1 // SPDX-License-Identifier: GPL-2.0
6 * This file contains the various mmu fetch and update operations.
7 * The most important job they must perform is the mapping between the
8 * domain's pfn and the overall machine mfns.
10 * Xen allows guests to directly update the pagetable, in a controlled
11 * fashion. In other words, the guest modifies the same pagetable
12 * that the CPU actually uses, which eliminates the overhead of having
13 * a separate shadow pagetable.
15 * In order to allow this, it falls on the guest domain to map its
16 * notion of a "physical" pfn - which is just a domain-local linear
17 * address - into a real "machine address" which the CPU's MMU can
20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21 * inserted directly into the pagetable. When creating a new
22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
24 * the mfn back into a pfn.
26 * The other constraint is that all pages which make up a pagetable
27 * must be mapped read-only in the guest. This prevents uncontrolled
28 * guest updates to the pagetable. Xen strictly enforces this, and
29 * will disallow any pagetable update which will end up mapping a
30 * pagetable page RW, and will disallow using any writable page as a
33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
34 * would need to validate the whole pagetable before going on.
35 * Naturally, this is quite slow. The solution is to "pin" a
36 * pagetable, which enforces all the constraints on the pagetable even
37 * when it is not actively in use. This menas that Xen can be assured
38 * that it is still valid when you do load it into %cr3, and doesn't
39 * need to revalidate it.
43 #include <linux/sched/mm.h>
44 #include <linux/highmem.h>
45 #include <linux/debugfs.h>
46 #include <linux/bug.h>
47 #include <linux/vmalloc.h>
48 #include <linux/export.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
51 #include <linux/memblock.h>
52 #include <linux/seq_file.h>
53 #include <linux/crash_dump.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
58 #include <trace/events/xen.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/fixmap.h>
63 #include <asm/mmu_context.h>
64 #include <asm/setup.h>
65 #include <asm/paravirt.h>
66 #include <asm/e820/api.h>
67 #include <asm/linkage.h>
74 #include <asm/xen/hypercall.h>
75 #include <asm/xen/hypervisor.h>
79 #include <xen/interface/xen.h>
80 #include <xen/interface/hvm/hvm_op.h>
81 #include <xen/interface/version.h>
82 #include <xen/interface/memory.h>
83 #include <xen/hvc-console.h>
85 #include "multicalls.h"
91 * Identity map, in addition to plain kernel map. This needs to be
92 * large enough to allocate page table pages to allocate the rest.
93 * Each page can map 2MB.
95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
104 * Protects atomic reservation decrease/increase against concurrent increases.
105 * Also protects non-atomic updates of current_pages and balloon lists.
107 static DEFINE_SPINLOCK(xen_reservation_lock);
110 * Note about cr3 (pagetable base) values:
112 * xen_cr3 contains the current logical cr3 value; it contains the
113 * last set cr3. This may not be the current effective cr3, because
114 * its update may be being lazily deferred. However, a vcpu looking
115 * at its own cr3 can use this value knowing that it everything will
116 * be self-consistent.
118 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
119 * hypercall to set the vcpu cr3 is complete (so it may be a little
120 * out of date, but it will never be set early). If one vcpu is
121 * looking at another vcpu's cr3 value, it should use this variable.
123 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
124 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
126 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
128 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
131 * Just beyond the highest usermode address. STACK_TOP_MAX has a
132 * redzone above it, so round it up to a PGD boundary.
134 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
136 void make_lowmem_page_readonly(void *vaddr)
139 unsigned long address = (unsigned long)vaddr;
142 pte = lookup_address(address, &level);
144 return; /* vaddr missing */
146 ptev = pte_wrprotect(*pte);
148 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
152 void make_lowmem_page_readwrite(void *vaddr)
155 unsigned long address = (unsigned long)vaddr;
158 pte = lookup_address(address, &level);
160 return; /* vaddr missing */
162 ptev = pte_mkwrite(*pte);
164 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 * During early boot all page table pages are pinned, but we do not have struct
171 * pages, so return true until struct pages are ready.
173 static bool xen_page_pinned(void *ptr)
175 if (static_branch_likely(&xen_struct_pages_ready)) {
176 struct page *page = virt_to_page(ptr);
178 return PagePinned(page);
183 static void xen_extend_mmu_update(const struct mmu_update *update)
185 struct multicall_space mcs;
186 struct mmu_update *u;
188 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
190 if (mcs.mc != NULL) {
193 mcs = __xen_mc_entry(sizeof(*u));
194 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
201 static void xen_extend_mmuext_op(const struct mmuext_op *op)
203 struct multicall_space mcs;
206 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
208 if (mcs.mc != NULL) {
211 mcs = __xen_mc_entry(sizeof(*u));
212 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
219 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
227 /* ptr may be ioremapped for 64-bit pagetable setup */
228 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
229 u.val = pmd_val_ma(val);
230 xen_extend_mmu_update(&u);
232 xen_mc_issue(PARAVIRT_LAZY_MMU);
237 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
239 trace_xen_mmu_set_pmd(ptr, val);
241 /* If page is not pinned, we can just update the entry
243 if (!xen_page_pinned(ptr)) {
248 xen_set_pmd_hyper(ptr, val);
252 * Associate a virtual page frame with a given physical page frame
253 * and protection flags for that frame.
255 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
257 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
260 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
264 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
269 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
270 u.val = pte_val_ma(pteval);
271 xen_extend_mmu_update(&u);
273 xen_mc_issue(PARAVIRT_LAZY_MMU);
278 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
280 if (!xen_batched_set_pte(ptep, pteval)) {
282 * Could call native_set_pte() here and trap and
283 * emulate the PTE write but with 32-bit guests this
284 * needs two traps (one for each of the two 32-bit
285 * words in the PTE) so do one hypercall directly
290 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
291 u.val = pte_val_ma(pteval);
292 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
296 static void xen_set_pte(pte_t *ptep, pte_t pteval)
298 trace_xen_mmu_set_pte(ptep, pteval);
299 __xen_set_pte(ptep, pteval);
302 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
303 pte_t *ptep, pte_t pteval)
305 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
306 __xen_set_pte(ptep, pteval);
309 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
310 unsigned long addr, pte_t *ptep)
312 /* Just return the pte as-is. We preserve the bits on commit */
313 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
317 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
318 pte_t *ptep, pte_t pte)
322 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
325 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
326 u.val = pte_val_ma(pte);
327 xen_extend_mmu_update(&u);
329 xen_mc_issue(PARAVIRT_LAZY_MMU);
332 /* Assume pteval_t is equivalent to all the other *val_t types. */
333 static pteval_t pte_mfn_to_pfn(pteval_t val)
335 if (val & _PAGE_PRESENT) {
336 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
337 unsigned long pfn = mfn_to_pfn(mfn);
339 pteval_t flags = val & PTE_FLAGS_MASK;
340 if (unlikely(pfn == ~0))
341 val = flags & ~_PAGE_PRESENT;
343 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
349 static pteval_t pte_pfn_to_mfn(pteval_t val)
351 if (val & _PAGE_PRESENT) {
352 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
353 pteval_t flags = val & PTE_FLAGS_MASK;
356 mfn = __pfn_to_mfn(pfn);
359 * If there's no mfn for the pfn, then just create an
360 * empty non-present pte. Unfortunately this loses
361 * information about the original pfn, so
362 * pte_mfn_to_pfn is asymmetric.
