2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
47 #include <net/net_namespace.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
62 #define TLS_RECORD_TYPE_DATA 0x17
64 #define TLS_AAD_SPACE_SIZE 13
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77 #define TLS_SM4_CCM_IV_B0_BYTE 2
79 #define __TLS_INC_STATS(net, field) \
80 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
81 #define TLS_INC_STATS(net, field) \
82 SNMP_INC_STATS((net)->mib.tls_statistics, field)
83 #define TLS_DEC_STATS(net, field) \
84 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
94 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
95 * allocated or mapped for each TLS record. After encryption, the records are
96 * stores in a linked list.
99 struct list_head list;
103 struct sk_msg msg_plaintext;
104 struct sk_msg msg_encrypted;
106 /* AAD | msg_plaintext.sg.data | sg_tag */
107 struct scatterlist sg_aead_in[2];
108 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
109 struct scatterlist sg_aead_out[2];
112 struct scatterlist sg_content_type;
114 char aad_space[TLS_AAD_SPACE_SIZE];
115 u8 iv_data[MAX_IV_SIZE];
116 struct aead_request aead_req;
126 struct delayed_work work;
130 struct tls_sw_context_tx {
131 struct crypto_aead *aead_send;
132 struct crypto_wait async_wait;
133 struct tx_work tx_work;
134 struct tls_rec *open_rec;
135 struct list_head tx_list;
136 atomic_t encrypt_pending;
137 /* protect crypto_wait with encrypt_pending */
138 spinlock_t encrypt_compl_lock;
142 #define BIT_TX_SCHEDULED 0
143 #define BIT_TX_CLOSING 1
144 unsigned long tx_bitmask;
147 struct tls_sw_context_rx {
148 struct crypto_aead *aead_recv;
149 struct crypto_wait async_wait;
150 struct strparser strp;
151 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
152 void (*saved_data_ready)(struct sock *sk);
154 struct sk_buff *recv_pkt;
158 atomic_t decrypt_pending;
159 /* protect crypto_wait with decrypt_pending*/
160 spinlock_t decrypt_compl_lock;
164 struct tls_record_info {
165 struct list_head list;
169 skb_frag_t frags[MAX_SKB_FRAGS];
172 struct tls_offload_context_tx {
173 struct crypto_aead *aead_send;
174 spinlock_t lock; /* protects records list */
175 struct list_head records_list;
176 struct tls_record_info *open_record;
177 struct tls_record_info *retransmit_hint;
179 u64 unacked_record_sn;
181 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
182 void (*sk_destruct)(struct sock *sk);
183 u8 driver_state[] __aligned(8);
184 /* The TLS layer reserves room for driver specific state
185 * Currently the belief is that there is not enough
186 * driver specific state to justify another layer of indirection
188 #define TLS_DRIVER_STATE_SIZE_TX 16
191 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
192 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194 enum tls_context_flags {
195 /* tls_device_down was called after the netdev went down, device state
196 * was released, and kTLS works in software, even though rx_conf is
197 * still TLS_HW (needed for transition).
199 TLS_RX_DEV_DEGRADED = 0,
200 /* Unlike RX where resync is driven entirely by the core in TX only
201 * the driver knows when things went out of sync, so we need the flag
204 TLS_TX_SYNC_SCHED = 1,
205 /* tls_dev_del was called for the RX side, device state was released,
206 * but tls_ctx->netdev might still be kept, because TX-side driver
207 * resources might not be released yet. Used to prevent the second
208 * tls_dev_del call in tls_device_down if it happens simultaneously.
