1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 struct ubifs_data_node *dn)
48 struct ubifs_info *c = inode->i_sb->s_fs_info;
49 int err, len, out_len;
53 data_key_init(c, &key, inode->i_ino, block);
54 err = ubifs_tnc_lookup(c, &key, dn);
57 /* Not found, so it must be a hole */
58 memset(addr, 0, UBIFS_BLOCK_SIZE);
62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 ubifs_inode(inode)->creat_sqnum);
64 len = le32_to_cpu(dn->size);
65 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
70 if (IS_ENCRYPTED(inode)) {
71 err = ubifs_decrypt(inode, dn, &dlen, block);
76 out_len = UBIFS_BLOCK_SIZE;
77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 le16_to_cpu(dn->compr_type));
79 if (err || len != out_len)
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
87 if (len < UBIFS_BLOCK_SIZE)
88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
93 ubifs_err(c, "bad data node (block %u, inode %lu)",
95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
99 static int do_readpage(struct page *page)
103 unsigned int block, beyond;
104 struct ubifs_data_node *dn;
105 struct inode *inode = page->mapping->host;
106 struct ubifs_info *c = inode->i_sb->s_fs_info;
107 loff_t i_size = i_size_read(inode);
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode->i_ino, page->index, i_size, page->flags);
111 ubifs_assert(c, !PageChecked(page));
112 ubifs_assert(c, !PagePrivate(page));
116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 if (block >= beyond) {
119 /* Reading beyond inode */
120 SetPageChecked(page);
121 memset(addr, 0, PAGE_SIZE);
125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
135 if (block >= beyond) {
136 /* Reading beyond inode */
138 memset(addr, 0, UBIFS_BLOCK_SIZE);
140 ret = read_block(inode, addr, block, dn);
145 } else if (block + 1 == beyond) {
146 int dlen = le32_to_cpu(dn->size);
147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
149 if (ilen && ilen < dlen)
150 memset(addr + ilen, 0, dlen - ilen);
153 if (++i >= UBIFS_BLOCKS_PER_PAGE)
156 addr += UBIFS_BLOCK_SIZE;
159 struct ubifs_info *c = inode->i_sb->s_fs_info;
160 if (err == -ENOENT) {
161 /* Not found, so it must be a hole */
162 SetPageChecked(page);
166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 page->index, inode->i_ino, err);
174 SetPageUptodate(page);
175 ClearPageError(page);
176 flush_dcache_page(page);
182 ClearPageUptodate(page);
184 flush_dcache_page(page);
190 * release_new_page_budget - release budget of a new page.
191 * @c: UBIFS file-system description object
193 * This is a helper function which releases budget corresponding to the budget
194 * of one new page of data.
196 static void release_new_page_budget(struct ubifs_info *c)
198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
200 ubifs_release_budget(c, &req);
204 * release_existing_page_budget - release budget of an existing page.
205 * @c: UBIFS file-system description object
207 * This is a helper function which releases budget corresponding to the budget
208 * of changing one page of data which already exists on the flash media.
210 static void release_existing_page_budget(struct ubifs_info *c)
212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
214 ubifs_release_budget(c, &req);
217 static int write_begin_slow(struct address_space *mapping,
218 loff_t pos, unsigned len, struct page **pagep)
220 struct inode *inode = mapping->host;
221 struct ubifs_info *c = inode->i_sb->s_fs_info;
222 pgoff_t index = pos >> PAGE_SHIFT;
223 struct ubifs_budget_req req = { .new_page = 1 };
224 int err, appending = !!(pos + len > inode->i_size);
227 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
228 inode->i_ino, pos, len, inode->i_size);
231 * At the slow path we have to budget before locking the page, because
232 * budgeting may force write-back, which would wait on locked pages and
233 * deadlock if we had the page locked. At this point we do not know
234 * anything about the page, so assume that this is a new page which is
235 * written to a hole. This corresponds to largest budget. Later the
236 * budget will be amended if this is not true.
239 /* We are appending data, budget for inode change */
242 err = ubifs_budget_space(c, &req);
246 page = grab_cache_page_write_begin(mapping, index);
247 if (unlikely(!page)) {
248 ubifs_release_budget(c, &req);
252 if (!PageUptodate(page)) {
253 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
254 SetPageChecked(page);
256 err = do_readpage(page);
260 ubifs_release_budget(c, &req);
265 SetPageUptodate(page);
266 ClearPageError(page);
269 if (PagePrivate(page))
271 * The page is dirty, which means it was budgeted twice:
272 * o first time the budget was allocated by the task which
273 * made the page dirty and set the PG_private flag;
274 * o and then we budgeted for it for the second time at the
275 * very beginning of this function.
277 * So what we have to do is to release the page budget we
280 release_new_page_budget(c);
281 else if (!PageChecked(page))
283 * We are changing a page which already exists on the media.
284 * This means that changing the page does not make the amount
285 * of indexing information larger, and this part of the budget
286 * which we have already acquired may be released.