364 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
368 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
369 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
375 __visible pteval_t xen_pte_val(pte_t pte)
377 pteval_t pteval = pte.pte;
379 return pte_mfn_to_pfn(pteval);
381 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
383 __visible pgdval_t xen_pgd_val(pgd_t pgd)
385 return pte_mfn_to_pfn(pgd.pgd);
387 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
389 __visible pte_t xen_make_pte(pteval_t pte)
391 pte = pte_pfn_to_mfn(pte);
393 return native_make_pte(pte);
395 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
397 __visible pgd_t xen_make_pgd(pgdval_t pgd)
399 pgd = pte_pfn_to_mfn(pgd);
400 return native_make_pgd(pgd);
402 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
404 __visible pmdval_t xen_pmd_val(pmd_t pmd)
406 return pte_mfn_to_pfn(pmd.pmd);
408 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
410 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
418 /* ptr may be ioremapped for 64-bit pagetable setup */
419 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
420 u.val = pud_val_ma(val);
421 xen_extend_mmu_update(&u);
423 xen_mc_issue(PARAVIRT_LAZY_MMU);
428 static void xen_set_pud(pud_t *ptr, pud_t val)
430 trace_xen_mmu_set_pud(ptr, val);
432 /* If page is not pinned, we can just update the entry
434 if (!xen_page_pinned(ptr)) {
439 xen_set_pud_hyper(ptr, val);
442 #ifdef CONFIG_X86_PAE
443 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
445 trace_xen_mmu_set_pte_atomic(ptep, pte);
446 __xen_set_pte(ptep, pte);
449 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
451 trace_xen_mmu_pte_clear(mm, addr, ptep);
452 __xen_set_pte(ptep, native_make_pte(0));
455 static void xen_pmd_clear(pmd_t *pmdp)
457 trace_xen_mmu_pmd_clear(pmdp);
458 set_pmd(pmdp, __pmd(0));
460 #endif /* CONFIG_X86_PAE */
462 __visible pmd_t xen_make_pmd(pmdval_t pmd)
464 pmd = pte_pfn_to_mfn(pmd);
465 return native_make_pmd(pmd);
467 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
470 __visible pudval_t xen_pud_val(pud_t pud)
472 return pte_mfn_to_pfn(pud.pud);
474 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
476 __visible pud_t xen_make_pud(pudval_t pud)
478 pud = pte_pfn_to_mfn(pud);
480 return native_make_pud(pud);
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
484 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
486 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
487 unsigned offset = pgd - pgd_page;
488 pgd_t *user_ptr = NULL;
490 if (offset < pgd_index(USER_LIMIT)) {
491 struct page *page = virt_to_page(pgd_page);
492 user_ptr = (pgd_t *)page->private;
500 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
504 u.ptr = virt_to_machine(ptr).maddr;
505 u.val = p4d_val_ma(val);
506 xen_extend_mmu_update(&u);
510 * Raw hypercall-based set_p4d, intended for in early boot before
511 * there's a page structure. This implies:
512 * 1. The only existing pagetable is the kernel's
513 * 2. It is always pinned
514 * 3. It has no user pagetable attached to it
516 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
522 __xen_set_p4d_hyper(ptr, val);
524 xen_mc_issue(PARAVIRT_LAZY_MMU);
529 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
531 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
534 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
536 /* If page is not pinned, we can just update the entry
538 if (!xen_page_pinned(ptr)) {
541 WARN_ON(xen_page_pinned(user_ptr));
542 pgd_val.pgd = p4d_val_ma(val);
548 /* If it's pinned, then we can at least batch the kernel and
549 user updates together. */
552 __xen_set_p4d_hyper(ptr, val);
554 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
556 xen_mc_issue(PARAVIRT_LAZY_MMU);
559 #if CONFIG_PGTABLE_LEVELS >= 5
560 __visible p4dval_t xen_p4d_val(p4d_t p4d)
562 return pte_mfn_to_pfn(p4d.p4d);
564 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
566 __visible p4d_t xen_make_p4d(p4dval_t p4d)
568 p4d = pte_pfn_to_mfn(p4d);
570 return native_make_p4d(p4d);
572 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
573 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
574 #endif /* CONFIG_X86_64 */
576 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
577 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
578 bool last, unsigned long limit)
580 int i, nr, flush = 0;
582 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
583 for (i = 0; i < nr; i++) {
584 if (!pmd_none(pmd[i]))
585 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
590 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
591 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
592 bool last, unsigned long limit)
594 int i, nr, flush = 0;
596 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
597 for (i = 0; i < nr; i++) {
600 if (pud_none(pud[i]))
603 pmd = pmd_offset(&pud[i], 0);
604 if (PTRS_PER_PMD > 1)
605 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
606 flush |= xen_pmd_walk(mm, pmd, func,
607 last && i == nr - 1, limit);
612 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
613 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
614 bool last, unsigned long limit)
623 pud = pud_offset(p4d, 0);
624 if (PTRS_PER_PUD > 1)
625 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
626 flush |= xen_pud_walk(mm, pud, func, last, limit);
631 * (Yet another) pagetable walker. This one is intended for pinning a
632 * pagetable. This means that it walks a pagetable and calls the
633 * callback function on each page it finds making up the page table,
634 * at every level. It walks the entire pagetable, but it only bothers
635 * pinning pte pages which are below limit. In the normal case this
636 * will be STACK_TOP_MAX, but at boot we need to pin up to
639 * For 32-bit the important bit is that we don't pin beyond there,
640 * because then we start getting into Xen's ptes.
642 * For 64-bit, we must skip the Xen hole in the middle of the address
643 * space, just after the big x86-64 virtual hole.
645 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
646 int (*func)(struct mm_struct *mm, struct page *,
650 int i, nr, flush = 0;
651 unsigned hole_low, hole_high;
653 /* The limit is the last byte to be touched */
655 BUG_ON(limit >= FIXADDR_TOP);
658 * 64-bit has a great big hole in the middle of the address
659 * space, which contains the Xen mappings. On 32-bit these
660 * will end up making a zero-sized hole and so is a no-op.
662 hole_low = pgd_index(USER_LIMIT);
663 hole_high = pgd_index(PAGE_OFFSET);
665 nr = pgd_index(limit) + 1;
666 for (i = 0; i < nr; i++) {
669 if (i >= hole_low && i < hole_high)
672 if (pgd_none(pgd[i]))
675 p4d = p4d_offset(&pgd[i], 0);
676 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
679 /* Do the top level last, so that the callbacks can use it as
680 a cue to do final things like tlb flushes. */
681 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
686 static int xen_pgd_walk(struct mm_struct *mm,
687 int (*func)(struct mm_struct *mm, struct page *,
691 return __xen_pgd_walk(mm, mm->pgd, func, limit);
694 /* If we're using split pte locks, then take the page's lock and
695 return a pointer to it. Otherwise return NULL. */
696 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
698 spinlock_t *ptl = NULL;
700 #if USE_SPLIT_PTE_PTLOCKS
701 ptl = ptlock_ptr(page);
702 spin_lock_nest_lock(ptl, &mm->page_table_lock);
708 static void xen_pte_unlock(void *v)
714 static void xen_do_pin(unsigned level, unsigned long pfn)
719 op.arg1.mfn = pfn_to_mfn(pfn);
721 xen_extend_mmuext_op(&op);
724 static int xen_pin_page(struct mm_struct *mm, struct page *page,
727 unsigned pgfl = TestSetPagePinned(page);
731 flush = 0; /* already pinned */
732 else if (PageHighMem(page))
733 /* kmaps need flushing if we found an unpinned
737 void *pt = lowmem_page_address(page);
738 unsigned long pfn = page_to_pfn(page);
739 struct multicall_space mcs = __xen_mc_entry(0);
745 * We need to hold the pagetable lock between the time
746 * we make the pagetable RO and when we actually pin
747 * it. If we don't, then other users may come in and
748 * attempt to update the pagetable by writing it,
749 * which will fail because the memory is RO but not
750 * pinned, so Xen won't do the trap'n'emulate.