210 TLS_RX_DEV_CLOSED = 2,
213 struct cipher_context {
218 union tls_crypto_context {
219 struct tls_crypto_info info;
221 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
222 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
223 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
224 struct tls12_crypto_info_sm4_gcm sm4_gcm;
225 struct tls12_crypto_info_sm4_ccm sm4_ccm;
229 struct tls_prot_info {
243 /* read-only cache line */
244 struct tls_prot_info prot_info;
249 int (*push_pending_record)(struct sock *sk, int flags);
250 void (*sk_write_space)(struct sock *sk);
255 struct net_device *netdev;
258 struct cipher_context tx;
259 struct cipher_context rx;
261 struct scatterlist *partially_sent_record;
262 u16 partially_sent_offset;
264 bool in_tcp_sendpages;
265 bool pending_open_record_frags;
267 struct mutex tx_lock; /* protects partially_sent_* fields and
272 /* cache cold stuff */
273 struct proto *sk_proto;
276 void (*sk_destruct)(struct sock *sk);
278 union tls_crypto_context crypto_send;
279 union tls_crypto_context crypto_recv;
281 struct list_head list;
286 enum tls_offload_ctx_dir {
287 TLS_OFFLOAD_CTX_DIR_RX,
288 TLS_OFFLOAD_CTX_DIR_TX,
292 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
293 enum tls_offload_ctx_dir direction,
294 struct tls_crypto_info *crypto_info,
295 u32 start_offload_tcp_sn);
296 void (*tls_dev_del)(struct net_device *netdev,
297 struct tls_context *ctx,
298 enum tls_offload_ctx_dir direction);
299 int (*tls_dev_resync)(struct net_device *netdev,
300 struct sock *sk, u32 seq, u8 *rcd_sn,
301 enum tls_offload_ctx_dir direction);
304 enum tls_offload_sync_type {
305 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
306 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
307 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
310 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
311 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
313 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
314 struct tls_offload_resync_async {
318 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
321 struct tls_offload_context_rx {
322 /* sw must be the first member of tls_offload_context_rx */
323 struct tls_sw_context_rx sw;
324 enum tls_offload_sync_type resync_type;
325 /* this member is set regardless of resync_type, to avoid branches */
326 u8 resync_nh_reset:1;
327 /* CORE_NEXT_HINT-only member, but use the hole here */
328 u8 resync_nh_do_now:1;
330 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
332 atomic64_t resync_req;
334 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
336 u32 decrypted_failed;
339 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
341 struct tls_offload_resync_async *resync_async;
344 u8 driver_state[] __aligned(8);
345 /* The TLS layer reserves room for driver specific state
346 * Currently the belief is that there is not enough
347 * driver specific state to justify another layer of indirection
349 #define TLS_DRIVER_STATE_SIZE_RX 8
352 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
353 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
355 struct tls_context *tls_ctx_create(struct sock *sk);
356 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
357 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
359 int wait_on_pending_writer(struct sock *sk, long *timeo);
360 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
362 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
363 unsigned int optlen);
364 void tls_err_abort(struct sock *sk, int err);
366 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
367 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
368 void tls_sw_strparser_done(struct tls_context *tls_ctx);
369 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
370 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
371 int offset, size_t size, int flags);
372 int tls_sw_sendpage(struct sock *sk, struct page *page,
373 int offset, size_t size, int flags);
374 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
375 void tls_sw_release_resources_tx(struct sock *sk);
376 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
377 void tls_sw_free_resources_rx(struct sock *sk);
378 void tls_sw_release_resources_rx(struct sock *sk);
379 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
380 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
381 int nonblock, int flags, int *addr_len);
382 bool tls_sw_sock_is_readable(struct sock *sk);
383 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
384 struct pipe_inode_info *pipe,
385 size_t len, unsigned int flags);
387 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
388 int tls_device_sendpage(struct sock *sk, struct page *page,
389 int offset, size_t size, int flags);
390 int tls_tx_records(struct sock *sk, int flags);
392 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
393 u32 seq, u64 *p_record_sn);
395 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
397 return rec->len == 0;
400 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
402 return rec->end_seq - rec->len;
405 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
406 struct scatterlist *sg, u16 first_offset,
408 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
410 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
412 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
414 return (struct tls_msg *)strp_msg(skb);
417 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
419 return !!ctx->partially_sent_record;
422 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
424 return tls_ctx->pending_open_record_frags;
427 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
431 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
435 return READ_ONCE(rec->tx_ready);
438 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
440 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
444 return TLS_CONF_BASE;
450 return TLS_CONF_HW_RECORD;
456 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
457 struct sk_buff *skb);
459 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
460 struct sk_buff *skb);
462 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
464 #ifdef CONFIG_SOCK_VALIDATE_XMIT
465 return sk_fullsock(sk) &&
466 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
467 &tls_validate_xmit_skb);
473 static inline bool tls_bigint_increment(unsigned char *seq, int len)
477 for (i = len - 1; i >= 0; i--) {
486 static inline void tls_bigint_subtract(unsigned char *seq, int n)
491 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
494 rcd_sn = be64_to_cpu(*p);
495 *p = cpu_to_be64(rcd_sn - n);
498 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
500 struct inet_connection_sock *icsk = inet_csk(sk);
502 /* Use RCU on icsk_ulp_data only for sock diag code,
503 * TLS data path doesn't need rcu_dereference().
505 return (__force void *)icsk->icsk_ulp_data;
508 static inline void tls_advance_record_sn(struct sock *sk,
509 struct tls_prot_info *prot,
510 struct cipher_context *ctx)
512 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
513 tls_err_abort(sk, -EBADMSG);
515 if (prot->version != TLS_1_3_VERSION &&
516 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
517 tls_bigint_increment(ctx->iv + prot->salt_size,
521 static inline void tls_fill_prepend(struct tls_context *ctx,
523 size_t plaintext_len,
524 unsigned char record_type)
526 struct tls_prot_info *prot = &ctx->prot_info;
527 size_t pkt_len, iv_size = prot->iv_size;
529 pkt_len = plaintext_len + prot->tag_size;
530 if (prot->version != TLS_1_3_VERSION &&
531 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
534 memcpy(buf + TLS_NONCE_OFFSET,
535 ctx->tx.iv + prot->salt_size, iv_size);
538 /* we cover nonce explicit here as well, so buf should be of
539 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
541 buf[0] = prot->version == TLS_1_3_VERSION ?
