1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
44 #include "delegation.h"
51 /* #define NFS_DEBUG_VERBOSE 1 */
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_free_folio(struct folio *);
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .iterate_shared = nfs_readdir,
65 .release = nfs_closedir,
66 .fsync = nfs_fsync_dir,
69 const struct address_space_operations nfs_dir_aops = {
70 .free_folio = nfs_readdir_free_folio,
73 #define NFS_INIT_DTSIZE PAGE_SIZE
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
78 struct nfs_inode *nfsi = NFS_I(dir);
79 struct nfs_open_dir_context *ctx;
81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
83 ctx->attr_gencount = nfsi->attr_gencount;
84 ctx->dtsize = NFS_INIT_DTSIZE;
85 spin_lock(&dir->i_lock);
86 if (list_empty(&nfsi->open_files) &&
87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 nfs_set_cache_invalid(dir,
89 NFS_INO_INVALID_DATA |
90 NFS_INO_REVAL_FORCED);
91 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 spin_unlock(&dir->i_lock);
96 return ERR_PTR(-ENOMEM);
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
101 spin_lock(&dir->i_lock);
102 list_del_rcu(&ctx->list);
103 spin_unlock(&dir->i_lock);
104 kfree_rcu(ctx, rcu_head);
111 nfs_opendir(struct inode *inode, struct file *filp)
114 struct nfs_open_dir_context *ctx;
116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
118 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
120 ctx = alloc_nfs_open_dir_context(inode);
125 filp->private_data = ctx;
131 nfs_closedir(struct inode *inode, struct file *filp)
133 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 struct nfs_cache_array_entry {
141 unsigned int name_len;
142 unsigned char d_type;
145 struct nfs_cache_array {
149 unsigned char page_full : 1,
151 cookies_are_ordered : 1;
152 struct nfs_cache_array_entry array[];
155 struct nfs_readdir_descriptor {
158 struct dir_context *ctx;
160 pgoff_t page_index_max;
163 loff_t current_index;
165 __be32 verf[NFS_DIR_VERIFIER_SIZE];
166 unsigned long dir_verifier;
167 unsigned long timestamp;
168 unsigned long gencount;
169 unsigned long attr_gencount;
170 unsigned int cache_entry_index;
171 unsigned int buffer_fills;
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 unsigned int maxsize = server->dtsize;
186 if (sz < NFS_MIN_FILE_IO_SIZE)
187 sz = NFS_MIN_FILE_IO_SIZE;
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
193 nfs_set_dtsize(desc, desc->dtsize >> 1);
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
198 nfs_set_dtsize(desc, desc->dtsize << 1);
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
204 struct nfs_cache_array *array;
206 array = kmap_atomic(page);
207 array->change_attr = change_attr;
208 array->last_cookie = last_cookie;
210 array->page_full = 0;
211 array->page_is_eof = 0;
212 array->cookies_are_ordered = 1;
213 kunmap_atomic(array);
217 * we are freeing strings created by nfs_add_to_readdir_array()
219 static void nfs_readdir_clear_array(struct page *page)
221 struct nfs_cache_array *array;
224 array = kmap_atomic(page);
225 for (i = 0; i < array->size; i++)
226 kfree(array->array[i].name);
228 kunmap_atomic(array);
231 static void nfs_readdir_free_folio(struct folio *folio)
233 nfs_readdir_clear_array(&folio->page);
236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
239 nfs_readdir_clear_array(page);
240 nfs_readdir_page_init_array(page, last_cookie, change_attr);
244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
246 struct page *page = alloc_page(gfp_flags);
248 nfs_readdir_page_init_array(page, last_cookie, 0);
252 static void nfs_readdir_page_array_free(struct page *page)
255 nfs_readdir_clear_array(page);
260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
262 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
267 array->page_is_eof = 1;
268 array->page_full = 1;
271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
273 return array->page_full;
277 * the caller is responsible for freeing qstr.name
278 * when called by nfs_readdir_add_to_array, the strings will be freed in
279 * nfs_clear_readdir_array()
281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
283 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
286 * Avoid a kmemleak false positive. The pointer to the name is stored
287 * in a page cache page which kmemleak does not scan.
290 kmemleak_not_leak(ret);
294 static size_t nfs_readdir_array_maxentries(void)
296 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
297 sizeof(struct nfs_cache_array_entry);
301 * Check that the next array entry lies entirely within the page bounds
303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
305 if (array->page_full)
307 if (array->size == nfs_readdir_array_maxentries()) {
308 array->page_full = 1;
314 static int nfs_readdir_page_array_append(struct page *page,
315 const struct nfs_entry *entry,
318 struct nfs_cache_array *array;
319 struct nfs_cache_array_entry *cache_entry;
323 name = nfs_readdir_copy_name(entry->name, entry->len);
325 array = kmap_atomic(page);
328 ret = nfs_readdir_array_can_expand(array);
334 cache_entry = &array->array[array->size];
335 cache_entry->cookie = array->last_cookie;
336 cache_entry->ino = entry->ino;
337 cache_entry->d_type = entry->d_type;
338 cache_entry->name_len = entry->len;
339 cache_entry->name = name;
340 array->last_cookie = entry->cookie;
341 if (array->last_cookie <= cache_entry->cookie)
342 array->cookies_are_ordered = 0;
345 nfs_readdir_array_set_eof(array);
347 *cookie = array->last_cookie;
348 kunmap_atomic(array);
352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
354 * Hash algorithm allowing content addressible access to sequences
355 * of directory cookies. Content is addressed by the value of the
356 * cookie index of the first readdir entry in a page.
358 * We select only the first 18 bits to avoid issues with excessive
359 * memory use for the page cache XArray. 18 bits should allow the caching
360 * of 262144 pages of sequences of readdir entries. Since each page holds
361 * 127 readdir entries for a typical 64-bit system, that works out to a
362 * cache of ~ 33 million entries per directory.