288 ubifs_convert_page_budget(c);
291 struct ubifs_inode *ui = ubifs_inode(inode);
294 * 'ubifs_write_end()' is optimized from the fast-path part of
295 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
296 * if data is appended.
298 mutex_lock(&ui->ui_mutex);
301 * The inode is dirty already, so we may free the
302 * budget we allocated.
304 ubifs_release_dirty_inode_budget(c, ui);
312 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
313 * @c: UBIFS file-system description object
314 * @page: page to allocate budget for
315 * @ui: UBIFS inode object the page belongs to
316 * @appending: non-zero if the page is appended
318 * This is a helper function for 'ubifs_write_begin()' which allocates budget
319 * for the operation. The budget is allocated differently depending on whether
320 * this is appending, whether the page is dirty or not, and so on. This
321 * function leaves the @ui->ui_mutex locked in case of appending.
323 * Returns: %0 in case of success and %-ENOSPC in case of failure.
325 static int allocate_budget(struct ubifs_info *c, struct page *page,
326 struct ubifs_inode *ui, int appending)
328 struct ubifs_budget_req req = { .fast = 1 };
330 if (PagePrivate(page)) {
333 * The page is dirty and we are not appending, which
334 * means no budget is needed at all.
338 mutex_lock(&ui->ui_mutex);
341 * The page is dirty and we are appending, so the inode
342 * has to be marked as dirty. However, it is already
343 * dirty, so we do not need any budget. We may return,
344 * but @ui->ui_mutex hast to be left locked because we
345 * should prevent write-back from flushing the inode
346 * and freeing the budget. The lock will be released in
347 * 'ubifs_write_end()'.
352 * The page is dirty, we are appending, the inode is clean, so
353 * we need to budget the inode change.
357 if (PageChecked(page))
359 * The page corresponds to a hole and does not
360 * exist on the media. So changing it makes
361 * make the amount of indexing information
362 * larger, and we have to budget for a new
368 * Not a hole, the change will not add any new
369 * indexing information, budget for page
372 req.dirtied_page = 1;
375 mutex_lock(&ui->ui_mutex);
378 * The inode is clean but we will have to mark
379 * it as dirty because we are appending. This
386 return ubifs_budget_space(c, &req);
390 * This function is called when a page of data is going to be written. Since
391 * the page of data will not necessarily go to the flash straight away, UBIFS
392 * has to reserve space on the media for it, which is done by means of
395 * This is the hot-path of the file-system and we are trying to optimize it as
396 * much as possible. For this reasons it is split on 2 parts - slow and fast.
398 * There many budgeting cases:
399 * o a new page is appended - we have to budget for a new page and for
400 * changing the inode; however, if the inode is already dirty, there is
401 * no need to budget for it;
402 * o an existing clean page is changed - we have budget for it; if the page
403 * does not exist on the media (a hole), we have to budget for a new
404 * page; otherwise, we may budget for changing an existing page; the
405 * difference between these cases is that changing an existing page does
406 * not introduce anything new to the FS indexing information, so it does
407 * not grow, and smaller budget is acquired in this case;
408 * o an existing dirty page is changed - no need to budget at all, because
409 * the page budget has been acquired by earlier, when the page has been
412 * UBIFS budgeting sub-system may force write-back if it thinks there is no
413 * space to reserve. This imposes some locking restrictions and makes it
414 * impossible to take into account the above cases, and makes it impossible to
415 * optimize budgeting.
417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
418 * there is a plenty of flash space and the budget will be acquired quickly,
419 * without forcing write-back. The slow path does not make this assumption.
421 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
422 loff_t pos, unsigned len,
423 struct page **pagep, void **fsdata)
425 struct inode *inode = mapping->host;
426 struct ubifs_info *c = inode->i_sb->s_fs_info;
427 struct ubifs_inode *ui = ubifs_inode(inode);
428 pgoff_t index = pos >> PAGE_SHIFT;
429 int err, appending = !!(pos + len > inode->i_size);
430 int skipped_read = 0;
433 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
434 ubifs_assert(c, !c->ro_media && !c->ro_mount);
436 if (unlikely(c->ro_error))
439 /* Try out the fast-path part first */
440 page = grab_cache_page_write_begin(mapping, index);
444 if (!PageUptodate(page)) {
445 /* The page is not loaded from the flash */
446 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
448 * We change whole page so no need to load it. But we
449 * do not know whether this page exists on the media or
450 * not, so we assume the latter because it requires
451 * larger budget. The assumption is that it is better
452 * to budget a bit more than to read the page from the
453 * media. Thus, we are setting the @PG_checked flag
456 SetPageChecked(page);
459 err = do_readpage(page);
467 SetPageUptodate(page);
468 ClearPageError(page);
471 err = allocate_budget(c, page, ui, appending);
473 ubifs_assert(c, err == -ENOSPC);
475 * If we skipped reading the page because we were going to
476 * write all of it, then it is not up to date.
