2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
149 #include "net-sysfs.h"
151 #define MAX_GRO_SKBS 8
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly; /* Taps */
160 static struct list_head offload_base __read_mostly;
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
189 static DEFINE_MUTEX(ifalias_mutex);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 static seqcount_t devnet_rename_seq;
199 static inline void dev_base_seq_inc(struct net *net)
201 while (++net->dev_base_seq == 0)
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 static inline void rps_lock(struct softnet_data *sd)
220 spin_lock(&sd->input_pkt_queue.lock);
224 static inline void rps_unlock(struct softnet_data *sd)
227 spin_unlock(&sd->input_pkt_queue.lock);
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
234 struct net *net = dev_net(dev);
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
245 dev_base_seq_inc(net);
248 /* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
251 static void unlist_netdevice(struct net_device *dev)
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
262 dev_base_seq_inc(dev_net(dev));
269 static RAW_NOTIFIER_HEAD(netdev_chain);
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 #ifdef CONFIG_LOCKDEP
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
284 static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 /*******************************************************************************
363 * Protocol management and registration routines
365 *******************************************************************************/
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
406 void dev_add_pack(struct packet_type *pt)
408 struct list_head *head = ptype_head(pt);
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
414 EXPORT_SYMBOL(dev_add_pack);
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
429 void __dev_remove_pack(struct packet_type *pt)
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
434 spin_lock(&ptype_lock);
436 list_for_each_entry(pt1, head, list) {
438 list_del_rcu(&pt->list);
443 pr_warn("dev_remove_pack: %p not found\n", pt);
445 spin_unlock(&ptype_lock);
447 EXPORT_SYMBOL(__dev_remove_pack);
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
458 * This call sleeps to guarantee that no CPU is looking at the packet
461 void dev_remove_pack(struct packet_type *pt)
463 __dev_remove_pack(pt);
467 EXPORT_SYMBOL(dev_remove_pack);
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
482 void dev_add_offload(struct packet_offload *po)
484 struct packet_offload *elem;
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
494 EXPORT_SYMBOL(dev_add_offload);
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
509 static void __dev_remove_offload(struct packet_offload *po)
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
514 spin_lock(&offload_lock);
516 list_for_each_entry(po1, head, list) {
518 list_del_rcu(&po->list);
523 pr_warn("dev_remove_offload: %p not found\n", po);
525 spin_unlock(&offload_lock);
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
537 * This call sleeps to guarantee that no CPU is looking at the packet
540 void dev_remove_offload(struct packet_offload *po)
542 __dev_remove_offload(po);
546 EXPORT_SYMBOL(dev_remove_offload);
548 /******************************************************************************
550 * Device Boot-time Settings Routines
552 ******************************************************************************/
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 struct netdev_boot_setup *s;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
593 int netdev_boot_setup_check(struct net_device *dev)
595 struct netdev_boot_setup *s = dev_boot_setup;
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
610 EXPORT_SYMBOL(netdev_boot_setup_check);
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
623 unsigned long netdev_boot_base(const char *prefix, int unit)
625 const struct netdev_boot_setup *s = dev_boot_setup;
629 sprintf(name, "%s%d", prefix, unit);
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
635 if (__dev_get_by_name(&init_net, name))
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
645 * Saves at boot time configured settings for any netdevice.
647 int __init netdev_boot_setup(char *str)
652 str = get_options(str, ARRAY_SIZE(ints), ints);
657 memset(&map, 0, sizeof(map));
661 map.base_addr = ints[2];
663 map.mem_start = ints[3];
665 map.mem_end = ints[4];
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
671 __setup("netdev=", netdev_boot_setup);
673 /*******************************************************************************
675 * Device Interface Subroutines
677 *******************************************************************************/
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 int dev_get_iflink(const struct net_device *dev)
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
694 EXPORT_SYMBOL(dev_get_iflink);
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 struct ip_tunnel_info *info;
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 info = skb_tunnel_info_unclone(skb);
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
745 EXPORT_SYMBOL(__dev_get_by_name);
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 struct net_device *dev;
789 dev = dev_get_by_name_rcu(net, name);
795 EXPORT_SYMBOL(dev_get_by_name);
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
820 EXPORT_SYMBOL(__dev_get_by_index);
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 struct net_device *dev;
863 dev = dev_get_by_index_rcu(net, ifindex);
869 EXPORT_SYMBOL(dev_get_by_index);
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 struct napi_struct *napi;
885 WARN_ON_ONCE(!rcu_read_lock_held());
887 if (napi_id < MIN_NAPI_ID)
890 napi = napi_by_id(napi_id);
892 return napi ? napi->dev : NULL;
894 EXPORT_SYMBOL(dev_get_by_napi_id);
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
906 int netdev_get_name(struct net *net, char *name, int ifindex)
908 struct net_device *dev;
912 seq = raw_seqcount_begin(&devnet_rename_seq);
914 dev = dev_get_by_index_rcu(net, ifindex);
920 strcpy(name, dev->name);
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 struct net_device *dev;
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 struct net_device *dev;
963 for_each_netdev(net, dev)
964 if (dev->type == type)
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 struct net_device *dev, *ret = NULL;
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 struct net_device *dev, *ret;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1024 bool dev_valid_name(const char *name)
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1034 if (*name == '/' || *name == ':' || isspace(*name))
1040 EXPORT_SYMBOL(dev_valid_name);
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1065 if (!dev_valid_name(name))
1068 p = strchr(name, '%');
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1086 if (i < 0 || i >= max_netdevices)
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1110 static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1118 ret = __dev_alloc_name(net, name, buf);
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1125 * dev_alloc_name - allocate a name for a device
1127 * @name: name format string
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 EXPORT_SYMBOL(dev_alloc_name);
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 if (!dev_valid_name(name))
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1161 EXPORT_SYMBOL(dev_get_valid_name);
1164 * dev_change_name - change name of a device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1168 * Change name of a device, can pass format strings "eth%d".
