1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
17 #include "extent_map.h"
19 #include "transaction.h"
20 #include "print-tree.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
35 #include "relocation.h"
38 #include "raid-stripe-tree.h"
40 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
44 struct btrfs_io_geometry {
50 u64 raid56_full_stripe_start;
55 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 [BTRFS_RAID_RAID10] = {
59 .devs_max = 0, /* 0 == as many as possible */
61 .tolerated_failures = 1,
65 .raid_name = "raid10",
66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
69 [BTRFS_RAID_RAID1] = {
74 .tolerated_failures = 1,
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
82 [BTRFS_RAID_RAID1C3] = {
87 .tolerated_failures = 2,
91 .raid_name = "raid1c3",
92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
95 [BTRFS_RAID_RAID1C4] = {
100 .tolerated_failures = 3,
104 .raid_name = "raid1c4",
105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
113 .tolerated_failures = 0,
118 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
121 [BTRFS_RAID_RAID0] = {
126 .tolerated_failures = 0,
130 .raid_name = "raid0",
131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
134 [BTRFS_RAID_SINGLE] = {
139 .tolerated_failures = 0,
143 .raid_name = "single",
147 [BTRFS_RAID_RAID5] = {
152 .tolerated_failures = 1,
156 .raid_name = "raid5",
157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
160 [BTRFS_RAID_RAID6] = {
165 .tolerated_failures = 2,
169 .raid_name = "raid6",
170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177 * can be used as index to access btrfs_raid_array[].
179 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
184 return BTRFS_RAID_SINGLE;
186 return BTRFS_BG_FLAG_TO_INDEX(profile);
189 const char *btrfs_bg_type_to_raid_name(u64 flags)
191 const int index = btrfs_bg_flags_to_raid_index(flags);
193 if (index >= BTRFS_NR_RAID_TYPES)
196 return btrfs_raid_array[index].raid_name;
199 int btrfs_nr_parity_stripes(u64 type)
201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
203 return btrfs_raid_array[index].nparity;
207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
208 * bytes including terminating null byte.
210 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
215 u64 flags = bg_flags;
216 u32 size_bp = size_buf;
223 #define DESCRIBE_FLAG(flag, desc) \
225 if (flags & (flag)) { \
226 ret = snprintf(bp, size_bp, "%s|", (desc)); \
227 if (ret < 0 || ret >= size_bp) \
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 btrfs_raid_array[i].raid_name);
246 ret = snprintf(bp, size_bp, "0x%llx|", flags);
250 if (size_bp < size_buf)
251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
254 * The text is trimmed, it's up to the caller to provide sufficiently
260 static int init_first_rw_device(struct btrfs_trans_handle *trans);
261 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
268 * There are several mutexes that protect manipulation of devices and low-level
269 * structures like chunks but not block groups, extents or files
271 * uuid_mutex (global lock)
272 * ------------------------
273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275 * device) or requested by the device= mount option
277 * the mutex can be very coarse and can cover long-running operations
279 * protects: updates to fs_devices counters like missing devices, rw devices,
280 * seeding, structure cloning, opening/closing devices at mount/umount time
282 * global::fs_devs - add, remove, updates to the global list
284 * does not protect: manipulation of the fs_devices::devices list in general
285 * but in mount context it could be used to exclude list modifications by eg.
288 * btrfs_device::name - renames (write side), read is RCU
290 * fs_devices::device_list_mutex (per-fs, with RCU)
291 * ------------------------------------------------
292 * protects updates to fs_devices::devices, ie. adding and deleting
294 * simple list traversal with read-only actions can be done with RCU protection
296 * may be used to exclude some operations from running concurrently without any
297 * modifications to the list (see write_all_supers)
299 * Is not required at mount and close times, because our device list is
300 * protected by the uuid_mutex at that point.
304 * protects balance structures (status, state) and context accessed from
305 * several places (internally, ioctl)
309 * protects chunks, adding or removing during allocation, trim or when a new
310 * device is added/removed. Additionally it also protects post_commit_list of
311 * individual devices, since they can be added to the transaction's
312 * post_commit_list only with chunk_mutex held.
316 * a big lock that is held by the cleaner thread and prevents running subvolume
317 * cleaning together with relocation or delayed iputs
329 * Exclusive operations
330 * ====================
332 * Maintains the exclusivity of the following operations that apply to the
333 * whole filesystem and cannot run in parallel.
338 * - Device replace (*)
341 * The device operations (as above) can be in one of the following states:
347 * Only device operations marked with (*) can go into the Paused state for the
350 * - ioctl (only Balance can be Paused through ioctl)
351 * - filesystem remounted as read-only
352 * - filesystem unmounted and mounted as read-only
353 * - system power-cycle and filesystem mounted as read-only
354 * - filesystem or device errors leading to forced read-only
356 * The status of exclusive operation is set and cleared atomically.
357 * During the course of Paused state, fs_info::exclusive_operation remains set.
358 * A device operation in Paused or Running state can be canceled or resumed
359 * either by ioctl (Balance only) or when remounted as read-write.
360 * The exclusive status is cleared when the device operation is canceled or
364 DEFINE_MUTEX(uuid_mutex);
365 static LIST_HEAD(fs_uuids);
366 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
372 * Allocate new btrfs_fs_devices structure identified by a fsid.
374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
375 * fs_devices::metadata_fsid
377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378 * The returned struct is not linked onto any lists and can be destroyed with
379 * kfree() right away.
381 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
383 struct btrfs_fs_devices *fs_devs;
385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
387 return ERR_PTR(-ENOMEM);
389 mutex_init(&fs_devs->device_list_mutex);
391 INIT_LIST_HEAD(&fs_devs->devices);
392 INIT_LIST_HEAD(&fs_devs->alloc_list);
393 INIT_LIST_HEAD(&fs_devs->fs_list);
394 INIT_LIST_HEAD(&fs_devs->seed_list);
397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
404 static void btrfs_free_device(struct btrfs_device *device)
406 WARN_ON(!list_empty(&device->post_commit_list));
407 rcu_string_free(device->name);
408 extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
415 struct btrfs_device *device;
417 WARN_ON(fs_devices->opened);
418 while (!list_empty(&fs_devices->devices)) {
419 device = list_entry(fs_devices->devices.next,
420 struct btrfs_device, dev_list);
421 list_del(&device->dev_list);
422 btrfs_free_device(device);
427 void __exit btrfs_cleanup_fs_uuids(void)
429 struct btrfs_fs_devices *fs_devices;
431 while (!list_empty(&fs_uuids)) {
432 fs_devices = list_entry(fs_uuids.next,
433 struct btrfs_fs_devices, fs_list);
434 list_del(&fs_devices->fs_list);
435 free_fs_devices(fs_devices);
439 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 const u8 *fsid, const u8 *metadata_fsid)
442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
454 static noinline struct btrfs_fs_devices *find_fsid(
455 const u8 *fsid, const u8 *metadata_fsid)
457 struct btrfs_fs_devices *fs_devices;
461 /* Handle non-split brain cases */
462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
470 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
471 int flush, struct file **bdev_file,
472 struct btrfs_super_block **disk_super)
474 struct block_device *bdev;
477 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
479 if (IS_ERR(*bdev_file)) {
480 ret = PTR_ERR(*bdev_file);
483 bdev = file_bdev(*bdev_file);
487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
492 invalidate_bdev(bdev);
493 *disk_super = btrfs_read_dev_super(bdev);
494 if (IS_ERR(*disk_super)) {
495 ret = PTR_ERR(*disk_super);
508 * Search and remove all stale devices (which are not mounted). When both
509 * inputs are NULL, it will search and release all stale devices.
511 * @devt: Optional. When provided will it release all unmounted devices
512 * matching this devt only.
513 * @skip_device: Optional. Will skip this device when searching for the stale
516 * Return: 0 for success or if @devt is 0.
517 * -EBUSY if @devt is a mounted device.
518 * -ENOENT if @devt does not match any device in the list.
520 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 struct btrfs_device *device, *tmp_device;
527 lockdep_assert_held(&uuid_mutex);
529 /* Return good status if there is no instance of devt. */
531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
533 mutex_lock(&fs_devices->device_list_mutex);
534 list_for_each_entry_safe(device, tmp_device,
535 &fs_devices->devices, dev_list) {
536 if (skip_device && skip_device == device)
538 if (devt && devt != device->devt)
540 if (fs_devices->opened) {
546 /* delete the stale device */
547 fs_devices->num_devices--;
548 list_del(&device->dev_list);
549 btrfs_free_device(device);
553 mutex_unlock(&fs_devices->device_list_mutex);
555 if (fs_devices->num_devices == 0) {
556 btrfs_sysfs_remove_fsid(fs_devices);
557 list_del(&fs_devices->fs_list);
558 free_fs_devices(fs_devices);
562 /* If there is at least one freed device return 0. */
569 static struct btrfs_fs_devices *find_fsid_by_device(
570 struct btrfs_super_block *disk_super,
571 dev_t devt, bool *same_fsid_diff_dev)
573 struct btrfs_fs_devices *fsid_fs_devices;
574 struct btrfs_fs_devices *devt_fs_devices;
575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
577 bool found_by_devt = false;
579 /* Find the fs_device by the usual method, if found use it. */
580 fsid_fs_devices = find_fsid(disk_super->fsid,
581 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
583 /* The temp_fsid feature is supported only with single device filesystem. */
584 if (btrfs_super_num_devices(disk_super) != 1)
585 return fsid_fs_devices;
588 * A seed device is an integral component of the sprout device, which
589 * functions as a multi-device filesystem. So, temp-fsid feature is
592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 return fsid_fs_devices;
595 /* Try to find a fs_devices by matching devt. */
596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 struct btrfs_device *device;
599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 if (device->devt == devt) {
601 found_by_devt = true;
610 /* Existing device. */
611 if (fsid_fs_devices == NULL) {
612 if (devt_fs_devices->opened == 0) {
616 /* temp_fsid is mounting a subvol. */
617 return devt_fs_devices;
620 /* Regular or temp_fsid device mounting a subvol. */
621 return devt_fs_devices;
625 if (fsid_fs_devices == NULL) {
628 /* sb::fsid is already used create a new temp_fsid. */
629 *same_fsid_diff_dev = true;
638 * This is only used on mount, and we are protected from competing things
639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
640 * fs_devices->device_list_mutex here.
642 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
643 struct btrfs_device *device, blk_mode_t flags,
646 struct file *bdev_file;
647 struct btrfs_super_block *disk_super;
656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
657 &bdev_file, &disk_super);
661 devid = btrfs_stack_device_id(&disk_super->dev_item);
662 if (devid != device->devid)
663 goto error_free_page;
665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
666 goto error_free_page;
668 device->generation = btrfs_super_generation(disk_super);
670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
671 if (btrfs_super_incompat_flags(disk_super) &
672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
674 "BTRFS: Invalid seeding and uuid-changed device detected\n");
675 goto error_free_page;
678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
679 fs_devices->seeding = true;
681 if (bdev_read_only(file_bdev(bdev_file)))
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
687 if (!bdev_nonrot(file_bdev(bdev_file)))
688 fs_devices->rotating = true;
690 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
691 fs_devices->discardable = true;
693 device->bdev_file = bdev_file;
694 device->bdev = file_bdev(bdev_file);
695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
697 fs_devices->open_devices++;
698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 device->devid != BTRFS_DEV_REPLACE_DEVID) {
700 fs_devices->rw_devices++;
701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
703 btrfs_release_disk_super(disk_super);
708 btrfs_release_disk_super(disk_super);
714 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
723 * Add new device to list of registered devices
726 * device pointer which was just added or updated when successful
727 * error pointer when failed
729 static noinline struct btrfs_device *device_list_add(const char *path,
730 struct btrfs_super_block *disk_super,
731 bool *new_device_added)
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices = NULL;
735 struct rcu_string *name;
736 u64 found_transid = btrfs_super_generation(disk_super);
737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
740 bool same_fsid_diff_dev = false;
741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
746 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
748 return ERR_PTR(-EAGAIN);
751 error = lookup_bdev(path, &path_devt);
753 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
755 return ERR_PTR(error);
758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
761 fs_devices = alloc_fs_devices(disk_super->fsid);
762 if (IS_ERR(fs_devices))
763 return ERR_CAST(fs_devices);
765 if (has_metadata_uuid)
766 memcpy(fs_devices->metadata_uuid,
767 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
769 if (same_fsid_diff_dev) {
770 generate_random_uuid(fs_devices->fsid);
771 fs_devices->temp_fsid = true;
772 pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 path, fs_devices->fsid);
776 mutex_lock(&fs_devices->device_list_mutex);
777 list_add(&fs_devices->fs_list, &fs_uuids);
781 struct btrfs_dev_lookup_args args = {
783 .uuid = disk_super->dev_item.uuid,
786 mutex_lock(&fs_devices->device_list_mutex);
787 device = btrfs_find_device(fs_devices, &args);
789 if (found_transid > fs_devices->latest_generation) {
790 memcpy(fs_devices->fsid, disk_super->fsid,
792 memcpy(fs_devices->metadata_uuid,
793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
798 unsigned int nofs_flag;
800 if (fs_devices->opened) {
802 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 path, fs_devices->fsid, current->comm,
804 task_pid_nr(current));
805 mutex_unlock(&fs_devices->device_list_mutex);
806 return ERR_PTR(-EBUSY);
809 nofs_flag = memalloc_nofs_save();
810 device = btrfs_alloc_device(NULL, &devid,
811 disk_super->dev_item.uuid, path);
812 memalloc_nofs_restore(nofs_flag);
813 if (IS_ERR(device)) {
814 mutex_unlock(&fs_devices->device_list_mutex);
815 /* we can safely leave the fs_devices entry around */
819 device->devt = path_devt;
821 list_add_rcu(&device->dev_list, &fs_devices->devices);
822 fs_devices->num_devices++;
824 device->fs_devices = fs_devices;
825 *new_device_added = true;
827 if (disk_super->label[0])
829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 disk_super->label, devid, found_transid, path,
831 current->comm, task_pid_nr(current));
834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 disk_super->fsid, devid, found_transid, path,
836 current->comm, task_pid_nr(current));
838 } else if (!device->name || strcmp(device->name->str, path)) {
840 * When FS is already mounted.
841 * 1. If you are here and if the device->name is NULL that
842 * means this device was missing at time of FS mount.
843 * 2. If you are here and if the device->name is different
844 * from 'path' that means either
845 * a. The same device disappeared and reappeared with
847 * b. The missing-disk-which-was-replaced, has
850 * We must allow 1 and 2a above. But 2b would be a spurious
853 * Further in case of 1 and 2a above, the disk at 'path'
854 * would have missed some transaction when it was away and
855 * in case of 2a the stale bdev has to be updated as well.
856 * 2b must not be allowed at all time.
860 * For now, we do allow update to btrfs_fs_device through the
861 * btrfs dev scan cli after FS has been mounted. We're still
862 * tracking a problem where systems fail mount by subvolume id
863 * when we reject replacement on a mounted FS.
865 if (!fs_devices->opened && found_transid < device->generation) {
867 * That is if the FS is _not_ mounted and if you
868 * are here, that means there is more than one
869 * disk with same uuid and devid.We keep the one
870 * with larger generation number or the last-in if
871 * generation are equal.
873 mutex_unlock(&fs_devices->device_list_mutex);
875 "device %s already registered with a higher generation, found %llu expect %llu",
876 path, found_transid, device->generation);
877 return ERR_PTR(-EEXIST);
881 * We are going to replace the device path for a given devid,
882 * make sure it's the same device if the device is mounted
884 * NOTE: the device->fs_info may not be reliable here so pass
885 * in a NULL to message helpers instead. This avoids a possible
886 * use-after-free when the fs_info and fs_info->sb are already
890 if (device->devt != path_devt) {
891 mutex_unlock(&fs_devices->device_list_mutex);
892 btrfs_warn_in_rcu(NULL,
893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 path, devid, found_transid,
896 task_pid_nr(current));
897 return ERR_PTR(-EEXIST);
899 btrfs_info_in_rcu(NULL,
900 "devid %llu device path %s changed to %s scanned by %s (%d)",
901 devid, btrfs_dev_name(device),
903 task_pid_nr(current));
906 name = rcu_string_strdup(path, GFP_NOFS);
908 mutex_unlock(&fs_devices->device_list_mutex);
909 return ERR_PTR(-ENOMEM);
911 rcu_string_free(device->name);
912 rcu_assign_pointer(device->name, name);
913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
914 fs_devices->missing_devices--;
915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
917 device->devt = path_devt;
921 * Unmount does not free the btrfs_device struct but would zero
922 * generation along with most of the other members. So just update
923 * it back. We need it to pick the disk with largest generation
926 if (!fs_devices->opened) {
927 device->generation = found_transid;
928 fs_devices->latest_generation = max_t(u64, found_transid,
929 fs_devices->latest_generation);
932 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
934 mutex_unlock(&fs_devices->device_list_mutex);
938 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
940 struct btrfs_fs_devices *fs_devices;
941 struct btrfs_device *device;
942 struct btrfs_device *orig_dev;
945 lockdep_assert_held(&uuid_mutex);
947 fs_devices = alloc_fs_devices(orig->fsid);
948 if (IS_ERR(fs_devices))
951 fs_devices->total_devices = orig->total_devices;
953 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
954 const char *dev_path = NULL;
957 * This is ok to do without RCU read locked because we hold the
958 * uuid mutex so nothing we touch in here is going to disappear.
961 dev_path = orig_dev->name->str;
963 device = btrfs_alloc_device(NULL, &orig_dev->devid,
964 orig_dev->uuid, dev_path);
965 if (IS_ERR(device)) {
966 ret = PTR_ERR(device);
970 if (orig_dev->zone_info) {
971 struct btrfs_zoned_device_info *zone_info;
973 zone_info = btrfs_clone_dev_zone_info(orig_dev);
975 btrfs_free_device(device);
979 device->zone_info = zone_info;
982 list_add(&device->dev_list, &fs_devices->devices);
983 device->fs_devices = fs_devices;
984 fs_devices->num_devices++;
988 free_fs_devices(fs_devices);
992 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
993 struct btrfs_device **latest_dev)
995 struct btrfs_device *device, *next;
997 /* This is the initialized path, it is safe to release the devices. */
998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 &device->dev_state) &&
1002 !test_bit(BTRFS_DEV_STATE_MISSING,
1003 &device->dev_state) &&
1005 device->generation > (*latest_dev)->generation)) {
1006 *latest_dev = device;
1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 * in btrfs_init_dev_replace() so just continue.
1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1018 if (device->bdev_file) {
1019 fput(device->bdev_file);
1020 device->bdev = NULL;
1021 device->bdev_file = NULL;
1022 fs_devices->open_devices--;
1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025 list_del_init(&device->dev_alloc_list);
1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027 fs_devices->rw_devices--;
1029 list_del_init(&device->dev_list);
1030 fs_devices->num_devices--;
1031 btrfs_free_device(device);
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1040 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1042 struct btrfs_device *latest_dev = NULL;
1043 struct btrfs_fs_devices *seed_dev;
1045 mutex_lock(&uuid_mutex);
1046 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1051 fs_devices->latest_dev = latest_dev;
1053 mutex_unlock(&uuid_mutex);
1056 static void btrfs_close_bdev(struct btrfs_device *device)
1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062 sync_blockdev(device->bdev);
1063 invalidate_bdev(device->bdev);
1066 fput(device->bdev_file);
1069 static void btrfs_close_one_device(struct btrfs_device *device)
1071 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 list_del_init(&device->dev_alloc_list);
1076 fs_devices->rw_devices--;
1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084 fs_devices->missing_devices--;
1087 btrfs_close_bdev(device);
1089 fs_devices->open_devices--;
1090 device->bdev = NULL;
1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093 btrfs_destroy_dev_zone_info(device);
1095 device->fs_info = NULL;
1096 atomic_set(&device->dev_stats_ccnt, 0);
1097 extent_io_tree_release(&device->alloc_state);
1100 * Reset the flush error record. We might have a transient flush error
1101 * in this mount, and if so we aborted the current transaction and set
1102 * the fs to an error state, guaranteeing no super blocks can be further
1103 * committed. However that error might be transient and if we unmount the
1104 * filesystem and mount it again, we should allow the mount to succeed
1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 * filesystem again we still get flush errors, then we will again abort
1107 * any transaction and set the error state, guaranteeing no commits of
1108 * unsafe super blocks.