479 ClearPageChecked(page);
480 ClearPageUptodate(page);
483 * Budgeting failed which means it would have to force
484 * write-back but didn't, because we set the @fast flag in the
485 * request. Write-back cannot be done now, while we have the
486 * page locked, because it would deadlock. Unlock and free
487 * everything and fall-back to slow-path.
490 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
491 mutex_unlock(&ui->ui_mutex);
496 return write_begin_slow(mapping, pos, len, pagep);
500 * Whee, we acquired budgeting quickly - without involving
501 * garbage-collection, committing or forcing write-back. We return
502 * with @ui->ui_mutex locked if we are appending pages, and unlocked
503 * otherwise. This is an optimization (slightly hacky though).
511 * cancel_budget - cancel budget.
512 * @c: UBIFS file-system description object
513 * @page: page to cancel budget for
514 * @ui: UBIFS inode object the page belongs to
515 * @appending: non-zero if the page is appended
517 * This is a helper function for a page write operation. It unlocks the
518 * @ui->ui_mutex in case of appending.
520 static void cancel_budget(struct ubifs_info *c, struct page *page,
521 struct ubifs_inode *ui, int appending)
525 ubifs_release_dirty_inode_budget(c, ui);
526 mutex_unlock(&ui->ui_mutex);
528 if (!PagePrivate(page)) {
529 if (PageChecked(page))
530 release_new_page_budget(c);
532 release_existing_page_budget(c);
536 static int ubifs_write_end(struct file *file, struct address_space *mapping,
537 loff_t pos, unsigned len, unsigned copied,
538 struct page *page, void *fsdata)
540 struct inode *inode = mapping->host;
541 struct ubifs_inode *ui = ubifs_inode(inode);
542 struct ubifs_info *c = inode->i_sb->s_fs_info;
543 loff_t end_pos = pos + len;
544 int appending = !!(end_pos > inode->i_size);
546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
547 inode->i_ino, pos, page->index, len, copied, inode->i_size);
549 if (unlikely(copied < len && len == PAGE_SIZE)) {
551 * VFS copied less data to the page that it intended and
552 * declared in its '->write_begin()' call via the @len
553 * argument. If the page was not up-to-date, and @len was
554 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
555 * not load it from the media (for optimization reasons). This
556 * means that part of the page contains garbage. So read the
559 dbg_gen("copied %d instead of %d, read page and repeat",
561 cancel_budget(c, page, ui, appending);
562 ClearPageChecked(page);
565 * Return 0 to force VFS to repeat the whole operation, or the
566 * error code if 'do_readpage()' fails.
568 copied = do_readpage(page);
572 if (!PagePrivate(page)) {
573 attach_page_private(page, (void *)1);
574 atomic_long_inc(&c->dirty_pg_cnt);
575 __set_page_dirty_nobuffers(page);
579 i_size_write(inode, end_pos);
580 ui->ui_size = end_pos;
582 * Note, we do not set @I_DIRTY_PAGES (which means that the
583 * inode has dirty pages), this has been done in
584 * '__set_page_dirty_nobuffers()'.
586 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
587 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
588 mutex_unlock(&ui->ui_mutex);
598 * populate_page - copy data nodes into a page for bulk-read.
599 * @c: UBIFS file-system description object
601 * @bu: bulk-read information
602 * @n: next zbranch slot
604 * Returns: %0 on success and a negative error code on failure.
606 static int populate_page(struct ubifs_info *c, struct page *page,
607 struct bu_info *bu, int *n)
609 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
610 struct inode *inode = page->mapping->host;
611 loff_t i_size = i_size_read(inode);
612 unsigned int page_block;
616 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
617 inode->i_ino, page->index, i_size, page->flags);
619 addr = zaddr = kmap(page);
621 end_index = (i_size - 1) >> PAGE_SHIFT;
622 if (!i_size || page->index > end_index) {
624 memset(addr, 0, PAGE_SIZE);
628 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
630 int err, len, out_len, dlen;
634 memset(addr, 0, UBIFS_BLOCK_SIZE);
635 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
636 struct ubifs_data_node *dn;
638 dn = bu->buf + (bu->zbranch[nn].offs - offs);
640 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
641 ubifs_inode(inode)->creat_sqnum);
643 len = le32_to_cpu(dn->size);
644 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
647 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
648 out_len = UBIFS_BLOCK_SIZE;
650 if (IS_ENCRYPTED(inode)) {
651 err = ubifs_decrypt(inode, dn, &dlen, page_block);
656 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
657 le16_to_cpu(dn->compr_type));
658 if (err || len != out_len)
661 if (len < UBIFS_BLOCK_SIZE)
662 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
665 read = (i << UBIFS_BLOCK_SHIFT) + len;
666 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
671 memset(addr, 0, UBIFS_BLOCK_SIZE);
673 if (++i >= UBIFS_BLOCKS_PER_PAGE)
675 addr += UBIFS_BLOCK_SIZE;
679 if (end_index == page->index) {
680 int len = i_size & (PAGE_SIZE - 1);
682 if (len && len < read)
683 memset(zaddr + len, 0, read - len);
688 SetPageChecked(page);
692 SetPageUptodate(page);
693 ClearPageError(page);
694 flush_dcache_page(page);
700 ClearPageUptodate(page);
702 flush_dcache_page(page);
704 ubifs_err(c, "bad data node (block %u, inode %lu)",
705 page_block, inode->i_ino);
710 * ubifs_do_bulk_read - do bulk-read.