364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
368 return hash_64(cookie, 18);
371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
374 struct nfs_cache_array *array = kmap_atomic(page);
377 if (array->change_attr != change_attr)
379 if (nfs_readdir_array_index_cookie(array) != last_cookie)
381 kunmap_atomic(array);
385 static void nfs_readdir_page_unlock_and_put(struct page *page)
391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
394 if (PageUptodate(page)) {
395 if (nfs_readdir_page_validate(page, cookie, change_attr))
397 nfs_readdir_clear_array(page);
399 nfs_readdir_page_init_array(page, cookie, change_attr);
400 SetPageUptodate(page);
403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
404 u64 cookie, u64 change_attr)
406 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
409 page = grab_cache_page(mapping, index);
412 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
416 static u64 nfs_readdir_page_last_cookie(struct page *page)
418 struct nfs_cache_array *array;
421 array = kmap_atomic(page);
422 ret = array->last_cookie;
423 kunmap_atomic(array);
427 static bool nfs_readdir_page_needs_filling(struct page *page)
429 struct nfs_cache_array *array;
432 array = kmap_atomic(page);
433 ret = !nfs_readdir_array_is_full(array);
434 kunmap_atomic(array);
438 static void nfs_readdir_page_set_eof(struct page *page)
440 struct nfs_cache_array *array;
442 array = kmap_atomic(page);
443 nfs_readdir_array_set_eof(array);
444 kunmap_atomic(array);
447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
448 u64 cookie, u64 change_attr)
450 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
453 page = grab_cache_page_nowait(mapping, index);
456 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
457 if (nfs_readdir_page_last_cookie(page) != cookie)
458 nfs_readdir_page_reinit_array(page, cookie, change_attr);
463 int is_32bit_api(void)
466 return in_compat_syscall();
468 return (BITS_PER_LONG == 32);
473 bool nfs_readdir_use_cookie(const struct file *filp)
475 if ((filp->f_mode & FMODE_32BITHASH) ||
476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 struct nfs_readdir_descriptor *desc)
484 if (array->page_full) {
485 desc->last_cookie = array->last_cookie;
486 desc->current_index += array->size;
487 desc->cache_entry_index = 0;
490 desc->last_cookie = nfs_readdir_array_index_cookie(array);
493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
495 desc->current_index = 0;
496 desc->last_cookie = 0;
497 desc->page_index = 0;
500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 struct nfs_readdir_descriptor *desc)
503 loff_t diff = desc->ctx->pos - desc->current_index;
508 if (diff >= array->size) {
509 if (array->page_is_eof)
511 nfs_readdir_seek_next_array(array, desc);
515 index = (unsigned int)diff;
516 desc->dir_cookie = array->array[index].cookie;
517 desc->cache_entry_index = index;
524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
527 if (!array->cookies_are_ordered)
529 /* Optimisation for monotonically increasing cookies */
530 if (cookie >= array->last_cookie)
532 if (array->size && cookie < array->array[0].cookie)
537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 struct nfs_readdir_descriptor *desc)
541 int status = -EAGAIN;
543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
546 for (i = 0; i < array->size; i++) {
547 if (array->array[i].cookie == desc->dir_cookie) {
548 if (nfs_readdir_use_cookie(desc->file))
549 desc->ctx->pos = desc->dir_cookie;
551 desc->ctx->pos = desc->current_index + i;
552 desc->cache_entry_index = i;
557 if (array->page_is_eof) {
558 status = -EBADCOOKIE;
559 if (desc->dir_cookie == array->last_cookie)
562 nfs_readdir_seek_next_array(array, desc);
566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
568 struct nfs_cache_array *array;
571 array = kmap_atomic(desc->page);
573 if (desc->dir_cookie == 0)
574 status = nfs_readdir_search_for_pos(array, desc);
576 status = nfs_readdir_search_for_cookie(array, desc);
578 kunmap_atomic(array);
582 /* Fill a page with xdr information before transferring to the cache page */
583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 __be32 *verf, u64 cookie,
585 struct page **pages, size_t bufsize,
588 struct inode *inode = file_inode(desc->file);
589 struct nfs_readdir_arg arg = {
590 .dentry = file_dentry(desc->file),
591 .cred = desc->file->f_cred,
598 struct nfs_readdir_res res = {
601 unsigned long timestamp, gencount;
606 gencount = nfs_inc_attr_generation_counter();
607 desc->dir_verifier = nfs_save_change_attribute(inode);
608 error = NFS_PROTO(inode)->readdir(&arg, &res);
610 /* We requested READDIRPLUS, but the server doesn't grok it */
611 if (error == -ENOTSUPP && desc->plus) {
612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 desc->plus = arg.plus = false;
618 desc->timestamp = timestamp;
619 desc->gencount = gencount;
624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 struct nfs_entry *entry, struct xdr_stream *xdr)
627 struct inode *inode = file_inode(desc->file);
630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
633 entry->fattr->time_start = desc->timestamp;
634 entry->fattr->gencount = desc->gencount;
638 /* Match file and dirent using either filehandle or fileid
639 * Note: caller is responsible for checking the fsid
642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
645 struct nfs_inode *nfsi;
647 if (d_really_is_negative(dentry))
650 inode = d_inode(dentry);
651 if (is_bad_inode(inode) || NFS_STALE(inode))
655 if (entry->fattr->fileid != nfsi->fileid)
657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 unsigned int cache_hits,
666 unsigned int cache_misses)
668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
671 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
677 * This function is called by the getattr code to request the
678 * use of readdirplus to accelerate any future lookups in the same
681 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
683 struct nfs_inode *nfsi = NFS_I(dir);
684 struct nfs_open_dir_context *ctx;
686 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
687 S_ISDIR(dir->i_mode)) {
689 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
690 atomic_inc(&ctx->cache_hits);
696 * This function is mainly for use by nfs_getattr().
698 * If this is an 'ls -l', we want to force use of readdirplus.
700 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
702 struct nfs_inode *nfsi = NFS_I(dir);
703 struct nfs_open_dir_context *ctx;
705 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
706 S_ISDIR(dir->i_mode)) {
708 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
709 atomic_inc(&ctx->cache_misses);
714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
717 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
719 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
721 nfs_readdir_record_entry_cache_miss(dir);
725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
726 unsigned long dir_verifier)
728 struct qstr filename = QSTR_INIT(entry->name, entry->len);
729 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
730 struct dentry *dentry;
731 struct dentry *alias;
735 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
739 if (filename.len == 0)
741 /* Validate that the name doesn't contain any illegal '\0' */
742 if (strnlen(filename.name, filename.len) != filename.len)
745 if (strnchr(filename.name, filename.len, '/'))
747 if (filename.name[0] == '.') {
748 if (filename.len == 1)
750 if (filename.len == 2 && filename.name[1] == '.')
753 filename.hash = full_name_hash(parent, filename.name, filename.len);
755 dentry = d_lookup(parent, &filename);
758 dentry = d_alloc_parallel(parent, &filename, &wq);
762 if (!d_in_lookup(dentry)) {
763 /* Is there a mountpoint here? If so, just exit */
764 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
765 &entry->fattr->fsid))
767 if (nfs_same_file(dentry, entry)) {
768 if (!entry->fh->size)
770 nfs_set_verifier(dentry, dir_verifier);
771 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
773 nfs_setsecurity(d_inode(dentry), entry->fattr);
774 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
778 trace_nfs_readdir_lookup_revalidate_failed(
779 d_inode(parent), dentry, 0);
780 d_invalidate(dentry);
786 if (!entry->fh->size) {
787 d_lookup_done(dentry);
791 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
792 alias = d_splice_alias(inode, dentry);
793 d_lookup_done(dentry);
800 nfs_set_verifier(dentry, dir_verifier);
801 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
807 struct nfs_entry *entry,
808 struct xdr_stream *stream)
812 if (entry->fattr->label)
813 entry->fattr->label->len = NFS4_MAXLABELLEN;
814 ret = xdr_decode(desc, entry, stream);
815 if (ret || !desc->plus)
817 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
821 /* Perform conversion from xdr to cache array */
822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
823 struct nfs_entry *entry,
824 struct page **xdr_pages, unsigned int buflen,
825 struct page **arrays, size_t narrays,
828 struct address_space *mapping = desc->file->f_mapping;
829 struct xdr_stream stream;
831 struct page *scratch, *new, *page = *arrays;
835 scratch = alloc_page(GFP_KERNEL);
839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 xdr_set_scratch_page(&stream, scratch);
843 status = nfs_readdir_entry_decode(desc, entry, &stream);
847 status = nfs_readdir_page_array_append(page, entry, &cookie);
848 if (status != -ENOSPC)
851 if (page->mapping != mapping) {
854 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
858 *arrays = page = new;
860 new = nfs_readdir_page_get_next(mapping, cookie,
865 nfs_readdir_page_unlock_and_put(page);
868 desc->page_index_max++;
869 status = nfs_readdir_page_array_append(page, entry, &cookie);
870 } while (!status && !entry->eof);
876 nfs_readdir_page_set_eof(page);
885 while (!nfs_readdir_entry_decode(desc, entry, &stream))
890 nfs_readdir_page_unlock_and_put(page);
896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
899 put_page(pages[npages]);
904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905 * to nfs_readdir_free_pages()
907 static struct page **nfs_readdir_alloc_pages(size_t npages)