1110 device->last_flush_error = 0;
1112 /* Verify the device is back in a pristine state */
1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 WARN_ON(!list_empty(&device->dev_alloc_list));
1116 WARN_ON(!list_empty(&device->post_commit_list));
1119 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1121 struct btrfs_device *device, *tmp;
1123 lockdep_assert_held(&uuid_mutex);
1125 if (--fs_devices->opened > 0)
1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129 btrfs_close_one_device(device);
1131 WARN_ON(fs_devices->open_devices);
1132 WARN_ON(fs_devices->rw_devices);
1133 fs_devices->opened = 0;
1134 fs_devices->seeding = false;
1135 fs_devices->fs_info = NULL;
1138 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1141 struct btrfs_fs_devices *tmp;
1143 mutex_lock(&uuid_mutex);
1144 close_fs_devices(fs_devices);
1145 if (!fs_devices->opened) {
1146 list_splice_init(&fs_devices->seed_list, &list);
1149 * If the struct btrfs_fs_devices is not assembled with any
1150 * other device, it can be re-initialized during the next mount
1151 * without the needing device-scan step. Therefore, it can be
1154 if (fs_devices->num_devices == 1) {
1155 list_del(&fs_devices->fs_list);
1156 free_fs_devices(fs_devices);
1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162 close_fs_devices(fs_devices);
1163 list_del(&fs_devices->seed_list);
1164 free_fs_devices(fs_devices);
1166 mutex_unlock(&uuid_mutex);
1169 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170 blk_mode_t flags, void *holder)
1172 struct btrfs_device *device;
1173 struct btrfs_device *latest_dev = NULL;
1174 struct btrfs_device *tmp_device;
1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1182 (!latest_dev || device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 } else if (ret == -ENODATA) {
1185 fs_devices->num_devices--;
1186 list_del(&device->dev_list);
1187 btrfs_free_device(device);
1190 if (fs_devices->open_devices == 0)
1193 fs_devices->opened = 1;
1194 fs_devices->latest_dev = latest_dev;
1195 fs_devices->total_rw_bytes = 0;
1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1202 static int devid_cmp(void *priv, const struct list_head *a,
1203 const struct list_head *b)
1205 const struct btrfs_device *dev1, *dev2;
1207 dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 dev2 = list_entry(b, struct btrfs_device, dev_list);
1210 if (dev1->devid < dev2->devid)
1212 else if (dev1->devid > dev2->devid)
1217 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218 blk_mode_t flags, void *holder)
1222 lockdep_assert_held(&uuid_mutex);
1224 * The device_list_mutex cannot be taken here in case opening the
1225 * underlying device takes further locks like open_mutex.
1227 * We also don't need the lock here as this is called during mount and
1228 * exclusion is provided by uuid_mutex
1231 if (fs_devices->opened) {
1232 fs_devices->opened++;
1235 list_sort(NULL, &fs_devices->devices, devid_cmp);
1236 ret = open_fs_devices(fs_devices, flags, holder);
1242 void btrfs_release_disk_super(struct btrfs_super_block *super)
1244 struct page *page = virt_to_page(super);
1249 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250 u64 bytenr, u64 bytenr_orig)
1252 struct btrfs_super_block *disk_super;
1257 /* make sure our super fits in the device */
1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259 return ERR_PTR(-EINVAL);
1261 /* make sure our super fits in the page */
1262 if (sizeof(*disk_super) > PAGE_SIZE)
1263 return ERR_PTR(-EINVAL);
1265 /* make sure our super doesn't straddle pages on disk */
1266 index = bytenr >> PAGE_SHIFT;
1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 return ERR_PTR(-EINVAL);
1270 /* pull in the page with our super */
1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1274 return ERR_CAST(page);
1276 p = page_address(page);
1278 /* align our pointer to the offset of the super block */
1279 disk_super = p + offset_in_page(bytenr);
1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283 btrfs_release_disk_super(p);
1284 return ERR_PTR(-EINVAL);
1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1293 int btrfs_forget_devices(dev_t devt)
1297 mutex_lock(&uuid_mutex);
1298 ret = btrfs_free_stale_devices(devt, NULL);
1299 mutex_unlock(&uuid_mutex);
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1313 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1316 struct btrfs_super_block *disk_super;
1317 bool new_device_added = false;
1318 struct btrfs_device *device = NULL;
1319 struct file *bdev_file;
1320 u64 bytenr, bytenr_orig;
1323 lockdep_assert_held(&uuid_mutex);
1326 * we would like to check all the supers, but that would make
1327 * a btrfs mount succeed after a mkfs from a different FS.
1328 * So, we need to add a special mount option to scan for
1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1333 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 * device scan which may race with the user's mount or mkfs command,
1335 * resulting in failure.
1336 * Since the device scan is solely for reading purposes, there is no
1337 * need for an exclusive open. Additionally, the devices are read again
1338 * during the mount process. It is ok to get some inconsistent
1339 * values temporarily, as the device paths of the fsid are the only
1340 * required information for assembling the volume.
1342 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1343 if (IS_ERR(bdev_file))
1344 return ERR_CAST(bdev_file);
1346 bytenr_orig = btrfs_sb_offset(0);
1347 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1349 device = ERR_PTR(ret);
1350 goto error_bdev_put;
1353 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
1357 goto error_bdev_put;
1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1364 ret = lookup_bdev(path, &devt);
1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1369 btrfs_free_stale_devices(devt, NULL);
1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1373 goto free_disk_super;
1376 device = device_list_add(path, disk_super, &new_device_added);
1377 if (!IS_ERR(device) && new_device_added)
1378 btrfs_free_stale_devices(device->devt, device);
1381 btrfs_release_disk_super(disk_super);
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1396 u64 physical_start, physical_end;
1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
1400 if (find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1414 static u64 dev_extent_search_start(struct btrfs_device *device)
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 return BTRFS_DEVICE_RANGE_RESERVED;
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1431 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1435 u64 zone_size = device->zone_info->zone_size;
1438 bool changed = false;
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1450 if (*hole_size < num_bytes)
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1456 /* Range is ensured to be empty */
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1476 * Check if specified hole is suitable for allocation.
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1486 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1531 * Find free space in the specified device.
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1557 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 u64 *start, u64 *len)
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_key key;
1563 struct btrfs_dev_extent *dev_extent;
1564 struct btrfs_path *path;
1568 u64 max_hole_size = 0;
1570 u64 search_end = device->total_bytes;
1573 struct extent_buffer *l;
1575 search_start = dev_extent_search_start(device);
1576 max_hole_start = search_start;
1578 WARN_ON(device->zone_info &&
1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1581 path = btrfs_alloc_path();
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1601 ret = btrfs_search_backwards(root, &key, path);
1605 while (search_start < search_end) {
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1617 btrfs_item_key_to_cpu(l, &key, slot);
1619 if (key.objectid < device->devid)
1622 if (key.objectid > device->devid)
1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
1628 if (key.offset > search_end)
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633 dev_extent_hole_check(device, &search_start, &hole_size,
1636 if (hole_size > max_hole_size) {
1637 max_hole_start = search_start;
1638 max_hole_size = hole_size;
1642 * If this free space is greater than which we need,
1643 * it must be the max free space that we have found
1644 * until now, so max_hole_start must point to the start
1645 * of this free space and the length of this free space
1646 * is stored in max_hole_size. Thus, we return
1647 * max_hole_start and max_hole_size and go back to the
1650 if (hole_size >= num_bytes) {
1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 extent_end = key.offset + btrfs_dev_extent_length(l,
1659 if (extent_end > search_start)
1660 search_start = extent_end;
1667 * At this point, search_start should be the end of
1668 * allocated dev extents, and when shrinking the device,
1669 * search_end may be smaller than search_start.
1671 if (search_end > search_start) {
1672 hole_size = search_end - search_start;
1673 if (dev_extent_hole_check(device, &search_start, &hole_size,
1675 btrfs_release_path(path);
1679 if (hole_size > max_hole_size) {
1680 max_hole_start = search_start;
1681 max_hole_size = hole_size;
1686 if (max_hole_size < num_bytes)
1691 ASSERT(max_hole_start + max_hole_size <= search_end);
1693 btrfs_free_path(path);
1694 *start = max_hole_start;
1696 *len = max_hole_size;
1700 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 start, u64 *dev_extent_len)
1704 struct btrfs_fs_info *fs_info = device->fs_info;
1705 struct btrfs_root *root = fs_info->dev_root;
1707 struct btrfs_path *path;
1708 struct btrfs_key key;
1709 struct btrfs_key found_key;
1710 struct extent_buffer *leaf = NULL;
1711 struct btrfs_dev_extent *extent = NULL;
1713 path = btrfs_alloc_path();
1717 key.objectid = device->devid;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1723 ret = btrfs_previous_item(root, path, key.objectid,
1724 BTRFS_DEV_EXTENT_KEY);
1727 leaf = path->nodes[0];
1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
1731 BUG_ON(found_key.offset > start || found_key.offset +
1732 btrfs_dev_extent_length(leaf, extent) < start);
1734 btrfs_release_path(path);
1736 } else if (ret == 0) {
1737 leaf = path->nodes[0];
1738 extent = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_dev_extent);
1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1746 ret = btrfs_del_item(trans, root, path);
1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1750 btrfs_free_path(path);
1754 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1759 read_lock(&fs_info->mapping_tree_lock);
1760 n = rb_last(&fs_info->mapping_tree.rb_root);
1762 struct btrfs_chunk_map *map;
1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 ret = map->start + map->chunk_len;
1767 read_unlock(&fs_info->mapping_tree_lock);
1772 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1776 struct btrfs_key key;
1777 struct btrfs_key found_key;
1778 struct btrfs_path *path;
1780 path = btrfs_alloc_path();
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 key.type = BTRFS_DEV_ITEM_KEY;
1786 key.offset = (u64)-1;
1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1799 ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 BTRFS_DEV_ITEMS_OBJECTID,
1801 BTRFS_DEV_ITEM_KEY);
1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1807 *devid_ret = found_key.offset + 1;
1811 btrfs_free_path(path);
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1819 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_device *device)
1823 struct btrfs_path *path;
1824 struct btrfs_dev_item *dev_item;
1825 struct extent_buffer *leaf;
1826 struct btrfs_key key;
1829 path = btrfs_alloc_path();
1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 key.type = BTRFS_DEV_ITEM_KEY;
1835 key.offset = device->devid;
1837 btrfs_reserve_chunk_metadata(trans, true);
1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 &key, sizeof(*dev_item));
1840 btrfs_trans_release_chunk_metadata(trans);
1844 leaf = path->nodes[0];
1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1847 btrfs_set_device_id(leaf, dev_item, device->devid);
1848 btrfs_set_device_generation(leaf, dev_item, 0);
1849 btrfs_set_device_type(leaf, dev_item, device->type);
1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853 btrfs_set_device_total_bytes(leaf, dev_item,
1854 btrfs_device_get_disk_total_bytes(device));
1855 btrfs_set_device_bytes_used(leaf, dev_item,
1856 btrfs_device_get_bytes_used(device));
1857 btrfs_set_device_group(leaf, dev_item, 0);
1858 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860 btrfs_set_device_start_offset(leaf, dev_item, 0);
1862 ptr = btrfs_device_uuid(dev_item);
1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864 ptr = btrfs_device_fsid(dev_item);
1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 ptr, BTRFS_FSID_SIZE);
1867 btrfs_mark_buffer_dirty(trans, leaf);
1871 btrfs_free_path(path);
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1879 * We don't care about errors here, this is just to be kind to userspace.
1881 static void update_dev_time(const char *device_path)
1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1894 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 struct btrfs_device *device)
1897 struct btrfs_root *root = device->fs_info->chunk_root;
1899 struct btrfs_path *path;
1900 struct btrfs_key key;
1902 path = btrfs_alloc_path();
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1910 btrfs_reserve_chunk_metadata(trans, false);
1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912 btrfs_trans_release_chunk_metadata(trans);
1919 ret = btrfs_del_item(trans, root, path);
1921 btrfs_free_path(path);
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1930 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1938 seq = read_seqbegin(&fs_info->profiles_lock);
1940 all_avail = fs_info->avail_data_alloc_bits |
1941 fs_info->avail_system_alloc_bits |
1942 fs_info->avail_metadata_alloc_bits;
1943 } while (read_seqretry(&fs_info->profiles_lock, seq));
1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1949 if (num_devices < btrfs_raid_array[i].devs_min)
1950 return btrfs_raid_array[i].mindev_error;
1956 static struct btrfs_device * btrfs_find_next_active_device(
1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1959 struct btrfs_device *next_device;
1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 if (next_device != device &&
1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 && next_device->bdev)
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1977 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978 struct btrfs_device *next_device)
1980 struct btrfs_fs_info *fs_info = device->fs_info;
1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1985 ASSERT(next_device);
1987 if (fs_info->sb->s_bdev &&
1988 (fs_info->sb->s_bdev == device->bdev))
1989 fs_info->sb->s_bdev = next_device->bdev;
1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 fs_info->fs_devices->latest_dev = next_device;
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1999 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2001 u64 num_devices = fs_info->fs_devices->num_devices;
2003 down_read(&fs_info->dev_replace.rwsem);
2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 ASSERT(num_devices > 1);
2008 up_read(&fs_info->dev_replace.rwsem);
2013 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 struct block_device *bdev, int copy_num)
2016 struct btrfs_super_block *disk_super;
2017 const size_t len = sizeof(disk_super->magic);
2018 const u64 bytenr = btrfs_sb_offset(copy_num);
2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022 if (IS_ERR(disk_super))
2025 memset(&disk_super->magic, 0, len);
2026 folio_mark_dirty(virt_to_folio(disk_super));
2027 btrfs_release_disk_super(disk_super);
2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2035 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev,
2037 const char *device_path)
2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045 if (bdev_is_zoned(bdev))
2046 btrfs_reset_sb_log_zones(bdev, copy_num);
2048 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2051 /* Notify udev that device has changed */
2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2054 /* Update ctime/mtime for device path for libblkid */
2055 update_dev_time(device_path);
2058 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 struct btrfs_dev_lookup_args *args,
2060 struct file **bdev_file)
2062 struct btrfs_trans_handle *trans;
2063 struct btrfs_device *device;
2064 struct btrfs_fs_devices *cur_devices;
2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2075 * The device list in fs_devices is accessed without locks (neither
2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 * filesystem and another device rm cannot run.
2079 num_devices = btrfs_num_devices(fs_info);
2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2085 device = btrfs_find_device(fs_info->fs_devices, args);
2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2094 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 btrfs_warn_in_rcu(fs_info,
2096 "cannot remove device %s (devid %llu) due to active swapfile",
2097 btrfs_dev_name(device), device->devid);
2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 return BTRFS_ERROR_DEV_TGT_REPLACE;
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105 fs_info->fs_devices->rw_devices == 1)
2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 mutex_lock(&fs_info->chunk_mutex);
2110 list_del_init(&device->dev_alloc_list);
2111 device->fs_devices->rw_devices--;
2112 mutex_unlock(&fs_info->chunk_mutex);
2115 ret = btrfs_shrink_device(device, 0);
2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 if (IS_ERR(trans)) {
2121 ret = PTR_ERR(trans);
2125 ret = btrfs_rm_dev_item(trans, device);
2127 /* Any error in dev item removal is critical */
2129 "failed to remove device item for devid %llu: %d",
2130 device->devid, ret);
2131 btrfs_abort_transaction(trans, ret);
2132 btrfs_end_transaction(trans);
2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137 btrfs_scrub_cancel_dev(device);
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
2152 * its own fs_devices listed under the fs_devices->seed_list.
2154 cur_devices = device->fs_devices;
2155 mutex_lock(&fs_devices->device_list_mutex);
2156 list_del_rcu(&device->dev_list);
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165 cur_devices->missing_devices--;
2167 btrfs_assign_next_active_device(device, NULL);
2169 if (device->bdev_file) {
2170 cur_devices->open_devices--;
2171 /* remove sysfs entry */
2172 btrfs_sysfs_remove_device(device);
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177 mutex_unlock(&fs_devices->device_list_mutex);
2180 * At this point, the device is zero sized and detached from the
2181 * devices list. All that's left is to zero out the old supers and
2184 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185 * write lock, and fput() on the block device will pull in the
2186 * ->open_mutex on the block device and it's dependencies. Instead
2187 * just flush the device and let the caller do the final bdev_release.
2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190 btrfs_scratch_superblocks(fs_info, device->bdev,
2193 sync_blockdev(device->bdev);
2194 invalidate_bdev(device->bdev);
2198 *bdev_file = device->bdev_file;
2200 btrfs_free_device(device);
2203 * This can happen if cur_devices is the private seed devices list. We
2204 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 * to be held, but in fact we don't need that for the private
2206 * seed_devices, we can simply decrement cur_devices->opened and then
2207 * remove it from our list and free the fs_devices.
2209 if (cur_devices->num_devices == 0) {
2210 list_del_init(&cur_devices->seed_list);
2211 ASSERT(cur_devices->opened == 1);
2212 cur_devices->opened--;
2213 free_fs_devices(cur_devices);
2216 ret = btrfs_commit_transaction(trans);
2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222 mutex_lock(&fs_info->chunk_mutex);
2223 list_add(&device->dev_alloc_list,
2224 &fs_devices->alloc_list);
2225 device->fs_devices->rw_devices++;
2226 mutex_unlock(&fs_info->chunk_mutex);
2231 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2233 struct btrfs_fs_devices *fs_devices;
2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2238 * in case of fs with no seed, srcdev->fs_devices will point
2239 * to fs_devices of fs_info. However when the dev being replaced is
2240 * a seed dev it will point to the seed's local fs_devices. In short
2241 * srcdev will have its correct fs_devices in both the cases.
2243 fs_devices = srcdev->fs_devices;
2245 list_del_rcu(&srcdev->dev_list);
2246 list_del(&srcdev->dev_alloc_list);
2247 fs_devices->num_devices--;
2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249 fs_devices->missing_devices--;
2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252 fs_devices->rw_devices--;
2255 fs_devices->open_devices--;
2258 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2262 mutex_lock(&uuid_mutex);
2264 btrfs_close_bdev(srcdev);
2266 btrfs_free_device(srcdev);
2268 /* if this is no devs we rather delete the fs_devices */
2269 if (!fs_devices->num_devices) {
2271 * On a mounted FS, num_devices can't be zero unless it's a
2272 * seed. In case of a seed device being replaced, the replace
2273 * target added to the sprout FS, so there will be no more
2274 * device left under the seed FS.
2276 ASSERT(fs_devices->seeding);
2278 list_del_init(&fs_devices->seed_list);
2279 close_fs_devices(fs_devices);
2280 free_fs_devices(fs_devices);
2282 mutex_unlock(&uuid_mutex);
2285 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2289 mutex_lock(&fs_devices->device_list_mutex);
2291 btrfs_sysfs_remove_device(tgtdev);
2294 fs_devices->open_devices--;
2296 fs_devices->num_devices--;
2298 btrfs_assign_next_active_device(tgtdev, NULL);
2300 list_del_rcu(&tgtdev->dev_list);
2302 mutex_unlock(&fs_devices->device_list_mutex);
2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2307 btrfs_close_bdev(tgtdev);
2309 btrfs_free_device(tgtdev);
2313 * Populate args from device at path.