711 * @c: UBIFS file-system description object
712 * @bu: bulk-read information
713 * @page1: first page to read
715 * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
717 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
720 pgoff_t offset = page1->index, end_index;
721 struct address_space *mapping = page1->mapping;
722 struct inode *inode = mapping->host;
723 struct ubifs_inode *ui = ubifs_inode(inode);
724 int err, page_idx, page_cnt, ret = 0, n = 0;
725 int allocate = bu->buf ? 0 : 1;
727 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
729 err = ubifs_tnc_get_bu_keys(c, bu);
734 /* Turn off bulk-read at the end of the file */
735 ui->read_in_a_row = 1;
739 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
742 * This happens when there are multiple blocks per page and the
743 * blocks for the first page we are looking for, are not
744 * together. If all the pages were like this, bulk-read would
745 * reduce performance, so we turn it off for a while.
753 * Allocate bulk-read buffer depending on how many data
754 * nodes we are going to read.
756 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
757 bu->zbranch[bu->cnt - 1].len -
759 ubifs_assert(c, bu->buf_len > 0);
760 ubifs_assert(c, bu->buf_len <= c->leb_size);
761 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
766 err = ubifs_tnc_bulk_read(c, bu);
771 err = populate_page(c, page1, bu, &n);
778 isize = i_size_read(inode);
781 end_index = ((isize - 1) >> PAGE_SHIFT);
783 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
784 pgoff_t page_offset = offset + page_idx;
787 if (page_offset > end_index)
789 page = pagecache_get_page(mapping, page_offset,
790 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
794 if (!PageUptodate(page))
795 err = populate_page(c, page, bu, &n);
802 ui->last_page_read = offset + page_idx - 1;
810 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
814 ui->read_in_a_row = ui->bulk_read = 0;
819 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
820 * @page: page from which to start bulk-read.
822 * Some flash media are capable of reading sequentially at faster rates. UBIFS
823 * bulk-read facility is designed to take advantage of that, by reading in one
824 * go consecutive data nodes that are also located consecutively in the same
827 * Returns: %1 if a bulk-read is done and %0 otherwise.
829 static int ubifs_bulk_read(struct page *page)
831 struct inode *inode = page->mapping->host;
832 struct ubifs_info *c = inode->i_sb->s_fs_info;
833 struct ubifs_inode *ui = ubifs_inode(inode);
834 pgoff_t index = page->index, last_page_read = ui->last_page_read;
836 int err = 0, allocated = 0;
838 ui->last_page_read = index;
843 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
844 * so don't bother if we cannot lock the mutex.
846 if (!mutex_trylock(&ui->ui_mutex))
849 if (index != last_page_read + 1) {
850 /* Turn off bulk-read if we stop reading sequentially */
851 ui->read_in_a_row = 1;
857 if (!ui->bulk_read) {
858 ui->read_in_a_row += 1;
859 if (ui->read_in_a_row < 3)
861 /* Three reads in a row, so switch on bulk-read */
866 * If possible, try to use pre-allocated bulk-read information, which
867 * is protected by @c->bu_mutex.
869 if (mutex_trylock(&c->bu_mutex))
872 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
880 bu->buf_len = c->max_bu_buf_len;
881 data_key_init(c, &bu->key, inode->i_ino,
882 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
883 err = ubifs_do_bulk_read(c, bu, page);
886 mutex_unlock(&c->bu_mutex);
891 mutex_unlock(&ui->ui_mutex);
895 static int ubifs_read_folio(struct file *file, struct folio *folio)
897 struct page *page = &folio->page;
899 if (ubifs_bulk_read(page))
906 static int do_writepage(struct page *page, int len)
908 int err = 0, i, blen;
912 struct inode *inode = page->mapping->host;
913 struct ubifs_info *c = inode->i_sb->s_fs_info;
916 struct ubifs_inode *ui = ubifs_inode(inode);
917 spin_lock(&ui->ui_lock);
918 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
919 spin_unlock(&ui->ui_lock);
922 /* Update radix tree tags */
923 set_page_writeback(page);
926 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
929 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
930 data_key_init(c, &key, inode->i_ino, block);
931 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
934 if (++i >= UBIFS_BLOCKS_PER_PAGE)
942 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
943 page->index, inode->i_ino, err);
944 ubifs_ro_mode(c, err);
947 ubifs_assert(c, PagePrivate(page));
948 if (PageChecked(page))
949 release_new_page_budget(c);
951 release_existing_page_budget(c);
953 atomic_long_dec(&c->dirty_pg_cnt);
954 detach_page_private(page);
955 ClearPageChecked(page);
959 end_page_writeback(page);
964 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
965 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
966 * situation when a we have an inode with size 0, then a megabyte of data is
967 * appended to the inode, then write-back starts and flushes some amount of the
968 * dirty pages, the journal becomes full, commit happens and finishes, and then
969 * an unclean reboot happens. When the file system is mounted next time, the
970 * inode size would still be 0, but there would be many pages which are beyond
971 * the inode size, they would be indexed and consume flash space. Because the
972 * journal has been committed, the replay would not be able to detect this
973 * situation and correct the inode size. This means UBIFS would have to scan
974 * whole index and correct all inode sizes, which is long an unacceptable.
