIG_F2FS_CHECK_FS
2181 mir_exist = f2fs_test_and_set_bit(offset,
2182 se->cur_valid_map_mir);
2183 if (unlikely(exist != mir_exist)) {
2184 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2186 f2fs_bug_on(sbi, 1);
2189 if (unlikely(exist)) {
2190 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2192 f2fs_bug_on(sbi, 1);
2197 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2198 sbi->discard_blks--;
2201 * SSR should never reuse block which is checkpointed
2202 * or newly invalidated.
2204 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206 se->ckpt_valid_blocks++;
2209 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210 #ifdef CONFIG_F2FS_CHECK_FS
2211 mir_exist = f2fs_test_and_clear_bit(offset,
2212 se->cur_valid_map_mir);
2213 if (unlikely(exist != mir_exist)) {
2214 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2216 f2fs_bug_on(sbi, 1);
2219 if (unlikely(!exist)) {
2220 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2222 f2fs_bug_on(sbi, 1);
2225 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2227 * If checkpoints are off, we must not reuse data that
2228 * was used in the previous checkpoint. If it was used
2229 * before, we must track that to know how much space we
2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233 spin_lock(&sbi->stat_lock);
2234 sbi->unusable_block_count++;
2235 spin_unlock(&sbi->stat_lock);
2239 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2240 sbi->discard_blks++;
2242 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2243 se->ckpt_valid_blocks += del;
2245 __mark_sit_entry_dirty(sbi, segno);
2247 /* update total number of valid blocks to be written in ckpt area */
2248 SIT_I(sbi)->written_valid_blocks += del;
2250 if (__is_large_section(sbi))
2251 get_sec_entry(sbi, segno)->valid_blocks += del;
2254 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2256 unsigned int segno = GET_SEGNO(sbi, addr);
2257 struct sit_info *sit_i = SIT_I(sbi);
2259 f2fs_bug_on(sbi, addr == NULL_ADDR);
2260 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2263 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2265 /* add it into sit main buffer */
2266 down_write(&sit_i->sentry_lock);
2268 update_sit_entry(sbi, addr, -1);
2270 /* add it into dirty seglist */
2271 locate_dirty_segment(sbi, segno);
2273 up_write(&sit_i->sentry_lock);
2276 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2278 struct sit_info *sit_i = SIT_I(sbi);
2279 unsigned int segno, offset;
2280 struct seg_entry *se;
2283 if (!__is_valid_data_blkaddr(blkaddr))
2286 down_read(&sit_i->sentry_lock);
2288 segno = GET_SEGNO(sbi, blkaddr);
2289 se = get_seg_entry(sbi, segno);
2290 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2292 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2295 up_read(&sit_i->sentry_lock);
2301 * This function should be resided under the curseg_mutex lock
2303 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2304 struct f2fs_summary *sum)
2306 struct curseg_info *curseg = CURSEG_I(sbi, type);
2307 void *addr = curseg->sum_blk;
2308 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2309 memcpy(addr, sum, sizeof(struct f2fs_summary));
2313 * Calculate the number of current summary pages for writing
2315 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2317 int valid_sum_count = 0;
2320 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2321 if (sbi->ckpt->alloc_type[i] == SSR)
2322 valid_sum_count += sbi->blocks_per_seg;
2325 valid_sum_count += le16_to_cpu(
2326 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2328 valid_sum_count += curseg_blkoff(sbi, i);
2332 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2333 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2334 if (valid_sum_count <= sum_in_page)
2336 else if ((valid_sum_count - sum_in_page) <=
2337 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2343 * Caller should put this summary page
2345 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2347 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2350 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2351 void *src, block_t blk_addr)
2353 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2355 memcpy(page_address(page), src, PAGE_SIZE);
2356 set_page_dirty(page);
2357 f2fs_put_page(page, 1);
2360 static void write_sum_page(struct f2fs_sb_info *sbi,
2361 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2363 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2366 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2367 int type, block_t blk_addr)
2369 struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2371 struct f2fs_summary_block *src = curseg->sum_blk;
2372 struct f2fs_summary_block *dst;
2374 dst = (struct f2fs_summary_block *)page_address(page);
2375 memset(dst, 0, PAGE_SIZE);
2377 mutex_lock(&curseg->curseg_mutex);
2379 down_read(&curseg->journal_rwsem);
2380 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2381 up_read(&curseg->journal_rwsem);
2383 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2384 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2386 mutex_unlock(&curseg->curseg_mutex);
2388 set_page_dirty(page);
2389 f2fs_put_page(page, 1);
2392 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2394 struct curseg_info *curseg = CURSEG_I(sbi, type);
2395 unsigned int segno = curseg->segno + 1;
2396 struct free_segmap_info *free_i = FREE_I(sbi);
2398 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2399 return !test_bit(segno, free_i->free_segmap);
2404 * Find a new segment from the free segments bitmap to right order
2405 * This function should be returned with success, otherwise BUG
2407 static void get_new_segment(struct f2fs_sb_info *sbi,
2408 unsigned int *newseg, bool new_sec, int dir)
2410 struct free_segmap_info *free_i = FREE_I(sbi);
2411 unsigned int segno, secno, zoneno;
2412 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2413 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2414 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2415 unsigned int left_start = hint;
2420 spin_lock(&free_i->segmap_lock);
2422 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2423 segno = find_next_zero_bit(free_i->free_segmap,
2424 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2425 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2429 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2430 if (secno >= MAIN_SECS(sbi)) {
2431 if (dir == ALLOC_RIGHT) {
2432 secno = find_next_zero_bit(free_i->free_secmap,
2434 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2437 left_start = hint - 1;
2443 while (test_bit(left_start, free_i->free_secmap)) {
2444 if (left_start > 0) {
2448 left_start = find_next_zero_bit(free_i->free_secmap,
2450 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2455 segno = GET_SEG_FROM_SEC(sbi, secno);
2456 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2458 /* give up on finding another zone */
2461 if (sbi->secs_per_zone == 1)
2463 if (zoneno == old_zoneno)
2465 if (dir == ALLOC_LEFT) {
2466 if (!go_left && zoneno + 1 >= total_zones)
2468 if (go_left && zoneno == 0)
2471 for (i = 0; i < NR_CURSEG_TYPE; i++)
2472 if (CURSEG_I(sbi, i)->zone == zoneno)
2475 if (i < NR_CURSEG_TYPE) {
2476 /* zone is in user, try another */
2478 hint = zoneno * sbi->secs_per_zone - 1;
2479 else if (zoneno + 1 >= total_zones)
2482 hint = (zoneno + 1) * sbi->secs_per_zone;
2484 goto find_other_zone;
2487 /* set it as dirty segment in free segmap */
2488 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2489 __set_inuse(sbi, segno);
2491 spin_unlock(&free_i->segmap_lock);
2494 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2496 struct curseg_info *curseg = CURSEG_I(sbi, type);
2497 struct summary_footer *sum_footer;
2499 curseg->segno = curseg->next_segno;
2500 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2501 curseg->next_blkoff = 0;
2502 curseg->next_segno = NULL_SEGNO;
2504 sum_footer = &(curseg->sum_blk->footer);
2505 memset(sum_footer, 0, sizeof(struct summary_footer));
2506 if (IS_DATASEG(type))
2507 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2508 if (IS_NODESEG(type))
2509 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2510 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2513 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2515 /* if segs_per_sec is large than 1, we need to keep original policy. */
2516 if (__is_large_section(sbi))
2517 return CURSEG_I(sbi, type)->segno;
2519 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2522 if (test_opt(sbi, NOHEAP) &&
2523 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2526 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2527 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2529 /* find segments from 0 to reuse freed segments */
2530 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2533 return CURSEG_I(sbi, type)->segno;
2537 * Allocate a current working segment.