752 * If we're using split pte locks, we can't hold the
753 * entire pagetable's worth of locks during the
754 * traverse, because we may wrap the preempt count (8
755 * bits). The solution is to mark RO and pin each PTE
756 * page while holding the lock. This means the number
757 * of locks we end up holding is never more than a
758 * batch size (~32 entries, at present).
760 * If we're not using split pte locks, we needn't pin
761 * the PTE pages independently, because we're
762 * protected by the overall pagetable lock.
766 ptl = xen_pte_lock(page, mm);
768 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
769 pfn_pte(pfn, PAGE_KERNEL_RO),
770 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
773 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
775 /* Queue a deferred unlock for when this batch
777 xen_mc_callback(xen_pte_unlock, ptl);
784 /* This is called just after a mm has been created, but it has not
785 been used yet. We need to make sure that its pagetable is all
786 read-only, and can be pinned. */
787 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
789 trace_xen_mmu_pgd_pin(mm, pgd);
793 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
794 /* re-enable interrupts for flushing */
804 pgd_t *user_pgd = xen_get_user_pgd(pgd);
806 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
809 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
810 xen_do_pin(MMUEXT_PIN_L4_TABLE,
811 PFN_DOWN(__pa(user_pgd)));
814 #else /* CONFIG_X86_32 */
815 #ifdef CONFIG_X86_PAE
816 /* Need to make sure unshared kernel PMD is pinnable */
817 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
820 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
821 #endif /* CONFIG_X86_64 */
825 static void xen_pgd_pin(struct mm_struct *mm)
827 __xen_pgd_pin(mm, mm->pgd);
831 * On save, we need to pin all pagetables to make sure they get their
832 * mfns turned into pfns. Search the list for any unpinned pgds and pin
833 * them (unpinned pgds are not currently in use, probably because the
834 * process is under construction or destruction).
836 * Expected to be called in stop_machine() ("equivalent to taking
837 * every spinlock in the system"), so the locking doesn't really
838 * matter all that much.
840 void xen_mm_pin_all(void)
844 spin_lock(&pgd_lock);
846 list_for_each_entry(page, &pgd_list, lru) {
847 if (!PagePinned(page)) {
848 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
849 SetPageSavePinned(page);
853 spin_unlock(&pgd_lock);
856 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
864 * The init_mm pagetable is really pinned as soon as its created, but
865 * that's before we have page structures to store the bits. So do all
866 * the book-keeping now once struct pages for allocated pages are
867 * initialized. This happens only after memblock_free_all() is called.
869 static void __init xen_after_bootmem(void)
871 static_branch_enable(&xen_struct_pages_ready);
873 SetPagePinned(virt_to_page(level3_user_vsyscall));
875 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
878 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
881 unsigned pgfl = TestClearPagePinned(page);
883 if (pgfl && !PageHighMem(page)) {
884 void *pt = lowmem_page_address(page);
885 unsigned long pfn = page_to_pfn(page);
886 spinlock_t *ptl = NULL;
887 struct multicall_space mcs;
890 * Do the converse to pin_page. If we're using split
891 * pte locks, we must be holding the lock for while
892 * the pte page is unpinned but still RO to prevent
893 * concurrent updates from seeing it in this
894 * partially-pinned state.
896 if (level == PT_PTE) {
897 ptl = xen_pte_lock(page, mm);
900 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
903 mcs = __xen_mc_entry(0);
905 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
906 pfn_pte(pfn, PAGE_KERNEL),
907 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
910 /* unlock when batch completed */
911 xen_mc_callback(xen_pte_unlock, ptl);
915 return 0; /* never need to flush on unpin */
918 /* Release a pagetables pages back as normal RW */
919 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
921 trace_xen_mmu_pgd_unpin(mm, pgd);
925 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
929 pgd_t *user_pgd = xen_get_user_pgd(pgd);
932 xen_do_pin(MMUEXT_UNPIN_TABLE,
933 PFN_DOWN(__pa(user_pgd)));
934 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
939 #ifdef CONFIG_X86_PAE
940 /* Need to make sure unshared kernel PMD is unpinned */
941 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
945 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
950 static void xen_pgd_unpin(struct mm_struct *mm)
952 __xen_pgd_unpin(mm, mm->pgd);
956 * On resume, undo any pinning done at save, so that the rest of the
957 * kernel doesn't see any unexpected pinned pagetables.
959 void xen_mm_unpin_all(void)
963 spin_lock(&pgd_lock);
965 list_for_each_entry(page, &pgd_list, lru) {
966 if (PageSavePinned(page)) {
967 BUG_ON(!PagePinned(page));
968 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
969 ClearPageSavePinned(page);
973 spin_unlock(&pgd_lock);
976 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
978 spin_lock(&next->page_table_lock);
980 spin_unlock(&next->page_table_lock);
983 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
985 spin_lock(&mm->page_table_lock);
987 spin_unlock(&mm->page_table_lock);
990 static void drop_mm_ref_this_cpu(void *info)
992 struct mm_struct *mm = info;
994 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
995 leave_mm(smp_processor_id());
998 * If this cpu still has a stale cr3 reference, then make sure
999 * it has been flushed.
1001 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1007 * Another cpu may still have their %cr3 pointing at the pagetable, so
1008 * we need to repoint it somewhere else before we can unpin it.
1010 static void xen_drop_mm_ref(struct mm_struct *mm)
1015 drop_mm_ref_this_cpu(mm);
1017 /* Get the "official" set of cpus referring to our pagetable. */
1018 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1019 for_each_online_cpu(cpu) {
1020 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1022 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
1028 * It's possible that a vcpu may have a stale reference to our
1029 * cr3, because its in lazy mode, and it hasn't yet flushed
1030 * its set of pending hypercalls yet. In this case, we can
1031 * look at its actual current cr3 value, and force it to flush
1034 cpumask_clear(mask);
1035 for_each_online_cpu(cpu) {
1036 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1037 cpumask_set_cpu(cpu, mask);
1040 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1041 free_cpumask_var(mask);
1044 static void xen_drop_mm_ref(struct mm_struct *mm)
1046 drop_mm_ref_this_cpu(mm);
1051 * While a process runs, Xen pins its pagetables, which means that the
1052 * hypervisor forces it to be read-only, and it controls all updates
1053 * to it. This means that all pagetable updates have to go via the
1054 * hypervisor, which is moderately expensive.
1056 * Since we're pulling the pagetable down, we switch to use init_mm,
1057 * unpin old process pagetable and mark it all read-write, which
1058 * allows further operations on it to be simple memory accesses.
1060 * The only subtle point is that another CPU may be still using the
1061 * pagetable because of lazy tlb flushing. This means we need need to
1062 * switch all CPUs off this pagetable before we can unpin it.
1064 static void xen_exit_mmap(struct mm_struct *mm)
1066 get_cpu(); /* make sure we don't move around */
1067 xen_drop_mm_ref(mm);
1070 spin_lock(&mm->page_table_lock);
1072 /* pgd may not be pinned in the error exit path of execve */
1073 if (xen_page_pinned(mm->pgd))
1076 spin_unlock(&mm->page_table_lock);
1079 static void xen_post_allocator_init(void);
1081 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1083 struct mmuext_op op;
1086 op.arg1.mfn = pfn_to_mfn(pfn);
1087 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1091 #ifdef CONFIG_X86_64
1092 static void __init xen_cleanhighmap(unsigned long vaddr,
1093 unsigned long vaddr_end)
1095 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1096 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1098 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1099 * We include the PMD passed in on _both_ boundaries. */
1100 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1101 pmd++, vaddr += PMD_SIZE) {
1104 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1105 set_pmd(pmd, __pmd(0));
1107 /* In case we did something silly, we should crash in this function
1108 * instead of somewhere later and be confusing. */
1113 * Make a page range writeable and free it.