976 * To prevent situations like this, UBIFS writes pages back only if they are
977 * within the last synchronized inode size, i.e. the size which has been
978 * written to the flash media last time. Otherwise, UBIFS forces inode
979 * write-back, thus making sure the on-flash inode contains current inode size,
980 * and then keeps writing pages back.
982 * Some locking issues explanation. 'ubifs_writepage()' first is called with
983 * the page locked, and it locks @ui_mutex. However, write-back does take inode
984 * @i_mutex, which means other VFS operations may be run on this inode at the
985 * same time. And the problematic one is truncation to smaller size, from where
986 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
987 * then drops the truncated pages. And while dropping the pages, it takes the
988 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
989 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
990 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
992 * XXX(truncate): with the new truncate sequence this is not true anymore,
993 * and the calls to truncate_setsize can be move around freely. They should
994 * be moved to the very end of the truncate sequence.
996 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
997 * inode size. How do we do this if @inode->i_size may became smaller while we
998 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
999 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1000 * internally and updates it under @ui_mutex.
1002 * Q: why we do not worry that if we race with truncation, we may end up with a
1003 * situation when the inode is truncated while we are in the middle of
1004 * 'do_writepage()', so we do write beyond inode size?
1005 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1006 * on the page lock and it would not write the truncated inode node to the
1007 * journal before we have finished.
1009 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1011 struct inode *inode = page->mapping->host;
1012 struct ubifs_info *c = inode->i_sb->s_fs_info;
1013 struct ubifs_inode *ui = ubifs_inode(inode);
1014 loff_t i_size = i_size_read(inode), synced_i_size;
1015 pgoff_t end_index = i_size >> PAGE_SHIFT;
1016 int err, len = i_size & (PAGE_SIZE - 1);
1019 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1020 inode->i_ino, page->index, page->flags);
1021 ubifs_assert(c, PagePrivate(page));
1023 /* Is the page fully outside @i_size? (truncate in progress) */
1024 if (page->index > end_index || (page->index == end_index && !len)) {
1029 spin_lock(&ui->ui_lock);
1030 synced_i_size = ui->synced_i_size;
1031 spin_unlock(&ui->ui_lock);
1033 /* Is the page fully inside @i_size? */
1034 if (page->index < end_index) {
1035 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1036 err = inode->i_sb->s_op->write_inode(inode, NULL);
1040 * The inode has been written, but the write-buffer has
1041 * not been synchronized, so in case of an unclean
1042 * reboot we may end up with some pages beyond inode
1043 * size, but they would be in the journal (because
1044 * commit flushes write buffers) and recovery would deal
1048 return do_writepage(page, PAGE_SIZE);
1052 * The page straddles @i_size. It must be zeroed out on each and every
1053 * writepage invocation because it may be mmapped. "A file is mapped
1054 * in multiples of the page size. For a file that is not a multiple of
1055 * the page size, the remaining memory is zeroed when mapped, and
1056 * writes to that region are not written out to the file."
1058 kaddr = kmap_atomic(page);
1059 memset(kaddr + len, 0, PAGE_SIZE - len);
1060 flush_dcache_page(page);
1061 kunmap_atomic(kaddr);
1063 if (i_size > synced_i_size) {
1064 err = inode->i_sb->s_op->write_inode(inode, NULL);
1069 return do_writepage(page, len);
1072 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because
1073 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1074 * there is no need to do space budget for dirty inode.
1076 redirty_page_for_writepage(wbc, page);
1083 * do_attr_changes - change inode attributes.
1084 * @inode: inode to change attributes for
1085 * @attr: describes attributes to change
1087 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1089 if (attr->ia_valid & ATTR_UID)
1090 inode->i_uid = attr->ia_uid;
1091 if (attr->ia_valid & ATTR_GID)
1092 inode->i_gid = attr->ia_gid;
1093 if (attr->ia_valid & ATTR_ATIME)
1094 inode_set_atime_to_ts(inode, attr->ia_atime);
1095 if (attr->ia_valid & ATTR_MTIME)
1096 inode_set_mtime_to_ts(inode, attr->ia_mtime);
1097 if (attr->ia_valid & ATTR_CTIME)
1098 inode_set_ctime_to_ts(inode, attr->ia_ctime);
1099 if (attr->ia_valid & ATTR_MODE) {
1100 umode_t mode = attr->ia_mode;
1102 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1104 inode->i_mode = mode;
1109 * do_truncation - truncate an inode.