2315 * @fs_info: the filesystem
2316 * @args: the args to populate
2317 * @path: the path to the device
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks. The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2328 * Return: 0 for success, -errno for failure
2330 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 struct btrfs_dev_lookup_args *args,
2334 struct btrfs_super_block *disk_super;
2335 struct file *bdev_file;
2338 if (!path || !path[0])
2340 if (!strcmp(path, "missing")) {
2341 args->missing = true;
2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 if (!args->uuid || !args->fsid) {
2348 btrfs_put_dev_args_from_path(args);
2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 &bdev_file, &disk_super);
2355 btrfs_put_dev_args_from_path(args);
2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 btrfs_release_disk_super(disk_super);
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2375 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2383 struct btrfs_device *btrfs_find_device_by_devspec(
2384 struct btrfs_fs_info *fs_info, u64 devid,
2385 const char *device_path)
2387 BTRFS_DEV_LOOKUP_ARGS(args);
2388 struct btrfs_device *device;
2393 device = btrfs_find_device(fs_info->fs_devices, &args);
2395 return ERR_PTR(-ENOENT);
2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2401 return ERR_PTR(ret);
2402 device = btrfs_find_device(fs_info->fs_devices, &args);
2403 btrfs_put_dev_args_from_path(&args);
2405 return ERR_PTR(-ENOENT);
2409 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 struct btrfs_fs_devices *old_devices;
2413 struct btrfs_fs_devices *seed_devices;
2415 lockdep_assert_held(&uuid_mutex);
2416 if (!fs_devices->seeding)
2417 return ERR_PTR(-EINVAL);
2420 * Private copy of the seed devices, anchored at
2421 * fs_info->fs_devices->seed_list
2423 seed_devices = alloc_fs_devices(NULL);
2424 if (IS_ERR(seed_devices))
2425 return seed_devices;
2428 * It's necessary to retain a copy of the original seed fs_devices in
2429 * fs_uuids so that filesystems which have been seeded can successfully
2430 * reference the seed device from open_seed_devices. This also supports
2433 old_devices = clone_fs_devices(fs_devices);
2434 if (IS_ERR(old_devices)) {
2435 kfree(seed_devices);
2439 list_add(&old_devices->fs_list, &fs_uuids);
2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 seed_devices->opened = 1;
2443 INIT_LIST_HEAD(&seed_devices->devices);
2444 INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 mutex_init(&seed_devices->device_list_mutex);
2447 return seed_devices;
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2454 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 struct btrfs_fs_devices *seed_devices)
2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 struct btrfs_device *device;
2463 * We are updating the fsid, the thread leading to device_list_add()
2464 * could race, so uuid_mutex is needed.
2466 lockdep_assert_held(&uuid_mutex);
2469 * The threads listed below may traverse dev_list but can do that without
2470 * device_list_mutex:
2471 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 * - Various dev_list readers - are using RCU.
2473 * - btrfs_ioctl_fitrim() - is using RCU.
2475 * For-read threads as below are using device_list_mutex:
2476 * - Readonly scrub btrfs_scrub_dev()
2477 * - Readonly scrub btrfs_scrub_progress()
2478 * - btrfs_get_dev_stats()
2480 lockdep_assert_held(&fs_devices->device_list_mutex);
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
2487 fs_devices->seeding = false;
2488 fs_devices->num_devices = 0;
2489 fs_devices->open_devices = 0;
2490 fs_devices->missing_devices = 0;
2491 fs_devices->rotating = false;
2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2494 generate_random_uuid(fs_devices->fsid);
2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2498 super_flags = btrfs_super_flags(disk_super) &
2499 ~BTRFS_SUPER_FLAG_SEEDING;
2500 btrfs_set_super_flags(disk_super, super_flags);
2504 * Store the expected generation for seed devices in device items.
2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2508 BTRFS_DEV_LOOKUP_ARGS(args);
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
2510 struct btrfs_root *root = fs_info->chunk_root;
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2520 path = btrfs_alloc_path();
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2529 btrfs_reserve_chunk_metadata(trans, false);
2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 btrfs_trans_release_chunk_metadata(trans);
2535 leaf = path->nodes[0];
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 btrfs_release_path(path);
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
2556 args.devid = btrfs_device_id(leaf, dev_item);
2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
2564 BUG_ON(!device); /* Logic error */
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
2569 btrfs_mark_buffer_dirty(trans, leaf);
2577 btrfs_free_path(path);
2581 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2583 struct btrfs_root *root = fs_info->dev_root;
2584 struct btrfs_trans_handle *trans;
2585 struct btrfs_device *device;
2586 struct file *bdev_file;
2587 struct super_block *sb = fs_info->sb;
2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 struct btrfs_fs_devices *seed_devices = NULL;
2590 u64 orig_super_total_bytes;
2591 u64 orig_super_num_devices;
2593 bool seeding_dev = false;
2594 bool locked = false;
2596 if (sb_rdonly(sb) && !fs_devices->seeding)
2599 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2600 fs_info->bdev_holder, NULL);
2601 if (IS_ERR(bdev_file))
2602 return PTR_ERR(bdev_file);
2604 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2609 if (fs_devices->seeding) {
2611 down_write(&sb->s_umount);
2612 mutex_lock(&uuid_mutex);
2616 sync_blockdev(file_bdev(bdev_file));
2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 if (device->bdev == file_bdev(bdev_file)) {
2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 if (IS_ERR(device)) {
2630 /* we can safely leave the fs_devices entry around */
2631 ret = PTR_ERR(device);
2635 device->fs_info = fs_info;
2636 device->bdev_file = bdev_file;
2637 device->bdev = file_bdev(bdev_file);
2638 ret = lookup_bdev(device_path, &device->devt);
2640 goto error_free_device;
2642 ret = btrfs_get_dev_zone_info(device, false);
2644 goto error_free_device;
2646 trans = btrfs_start_transaction(root, 0);
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 goto error_free_zone;
2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 device->generation = trans->transid;
2654 device->io_width = fs_info->sectorsize;
2655 device->io_align = fs_info->sectorsize;
2656 device->sector_size = fs_info->sectorsize;
2657 device->total_bytes =
2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 device->disk_total_bytes = device->total_bytes;
2660 device->commit_total_bytes = device->total_bytes;
2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 device->dev_stats_valid = 1;
2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2667 btrfs_clear_sb_rdonly(sb);
2669 /* GFP_KERNEL allocation must not be under device_list_mutex */
2670 seed_devices = btrfs_init_sprout(fs_info);
2671 if (IS_ERR(seed_devices)) {
2672 ret = PTR_ERR(seed_devices);
2673 btrfs_abort_transaction(trans, ret);
2678 mutex_lock(&fs_devices->device_list_mutex);
2680 btrfs_setup_sprout(fs_info, seed_devices);
2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2685 device->fs_devices = fs_devices;
2687 mutex_lock(&fs_info->chunk_mutex);
2688 list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 fs_devices->num_devices++;
2691 fs_devices->open_devices++;
2692 fs_devices->rw_devices++;
2693 fs_devices->total_devices++;
2694 fs_devices->total_rw_bytes += device->total_bytes;
2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2698 if (!bdev_nonrot(device->bdev))
2699 fs_devices->rotating = true;
2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 btrfs_set_super_total_bytes(fs_info->super_copy,
2703 round_down(orig_super_total_bytes + device->total_bytes,
2704 fs_info->sectorsize));
2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 btrfs_set_super_num_devices(fs_info->super_copy,
2708 orig_super_num_devices + 1);
2711 * we've got more storage, clear any full flags on the space
2714 btrfs_clear_space_info_full(fs_info);
2716 mutex_unlock(&fs_info->chunk_mutex);
2718 /* Add sysfs device entry */
2719 btrfs_sysfs_add_device(device);
2721 mutex_unlock(&fs_devices->device_list_mutex);
2724 mutex_lock(&fs_info->chunk_mutex);
2725 ret = init_first_rw_device(trans);
2726 mutex_unlock(&fs_info->chunk_mutex);
2728 btrfs_abort_transaction(trans, ret);
2733 ret = btrfs_add_dev_item(trans, device);
2735 btrfs_abort_transaction(trans, ret);
2740 ret = btrfs_finish_sprout(trans);
2742 btrfs_abort_transaction(trans, ret);
2747 * fs_devices now represents the newly sprouted filesystem and
2748 * its fsid has been changed by btrfs_sprout_splice().
2750 btrfs_sysfs_update_sprout_fsid(fs_devices);
2753 ret = btrfs_commit_transaction(trans);
2756 mutex_unlock(&uuid_mutex);
2757 up_write(&sb->s_umount);
2760 if (ret) /* transaction commit */
2763 ret = btrfs_relocate_sys_chunks(fs_info);
2765 btrfs_handle_fs_error(fs_info, ret,
2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 trans = btrfs_attach_transaction(root);
2768 if (IS_ERR(trans)) {
2769 if (PTR_ERR(trans) == -ENOENT)
2771 ret = PTR_ERR(trans);
2775 ret = btrfs_commit_transaction(trans);
2779 * Now that we have written a new super block to this device, check all
2780 * other fs_devices list if device_path alienates any other scanned
2782 * We can ignore the return value as it typically returns -EINVAL and
2783 * only succeeds if the device was an alien.
2785 btrfs_forget_devices(device->devt);
2787 /* Update ctime/mtime for blkid or udev */
2788 update_dev_time(device_path);
2793 btrfs_sysfs_remove_device(device);
2794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 mutex_lock(&fs_info->chunk_mutex);
2796 list_del_rcu(&device->dev_list);
2797 list_del(&device->dev_alloc_list);
2798 fs_info->fs_devices->num_devices--;
2799 fs_info->fs_devices->open_devices--;
2800 fs_info->fs_devices->rw_devices--;
2801 fs_info->fs_devices->total_devices--;
2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 btrfs_set_super_total_bytes(fs_info->super_copy,
2805 orig_super_total_bytes);
2806 btrfs_set_super_num_devices(fs_info->super_copy,
2807 orig_super_num_devices);
2808 mutex_unlock(&fs_info->chunk_mutex);
2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2812 btrfs_set_sb_rdonly(sb);
2814 btrfs_end_transaction(trans);
2816 btrfs_destroy_dev_zone_info(device);
2818 btrfs_free_device(device);
2822 mutex_unlock(&uuid_mutex);
2823 up_write(&sb->s_umount);
2828 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 struct btrfs_device *device)
2832 struct btrfs_path *path;
2833 struct btrfs_root *root = device->fs_info->chunk_root;
2834 struct btrfs_dev_item *dev_item;
2835 struct extent_buffer *leaf;
2836 struct btrfs_key key;
2838 path = btrfs_alloc_path();
2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 key.type = BTRFS_DEV_ITEM_KEY;
2844 key.offset = device->devid;
2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2855 leaf = path->nodes[0];
2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2858 btrfs_set_device_id(leaf, dev_item, device->devid);
2859 btrfs_set_device_type(leaf, dev_item, device->type);
2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 btrfs_set_device_total_bytes(leaf, dev_item,
2864 btrfs_device_get_disk_total_bytes(device));
2865 btrfs_set_device_bytes_used(leaf, dev_item,
2866 btrfs_device_get_bytes_used(device));
2867 btrfs_mark_buffer_dirty(trans, leaf);
2870 btrfs_free_path(path);
2874 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 struct btrfs_device *device, u64 new_size)
2877 struct btrfs_fs_info *fs_info = device->fs_info;
2878 struct btrfs_super_block *super_copy = fs_info->super_copy;
2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2886 new_size = round_down(new_size, fs_info->sectorsize);
2888 mutex_lock(&fs_info->chunk_mutex);
2889 old_total = btrfs_super_total_bytes(super_copy);
2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2892 if (new_size <= device->total_bytes ||
2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 mutex_unlock(&fs_info->chunk_mutex);
2898 btrfs_set_super_total_bytes(super_copy,
2899 round_down(old_total + diff, fs_info->sectorsize));
2900 device->fs_devices->total_rw_bytes += diff;
2901 atomic64_add(diff, &fs_info->free_chunk_space);
2903 btrfs_device_set_total_bytes(device, new_size);
2904 btrfs_device_set_disk_total_bytes(device, new_size);
2905 btrfs_clear_space_info_full(device->fs_info);
2906 if (list_empty(&device->post_commit_list))
2907 list_add_tail(&device->post_commit_list,
2908 &trans->transaction->dev_update_list);
2909 mutex_unlock(&fs_info->chunk_mutex);
2911 btrfs_reserve_chunk_metadata(trans, false);
2912 ret = btrfs_update_device(trans, device);
2913 btrfs_trans_release_chunk_metadata(trans);
2918 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2920 struct btrfs_fs_info *fs_info = trans->fs_info;
2921 struct btrfs_root *root = fs_info->chunk_root;
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
2926 path = btrfs_alloc_path();
2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 key.offset = chunk_offset;
2932 key.type = BTRFS_CHUNK_ITEM_KEY;
2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2937 else if (ret > 0) { /* Logic error or corruption */
2938 btrfs_handle_fs_error(fs_info, -ENOENT,
2939 "Failed lookup while freeing chunk.");
2944 ret = btrfs_del_item(trans, root, path);
2946 btrfs_handle_fs_error(fs_info, ret,
2947 "Failed to delete chunk item.");
2949 btrfs_free_path(path);
2953 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2955 struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 struct btrfs_disk_key *disk_key;
2957 struct btrfs_chunk *chunk;
2964 struct btrfs_key key;
2966 lockdep_assert_held(&fs_info->chunk_mutex);
2967 array_size = btrfs_super_sys_array_size(super_copy);
2969 ptr = super_copy->sys_chunk_array;
2972 while (cur < array_size) {
2973 disk_key = (struct btrfs_disk_key *)ptr;
2974 btrfs_disk_key_to_cpu(&key, disk_key);
2976 len = sizeof(*disk_key);
2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 chunk = (struct btrfs_chunk *)(ptr + len);
2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 len += btrfs_chunk_item_size(num_stripes);
2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 key.offset == chunk_offset) {
2988 memmove(ptr, ptr + len, array_size - (cur + len));
2990 btrfs_set_super_sys_array_size(super_copy, array_size);
2999 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 u64 logical, u64 length)
3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 struct rb_node *prev = NULL;
3004 struct rb_node *orig_prev;
3005 struct btrfs_chunk_map *map;
3006 struct btrfs_chunk_map *prev_map = NULL;
3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3013 if (logical < map->start) {
3014 node = node->rb_left;
3015 } else if (logical >= map->start + map->chunk_len) {
3016 node = node->rb_right;
3018 refcount_inc(&map->refs);
3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 prev = rb_next(prev);
3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 while (prev && logical < prev_map->start) {
3036 prev = rb_prev(prev);
3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3042 u64 end = logical + length;
3045 * Caller can pass a U64_MAX length when it wants to get any
3046 * chunk starting at an offset of 'logical' or higher, so deal
3047 * with underflow by resetting the end offset to U64_MAX.
3052 if (end > prev_map->start &&
3053 logical < prev_map->start + prev_map->chunk_len) {
3054 refcount_inc(&prev_map->refs);
3062 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
3065 struct btrfs_chunk_map *map;
3067 read_lock(&fs_info->mapping_tree_lock);
3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 read_unlock(&fs_info->mapping_tree_lock);
3075 * Find the mapping containing the given logical extent.
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3080 * Return: Chunk mapping or ERR_PTR.
3082 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 u64 logical, u64 length)
3085 struct btrfs_chunk_map *map;
3087 map = btrfs_find_chunk_map(fs_info, logical, length);
3089 if (unlikely(!map)) {
3091 "unable to find chunk map for logical %llu length %llu",
3093 return ERR_PTR(-EINVAL);
3096 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3098 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099 logical, logical + length, map->start,
3100 map->start + map->chunk_len);
3101 btrfs_free_chunk_map(map);
3102 return ERR_PTR(-EINVAL);
3105 /* Callers are responsible for dropping the reference. */
3109 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_chunk_map *map, u64 chunk_offset)
3115 * Removing chunk items and updating the device items in the chunks btree
3116 * requires holding the chunk_mutex.
3117 * See the comment at btrfs_chunk_alloc() for the details.
3119 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3121 for (i = 0; i < map->num_stripes; i++) {
3124 ret = btrfs_update_device(trans, map->stripes[i].dev);
3129 return btrfs_free_chunk(trans, chunk_offset);
3132 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3134 struct btrfs_fs_info *fs_info = trans->fs_info;
3135 struct btrfs_chunk_map *map;
3136 u64 dev_extent_len = 0;
3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3140 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3143 * This is a logic error, but we don't want to just rely on the
3144 * user having built with ASSERT enabled, so if ASSERT doesn't
3145 * do anything we still error out.
3148 return PTR_ERR(map);
3152 * First delete the device extent items from the devices btree.
3153 * We take the device_list_mutex to avoid racing with the finishing phase
3154 * of a device replace operation. See the comment below before acquiring
3155 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156 * because that can result in a deadlock when deleting the device extent
3157 * items from the devices btree - COWing an extent buffer from the btree
3158 * may result in allocating a new metadata chunk, which would attempt to
3159 * lock again fs_info->chunk_mutex.
3161 mutex_lock(&fs_devices->device_list_mutex);
3162 for (i = 0; i < map->num_stripes; i++) {
3163 struct btrfs_device *device = map->stripes[i].dev;
3164 ret = btrfs_free_dev_extent(trans, device,
3165 map->stripes[i].physical,
3168 mutex_unlock(&fs_devices->device_list_mutex);
3169 btrfs_abort_transaction(trans, ret);
3173 if (device->bytes_used > 0) {
3174 mutex_lock(&fs_info->chunk_mutex);
3175 btrfs_device_set_bytes_used(device,
3176 device->bytes_used - dev_extent_len);
3177 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178 btrfs_clear_space_info_full(fs_info);
3179 mutex_unlock(&fs_info->chunk_mutex);
3182 mutex_unlock(&fs_devices->device_list_mutex);
3185 * We acquire fs_info->chunk_mutex for 2 reasons:
3187 * 1) Just like with the first phase of the chunk allocation, we must
3188 * reserve system space, do all chunk btree updates and deletions, and
3189 * update the system chunk array in the superblock while holding this
3190 * mutex. This is for similar reasons as explained on the comment at
3191 * the top of btrfs_chunk_alloc();
3193 * 2) Prevent races with the final phase of a device replace operation
3194 * that replaces the device object associated with the map's stripes,
3195 * because the device object's id can change at any time during that
3196 * final phase of the device replace operation
3197 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198 * replaced device and then see it with an ID of
3199 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200 * the device item, which does not exists on the chunk btree.
3201 * The finishing phase of device replace acquires both the
3202 * device_list_mutex and the chunk_mutex, in that order, so we are
3203 * safe by just acquiring the chunk_mutex.
3205 trans->removing_chunk = true;
3206 mutex_lock(&fs_info->chunk_mutex);
3208 check_system_chunk(trans, map->type);
3210 ret = remove_chunk_item(trans, map, chunk_offset);
3212 * Normally we should not get -ENOSPC since we reserved space before
3213 * through the call to check_system_chunk().
3215 * Despite our system space_info having enough free space, we may not
3216 * be able to allocate extents from its block groups, because all have
3217 * an incompatible profile, which will force us to allocate a new system
3218 * block group with the right profile, or right after we called
3219 * check_system_space() above, a scrub turned the only system block group
3220 * with enough free space into RO mode.
3221 * This is explained with more detail at do_chunk_alloc().
3223 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3225 if (ret == -ENOSPC) {
3226 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227 struct btrfs_block_group *sys_bg;
3229 sys_bg = btrfs_create_chunk(trans, sys_flags);
3230 if (IS_ERR(sys_bg)) {
3231 ret = PTR_ERR(sys_bg);
3232 btrfs_abort_transaction(trans, ret);
3236 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3238 btrfs_abort_transaction(trans, ret);
3242 ret = remove_chunk_item(trans, map, chunk_offset);
3244 btrfs_abort_transaction(trans, ret);
3248 btrfs_abort_transaction(trans, ret);
3252 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3254 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3257 btrfs_abort_transaction(trans, ret);
3262 mutex_unlock(&fs_info->chunk_mutex);
3263 trans->removing_chunk = false;
3266 * We are done with chunk btree updates and deletions, so release the
3267 * system space we previously reserved (with check_system_chunk()).
3269 btrfs_trans_release_chunk_metadata(trans);
3271 ret = btrfs_remove_block_group(trans, map);
3273 btrfs_abort_transaction(trans, ret);
3278 if (trans->removing_chunk) {
3279 mutex_unlock(&fs_info->chunk_mutex);
3280 trans->removing_chunk = false;
3283 btrfs_free_chunk_map(map);
3287 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3289 struct btrfs_root *root = fs_info->chunk_root;
3290 struct btrfs_trans_handle *trans;
3291 struct btrfs_block_group *block_group;
3295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3297 "relocate: not supported on extent tree v2 yet");
3302 * Prevent races with automatic removal of unused block groups.
3303 * After we relocate and before we remove the chunk with offset
3304 * chunk_offset, automatic removal of the block group can kick in,
3305 * resulting in a failure when calling btrfs_remove_chunk() below.