1115 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1117 void *vaddr = __va(paddr);
1118 void *vaddr_end = vaddr + size;
1120 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1121 make_lowmem_page_readwrite(vaddr);
1123 memblock_free(paddr, size);
1126 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1128 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1131 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1132 ClearPagePinned(virt_to_page(__va(pa)));
1133 xen_free_ro_pages(pa, PAGE_SIZE);
1136 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1142 if (pmd_large(*pmd)) {
1143 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1144 xen_free_ro_pages(pa, PMD_SIZE);
1148 pte_tbl = pte_offset_kernel(pmd, 0);
1149 for (i = 0; i < PTRS_PER_PTE; i++) {
1150 if (pte_none(pte_tbl[i]))
1152 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1153 xen_free_ro_pages(pa, PAGE_SIZE);
1155 set_pmd(pmd, __pmd(0));
1156 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1159 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1165 if (pud_large(*pud)) {
1166 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1167 xen_free_ro_pages(pa, PUD_SIZE);
1171 pmd_tbl = pmd_offset(pud, 0);
1172 for (i = 0; i < PTRS_PER_PMD; i++) {
1173 if (pmd_none(pmd_tbl[i]))
1175 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1177 set_pud(pud, __pud(0));
1178 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1181 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1187 if (p4d_large(*p4d)) {
1188 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1189 xen_free_ro_pages(pa, P4D_SIZE);
1193 pud_tbl = pud_offset(p4d, 0);
1194 for (i = 0; i < PTRS_PER_PUD; i++) {
1195 if (pud_none(pud_tbl[i]))
1197 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1199 set_p4d(p4d, __p4d(0));
1200 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1204 * Since it is well isolated we can (and since it is perhaps large we should)
1205 * also free the page tables mapping the initial P->M table.
1207 static void __init xen_cleanmfnmap(unsigned long vaddr)
1213 unpin = (vaddr == 2 * PGDIR_SIZE);
1215 pgd = pgd_offset_k(vaddr);
1216 p4d = p4d_offset(pgd, 0);
1217 if (!p4d_none(*p4d))
1218 xen_cleanmfnmap_p4d(p4d, unpin);
1221 static void __init xen_pagetable_p2m_free(void)
1226 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1228 /* No memory or already called. */
1229 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1232 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1233 memset((void *)xen_start_info->mfn_list, 0xff, size);
1235 addr = xen_start_info->mfn_list;
1237 * We could be in __ka space.
1238 * We roundup to the PMD, which means that if anybody at this stage is
1239 * using the __ka address of xen_start_info or
1240 * xen_start_info->shared_info they are in going to crash. Fortunatly
1241 * we have already revectored in xen_setup_kernel_pagetable.
1243 size = roundup(size, PMD_SIZE);
1245 if (addr >= __START_KERNEL_map) {
1246 xen_cleanhighmap(addr, addr + size);
1247 size = PAGE_ALIGN(xen_start_info->nr_pages *
1248 sizeof(unsigned long));
1249 memblock_free(__pa(addr), size);
1251 xen_cleanmfnmap(addr);
1255 static void __init xen_pagetable_cleanhighmap(void)
1260 /* At this stage, cleanup_highmap has already cleaned __ka space
1261 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1262 * the ramdisk). We continue on, erasing PMD entries that point to page
1263 * tables - do note that they are accessible at this stage via __va.
1264 * As Xen is aligning the memory end to a 4MB boundary, for good
1265 * measure we also round up to PMD_SIZE * 2 - which means that if
1266 * anybody is using __ka address to the initial boot-stack - and try
1267 * to use it - they are going to crash. The xen_start_info has been
1268 * taken care of already in xen_setup_kernel_pagetable. */
1269 addr = xen_start_info->pt_base;
1270 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1272 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1273 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1277 static void __init xen_pagetable_p2m_setup(void)
1279 xen_vmalloc_p2m_tree();
1281 #ifdef CONFIG_X86_64
1282 xen_pagetable_p2m_free();
1284 xen_pagetable_cleanhighmap();
1286 /* And revector! Bye bye old array */
1287 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1290 static void __init xen_pagetable_init(void)
1293 xen_post_allocator_init();
1295 xen_pagetable_p2m_setup();
1297 /* Allocate and initialize top and mid mfn levels for p2m structure */
1298 xen_build_mfn_list_list();
1300 /* Remap memory freed due to conflicts with E820 map */
1302 xen_setup_mfn_list_list();
1304 static void xen_write_cr2(unsigned long cr2)
1306 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1309 static unsigned long xen_read_cr2(void)
1311 return this_cpu_read(xen_vcpu)->arch.cr2;
1314 unsigned long xen_read_cr2_direct(void)
1316 return this_cpu_read(xen_vcpu_info.arch.cr2);
1319 static noinline void xen_flush_tlb(void)
1321 struct mmuext_op *op;
1322 struct multicall_space mcs;
1326 mcs = xen_mc_entry(sizeof(*op));
1329 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1330 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1332 xen_mc_issue(PARAVIRT_LAZY_MMU);
1337 static void xen_flush_tlb_one_user(unsigned long addr)
1339 struct mmuext_op *op;
1340 struct multicall_space mcs;
1342 trace_xen_mmu_flush_tlb_one_user(addr);
1346 mcs = xen_mc_entry(sizeof(*op));
1348 op->cmd = MMUEXT_INVLPG_LOCAL;
1349 op->arg1.linear_addr = addr & PAGE_MASK;
1350 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1352 xen_mc_issue(PARAVIRT_LAZY_MMU);
1357 static void xen_flush_tlb_others(const struct cpumask *cpus,
1358 const struct flush_tlb_info *info)
1361 struct mmuext_op op;
1362 DECLARE_BITMAP(mask, NR_CPUS);
1364 struct multicall_space mcs;
1365 const size_t mc_entry_size = sizeof(args->op) +
1366 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1368 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1370 if (cpumask_empty(cpus))
1371 return; /* nothing to do */
1373 mcs = xen_mc_entry(mc_entry_size);
1375 args->op.arg2.vcpumask = to_cpumask(args->mask);
1377 /* Remove us, and any offline CPUS. */
1378 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1379 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1381 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1382 if (info->end != TLB_FLUSH_ALL &&
1383 (info->end - info->start) <= PAGE_SIZE) {
1384 args->op.cmd = MMUEXT_INVLPG_MULTI;
1385 args->op.arg1.linear_addr = info->start;
1388 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1390 xen_mc_issue(PARAVIRT_LAZY_MMU);
1393 static unsigned long xen_read_cr3(void)
1395 return this_cpu_read(xen_cr3);
1398 static void set_current_cr3(void *v)
1400 this_cpu_write(xen_current_cr3, (unsigned long)v);
1403 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1405 struct mmuext_op op;
1408 trace_xen_mmu_write_cr3(kernel, cr3);
1411 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1415 WARN_ON(mfn == 0 && kernel);
1417 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1420 xen_extend_mmuext_op(&op);
1423 this_cpu_write(xen_cr3, cr3);
1425 /* Update xen_current_cr3 once the batch has actually
1427 xen_mc_callback(set_current_cr3, (void *)cr3);
1430 static void xen_write_cr3(unsigned long cr3)
1432 BUG_ON(preemptible());
1434 xen_mc_batch(); /* disables interrupts */
1436 /* Update while interrupts are disabled, so its atomic with
1438 this_cpu_write(xen_cr3, cr3);
1440 __xen_write_cr3(true, cr3);
1442 #ifdef CONFIG_X86_64
1444 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1446 __xen_write_cr3(false, __pa(user_pgd));
1448 __xen_write_cr3(false, 0);
1452 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1455 #ifdef CONFIG_X86_64
1457 * At the start of the day - when Xen launches a guest, it has already
1458 * built pagetables for the guest. We diligently look over them
1459 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1460 * init_top_pgt and its friends. Then when we are happy we load
1461 * the new init_top_pgt - and continue on.