912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
915 for (i = 0; i < npages; i++) {
916 struct page *page = alloc_page(GFP_KERNEL);
924 nfs_readdir_free_pages(pages, i);
928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 __be32 *verf_arg, __be32 *verf_res,
930 struct page **arrays, size_t narrays)
934 struct page *page = *arrays;
935 struct nfs_entry *entry;
937 struct inode *inode = file_inode(desc->file);
938 unsigned int dtsize = desc->dtsize;
940 int status = -ENOMEM;
942 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
945 entry->cookie = nfs_readdir_page_last_cookie(page);
946 entry->fh = nfs_alloc_fhandle();
947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 entry->server = NFS_SERVER(inode);
949 if (entry->fh == NULL || entry->fattr == NULL)
952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 pages = nfs_readdir_alloc_pages(array_size);
957 change_attr = inode_peek_iversion_raw(inode);
958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
965 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
966 arrays, narrays, change_attr);
968 nfs_readdir_page_set_eof(page);
969 desc->buffer_fills++;
972 nfs_readdir_free_pages(pages, array_size);
974 nfs_free_fattr(entry->fattr);
975 nfs_free_fhandle(entry->fh);
980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
982 put_page(desc->page);
987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
989 unlock_page(desc->page);
990 nfs_readdir_page_put(desc);
994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
996 struct address_space *mapping = desc->file->f_mapping;
997 u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 u64 cookie = desc->last_cookie;
1001 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1004 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1005 nfs_readdir_page_reinit_array(page, cookie, change_attr);
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1015 struct inode *inode = file_inode(desc->file);
1016 struct nfs_inode *nfsi = NFS_I(inode);
1017 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1020 desc->page = nfs_readdir_page_get_cached(desc);
1023 if (nfs_readdir_page_needs_filling(desc->page)) {
1024 /* Grow the dtsize if we had to go back for more pages */
1025 if (desc->page_index == desc->page_index_max)
1026 nfs_grow_dtsize(desc);
1027 desc->page_index_max = desc->page_index;
1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1030 desc->page->index, desc->dtsize);
1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1034 nfs_readdir_page_unlock_and_put_cached(desc);
1035 trace_nfs_readdir_cache_fill_done(inode, res);
1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 invalidate_inode_pages2(desc->file->f_mapping);
1038 nfs_readdir_rewind_search(desc);
1039 trace_nfs_readdir_invalidate_cache_range(
1040 inode, 0, MAX_LFS_FILESIZE);
1046 * Set the cookie verifier if the page cache was empty
1048 if (desc->last_cookie == 0 &&
1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 memcpy(nfsi->cookieverf, verf,
1051 sizeof(nfsi->cookieverf));
1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1054 trace_nfs_readdir_invalidate_cache_range(
1055 inode, 1, MAX_LFS_FILESIZE);
1057 desc->clear_cache = false;
1059 res = nfs_readdir_search_array(desc);
1062 nfs_readdir_page_unlock_and_put_cached(desc);
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1072 res = find_and_lock_cache_page(desc);
1073 } while (res == -EAGAIN);
1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1085 struct file *file = desc->file;
1086 struct nfs_cache_array *array;
1088 bool first_emit = !desc->dir_cookie;
1090 array = kmap_local_page(desc->page);
1091 for (i = desc->cache_entry_index; i < array->size; i++) {
1092 struct nfs_cache_array_entry *ent;
1094 ent = &array->array[i];
1095 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1096 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1100 memcpy(desc->verf, verf, sizeof(desc->verf));
1101 if (i == array->size - 1) {
1102 desc->dir_cookie = array->last_cookie;
1103 nfs_readdir_seek_next_array(array, desc);
1105 desc->dir_cookie = array->array[i + 1].cookie;
1106 desc->last_cookie = array->array[0].cookie;
1108 if (nfs_readdir_use_cookie(file))
1109 desc->ctx->pos = desc->dir_cookie;
1112 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) {
1117 if (array->page_is_eof)
1118 desc->eof = !desc->eob;
1120 kunmap_local(array);
1121 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1122 (unsigned long long)desc->dir_cookie);
1126 * If we cannot find a cookie in our cache, we suspect that this is
1127 * because it points to a deleted file, so we ask the server to return
1128 * whatever it thinks is the next entry. We then feed this to filldir.
1129 * If all goes well, we should then be able to find our way round the
1130 * cache on the next call to readdir_search_pagecache();
1132 * NOTE: we cannot add the anonymous page to the pagecache because
1133 * the data it contains might not be page aligned. Besides,
1134 * we should already have a complete representation of the
1135 * directory in the page cache by the time we get here.
1137 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1139 struct page **arrays;
1141 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1142 int status = -ENOMEM;
1144 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1145 (unsigned long long)desc->dir_cookie);
1147 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1150 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1154 desc->page_index = 0;
1155 desc->cache_entry_index = 0;
1156 desc->last_cookie = desc->dir_cookie;
1157 desc->page_index_max = 0;
1159 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1162 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1164 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1168 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1169 desc->page = arrays[i];
1170 nfs_do_filldir(desc, verf);
1175 * Grow the dtsize if we have to go back for more pages,
1176 * or shrink it if we're reading too many.
1180 nfs_grow_dtsize(desc);
1181 else if (desc->buffer_fills == 1 &&
1182 i < (desc->page_index_max >> 1))
1183 nfs_shrink_dtsize(desc);
1186 for (i = 0; i < sz && arrays[i]; i++)
1187 nfs_readdir_page_array_free(arrays[i]);
1189 if (!nfs_readdir_use_cookie(desc->file))
1190 nfs_readdir_rewind_search(desc);
1191 desc->page_index_max = -1;
1193 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1197 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1198 struct nfs_readdir_descriptor *desc,
1199 unsigned int cache_misses,
1202 if (desc->ctx->pos == 0 || !desc->plus)
1204 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1206 trace_nfs_readdir_force_readdirplus(inode);
1210 /* The file offset position represents the dirent entry number. A
1211 last cookie cache takes care of the common case of reading the
1214 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1216 struct dentry *dentry = file_dentry(file);
1217 struct inode *inode = d_inode(dentry);
1218 struct nfs_inode *nfsi = NFS_I(inode);
1219 struct nfs_open_dir_context *dir_ctx = file->private_data;
1220 struct nfs_readdir_descriptor *desc;
1221 unsigned int cache_hits, cache_misses;
1225 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1226 file, (long long)ctx->pos);
1227 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1230 * ctx->pos points to the dirent entry number.
1231 * *desc->dir_cookie has the cookie for the next entry. We have
1232 * to either find the entry with the appropriate number or
1233 * revalidate the cookie.
1235 nfs_revalidate_mapping(inode, file->f_mapping);
1238 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1243 desc->page_index_max = -1;
1245 spin_lock(&file->f_lock);
1246 desc->dir_cookie = dir_ctx->dir_cookie;
1247 desc->page_index = dir_ctx->page_index;
1248 desc->last_cookie = dir_ctx->last_cookie;
1249 desc->attr_gencount = dir_ctx->attr_gencount;
1250 desc->eof = dir_ctx->eof;
1251 nfs_set_dtsize(desc, dir_ctx->dtsize);
1252 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1253 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1254 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1255 force_clear = dir_ctx->force_clear;
1256 spin_unlock(&file->f_lock);
1263 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1264 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1266 desc->clear_cache = force_clear;
1269 res = readdir_search_pagecache(desc);
1271 if (res == -EBADCOOKIE) {
1273 /* This means either end of directory */
1274 if (desc->dir_cookie && !desc->eof) {
1275 /* Or that the server has 'lost' a cookie */
1276 res = uncached_readdir(desc);
1279 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1284 if (res == -ETOOSMALL && desc->plus) {
1285 nfs_zap_caches(inode);
1293 nfs_do_filldir(desc, nfsi->cookieverf);
1294 nfs_readdir_page_unlock_and_put_cached(desc);
1295 if (desc->page_index == desc->page_index_max)
1296 desc->clear_cache = force_clear;
1297 } while (!desc->eob && !desc->eof);
1299 spin_lock(&file->f_lock);
1300 dir_ctx->dir_cookie = desc->dir_cookie;
1301 dir_ctx->last_cookie = desc->last_cookie;
1302 dir_ctx->attr_gencount = desc->attr_gencount;
1303 dir_ctx->page_index = desc->page_index;
1304 dir_ctx->force_clear = force_clear;
1305 dir_ctx->eof = desc->eof;
1306 dir_ctx->dtsize = desc->dtsize;
1307 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1308 spin_unlock(&file->f_lock);
1313 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1317 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1319 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1321 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1322 filp, offset, whence);
1330 spin_lock(&filp->f_lock);
1335 spin_lock(&filp->f_lock);
1336 offset += filp->f_pos;
1338 spin_unlock(&filp->f_lock);
1342 if (offset != filp->f_pos) {
1343 filp->f_pos = offset;
1344 dir_ctx->page_index = 0;
1345 if (!nfs_readdir_use_cookie(filp)) {
1346 dir_ctx->dir_cookie = 0;
1347 dir_ctx->last_cookie = 0;
1349 dir_ctx->dir_cookie = offset;
1350 dir_ctx->last_cookie = offset;
1352 dir_ctx->eof = false;
1354 spin_unlock(&filp->f_lock);
1359 * All directory operations under NFS are synchronous, so fsync()
1360 * is a dummy operation.