1171 int dev_change_name(struct net_device *dev, const char *newname)
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1180 BUG_ON(!dev_net(dev));
1183 if (dev->flags & IFF_UP)
1186 write_seqcount_begin(&devnet_rename_seq);
1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 write_seqcount_end(&devnet_rename_seq);
1193 memcpy(oldname, dev->name, IFNAMSIZ);
1195 err = dev_get_valid_name(net, dev, newname);
1197 write_seqcount_end(&devnet_rename_seq);
1201 if (oldname[0] && !strchr(oldname, '%'))
1202 netdev_info(dev, "renamed from %s\n", oldname);
1204 old_assign_type = dev->name_assign_type;
1205 dev->name_assign_type = NET_NAME_RENAMED;
1208 ret = device_rename(&dev->dev, dev->name);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 write_seqcount_end(&devnet_rename_seq);
1216 write_seqcount_end(&devnet_rename_seq);
1218 netdev_adjacent_rename_links(dev, oldname);
1220 write_lock_bh(&dev_base_lock);
1221 hlist_del_rcu(&dev->name_hlist);
1222 write_unlock_bh(&dev_base_lock);
1226 write_lock_bh(&dev_base_lock);
1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 write_unlock_bh(&dev_base_lock);
1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 ret = notifier_to_errno(ret);
1234 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 write_seqcount_begin(&devnet_rename_seq);
1238 memcpy(dev->name, oldname, IFNAMSIZ);
1239 memcpy(oldname, newname, IFNAMSIZ);
1240 dev->name_assign_type = old_assign_type;
1241 old_assign_type = NET_NAME_RENAMED;
1244 pr_err("%s: name change rollback failed: %d\n",
1253 * dev_set_alias - change ifalias of a device
1255 * @alias: name up to IFALIASZ
1256 * @len: limit of bytes to copy from info
1258 * Set ifalias for a device,
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 struct dev_ifalias *new_alias = NULL;
1264 if (len >= IFALIASZ)
1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1272 memcpy(new_alias->ifalias, alias, len);
1273 new_alias->ifalias[len] = 0;
1276 mutex_lock(&ifalias_mutex);
1277 rcu_swap_protected(dev->ifalias, new_alias,
1278 mutex_is_locked(&ifalias_mutex));
1279 mutex_unlock(&ifalias_mutex);
1282 kfree_rcu(new_alias, rcuhead);
1286 EXPORT_SYMBOL(dev_set_alias);
1289 * dev_get_alias - get ifalias of a device
1291 * @name: buffer to store name of ifalias
1292 * @len: size of buffer
1294 * get ifalias for a device. Caller must make sure dev cannot go
1295 * away, e.g. rcu read lock or own a reference count to device.
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 const struct dev_ifalias *alias;
1303 alias = rcu_dereference(dev->ifalias);
1305 ret = snprintf(name, len, "%s", alias->ifalias);
1312 * netdev_features_change - device changes features
1313 * @dev: device to cause notification
1315 * Called to indicate a device has changed features.
1317 void netdev_features_change(struct net_device *dev)
1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 EXPORT_SYMBOL(netdev_features_change);
1324 * netdev_state_change - device changes state
1325 * @dev: device to cause notification
1327 * Called to indicate a device has changed state. This function calls
1328 * the notifier chains for netdev_chain and sends a NEWLINK message
1329 * to the routing socket.
1331 void netdev_state_change(struct net_device *dev)
1333 if (dev->flags & IFF_UP) {
1334 struct netdev_notifier_change_info change_info = {
1338 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 EXPORT_SYMBOL(netdev_state_change);
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1355 void netdev_notify_peers(struct net_device *dev)
1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 EXPORT_SYMBOL(netdev_notify_peers);
1364 static int __dev_open(struct net_device *dev)
1366 const struct net_device_ops *ops = dev->netdev_ops;
1371 if (!netif_device_present(dev))
1374 /* Block netpoll from trying to do any rx path servicing.