1463 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1464 * up the rest of the pagetables. When it has completed it loads the cr3.
1465 * N.B. that baremetal would start at 'start_kernel' (and the early
1466 * #PF handler would create bootstrap pagetables) - so we are running
1467 * with the same assumptions as what to do when write_cr3 is executed
1470 * Since there are no user-page tables at all, we have two variants
1471 * of xen_write_cr3 - the early bootup (this one), and the late one
1472 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1473 * the Linux kernel and user-space are both in ring 3 while the
1474 * hypervisor is in ring 0.
1476 static void __init xen_write_cr3_init(unsigned long cr3)
1478 BUG_ON(preemptible());
1480 xen_mc_batch(); /* disables interrupts */
1482 /* Update while interrupts are disabled, so its atomic with
1484 this_cpu_write(xen_cr3, cr3);
1486 __xen_write_cr3(true, cr3);
1488 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1492 static int xen_pgd_alloc(struct mm_struct *mm)
1494 pgd_t *pgd = mm->pgd;
1497 BUG_ON(PagePinned(virt_to_page(pgd)));
1499 #ifdef CONFIG_X86_64
1501 struct page *page = virt_to_page(pgd);
1504 BUG_ON(page->private != 0);
1508 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1509 page->private = (unsigned long)user_pgd;
1511 if (user_pgd != NULL) {
1512 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1513 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1514 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1519 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1525 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1527 #ifdef CONFIG_X86_64
1528 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1531 free_page((unsigned long)user_pgd);
1536 * Init-time set_pte while constructing initial pagetables, which
1537 * doesn't allow RO page table pages to be remapped RW.
1539 * If there is no MFN for this PFN then this page is initially
1540 * ballooned out so clear the PTE (as in decrease_reservation() in
1541 * drivers/xen/balloon.c).
1543 * Many of these PTE updates are done on unpinned and writable pages
1544 * and doing a hypercall for these is unnecessary and expensive. At
1545 * this point it is not possible to tell if a page is pinned or not,
1546 * so always write the PTE directly and rely on Xen trapping and
1547 * emulating any updates as necessary.
1549 __visible pte_t xen_make_pte_init(pteval_t pte)
1551 #ifdef CONFIG_X86_64
1555 * Pages belonging to the initial p2m list mapped outside the default
1556 * address range must be mapped read-only. This region contains the
1557 * page tables for mapping the p2m list, too, and page tables MUST be
1560 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1561 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1562 pfn >= xen_start_info->first_p2m_pfn &&
1563 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1566 pte = pte_pfn_to_mfn(pte);
1567 return native_make_pte(pte);
1569 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1571 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1573 #ifdef CONFIG_X86_32
1574 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1575 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1576 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1577 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1580 __xen_set_pte(ptep, pte);
1583 /* Early in boot, while setting up the initial pagetable, assume
1584 everything is pinned. */
1585 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1587 #ifdef CONFIG_FLATMEM
1588 BUG_ON(mem_map); /* should only be used early */
1590 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1591 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1594 /* Used for pmd and pud */
1595 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1597 #ifdef CONFIG_FLATMEM
1598 BUG_ON(mem_map); /* should only be used early */
1600 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1603 /* Early release_pte assumes that all pts are pinned, since there's
1604 only init_mm and anything attached to that is pinned. */
1605 static void __init xen_release_pte_init(unsigned long pfn)
1607 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1608 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1611 static void __init xen_release_pmd_init(unsigned long pfn)
1613 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1616 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1618 struct multicall_space mcs;
1619 struct mmuext_op *op;
1621 mcs = __xen_mc_entry(sizeof(*op));
1624 op->arg1.mfn = pfn_to_mfn(pfn);
1626 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1629 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1631 struct multicall_space mcs;
1632 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1634 mcs = __xen_mc_entry(0);
1635 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1636 pfn_pte(pfn, prot), 0);
1639 /* This needs to make sure the new pte page is pinned iff its being
1640 attached to a pinned pagetable. */
1641 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1644 bool pinned = xen_page_pinned(mm->pgd);
1646 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1649 struct page *page = pfn_to_page(pfn);
1651 if (static_branch_likely(&xen_struct_pages_ready))
1652 SetPagePinned(page);
1654 if (!PageHighMem(page)) {
1657 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1659 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1660 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1662 xen_mc_issue(PARAVIRT_LAZY_MMU);
1664 /* make sure there are no stray mappings of
1666 kmap_flush_unused();
1671 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1673 xen_alloc_ptpage(mm, pfn, PT_PTE);
1676 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1678 xen_alloc_ptpage(mm, pfn, PT_PMD);
1681 /* This should never happen until we're OK to use struct page */
1682 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1684 struct page *page = pfn_to_page(pfn);
1685 bool pinned = PagePinned(page);
1687 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1690 if (!PageHighMem(page)) {
1693 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1694 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1696 __set_pfn_prot(pfn, PAGE_KERNEL);
1698 xen_mc_issue(PARAVIRT_LAZY_MMU);
1700 ClearPagePinned(page);
1704 static void xen_release_pte(unsigned long pfn)
1706 xen_release_ptpage(pfn, PT_PTE);
1709 static void xen_release_pmd(unsigned long pfn)
1711 xen_release_ptpage(pfn, PT_PMD);
1714 #ifdef CONFIG_X86_64
1715 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1717 xen_alloc_ptpage(mm, pfn, PT_PUD);
1720 static void xen_release_pud(unsigned long pfn)
1722 xen_release_ptpage(pfn, PT_PUD);
1726 void __init xen_reserve_top(void)
1728 #ifdef CONFIG_X86_32
1729 unsigned long top = HYPERVISOR_VIRT_START;
1730 struct xen_platform_parameters pp;
1732 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1733 top = pp.virt_start;
1735 reserve_top_address(-top);
1736 #endif /* CONFIG_X86_32 */
1740 * Like __va(), but returns address in the kernel mapping (which is
1741 * all we have until the physical memory mapping has been set up.
1743 static void * __init __ka(phys_addr_t paddr)
1745 #ifdef CONFIG_X86_64
1746 return (void *)(paddr + __START_KERNEL_map);
1752 /* Convert a machine address to physical address */
1753 static unsigned long __init m2p(phys_addr_t maddr)
1757 maddr &= XEN_PTE_MFN_MASK;
1758 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1763 /* Convert a machine address to kernel virtual */
1764 static void * __init m2v(phys_addr_t maddr)
1766 return __ka(m2p(maddr));
1769 /* Set the page permissions on an identity-mapped pages */
1770 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1771 unsigned long flags)
1773 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1774 pte_t pte = pfn_pte(pfn, prot);
1776 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1779 static void __init set_page_prot(void *addr, pgprot_t prot)
1781 return set_page_prot_flags(addr, prot, UVMF_NONE);
1783 #ifdef CONFIG_X86_32
1784 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1786 unsigned pmdidx, pteidx;
1790 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1795 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1798 /* Reuse or allocate a page of ptes */
1799 if (pmd_present(pmd[pmdidx]))
1800 pte_page = m2v(pmd[pmdidx].pmd);
1802 /* Check for free pte pages */
1803 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1806 pte_page = &level1_ident_pgt[ident_pte];
1807 ident_pte += PTRS_PER_PTE;
1809 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1812 /* Install mappings */
1813 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1816 if (pfn > max_pfn_mapped)
1817 max_pfn_mapped = pfn;
1819 if (!pte_none(pte_page[pteidx]))
1822 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1823 pte_page[pteidx] = pte;
1827 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1828 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1830 set_page_prot(pmd, PAGE_KERNEL_RO);
1833 void __init xen_setup_machphys_mapping(void)
1835 struct xen_machphys_mapping mapping;
1837 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1838 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1839 machine_to_phys_nr = mapping.max_mfn + 1;
1841 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1843 #ifdef CONFIG_X86_32
1844 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1845 < machine_to_phys_mapping);
1849 #ifdef CONFIG_X86_64
1850 static void __init convert_pfn_mfn(void *v)
1855 /* All levels are converted the same way, so just treat them
1857 for (i = 0; i < PTRS_PER_PTE; i++)
1858 pte[i] = xen_make_pte(pte[i].pte);
1860 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1863 if (*pt_base == PFN_DOWN(__pa(addr))) {
1864 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1865 clear_page((void *)addr);
1868 if (*pt_end == PFN_DOWN(__pa(addr))) {
1869 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1870 clear_page((void *)addr);
1875 * Set up the initial kernel pagetable.