1362 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1365 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1367 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1372 * nfs_force_lookup_revalidate - Mark the directory as having changed
1373 * @dir: pointer to directory inode
1375 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1376 * full lookup on all child dentries of 'dir' whenever a change occurs
1377 * on the server that might have invalidated our dcache.
1379 * Note that we reserve bit '0' as a tag to let us know when a dentry
1380 * was revalidated while holding a delegation on its inode.
1382 * The caller should be holding dir->i_lock
1384 void nfs_force_lookup_revalidate(struct inode *dir)
1386 NFS_I(dir)->cache_change_attribute += 2;
1388 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1391 * nfs_verify_change_attribute - Detects NFS remote directory changes
1392 * @dir: pointer to parent directory inode
1393 * @verf: previously saved change attribute
1395 * Return "false" if the verifiers doesn't match the change attribute.
1396 * This would usually indicate that the directory contents have changed on
1397 * the server, and that any dentries need revalidating.
1399 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1401 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1404 static void nfs_set_verifier_delegated(unsigned long *verf)
1409 #if IS_ENABLED(CONFIG_NFS_V4)
1410 static void nfs_unset_verifier_delegated(unsigned long *verf)
1414 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1416 static bool nfs_test_verifier_delegated(unsigned long verf)
1421 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1423 return nfs_test_verifier_delegated(dentry->d_time);
1426 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1428 struct inode *inode = d_inode(dentry);
1429 struct inode *dir = d_inode(dentry->d_parent);
1431 if (!nfs_verify_change_attribute(dir, verf))
1433 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1434 nfs_set_verifier_delegated(&verf);
1435 dentry->d_time = verf;
1439 * nfs_set_verifier - save a parent directory verifier in the dentry
1440 * @dentry: pointer to dentry
1441 * @verf: verifier to save
1443 * Saves the parent directory verifier in @dentry. If the inode has
1444 * a delegation, we also tag the dentry as having been revalidated
1445 * while holding a delegation so that we know we don't have to
1446 * look it up again after a directory change.
1448 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1451 spin_lock(&dentry->d_lock);
1452 nfs_set_verifier_locked(dentry, verf);
1453 spin_unlock(&dentry->d_lock);
1455 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1457 #if IS_ENABLED(CONFIG_NFS_V4)
1459 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1460 * @inode: pointer to inode
1462 * Iterates through the dentries in the inode alias list and clears
1463 * the tag used to indicate that the dentry has been revalidated
1464 * while holding a delegation.
1465 * This function is intended for use when the delegation is being
1466 * returned or revoked.
1468 void nfs_clear_verifier_delegated(struct inode *inode)
1470 struct dentry *alias;
1474 spin_lock(&inode->i_lock);
1475 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1476 spin_lock(&alias->d_lock);
1477 nfs_unset_verifier_delegated(&alias->d_time);
1478 spin_unlock(&alias->d_lock);
1480 spin_unlock(&inode->i_lock);
1482 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1483 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1485 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1487 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1488 d_really_is_negative(dentry))
1489 return dentry->d_time == inode_peek_iversion_raw(dir);
1490 return nfs_verify_change_attribute(dir, dentry->d_time);
1494 * A check for whether or not the parent directory has changed.
1495 * In the case it has, we assume that the dentries are untrustworthy
1496 * and may need to be looked up again.
1497 * If rcu_walk prevents us from performing a full check, return 0.
1499 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1502 if (IS_ROOT(dentry))
1504 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1506 if (!nfs_dentry_verify_change(dir, dentry))
1508 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1509 if (nfs_mapping_need_revalidate_inode(dir)) {
1512 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1515 if (!nfs_dentry_verify_change(dir, dentry))
1521 * Use intent information to check whether or not we're going to do
1522 * an O_EXCL create using this path component.
1524 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1526 if (NFS_PROTO(dir)->version == 2)
1528 return flags & LOOKUP_EXCL;
1532 * Inode and filehandle revalidation for lookups.
1534 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1535 * or if the intent information indicates that we're about to open this
1536 * particular file and the "nocto" mount flag is not set.
1540 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1542 struct nfs_server *server = NFS_SERVER(inode);
1545 if (IS_AUTOMOUNT(inode))
1548 if (flags & LOOKUP_OPEN) {
1549 switch (inode->i_mode & S_IFMT) {
1551 /* A NFSv4 OPEN will revalidate later */
1552 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1556 if (server->flags & NFS_MOUNT_NOCTO)
1558 /* NFS close-to-open cache consistency validation */
1563 /* VFS wants an on-the-wire revalidation */
1564 if (flags & LOOKUP_REVAL)
1567 if (inode->i_nlink > 0 ||
1568 (inode->i_nlink == 0 &&
1569 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1574 if (flags & LOOKUP_RCU)
1576 ret = __nfs_revalidate_inode(server, inode);
1582 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1584 spin_lock(&inode->i_lock);
1585 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1586 spin_unlock(&inode->i_lock);
1590 * We judge how long we want to trust negative
1591 * dentries by looking at the parent inode mtime.
1593 * If parent mtime has changed, we revalidate, else we wait for a
1594 * period corresponding to the parent's attribute cache timeout value.
1596 * If LOOKUP_RCU prevents us from performing a full check, return 1
1597 * suggesting a reval is needed.
1599 * Note that when creating a new file, or looking up a rename target,
1600 * then it shouldn't be necessary to revalidate a negative dentry.
1603 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1606 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1608 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1610 /* Case insensitive server? Revalidate negative dentries */
1611 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1613 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1617 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1618 struct inode *inode, int error)
1625 * We can't d_drop the root of a disconnected tree:
1626 * its d_hash is on the s_anon list and d_drop() would hide
1627 * it from shrink_dcache_for_unmount(), leading to busy
1628 * inodes on unmount and further oopses.
1630 if (inode && IS_ROOT(dentry))
1634 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1639 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1643 if (nfs_neg_need_reval(dir, dentry, flags)) {
1644 if (flags & LOOKUP_RCU)
1648 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1652 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1653 struct inode *inode)
1655 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1656 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1659 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1660 struct dentry *dentry,
1661 struct inode *inode, unsigned int flags)
1663 struct nfs_fh *fhandle;
1664 struct nfs_fattr *fattr;
1665 unsigned long dir_verifier;
1668 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1671 fhandle = nfs_alloc_fhandle();
1672 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1673 if (fhandle == NULL || fattr == NULL)
1676 dir_verifier = nfs_save_change_attribute(dir);
1677 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1685 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1691 /* Request help from readdirplus */
1692 nfs_lookup_advise_force_readdirplus(dir, flags);
1695 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1697 if (nfs_refresh_inode(inode, fattr) < 0)
1700 nfs_setsecurity(inode, fattr);
1701 nfs_set_verifier(dentry, dir_verifier);
1705 nfs_free_fattr(fattr);
1706 nfs_free_fhandle(fhandle);
1709 * If the lookup failed despite the dentry change attribute being
1710 * a match, then we should revalidate the directory cache.
1712 if (!ret && nfs_dentry_verify_change(dir, dentry))
1713 nfs_mark_dir_for_revalidate(dir);
1714 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1718 * This is called every time the dcache has a lookup hit,
1719 * and we should check whether we can really trust that
1722 * NOTE! The hit can be a negative hit too, don't assume
1725 * If the parent directory is seen to have changed, we throw out the
1726 * cached dentry and do a new lookup.