2538 * This function always allocates a free segment in LFS manner.
2540 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2542 struct curseg_info *curseg = CURSEG_I(sbi, type);
2543 unsigned int segno = curseg->segno;
2544 int dir = ALLOC_LEFT;
2546 write_sum_page(sbi, curseg->sum_blk,
2547 GET_SUM_BLOCK(sbi, segno));
2548 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2551 if (test_opt(sbi, NOHEAP))
2554 segno = __get_next_segno(sbi, type);
2555 get_new_segment(sbi, &segno, new_sec, dir);
2556 curseg->next_segno = segno;
2557 reset_curseg(sbi, type, 1);
2558 curseg->alloc_type = LFS;
2561 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2562 struct curseg_info *seg, block_t start)
2564 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2565 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2566 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2567 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2568 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2571 for (i = 0; i < entries; i++)
2572 target_map[i] = ckpt_map[i] | cur_map[i];
2574 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2576 seg->next_blkoff = pos;
2580 * If a segment is written by LFS manner, next block offset is just obtained
2581 * by increasing the current block offset. However, if a segment is written by
2582 * SSR manner, next block offset obtained by calling __next_free_blkoff
2584 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2585 struct curseg_info *seg)
2587 if (seg->alloc_type == SSR)
2588 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2594 * This function always allocates a used segment(from dirty seglist) by SSR
2595 * manner, so it should recover the existing segment information of valid blocks
2597 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2599 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2600 struct curseg_info *curseg = CURSEG_I(sbi, type);
2601 unsigned int new_segno = curseg->next_segno;
2602 struct f2fs_summary_block *sum_node;
2603 struct page *sum_page;
2605 write_sum_page(sbi, curseg->sum_blk,
2606 GET_SUM_BLOCK(sbi, curseg->segno));
2607 __set_test_and_inuse(sbi, new_segno);
2609 mutex_lock(&dirty_i->seglist_lock);
2610 __remove_dirty_segment(sbi, new_segno, PRE);
2611 __remove_dirty_segment(sbi, new_segno, DIRTY);
2612 mutex_unlock(&dirty_i->seglist_lock);
2614 reset_curseg(sbi, type, 1);
2615 curseg->alloc_type = SSR;
2616 __next_free_blkoff(sbi, curseg, 0);
2618 sum_page = f2fs_get_sum_page(sbi, new_segno);
2619 f2fs_bug_on(sbi, IS_ERR(sum_page));
2620 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2621 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2622 f2fs_put_page(sum_page, 1);
2625 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2627 struct curseg_info *curseg = CURSEG_I(sbi, type);
2628 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2629 unsigned segno = NULL_SEGNO;
2631 bool reversed = false;
2633 /* f2fs_need_SSR() already forces to do this */
2634 if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2635 curseg->next_segno = segno;
2639 /* For node segments, let's do SSR more intensively */
2640 if (IS_NODESEG(type)) {
2641 if (type >= CURSEG_WARM_NODE) {
2643 i = CURSEG_COLD_NODE;
2645 i = CURSEG_HOT_NODE;
2647 cnt = NR_CURSEG_NODE_TYPE;
2649 if (type >= CURSEG_WARM_DATA) {
2651 i = CURSEG_COLD_DATA;
2653 i = CURSEG_HOT_DATA;
2655 cnt = NR_CURSEG_DATA_TYPE;
2658 for (; cnt-- > 0; reversed ? i-- : i++) {
2661 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2662 curseg->next_segno = segno;
2667 /* find valid_blocks=0 in dirty list */
2668 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2669 segno = get_free_segment(sbi);
2670 if (segno != NULL_SEGNO) {
2671 curseg->next_segno = segno;
2679 * flush out current segment and replace it with new segment
2680 * This function should be returned with success, otherwise BUG
2682 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2683 int type, bool force)
2685 struct curseg_info *curseg = CURSEG_I(sbi, type);
2688 new_curseg(sbi, type, true);
2689 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2690 type == CURSEG_WARM_NODE)
2691 new_curseg(sbi, type, false);
2692 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2693 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2694 new_curseg(sbi, type, false);
2695 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2696 change_curseg(sbi, type);
2698 new_curseg(sbi, type, false);
2700 stat_inc_seg_type(sbi, curseg);
2703 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2704 unsigned int start, unsigned int end)
2706 struct curseg_info *curseg = CURSEG_I(sbi, type);
2709 down_read(&SM_I(sbi)->curseg_lock);
2710 mutex_lock(&curseg->curseg_mutex);
2711 down_write(&SIT_I(sbi)->sentry_lock);
2713 segno = CURSEG_I(sbi, type)->segno;
2714 if (segno < start || segno > end)
2717 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2718 change_curseg(sbi, type);
2720 new_curseg(sbi, type, true);
2722 stat_inc_seg_type(sbi, curseg);
2724 locate_dirty_segment(sbi, segno);
2726 up_write(&SIT_I(sbi)->sentry_lock);
2728 if (segno != curseg->segno)
2729 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2730 type, segno, curseg->segno);
2732 mutex_unlock(&curseg->curseg_mutex);
2733 up_read(&SM_I(sbi)->curseg_lock);
2736 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2738 struct curseg_info *curseg = CURSEG_I(sbi, type);
2739 unsigned int old_segno;
2741 if (!curseg->next_blkoff &&
2742 !get_valid_blocks(sbi, curseg->segno, false) &&
2743 !get_ckpt_valid_blocks(sbi, curseg->segno))
2746 old_segno = curseg->segno;
2747 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2748 locate_dirty_segment(sbi, old_segno);
2751 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2753 down_write(&SIT_I(sbi)->sentry_lock);
2754 __allocate_new_segment(sbi, type);
2755 up_write(&SIT_I(sbi)->sentry_lock);
2758 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2762 down_write(&SIT_I(sbi)->sentry_lock);
2763 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2764 __allocate_new_segment(sbi, i);
2765 up_write(&SIT_I(sbi)->sentry_lock);
2768 static const struct segment_allocation default_salloc_ops = {
2769 .allocate_segment = allocate_segment_by_default,
2772 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2773 struct cp_control *cpc)
2775 __u64 trim_start = cpc->trim_start;
2776 bool has_candidate = false;
2778 down_write(&SIT_I(sbi)->sentry_lock);
2779 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2780 if (add_discard_addrs(sbi, cpc, true)) {
2781 has_candidate = true;
2785 up_write(&SIT_I(sbi)->sentry_lock);
2787 cpc->trim_start = trim_start;
2788 return has_candidate;
2791 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2792 struct discard_policy *dpolicy,
2793 unsigned int start, unsigned int end)
2795 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2796 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2797 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2798 struct discard_cmd *dc;
2799 struct blk_plug plug;
2801 unsigned int trimmed = 0;
2806 mutex_lock(&dcc->cmd_lock);
2807 if (unlikely(dcc->rbtree_check))
2808 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2811 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2813 (struct rb_entry **)&prev_dc,
2814 (struct rb_entry **)&next_dc,
2815 &insert_p, &insert_parent, true, NULL);
2819 blk_start_plug(&plug);
2821 while (dc && dc->lstart <= end) {
2822 struct rb_node *node;
2825 if (dc->len < dpolicy->granularity)
2828 if (dc->state != D_PREP) {
2829 list_move_tail(&dc->list, &dcc->fstrim_list);
2833 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2835 if (issued >= dpolicy->max_requests) {
2836 start = dc->lstart + dc->len;
2839 __remove_discard_cmd(sbi, dc);
2841 blk_finish_plug(&plug);
2842 mutex_unlock(&dcc->cmd_lock);
2843 trimmed += __wait_all_discard_cmd(sbi, NULL);
2844 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2848 node = rb_next(&dc->rb_node);
2850 __remove_discard_cmd(sbi, dc);
2851 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2853 if (fatal_signal_pending(current))
2857 blk_finish_plug(&plug);
2858 mutex_unlock(&dcc->cmd_lock);
2863 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2865 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2866 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2867 unsigned int start_segno, end_segno;
2868 block_t start_block, end_block;
2869 struct cp_control cpc;
2870 struct discard_policy dpolicy;
2871 unsigned long long trimmed = 0;
2873 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2875 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2878 if (end < MAIN_BLKADDR(sbi))
2881 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2882 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2883 return -EFSCORRUPTED;
2886 /* start/end segment number in main_area */
2887 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2888 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2889 GET_SEGNO(sbi, end);
2891 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2892 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2895 cpc.reason = CP_DISCARD;
2896 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2897 cpc.trim_start = start_segno;
2898 cpc.trim_end = end_segno;
2900 if (sbi->discard_blks == 0)
2903 down_write(&sbi->gc_lock);
2904 err = f2fs_write_checkpoint(sbi, &cpc);
2905 up_write(&sbi->gc_lock);
2910 * We filed discard candidates, but actually we don't need to wait for
2911 * all of them, since they'll be issued in idle time along with runtime
2912 * discard option. User configuration looks like using runtime discard
2913 * or periodic fstrim instead of it.