1375 * If we don't do this there is a chance ndo_poll_controller
1376 * or ndo_poll may be running while we open the device
1378 netpoll_poll_disable(dev);
1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 ret = notifier_to_errno(ret);
1385 set_bit(__LINK_STATE_START, &dev->state);
1387 if (ops->ndo_validate_addr)
1388 ret = ops->ndo_validate_addr(dev);
1390 if (!ret && ops->ndo_open)
1391 ret = ops->ndo_open(dev);
1393 netpoll_poll_enable(dev);
1396 clear_bit(__LINK_STATE_START, &dev->state);
1398 dev->flags |= IFF_UP;
1399 dev_set_rx_mode(dev);
1401 add_device_randomness(dev->dev_addr, dev->addr_len);
1408 * dev_open - prepare an interface for use.
1409 * @dev: device to open
1411 * Takes a device from down to up state. The device's private open
1412 * function is invoked and then the multicast lists are loaded. Finally
1413 * the device is moved into the up state and a %NETDEV_UP message is
1414 * sent to the netdev notifier chain.
1416 * Calling this function on an active interface is a nop. On a failure
1417 * a negative errno code is returned.
1419 int dev_open(struct net_device *dev)
1423 if (dev->flags & IFF_UP)
1426 ret = __dev_open(dev);
1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 call_netdevice_notifiers(NETDEV_UP, dev);
1435 EXPORT_SYMBOL(dev_open);
1437 static void __dev_close_many(struct list_head *head)
1439 struct net_device *dev;
1444 list_for_each_entry(dev, head, close_list) {
1445 /* Temporarily disable netpoll until the interface is down */
1446 netpoll_poll_disable(dev);
1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 clear_bit(__LINK_STATE_START, &dev->state);
1452 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453 * can be even on different cpu. So just clear netif_running().
1455 * dev->stop() will invoke napi_disable() on all of it's
1456 * napi_struct instances on this device.
1458 smp_mb__after_atomic(); /* Commit netif_running(). */
1461 dev_deactivate_many(head);
1463 list_for_each_entry(dev, head, close_list) {
1464 const struct net_device_ops *ops = dev->netdev_ops;
1467 * Call the device specific close. This cannot fail.
1468 * Only if device is UP
1470 * We allow it to be called even after a DETACH hot-plug
1476 dev->flags &= ~IFF_UP;
1477 netpoll_poll_enable(dev);
1481 static void __dev_close(struct net_device *dev)
1485 list_add(&dev->close_list, &single);
1486 __dev_close_many(&single);
1490 void dev_close_many(struct list_head *head, bool unlink)
1492 struct net_device *dev, *tmp;
1494 /* Remove the devices that don't need to be closed */
1495 list_for_each_entry_safe(dev, tmp, head, close_list)
1496 if (!(dev->flags & IFF_UP))
1497 list_del_init(&dev->close_list);
1499 __dev_close_many(head);
1501 list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 list_del_init(&dev->close_list);
1508 EXPORT_SYMBOL(dev_close_many);
1511 * dev_close - shutdown an interface.
1512 * @dev: device to shutdown
1514 * This function moves an active device into down state. A
1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519 void dev_close(struct net_device *dev)
1521 if (dev->flags & IFF_UP) {
1524 list_add(&dev->close_list, &single);
1525 dev_close_many(&single, true);
1529 EXPORT_SYMBOL(dev_close);
1533 * dev_disable_lro - disable Large Receive Offload on a device
1536 * Disable Large Receive Offload (LRO) on a net device. Must be
1537 * called under RTNL. This is needed if received packets may be
1538 * forwarded to another interface.