3307 * Make sure to acquire this mutex before doing a tree search (dev
3308 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310 * we release the path used to search the chunk/dev tree and before
3311 * the current task acquires this mutex and calls us.
3313 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3315 /* step one, relocate all the extents inside this chunk */
3316 btrfs_scrub_pause(fs_info);
3317 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318 btrfs_scrub_continue(fs_info);
3321 * If we had a transaction abort, stop all running scrubs.
3322 * See transaction.c:cleanup_transaction() why we do it here.
3324 if (BTRFS_FS_ERROR(fs_info))
3325 btrfs_scrub_cancel(fs_info);
3329 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333 length = block_group->length;
3334 btrfs_put_block_group(block_group);
3337 * On a zoned file system, discard the whole block group, this will
3338 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339 * resetting the zone fails, don't treat it as a fatal problem from the
3340 * filesystem's point of view.
3342 if (btrfs_is_zoned(fs_info)) {
3343 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3346 "failed to reset zone %llu after relocation",
3350 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3352 if (IS_ERR(trans)) {
3353 ret = PTR_ERR(trans);
3354 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3359 * step two, delete the device extents and the
3360 * chunk tree entries
3362 ret = btrfs_remove_chunk(trans, chunk_offset);
3363 btrfs_end_transaction(trans);
3367 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3369 struct btrfs_root *chunk_root = fs_info->chunk_root;
3370 struct btrfs_path *path;
3371 struct extent_buffer *leaf;
3372 struct btrfs_chunk *chunk;
3373 struct btrfs_key key;
3374 struct btrfs_key found_key;
3376 bool retried = false;
3380 path = btrfs_alloc_path();
3385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386 key.offset = (u64)-1;
3387 key.type = BTRFS_CHUNK_ITEM_KEY;
3390 mutex_lock(&fs_info->reclaim_bgs_lock);
3391 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3393 mutex_unlock(&fs_info->reclaim_bgs_lock);
3396 BUG_ON(ret == 0); /* Corruption */
3398 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3401 mutex_unlock(&fs_info->reclaim_bgs_lock);
3407 leaf = path->nodes[0];
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3410 chunk = btrfs_item_ptr(leaf, path->slots[0],
3411 struct btrfs_chunk);
3412 chunk_type = btrfs_chunk_type(leaf, chunk);
3413 btrfs_release_path(path);
3415 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3422 mutex_unlock(&fs_info->reclaim_bgs_lock);
3424 if (found_key.offset == 0)
3426 key.offset = found_key.offset - 1;
3429 if (failed && !retried) {
3433 } else if (WARN_ON(failed && retried)) {
3437 btrfs_free_path(path);
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3446 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3449 struct btrfs_block_group *cache;
3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3455 chunk_type = cache->flags;
3456 btrfs_put_block_group(cache);
3458 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3461 spin_lock(&fs_info->data_sinfo->lock);
3462 bytes_used = fs_info->data_sinfo->bytes_used;
3463 spin_unlock(&fs_info->data_sinfo->lock);
3466 struct btrfs_trans_handle *trans;
3469 trans = btrfs_join_transaction(fs_info->tree_root);
3471 return PTR_ERR(trans);
3473 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474 btrfs_end_transaction(trans);
3483 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484 struct btrfs_balance_control *bctl)
3486 struct btrfs_root *root = fs_info->tree_root;
3487 struct btrfs_trans_handle *trans;
3488 struct btrfs_balance_item *item;
3489 struct btrfs_disk_balance_args disk_bargs;
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_key key;
3495 path = btrfs_alloc_path();
3499 trans = btrfs_start_transaction(root, 0);
3500 if (IS_ERR(trans)) {
3501 btrfs_free_path(path);
3502 return PTR_ERR(trans);
3505 key.objectid = BTRFS_BALANCE_OBJECTID;
3506 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3509 ret = btrfs_insert_empty_item(trans, root, path, &key,
3514 leaf = path->nodes[0];
3515 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3517 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3519 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520 btrfs_set_balance_data(leaf, item, &disk_bargs);
3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3526 btrfs_set_balance_flags(leaf, item, bctl->flags);
3528 btrfs_mark_buffer_dirty(trans, leaf);
3530 btrfs_free_path(path);
3531 err = btrfs_commit_transaction(trans);
3537 static int del_balance_item(struct btrfs_fs_info *fs_info)
3539 struct btrfs_root *root = fs_info->tree_root;
3540 struct btrfs_trans_handle *trans;
3541 struct btrfs_path *path;
3542 struct btrfs_key key;
3545 path = btrfs_alloc_path();
3549 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550 if (IS_ERR(trans)) {
3551 btrfs_free_path(path);
3552 return PTR_ERR(trans);
3555 key.objectid = BTRFS_BALANCE_OBJECTID;
3556 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3567 ret = btrfs_del_item(trans, root, path);
3569 btrfs_free_path(path);
3570 err = btrfs_commit_transaction(trans);
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3580 static void update_balance_args(struct btrfs_balance_control *bctl)
3583 * Turn on soft mode for chunk types that were being converted.
3585 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3593 * Turn on usage filter if is not already used. The idea is
3594 * that chunks that we have already balanced should be
3595 * reasonably full. Don't do it for chunks that are being
3596 * converted - that will keep us from relocating unconverted
3597 * (albeit full) chunks.
3599 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603 bctl->data.usage = 90;
3605 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609 bctl->sys.usage = 90;
3611 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615 bctl->meta.usage = 90;
3620 * Clear the balance status in fs_info and delete the balance item from disk.
3622 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3624 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3627 BUG_ON(!fs_info->balance_ctl);
3629 spin_lock(&fs_info->balance_lock);
3630 fs_info->balance_ctl = NULL;
3631 spin_unlock(&fs_info->balance_lock);
3634 ret = del_balance_item(fs_info);
3636 btrfs_handle_fs_error(fs_info, ret, NULL);
3640 * Balance filters. Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3643 static int chunk_profiles_filter(u64 chunk_type,
3644 struct btrfs_balance_args *bargs)
3646 chunk_type = chunk_to_extended(chunk_type) &
3647 BTRFS_EXTENDED_PROFILE_MASK;
3649 if (bargs->profiles & chunk_type)
3655 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656 struct btrfs_balance_args *bargs)
3658 struct btrfs_block_group *cache;
3660 u64 user_thresh_min;
3661 u64 user_thresh_max;
3664 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665 chunk_used = cache->used;
3667 if (bargs->usage_min == 0)
3668 user_thresh_min = 0;
3670 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3672 if (bargs->usage_max == 0)
3673 user_thresh_max = 1;
3674 else if (bargs->usage_max > 100)
3675 user_thresh_max = cache->length;
3677 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3679 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3682 btrfs_put_block_group(cache);
3686 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687 u64 chunk_offset, struct btrfs_balance_args *bargs)
3689 struct btrfs_block_group *cache;
3690 u64 chunk_used, user_thresh;
3693 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694 chunk_used = cache->used;
3696 if (bargs->usage_min == 0)
3698 else if (bargs->usage > 100)
3699 user_thresh = cache->length;
3701 user_thresh = mult_perc(cache->length, bargs->usage);
3703 if (chunk_used < user_thresh)
3706 btrfs_put_block_group(cache);
3710 static int chunk_devid_filter(struct extent_buffer *leaf,
3711 struct btrfs_chunk *chunk,
3712 struct btrfs_balance_args *bargs)
3714 struct btrfs_stripe *stripe;
3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3718 for (i = 0; i < num_stripes; i++) {
3719 stripe = btrfs_stripe_nr(chunk, i);
3720 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3727 static u64 calc_data_stripes(u64 type, int num_stripes)
3729 const int index = btrfs_bg_flags_to_raid_index(type);
3730 const int ncopies = btrfs_raid_array[index].ncopies;
3731 const int nparity = btrfs_raid_array[index].nparity;
3733 return (num_stripes - nparity) / ncopies;
3736 /* [pstart, pend) */
3737 static int chunk_drange_filter(struct extent_buffer *leaf,
3738 struct btrfs_chunk *chunk,
3739 struct btrfs_balance_args *bargs)
3741 struct btrfs_stripe *stripe;
3742 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3752 type = btrfs_chunk_type(leaf, chunk);
3753 factor = calc_data_stripes(type, num_stripes);
3755 for (i = 0; i < num_stripes; i++) {
3756 stripe = btrfs_stripe_nr(chunk, i);
3757 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3760 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761 stripe_length = btrfs_chunk_length(leaf, chunk);
3762 stripe_length = div_u64(stripe_length, factor);
3764 if (stripe_offset < bargs->pend &&
3765 stripe_offset + stripe_length > bargs->pstart)
3772 /* [vstart, vend) */
3773 static int chunk_vrange_filter(struct extent_buffer *leaf,
3774 struct btrfs_chunk *chunk,
3776 struct btrfs_balance_args *bargs)
3778 if (chunk_offset < bargs->vend &&
3779 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780 /* at least part of the chunk is inside this vrange */
3786 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787 struct btrfs_chunk *chunk,
3788 struct btrfs_balance_args *bargs)
3790 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3792 if (bargs->stripes_min <= num_stripes
3793 && num_stripes <= bargs->stripes_max)
3799 static int chunk_soft_convert_filter(u64 chunk_type,
3800 struct btrfs_balance_args *bargs)
3802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3805 chunk_type = chunk_to_extended(chunk_type) &
3806 BTRFS_EXTENDED_PROFILE_MASK;
3808 if (bargs->target == chunk_type)
3814 static int should_balance_chunk(struct extent_buffer *leaf,
3815 struct btrfs_chunk *chunk, u64 chunk_offset)
3817 struct btrfs_fs_info *fs_info = leaf->fs_info;
3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 struct btrfs_balance_args *bargs = NULL;
3820 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829 bargs = &bctl->data;
3830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833 bargs = &bctl->meta;
3835 /* profiles filter */
3836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837 chunk_profiles_filter(chunk_type, bargs)) {
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3845 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852 chunk_devid_filter(leaf, chunk, bargs)) {
3856 /* drange filter, makes sense only with devid filter */
3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858 chunk_drange_filter(leaf, chunk, bargs)) {
3863 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3868 /* stripes filter */
3869 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3874 /* soft profile changing mode */
3875 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876 chunk_soft_convert_filter(chunk_type, bargs)) {
3881 * limited by count, must be the last filter
3883 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884 if (bargs->limit == 0)
3888 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3890 * Same logic as the 'limit' filter; the minimum cannot be
3891 * determined here because we do not have the global information
3892 * about the count of all chunks that satisfy the filters.
3894 if (bargs->limit_max == 0)
3903 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3905 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906 struct btrfs_root *chunk_root = fs_info->chunk_root;
3908 struct btrfs_chunk *chunk;
3909 struct btrfs_path *path = NULL;
3910 struct btrfs_key key;
3911 struct btrfs_key found_key;
3912 struct extent_buffer *leaf;
3915 int enospc_errors = 0;
3916 bool counting = true;
3917 /* The single value limit and min/max limits use the same bytes in the */
3918 u64 limit_data = bctl->data.limit;
3919 u64 limit_meta = bctl->meta.limit;
3920 u64 limit_sys = bctl->sys.limit;
3924 int chunk_reserved = 0;
3926 path = btrfs_alloc_path();
3932 /* zero out stat counters */
3933 spin_lock(&fs_info->balance_lock);
3934 memset(&bctl->stat, 0, sizeof(bctl->stat));
3935 spin_unlock(&fs_info->balance_lock);
3939 * The single value limit and min/max limits use the same bytes
3942 bctl->data.limit = limit_data;
3943 bctl->meta.limit = limit_meta;
3944 bctl->sys.limit = limit_sys;
3946 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947 key.offset = (u64)-1;
3948 key.type = BTRFS_CHUNK_ITEM_KEY;
3951 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952 atomic_read(&fs_info->balance_cancel_req)) {
3957 mutex_lock(&fs_info->reclaim_bgs_lock);
3958 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 * this shouldn't happen, it means the last relocate
3969 BUG(); /* FIXME break ? */
3971 ret = btrfs_previous_item(chunk_root, path, 0,
3972 BTRFS_CHUNK_ITEM_KEY);
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 leaf = path->nodes[0];
3980 slot = path->slots[0];
3981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3983 if (found_key.objectid != key.objectid) {
3984 mutex_unlock(&fs_info->reclaim_bgs_lock);
3988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989 chunk_type = btrfs_chunk_type(leaf, chunk);
3992 spin_lock(&fs_info->balance_lock);
3993 bctl->stat.considered++;
3994 spin_unlock(&fs_info->balance_lock);
3997 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3999 btrfs_release_path(path);
4001 mutex_unlock(&fs_info->reclaim_bgs_lock);
4006 mutex_unlock(&fs_info->reclaim_bgs_lock);
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.expected++;
4009 spin_unlock(&fs_info->balance_lock);
4011 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4013 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4015 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4022 * Apply limit_min filter, no need to check if the LIMITS
4023 * filter is used, limit_min is 0 by default
4025 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026 count_data < bctl->data.limit_min)
4027 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028 count_meta < bctl->meta.limit_min)
4029 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030 count_sys < bctl->sys.limit_min)) {
4031 mutex_unlock(&fs_info->reclaim_bgs_lock);
4035 if (!chunk_reserved) {
4037 * We may be relocating the only data chunk we have,
4038 * which could potentially end up with losing data's
4039 * raid profile, so lets allocate an empty one in
4042 ret = btrfs_may_alloc_data_chunk(fs_info,
4045 mutex_unlock(&fs_info->reclaim_bgs_lock);
4047 } else if (ret == 1) {
4052 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053 mutex_unlock(&fs_info->reclaim_bgs_lock);
4054 if (ret == -ENOSPC) {
4056 } else if (ret == -ETXTBSY) {
4058 "skipping relocation of block group %llu due to active swapfile",
4064 spin_lock(&fs_info->balance_lock);
4065 bctl->stat.completed++;
4066 spin_unlock(&fs_info->balance_lock);
4069 if (found_key.offset == 0)
4071 key.offset = found_key.offset - 1;
4075 btrfs_release_path(path);
4080 btrfs_free_path(path);
4081 if (enospc_errors) {
4082 btrfs_info(fs_info, "%d enospc errors during balance",
4092 * See if a given profile is valid and reduced.
4094 * @flags: profile to validate
4095 * @extended: if true @flags is treated as an extended profile
4097 static int alloc_profile_is_valid(u64 flags, int extended)
4099 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4102 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4104 /* 1) check that all other bits are zeroed */
4108 /* 2) see if profile is reduced */
4110 return !extended; /* "0" is valid for usual profiles */
4112 return has_single_bit_set(flags);
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4119 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120 const struct btrfs_balance_args *bargs,
4121 u64 allowed, const char *type)
4123 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4126 /* Profile is valid and does not have bits outside of the allowed set */
4127 if (alloc_profile_is_valid(bargs->target, 1) &&
4128 (bargs->target & ~allowed) == 0)
4131 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132 type, btrfs_bg_type_to_raid_name(bargs->target));
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4141 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4145 u32 size_bp = size_buf;
4147 u64 flags = bargs->flags;
4148 char tmp_buf[128] = {'\0'};
4153 #define CHECK_APPEND_NOARG(a) \
4155 ret = snprintf(bp, size_bp, (a)); \
4156 if (ret < 0 || ret >= size_bp) \
4157 goto out_overflow; \
4162 #define CHECK_APPEND_1ARG(a, v1) \
4164 ret = snprintf(bp, size_bp, (a), (v1)); \
4165 if (ret < 0 || ret >= size_bp) \
4166 goto out_overflow; \
4171 #define CHECK_APPEND_2ARG(a, v1, v2) \
4173 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4174 if (ret < 0 || ret >= size_bp) \
4175 goto out_overflow; \
4180 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181 CHECK_APPEND_1ARG("convert=%s,",
4182 btrfs_bg_type_to_raid_name(bargs->target));
4184 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185 CHECK_APPEND_NOARG("soft,");
4187 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4190 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4193 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4196 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197 CHECK_APPEND_2ARG("usage=%u..%u,",
4198 bargs->usage_min, bargs->usage_max);
4200 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4203 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205 bargs->pstart, bargs->pend);
4207 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209 bargs->vstart, bargs->vend);
4211 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4214 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215 CHECK_APPEND_2ARG("limit=%u..%u,",
4216 bargs->limit_min, bargs->limit_max);
4218 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219 CHECK_APPEND_2ARG("stripes=%u..%u,",
4220 bargs->stripes_min, bargs->stripes_max);
4222 #undef CHECK_APPEND_2ARG
4223 #undef CHECK_APPEND_1ARG
4224 #undef CHECK_APPEND_NOARG
4228 if (size_bp < size_buf)
4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4234 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4236 u32 size_buf = 1024;
4237 char tmp_buf[192] = {'\0'};
4240 u32 size_bp = size_buf;
4242 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4244 buf = kzalloc(size_buf, GFP_KERNEL);
4250 #define CHECK_APPEND_1ARG(a, v1) \
4252 ret = snprintf(bp, size_bp, (a), (v1)); \
4253 if (ret < 0 || ret >= size_bp) \
4254 goto out_overflow; \
4259 if (bctl->flags & BTRFS_BALANCE_FORCE)
4260 CHECK_APPEND_1ARG("%s", "-f ");
4262 if (bctl->flags & BTRFS_BALANCE_DATA) {
4263 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4267 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4272 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4277 #undef CHECK_APPEND_1ARG
4281 if (size_bp < size_buf)
4282 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283 btrfs_info(fs_info, "balance: %s %s",
4284 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285 "resume" : "start", buf);
4291 * Should be called with balance mutexe held
4293 int btrfs_balance(struct btrfs_fs_info *fs_info,
4294 struct btrfs_balance_control *bctl,
4295 struct btrfs_ioctl_balance_args *bargs)
4297 u64 meta_target, data_target;
4303 bool reducing_redundancy;
4304 bool paused = false;
4307 if (btrfs_fs_closing(fs_info) ||
4308 atomic_read(&fs_info->balance_pause_req) ||
4309 btrfs_should_cancel_balance(fs_info)) {
4314 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4319 * In case of mixed groups both data and meta should be picked,
4320 * and identical options should be given for both of them.
4322 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323 if (mixed && (bctl->flags & allowed)) {
4324 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4328 "balance: mixed groups data and metadata options must be the same");
4335 * rw_devices will not change at the moment, device add/delete/replace
4338 num_devices = fs_info->fs_devices->rw_devices;
4341 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342 * special bit for it, to make it easier to distinguish. Thus we need
4343 * to set it manually, or balance would refuse the profile.
4345 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347 if (num_devices >= btrfs_raid_array[i].devs_min)
4348 allowed |= btrfs_raid_array[i].bg_flag;
4350 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4358 * Allow to reduce metadata or system integrity only if force set for
4359 * profiles with redundancy (copies, parity)
4362 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363 if (btrfs_raid_array[i].ncopies >= 2 ||
4364 btrfs_raid_array[i].tolerated_failures >= 1)
4365 allowed |= btrfs_raid_array[i].bg_flag;
4368 seq = read_seqbegin(&fs_info->profiles_lock);
4370 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371 (fs_info->avail_system_alloc_bits & allowed) &&
4372 !(bctl->sys.target & allowed)) ||
4373 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374 (fs_info->avail_metadata_alloc_bits & allowed) &&
4375 !(bctl->meta.target & allowed)))
4376 reducing_redundancy = true;
4378 reducing_redundancy = false;
4380 /* if we're not converting, the target field is uninitialized */
4381 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 bctl->data.target : fs_info->avail_data_alloc_bits;
4385 } while (read_seqretry(&fs_info->profiles_lock, seq));
4387 if (reducing_redundancy) {
4388 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4390 "balance: force reducing metadata redundancy");
4393 "balance: reduces metadata redundancy, use --force if you want this");
4399 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4402 "balance: metadata profile %s has lower redundancy than data profile %s",
4403 btrfs_bg_type_to_raid_name(meta_target),
4404 btrfs_bg_type_to_raid_name(data_target));
4407 ret = insert_balance_item(fs_info, bctl);
4408 if (ret && ret != -EEXIST)
4411 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412 BUG_ON(ret == -EEXIST);
4413 BUG_ON(fs_info->balance_ctl);
4414 spin_lock(&fs_info->balance_lock);
4415 fs_info->balance_ctl = bctl;
4416 spin_unlock(&fs_info->balance_lock);
4418 BUG_ON(ret != -EEXIST);
4419 spin_lock(&fs_info->balance_lock);
4420 update_balance_args(bctl);
4421 spin_unlock(&fs_info->balance_lock);
4424 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426 describe_balance_start_or_resume(fs_info);
4427 mutex_unlock(&fs_info->balance_mutex);
4429 ret = __btrfs_balance(fs_info);
4431 mutex_lock(&fs_info->balance_mutex);
4432 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433 btrfs_info(fs_info, "balance: paused");
4434 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4438 * Balance can be canceled by:
4440 * - Regular cancel request
4441 * Then ret == -ECANCELED and balance_cancel_req > 0
4443 * - Fatal signal to "btrfs" process
4444 * Either the signal caught by wait_reserve_ticket() and callers
4445 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4447 * Either way, in this case balance_cancel_req = 0, and
4448 * ret == -EINTR or ret == -ECANCELED.