2915 if (f2fs_realtime_discard_enable(sbi))
2918 start_block = START_BLOCK(sbi, start_segno);
2919 end_block = START_BLOCK(sbi, end_segno + 1);
2921 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2922 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2923 start_block, end_block);
2925 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2926 start_block, end_block);
2929 range->len = F2FS_BLK_TO_BYTES(trimmed);
2933 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2935 struct curseg_info *curseg = CURSEG_I(sbi, type);
2936 if (curseg->next_blkoff < sbi->blocks_per_seg)
2941 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2944 case WRITE_LIFE_SHORT:
2945 return CURSEG_HOT_DATA;
2946 case WRITE_LIFE_EXTREME:
2947 return CURSEG_COLD_DATA;
2949 return CURSEG_WARM_DATA;
2953 /* This returns write hints for each segment type. This hints will be
2954 * passed down to block layer. There are mapping tables which depend on
2955 * the mount option 'whint_mode'.
2957 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2959 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2963 * META WRITE_LIFE_NOT_SET
2967 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2968 * extension list " "
2971 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2972 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2973 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2974 * WRITE_LIFE_NONE " "
2975 * WRITE_LIFE_MEDIUM " "
2976 * WRITE_LIFE_LONG " "
2979 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2980 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2981 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2982 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2983 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2984 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2986 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2990 * META WRITE_LIFE_MEDIUM;
2991 * HOT_NODE WRITE_LIFE_NOT_SET
2993 * COLD_NODE WRITE_LIFE_NONE
2994 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2995 * extension list " "
2998 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2999 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3000 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3001 * WRITE_LIFE_NONE " "
3002 * WRITE_LIFE_MEDIUM " "
3003 * WRITE_LIFE_LONG " "
3006 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3007 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3008 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3009 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3010 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3011 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3014 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3015 enum page_type type, enum temp_type temp)
3017 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3020 return WRITE_LIFE_NOT_SET;
3021 else if (temp == HOT)
3022 return WRITE_LIFE_SHORT;
3023 else if (temp == COLD)
3024 return WRITE_LIFE_EXTREME;
3026 return WRITE_LIFE_NOT_SET;
3028 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3031 return WRITE_LIFE_LONG;
3032 else if (temp == HOT)
3033 return WRITE_LIFE_SHORT;
3034 else if (temp == COLD)
3035 return WRITE_LIFE_EXTREME;
3036 } else if (type == NODE) {
3037 if (temp == WARM || temp == HOT)
3038 return WRITE_LIFE_NOT_SET;
3039 else if (temp == COLD)
3040 return WRITE_LIFE_NONE;
3041 } else if (type == META) {
3042 return WRITE_LIFE_MEDIUM;
3045 return WRITE_LIFE_NOT_SET;
3048 static int __get_segment_type_2(struct f2fs_io_info *fio)
3050 if (fio->type == DATA)
3051 return CURSEG_HOT_DATA;
3053 return CURSEG_HOT_NODE;
3056 static int __get_segment_type_4(struct f2fs_io_info *fio)
3058 if (fio->type == DATA) {
3059 struct inode *inode = fio->page->mapping->host;
3061 if (S_ISDIR(inode->i_mode))
3062 return CURSEG_HOT_DATA;
3064 return CURSEG_COLD_DATA;
3066 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3067 return CURSEG_WARM_NODE;
3069 return CURSEG_COLD_NODE;
3073 static int __get_segment_type_6(struct f2fs_io_info *fio)
3075 if (fio->type == DATA) {
3076 struct inode *inode = fio->page->mapping->host;
3078 if (is_cold_data(fio->page) || file_is_cold(inode) ||
3079 f2fs_compressed_file(inode))
3080 return CURSEG_COLD_DATA;
3081 if (file_is_hot(inode) ||
3082 is_inode_flag_set(inode, FI_HOT_DATA) ||
3083 f2fs_is_atomic_file(inode) ||
3084 f2fs_is_volatile_file(inode))
3085 return CURSEG_HOT_DATA;
3086 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3088 if (IS_DNODE(fio->page))
3089 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3091 return CURSEG_COLD_NODE;
3095 static int __get_segment_type(struct f2fs_io_info *fio)
3099 switch (F2FS_OPTION(fio->sbi).active_logs) {
3101 type = __get_segment_type_2(fio);
3104 type = __get_segment_type_4(fio);
3107 type = __get_segment_type_6(fio);
3110 f2fs_bug_on(fio->sbi, true);
3115 else if (IS_WARM(type))
3122 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3123 block_t old_blkaddr, block_t *new_blkaddr,
3124 struct f2fs_summary *sum, int type,
3125 struct f2fs_io_info *fio)
3127 struct sit_info *sit_i = SIT_I(sbi);
3128 struct curseg_info *curseg = CURSEG_I(sbi, type);
3129 bool put_pin_sem = false;
3131 if (type == CURSEG_COLD_DATA) {
3132 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3133 if (down_read_trylock(&sbi->pin_sem)) {
3136 type = CURSEG_WARM_DATA;
3137 curseg = CURSEG_I(sbi, type);
3139 } else if (type == CURSEG_COLD_DATA_PINNED) {
3140 type = CURSEG_COLD_DATA;
3143 down_read(&SM_I(sbi)->curseg_lock);
3145 mutex_lock(&curseg->curseg_mutex);
3146 down_write(&sit_i->sentry_lock);
3148 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3150 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3153 * __add_sum_entry should be resided under the curseg_mutex
3154 * because, this function updates a summary entry in the
3155 * current summary block.
3157 __add_sum_entry(sbi, type, sum);
3159 __refresh_next_blkoff(sbi, curseg);
3161 stat_inc_block_count(sbi, curseg);
3164 * SIT information should be updated before segment allocation,
3165 * since SSR needs latest valid block information.
3167 update_sit_entry(sbi, *new_blkaddr, 1);
3168 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3169 update_sit_entry(sbi, old_blkaddr, -1);
3171 if (!__has_curseg_space(sbi, type))
3172 sit_i->s_ops->allocate_segment(sbi, type, false);
3175 * segment dirty status should be updated after segment allocation,
3176 * so we just need to update status only one time after previous
3177 * segment being closed.