1877 * We can construct this by grafting the Xen provided pagetable into
1878 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1879 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1880 * kernel has a physical mapping to start with - but that's enough to
1881 * get __va working. We need to fill in the rest of the physical
1882 * mapping once some sort of allocator has been set up.
1884 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1888 unsigned long addr[3];
1889 unsigned long pt_base, pt_end;
1892 /* max_pfn_mapped is the last pfn mapped in the initial memory
1893 * mappings. Considering that on Xen after the kernel mappings we
1894 * have the mappings of some pages that don't exist in pfn space, we
1895 * set max_pfn_mapped to the last real pfn mapped. */
1896 if (xen_start_info->mfn_list < __START_KERNEL_map)
1897 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1899 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1901 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1902 pt_end = pt_base + xen_start_info->nr_pt_frames;
1904 /* Zap identity mapping */
1905 init_top_pgt[0] = __pgd(0);
1907 /* Pre-constructed entries are in pfn, so convert to mfn */
1908 /* L4[273] -> level3_ident_pgt */
1909 /* L4[511] -> level3_kernel_pgt */
1910 convert_pfn_mfn(init_top_pgt);
1912 /* L3_i[0] -> level2_ident_pgt */
1913 convert_pfn_mfn(level3_ident_pgt);
1914 /* L3_k[510] -> level2_kernel_pgt */
1915 /* L3_k[511] -> level2_fixmap_pgt */
1916 convert_pfn_mfn(level3_kernel_pgt);
1918 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1919 convert_pfn_mfn(level2_fixmap_pgt);
1921 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1922 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1923 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1925 addr[0] = (unsigned long)pgd;
1926 addr[1] = (unsigned long)l3;
1927 addr[2] = (unsigned long)l2;
1928 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1929 * Both L4[273][0] and L4[511][510] have entries that point to the same
1930 * L2 (PMD) tables. Meaning that if you modify it in __va space
1931 * it will be also modified in the __ka space! (But if you just
1932 * modify the PMD table to point to other PTE's or none, then you
1933 * are OK - which is what cleanup_highmap does) */
1934 copy_page(level2_ident_pgt, l2);
1935 /* Graft it onto L4[511][510] */
1936 copy_page(level2_kernel_pgt, l2);
1939 * Zap execute permission from the ident map. Due to the sharing of
1940 * L1 entries we need to do this in the L2.
1942 if (__supported_pte_mask & _PAGE_NX) {
1943 for (i = 0; i < PTRS_PER_PMD; ++i) {
1944 if (pmd_none(level2_ident_pgt[i]))
1946 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1950 /* Copy the initial P->M table mappings if necessary. */
1951 i = pgd_index(xen_start_info->mfn_list);
1952 if (i && i < pgd_index(__START_KERNEL_map))
1953 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1955 /* Make pagetable pieces RO */
1956 set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1957 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1958 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1959 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1960 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1961 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1962 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1964 for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1965 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1969 /* Pin down new L4 */
1970 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1971 PFN_DOWN(__pa_symbol(init_top_pgt)));
1973 /* Unpin Xen-provided one */
1974 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1977 * At this stage there can be no user pgd, and no page structure to
1978 * attach it to, so make sure we just set kernel pgd.
1981 __xen_write_cr3(true, __pa(init_top_pgt));
1982 xen_mc_issue(PARAVIRT_LAZY_CPU);
1984 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1985 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1986 * the initial domain. For guests using the toolstack, they are in:
1987 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1988 * rip out the [L4] (pgd), but for guests we shave off three pages.
1990 for (i = 0; i < ARRAY_SIZE(addr); i++)
1991 check_pt_base(&pt_base, &pt_end, addr[i]);
1993 /* Our (by three pages) smaller Xen pagetable that we are using */
1994 xen_pt_base = PFN_PHYS(pt_base);
1995 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1996 memblock_reserve(xen_pt_base, xen_pt_size);
1998 /* Revector the xen_start_info */
1999 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2003 * Read a value from a physical address.
2005 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2007 unsigned long *vaddr;
2010 vaddr = early_memremap_ro(addr, sizeof(val));
2012 early_memunmap(vaddr, sizeof(val));
2017 * Translate a virtual address to a physical one without relying on mapped
2018 * page tables. Don't rely on big pages being aligned in (guest) physical
2021 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2030 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2032 if (!pgd_present(pgd))
2035 pa = pgd_val(pgd) & PTE_PFN_MASK;
2036 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2038 if (!pud_present(pud))
2040 pa = pud_val(pud) & PTE_PFN_MASK;
2042 return pa + (vaddr & ~PUD_MASK);
2044 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2046 if (!pmd_present(pmd))
2048 pa = pmd_val(pmd) & PTE_PFN_MASK;
2050 return pa + (vaddr & ~PMD_MASK);
2052 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2054 if (!pte_present(pte))
2056 pa = pte_pfn(pte) << PAGE_SHIFT;
2058 return pa | (vaddr & ~PAGE_MASK);
2062 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2065 void __init xen_relocate_p2m(void)
2067 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2068 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2069 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2074 unsigned long *new_p2m;
2076 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2077 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2078 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2079 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2080 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2081 n_frames = n_pte + n_pt + n_pmd + n_pud;
2083 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2085 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2090 * Setup the page tables for addressing the new p2m list.
2091 * We have asked the hypervisor to map the p2m list at the user address
2092 * PUD_SIZE. It may have done so, or it may have used a kernel space
2093 * address depending on the Xen version.
2094 * To avoid any possible virtual address collision, just use
2095 * 2 * PUD_SIZE for the new area.