4450 * So here we only check the return value to catch canceled balance.
4452 else if (ret == -ECANCELED || ret == -EINTR)
4453 btrfs_info(fs_info, "balance: canceled");
4455 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4457 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4460 memset(bargs, 0, sizeof(*bargs));
4461 btrfs_update_ioctl_balance_args(fs_info, bargs);
4464 /* We didn't pause, we can clean everything up. */
4466 reset_balance_state(fs_info);
4467 btrfs_exclop_finish(fs_info);
4470 wake_up(&fs_info->balance_wait_q);
4474 if (bctl->flags & BTRFS_BALANCE_RESUME)
4475 reset_balance_state(fs_info);
4478 btrfs_exclop_finish(fs_info);
4483 static int balance_kthread(void *data)
4485 struct btrfs_fs_info *fs_info = data;
4488 sb_start_write(fs_info->sb);
4489 mutex_lock(&fs_info->balance_mutex);
4490 if (fs_info->balance_ctl)
4491 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4492 mutex_unlock(&fs_info->balance_mutex);
4493 sb_end_write(fs_info->sb);
4498 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4500 struct task_struct *tsk;
4502 mutex_lock(&fs_info->balance_mutex);
4503 if (!fs_info->balance_ctl) {
4504 mutex_unlock(&fs_info->balance_mutex);
4507 mutex_unlock(&fs_info->balance_mutex);
4509 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510 btrfs_info(fs_info, "balance: resume skipped");
4514 spin_lock(&fs_info->super_lock);
4515 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517 spin_unlock(&fs_info->super_lock);
4519 * A ro->rw remount sequence should continue with the paused balance
4520 * regardless of who pauses it, system or the user as of now, so set
4523 spin_lock(&fs_info->balance_lock);
4524 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525 spin_unlock(&fs_info->balance_lock);
4527 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528 return PTR_ERR_OR_ZERO(tsk);
4531 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4533 struct btrfs_balance_control *bctl;
4534 struct btrfs_balance_item *item;
4535 struct btrfs_disk_balance_args disk_bargs;
4536 struct btrfs_path *path;
4537 struct extent_buffer *leaf;
4538 struct btrfs_key key;
4541 path = btrfs_alloc_path();
4545 key.objectid = BTRFS_BALANCE_OBJECTID;
4546 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4552 if (ret > 0) { /* ret = -ENOENT; */
4557 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4563 leaf = path->nodes[0];
4564 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4566 bctl->flags = btrfs_balance_flags(leaf, item);
4567 bctl->flags |= BTRFS_BALANCE_RESUME;
4569 btrfs_balance_data(leaf, item, &disk_bargs);
4570 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571 btrfs_balance_meta(leaf, item, &disk_bargs);
4572 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573 btrfs_balance_sys(leaf, item, &disk_bargs);
4574 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4577 * This should never happen, as the paused balance state is recovered
4578 * during mount without any chance of other exclusive ops to collide.
4580 * This gives the exclusive op status to balance and keeps in paused
4581 * state until user intervention (cancel or umount). If the ownership
4582 * cannot be assigned, show a message but do not fail. The balance
4583 * is in a paused state and must have fs_info::balance_ctl properly
4586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4588 "balance: cannot set exclusive op status, resume manually");
4590 btrfs_release_path(path);
4592 mutex_lock(&fs_info->balance_mutex);
4593 BUG_ON(fs_info->balance_ctl);
4594 spin_lock(&fs_info->balance_lock);
4595 fs_info->balance_ctl = bctl;
4596 spin_unlock(&fs_info->balance_lock);
4597 mutex_unlock(&fs_info->balance_mutex);
4599 btrfs_free_path(path);
4603 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4607 mutex_lock(&fs_info->balance_mutex);
4608 if (!fs_info->balance_ctl) {
4609 mutex_unlock(&fs_info->balance_mutex);
4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 atomic_inc(&fs_info->balance_pause_req);
4615 mutex_unlock(&fs_info->balance_mutex);
4617 wait_event(fs_info->balance_wait_q,
4618 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4620 mutex_lock(&fs_info->balance_mutex);
4621 /* we are good with balance_ctl ripped off from under us */
4622 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623 atomic_dec(&fs_info->balance_pause_req);
4628 mutex_unlock(&fs_info->balance_mutex);
4632 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4634 mutex_lock(&fs_info->balance_mutex);
4635 if (!fs_info->balance_ctl) {
4636 mutex_unlock(&fs_info->balance_mutex);
4641 * A paused balance with the item stored on disk can be resumed at
4642 * mount time if the mount is read-write. Otherwise it's still paused
4643 * and we must not allow cancelling as it deletes the item.
4645 if (sb_rdonly(fs_info->sb)) {
4646 mutex_unlock(&fs_info->balance_mutex);
4650 atomic_inc(&fs_info->balance_cancel_req);
4652 * if we are running just wait and return, balance item is
4653 * deleted in btrfs_balance in this case
4655 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656 mutex_unlock(&fs_info->balance_mutex);
4657 wait_event(fs_info->balance_wait_q,
4658 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659 mutex_lock(&fs_info->balance_mutex);
4661 mutex_unlock(&fs_info->balance_mutex);
4663 * Lock released to allow other waiters to continue, we'll
4664 * reexamine the status again.
4666 mutex_lock(&fs_info->balance_mutex);
4668 if (fs_info->balance_ctl) {
4669 reset_balance_state(fs_info);
4670 btrfs_exclop_finish(fs_info);
4671 btrfs_info(fs_info, "balance: canceled");
4675 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676 atomic_dec(&fs_info->balance_cancel_req);
4677 mutex_unlock(&fs_info->balance_mutex);
4681 int btrfs_uuid_scan_kthread(void *data)
4683 struct btrfs_fs_info *fs_info = data;
4684 struct btrfs_root *root = fs_info->tree_root;
4685 struct btrfs_key key;
4686 struct btrfs_path *path = NULL;
4688 struct extent_buffer *eb;
4690 struct btrfs_root_item root_item;
4692 struct btrfs_trans_handle *trans = NULL;
4693 bool closing = false;
4695 path = btrfs_alloc_path();
4702 key.type = BTRFS_ROOT_ITEM_KEY;
4706 if (btrfs_fs_closing(fs_info)) {
4710 ret = btrfs_search_forward(root, &key, path,
4711 BTRFS_OLDEST_GENERATION);
4718 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4724 eb = path->nodes[0];
4725 slot = path->slots[0];
4726 item_size = btrfs_item_size(eb, slot);
4727 if (item_size < sizeof(root_item))
4730 read_extent_buffer(eb, &root_item,
4731 btrfs_item_ptr_offset(eb, slot),
4732 (int)sizeof(root_item));
4733 if (btrfs_root_refs(&root_item) == 0)
4736 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4741 btrfs_release_path(path);
4743 * 1 - subvol uuid item
4744 * 1 - received_subvol uuid item
4746 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747 if (IS_ERR(trans)) {
4748 ret = PTR_ERR(trans);
4756 btrfs_release_path(path);
4757 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759 BTRFS_UUID_KEY_SUBVOL,
4762 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4768 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769 ret = btrfs_uuid_tree_add(trans,
4770 root_item.received_uuid,
4771 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4774 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4781 btrfs_release_path(path);
4783 ret = btrfs_end_transaction(trans);
4789 if (key.offset < (u64)-1) {
4791 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4793 key.type = BTRFS_ROOT_ITEM_KEY;
4794 } else if (key.objectid < (u64)-1) {
4796 key.type = BTRFS_ROOT_ITEM_KEY;
4805 btrfs_free_path(path);
4806 if (trans && !IS_ERR(trans))
4807 btrfs_end_transaction(trans);
4809 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4811 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812 up(&fs_info->uuid_tree_rescan_sem);
4816 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4818 struct btrfs_trans_handle *trans;
4819 struct btrfs_root *tree_root = fs_info->tree_root;
4820 struct btrfs_root *uuid_root;
4821 struct task_struct *task;
4828 trans = btrfs_start_transaction(tree_root, 2);
4830 return PTR_ERR(trans);
4832 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833 if (IS_ERR(uuid_root)) {
4834 ret = PTR_ERR(uuid_root);
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans);
4840 fs_info->uuid_root = uuid_root;
4842 ret = btrfs_commit_transaction(trans);
4846 down(&fs_info->uuid_tree_rescan_sem);
4847 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4849 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850 btrfs_warn(fs_info, "failed to start uuid_scan task");
4851 up(&fs_info->uuid_tree_rescan_sem);
4852 return PTR_ERR(task);
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4863 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4865 struct btrfs_fs_info *fs_info = device->fs_info;
4866 struct btrfs_root *root = fs_info->dev_root;
4867 struct btrfs_trans_handle *trans;
4868 struct btrfs_dev_extent *dev_extent = NULL;
4869 struct btrfs_path *path;
4875 bool retried = false;
4876 struct extent_buffer *l;
4877 struct btrfs_key key;
4878 struct btrfs_super_block *super_copy = fs_info->super_copy;
4879 u64 old_total = btrfs_super_total_bytes(super_copy);
4880 u64 old_size = btrfs_device_get_total_bytes(device);
4885 new_size = round_down(new_size, fs_info->sectorsize);
4887 diff = round_down(old_size - new_size, fs_info->sectorsize);
4889 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4892 path = btrfs_alloc_path();
4896 path->reada = READA_BACK;
4898 trans = btrfs_start_transaction(root, 0);
4899 if (IS_ERR(trans)) {
4900 btrfs_free_path(path);
4901 return PTR_ERR(trans);
4904 mutex_lock(&fs_info->chunk_mutex);
4906 btrfs_device_set_total_bytes(device, new_size);
4907 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908 device->fs_devices->total_rw_bytes -= diff;
4911 * The new free_chunk_space is new_size - used, so we have to
4912 * subtract the delta of the old free_chunk_space which included
4913 * old_size - used. If used > new_size then just subtract this
4914 * entire device's free space.
4916 if (device->bytes_used < new_size)
4917 free_diff = (old_size - device->bytes_used) -
4918 (new_size - device->bytes_used);
4920 free_diff = old_size - device->bytes_used;
4921 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4925 * Once the device's size has been set to the new size, ensure all
4926 * in-memory chunks are synced to disk so that the loop below sees them
4927 * and relocates them accordingly.
4929 if (contains_pending_extent(device, &start, diff)) {
4930 mutex_unlock(&fs_info->chunk_mutex);
4931 ret = btrfs_commit_transaction(trans);
4935 mutex_unlock(&fs_info->chunk_mutex);
4936 btrfs_end_transaction(trans);
4940 key.objectid = device->devid;
4941 key.offset = (u64)-1;
4942 key.type = BTRFS_DEV_EXTENT_KEY;
4945 mutex_lock(&fs_info->reclaim_bgs_lock);
4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4948 mutex_unlock(&fs_info->reclaim_bgs_lock);
4952 ret = btrfs_previous_item(root, path, 0, key.type);
4954 mutex_unlock(&fs_info->reclaim_bgs_lock);
4958 btrfs_release_path(path);
4963 slot = path->slots[0];
4964 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4966 if (key.objectid != device->devid) {
4967 mutex_unlock(&fs_info->reclaim_bgs_lock);
4968 btrfs_release_path(path);
4972 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973 length = btrfs_dev_extent_length(l, dev_extent);
4975 if (key.offset + length <= new_size) {
4976 mutex_unlock(&fs_info->reclaim_bgs_lock);
4977 btrfs_release_path(path);
4981 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982 btrfs_release_path(path);
4985 * We may be relocating the only data chunk we have,
4986 * which could potentially end up with losing data's
4987 * raid profile, so lets allocate an empty one in
4990 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4992 mutex_unlock(&fs_info->reclaim_bgs_lock);
4996 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 if (ret == -ENOSPC) {
5001 if (ret == -ETXTBSY) {
5003 "could not shrink block group %llu due to active swapfile",
5008 } while (key.offset-- > 0);
5010 if (failed && !retried) {
5014 } else if (failed && retried) {
5019 /* Shrinking succeeded, else we would be at "done". */
5020 trans = btrfs_start_transaction(root, 0);
5021 if (IS_ERR(trans)) {
5022 ret = PTR_ERR(trans);
5026 mutex_lock(&fs_info->chunk_mutex);
5027 /* Clear all state bits beyond the shrunk device size */
5028 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5031 btrfs_device_set_disk_total_bytes(device, new_size);
5032 if (list_empty(&device->post_commit_list))
5033 list_add_tail(&device->post_commit_list,
5034 &trans->transaction->dev_update_list);
5036 WARN_ON(diff > old_total);
5037 btrfs_set_super_total_bytes(super_copy,
5038 round_down(old_total - diff, fs_info->sectorsize));
5039 mutex_unlock(&fs_info->chunk_mutex);
5041 btrfs_reserve_chunk_metadata(trans, false);
5042 /* Now btrfs_update_device() will change the on-disk size. */
5043 ret = btrfs_update_device(trans, device);
5044 btrfs_trans_release_chunk_metadata(trans);
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5049 ret = btrfs_commit_transaction(trans);
5052 btrfs_free_path(path);
5054 mutex_lock(&fs_info->chunk_mutex);
5055 btrfs_device_set_total_bytes(device, old_size);
5056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057 device->fs_devices->total_rw_bytes += diff;
5058 atomic64_add(free_diff, &fs_info->free_chunk_space);
5060 mutex_unlock(&fs_info->chunk_mutex);
5065 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066 struct btrfs_key *key,
5067 struct btrfs_chunk *chunk, int item_size)
5069 struct btrfs_super_block *super_copy = fs_info->super_copy;
5070 struct btrfs_disk_key disk_key;
5074 lockdep_assert_held(&fs_info->chunk_mutex);
5076 array_size = btrfs_super_sys_array_size(super_copy);
5077 if (array_size + item_size + sizeof(disk_key)
5078 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5081 ptr = super_copy->sys_chunk_array + array_size;
5082 btrfs_cpu_key_to_disk(&disk_key, key);
5083 memcpy(ptr, &disk_key, sizeof(disk_key));
5084 ptr += sizeof(disk_key);
5085 memcpy(ptr, chunk, item_size);
5086 item_size += sizeof(disk_key);
5087 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5093 * sort the devices in descending order by max_avail, total_avail
5095 static int btrfs_cmp_device_info(const void *a, const void *b)
5097 const struct btrfs_device_info *di_a = a;
5098 const struct btrfs_device_info *di_b = b;
5100 if (di_a->max_avail > di_b->max_avail)
5102 if (di_a->max_avail < di_b->max_avail)
5104 if (di_a->total_avail > di_b->total_avail)
5106 if (di_a->total_avail < di_b->total_avail)
5111 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5113 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5116 btrfs_set_fs_incompat(info, RAID56);
5119 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5121 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5124 btrfs_set_fs_incompat(info, RAID1C34);
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5131 struct alloc_chunk_ctl {
5134 /* Total number of stripes to allocate */
5136 /* sub_stripes info for map */
5138 /* Stripes per device */
5140 /* Maximum number of devices to use */
5142 /* Minimum number of devices to use */
5144 /* ndevs has to be a multiple of this */
5146 /* Number of copies */
5148 /* Number of stripes worth of bytes to store parity information */
5150 u64 max_stripe_size;
5158 static void init_alloc_chunk_ctl_policy_regular(
5159 struct btrfs_fs_devices *fs_devices,
5160 struct alloc_chunk_ctl *ctl)
5162 struct btrfs_space_info *space_info;
5164 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5167 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5170 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5173 /* We don't want a chunk larger than 10% of writable space */
5174 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175 ctl->max_chunk_size);
5176 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5179 static void init_alloc_chunk_ctl_policy_zoned(
5180 struct btrfs_fs_devices *fs_devices,
5181 struct alloc_chunk_ctl *ctl)
5183 u64 zone_size = fs_devices->fs_info->zone_size;
5185 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187 u64 min_chunk_size = min_data_stripes * zone_size;
5188 u64 type = ctl->type;
5190 ctl->max_stripe_size = zone_size;
5191 if (type & BTRFS_BLOCK_GROUP_DATA) {
5192 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5194 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195 ctl->max_chunk_size = ctl->max_stripe_size;
5196 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198 ctl->devs_max = min_t(int, ctl->devs_max,
5199 BTRFS_MAX_DEVS_SYS_CHUNK);
5204 /* We don't want a chunk larger than 10% of writable space */
5205 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5208 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5212 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5215 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5217 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219 ctl->devs_max = btrfs_raid_array[index].devs_max;
5221 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222 ctl->devs_min = btrfs_raid_array[index].devs_min;
5223 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224 ctl->ncopies = btrfs_raid_array[index].ncopies;
5225 ctl->nparity = btrfs_raid_array[index].nparity;
5228 switch (fs_devices->chunk_alloc_policy) {
5229 case BTRFS_CHUNK_ALLOC_REGULAR:
5230 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5232 case BTRFS_CHUNK_ALLOC_ZONED:
5233 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5240 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241 struct alloc_chunk_ctl *ctl,
5242 struct btrfs_device_info *devices_info)
5244 struct btrfs_fs_info *info = fs_devices->fs_info;
5245 struct btrfs_device *device;
5247 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5254 * in the first pass through the devices list, we gather information
5255 * about the available holes on each device.
5257 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5260 "BTRFS: read-only device in alloc_list\n");
5264 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265 &device->dev_state) ||
5266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5269 if (device->total_bytes > device->bytes_used)
5270 total_avail = device->total_bytes - device->bytes_used;
5274 /* If there is no space on this device, skip it. */
5275 if (total_avail < ctl->dev_extent_min)
5278 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5280 if (ret && ret != -ENOSPC)
5284 max_avail = dev_extent_want;
5286 if (max_avail < ctl->dev_extent_min) {
5287 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5289 "%s: devid %llu has no free space, have=%llu want=%llu",
5290 __func__, device->devid, max_avail,
5291 ctl->dev_extent_min);
5295 if (ndevs == fs_devices->rw_devices) {
5296 WARN(1, "%s: found more than %llu devices\n",
5297 __func__, fs_devices->rw_devices);
5300 devices_info[ndevs].dev_offset = dev_offset;
5301 devices_info[ndevs].max_avail = max_avail;
5302 devices_info[ndevs].total_avail = total_avail;
5303 devices_info[ndevs].dev = device;
5309 * now sort the devices by hole size / available space
5311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312 btrfs_cmp_device_info, NULL);
5317 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318 struct btrfs_device_info *devices_info)
5320 /* Number of stripes that count for block group size */
5324 * The primary goal is to maximize the number of stripes, so use as
5325 * many devices as possible, even if the stripes are not maximum sized.
5327 * The DUP profile stores more than one stripe per device, the
5328 * max_avail is the total size so we have to adjust.
5330 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5334 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5335 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5338 * Use the number of data stripes to figure out how big this chunk is
5339 * really going to be in terms of logical address space, and compare
5340 * that answer with the max chunk size. If it's higher, we try to
5341 * reduce stripe_size.
5343 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5345 * Reduce stripe_size, round it up to a 16MB boundary again and
5346 * then use it, unless it ends up being even bigger than the
5347 * previous value we had already.