3179 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3180 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3182 up_write(&sit_i->sentry_lock);
3184 if (page && IS_NODESEG(type)) {
3185 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3187 f2fs_inode_chksum_set(sbi, page);
3190 if (F2FS_IO_ALIGNED(sbi))
3194 struct f2fs_bio_info *io;
3196 INIT_LIST_HEAD(&fio->list);
3197 fio->in_list = true;
3198 io = sbi->write_io[fio->type] + fio->temp;
3199 spin_lock(&io->io_lock);
3200 list_add_tail(&fio->list, &io->io_list);
3201 spin_unlock(&io->io_lock);
3204 mutex_unlock(&curseg->curseg_mutex);
3206 up_read(&SM_I(sbi)->curseg_lock);
3209 up_read(&sbi->pin_sem);
3212 static void update_device_state(struct f2fs_io_info *fio)
3214 struct f2fs_sb_info *sbi = fio->sbi;
3215 unsigned int devidx;
3217 if (!f2fs_is_multi_device(sbi))
3220 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3222 /* update device state for fsync */
3223 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3225 /* update device state for checkpoint */
3226 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3227 spin_lock(&sbi->dev_lock);
3228 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3229 spin_unlock(&sbi->dev_lock);
3233 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3235 int type = __get_segment_type(fio);
3236 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3239 down_read(&fio->sbi->io_order_lock);
3241 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3242 &fio->new_blkaddr, sum, type, fio);
3243 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3244 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3245 fio->old_blkaddr, fio->old_blkaddr);
3247 /* writeout dirty page into bdev */
3248 f2fs_submit_page_write(fio);
3250 fio->old_blkaddr = fio->new_blkaddr;
3254 update_device_state(fio);
3257 up_read(&fio->sbi->io_order_lock);
3260 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3261 enum iostat_type io_type)
3263 struct f2fs_io_info fio = {
3268 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3269 .old_blkaddr = page->index,
3270 .new_blkaddr = page->index,
3272 .encrypted_page = NULL,
3276 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3277 fio.op_flags &= ~REQ_META;
3279 set_page_writeback(page);
3280 ClearPageError(page);
3281 f2fs_submit_page_write(&fio);
3283 stat_inc_meta_count(sbi, page->index);
3284 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3287 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3289 struct f2fs_summary sum;
3291 set_summary(&sum, nid, 0, 0);
3292 do_write_page(&sum, fio);
3294 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3297 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3298 struct f2fs_io_info *fio)
3300 struct f2fs_sb_info *sbi = fio->sbi;
3301 struct f2fs_summary sum;
3303 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3304 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3305 do_write_page(&sum, fio);
3306 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3308 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3311 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3314 struct f2fs_sb_info *sbi = fio->sbi;
3317 fio->new_blkaddr = fio->old_blkaddr;
3318 /* i/o temperature is needed for passing down write hints */
3319 __get_segment_type(fio);
3321 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3323 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3324 set_sbi_flag(sbi, SBI_NEED_FSCK);
3325 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3327 return -EFSCORRUPTED;
3330 stat_inc_inplace_blocks(fio->sbi);
3332 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3333 err = f2fs_merge_page_bio(fio);
3335 err = f2fs_submit_page_bio(fio);
3337 update_device_state(fio);
3338 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3344 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3349 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3350 if (CURSEG_I(sbi, i)->segno == segno)
3356 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3357 block_t old_blkaddr, block_t new_blkaddr,
3358 bool recover_curseg, bool recover_newaddr)
3360 struct sit_info *sit_i = SIT_I(sbi);
3361 struct curseg_info *curseg;
3362 unsigned int segno, old_cursegno;
3363 struct seg_entry *se;
3365 unsigned short old_blkoff;
3367 segno = GET_SEGNO(sbi, new_blkaddr);
3368 se = get_seg_entry(sbi, segno);
3371 down_write(&SM_I(sbi)->curseg_lock);
3373 if (!recover_curseg) {
3374 /* for recovery flow */
3375 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3376 if (old_blkaddr == NULL_ADDR)
3377 type = CURSEG_COLD_DATA;
3379 type = CURSEG_WARM_DATA;
3382 if (IS_CURSEG(sbi, segno)) {
3383 /* se->type is volatile as SSR allocation */
3384 type = __f2fs_get_curseg(sbi, segno);
3385 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3387 type = CURSEG_WARM_DATA;
3391 f2fs_bug_on(sbi, !IS_DATASEG(type));
3392 curseg = CURSEG_I(sbi, type);
3394 mutex_lock(&curseg->curseg_mutex);
3395 down_write(&sit_i->sentry_lock);
3397 old_cursegno = curseg->segno;
3398 old_blkoff = curseg->next_blkoff;
3400 /* change the current segment */
3401 if (segno != curseg->segno) {
3402 curseg->next_segno = segno;
3403 change_curseg(sbi, type);
3406 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3407 __add_sum_entry(sbi, type, sum);
3409 if (!recover_curseg || recover_newaddr)
3410 update_sit_entry(sbi, new_blkaddr, 1);
3411 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3412 invalidate_mapping_pages(META_MAPPING(sbi),
3413 old_blkaddr, old_blkaddr);
3414 update_sit_entry(sbi, old_blkaddr, -1);
3417 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3418 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3420 locate_dirty_segment(sbi, old_cursegno);
3422 if (recover_curseg) {
3423 if (old_cursegno != curseg->segno) {
3424 curseg->next_segno = old_cursegno;
3425 change_curseg(sbi, type);
3427 curseg->next_blkoff = old_blkoff;
3430 up_write(&sit_i->sentry_lock);
3431 mutex_unlock(&curseg->curseg_mutex);
3432 up_write(&SM_I(sbi)->curseg_lock);
3435 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3436 block_t old_addr, block_t new_addr,
3437 unsigned char version, bool recover_curseg,
3438 bool recover_newaddr)
3440 struct f2fs_summary sum;
3442 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3444 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3445 recover_curseg, recover_newaddr);
3447 f2fs_update_data_blkaddr(dn, new_addr);
3450 void f2fs_wait_on_page_writeback(struct page *page,
3451 enum page_type type, bool ordered, bool locked)
3453 if (PageWriteback(page)) {
3454 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3456 /* submit cached LFS IO */
3457 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3458 /* sbumit cached IPU IO */
3459 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3461 wait_on_page_writeback(page);
3462 f2fs_bug_on(sbi, locked && PageWriteback(page));
3464 wait_for_stable_page(page);
3469 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3474 if (!f2fs_post_read_required(inode))
3477 if (!__is_valid_data_blkaddr(blkaddr))
3480 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3482 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3483 f2fs_put_page(cpage, 1);
3487 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3492 for (i = 0; i < len; i++)
3493 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3496 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3498 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3499 struct curseg_info *seg_i;
3500 unsigned char *kaddr;
3505 start = start_sum_block(sbi);
3507 page = f2fs_get_meta_page(sbi, start++);
3509 return PTR_ERR(page);
3510 kaddr = (unsigned char *)page_address(page);
3512 /* Step 1: restore nat cache */
3513 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3514 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3516 /* Step 2: restore sit cache */
3517 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3518 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3519 offset = 2 * SUM_JOURNAL_SIZE;
3521 /* Step 3: restore summary entries */
3522 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3523 unsigned short blk_off;
3526 seg_i = CURSEG_I(sbi, i);
3527 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3528 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3529 seg_i->next_segno = segno;
3530 reset_curseg(sbi, i, 0);
3531 seg_i->alloc_type = ckpt->alloc_type[i];
3532 seg_i->next_blkoff = blk_off;
3534 if (seg_i->alloc_type == SSR)