2097 pud_phys = new_area;
2098 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2099 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2100 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2102 pgd = __va(read_cr3_pa());
2103 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2104 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2105 pud = early_memremap(pud_phys, PAGE_SIZE);
2107 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2109 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2111 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2113 pt = early_memremap(pt_phys, PAGE_SIZE);
2116 idx_pte < min(n_pte, PTRS_PER_PTE);
2118 set_pte(pt + idx_pte,
2119 pfn_pte(p2m_pfn, PAGE_KERNEL));
2122 n_pte -= PTRS_PER_PTE;
2123 early_memunmap(pt, PAGE_SIZE);
2124 make_lowmem_page_readonly(__va(pt_phys));
2125 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2127 set_pmd(pmd + idx_pt,
2128 __pmd(_PAGE_TABLE | pt_phys));
2129 pt_phys += PAGE_SIZE;
2131 n_pt -= PTRS_PER_PMD;
2132 early_memunmap(pmd, PAGE_SIZE);
2133 make_lowmem_page_readonly(__va(pmd_phys));
2134 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2135 PFN_DOWN(pmd_phys));
2136 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2137 pmd_phys += PAGE_SIZE;
2139 n_pmd -= PTRS_PER_PUD;
2140 early_memunmap(pud, PAGE_SIZE);
2141 make_lowmem_page_readonly(__va(pud_phys));
2142 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2143 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2144 pud_phys += PAGE_SIZE;
2147 /* Now copy the old p2m info to the new area. */
2148 memcpy(new_p2m, xen_p2m_addr, size);
2149 xen_p2m_addr = new_p2m;
2151 /* Release the old p2m list and set new list info. */
2152 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2154 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2156 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2157 pfn = xen_start_info->first_p2m_pfn;
2158 pfn_end = xen_start_info->first_p2m_pfn +
2159 xen_start_info->nr_p2m_frames;
2160 set_pgd(pgd + 1, __pgd(0));
2163 pfn_end = p2m_pfn_end;
2166 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2167 while (pfn < pfn_end) {
2168 if (pfn == p2m_pfn) {
2172 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2176 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2177 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2178 xen_start_info->nr_p2m_frames = n_frames;
2181 #else /* !CONFIG_X86_64 */
2182 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2183 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2184 RESERVE_BRK(fixup_kernel_pmd, PAGE_SIZE);
2185 RESERVE_BRK(fixup_kernel_pte, PAGE_SIZE);
2187 static void __init xen_write_cr3_init(unsigned long cr3)
2189 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2191 BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2192 BUG_ON(cr3 != __pa(swapper_pg_dir));
2195 * We are switching to swapper_pg_dir for the first time (from
2196 * initial_page_table) and therefore need to mark that page
2197 * read-only and then pin it.
2199 * Xen disallows sharing of kernel PMDs for PAE
2200 * guests. Therefore we must copy the kernel PMD from
2201 * initial_page_table into a new kernel PMD to be used in
2204 swapper_kernel_pmd =
2205 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2206 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2207 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2208 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2209 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2211 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2213 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2215 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2216 PFN_DOWN(__pa(initial_page_table)));
2217 set_page_prot(initial_page_table, PAGE_KERNEL);
2218 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2220 pv_ops.mmu.write_cr3 = &xen_write_cr3;
2224 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2225 * not the first page table in the page table pool.
2226 * Iterate through the initial page tables to find the real page table base.
2228 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
2230 phys_addr_t pt_base, paddr;
2233 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2235 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2236 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2237 paddr = m2p(pmd[pmdidx].pmd);
2238 pt_base = min(pt_base, paddr);
2244 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2248 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2250 xen_pt_base = xen_find_pt_base(kernel_pmd);
2251 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2253 initial_kernel_pmd =
2254 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2256 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2258 copy_page(initial_kernel_pmd, kernel_pmd);
2260 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2262 copy_page(initial_page_table, pgd);
2263 initial_page_table[KERNEL_PGD_BOUNDARY] =
2264 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2266 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2267 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2268 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2270 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2272 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2273 PFN_DOWN(__pa(initial_page_table)));
2274 xen_write_cr3(__pa(initial_page_table));
2276 memblock_reserve(xen_pt_base, xen_pt_size);
2278 #endif /* CONFIG_X86_64 */
2280 void __init xen_reserve_special_pages(void)
2284 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2285 if (xen_start_info->store_mfn) {
2286 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2287 memblock_reserve(paddr, PAGE_SIZE);
2289 if (!xen_initial_domain()) {
2290 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2291 memblock_reserve(paddr, PAGE_SIZE);
2295 void __init xen_pt_check_e820(void)
2297 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2298 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2303 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2305 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2309 phys >>= PAGE_SHIFT;
2312 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2313 #ifdef CONFIG_X86_32
2315 # ifdef CONFIG_HIGHMEM
2316 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2318 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2321 case FIX_TEXT_POKE0:
2322 case FIX_TEXT_POKE1:
2323 /* All local page mappings */
2324 pte = pfn_pte(phys, prot);
2327 #ifdef CONFIG_X86_LOCAL_APIC
2328 case FIX_APIC_BASE: /* maps dummy local APIC */
2329 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2333 #ifdef CONFIG_X86_IO_APIC
2334 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2336 * We just don't map the IO APIC - all access is via
2337 * hypercalls. Keep the address in the pte for reference.
2339 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2343 case FIX_PARAVIRT_BOOTMAP:
2344 /* This is an MFN, but it isn't an IO mapping from the
2346 pte = mfn_pte(phys, prot);
2350 /* By default, set_fixmap is used for hardware mappings */
2351 pte = mfn_pte(phys, prot);
2355 __native_set_fixmap(idx, pte);
2357 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2358 /* Replicate changes to map the vsyscall page into the user
2359 pagetable vsyscall mapping. */
2360 if (idx == VSYSCALL_PAGE) {
2361 unsigned long vaddr = __fix_to_virt(idx);
2362 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2367 static void __init xen_post_allocator_init(void)
2369 pv_ops.mmu.set_pte = xen_set_pte;
2370 pv_ops.mmu.set_pmd = xen_set_pmd;
2371 pv_ops.mmu.set_pud = xen_set_pud;
2372 #ifdef CONFIG_X86_64
2373 pv_ops.mmu.set_p4d = xen_set_p4d;
2376 /* This will work as long as patching hasn't happened yet
2377 (which it hasn't) */
2378 pv_ops.mmu.alloc_pte = xen_alloc_pte;
2379 pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2380 pv_ops.mmu.release_pte = xen_release_pte;
2381 pv_ops.mmu.release_pmd = xen_release_pmd;
2382 #ifdef CONFIG_X86_64
2383 pv_ops.mmu.alloc_pud = xen_alloc_pud;
2384 pv_ops.mmu.release_pud = xen_release_pud;
2386 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2388 #ifdef CONFIG_X86_64
2389 pv_ops.mmu.write_cr3 = &xen_write_cr3;
2393 static void xen_leave_lazy_mmu(void)
2397 paravirt_leave_lazy_mmu();
2401 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2402 .read_cr2 = xen_read_cr2,
2403 .write_cr2 = xen_write_cr2,
2405 .read_cr3 = xen_read_cr3,
2406 .write_cr3 = xen_write_cr3_init,
2408 .flush_tlb_user = xen_flush_tlb,
2409 .flush_tlb_kernel = xen_flush_tlb,
2410 .flush_tlb_one_user = xen_flush_tlb_one_user,
2411 .flush_tlb_others = xen_flush_tlb_others,
2412 .tlb_remove_table = tlb_remove_table,
2414 .pgd_alloc = xen_pgd_alloc,
2415 .pgd_free = xen_pgd_free,
2417 .alloc_pte = xen_alloc_pte_init,