1729 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1732 struct inode *inode;
1735 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1736 inode = d_inode(dentry);
1739 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1741 if (is_bad_inode(inode)) {
1742 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1747 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1748 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1751 if (nfs_verifier_is_delegated(dentry))
1752 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1754 /* Force a full look up iff the parent directory has changed */
1755 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1756 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1757 error = nfs_lookup_verify_inode(inode, flags);
1759 if (error == -ESTALE)
1760 nfs_mark_dir_for_revalidate(dir);
1766 if (flags & LOOKUP_RCU)
1769 if (NFS_STALE(inode))
1772 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1774 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1776 if (flags & LOOKUP_RCU)
1778 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1782 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1783 int (*reval)(struct inode *, struct dentry *, unsigned int))
1785 struct dentry *parent;
1789 if (flags & LOOKUP_RCU) {
1790 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1792 parent = READ_ONCE(dentry->d_parent);
1793 dir = d_inode_rcu(parent);
1796 ret = reval(dir, dentry, flags);
1797 if (parent != READ_ONCE(dentry->d_parent))
1800 /* Wait for unlink to complete */
1801 wait_var_event(&dentry->d_fsdata,
1802 dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1803 parent = dget_parent(dentry);
1804 ret = reval(d_inode(parent), dentry, flags);
1810 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1812 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1816 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1817 * when we don't really care about the dentry name. This is called when a
1818 * pathwalk ends on a dentry that was not found via a normal lookup in the
1819 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1821 * In this situation, we just want to verify that the inode itself is OK
1822 * since the dentry might have changed on the server.
1824 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1826 struct inode *inode = d_inode(dentry);
1830 * I believe we can only get a negative dentry here in the case of a
1831 * procfs-style symlink. Just assume it's correct for now, but we may
1832 * eventually need to do something more here.
1835 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1840 if (is_bad_inode(inode)) {
1841 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1846 error = nfs_lookup_verify_inode(inode, flags);
1847 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1848 __func__, inode->i_ino, error ? "invalid" : "valid");
1853 * This is called from dput() when d_count is going to 0.
1855 static int nfs_dentry_delete(const struct dentry *dentry)
1857 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1858 dentry, dentry->d_flags);
1860 /* Unhash any dentry with a stale inode */
1861 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1864 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1865 /* Unhash it, so that ->d_iput() would be called */
1868 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1869 /* Unhash it, so that ancestors of killed async unlink
1870 * files will be cleaned up during umount */
1877 /* Ensure that we revalidate inode->i_nlink */
1878 static void nfs_drop_nlink(struct inode *inode)
1880 spin_lock(&inode->i_lock);
1881 /* drop the inode if we're reasonably sure this is the last link */
1882 if (inode->i_nlink > 0)
1884 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1885 nfs_set_cache_invalid(
1886 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1887 NFS_INO_INVALID_NLINK);
1888 spin_unlock(&inode->i_lock);
1892 * Called when the dentry loses inode.
1893 * We use it to clean up silly-renamed files.
1895 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1897 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1898 nfs_complete_unlink(dentry, inode);
1899 nfs_drop_nlink(inode);
1904 static void nfs_d_release(struct dentry *dentry)
1906 /* free cached devname value, if it survived that far */
1907 if (unlikely(dentry->d_fsdata)) {
1908 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1911 kfree(dentry->d_fsdata);
1915 const struct dentry_operations nfs_dentry_operations = {
1916 .d_revalidate = nfs_lookup_revalidate,
1917 .d_weak_revalidate = nfs_weak_revalidate,
1918 .d_delete = nfs_dentry_delete,
1919 .d_iput = nfs_dentry_iput,
1920 .d_automount = nfs_d_automount,
1921 .d_release = nfs_d_release,
1923 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1925 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1928 struct inode *inode = NULL;
1929 struct nfs_fh *fhandle = NULL;
1930 struct nfs_fattr *fattr = NULL;
1931 unsigned long dir_verifier;
1934 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1935 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1937 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1938 return ERR_PTR(-ENAMETOOLONG);
1941 * If we're doing an exclusive create, optimize away the lookup
1942 * but don't hash the dentry.
1944 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1947 res = ERR_PTR(-ENOMEM);
1948 fhandle = nfs_alloc_fhandle();
1949 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1950 if (fhandle == NULL || fattr == NULL)
1953 dir_verifier = nfs_save_change_attribute(dir);
1954 trace_nfs_lookup_enter(dir, dentry, flags);
1955 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1956 if (error == -ENOENT) {
1957 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1958 dir_verifier = inode_peek_iversion_raw(dir);
1962 res = ERR_PTR(error);
1965 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1966 res = ERR_CAST(inode);
1970 /* Notify readdir to use READDIRPLUS */
1971 nfs_lookup_advise_force_readdirplus(dir, flags);
1974 res = d_splice_alias(inode, dentry);
1980 nfs_set_verifier(dentry, dir_verifier);
1982 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1983 nfs_free_fattr(fattr);
1984 nfs_free_fhandle(fhandle);
1987 EXPORT_SYMBOL_GPL(nfs_lookup);
1989 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1991 /* Case insensitive server? Revalidate dentries */
1992 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1993 d_prune_aliases(inode);
1995 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1997 #if IS_ENABLED(CONFIG_NFS_V4)
1998 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2000 const struct dentry_operations nfs4_dentry_operations = {
2001 .d_revalidate = nfs4_lookup_revalidate,
2002 .d_weak_revalidate = nfs_weak_revalidate,
2003 .d_delete = nfs_dentry_delete,
2004 .d_iput = nfs_dentry_iput,
2005 .d_automount = nfs_d_automount,
2006 .d_release = nfs_d_release,
2008 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2010 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2012 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2015 static int do_open(struct inode *inode, struct file *filp)
2017 nfs_fscache_open_file(inode, filp);
2021 static int nfs_finish_open(struct nfs_open_context *ctx,
2022 struct dentry *dentry,
2023 struct file *file, unsigned open_flags)
2027 err = finish_open(file, dentry, do_open);
2030 if (S_ISREG(file_inode(file)->i_mode))
2031 nfs_file_set_open_context(file, ctx);
2038 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2039 struct file *file, unsigned open_flags,
2042 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2043 struct nfs_open_context *ctx;
2045 struct iattr attr = { .ia_valid = ATTR_OPEN };
2046 struct inode *inode;
2047 unsigned int lookup_flags = 0;
2048 unsigned long dir_verifier;
2049 bool switched = false;
2053 /* Expect a negative dentry */
2054 BUG_ON(d_inode(dentry));
2056 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2057 dir->i_sb->s_id, dir->i_ino, dentry);
2059 err = nfs_check_flags(open_flags);
2063 /* NFS only supports OPEN on regular files */
2064 if ((open_flags & O_DIRECTORY)) {
2065 if (!d_in_lookup(dentry)) {
2067 * Hashed negative dentry with O_DIRECTORY: dentry was
2068 * revalidated and is fine, no need to perform lookup
2073 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2077 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2078 return -ENAMETOOLONG;
2080 if (open_flags & O_CREAT) {
2081 struct nfs_server *server = NFS_SERVER(dir);
2083 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2084 mode &= ~current_umask();
2086 attr.ia_valid |= ATTR_MODE;
2087 attr.ia_mode = mode;
2089 if (open_flags & O_TRUNC) {
2090 attr.ia_valid |= ATTR_SIZE;
2094 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2097 dentry = d_alloc_parallel(dentry->d_parent,
2098 &dentry->d_name, &wq);
2100 return PTR_ERR(dentry);
2101 if (unlikely(!d_in_lookup(dentry)))
2102 return finish_no_open(file, dentry);
2105 ctx = create_nfs_open_context(dentry, open_flags, file);
2110 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2111 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2113 file->f_mode |= FMODE_CREATED;
2114 if (IS_ERR(inode)) {
2115 err = PTR_ERR(inode);
2116 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2117 put_nfs_open_context(ctx);
2121 d_splice_alias(NULL, dentry);
2122 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2123 dir_verifier = inode_peek_iversion_raw(dir);
2125 dir_verifier = nfs_save_change_attribute(dir);
2126 nfs_set_verifier(dentry, dir_verifier);
2132 if (!(open_flags & O_NOFOLLOW))
2141 file->f_mode |= FMODE_CAN_ODIRECT;
2143 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2144 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145 put_nfs_open_context(ctx);
2147 if (unlikely(switched)) {
2148 d_lookup_done(dentry);
2154 res = nfs_lookup(dir, dentry, lookup_flags);
2156 inode = d_inode(dentry);
2157 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2158 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2159 res = ERR_PTR(-ENOTDIR);
2160 else if (inode && S_ISREG(inode->i_mode))
2161 res = ERR_PTR(-EOPENSTALE);
2162 } else if (!IS_ERR(res)) {
2163 inode = d_inode(res);
2164 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2167 res = ERR_PTR(-ENOTDIR);
2168 } else if (inode && S_ISREG(inode->i_mode)) {
2170 res = ERR_PTR(-EOPENSTALE);
2174 d_lookup_done(dentry);
2181 return PTR_ERR(res);
2182 return finish_no_open(file, res);
2184 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2187 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2190 struct inode *inode;
2192 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2194 if (d_mountpoint(dentry))
2197 inode = d_inode(dentry);
2199 /* We can't create new files in nfs_open_revalidate(), so we
2200 * optimize away revalidation of negative dentries.