3535 blk_off = sbi->blocks_per_seg;
3537 for (j = 0; j < blk_off; j++) {
3538 struct f2fs_summary *s;
3539 s = (struct f2fs_summary *)(kaddr + offset);
3540 seg_i->sum_blk->entries[j] = *s;
3541 offset += SUMMARY_SIZE;
3542 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3546 f2fs_put_page(page, 1);
3549 page = f2fs_get_meta_page(sbi, start++);
3551 return PTR_ERR(page);
3552 kaddr = (unsigned char *)page_address(page);
3556 f2fs_put_page(page, 1);
3560 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3562 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3563 struct f2fs_summary_block *sum;
3564 struct curseg_info *curseg;
3566 unsigned short blk_off;
3567 unsigned int segno = 0;
3568 block_t blk_addr = 0;
3571 /* get segment number and block addr */
3572 if (IS_DATASEG(type)) {
3573 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3574 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3576 if (__exist_node_summaries(sbi))
3577 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3579 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3581 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3583 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3585 if (__exist_node_summaries(sbi))
3586 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3587 type - CURSEG_HOT_NODE);
3589 blk_addr = GET_SUM_BLOCK(sbi, segno);
3592 new = f2fs_get_meta_page(sbi, blk_addr);
3594 return PTR_ERR(new);
3595 sum = (struct f2fs_summary_block *)page_address(new);
3597 if (IS_NODESEG(type)) {
3598 if (__exist_node_summaries(sbi)) {
3599 struct f2fs_summary *ns = &sum->entries[0];
3601 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3603 ns->ofs_in_node = 0;
3606 err = f2fs_restore_node_summary(sbi, segno, sum);
3612 /* set uncompleted segment to curseg */
3613 curseg = CURSEG_I(sbi, type);
3614 mutex_lock(&curseg->curseg_mutex);
3616 /* update journal info */
3617 down_write(&curseg->journal_rwsem);
3618 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3619 up_write(&curseg->journal_rwsem);
3621 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3622 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3623 curseg->next_segno = segno;
3624 reset_curseg(sbi, type, 0);
3625 curseg->alloc_type = ckpt->alloc_type[type];
3626 curseg->next_blkoff = blk_off;
3627 mutex_unlock(&curseg->curseg_mutex);
3629 f2fs_put_page(new, 1);
3633 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3635 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3636 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3637 int type = CURSEG_HOT_DATA;
3640 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3641 int npages = f2fs_npages_for_summary_flush(sbi, true);
3644 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3647 /* restore for compacted data summary */
3648 err = read_compacted_summaries(sbi);
3651 type = CURSEG_HOT_NODE;
3654 if (__exist_node_summaries(sbi))
3655 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3656 NR_CURSEG_TYPE - type, META_CP, true);
3658 for (; type <= CURSEG_COLD_NODE; type++) {
3659 err = read_normal_summaries(sbi, type);
3664 /* sanity check for summary blocks */
3665 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3666 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3667 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3668 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3675 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3678 unsigned char *kaddr;
3679 struct f2fs_summary *summary;
3680 struct curseg_info *seg_i;
3681 int written_size = 0;
3684 page = f2fs_grab_meta_page(sbi, blkaddr++);
3685 kaddr = (unsigned char *)page_address(page);
3686 memset(kaddr, 0, PAGE_SIZE);
3688 /* Step 1: write nat cache */
3689 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3690 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3691 written_size += SUM_JOURNAL_SIZE;
3693 /* Step 2: write sit cache */
3694 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3695 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3696 written_size += SUM_JOURNAL_SIZE;
3698 /* Step 3: write summary entries */
3699 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3700 unsigned short blkoff;
3701 seg_i = CURSEG_I(sbi, i);
3702 if (sbi->ckpt->alloc_type[i] == SSR)
3703 blkoff = sbi->blocks_per_seg;
3705 blkoff = curseg_blkoff(sbi, i);
3707 for (j = 0; j < blkoff; j++) {
3709 page = f2fs_grab_meta_page(sbi, blkaddr++);
3710 kaddr = (unsigned char *)page_address(page);
3711 memset(kaddr, 0, PAGE_SIZE);
3714 summary = (struct f2fs_summary *)(kaddr + written_size);
3715 *summary = seg_i->sum_blk->entries[j];
3716 written_size += SUMMARY_SIZE;
3718 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3722 set_page_dirty(page);
3723 f2fs_put_page(page, 1);
3728 set_page_dirty(page);
3729 f2fs_put_page(page, 1);
3733 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3734 block_t blkaddr, int type)
3737 if (IS_DATASEG(type))
3738 end = type + NR_CURSEG_DATA_TYPE;
3740 end = type + NR_CURSEG_NODE_TYPE;
3742 for (i = type; i < end; i++)
3743 write_current_sum_page(sbi, i, blkaddr + (i - type));
3746 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3748 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3749 write_compacted_summaries(sbi, start_blk);
3751 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3754 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3756 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3759 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3760 unsigned int val, int alloc)
3764 if (type == NAT_JOURNAL) {
3765 for (i = 0; i < nats_in_cursum(journal); i++) {
3766 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3769 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3770 return update_nats_in_cursum(journal, 1);
3771 } else if (type == SIT_JOURNAL) {
3772 for (i = 0; i < sits_in_cursum(journal); i++)
3773 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3775 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3776 return update_sits_in_cursum(journal, 1);
3781 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3784 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3787 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3790 struct sit_info *sit_i = SIT_I(sbi);
3792 pgoff_t src_off, dst_off;
3794 src_off = current_sit_addr(sbi, start);
3795 dst_off = next_sit_addr(sbi, src_off);
3797 page = f2fs_grab_meta_page(sbi, dst_off);
3798 seg_info_to_sit_page(sbi, page, start);
3800 set_page_dirty(page);
3801 set_to_next_sit(sit_i, start);
3806 static struct sit_entry_set *grab_sit_entry_set(void)
3808 struct sit_entry_set *ses =
3809 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3812 INIT_LIST_HEAD(&ses->set_list);
3816 static void release_sit_entry_set(struct sit_entry_set *ses)
3818 list_del(&ses->set_list);
3819 kmem_cache_free(sit_entry_set_slab, ses);
3822 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3823 struct list_head *head)
3825 struct sit_entry_set *next = ses;
3827 if (list_is_last(&ses->set_list, head))
3830 list_for_each_entry_continue(next, head, set_list)
3831 if (ses->entry_cnt <= next->entry_cnt)
3834 list_move_tail(&ses->set_list, &next->set_list);
3837 static void add_sit_entry(unsigned int segno, struct list_head *head)
3839 struct sit_entry_set *ses;
3840 unsigned int start_segno = START_SEGNO(segno);
3842 list_for_each_entry(ses, head, set_list) {
3843 if (ses->start_segno == start_segno) {
3845 adjust_sit_entry_set(ses, head);
3850 ses = grab_sit_entry_set();
3852 ses->start_segno = start_segno;
3854 list_add(&ses->set_list, head);
3857 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3859 struct f2fs_sm_info *sm_info = SM_I(sbi);
3860 struct list_head *set_list = &sm_info->sit_entry_set;
3861 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3864 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3865 add_sit_entry(segno, set_list);
3868 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3871 struct f2fs_journal *journal = curseg->journal;
3874 down_write(&curseg->journal_rwsem);
3875 for (i = 0; i < sits_in_cursum(journal); i++) {
3879 segno = le32_to_cpu(segno_in_journal(journal, i));
3880 dirtied = __mark_sit_entry_dirty(sbi, segno);
3883 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3885 update_sits_in_cursum(journal, -i);
3886 up_write(&curseg->journal_rwsem);
3890 * CP calls this function, which flushes SIT entries including sit_journal,
3891 * and moves prefree segs to free segs.