5349 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350 data_stripes), SZ_16M),
5354 /* Stripe size should not go beyond 1G. */
5355 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5357 /* Align to BTRFS_STRIPE_LEN */
5358 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359 ctl->chunk_size = ctl->stripe_size * data_stripes;
5364 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365 struct btrfs_device_info *devices_info)
5367 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368 /* Number of stripes that count for block group size */
5372 * It should hold because:
5373 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5375 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5377 ctl->stripe_size = zone_size;
5378 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5381 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384 ctl->stripe_size) + ctl->nparity,
5386 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5391 ctl->chunk_size = ctl->stripe_size * data_stripes;
5396 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397 struct alloc_chunk_ctl *ctl,
5398 struct btrfs_device_info *devices_info)
5400 struct btrfs_fs_info *info = fs_devices->fs_info;
5403 * Round down to number of usable stripes, devs_increment can be any
5404 * number so we can't use round_down() that requires power of 2, while
5405 * rounddown is safe.
5407 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5409 if (ctl->ndevs < ctl->devs_min) {
5410 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5412 "%s: not enough devices with free space: have=%d minimum required=%d",
5413 __func__, ctl->ndevs, ctl->devs_min);
5418 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5420 switch (fs_devices->chunk_alloc_policy) {
5421 case BTRFS_CHUNK_ALLOC_REGULAR:
5422 return decide_stripe_size_regular(ctl, devices_info);
5423 case BTRFS_CHUNK_ALLOC_ZONED:
5424 return decide_stripe_size_zoned(ctl, devices_info);
5430 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5432 for (int i = 0; i < map->num_stripes; i++) {
5433 struct btrfs_io_stripe *stripe = &map->stripes[i];
5434 struct btrfs_device *device = stripe->dev;
5436 set_extent_bit(&device->alloc_state, stripe->physical,
5437 stripe->physical + map->stripe_size - 1,
5438 bits | EXTENT_NOWAIT, NULL);
5442 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5444 for (int i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_io_stripe *stripe = &map->stripes[i];
5446 struct btrfs_device *device = stripe->dev;
5448 __clear_extent_bit(&device->alloc_state, stripe->physical,
5449 stripe->physical + map->stripe_size - 1,
5450 bits | EXTENT_NOWAIT,
5455 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5457 write_lock(&fs_info->mapping_tree_lock);
5458 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459 RB_CLEAR_NODE(&map->rb_node);
5460 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461 write_unlock(&fs_info->mapping_tree_lock);
5463 /* Once for the tree reference. */
5464 btrfs_free_chunk_map(map);
5468 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5471 struct rb_node *parent = NULL;
5472 bool leftmost = true;
5474 write_lock(&fs_info->mapping_tree_lock);
5475 p = &fs_info->mapping_tree.rb_root.rb_node;
5477 struct btrfs_chunk_map *entry;
5480 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5482 if (map->start < entry->start) {
5484 } else if (map->start > entry->start) {
5485 p = &(*p)->rb_right;
5488 write_unlock(&fs_info->mapping_tree_lock);
5492 rb_link_node(&map->rb_node, parent, p);
5493 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496 write_unlock(&fs_info->mapping_tree_lock);
5502 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5504 struct btrfs_chunk_map *map;
5506 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5510 refcount_set(&map->refs, 1);
5511 RB_CLEAR_NODE(&map->rb_node);
5516 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5518 const int size = btrfs_chunk_map_size(map->num_stripes);
5519 struct btrfs_chunk_map *clone;
5521 clone = kmemdup(map, size, gfp);
5525 refcount_set(&clone->refs, 1);
5526 RB_CLEAR_NODE(&clone->rb_node);
5531 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532 struct alloc_chunk_ctl *ctl,
5533 struct btrfs_device_info *devices_info)
5535 struct btrfs_fs_info *info = trans->fs_info;
5536 struct btrfs_chunk_map *map;
5537 struct btrfs_block_group *block_group;
5538 u64 start = ctl->start;
5539 u64 type = ctl->type;
5544 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5546 return ERR_PTR(-ENOMEM);
5549 map->chunk_len = ctl->chunk_size;
5550 map->stripe_size = ctl->stripe_size;
5552 map->io_align = BTRFS_STRIPE_LEN;
5553 map->io_width = BTRFS_STRIPE_LEN;
5554 map->sub_stripes = ctl->sub_stripes;
5555 map->num_stripes = ctl->num_stripes;
5557 for (i = 0; i < ctl->ndevs; ++i) {
5558 for (j = 0; j < ctl->dev_stripes; ++j) {
5559 int s = i * ctl->dev_stripes + j;
5560 map->stripes[s].dev = devices_info[i].dev;
5561 map->stripes[s].physical = devices_info[i].dev_offset +
5562 j * ctl->stripe_size;
5566 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5568 ret = btrfs_add_chunk_map(info, map);
5570 btrfs_free_chunk_map(map);
5571 return ERR_PTR(ret);
5574 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575 if (IS_ERR(block_group)) {
5576 btrfs_remove_chunk_map(info, map);
5580 for (int i = 0; i < map->num_stripes; i++) {
5581 struct btrfs_device *dev = map->stripes[i].dev;
5583 btrfs_device_set_bytes_used(dev,
5584 dev->bytes_used + ctl->stripe_size);
5585 if (list_empty(&dev->post_commit_list))
5586 list_add_tail(&dev->post_commit_list,
5587 &trans->transaction->dev_update_list);
5590 atomic64_sub(ctl->stripe_size * map->num_stripes,
5591 &info->free_chunk_space);
5593 check_raid56_incompat_flag(info, type);
5594 check_raid1c34_incompat_flag(info, type);
5599 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5602 struct btrfs_fs_info *info = trans->fs_info;
5603 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604 struct btrfs_device_info *devices_info = NULL;
5605 struct alloc_chunk_ctl ctl;
5606 struct btrfs_block_group *block_group;
5609 lockdep_assert_held(&info->chunk_mutex);
5611 if (!alloc_profile_is_valid(type, 0)) {
5613 return ERR_PTR(-EINVAL);
5616 if (list_empty(&fs_devices->alloc_list)) {
5617 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618 btrfs_debug(info, "%s: no writable device", __func__);
5619 return ERR_PTR(-ENOSPC);
5622 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5625 return ERR_PTR(-EINVAL);
5628 ctl.start = find_next_chunk(info);
5630 init_alloc_chunk_ctl(fs_devices, &ctl);
5632 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5635 return ERR_PTR(-ENOMEM);
5637 ret = gather_device_info(fs_devices, &ctl, devices_info);
5639 block_group = ERR_PTR(ret);
5643 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5645 block_group = ERR_PTR(ret);
5649 block_group = create_chunk(trans, &ctl, devices_info);
5652 kfree(devices_info);
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5664 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665 struct btrfs_block_group *bg)
5667 struct btrfs_fs_info *fs_info = trans->fs_info;
5668 struct btrfs_root *chunk_root = fs_info->chunk_root;
5669 struct btrfs_key key;
5670 struct btrfs_chunk *chunk;
5671 struct btrfs_stripe *stripe;
5672 struct btrfs_chunk_map *map;
5678 * We take the chunk_mutex for 2 reasons:
5680 * 1) Updates and insertions in the chunk btree must be done while holding
5681 * the chunk_mutex, as well as updating the system chunk array in the
5682 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5685 * 2) To prevent races with the final phase of a device replace operation
5686 * that replaces the device object associated with the map's stripes,
5687 * because the device object's id can change at any time during that
5688 * final phase of the device replace operation
5689 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691 * which would cause a failure when updating the device item, which does
5692 * not exists, or persisting a stripe of the chunk item with such ID.
5693 * Here we can't use the device_list_mutex because our caller already
5694 * has locked the chunk_mutex, and the final phase of device replace
5695 * acquires both mutexes - first the device_list_mutex and then the
5696 * chunk_mutex. Using any of those two mutexes protects us from a
5697 * concurrent device replace.
5699 lockdep_assert_held(&fs_info->chunk_mutex);
5701 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5704 btrfs_abort_transaction(trans, ret);
5708 item_size = btrfs_chunk_item_size(map->num_stripes);
5710 chunk = kzalloc(item_size, GFP_NOFS);
5713 btrfs_abort_transaction(trans, ret);
5717 for (i = 0; i < map->num_stripes; i++) {
5718 struct btrfs_device *device = map->stripes[i].dev;
5720 ret = btrfs_update_device(trans, device);
5725 stripe = &chunk->stripe;
5726 for (i = 0; i < map->num_stripes; i++) {
5727 struct btrfs_device *device = map->stripes[i].dev;
5728 const u64 dev_offset = map->stripes[i].physical;
5730 btrfs_set_stack_stripe_devid(stripe, device->devid);
5731 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5736 btrfs_set_stack_chunk_length(chunk, bg->length);
5737 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739 btrfs_set_stack_chunk_type(chunk, map->type);
5740 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5746 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747 key.type = BTRFS_CHUNK_ITEM_KEY;
5748 key.offset = bg->start;
5750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5754 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5764 btrfs_free_chunk_map(map);
5768 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5770 struct btrfs_fs_info *fs_info = trans->fs_info;
5772 struct btrfs_block_group *meta_bg;
5773 struct btrfs_block_group *sys_bg;
5776 * When adding a new device for sprouting, the seed device is read-only
5777 * so we must first allocate a metadata and a system chunk. But before
5778 * adding the block group items to the extent, device and chunk btrees,
5781 * 1) Create both chunks without doing any changes to the btrees, as
5782 * otherwise we would get -ENOSPC since the block groups from the
5783 * seed device are read-only;
5785 * 2) Add the device item for the new sprout device - finishing the setup
5786 * of a new block group requires updating the device item in the chunk
5787 * btree, so it must exist when we attempt to do it. The previous step
5788 * ensures this does not fail with -ENOSPC.
5790 * After that we can add the block group items to their btrees:
5791 * update existing device item in the chunk btree, add a new block group
5792 * item to the extent btree, add a new chunk item to the chunk btree and
5793 * finally add the new device extent items to the devices btree.
5796 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798 if (IS_ERR(meta_bg))
5799 return PTR_ERR(meta_bg);
5801 alloc_profile = btrfs_system_alloc_profile(fs_info);
5802 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5804 return PTR_ERR(sys_bg);
5809 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5811 const int index = btrfs_bg_flags_to_raid_index(map->type);
5813 return btrfs_raid_array[index].tolerated_failures;
5816 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5818 struct btrfs_chunk_map *map;
5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (test_bit(BTRFS_DEV_STATE_MISSING,
5829 &map->stripes[i].dev->dev_state)) {
5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834 &map->stripes[i].dev->dev_state)) {
5841 * If the number of missing devices is larger than max errors, we can
5842 * not write the data into that chunk successfully.
5844 if (miss_ndevs > btrfs_chunk_max_errors(map))
5847 btrfs_free_chunk_map(map);
5851 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5853 write_lock(&fs_info->mapping_tree_lock);
5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855 struct btrfs_chunk_map *map;
5856 struct rb_node *node;
5858 node = rb_first_cached(&fs_info->mapping_tree);
5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861 RB_CLEAR_NODE(&map->rb_node);
5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863 /* Once for the tree ref. */
5864 btrfs_free_chunk_map(map);
5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5867 write_unlock(&fs_info->mapping_tree_lock);
5870 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5872 struct btrfs_chunk_map *map;
5873 enum btrfs_raid_types index;
5876 map = btrfs_get_chunk_map(fs_info, logical, len);
5879 * We could return errors for these cases, but that could get
5880 * ugly and we'd probably do the same thing which is just not do
5881 * anything else and exit, so return 1 so the callers don't try
5882 * to use other copies.
5886 index = btrfs_bg_flags_to_raid_index(map->type);
5888 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890 ret = btrfs_raid_array[index].ncopies;
5891 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5895 * There could be two corrupted data stripes, we need
5896 * to loop retry in order to rebuild the correct data.
5898 * Fail a stripe at a time on every retry except the
5899 * stripe under reconstruction.
5901 ret = map->num_stripes;
5902 btrfs_free_chunk_map(map);
5906 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5909 struct btrfs_chunk_map *map;
5910 unsigned long len = fs_info->sectorsize;
5912 if (!btrfs_fs_incompat(fs_info, RAID56))
5915 map = btrfs_get_chunk_map(fs_info, logical, len);
5917 if (!WARN_ON(IS_ERR(map))) {
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920 btrfs_free_chunk_map(map);
5925 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5927 struct btrfs_chunk_map *map;
5930 if (!btrfs_fs_incompat(fs_info, RAID56))
5933 map = btrfs_get_chunk_map(fs_info, logical, len);
5935 if (!WARN_ON(IS_ERR(map))) {
5936 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5938 btrfs_free_chunk_map(map);
5943 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944 struct btrfs_chunk_map *map, int first,
5945 int dev_replace_is_ongoing)
5949 int preferred_mirror;
5951 struct btrfs_device *srcdev;
5954 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957 num_stripes = map->sub_stripes;
5959 num_stripes = map->num_stripes;
5961 switch (fs_info->fs_devices->read_policy) {
5963 /* Shouldn't happen, just warn and use pid instead of failing */
5964 btrfs_warn_rl(fs_info,
5965 "unknown read_policy type %u, reset to pid",
5966 fs_info->fs_devices->read_policy);
5967 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5969 case BTRFS_READ_POLICY_PID:
5970 preferred_mirror = first + (current->pid % num_stripes);
5974 if (dev_replace_is_ongoing &&
5975 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977 srcdev = fs_info->dev_replace.srcdev;
5982 * try to avoid the drive that is the source drive for a
5983 * dev-replace procedure, only choose it if no other non-missing
5984 * mirror is available
5986 for (tolerance = 0; tolerance < 2; tolerance++) {
5987 if (map->stripes[preferred_mirror].dev->bdev &&
5988 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989 return preferred_mirror;
5990 for (i = first; i < first + num_stripes; i++) {
5991 if (map->stripes[i].dev->bdev &&
5992 (tolerance || map->stripes[i].dev != srcdev))
5997 /* we couldn't find one that doesn't fail. Just return something
5998 * and the io error handling code will clean up eventually
6000 return preferred_mirror;
6003 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6007 struct btrfs_io_context *bioc;
6010 /* The size of btrfs_io_context */
6011 sizeof(struct btrfs_io_context) +
6012 /* Plus the variable array for the stripes */
6013 sizeof(struct btrfs_io_stripe) * (total_stripes),
6019 refcount_set(&bioc->refs, 1);
6021 bioc->fs_info = fs_info;
6022 bioc->replace_stripe_src = -1;
6023 bioc->full_stripe_logical = (u64)-1;
6024 bioc->logical = logical;
6029 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6031 WARN_ON(!refcount_read(&bioc->refs));
6032 refcount_inc(&bioc->refs);
6035 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6039 if (refcount_dec_and_test(&bioc->refs))
6044 * Please note that, discard won't be sent to target device of device
6047 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048 u64 logical, u64 *length_ret,
6051 struct btrfs_chunk_map *map;
6052 struct btrfs_discard_stripe *stripes;
6053 u64 length = *length_ret;
6058 u64 stripe_end_offset;
6062 u32 sub_stripes = 0;
6063 u32 stripes_per_dev = 0;
6064 u32 remaining_stripes = 0;
6065 u32 last_stripe = 0;
6069 map = btrfs_get_chunk_map(fs_info, logical, length);
6071 return ERR_CAST(map);
6073 /* we don't discard raid56 yet */
6074 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6079 offset = logical - map->start;
6080 length = min_t(u64, map->start + map->chunk_len - logical, length);
6081 *length_ret = length;
6084 * stripe_nr counts the total number of stripes we have to stride
6085 * to get to this block
6087 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6089 /* stripe_offset is the offset of this block in its stripe */
6090 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6092 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093 BTRFS_STRIPE_LEN_SHIFT;
6094 stripe_cnt = stripe_nr_end - stripe_nr;
6095 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6098 * after this, stripe_nr is the number of stripes on this
6099 * device we have to walk to find the data, and stripe_index is
6100 * the number of our device in the stripe array
6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105 BTRFS_BLOCK_GROUP_RAID10)) {
6106 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6109 sub_stripes = map->sub_stripes;
6111 factor = map->num_stripes / sub_stripes;
6112 *num_stripes = min_t(u64, map->num_stripes,
6113 sub_stripes * stripe_cnt);
6114 stripe_index = stripe_nr % factor;
6115 stripe_nr /= factor;
6116 stripe_index *= sub_stripes;
6118 remaining_stripes = stripe_cnt % factor;
6119 stripes_per_dev = stripe_cnt / factor;
6120 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122 BTRFS_BLOCK_GROUP_DUP)) {
6123 *num_stripes = map->num_stripes;
6125 stripe_index = stripe_nr % map->num_stripes;
6126 stripe_nr /= map->num_stripes;
6129 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6135 for (i = 0; i < *num_stripes; i++) {
6136 stripes[i].physical =
6137 map->stripes[stripe_index].physical +
6138 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139 stripes[i].dev = map->stripes[stripe_index].dev;
6141 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142 BTRFS_BLOCK_GROUP_RAID10)) {
6143 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6145 if (i / sub_stripes < remaining_stripes)
6146 stripes[i].length += BTRFS_STRIPE_LEN;
6149 * Special for the first stripe and
6152 * |-------|...|-------|
6156 if (i < sub_stripes)
6157 stripes[i].length -= stripe_offset;
6159 if (stripe_index >= last_stripe &&
6160 stripe_index <= (last_stripe +
6162 stripes[i].length -= stripe_end_offset;
6164 if (i == sub_stripes - 1)
6167 stripes[i].length = length;
6171 if (stripe_index == map->num_stripes) {
6177 btrfs_free_chunk_map(map);
6180 btrfs_free_chunk_map(map);
6181 return ERR_PTR(ret);
6184 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6186 struct btrfs_block_group *cache;
6189 /* Non zoned filesystem does not use "to_copy" flag */
6190 if (!btrfs_is_zoned(fs_info))
6193 cache = btrfs_lookup_block_group(fs_info, logical);
6195 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6197 btrfs_put_block_group(cache);
6201 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202 struct btrfs_io_context *bioc,
6203 struct btrfs_dev_replace *dev_replace,
6205 int *num_stripes_ret, int *max_errors_ret)
6207 u64 srcdev_devid = dev_replace->srcdev->devid;
6209 * At this stage, num_stripes is still the real number of stripes,
6210 * excluding the duplicated stripes.
6212 int num_stripes = *num_stripes_ret;
6213 int nr_extra_stripes = 0;
6214 int max_errors = *max_errors_ret;
6218 * A block group which has "to_copy" set will eventually be copied by
6219 * the dev-replace process. We can avoid cloning IO here.
6221 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6225 * Duplicate the write operations while the dev-replace procedure is
6226 * running. Since the copying of the old disk to the new disk takes
6227 * place at run time while the filesystem is mounted writable, the
6228 * regular write operations to the old disk have to be duplicated to go
6229 * to the new disk as well.
6231 * Note that device->missing is handled by the caller, and that the
6232 * write to the old disk is already set up in the stripes array.
6234 for (i = 0; i < num_stripes; i++) {
6235 struct btrfs_io_stripe *old = &bioc->stripes[i];
6236 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6238 if (old->dev->devid != srcdev_devid)
6241 new->physical = old->physical;
6242 new->dev = dev_replace->tgtdev;
6243 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244 bioc->replace_stripe_src = i;
6248 /* We can only have at most 2 extra nr_stripes (for DUP). */
6249 ASSERT(nr_extra_stripes <= 2);
6251 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6253 * If we have 2 extra stripes, only choose the one with smaller physical.
6255 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6259 /* Only DUP can have two extra stripes. */
6260 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6263 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264 * The extra stripe would still be there, but won't be accessed.
6266 if (first->physical > second->physical) {
6267 swap(second->physical, first->physical);
6268 swap(second->dev, first->dev);
6273 *num_stripes_ret = num_stripes + nr_extra_stripes;
6274 *max_errors_ret = max_errors + nr_extra_stripes;
6275 bioc->replace_nr_stripes = nr_extra_stripes;
6278 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279 struct btrfs_io_geometry *io_geom)
6282 * Stripe_nr is the stripe where this block falls. stripe_offset is
6283 * the offset of this block in its stripe.
6285 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287 ASSERT(io_geom->stripe_offset < U32_MAX);
6289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290 unsigned long full_stripe_len =
6291 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6294 * For full stripe start, we use previously calculated
6295 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6298 * By this we can avoid u64 division completely. And we have
6299 * to go rounddown(), not round_down(), as nr_data_stripes is
6300 * not ensured to be power of 2.