1110 * @c: UBIFS file-system description object
1111 * @inode: inode to truncate
1112 * @attr: inode attribute changes description
1114 * This function implements VFS '->setattr()' call when the inode is truncated
1115 * to a smaller size.
1117 * Returns: %0 in case of success and a negative error code
1118 * in case of failure.
1120 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1121 const struct iattr *attr)
1124 struct ubifs_budget_req req;
1125 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1126 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1127 struct ubifs_inode *ui = ubifs_inode(inode);
1129 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1130 memset(&req, 0, sizeof(struct ubifs_budget_req));
1133 * If this is truncation to a smaller size, and we do not truncate on a
1134 * block boundary, budget for changing one data block, because the last
1135 * block will be re-written.
1137 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1138 req.dirtied_page = 1;
1140 req.dirtied_ino = 1;
1141 /* A funny way to budget for truncation node */
1142 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1143 err = ubifs_budget_space(c, &req);
1146 * Treat truncations to zero as deletion and always allow them,
1147 * just like we do for '->unlink()'.
1149 if (new_size || err != -ENOSPC)
1154 truncate_setsize(inode, new_size);
1157 pgoff_t index = new_size >> PAGE_SHIFT;
1160 page = find_lock_page(inode->i_mapping, index);
1162 if (PageDirty(page)) {
1164 * 'ubifs_jnl_truncate()' will try to truncate
1165 * the last data node, but it contains
1166 * out-of-date data because the page is dirty.
1167 * Write the page now, so that
1168 * 'ubifs_jnl_truncate()' will see an already
1169 * truncated (and up to date) data node.
1171 ubifs_assert(c, PagePrivate(page));
1173 clear_page_dirty_for_io(page);
1174 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1177 err = do_writepage(page, offset);
1182 * We could now tell 'ubifs_jnl_truncate()' not
1183 * to read the last block.
1187 * We could 'kmap()' the page and pass the data
1188 * to 'ubifs_jnl_truncate()' to save it from
1189 * having to read it.
1197 mutex_lock(&ui->ui_mutex);
1198 ui->ui_size = inode->i_size;
1199 /* Truncation changes inode [mc]time */
1200 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1201 /* Other attributes may be changed at the same time as well */
1202 do_attr_changes(inode, attr);
1203 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1204 mutex_unlock(&ui->ui_mutex);
1208 ubifs_release_budget(c, &req);
1210 c->bi.nospace = c->bi.nospace_rp = 0;
1217 * do_setattr - change inode attributes.
1218 * @c: UBIFS file-system description object
1219 * @inode: inode to change attributes for
1220 * @attr: inode attribute changes description
1222 * This function implements VFS '->setattr()' call for all cases except
1223 * truncations to smaller size.
1225 * Returns: %0 in case of success and a negative
1226 * error code in case of failure.
1228 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1229 const struct iattr *attr)
1232 loff_t new_size = attr->ia_size;
1233 struct ubifs_inode *ui = ubifs_inode(inode);
1234 struct ubifs_budget_req req = { .dirtied_ino = 1,
1235 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1237 err = ubifs_budget_space(c, &req);
1241 if (attr->ia_valid & ATTR_SIZE) {
1242 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1243 truncate_setsize(inode, new_size);
1246 mutex_lock(&ui->ui_mutex);
1247 if (attr->ia_valid & ATTR_SIZE) {
1248 /* Truncation changes inode [mc]time */
1249 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1250 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1251 ui->ui_size = inode->i_size;
1254 do_attr_changes(inode, attr);
1256 release = ui->dirty;
1257 if (attr->ia_valid & ATTR_SIZE)
1259 * Inode length changed, so we have to make sure
1260 * @I_DIRTY_DATASYNC is set.
1262 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1264 mark_inode_dirty_sync(inode);
1265 mutex_unlock(&ui->ui_mutex);
1268 ubifs_release_budget(c, &req);
1270 err = inode->i_sb->s_op->write_inode(inode, NULL);
1274 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1278 struct inode *inode = d_inode(dentry);
1279 struct ubifs_info *c = inode->i_sb->s_fs_info;
1281 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1282 inode->i_ino, inode->i_mode, attr->ia_valid);
1283 err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1287 err = dbg_check_synced_i_size(c, inode);
1291 err = fscrypt_prepare_setattr(dentry, attr);
1295 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1296 /* Truncation to a smaller size */
1297 err = do_truncation(c, inode, attr);
1299 err = do_setattr(c, inode, attr);
1304 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1307 struct inode *inode = folio->mapping->host;
1308 struct ubifs_info *c = inode->i_sb->s_fs_info;
1310 ubifs_assert(c, folio_test_private(folio));
1311 if (offset || length < folio_size(folio))
1312 /* Partial folio remains dirty */
1315 if (folio_test_checked(folio))
1316 release_new_page_budget(c);
1318 release_existing_page_budget(c);
1320 atomic_long_dec(&c->dirty_pg_cnt);
1321 folio_detach_private(folio);
1322 folio_clear_checked(folio);
1325 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1327 struct inode *inode = file->f_mapping->host;
1328 struct ubifs_info *c = inode->i_sb->s_fs_info;
1331 dbg_gen("syncing inode %lu", inode->i_ino);
1335 * For some really strange reasons VFS does not filter out
1336 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1340 err = file_write_and_wait_range(file, start, end);
1345 /* Synchronize the inode unless this is a 'datasync()' call. */
1346 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1347 err = inode->i_sb->s_op->write_inode(inode, NULL);
1353 * Nodes related to this inode may still sit in a write-buffer. Flush
1356 err = ubifs_sync_wbufs_by_inode(c, inode);
1358 inode_unlock(inode);
1363 * mctime_update_needed - check if mtime or ctime update is needed.