3893 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3895 struct sit_info *sit_i = SIT_I(sbi);
3896 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3897 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3898 struct f2fs_journal *journal = curseg->journal;
3899 struct sit_entry_set *ses, *tmp;
3900 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3901 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3902 struct seg_entry *se;
3904 down_write(&sit_i->sentry_lock);
3906 if (!sit_i->dirty_sentries)
3910 * add and account sit entries of dirty bitmap in sit entry
3913 add_sits_in_set(sbi);
3916 * if there are no enough space in journal to store dirty sit
3917 * entries, remove all entries from journal and add and account
3918 * them in sit entry set.
3920 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3922 remove_sits_in_journal(sbi);
3925 * there are two steps to flush sit entries:
3926 * #1, flush sit entries to journal in current cold data summary block.
3927 * #2, flush sit entries to sit page.
3929 list_for_each_entry_safe(ses, tmp, head, set_list) {
3930 struct page *page = NULL;
3931 struct f2fs_sit_block *raw_sit = NULL;
3932 unsigned int start_segno = ses->start_segno;
3933 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3934 (unsigned long)MAIN_SEGS(sbi));
3935 unsigned int segno = start_segno;
3938 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3942 down_write(&curseg->journal_rwsem);
3944 page = get_next_sit_page(sbi, start_segno);
3945 raw_sit = page_address(page);
3948 /* flush dirty sit entries in region of current sit set */
3949 for_each_set_bit_from(segno, bitmap, end) {
3950 int offset, sit_offset;
3952 se = get_seg_entry(sbi, segno);
3953 #ifdef CONFIG_F2FS_CHECK_FS
3954 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3955 SIT_VBLOCK_MAP_SIZE))
3956 f2fs_bug_on(sbi, 1);
3959 /* add discard candidates */
3960 if (!(cpc->reason & CP_DISCARD)) {
3961 cpc->trim_start = segno;
3962 add_discard_addrs(sbi, cpc, false);
3966 offset = f2fs_lookup_journal_in_cursum(journal,
3967 SIT_JOURNAL, segno, 1);
3968 f2fs_bug_on(sbi, offset < 0);
3969 segno_in_journal(journal, offset) =
3971 seg_info_to_raw_sit(se,
3972 &sit_in_journal(journal, offset));
3973 check_block_count(sbi, segno,
3974 &sit_in_journal(journal, offset));
3976 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3977 seg_info_to_raw_sit(se,
3978 &raw_sit->entries[sit_offset]);
3979 check_block_count(sbi, segno,
3980 &raw_sit->entries[sit_offset]);
3983 __clear_bit(segno, bitmap);
3984 sit_i->dirty_sentries--;
3989 up_write(&curseg->journal_rwsem);
3991 f2fs_put_page(page, 1);
3993 f2fs_bug_on(sbi, ses->entry_cnt);
3994 release_sit_entry_set(ses);
3997 f2fs_bug_on(sbi, !list_empty(head));
3998 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4000 if (cpc->reason & CP_DISCARD) {
4001 __u64 trim_start = cpc->trim_start;
4003 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4004 add_discard_addrs(sbi, cpc, false);
4006 cpc->trim_start = trim_start;
4008 up_write(&sit_i->sentry_lock);
4010 set_prefree_as_free_segments(sbi);
4013 static int build_sit_info(struct f2fs_sb_info *sbi)
4015 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4016 struct sit_info *sit_i;
4017 unsigned int sit_segs, start;
4018 char *src_bitmap, *bitmap;
4019 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4021 /* allocate memory for SIT information */
4022 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4026 SM_I(sbi)->sit_info = sit_i;
4029 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4032 if (!sit_i->sentries)
4035 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4036 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4038 if (!sit_i->dirty_sentries_bitmap)
4041 #ifdef CONFIG_F2FS_CHECK_FS
4042 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4044 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4046 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4050 bitmap = sit_i->bitmap;
4052 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4053 sit_i->sentries[start].cur_valid_map = bitmap;
4054 bitmap += SIT_VBLOCK_MAP_SIZE;
4056 sit_i->sentries[start].ckpt_valid_map = bitmap;
4057 bitmap += SIT_VBLOCK_MAP_SIZE;
4059 #ifdef CONFIG_F2FS_CHECK_FS
4060 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4061 bitmap += SIT_VBLOCK_MAP_SIZE;
4064 sit_i->sentries[start].discard_map = bitmap;
4065 bitmap += SIT_VBLOCK_MAP_SIZE;
4068 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4069 if (!sit_i->tmp_map)
4072 if (__is_large_section(sbi)) {
4073 sit_i->sec_entries =
4074 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4077 if (!sit_i->sec_entries)
4081 /* get information related with SIT */
4082 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4084 /* setup SIT bitmap from ckeckpoint pack */
4085 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4086 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4088 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4089 if (!sit_i->sit_bitmap)
4092 #ifdef CONFIG_F2FS_CHECK_FS
4093 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4094 sit_bitmap_size, GFP_KERNEL);
4095 if (!sit_i->sit_bitmap_mir)
4098 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4099 main_bitmap_size, GFP_KERNEL);
4100 if (!sit_i->invalid_segmap)
4104 /* init SIT information */
4105 sit_i->s_ops = &default_salloc_ops;
4107 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4108 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4109 sit_i->written_valid_blocks = 0;
4110 sit_i->bitmap_size = sit_bitmap_size;
4111 sit_i->dirty_sentries = 0;
4112 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4113 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4114 sit_i->mounted_time = ktime_get_boottime_seconds();
4115 init_rwsem(&sit_i->sentry_lock);
4119 static int build_free_segmap(struct f2fs_sb_info *sbi)
4121 struct free_segmap_info *free_i;
4122 unsigned int bitmap_size, sec_bitmap_size;
4124 /* allocate memory for free segmap information */
4125 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4129 SM_I(sbi)->free_info = free_i;
4131 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4132 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4133 if (!free_i->free_segmap)
4136 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4137 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4138 if (!free_i->free_secmap)
4141 /* set all segments as dirty temporarily */
4142 memset(free_i->free_segmap, 0xff, bitmap_size);
4143 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4145 /* init free segmap information */
4146 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4147 free_i->free_segments = 0;
4148 free_i->free_sections = 0;
4149 spin_lock_init(&free_i->segmap_lock);
4153 static int build_curseg(struct f2fs_sb_info *sbi)
4155 struct curseg_info *array;
4158 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4163 SM_I(sbi)->curseg_array = array;
4165 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4166 mutex_init(&array[i].curseg_mutex);
4167 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4168 if (!array[i].sum_blk)
4170 init_rwsem(&array[i].journal_rwsem);
4171 array[i].journal = f2fs_kzalloc(sbi,
4172 sizeof(struct f2fs_journal), GFP_KERNEL);
4173 if (!array[i].journal)
4175 array[i].segno = NULL_SEGNO;
4176 array[i].next_blkoff = 0;
4178 return restore_curseg_summaries(sbi);
4181 static int build_sit_entries(struct f2fs_sb_info *sbi)
4183 struct sit_info *sit_i = SIT_I(sbi);
4184 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4185 struct f2fs_journal *journal = curseg->journal;
4186 struct seg_entry *se;
4187 struct f2fs_sit_entry sit;
4188 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4189 unsigned int i, start, end;
4190 unsigned int readed, start_blk = 0;
4192 block_t total_node_blocks = 0;