6302 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6305 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6308 * For writes to RAID56, allow to write a full stripe set, but
6309 * no straddling of stripe sets.
6311 if (io_geom->op == BTRFS_MAP_WRITE)
6312 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6316 * For other RAID types and for RAID56 reads, allow a single stripe (on
6319 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6324 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325 u64 *length, struct btrfs_io_stripe *dst,
6326 struct btrfs_chunk_map *map,
6327 struct btrfs_io_geometry *io_geom)
6329 dst->dev = map->stripes[io_geom->stripe_index].dev;
6331 if (io_geom->op == BTRFS_MAP_READ &&
6332 btrfs_need_stripe_tree_update(fs_info, map->type))
6333 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6335 io_geom->stripe_index, dst);
6337 dst->physical = map->stripes[io_geom->stripe_index].physical +
6338 io_geom->stripe_offset +
6339 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6343 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344 const struct btrfs_io_stripe *smap,
6345 const struct btrfs_chunk_map *map,
6346 int num_alloc_stripes,
6347 enum btrfs_map_op op, int mirror_num)
6352 if (num_alloc_stripes != 1)
6355 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6358 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6364 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365 struct btrfs_io_geometry *io_geom)
6367 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368 io_geom->stripe_nr /= map->num_stripes;
6369 if (io_geom->op == BTRFS_MAP_READ)
6370 io_geom->mirror_num = 1;
6373 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374 struct btrfs_chunk_map *map,
6375 struct btrfs_io_geometry *io_geom,
6376 bool dev_replace_is_ongoing)
6378 if (io_geom->op != BTRFS_MAP_READ) {
6379 io_geom->num_stripes = map->num_stripes;
6383 if (io_geom->mirror_num) {
6384 io_geom->stripe_index = io_geom->mirror_num - 1;
6388 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389 dev_replace_is_ongoing);
6390 io_geom->mirror_num = io_geom->stripe_index + 1;
6393 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394 struct btrfs_io_geometry *io_geom)
6396 if (io_geom->op != BTRFS_MAP_READ) {
6397 io_geom->num_stripes = map->num_stripes;
6401 if (io_geom->mirror_num) {
6402 io_geom->stripe_index = io_geom->mirror_num - 1;
6406 io_geom->mirror_num = 1;
6409 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410 struct btrfs_chunk_map *map,
6411 struct btrfs_io_geometry *io_geom,
6412 bool dev_replace_is_ongoing)
6414 u32 factor = map->num_stripes / map->sub_stripes;
6415 int old_stripe_index;
6417 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418 io_geom->stripe_nr /= factor;
6420 if (io_geom->op != BTRFS_MAP_READ) {
6421 io_geom->num_stripes = map->sub_stripes;
6425 if (io_geom->mirror_num) {
6426 io_geom->stripe_index += io_geom->mirror_num - 1;
6430 old_stripe_index = io_geom->stripe_index;
6431 io_geom->stripe_index = find_live_mirror(fs_info, map,
6432 io_geom->stripe_index,
6433 dev_replace_is_ongoing);
6434 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6437 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438 struct btrfs_io_geometry *io_geom,
6439 u64 logical, u64 *length)
6441 int data_stripes = nr_data_stripes(map);
6444 * Needs full stripe mapping.
6446 * Push stripe_nr back to the start of the full stripe For those cases
6447 * needing a full stripe, @stripe_nr is the full stripe number.
6449 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450 * that can be expensive. Here we just divide @stripe_nr with
6453 io_geom->stripe_nr /= data_stripes;
6455 /* RAID[56] write or recovery. Return all stripes */
6456 io_geom->num_stripes = map->num_stripes;
6457 io_geom->max_errors = btrfs_chunk_max_errors(map);
6459 /* Return the length to the full stripe end. */
6460 *length = min(logical + *length,
6461 io_geom->raid56_full_stripe_start + map->start +
6462 btrfs_stripe_nr_to_offset(data_stripes)) -
6464 io_geom->stripe_index = 0;
6465 io_geom->stripe_offset = 0;
6468 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469 struct btrfs_io_geometry *io_geom)
6471 int data_stripes = nr_data_stripes(map);
6473 ASSERT(io_geom->mirror_num <= 1);
6474 /* Just grab the data stripe directly. */
6475 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476 io_geom->stripe_nr /= data_stripes;
6478 /* We distribute the parity blocks across stripes. */
6479 io_geom->stripe_index =
6480 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6482 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483 io_geom->mirror_num = 1;
6486 static void map_blocks_single(const struct btrfs_chunk_map *map,
6487 struct btrfs_io_geometry *io_geom)
6489 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490 io_geom->stripe_nr /= map->num_stripes;
6491 io_geom->mirror_num = io_geom->stripe_index + 1;
6495 * Map one logical range to one or more physical ranges.
6497 * @length: (Mandatory) mapped length of this run.
6498 * One logical range can be split into different segments
6499 * due to factors like zones and RAID0/5/6/10 stripe
6502 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6503 * which has one or more physical ranges (btrfs_io_stripe)
6505 * Caller should call btrfs_put_bioc() to free it after use.
6507 * @smap: (Optional) single physical range optimization.
6508 * If the map request can be fulfilled by one single
6509 * physical range, and this is parameter is not NULL,
6510 * then @bioc_ret would be NULL, and @smap would be
6513 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6516 * Mirror number 0 means to choose any live mirrors.
6518 * For non-RAID56 profiles, non-zero mirror_num means
6519 * the Nth mirror. (e.g. mirror_num 1 means the first
6522 * For RAID56 profile, mirror 1 means rebuild from P and
6523 * the remaining data stripes.
6525 * For RAID6 profile, mirror > 2 means mark another
6526 * data/P stripe error and rebuild from the remaining
6529 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530 u64 logical, u64 *length,
6531 struct btrfs_io_context **bioc_ret,
6532 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6534 struct btrfs_chunk_map *map;
6535 struct btrfs_io_geometry io_geom = { 0 };
6540 struct btrfs_io_context *bioc = NULL;
6541 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542 int dev_replace_is_ongoing = 0;
6543 u16 num_alloc_stripes;
6548 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549 io_geom.num_stripes = 1;
6550 io_geom.stripe_index = 0;
6553 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554 if (io_geom.mirror_num > num_copies)
6557 map = btrfs_get_chunk_map(fs_info, logical, *length);
6559 return PTR_ERR(map);
6561 map_offset = logical - map->start;
6562 io_geom.raid56_full_stripe_start = (u64)-1;
6563 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6566 down_read(&dev_replace->rwsem);
6567 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6569 * Hold the semaphore for read during the whole operation, write is
6570 * requested at commit time but must wait.
6572 if (!dev_replace_is_ongoing)
6573 up_read(&dev_replace->rwsem);
6575 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576 case BTRFS_BLOCK_GROUP_RAID0:
6577 map_blocks_raid0(map, &io_geom);
6579 case BTRFS_BLOCK_GROUP_RAID1:
6580 case BTRFS_BLOCK_GROUP_RAID1C3:
6581 case BTRFS_BLOCK_GROUP_RAID1C4:
6582 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6584 case BTRFS_BLOCK_GROUP_DUP:
6585 map_blocks_dup(map, &io_geom);
6587 case BTRFS_BLOCK_GROUP_RAID10:
6588 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6590 case BTRFS_BLOCK_GROUP_RAID5:
6591 case BTRFS_BLOCK_GROUP_RAID6:
6592 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593 map_blocks_raid56_write(map, &io_geom, logical, length);
6595 map_blocks_raid56_read(map, &io_geom);
6599 * After this, stripe_nr is the number of stripes on this
6600 * device we have to walk to find the data, and stripe_index is
6601 * the number of our device in the stripe array
6603 map_blocks_single(map, &io_geom);
6606 if (io_geom.stripe_index >= map->num_stripes) {
6608 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609 io_geom.stripe_index, map->num_stripes);
6614 num_alloc_stripes = io_geom.num_stripes;
6615 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616 op != BTRFS_MAP_READ)
6618 * For replace case, we need to add extra stripes for extra
6619 * duplicated stripes.
6621 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622 * 2 more stripes (DUP types, otherwise 1).
6624 num_alloc_stripes += 2;
6627 * If this I/O maps to a single device, try to return the device and
6628 * physical block information on the stack instead of allocating an
6629 * I/O context structure.
6631 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632 io_geom.mirror_num)) {
6633 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6635 *mirror_num_ret = io_geom.mirror_num;
6640 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6645 bioc->map_type = map->type;
6648 * For RAID56 full map, we need to make sure the stripes[] follows the
6649 * rule that data stripes are all ordered, then followed with P and Q
6652 * It's still mostly the same as other profiles, just with extra rotation.
6654 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6657 * For RAID56 @stripe_nr is already the number of full stripes
6658 * before us, which is also the rotation value (needs to modulo
6659 * with num_stripes).
6661 * In this case, we just add @stripe_nr with @i, then do the
6662 * modulo, to reduce one modulo call.
6664 bioc->full_stripe_logical = map->start +
6665 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666 nr_data_stripes(map));
6667 for (int i = 0; i < io_geom.num_stripes; i++) {
6668 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6671 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672 dst->dev = map->stripes[stripe_index].dev;
6674 map->stripes[stripe_index].physical +
6675 io_geom.stripe_offset +
6676 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6680 * For all other non-RAID56 profiles, just copy the target
6681 * stripe into the bioc.
6683 for (i = 0; i < io_geom.num_stripes; i++) {
6684 ret = set_io_stripe(fs_info, logical, length,
6685 &bioc->stripes[i], map, &io_geom);
6688 io_geom.stripe_index++;
6694 btrfs_put_bioc(bioc);
6698 if (op != BTRFS_MAP_READ)
6699 io_geom.max_errors = btrfs_chunk_max_errors(map);
6701 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702 op != BTRFS_MAP_READ) {
6703 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704 &io_geom.num_stripes, &io_geom.max_errors);
6708 bioc->num_stripes = io_geom.num_stripes;
6709 bioc->max_errors = io_geom.max_errors;
6710 bioc->mirror_num = io_geom.mirror_num;
6713 if (dev_replace_is_ongoing) {
6714 lockdep_assert_held(&dev_replace->rwsem);
6715 /* Unlock and let waiting writers proceed */
6716 up_read(&dev_replace->rwsem);
6718 btrfs_free_chunk_map(map);
6722 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723 const struct btrfs_fs_devices *fs_devices)
6725 if (args->fsid == NULL)
6727 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6732 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733 const struct btrfs_device *device)
6735 if (args->missing) {
6736 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6742 if (device->devid != args->devid)
6744 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6756 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757 const struct btrfs_dev_lookup_args *args)
6759 struct btrfs_device *device;
6760 struct btrfs_fs_devices *seed_devs;
6762 if (dev_args_match_fs_devices(args, fs_devices)) {
6763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764 if (dev_args_match_device(args, device))
6769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770 if (!dev_args_match_fs_devices(args, seed_devs))
6772 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773 if (dev_args_match_device(args, device))
6781 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782 u64 devid, u8 *dev_uuid)
6784 struct btrfs_device *device;
6785 unsigned int nofs_flag;
6788 * We call this under the chunk_mutex, so we want to use NOFS for this
6789 * allocation, however we don't want to change btrfs_alloc_device() to
6790 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6794 nofs_flag = memalloc_nofs_save();
6795 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796 memalloc_nofs_restore(nofs_flag);
6800 list_add(&device->dev_list, &fs_devices->devices);
6801 device->fs_devices = fs_devices;
6802 fs_devices->num_devices++;
6804 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805 fs_devices->missing_devices++;
6811 * Allocate new device struct, set up devid and UUID.
6813 * @fs_info: used only for generating a new devid, can be NULL if
6814 * devid is provided (i.e. @devid != NULL).
6815 * @devid: a pointer to devid for this device. If NULL a new devid
6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6819 * @path: a pointer to device path if available, NULL otherwise.
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error. Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6825 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826 const u64 *devid, const u8 *uuid,
6829 struct btrfs_device *dev;
6832 if (WARN_ON(!devid && !fs_info))
6833 return ERR_PTR(-EINVAL);
6835 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6837 return ERR_PTR(-ENOMEM);
6839 INIT_LIST_HEAD(&dev->dev_list);
6840 INIT_LIST_HEAD(&dev->dev_alloc_list);
6841 INIT_LIST_HEAD(&dev->post_commit_list);
6843 atomic_set(&dev->dev_stats_ccnt, 0);
6844 btrfs_device_data_ordered_init(dev);
6845 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6852 ret = find_next_devid(fs_info, &tmp);
6854 btrfs_free_device(dev);
6855 return ERR_PTR(ret);
6861 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6863 generate_random_uuid(dev->uuid);
6866 struct rcu_string *name;
6868 name = rcu_string_strdup(path, GFP_KERNEL);
6870 btrfs_free_device(dev);
6871 return ERR_PTR(-ENOMEM);
6873 rcu_assign_pointer(dev->name, name);
6879 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880 u64 devid, u8 *uuid, bool error)
6883 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6886 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6890 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6892 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6894 return div_u64(map->chunk_len, data_stripes);
6897 #if BITS_PER_LONG == 32
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6905 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906 u64 logical, u64 length, u64 type)
6908 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6911 if (logical + length < MAX_LFS_FILESIZE)
6914 btrfs_err_32bit_limit(fs_info);
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6924 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925 u64 logical, u64 length, u64 type)
6927 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6930 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6933 btrfs_warn_32bit_limit(fs_info);
6937 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938 u64 devid, u8 *uuid)
6940 struct btrfs_device *dev;
6942 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 btrfs_report_missing_device(fs_info, devid, uuid, true);
6944 return ERR_PTR(-ENOENT);
6947 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6949 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950 devid, PTR_ERR(dev));
6953 btrfs_report_missing_device(fs_info, devid, uuid, false);
6958 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959 struct btrfs_chunk *chunk)
6961 BTRFS_DEV_LOOKUP_ARGS(args);
6962 struct btrfs_fs_info *fs_info = leaf->fs_info;
6963 struct btrfs_chunk_map *map;
6968 u8 uuid[BTRFS_UUID_SIZE];
6974 logical = key->offset;
6975 length = btrfs_chunk_length(leaf, chunk);
6976 type = btrfs_chunk_type(leaf, chunk);
6977 index = btrfs_bg_flags_to_raid_index(type);
6978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6980 #if BITS_PER_LONG == 32
6981 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6984 warn_32bit_meta_chunk(fs_info, logical, length, type);
6988 * Only need to verify chunk item if we're reading from sys chunk array,
6989 * as chunk item in tree block is already verified by tree-checker.
6991 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6997 map = btrfs_find_chunk_map(fs_info, logical, 1);
6999 /* already mapped? */
7000 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001 btrfs_free_chunk_map(map);
7004 btrfs_free_chunk_map(map);
7007 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7011 map->start = logical;
7012 map->chunk_len = length;
7013 map->num_stripes = num_stripes;
7014 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7018 * We can't use the sub_stripes value, as for profiles other than
7019 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020 * older mkfs (<v5.4).
7021 * In that case, it can cause divide-by-zero errors later.
7022 * Since currently sub_stripes is fixed for each profile, let's
7023 * use the trusted value instead.
7025 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026 map->verified_stripes = 0;
7027 map->stripe_size = btrfs_calc_stripe_length(map);
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7033 read_extent_buffer(leaf, uuid, (unsigned long)
7034 btrfs_stripe_dev_uuid_nr(chunk, i),
7037 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7038 if (!map->stripes[i].dev) {
7039 map->stripes[i].dev = handle_missing_device(fs_info,
7041 if (IS_ERR(map->stripes[i].dev)) {
7042 ret = PTR_ERR(map->stripes[i].dev);
7043 btrfs_free_chunk_map(map);
7048 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049 &(map->stripes[i].dev->dev_state));
7052 ret = btrfs_add_chunk_map(fs_info, map);
7055 "failed to add chunk map, start=%llu len=%llu: %d",
7056 map->start, map->chunk_len, ret);
7062 static void fill_device_from_item(struct extent_buffer *leaf,
7063 struct btrfs_dev_item *dev_item,
7064 struct btrfs_device *device)
7068 device->devid = btrfs_device_id(leaf, dev_item);
7069 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070 device->total_bytes = device->disk_total_bytes;
7071 device->commit_total_bytes = device->disk_total_bytes;
7072 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073 device->commit_bytes_used = device->bytes_used;
7074 device->type = btrfs_device_type(leaf, dev_item);
7075 device->io_align = btrfs_device_io_align(leaf, dev_item);
7076 device->io_width = btrfs_device_io_width(leaf, dev_item);
7077 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7081 ptr = btrfs_device_uuid(dev_item);
7082 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7085 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7088 struct btrfs_fs_devices *fs_devices;
7091 lockdep_assert_held(&uuid_mutex);
7094 /* This will match only for multi-device seed fs */
7095 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7100 fs_devices = find_fsid(fsid, NULL);
7102 if (!btrfs_test_opt(fs_info, DEGRADED))
7103 return ERR_PTR(-ENOENT);
7105 fs_devices = alloc_fs_devices(fsid);
7106 if (IS_ERR(fs_devices))
7109 fs_devices->seeding = true;
7110 fs_devices->opened = 1;
7115 * Upon first call for a seed fs fsid, just create a private copy of the
7116 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7118 fs_devices = clone_fs_devices(fs_devices);
7119 if (IS_ERR(fs_devices))
7122 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7124 free_fs_devices(fs_devices);
7125 return ERR_PTR(ret);
7128 if (!fs_devices->seeding) {
7129 close_fs_devices(fs_devices);
7130 free_fs_devices(fs_devices);
7131 return ERR_PTR(-EINVAL);
7134 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7139 static int read_one_dev(struct extent_buffer *leaf,
7140 struct btrfs_dev_item *dev_item)
7142 BTRFS_DEV_LOOKUP_ARGS(args);
7143 struct btrfs_fs_info *fs_info = leaf->fs_info;
7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 struct btrfs_device *device;
7148 u8 fs_uuid[BTRFS_FSID_SIZE];
7149 u8 dev_uuid[BTRFS_UUID_SIZE];
7151 devid = btrfs_device_id(leaf, dev_item);
7153 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7155 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7157 args.uuid = dev_uuid;
7158 args.fsid = fs_uuid;
7160 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161 fs_devices = open_seed_devices(fs_info, fs_uuid);
7162 if (IS_ERR(fs_devices))
7163 return PTR_ERR(fs_devices);
7166 device = btrfs_find_device(fs_info->fs_devices, &args);
7168 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169 btrfs_report_missing_device(fs_info, devid,
7174 device = add_missing_dev(fs_devices, devid, dev_uuid);
7175 if (IS_ERR(device)) {
7177 "failed to add missing dev %llu: %ld",
7178 devid, PTR_ERR(device));
7179 return PTR_ERR(device);
7181 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7183 if (!device->bdev) {
7184 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185 btrfs_report_missing_device(fs_info,
7186 devid, dev_uuid, true);
7189 btrfs_report_missing_device(fs_info, devid,
7193 if (!device->bdev &&
7194 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7196 * this happens when a device that was properly setup
7197 * in the device info lists suddenly goes bad.
7198 * device->bdev is NULL, and so we have to set
7199 * device->missing to one here
7201 device->fs_devices->missing_devices++;
7202 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7205 /* Move the device to its own fs_devices */
7206 if (device->fs_devices != fs_devices) {
7207 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208 &device->dev_state));
7210 list_move(&device->dev_list, &fs_devices->devices);
7211 device->fs_devices->num_devices--;
7212 fs_devices->num_devices++;
7214 device->fs_devices->missing_devices--;
7215 fs_devices->missing_devices++;
7217 device->fs_devices = fs_devices;
7221 if (device->fs_devices != fs_info->fs_devices) {
7222 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223 if (device->generation !=
7224 btrfs_device_generation(leaf, dev_item))
7228 fill_device_from_item(leaf, dev_item, device);
7230 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7232 if (device->total_bytes > max_total_bytes) {
7234 "device total_bytes should be at most %llu but found %llu",
7235 max_total_bytes, device->total_bytes);
7239 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242 device->fs_devices->total_rw_bytes += device->total_bytes;
7243 atomic64_add(device->total_bytes - device->bytes_used,
7244 &fs_info->free_chunk_space);
7250 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7252 struct btrfs_super_block *super_copy = fs_info->super_copy;
7253 struct extent_buffer *sb;
7254 struct btrfs_disk_key *disk_key;
7255 struct btrfs_chunk *chunk;
7257 unsigned long sb_array_offset;
7264 struct btrfs_key key;
7266 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7269 * We allocated a dummy extent, just to use extent buffer accessors.