1364 * @inode: the inode to do the check for
1365 * @now: current time
1367 * This helper function checks if the inode mtime/ctime should be updated or
1368 * not. If current values of the time-stamps are within the UBIFS inode time
1369 * granularity, they are not updated. This is an optimization.
1371 * Returns: %1 if time update is needed, %0 if not
1373 static inline int mctime_update_needed(const struct inode *inode,
1374 const struct timespec64 *now)
1376 struct timespec64 ctime = inode_get_ctime(inode);
1377 struct timespec64 mtime = inode_get_mtime(inode);
1379 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now))
1385 * ubifs_update_time - update time of inode.
1386 * @inode: inode to update
1387 * @flags: time updating control flag determines updating
1388 * which time fields of @inode
1390 * This function updates time of the inode.
1392 * Returns: %0 for success or a negative error code otherwise.
1394 int ubifs_update_time(struct inode *inode, int flags)
1396 struct ubifs_inode *ui = ubifs_inode(inode);
1397 struct ubifs_info *c = inode->i_sb->s_fs_info;
1398 struct ubifs_budget_req req = { .dirtied_ino = 1,
1399 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1402 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1403 generic_update_time(inode, flags);
1407 err = ubifs_budget_space(c, &req);
1411 mutex_lock(&ui->ui_mutex);
1412 inode_update_timestamps(inode, flags);
1413 release = ui->dirty;
1414 __mark_inode_dirty(inode, I_DIRTY_SYNC);
1415 mutex_unlock(&ui->ui_mutex);
1417 ubifs_release_budget(c, &req);
1422 * update_mctime - update mtime and ctime of an inode.
1423 * @inode: inode to update
1425 * This function updates mtime and ctime of the inode if it is not equivalent to
1428 * Returns: %0 in case of success and a negative error code in
1431 static int update_mctime(struct inode *inode)
1433 struct timespec64 now = current_time(inode);
1434 struct ubifs_inode *ui = ubifs_inode(inode);
1435 struct ubifs_info *c = inode->i_sb->s_fs_info;
1437 if (mctime_update_needed(inode, &now)) {
1439 struct ubifs_budget_req req = { .dirtied_ino = 1,
1440 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1442 err = ubifs_budget_space(c, &req);
1446 mutex_lock(&ui->ui_mutex);
1447 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1448 release = ui->dirty;
1449 mark_inode_dirty_sync(inode);
1450 mutex_unlock(&ui->ui_mutex);
1452 ubifs_release_budget(c, &req);
1458 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1460 int err = update_mctime(file_inode(iocb->ki_filp));
1464 return generic_file_write_iter(iocb, from);
1467 static bool ubifs_dirty_folio(struct address_space *mapping,
1468 struct folio *folio)
1471 struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1473 ret = filemap_dirty_folio(mapping, folio);
1475 * An attempt to dirty a page without budgeting for it - should not
1478 ubifs_assert(c, ret == false);
1482 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1484 struct inode *inode = folio->mapping->host;
1485 struct ubifs_info *c = inode->i_sb->s_fs_info;
1487 if (folio_test_writeback(folio))
1491 * Page is private but not dirty, weird? There is one condition
1492 * making it happened. ubifs_writepage skipped the page because
1493 * page index beyonds isize (for example. truncated by other
1494 * process named A), then the page is invalidated by fadvise64
1495 * syscall before being truncated by process A.
1497 ubifs_assert(c, folio_test_private(folio));
1498 if (folio_test_checked(folio))
1499 release_new_page_budget(c);
1501 release_existing_page_budget(c);
1503 atomic_long_dec(&c->dirty_pg_cnt);
1504 folio_detach_private(folio);
1505 folio_clear_checked(folio);
1510 * mmap()d file has taken write protection fault and is being made writable.
1511 * UBIFS must ensure page is budgeted for.