4195 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4198 start = start_blk * sit_i->sents_per_block;
4199 end = (start_blk + readed) * sit_i->sents_per_block;
4201 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4202 struct f2fs_sit_block *sit_blk;
4205 se = &sit_i->sentries[start];
4206 page = get_current_sit_page(sbi, start);
4208 return PTR_ERR(page);
4209 sit_blk = (struct f2fs_sit_block *)page_address(page);
4210 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4211 f2fs_put_page(page, 1);
4213 err = check_block_count(sbi, start, &sit);
4216 seg_info_from_raw_sit(se, &sit);
4217 if (IS_NODESEG(se->type))
4218 total_node_blocks += se->valid_blocks;
4220 /* build discard map only one time */
4221 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4222 memset(se->discard_map, 0xff,
4223 SIT_VBLOCK_MAP_SIZE);
4225 memcpy(se->discard_map,
4227 SIT_VBLOCK_MAP_SIZE);
4228 sbi->discard_blks +=
4229 sbi->blocks_per_seg -
4233 if (__is_large_section(sbi))
4234 get_sec_entry(sbi, start)->valid_blocks +=
4237 start_blk += readed;
4238 } while (start_blk < sit_blk_cnt);
4240 down_read(&curseg->journal_rwsem);
4241 for (i = 0; i < sits_in_cursum(journal); i++) {
4242 unsigned int old_valid_blocks;
4244 start = le32_to_cpu(segno_in_journal(journal, i));
4245 if (start >= MAIN_SEGS(sbi)) {
4246 f2fs_err(sbi, "Wrong journal entry on segno %u",
4248 err = -EFSCORRUPTED;
4252 se = &sit_i->sentries[start];
4253 sit = sit_in_journal(journal, i);
4255 old_valid_blocks = se->valid_blocks;
4256 if (IS_NODESEG(se->type))
4257 total_node_blocks -= old_valid_blocks;
4259 err = check_block_count(sbi, start, &sit);
4262 seg_info_from_raw_sit(se, &sit);
4263 if (IS_NODESEG(se->type))
4264 total_node_blocks += se->valid_blocks;
4266 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4267 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4269 memcpy(se->discard_map, se->cur_valid_map,
4270 SIT_VBLOCK_MAP_SIZE);
4271 sbi->discard_blks += old_valid_blocks;
4272 sbi->discard_blks -= se->valid_blocks;
4275 if (__is_large_section(sbi)) {
4276 get_sec_entry(sbi, start)->valid_blocks +=
4278 get_sec_entry(sbi, start)->valid_blocks -=
4282 up_read(&curseg->journal_rwsem);
4284 if (!err && total_node_blocks != valid_node_count(sbi)) {
4285 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4286 total_node_blocks, valid_node_count(sbi));
4287 err = -EFSCORRUPTED;
4293 static void init_free_segmap(struct f2fs_sb_info *sbi)
4298 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4299 struct seg_entry *sentry = get_seg_entry(sbi, start);
4300 if (!sentry->valid_blocks)
4301 __set_free(sbi, start);
4303 SIT_I(sbi)->written_valid_blocks +=
4304 sentry->valid_blocks;
4307 /* set use the current segments */
4308 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4309 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4310 __set_test_and_inuse(sbi, curseg_t->segno);
4314 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4317 struct free_segmap_info *free_i = FREE_I(sbi);
4318 unsigned int segno = 0, offset = 0, secno;
4319 block_t valid_blocks;
4320 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4323 /* find dirty segment based on free segmap */
4324 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4325 if (segno >= MAIN_SEGS(sbi))
4328 valid_blocks = get_valid_blocks(sbi, segno, false);
4329 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4331 if (valid_blocks > sbi->blocks_per_seg) {
4332 f2fs_bug_on(sbi, 1);
4335 mutex_lock(&dirty_i->seglist_lock);
4336 __locate_dirty_segment(sbi, segno, DIRTY);
4337 mutex_unlock(&dirty_i->seglist_lock);
4340 if (!__is_large_section(sbi))
4343 mutex_lock(&dirty_i->seglist_lock);
4344 for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4345 valid_blocks = get_valid_blocks(sbi, segno, true);
4346 secno = GET_SEC_FROM_SEG(sbi, segno);
4348 if (!valid_blocks || valid_blocks == blks_per_sec)
4350 if (IS_CURSEC(sbi, secno))
4352 set_bit(secno, dirty_i->dirty_secmap);
4354 mutex_unlock(&dirty_i->seglist_lock);
4357 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4359 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4360 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4362 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4363 if (!dirty_i->victim_secmap)
4368 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4370 struct dirty_seglist_info *dirty_i;
4371 unsigned int bitmap_size, i;
4373 /* allocate memory for dirty segments list information */
4374 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4379 SM_I(sbi)->dirty_info = dirty_i;
4380 mutex_init(&dirty_i->seglist_lock);
4382 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4384 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4385 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4387 if (!dirty_i->dirty_segmap[i])
4391 if (__is_large_section(sbi)) {
4392 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4393 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4394 bitmap_size, GFP_KERNEL);
4395 if (!dirty_i->dirty_secmap)
4399 init_dirty_segmap(sbi);
4400 return init_victim_secmap(sbi);
4403 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4408 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4409 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4411 for (i = 0; i < NO_CHECK_TYPE; i++) {
4412 struct curseg_info *curseg = CURSEG_I(sbi, i);
4413 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4414 unsigned int blkofs = curseg->next_blkoff;
4416 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4419 if (curseg->alloc_type == SSR)
4422 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4423 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4427 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4428 i, curseg->segno, curseg->alloc_type,
4429 curseg->next_blkoff, blkofs);
4430 return -EFSCORRUPTED;
4436 #ifdef CONFIG_BLK_DEV_ZONED
4438 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4439 struct f2fs_dev_info *fdev,
4440 struct blk_zone *zone)
4442 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4443 block_t zone_block, wp_block, last_valid_block;
4444 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4446 struct seg_entry *se;
4448 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4451 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4452 wp_segno = GET_SEGNO(sbi, wp_block);
4453 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4454 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4455 zone_segno = GET_SEGNO(sbi, zone_block);
4456 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4458 if (zone_segno >= MAIN_SEGS(sbi))
4462 * Skip check of zones cursegs point to, since
4463 * fix_curseg_write_pointer() checks them.
4465 for (i = 0; i < NO_CHECK_TYPE; i++)
4466 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4467 CURSEG_I(sbi, i)->segno))
4471 * Get last valid block of the zone.
4473 last_valid_block = zone_block - 1;
4474 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4475 segno = zone_segno + s;
4476 se = get_seg_entry(sbi, segno);
4477 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4478 if (f2fs_test_bit(b, se->cur_valid_map)) {
4479 last_valid_block = START_BLOCK(sbi, segno) + b;
4482 if (last_valid_block >= zone_block)
4487 * If last valid block is beyond the write pointer, report the
4488 * inconsistency. This inconsistency does not cause write error
4489 * because the zone will not be selected for write operation until
4490 * it get discarded. Just report it.
4492 if (last_valid_block >= wp_block) {
4493 f2fs_notice(sbi, "Valid block beyond write pointer: "
4494 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4495 GET_SEGNO(sbi, last_valid_block),
4496 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4497 wp_segno, wp_blkoff);
4502 * If there is no valid block in the zone and if write pointer is
4503 * not at zone start, reset the write pointer.