2205 if (nfs_verifier_is_delegated(dentry))
2206 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2208 /* NFS only supports OPEN on regular files */
2209 if (!S_ISREG(inode->i_mode))
2212 /* We cannot do exclusive creation on a positive dentry */
2213 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2216 /* Check if the directory changed */
2217 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2220 /* Let f_op->open() actually open (and revalidate) the file */
2223 if (flags & LOOKUP_RCU)
2225 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2228 return nfs_do_lookup_revalidate(dir, dentry, flags);
2231 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2233 return __nfs_lookup_revalidate(dentry, flags,
2234 nfs4_do_lookup_revalidate);
2237 #endif /* CONFIG_NFSV4 */
2240 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2241 struct nfs_fattr *fattr)
2243 struct dentry *parent = dget_parent(dentry);
2244 struct inode *dir = d_inode(parent);
2245 struct inode *inode;
2251 if (fhandle->size == 0) {
2252 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2256 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2257 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2258 struct nfs_server *server = NFS_SB(dentry->d_sb);
2259 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2264 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2265 d = d_splice_alias(inode, dentry);
2273 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2276 * Code common to create, mkdir, and mknod.
2278 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2279 struct nfs_fattr *fattr)
2283 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2287 /* Callers don't care */
2291 EXPORT_SYMBOL_GPL(nfs_instantiate);
2294 * Following a failed create operation, we drop the dentry rather
2295 * than retain a negative dentry. This avoids a problem in the event
2296 * that the operation succeeded on the server, but an error in the
2297 * reply path made it appear to have failed.
2299 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2300 struct dentry *dentry, umode_t mode, bool excl)
2303 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2306 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2307 dir->i_sb->s_id, dir->i_ino, dentry);
2309 attr.ia_mode = mode;
2310 attr.ia_valid = ATTR_MODE;
2312 trace_nfs_create_enter(dir, dentry, open_flags);
2313 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2314 trace_nfs_create_exit(dir, dentry, open_flags, error);
2322 EXPORT_SYMBOL_GPL(nfs_create);
2325 * See comments for nfs_proc_create regarding failed operations.
2328 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2329 struct dentry *dentry, umode_t mode, dev_t rdev)
2334 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2335 dir->i_sb->s_id, dir->i_ino, dentry);
2337 attr.ia_mode = mode;
2338 attr.ia_valid = ATTR_MODE;
2340 trace_nfs_mknod_enter(dir, dentry);
2341 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2342 trace_nfs_mknod_exit(dir, dentry, status);
2350 EXPORT_SYMBOL_GPL(nfs_mknod);
2353 * See comments for nfs_proc_create regarding failed operations.
2355 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2356 struct dentry *dentry, umode_t mode)
2361 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2362 dir->i_sb->s_id, dir->i_ino, dentry);
2364 attr.ia_valid = ATTR_MODE;
2365 attr.ia_mode = mode | S_IFDIR;
2367 trace_nfs_mkdir_enter(dir, dentry);
2368 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2369 trace_nfs_mkdir_exit(dir, dentry, error);
2377 EXPORT_SYMBOL_GPL(nfs_mkdir);
2379 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2381 if (simple_positive(dentry))
2385 static void nfs_dentry_remove_handle_error(struct inode *dir,
2386 struct dentry *dentry, int error)
2390 if (d_really_is_positive(dentry))
2392 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2395 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2396 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2400 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2404 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2405 dir->i_sb->s_id, dir->i_ino, dentry);
2407 trace_nfs_rmdir_enter(dir, dentry);
2408 if (d_really_is_positive(dentry)) {
2409 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2410 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2411 /* Ensure the VFS deletes this inode */
2414 clear_nlink(d_inode(dentry));
2417 nfs_dentry_handle_enoent(dentry);
2419 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2421 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2422 nfs_dentry_remove_handle_error(dir, dentry, error);
2423 trace_nfs_rmdir_exit(dir, dentry, error);
2427 EXPORT_SYMBOL_GPL(nfs_rmdir);
2430 * Remove a file after making sure there are no pending writes,
2431 * and after checking that the file has only one user.
2433 * We invalidate the attribute cache and free the inode prior to the operation
2434 * to avoid possible races if the server reuses the inode.
2436 static int nfs_safe_remove(struct dentry *dentry)
2438 struct inode *dir = d_inode(dentry->d_parent);
2439 struct inode *inode = d_inode(dentry);
2442 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2444 /* If the dentry was sillyrenamed, we simply call d_delete() */
2445 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2450 trace_nfs_remove_enter(dir, dentry);
2451 if (inode != NULL) {
2452 error = NFS_PROTO(dir)->remove(dir, dentry);
2454 nfs_drop_nlink(inode);
2456 error = NFS_PROTO(dir)->remove(dir, dentry);
2457 if (error == -ENOENT)
2458 nfs_dentry_handle_enoent(dentry);
2459 trace_nfs_remove_exit(dir, dentry, error);
2464 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2465 * belongs to an active ".nfs..." file and we return -EBUSY.
2467 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2469 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2473 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2474 dir->i_ino, dentry);
2476 trace_nfs_unlink_enter(dir, dentry);
2477 spin_lock(&dentry->d_lock);
2478 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2479 &NFS_I(d_inode(dentry))->flags)) {
2480 spin_unlock(&dentry->d_lock);
2481 /* Start asynchronous writeout of the inode */
2482 write_inode_now(d_inode(dentry), 0);
2483 error = nfs_sillyrename(dir, dentry);
2486 /* We must prevent any concurrent open until the unlink
2487 * completes. ->d_revalidate will wait for ->d_fsdata
2488 * to clear. We set it here to ensure no lookup succeeds until
2489 * the unlink is complete on the server.
2492 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2493 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2494 spin_unlock(&dentry->d_lock);
2498 kfree(dentry->d_fsdata);
2499 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2501 spin_unlock(&dentry->d_lock);
2502 error = nfs_safe_remove(dentry);
2503 nfs_dentry_remove_handle_error(dir, dentry, error);
2504 dentry->d_fsdata = NULL;
2505 wake_up_var(&dentry->d_fsdata);
2507 trace_nfs_unlink_exit(dir, dentry, error);
2510 EXPORT_SYMBOL_GPL(nfs_unlink);
2513 * To create a symbolic link, most file systems instantiate a new inode,
2514 * add a page to it containing the path, then write it out to the disk
2515 * using prepare_write/commit_write.
2517 * Unfortunately the NFS client can't create the in-core inode first
2518 * because it needs a file handle to create an in-core inode (see
2519 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2520 * symlink request has completed on the server.
2522 * So instead we allocate a raw page, copy the symname into it, then do
2523 * the SYMLINK request with the page as the buffer. If it succeeds, we
2524 * now have a new file handle and can instantiate an in-core NFS inode
2525 * and move the raw page into its mapping.
2527 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2528 struct dentry *dentry, const char *symname)
2533 unsigned int pathlen = strlen(symname);
2536 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2537 dir->i_ino, dentry, symname);
2539 if (pathlen > PAGE_SIZE)
2540 return -ENAMETOOLONG;
2542 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2543 attr.ia_valid = ATTR_MODE;
2545 page = alloc_page(GFP_USER);
2549 kaddr = page_address(page);
2550 memcpy(kaddr, symname, pathlen);
2551 if (pathlen < PAGE_SIZE)
2552 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2554 trace_nfs_symlink_enter(dir, dentry);
2555 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2556 trace_nfs_symlink_exit(dir, dentry, error);
2558 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2559 dir->i_sb->s_id, dir->i_ino,
2560 dentry, symname, error);
2566 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2569 * No big deal if we can't add this page to the page cache here.