7270 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271 * that's fine, we will not go beyond system chunk array anyway.
7273 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7276 set_extent_buffer_uptodate(sb);
7278 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279 array_size = btrfs_super_sys_array_size(super_copy);
7281 array_ptr = super_copy->sys_chunk_array;
7282 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7285 while (cur_offset < array_size) {
7286 disk_key = (struct btrfs_disk_key *)array_ptr;
7287 len = sizeof(*disk_key);
7288 if (cur_offset + len > array_size)
7289 goto out_short_read;
7291 btrfs_disk_key_to_cpu(&key, disk_key);
7294 sb_array_offset += len;
7297 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7299 "unexpected item type %u in sys_array at offset %u",
7300 (u32)key.type, cur_offset);
7305 chunk = (struct btrfs_chunk *)sb_array_offset;
7307 * At least one btrfs_chunk with one stripe must be present,
7308 * exact stripe count check comes afterwards
7310 len = btrfs_chunk_item_size(1);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7314 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7317 "invalid number of stripes %u in sys_array at offset %u",
7318 num_stripes, cur_offset);
7323 type = btrfs_chunk_type(sb, chunk);
7324 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7326 "invalid chunk type %llu in sys_array at offset %u",
7332 len = btrfs_chunk_item_size(num_stripes);
7333 if (cur_offset + len > array_size)
7334 goto out_short_read;
7336 ret = read_one_chunk(&key, sb, chunk);
7341 sb_array_offset += len;
7344 clear_extent_buffer_uptodate(sb);
7345 free_extent_buffer_stale(sb);
7349 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7351 clear_extent_buffer_uptodate(sb);
7352 free_extent_buffer_stale(sb);
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7359 * If the @failing_dev is specified, it's accounted as missing.
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7364 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365 struct btrfs_device *failing_dev)
7367 struct btrfs_chunk_map *map;
7371 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372 /* No chunk at all? Return false anyway */
7383 btrfs_get_num_tolerated_disk_barrier_failures(
7385 for (i = 0; i < map->num_stripes; i++) {
7386 struct btrfs_device *dev = map->stripes[i].dev;
7388 if (!dev || !dev->bdev ||
7389 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390 dev->last_flush_error)
7392 else if (failing_dev && failing_dev == dev)
7395 if (missing > max_tolerated) {
7398 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399 map->start, missing, max_tolerated);
7400 btrfs_free_chunk_map(map);
7404 next_start = map->start + map->chunk_len;
7405 btrfs_free_chunk_map(map);
7407 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7413 static void readahead_tree_node_children(struct extent_buffer *node)
7416 const int nr_items = btrfs_header_nritems(node);
7418 for (i = 0; i < nr_items; i++)
7419 btrfs_readahead_node_child(node, i);
7422 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7424 struct btrfs_root *root = fs_info->chunk_root;
7425 struct btrfs_path *path;
7426 struct extent_buffer *leaf;
7427 struct btrfs_key key;
7428 struct btrfs_key found_key;
7433 u64 last_ra_node = 0;
7435 path = btrfs_alloc_path();
7440 * uuid_mutex is needed only if we are mounting a sprout FS
7441 * otherwise we don't need it.
7443 mutex_lock(&uuid_mutex);
7446 * It is possible for mount and umount to race in such a way that
7447 * we execute this code path, but open_fs_devices failed to clear
7448 * total_rw_bytes. We certainly want it cleared before reading the
7449 * device items, so clear it here.
7451 fs_info->fs_devices->total_rw_bytes = 0;
7454 * Lockdep complains about possible circular locking dependency between
7455 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456 * used for freeze procection of a fs (struct super_block.s_writers),
7457 * which we take when starting a transaction, and extent buffers of the
7458 * chunk tree if we call read_one_dev() while holding a lock on an
7459 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460 * and at this point there can't be any concurrent task modifying the
7461 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7463 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464 path->skip_locking = 1;
7467 * Read all device items, and then all the chunk items. All
7468 * device items are found before any chunk item (their object id
7469 * is smaller than the lowest possible object id for a chunk
7470 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7472 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7475 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476 struct extent_buffer *node = path->nodes[1];
7478 leaf = path->nodes[0];
7479 slot = path->slots[0];
7482 if (last_ra_node != node->start) {
7483 readahead_tree_node_children(node);
7484 last_ra_node = node->start;
7487 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488 struct btrfs_dev_item *dev_item;
7489 dev_item = btrfs_item_ptr(leaf, slot,
7490 struct btrfs_dev_item);
7491 ret = read_one_dev(leaf, dev_item);
7495 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496 struct btrfs_chunk *chunk;
7499 * We are only called at mount time, so no need to take
7500 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501 * we always lock first fs_info->chunk_mutex before
7502 * acquiring any locks on the chunk tree. This is a
7503 * requirement for chunk allocation, see the comment on
7504 * top of btrfs_chunk_alloc() for details.
7506 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507 ret = read_one_chunk(&found_key, leaf, chunk);
7512 /* Catch error found during iteration */
7519 * After loading chunk tree, we've got all device information,
7520 * do another round of validation checks.
7522 if (total_dev != fs_info->fs_devices->total_devices) {
7524 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525 btrfs_super_num_devices(fs_info->super_copy),
7527 fs_info->fs_devices->total_devices = total_dev;
7528 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7530 if (btrfs_super_total_bytes(fs_info->super_copy) <
7531 fs_info->fs_devices->total_rw_bytes) {
7533 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534 btrfs_super_total_bytes(fs_info->super_copy),
7535 fs_info->fs_devices->total_rw_bytes);
7541 mutex_unlock(&uuid_mutex);
7543 btrfs_free_path(path);
7547 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7549 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550 struct btrfs_device *device;
7553 fs_devices->fs_info = fs_info;
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list)
7557 device->fs_info = fs_info;
7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561 device->fs_info = fs_info;
7562 ret = btrfs_get_dev_zone_info(device, false);
7567 seed_devs->fs_info = fs_info;
7569 mutex_unlock(&fs_devices->device_list_mutex);
7574 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575 const struct btrfs_dev_stats_item *ptr,
7580 read_extent_buffer(eb, &val,
7581 offsetof(struct btrfs_dev_stats_item, values) +
7582 ((unsigned long)ptr) + (index * sizeof(u64)),
7587 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588 struct btrfs_dev_stats_item *ptr,
7591 write_extent_buffer(eb, &val,
7592 offsetof(struct btrfs_dev_stats_item, values) +
7593 ((unsigned long)ptr) + (index * sizeof(u64)),
7597 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598 struct btrfs_path *path)
7600 struct btrfs_dev_stats_item *ptr;
7601 struct extent_buffer *eb;
7602 struct btrfs_key key;
7606 if (!device->fs_info->dev_root)
7609 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611 key.offset = device->devid;
7612 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615 btrfs_dev_stat_set(device, i, 0);
7616 device->dev_stats_valid = 1;
7617 btrfs_release_path(path);
7618 return ret < 0 ? ret : 0;
7620 slot = path->slots[0];
7621 eb = path->nodes[0];
7622 item_size = btrfs_item_size(eb, slot);
7624 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627 if (item_size >= (1 + i) * sizeof(__le64))
7628 btrfs_dev_stat_set(device, i,
7629 btrfs_dev_stats_value(eb, ptr, i));
7631 btrfs_dev_stat_set(device, i, 0);
7634 device->dev_stats_valid = 1;
7635 btrfs_dev_stat_print_on_load(device);
7636 btrfs_release_path(path);
7641 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7644 struct btrfs_device *device;
7645 struct btrfs_path *path = NULL;
7648 path = btrfs_alloc_path();
7652 mutex_lock(&fs_devices->device_list_mutex);
7653 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654 ret = btrfs_device_init_dev_stats(device, path);
7658 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660 ret = btrfs_device_init_dev_stats(device, path);
7666 mutex_unlock(&fs_devices->device_list_mutex);
7668 btrfs_free_path(path);
7672 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7673 struct btrfs_device *device)
7675 struct btrfs_fs_info *fs_info = trans->fs_info;
7676 struct btrfs_root *dev_root = fs_info->dev_root;
7677 struct btrfs_path *path;
7678 struct btrfs_key key;
7679 struct extent_buffer *eb;
7680 struct btrfs_dev_stats_item *ptr;
7684 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686 key.offset = device->devid;
7688 path = btrfs_alloc_path();
7691 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7693 btrfs_warn_in_rcu(fs_info,
7694 "error %d while searching for dev_stats item for device %s",
7695 ret, btrfs_dev_name(device));
7700 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701 /* need to delete old one and insert a new one */
7702 ret = btrfs_del_item(trans, dev_root, path);
7704 btrfs_warn_in_rcu(fs_info,
7705 "delete too small dev_stats item for device %s failed %d",
7706 btrfs_dev_name(device), ret);
7713 /* need to insert a new item */
7714 btrfs_release_path(path);
7715 ret = btrfs_insert_empty_item(trans, dev_root, path,
7716 &key, sizeof(*ptr));
7718 btrfs_warn_in_rcu(fs_info,
7719 "insert dev_stats item for device %s failed %d",
7720 btrfs_dev_name(device), ret);
7725 eb = path->nodes[0];
7726 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728 btrfs_set_dev_stats_value(eb, ptr, i,
7729 btrfs_dev_stat_read(device, i));
7730 btrfs_mark_buffer_dirty(trans, eb);
7733 btrfs_free_path(path);
7738 * called from commit_transaction. Writes all changed device stats to disk.
7740 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7742 struct btrfs_fs_info *fs_info = trans->fs_info;
7743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744 struct btrfs_device *device;
7748 mutex_lock(&fs_devices->device_list_mutex);
7749 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751 if (!device->dev_stats_valid || stats_cnt == 0)
7756 * There is a LOAD-LOAD control dependency between the value of
7757 * dev_stats_ccnt and updating the on-disk values which requires
7758 * reading the in-memory counters. Such control dependencies
7759 * require explicit read memory barriers.
7761 * This memory barriers pairs with smp_mb__before_atomic in
7762 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763 * barrier implied by atomic_xchg in
7764 * btrfs_dev_stats_read_and_reset
7768 ret = update_dev_stat_item(trans, device);
7770 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7772 mutex_unlock(&fs_devices->device_list_mutex);
7777 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7779 btrfs_dev_stat_inc(dev, index);
7781 if (!dev->dev_stats_valid)
7783 btrfs_err_rl_in_rcu(dev->fs_info,
7784 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785 btrfs_dev_name(dev),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7793 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798 if (btrfs_dev_stat_read(dev, i) != 0)
7800 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801 return; /* all values == 0, suppress message */
7803 btrfs_info_in_rcu(dev->fs_info,
7804 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805 btrfs_dev_name(dev),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7813 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814 struct btrfs_ioctl_get_dev_stats *stats)
7816 BTRFS_DEV_LOOKUP_ARGS(args);
7817 struct btrfs_device *dev;
7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7821 mutex_lock(&fs_devices->device_list_mutex);
7822 args.devid = stats->devid;
7823 dev = btrfs_find_device(fs_info->fs_devices, &args);
7824 mutex_unlock(&fs_devices->device_list_mutex);
7827 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7829 } else if (!dev->dev_stats_valid) {
7830 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7832 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834 if (stats->nr_items > i)
7836 btrfs_dev_stat_read_and_reset(dev, i);
7838 btrfs_dev_stat_set(dev, i, 0);
7840 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841 current->comm, task_pid_nr(current));
7843 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844 if (stats->nr_items > i)
7845 stats->values[i] = btrfs_dev_stat_read(dev, i);
7847 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7853 * Update the size and bytes used for each device where it changed. This is
7854 * delayed since we would otherwise get errors while writing out the
7857 * Must be invoked during transaction commit.
7859 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7861 struct btrfs_device *curr, *next;
7863 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7865 if (list_empty(&trans->dev_update_list))
7869 * We don't need the device_list_mutex here. This list is owned by the
7870 * transaction and the transaction must complete before the device is
7873 mutex_lock(&trans->fs_info->chunk_mutex);
7874 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7876 list_del_init(&curr->post_commit_list);
7877 curr->commit_total_bytes = curr->disk_total_bytes;
7878 curr->commit_bytes_used = curr->bytes_used;
7880 mutex_unlock(&trans->fs_info->chunk_mutex);
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7886 int btrfs_bg_type_to_factor(u64 flags)
7888 const int index = btrfs_bg_flags_to_raid_index(flags);
7890 return btrfs_raid_array[index].ncopies;
7895 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896 u64 chunk_offset, u64 devid,
7897 u64 physical_offset, u64 physical_len)
7899 struct btrfs_dev_lookup_args args = { .devid = devid };
7900 struct btrfs_chunk_map *map;
7901 struct btrfs_device *dev;
7907 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7910 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911 physical_offset, devid);
7916 stripe_len = btrfs_calc_stripe_length(map);
7917 if (physical_len != stripe_len) {
7919 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920 physical_offset, devid, map->start, physical_len,
7927 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928 * space. Although kernel can handle it without problem, better to warn
7931 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7933 "devid %llu physical %llu len %llu inside the reserved space",
7934 devid, physical_offset, physical_len);
7936 for (i = 0; i < map->num_stripes; i++) {
7937 if (map->stripes[i].dev->devid == devid &&
7938 map->stripes[i].physical == physical_offset) {
7940 if (map->verified_stripes >= map->num_stripes) {
7942 "too many dev extents for chunk %llu found",
7947 map->verified_stripes++;
7953 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7954 physical_offset, devid);
7958 /* Make sure no dev extent is beyond device boundary */
7959 dev = btrfs_find_device(fs_info->fs_devices, &args);
7961 btrfs_err(fs_info, "failed to find devid %llu", devid);
7966 if (physical_offset + physical_len > dev->disk_total_bytes) {
7968 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969 devid, physical_offset, physical_len,
7970 dev->disk_total_bytes);
7975 if (dev->zone_info) {
7976 u64 zone_size = dev->zone_info->zone_size;
7978 if (!IS_ALIGNED(physical_offset, zone_size) ||
7979 !IS_ALIGNED(physical_len, zone_size)) {
7981 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982 devid, physical_offset, physical_len);
7989 btrfs_free_chunk_map(map);
7993 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7995 struct rb_node *node;
7998 read_lock(&fs_info->mapping_tree_lock);
7999 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000 struct btrfs_chunk_map *map;
8002 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003 if (map->num_stripes != map->verified_stripes) {
8005 "chunk %llu has missing dev extent, have %d expect %d",
8006 map->start, map->verified_stripes, map->num_stripes);
8012 read_unlock(&fs_info->mapping_tree_lock);
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree. This slightly increases mount time.
8023 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8025 struct btrfs_path *path;
8026 struct btrfs_root *root = fs_info->dev_root;
8027 struct btrfs_key key;
8029 u64 prev_dev_ext_end = 0;
8033 * We don't have a dev_root because we mounted with ignorebadroots and
8034 * failed to load the root, so we want to skip the verification in this
8037 * However if the dev root is fine, but the tree itself is corrupted
8038 * we'd still fail to mount. This verification is only to make sure
8039 * writes can happen safely, so instead just bypass this check
8040 * completely in the case of IGNOREBADROOTS.
8042 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8046 key.type = BTRFS_DEV_EXTENT_KEY;
8049 path = btrfs_alloc_path();
8053 path->reada = READA_FORWARD;
8054 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8058 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059 ret = btrfs_next_leaf(root, path);
8062 /* No dev extents at all? Not good */
8069 struct extent_buffer *leaf = path->nodes[0];
8070 struct btrfs_dev_extent *dext;
8071 int slot = path->slots[0];
8073 u64 physical_offset;
8077 btrfs_item_key_to_cpu(leaf, &key, slot);
8078 if (key.type != BTRFS_DEV_EXTENT_KEY)
8080 devid = key.objectid;
8081 physical_offset = key.offset;
8083 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085 physical_len = btrfs_dev_extent_length(leaf, dext);
8087 /* Check if this dev extent overlaps with the previous one */
8088 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8090 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091 devid, physical_offset, prev_dev_ext_end);
8096 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097 physical_offset, physical_len);
8101 prev_dev_ext_end = physical_offset + physical_len;
8103 ret = btrfs_next_item(root, path);
8112 /* Ensure all chunks have corresponding dev extents */
8113 ret = verify_chunk_dev_extent_mapping(fs_info);
8115 btrfs_free_path(path);
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8123 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8125 struct btrfs_swapfile_pin *sp;
8126 struct rb_node *node;
8128 spin_lock(&fs_info->swapfile_pins_lock);
8129 node = fs_info->swapfile_pins.rb_node;
8131 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8133 node = node->rb_left;
8134 else if (ptr > sp->ptr)
8135 node = node->rb_right;
8139 spin_unlock(&fs_info->swapfile_pins_lock);
8140 return node != NULL;
8143 static int relocating_repair_kthread(void *data)
8145 struct btrfs_block_group *cache = data;
8146 struct btrfs_fs_info *fs_info = cache->fs_info;
8150 target = cache->start;
8151 btrfs_put_block_group(cache);
8153 sb_start_write(fs_info->sb);
8154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8156 "zoned: skip relocating block group %llu to repair: EBUSY",
8158 sb_end_write(fs_info->sb);
8162 mutex_lock(&fs_info->reclaim_bgs_lock);
8164 /* Ensure block group still exists */
8165 cache = btrfs_lookup_block_group(fs_info, target);
8169 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8172 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8177 "zoned: relocating block group %llu to repair IO failure",
8179 ret = btrfs_relocate_chunk(fs_info, target);
8183 btrfs_put_block_group(cache);
8184 mutex_unlock(&fs_info->reclaim_bgs_lock);
8185 btrfs_exclop_finish(fs_info);
8186 sb_end_write(fs_info->sb);
8191 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8193 struct btrfs_block_group *cache;
8195 if (!btrfs_is_zoned(fs_info))
8198 /* Do not attempt to repair in degraded state */
8199 if (btrfs_test_opt(fs_info, DEGRADED))
8202 cache = btrfs_lookup_block_group(fs_info, logical);
8206 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207 btrfs_put_block_group(cache);
8211 kthread_run(relocating_repair_kthread, cache,
8212 "btrfs-relocating-repair");
8217 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218 struct btrfs_io_stripe *smap,
8221 int data_stripes = nr_bioc_data_stripes(bioc);
8224 for (i = 0; i < data_stripes; i++) {
8225 u64 stripe_start = bioc->full_stripe_logical +
8226 btrfs_stripe_nr_to_offset(i);
8228 if (logical >= stripe_start &&
8229 logical < stripe_start + BTRFS_STRIPE_LEN)
8232 ASSERT(i < data_stripes);
8233 smap->dev = bioc->stripes[i].dev;
8234 smap->physical = bioc->stripes[i].physical +
8235 ((logical - bioc->full_stripe_logical) &
8236 BTRFS_STRIPE_LEN_MASK);
8240 * Map a repair write into a single device.
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8246 * Callers should ensure:
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8252 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253 struct btrfs_io_stripe *smap, u64 logical,
8254 u32 length, int mirror_num)
8256 struct btrfs_io_context *bioc = NULL;
8257 u64 map_length = length;
8258 int mirror_ret = mirror_num;
8261 ASSERT(mirror_num > 0);
8263 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264 &bioc, smap, &mirror_ret);
8268 /* The map range should not cross stripe boundary. */
8269 ASSERT(map_length >= length);
8271 /* Already mapped to single stripe. */
8275 /* Map the RAID56 multi-stripe writes to a single one. */
8276 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277 map_raid56_repair_block(bioc, smap, logical);
8281 ASSERT(mirror_num <= bioc->num_stripes);
8282 smap->dev = bioc->stripes[mirror_num - 1].dev;
8283 smap->physical = bioc->stripes[mirror_num - 1].physical;
8285 btrfs_put_bioc(bioc);