4505 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4507 "Zone without valid block has non-zero write "
4508 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4509 wp_segno, wp_blkoff);
4510 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4511 zone->len >> log_sectors_per_block);
4513 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4522 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4523 block_t zone_blkaddr)
4527 for (i = 0; i < sbi->s_ndevs; i++) {
4528 if (!bdev_is_zoned(FDEV(i).bdev))
4530 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4531 zone_blkaddr <= FDEV(i).end_blk))
4538 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4540 memcpy(data, zone, sizeof(struct blk_zone));
4544 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4546 struct curseg_info *cs = CURSEG_I(sbi, type);
4547 struct f2fs_dev_info *zbd;
4548 struct blk_zone zone;
4549 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4550 block_t cs_zone_block, wp_block;
4551 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4552 sector_t zone_sector;
4555 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4556 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4558 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4562 /* report zone for the sector the curseg points to */
4563 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4564 << log_sectors_per_block;
4565 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4566 report_one_zone_cb, &zone);
4568 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4573 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4576 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4577 wp_segno = GET_SEGNO(sbi, wp_block);
4578 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4579 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4581 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4585 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4586 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4587 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4589 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4590 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4591 allocate_segment_by_default(sbi, type, true);
4593 /* check consistency of the zone curseg pointed to */
4594 if (check_zone_write_pointer(sbi, zbd, &zone))
4597 /* check newly assigned zone */
4598 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4599 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4601 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4605 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4606 << log_sectors_per_block;
4607 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4608 report_one_zone_cb, &zone);
4610 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4615 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4618 if (zone.wp != zone.start) {
4620 "New zone for curseg[%d] is not yet discarded. "
4621 "Reset the zone: curseg[0x%x,0x%x]",
4622 type, cs->segno, cs->next_blkoff);
4623 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4624 zone_sector >> log_sectors_per_block,
4625 zone.len >> log_sectors_per_block);
4627 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4636 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4640 for (i = 0; i < NO_CHECK_TYPE; i++) {
4641 ret = fix_curseg_write_pointer(sbi, i);
4649 struct check_zone_write_pointer_args {
4650 struct f2fs_sb_info *sbi;
4651 struct f2fs_dev_info *fdev;
4654 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4656 struct check_zone_write_pointer_args *args;
4657 args = (struct check_zone_write_pointer_args *)data;
4659 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4662 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4665 struct check_zone_write_pointer_args args;
4667 for (i = 0; i < sbi->s_ndevs; i++) {
4668 if (!bdev_is_zoned(FDEV(i).bdev))
4672 args.fdev = &FDEV(i);
4673 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4674 check_zone_write_pointer_cb, &args);
4682 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4687 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4694 * Update min, max modified time for cost-benefit GC algorithm
4696 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4698 struct sit_info *sit_i = SIT_I(sbi);
4701 down_write(&sit_i->sentry_lock);
4703 sit_i->min_mtime = ULLONG_MAX;
4705 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4707 unsigned long long mtime = 0;
4709 for (i = 0; i < sbi->segs_per_sec; i++)
4710 mtime += get_seg_entry(sbi, segno + i)->mtime;
4712 mtime = div_u64(mtime, sbi->segs_per_sec);
4714 if (sit_i->min_mtime > mtime)
4715 sit_i->min_mtime = mtime;
4717 sit_i->max_mtime = get_mtime(sbi, false);
4718 up_write(&sit_i->sentry_lock);
4721 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4723 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4724 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4725 struct f2fs_sm_info *sm_info;
4728 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4733 sbi->sm_info = sm_info;
4734 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4735 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4736 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4737 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4738 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4739 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4740 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4741 sm_info->rec_prefree_segments = sm_info->main_segments *
4742 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4743 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4744 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4746 if (!f2fs_lfs_mode(sbi))
4747 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4748 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4749 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4750 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4751 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4752 sm_info->min_ssr_sections = reserved_sections(sbi);
4754 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4756 init_rwsem(&sm_info->curseg_lock);
4758 if (!f2fs_readonly(sbi->sb)) {
4759 err = f2fs_create_flush_cmd_control(sbi);
4764 err = create_discard_cmd_control(sbi);
4768 err = build_sit_info(sbi);
4771 err = build_free_segmap(sbi);
4774 err = build_curseg(sbi);
4778 /* reinit free segmap based on SIT */
4779 err = build_sit_entries(sbi);
4783 init_free_segmap(sbi);
4784 err = build_dirty_segmap(sbi);
4788 err = sanity_check_curseg(sbi);
4792 init_min_max_mtime(sbi);
4796 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4797 enum dirty_type dirty_type)
4799 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4801 mutex_lock(&dirty_i->seglist_lock);
4802 kvfree(dirty_i->dirty_segmap[dirty_type]);
4803 dirty_i->nr_dirty[dirty_type] = 0;
4804 mutex_unlock(&dirty_i->seglist_lock);
4807 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4809 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4810 kvfree(dirty_i->victim_secmap);
4813 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4815 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4821 /* discard pre-free/dirty segments list */
4822 for (i = 0; i < NR_DIRTY_TYPE; i++)
4823 discard_dirty_segmap(sbi, i);
4825 if (__is_large_section(sbi)) {
4826 mutex_lock(&dirty_i->seglist_lock);
4827 kvfree(dirty_i->dirty_secmap);
4828 mutex_unlock(&dirty_i->seglist_lock);
4831 destroy_victim_secmap(sbi);
4832 SM_I(sbi)->dirty_info = NULL;
4836 static void destroy_curseg(struct f2fs_sb_info *sbi)
4838 struct curseg_info *array = SM_I(sbi)->curseg_array;
4843 SM_I(sbi)->curseg_array = NULL;
4844 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4845 kvfree(array[i].sum_blk);
4846 kvfree(array[i].journal);
4851 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4853 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4856 SM_I(sbi)->free_info = NULL;
4857 kvfree(free_i->free_segmap);
4858 kvfree(free_i->free_secmap);
4862 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4864 struct sit_info *sit_i = SIT_I(sbi);
4869 if (sit_i->sentries)
4870 kvfree(sit_i->bitmap);
4871 kvfree(sit_i->tmp_map);
4873 kvfree(sit_i->sentries);
4874 kvfree(sit_i->sec_entries);
4875 kvfree(sit_i->dirty_sentries_bitmap);
4877 SM_I(sbi)->sit_info = NULL;
4878 kvfree(sit_i->sit_bitmap);
4879 #ifdef CONFIG_F2FS_CHECK_FS
4880 kvfree(sit_i->sit_bitmap_mir);
4881 kvfree(sit_i->invalid_segmap);
4886 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4888 struct f2fs_sm_info *sm_info = SM_I(sbi);
4892 f2fs_destroy_flush_cmd_control(sbi, true);
4893 destroy_discard_cmd_control(sbi);
4894 destroy_dirty_segmap(sbi);
4895 destroy_curseg(sbi);
4896 destroy_free_segmap(sbi);
4897 destroy_sit_info(sbi);
4898 sbi->sm_info = NULL;
4902 int __init f2fs_create_segment_manager_caches(void)
4904 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4905 sizeof(struct discard_entry));
4906 if (!discard_entry_slab)
4909 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4910 sizeof(struct discard_cmd));
4911 if (!discard_cmd_slab)
4912 goto destroy_discard_entry;
4914 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4915 sizeof(struct sit_entry_set));
4916 if (!sit_entry_set_slab)
4917 goto destroy_discard_cmd;
4919 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4920 sizeof(struct inmem_pages));
4921 if (!inmem_entry_slab)
4922 goto destroy_sit_entry_set;
4925 destroy_sit_entry_set:
4926 kmem_cache_destroy(sit_entry_set_slab);
4927 destroy_discard_cmd:
4928 kmem_cache_destroy(discard_cmd_slab);
4929 destroy_discard_entry:
4930 kmem_cache_destroy(discard_entry_slab);
4935 void f2fs_destroy_segment_manager_caches(void)
4937 kmem_cache_destroy(sit_entry_set_slab);
4938 kmem_cache_destroy(discard_cmd_slab);
4939 kmem_cache_destroy(discard_entry_slab);
4940 kmem_cache_destroy(inmem_entry_slab);