2570 * READLINK will get the missing page from the server if needed.
2572 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2574 SetPageUptodate(page);
2577 * add_to_page_cache_lru() grabs an extra page refcount.
2578 * Drop it here to avoid leaking this page later.
2586 EXPORT_SYMBOL_GPL(nfs_symlink);
2589 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2591 struct inode *inode = d_inode(old_dentry);
2594 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2595 old_dentry, dentry);
2597 trace_nfs_link_enter(inode, dir, dentry);
2599 if (S_ISREG(inode->i_mode))
2600 nfs_sync_inode(inode);
2601 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2603 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2605 d_add(dentry, inode);
2607 trace_nfs_link_exit(inode, dir, dentry, error);
2610 EXPORT_SYMBOL_GPL(nfs_link);
2613 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2615 struct dentry *new_dentry = data->new_dentry;
2617 new_dentry->d_fsdata = NULL;
2618 wake_up_var(&new_dentry->d_fsdata);
2623 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2624 * different file handle for the same inode after a rename (e.g. when
2625 * moving to a different directory). A fail-safe method to do so would
2626 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2627 * rename the old file using the sillyrename stuff. This way, the original
2628 * file in old_dir will go away when the last process iput()s the inode.
2632 * It actually works quite well. One needs to have the possibility for
2633 * at least one ".nfs..." file in each directory the file ever gets
2634 * moved or linked to which happens automagically with the new
2635 * implementation that only depends on the dcache stuff instead of
2636 * using the inode layer
2638 * Unfortunately, things are a little more complicated than indicated
2639 * above. For a cross-directory move, we want to make sure we can get
2640 * rid of the old inode after the operation. This means there must be
2641 * no pending writes (if it's a file), and the use count must be 1.
2642 * If these conditions are met, we can drop the dentries before doing
2645 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2646 struct dentry *old_dentry, struct inode *new_dir,
2647 struct dentry *new_dentry, unsigned int flags)
2649 struct inode *old_inode = d_inode(old_dentry);
2650 struct inode *new_inode = d_inode(new_dentry);
2651 struct dentry *dentry = NULL;
2652 struct rpc_task *task;
2653 bool must_unblock = false;
2659 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2660 old_dentry, new_dentry,
2661 d_count(new_dentry));
2663 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2665 * For non-directories, check whether the target is busy and if so,
2666 * make a copy of the dentry and then do a silly-rename. If the
2667 * silly-rename succeeds, the copied dentry is hashed and becomes
2670 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2671 /* We must prevent any concurrent open until the unlink
2672 * completes. ->d_revalidate will wait for ->d_fsdata
2673 * to clear. We set it here to ensure no lookup succeeds until
2674 * the unlink is complete on the server.
2677 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2678 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2680 if (new_dentry->d_fsdata) {
2682 kfree(new_dentry->d_fsdata);
2683 new_dentry->d_fsdata = NULL;
2686 spin_lock(&new_dentry->d_lock);
2687 if (d_count(new_dentry) > 2) {
2690 spin_unlock(&new_dentry->d_lock);
2692 /* copy the target dentry's name */
2693 dentry = d_alloc(new_dentry->d_parent,
2694 &new_dentry->d_name);
2698 /* silly-rename the existing target ... */
2699 err = nfs_sillyrename(new_dir, new_dentry);
2703 new_dentry = dentry;
2706 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2707 must_unblock = true;
2708 spin_unlock(&new_dentry->d_lock);
2713 if (S_ISREG(old_inode->i_mode))
2714 nfs_sync_inode(old_inode);
2715 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2716 must_unblock ? nfs_unblock_rename : NULL);
2718 error = PTR_ERR(task);
2722 error = rpc_wait_for_completion_task(task);
2724 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2725 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2728 error = task->tk_status;
2730 /* Ensure the inode attributes are revalidated */
2732 spin_lock(&old_inode->i_lock);
2733 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2734 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2735 NFS_INO_INVALID_CTIME |
2736 NFS_INO_REVAL_FORCED);
2737 spin_unlock(&old_inode->i_lock);
2740 trace_nfs_rename_exit(old_dir, old_dentry,
2741 new_dir, new_dentry, error);
2743 if (new_inode != NULL)
2744 nfs_drop_nlink(new_inode);
2746 * The d_move() should be here instead of in an async RPC completion
2747 * handler because we need the proper locks to move the dentry. If
2748 * we're interrupted by a signal, the async RPC completion handler
2749 * should mark the directories for revalidation.
2751 d_move(old_dentry, new_dentry);
2752 nfs_set_verifier(old_dentry,
2753 nfs_save_change_attribute(new_dir));
2754 } else if (error == -ENOENT)
2755 nfs_dentry_handle_enoent(old_dentry);
2757 /* new dentry created? */
2762 EXPORT_SYMBOL_GPL(nfs_rename);
2764 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2765 static LIST_HEAD(nfs_access_lru_list);
2766 static atomic_long_t nfs_access_nr_entries;
2768 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2769 module_param(nfs_access_max_cachesize, ulong, 0644);
2770 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2772 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2774 put_group_info(entry->group_info);
2775 kfree_rcu(entry, rcu_head);
2776 smp_mb__before_atomic();
2777 atomic_long_dec(&nfs_access_nr_entries);
2778 smp_mb__after_atomic();
2781 static void nfs_access_free_list(struct list_head *head)
2783 struct nfs_access_entry *cache;
2785 while (!list_empty(head)) {
2786 cache = list_entry(head->next, struct nfs_access_entry, lru);
2787 list_del(&cache->lru);
2788 nfs_access_free_entry(cache);
2792 static unsigned long
2793 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2796 struct nfs_inode *nfsi, *next;
2797 struct nfs_access_entry *cache;
2800 spin_lock(&nfs_access_lru_lock);
2801 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2802 struct inode *inode;
2804 if (nr_to_scan-- == 0)
2806 inode = &nfsi->vfs_inode;
2807 spin_lock(&inode->i_lock);
2808 if (list_empty(&nfsi->access_cache_entry_lru))
2809 goto remove_lru_entry;
2810 cache = list_entry(nfsi->access_cache_entry_lru.next,
2811 struct nfs_access_entry, lru);
2812 list_move(&cache->lru, &head);
2813 rb_erase(&cache->rb_node, &nfsi->access_cache);
2815 if (!list_empty(&nfsi->access_cache_entry_lru))
2816 list_move_tail(&nfsi->access_cache_inode_lru,
2817 &nfs_access_lru_list);
2820 list_del_init(&nfsi->access_cache_inode_lru);
2821 smp_mb__before_atomic();
2822 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2823 smp_mb__after_atomic();
2825 spin_unlock(&inode->i_lock);
2827 spin_unlock(&nfs_access_lru_lock);
2828 nfs_access_free_list(&head);
2833 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2835 int nr_to_scan = sc->nr_to_scan;
2836 gfp_t gfp_mask = sc->gfp_mask;
2838 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2840 return nfs_do_access_cache_scan(nr_to_scan);
2845 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2847 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2851 nfs_access_cache_enforce_limit(void)
2853 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2855 unsigned int nr_to_scan;
2857 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2860 diff = nr_entries - nfs_access_max_cachesize;
2861 if (diff < nr_to_scan)
2863 nfs_do_access_cache_scan(nr_to_scan);
2866 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2868 struct rb_root *root_node = &nfsi->access_cache;
2870 struct nfs_access_entry *entry;
2872 /* Unhook entries from the cache */
2873 while ((n = rb_first(root_node)) != NULL) {
2874 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2875 rb_erase(n, root_node);
2876 list_move(&entry->lru, head);
2878 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2881 void nfs_access_zap_cache(struct inode *inode)
2885 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2887 /* Remove from global LRU init */
2888 spin_lock(&nfs_access_lru_lock);
2889 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2890 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2892 spin_lock(&inode->i_lock);
2893 __nfs_access_zap_cache(NFS_I(inode), &head);
2894 spin_unlock(&inode->i_lock);
2895 spin_unlock(&nfs_access_lru_lock);
2896 nfs_access_free_list(&head);
2898 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2900 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2902 struct group_info *ga, *gb;
2905 if (uid_lt(a->fsuid, b->fsuid))
2907 if (uid_gt(a->fsuid, b->fsuid))
2910 if (gid_lt(a->fsgid, b->fsgid))
2912 if (gid_gt(a->fsgid, b->fsgid))
2923 if (ga->ngroups < gb->ngroups)
2925 if (ga->ngroups > gb->ngroups)
2928 for (g = 0; g < ga->ngroups; g++) {
2929 if (gid_lt(ga->gid[g], gb->gid[g]))
2931 if (gid_gt(ga->gid[g], gb->gid[g]))
2937 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2939 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2942 struct nfs_access_entry *entry =
2943 rb_entry(n, struct nfs_access_entry, rb_node);
2944 int cmp = access_cmp(cred, entry);
2956 static u64 nfs_access_login_time(const struct task_struct *task,
2957 const struct cred *cred)
2959 const struct task_struct *parent;
2964 parent = rcu_dereference(task->real_parent);
2965 if (parent == task || cred_fscmp(parent->cred, cred) != 0)
2969 ret = task->start_time;
2974 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2976 struct nfs_inode *nfsi = NFS_I(inode);
2977 u64 login_time = nfs_access_login_time(current, cred);
2978 struct nfs_access_entry *cache;
2982 spin_lock(&inode->i_lock);
2984 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2986 cache = nfs_access_search_rbtree(inode, cred);
2990 /* Found an entry, is our attribute cache valid? */
2991 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2998 spin_unlock(&inode->i_lock);
2999 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002 spin_lock(&inode->i_lock);
3006 if ((s64)(login_time - cache->timestamp) > 0)
3008 *mask = cache->mask;
3009 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3012 spin_unlock(&inode->i_lock);
3015 spin_unlock(&inode->i_lock);
3016 nfs_access_zap_cache(inode);
3020 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3022 /* Only check the most recently returned cache entry,
3023 * but do it without locking.