2418 .release_pte = xen_release_pte_init,
2419 .alloc_pmd = xen_alloc_pmd_init,
2420 .release_pmd = xen_release_pmd_init,
2422 .set_pte = xen_set_pte_init,
2423 .set_pte_at = xen_set_pte_at,
2424 .set_pmd = xen_set_pmd_hyper,
2426 .ptep_modify_prot_start = __ptep_modify_prot_start,
2427 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2429 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2430 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2432 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2433 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2435 #ifdef CONFIG_X86_PAE
2436 .set_pte_atomic = xen_set_pte_atomic,
2437 .pte_clear = xen_pte_clear,
2438 .pmd_clear = xen_pmd_clear,
2439 #endif /* CONFIG_X86_PAE */
2440 .set_pud = xen_set_pud_hyper,
2442 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2443 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2445 #ifdef CONFIG_X86_64
2446 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2447 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2448 .set_p4d = xen_set_p4d_hyper,
2450 .alloc_pud = xen_alloc_pmd_init,
2451 .release_pud = xen_release_pmd_init,
2453 #if CONFIG_PGTABLE_LEVELS >= 5
2454 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2455 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2457 #endif /* CONFIG_X86_64 */
2459 .activate_mm = xen_activate_mm,
2460 .dup_mmap = xen_dup_mmap,
2461 .exit_mmap = xen_exit_mmap,
2464 .enter = paravirt_enter_lazy_mmu,
2465 .leave = xen_leave_lazy_mmu,
2466 .flush = paravirt_flush_lazy_mmu,
2469 .set_fixmap = xen_set_fixmap,
2472 void __init xen_init_mmu_ops(void)
2474 x86_init.paging.pagetable_init = xen_pagetable_init;
2475 x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2477 pv_ops.mmu = xen_mmu_ops;
2479 memset(dummy_mapping, 0xff, PAGE_SIZE);
2482 /* Protected by xen_reservation_lock. */
2483 #define MAX_CONTIG_ORDER 9 /* 2MB */
2484 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2486 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2487 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2488 unsigned long *in_frames,
2489 unsigned long *out_frames)
2492 struct multicall_space mcs;
2495 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2496 mcs = __xen_mc_entry(0);
2499 in_frames[i] = virt_to_mfn(vaddr);
2501 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2502 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2505 out_frames[i] = virt_to_pfn(vaddr);
2511 * Update the pfn-to-mfn mappings for a virtual address range, either to
2512 * point to an array of mfns, or contiguously from a single starting
2515 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2516 unsigned long *mfns,
2517 unsigned long first_mfn)
2524 limit = 1u << order;
2525 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2526 struct multicall_space mcs;
2529 mcs = __xen_mc_entry(0);
2533 mfn = first_mfn + i;
2535 if (i < (limit - 1))
2539 flags = UVMF_INVLPG | UVMF_ALL;
2541 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2544 MULTI_update_va_mapping(mcs.mc, vaddr,
2545 mfn_pte(mfn, PAGE_KERNEL), flags);
2547 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2554 * Perform the hypercall to exchange a region of our pfns to point to
2555 * memory with the required contiguous alignment. Takes the pfns as
2556 * input, and populates mfns as output.
2558 * Returns a success code indicating whether the hypervisor was able to
2559 * satisfy the request or not.
2561 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2562 unsigned long *pfns_in,
2563 unsigned long extents_out,
2564 unsigned int order_out,
2565 unsigned long *mfns_out,
2566 unsigned int address_bits)
2571 struct xen_memory_exchange exchange = {
2573 .nr_extents = extents_in,
2574 .extent_order = order_in,
2575 .extent_start = pfns_in,
2579 .nr_extents = extents_out,
2580 .extent_order = order_out,
2581 .extent_start = mfns_out,
2582 .address_bits = address_bits,
2587 BUG_ON(extents_in << order_in != extents_out << order_out);
2589 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2590 success = (exchange.nr_exchanged == extents_in);
2592 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2593 BUG_ON(success && (rc != 0));
2598 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2599 unsigned int address_bits,
2600 dma_addr_t *dma_handle)
2602 unsigned long *in_frames = discontig_frames, out_frame;
2603 unsigned long flags;
2605 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2608 * Currently an auto-translated guest will not perform I/O, nor will
2609 * it require PAE page directories below 4GB. Therefore any calls to
2610 * this function are redundant and can be ignored.
2613 if (unlikely(order > MAX_CONTIG_ORDER))
2616 memset((void *) vstart, 0, PAGE_SIZE << order);
2618 spin_lock_irqsave(&xen_reservation_lock, flags);
2620 /* 1. Zap current PTEs, remembering MFNs. */
2621 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2623 /* 2. Get a new contiguous memory extent. */
2624 out_frame = virt_to_pfn(vstart);
2625 success = xen_exchange_memory(1UL << order, 0, in_frames,
2626 1, order, &out_frame,
2629 /* 3. Map the new extent in place of old pages. */
2631 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2633 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2635 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2637 *dma_handle = virt_to_machine(vstart).maddr;
2638 return success ? 0 : -ENOMEM;
2640 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2642 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2644 unsigned long *out_frames = discontig_frames, in_frame;
2645 unsigned long flags;
2647 unsigned long vstart;
2649 if (unlikely(order > MAX_CONTIG_ORDER))
2652 vstart = (unsigned long)phys_to_virt(pstart);
2653 memset((void *) vstart, 0, PAGE_SIZE << order);
2655 spin_lock_irqsave(&xen_reservation_lock, flags);
2657 /* 1. Find start MFN of contiguous extent. */
2658 in_frame = virt_to_mfn(vstart);
2660 /* 2. Zap current PTEs. */
2661 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2663 /* 3. Do the exchange for non-contiguous MFNs. */
2664 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2667 /* 4. Map new pages in place of old pages. */
2669 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2671 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2673 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2675 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2677 static noinline void xen_flush_tlb_all(void)
2679 struct mmuext_op *op;
2680 struct multicall_space mcs;
2684 mcs = xen_mc_entry(sizeof(*op));
2687 op->cmd = MMUEXT_TLB_FLUSH_ALL;
2688 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2690 xen_mc_issue(PARAVIRT_LAZY_MMU);
2695 #define REMAP_BATCH_SIZE 16
2702 struct mmu_update *mmu_update;
2705 static int remap_area_pfn_pte_fn(pte_t *ptep, pgtable_t token,
2706 unsigned long addr, void *data)
2708 struct remap_data *rmd = data;
2709 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2712 * If we have a contiguous range, just update the pfn itself,
2713 * else update pointer to be "next pfn".
2715 if (rmd->contiguous)
2720 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2721 rmd->mmu_update->ptr |= rmd->no_translate ?
2722 MMU_PT_UPDATE_NO_TRANSLATE :
2723 MMU_NORMAL_PT_UPDATE;
2724 rmd->mmu_update->val = pte_val_ma(pte);
2730 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2731 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2732 unsigned int domid, bool no_translate, struct page **pages)
2735 struct remap_data rmd;
2736 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2737 unsigned long range;
2740 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2745 * We use the err_ptr to indicate if there we are doing a contiguous
2746 * mapping or a discontigious mapping.
2748 rmd.contiguous = !err_ptr;
2749 rmd.no_translate = no_translate;
2754 int batch = min(REMAP_BATCH_SIZE, nr);
2755 int batch_left = batch;
2757 range = (unsigned long)batch << PAGE_SHIFT;
2759 rmd.mmu_update = mmu_update;
2760 err = apply_to_page_range(vma->vm_mm, addr, range,
2761 remap_area_pfn_pte_fn, &rmd);
2766 * We record the error for each page that gives an error, but
2767 * continue mapping until the whole set is done
2772 err = HYPERVISOR_mmu_update(&mmu_update[index],
2773 batch_left, &done, domid);
2776 * @err_ptr may be the same buffer as @gfn, so
2777 * only clear it after each chunk of @gfn is
2781 for (i = index; i < index + done; i++)
2788 done++; /* Skip failed frame. */
2793 } while (batch_left);
2803 xen_flush_tlb_all();
2805 return err < 0 ? err : mapped;
2807 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2809 #ifdef CONFIG_KEXEC_CORE
2810 phys_addr_t paddr_vmcoreinfo_note(void)
2812 if (xen_pv_domain())
2813 return virt_to_machine(vmcoreinfo_note).maddr;
2815 return __pa(vmcoreinfo_note);
2817 #endif /* CONFIG_KEXEC_CORE */