1513 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1515 struct page *page = vmf->page;
1516 struct inode *inode = file_inode(vmf->vma->vm_file);
1517 struct ubifs_info *c = inode->i_sb->s_fs_info;
1518 struct timespec64 now = current_time(inode);
1519 struct ubifs_budget_req req = { .new_page = 1 };
1520 int err, update_time;
1522 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1523 i_size_read(inode));
1524 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1526 if (unlikely(c->ro_error))
1527 return VM_FAULT_SIGBUS; /* -EROFS */
1530 * We have not locked @page so far so we may budget for changing the
1531 * page. Note, we cannot do this after we locked the page, because
1532 * budgeting may cause write-back which would cause deadlock.
1534 * At the moment we do not know whether the page is dirty or not, so we
1535 * assume that it is not and budget for a new page. We could look at
1536 * the @PG_private flag and figure this out, but we may race with write
1537 * back and the page state may change by the time we lock it, so this
1538 * would need additional care. We do not bother with this at the
1539 * moment, although it might be good idea to do. Instead, we allocate
1540 * budget for a new page and amend it later on if the page was in fact
1543 * The budgeting-related logic of this function is similar to what we
1544 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1545 * for more comments.
1547 update_time = mctime_update_needed(inode, &now);
1550 * We have to change inode time stamp which requires extra
1553 req.dirtied_ino = 1;
1555 err = ubifs_budget_space(c, &req);
1556 if (unlikely(err)) {
1558 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1560 return VM_FAULT_SIGBUS;
1564 if (unlikely(page->mapping != inode->i_mapping ||
1565 page_offset(page) > i_size_read(inode))) {
1566 /* Page got truncated out from underneath us */
1570 if (PagePrivate(page))
1571 release_new_page_budget(c);
1573 if (!PageChecked(page))
1574 ubifs_convert_page_budget(c);
1575 attach_page_private(page, (void *)1);
1576 atomic_long_inc(&c->dirty_pg_cnt);
1577 __set_page_dirty_nobuffers(page);
1582 struct ubifs_inode *ui = ubifs_inode(inode);
1584 mutex_lock(&ui->ui_mutex);
1585 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1586 release = ui->dirty;
1587 mark_inode_dirty_sync(inode);
1588 mutex_unlock(&ui->ui_mutex);
1590 ubifs_release_dirty_inode_budget(c, ui);
1593 wait_for_stable_page(page);
1594 return VM_FAULT_LOCKED;
1598 ubifs_release_budget(c, &req);
1599 return VM_FAULT_SIGBUS;
1602 static const struct vm_operations_struct ubifs_file_vm_ops = {
1603 .fault = filemap_fault,
1604 .map_pages = filemap_map_pages,
1605 .page_mkwrite = ubifs_vm_page_mkwrite,
1608 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1612 err = generic_file_mmap(file, vma);
1615 vma->vm_ops = &ubifs_file_vm_ops;
1617 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1618 file_accessed(file);
1623 static const char *ubifs_get_link(struct dentry *dentry,
1624 struct inode *inode,
1625 struct delayed_call *done)
1627 struct ubifs_inode *ui = ubifs_inode(inode);
1629 if (!IS_ENCRYPTED(inode))
1633 return ERR_PTR(-ECHILD);
1635 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1638 static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1639 const struct path *path, struct kstat *stat,
1640 u32 request_mask, unsigned int query_flags)
1642 ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1644 if (IS_ENCRYPTED(d_inode(path->dentry)))
1645 return fscrypt_symlink_getattr(path, stat);
1649 const struct address_space_operations ubifs_file_address_operations = {
1650 .read_folio = ubifs_read_folio,
1651 .writepage = ubifs_writepage,
1652 .write_begin = ubifs_write_begin,
1653 .write_end = ubifs_write_end,
1654 .invalidate_folio = ubifs_invalidate_folio,
1655 .dirty_folio = ubifs_dirty_folio,
1656 .migrate_folio = filemap_migrate_folio,
1657 .release_folio = ubifs_release_folio,
1660 const struct inode_operations ubifs_file_inode_operations = {
1661 .setattr = ubifs_setattr,
1662 .getattr = ubifs_getattr,
1663 .listxattr = ubifs_listxattr,
1664 .update_time = ubifs_update_time,
1665 .fileattr_get = ubifs_fileattr_get,
1666 .fileattr_set = ubifs_fileattr_set,
1669 const struct inode_operations ubifs_symlink_inode_operations = {
1670 .get_link = ubifs_get_link,
1671 .setattr = ubifs_setattr,
1672 .getattr = ubifs_symlink_getattr,
1673 .listxattr = ubifs_listxattr,
1674 .update_time = ubifs_update_time,
1677 const struct file_operations ubifs_file_operations = {
1678 .llseek = generic_file_llseek,
1679 .read_iter = generic_file_read_iter,
1680 .write_iter = ubifs_write_iter,
1681 .mmap = ubifs_file_mmap,
1682 .fsync = ubifs_fsync,
1683 .unlocked_ioctl = ubifs_ioctl,
1684 .splice_read = filemap_splice_read,
1685 .splice_write = iter_file_splice_write,
1686 .open = fscrypt_file_open,
1687 #ifdef CONFIG_COMPAT
1688 .compat_ioctl = ubifs_compat_ioctl,