3025 struct nfs_inode *nfsi = NFS_I(inode);
3026 struct nfs_access_entry *cache;
3028 struct list_head *lh;
3031 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3033 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3034 cache = list_entry(lh, struct nfs_access_entry, lru);
3035 if (lh == &nfsi->access_cache_entry_lru ||
3036 access_cmp(cred, cache) != 0)
3040 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3042 *mask = cache->mask;
3049 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3050 u32 *mask, bool may_block)
3054 status = nfs_access_get_cached_rcu(inode, cred, mask);
3056 status = nfs_access_get_cached_locked(inode, cred, mask,
3061 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3063 static void nfs_access_add_rbtree(struct inode *inode,
3064 struct nfs_access_entry *set,
3065 const struct cred *cred)
3067 struct nfs_inode *nfsi = NFS_I(inode);
3068 struct rb_root *root_node = &nfsi->access_cache;
3069 struct rb_node **p = &root_node->rb_node;
3070 struct rb_node *parent = NULL;
3071 struct nfs_access_entry *entry;
3074 spin_lock(&inode->i_lock);
3075 while (*p != NULL) {
3077 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3078 cmp = access_cmp(cred, entry);
3081 p = &parent->rb_left;
3083 p = &parent->rb_right;
3087 set->timestamp = ktime_get_ns();
3088 rb_link_node(&set->rb_node, parent, p);
3089 rb_insert_color(&set->rb_node, root_node);
3090 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3091 spin_unlock(&inode->i_lock);
3094 rb_replace_node(parent, &set->rb_node, root_node);
3095 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3096 list_del(&entry->lru);
3097 spin_unlock(&inode->i_lock);
3098 nfs_access_free_entry(entry);
3101 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3102 const struct cred *cred)
3104 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3107 RB_CLEAR_NODE(&cache->rb_node);
3108 cache->fsuid = cred->fsuid;
3109 cache->fsgid = cred->fsgid;
3110 cache->group_info = get_group_info(cred->group_info);
3111 cache->mask = set->mask;
3113 /* The above field assignments must be visible
3114 * before this item appears on the lru. We cannot easily
3115 * use rcu_assign_pointer, so just force the memory barrier.
3118 nfs_access_add_rbtree(inode, cache, cred);
3120 /* Update accounting */
3121 smp_mb__before_atomic();
3122 atomic_long_inc(&nfs_access_nr_entries);
3123 smp_mb__after_atomic();
3125 /* Add inode to global LRU list */
3126 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3127 spin_lock(&nfs_access_lru_lock);
3128 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3129 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3130 &nfs_access_lru_list);
3131 spin_unlock(&nfs_access_lru_lock);
3133 nfs_access_cache_enforce_limit();
3135 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3137 #define NFS_MAY_READ (NFS_ACCESS_READ)
3138 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3139 NFS_ACCESS_EXTEND | \
3141 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3143 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3144 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3145 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3147 nfs_access_calc_mask(u32 access_result, umode_t umode)
3151 if (access_result & NFS_MAY_READ)
3153 if (S_ISDIR(umode)) {
3154 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3156 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3158 } else if (S_ISREG(umode)) {
3159 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3161 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3163 } else if (access_result & NFS_MAY_WRITE)
3168 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3170 entry->mask = access_result;
3172 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3174 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3176 struct nfs_access_entry cache;
3177 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3178 int cache_mask = -1;
3181 trace_nfs_access_enter(inode);
3183 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3192 * Determine which access bits we want to ask for...
3194 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3195 nfs_access_xattr_mask(NFS_SERVER(inode));
3196 if (S_ISDIR(inode->i_mode))
3197 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3199 cache.mask |= NFS_ACCESS_EXECUTE;
3200 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3202 if (status == -ESTALE) {
3203 if (!S_ISDIR(inode->i_mode))
3204 nfs_set_inode_stale(inode);
3206 nfs_zap_caches(inode);
3210 nfs_access_add_cache(inode, &cache, cred);
3212 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3213 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3216 trace_nfs_access_exit(inode, mask, cache_mask, status);
3220 static int nfs_open_permission_mask(int openflags)
3224 if (openflags & __FMODE_EXEC) {
3225 /* ONLY check exec rights */
3228 if ((openflags & O_ACCMODE) != O_WRONLY)
3230 if ((openflags & O_ACCMODE) != O_RDONLY)
3237 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3239 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3241 EXPORT_SYMBOL_GPL(nfs_may_open);
3243 static int nfs_execute_ok(struct inode *inode, int mask)
3245 struct nfs_server *server = NFS_SERVER(inode);
3248 if (S_ISDIR(inode->i_mode))
3250 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3251 if (mask & MAY_NOT_BLOCK)
3253 ret = __nfs_revalidate_inode(server, inode);
3255 if (ret == 0 && !execute_ok(inode))
3260 int nfs_permission(struct user_namespace *mnt_userns,
3261 struct inode *inode,
3264 const struct cred *cred = current_cred();
3267 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3269 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3271 /* Is this sys_access() ? */
3272 if (mask & (MAY_ACCESS | MAY_CHDIR))
3275 switch (inode->i_mode & S_IFMT) {
3279 if ((mask & MAY_OPEN) &&
3280 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3285 * Optimize away all write operations, since the server
3286 * will check permissions when we perform the op.
3288 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3293 if (!NFS_PROTO(inode)->access)
3296 res = nfs_do_access(inode, cred, mask);
3298 if (!res && (mask & MAY_EXEC))
3299 res = nfs_execute_ok(inode, mask);
3301 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3302 inode->i_sb->s_id, inode->i_ino, mask, res);
3305 if (mask & MAY_NOT_BLOCK)
3308 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3309 NFS_INO_INVALID_OTHER);
3311 res = generic_permission(&init_user_ns, inode, mask);
3314 EXPORT_SYMBOL_GPL(nfs_permission);