542 TLS_RECORD_TYPE_DATA : record_type;
543 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
544 buf[1] = TLS_1_2_VERSION_MINOR;
545 buf[2] = TLS_1_2_VERSION_MAJOR;
546 /* we can use IV for nonce explicit according to spec */
547 buf[3] = pkt_len >> 8;
548 buf[4] = pkt_len & 0xFF;
551 static inline void tls_make_aad(char *buf,
553 char *record_sequence,
554 unsigned char record_type,
555 struct tls_prot_info *prot)
557 if (prot->version != TLS_1_3_VERSION) {
558 memcpy(buf, record_sequence, prot->rec_seq_size);
561 size += prot->tag_size;
564 buf[0] = prot->version == TLS_1_3_VERSION ?
565 TLS_RECORD_TYPE_DATA : record_type;
566 buf[1] = TLS_1_2_VERSION_MAJOR;
567 buf[2] = TLS_1_2_VERSION_MINOR;
569 buf[4] = size & 0xFF;
572 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
576 if (prot->version == TLS_1_3_VERSION ||
577 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
578 for (i = 0; i < 8; i++)
584 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
585 const struct tls_context *tls_ctx)
587 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
590 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
591 const struct tls_context *tls_ctx)
593 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
596 static inline struct tls_offload_context_tx *
597 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
599 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
602 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
604 struct tls_context *ctx = tls_get_ctx(sk);
608 return !!tls_sw_ctx_tx(ctx);
611 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
613 struct tls_context *ctx = tls_get_ctx(sk);
617 return !!tls_sw_ctx_rx(ctx);
620 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
621 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
623 static inline struct tls_offload_context_rx *
624 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
626 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
629 #if IS_ENABLED(CONFIG_TLS_DEVICE)
630 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
631 enum tls_offload_ctx_dir direction)
633 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
634 return tls_offload_ctx_tx(tls_ctx)->driver_state;
636 return tls_offload_ctx_rx(tls_ctx)->driver_state;
640 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
642 return __tls_driver_ctx(tls_get_ctx(sk), direction);
646 #define RESYNC_REQ BIT(0)
647 #define RESYNC_REQ_ASYNC BIT(1)
648 /* The TLS context is valid until sk_destruct is called */
649 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
651 struct tls_context *tls_ctx = tls_get_ctx(sk);
652 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
654 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
657 /* Log all TLS record header TCP sequences in [seq, seq+len] */
659 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
661 struct tls_context *tls_ctx = tls_get_ctx(sk);
662 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
664 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
665 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
666 rx_ctx->resync_async->loglen = 0;
667 rx_ctx->resync_async->rcd_delta = 0;
671 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
673 struct tls_context *tls_ctx = tls_get_ctx(sk);
674 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
676 atomic64_set(&rx_ctx->resync_async->req,
677 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
681 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
683 struct tls_context *tls_ctx = tls_get_ctx(sk);
685 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
688 /* Driver's seq tracking has to be disabled until resync succeeded */
689 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
691 struct tls_context *tls_ctx = tls_get_ctx(sk);
694 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
695 smp_mb__after_atomic();
699 int __net_init tls_proc_init(struct net *net);
700 void __net_exit tls_proc_fini(struct net *net);
702 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
703 unsigned char *record_type);
704 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
705 struct scatterlist *sgout);
706 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
708 int tls_sw_fallback_init(struct sock *sk,
709 struct tls_offload_context_tx *offload_ctx,
710 struct tls_crypto_info *crypto_info);
712 #ifdef CONFIG_TLS_DEVICE
713 void tls_device_init(void);
714 void tls_device_cleanup(void);
715 void tls_device_sk_destruct(struct sock *sk);
716 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
717 void tls_device_free_resources_tx(struct sock *sk);
718 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
719 void tls_device_offload_cleanup_rx(struct sock *sk);
720 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
721 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
722 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
723 struct sk_buff *skb, struct strp_msg *rxm);
725 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
727 if (!sk_fullsock(sk) ||
728 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
730 return tls_get_ctx(sk)->rx_conf == TLS_HW;
733 static inline void tls_device_init(void) {}
734 static inline void tls_device_cleanup(void) {}
737 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
742 static inline void tls_device_free_resources_tx(struct sock *sk) {}
745 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
750 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
752 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
755 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
756 struct sk_buff *skb, struct strp_msg *rxm)
761 #endif /* _TLS_OFFLOAD_H */