1540 void dev_disable_lro(struct net_device *dev)
1542 struct net_device *lower_dev;
1543 struct list_head *iter;
1545 dev->wanted_features &= ~NETIF_F_LRO;
1546 netdev_update_features(dev);
1548 if (unlikely(dev->features & NETIF_F_LRO))
1549 netdev_WARN(dev, "failed to disable LRO!\n");
1551 netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 dev_disable_lro(lower_dev);
1554 EXPORT_SYMBOL(dev_disable_lro);
1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1561 * called under RTNL. This is needed if Generic XDP is installed on
1564 static void dev_disable_gro_hw(struct net_device *dev)
1566 dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 netdev_update_features(dev);
1569 if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 case NETDEV_##val: \
1577 return "NETDEV_" __stringify(val);
1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 return "UNKNOWN_NETDEV_EVENT";
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 struct net_device *dev)
1597 struct netdev_notifier_info info = {
1601 return nb->notifier_call(nb, val, &info);
1604 static int dev_boot_phase = 1;
1607 * register_netdevice_notifier - register a network notifier block
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1620 int register_netdevice_notifier(struct notifier_block *nb)
1622 struct net_device *dev;
1623 struct net_device *last;
1627 /* Close race with setup_net() and cleanup_net() */
1628 down_write(&pernet_ops_rwsem);
1630 err = raw_notifier_chain_register(&netdev_chain, nb);
1636 for_each_netdev(net, dev) {
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1642 if (!(dev->flags & IFF_UP))
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1651 up_write(&pernet_ops_rwsem);
1657 for_each_netdev(net, dev) {
1661 if (dev->flags & IFF_UP) {
1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1671 raw_notifier_chain_unregister(&netdev_chain, nb);
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1677 * unregister_netdevice_notifier - unregister a network notifier block
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 struct net_device *dev;
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem);
1699 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1704 for_each_netdev(net, dev) {
1705 if (dev->flags & IFF_UP) {
1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1715 up_write(&pernet_ops_rwsem);
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721 * call_netdevice_notifiers_info - call all network notifier blocks
1722 * @val: value passed unmodified to notifier function
1723 * @info: notifier information data
1725 * Call all network notifier blocks. Parameters and return value
1726 * are as for raw_notifier_call_chain().
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 struct netdev_notifier_info *info)
1733 return raw_notifier_call_chain(&netdev_chain, val, info);
1737 * call_netdevice_notifiers - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @dev: net_device pointer passed unmodified to notifier function
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 struct netdev_notifier_info info = {
1751 return call_netdevice_notifiers_info(val, &info);
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1755 #ifdef CONFIG_NET_INGRESS
1756 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758 void net_inc_ingress_queue(void)
1760 static_branch_inc(&ingress_needed_key);
1762 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764 void net_dec_ingress_queue(void)
1766 static_branch_dec(&ingress_needed_key);
1768 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #ifdef CONFIG_NET_EGRESS
1772 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774 void net_inc_egress_queue(void)
1776 static_branch_inc(&egress_needed_key);
1778 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780 void net_dec_egress_queue(void)
1782 static_branch_dec(&egress_needed_key);
1784 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1788 #ifdef HAVE_JUMP_LABEL
1789 static atomic_t netstamp_needed_deferred;
1790 static atomic_t netstamp_wanted;
1791 static void netstamp_clear(struct work_struct *work)
1793 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 static_branch_enable(&netstamp_needed_key);
1800 static_branch_disable(&netstamp_needed_key);
1802 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 void net_enable_timestamp(void)
1807 #ifdef HAVE_JUMP_LABEL
1811 wanted = atomic_read(&netstamp_wanted);
1814 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 atomic_inc(&netstamp_needed_deferred);
1818 schedule_work(&netstamp_work);
1820 static_branch_inc(&netstamp_needed_key);
1823 EXPORT_SYMBOL(net_enable_timestamp);
1825 void net_disable_timestamp(void)
1827 #ifdef HAVE_JUMP_LABEL
1831 wanted = atomic_read(&netstamp_wanted);
1834 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 atomic_dec(&netstamp_needed_deferred);
1838 schedule_work(&netstamp_work);
1840 static_branch_dec(&netstamp_needed_key);
1843 EXPORT_SYMBOL(net_disable_timestamp);
1845 static inline void net_timestamp_set(struct sk_buff *skb)
1848 if (static_branch_unlikely(&netstamp_needed_key))
1849 __net_timestamp(skb);
1852 #define net_timestamp_check(COND, SKB) \
1853 if (static_branch_unlikely(&netstamp_needed_key)) { \
1854 if ((COND) && !(SKB)->tstamp) \
1855 __net_timestamp(SKB); \
1858 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1862 if (!(dev->flags & IFF_UP))
1865 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1866 if (skb->len <= len)
1869 /* if TSO is enabled, we don't care about the length as the packet
1870 * could be forwarded without being segmented before
1872 if (skb_is_gso(skb))
1877 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 int ret = ____dev_forward_skb(dev, skb);
1884 skb->protocol = eth_type_trans(skb, dev);
1885 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1890 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893 * dev_forward_skb - loopback an skb to another netif
1895 * @dev: destination network device
1896 * @skb: buffer to forward
1899 * NET_RX_SUCCESS (no congestion)
1900 * NET_RX_DROP (packet was dropped, but freed)
1902 * dev_forward_skb can be used for injecting an skb from the
1903 * start_xmit function of one device into the receive queue
1904 * of another device.
1906 * The receiving device may be in another namespace, so
1907 * we have to clear all information in the skb that could
1908 * impact namespace isolation.
1910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916 static inline int deliver_skb(struct sk_buff *skb,
1917 struct packet_type *pt_prev,
1918 struct net_device *orig_dev)
1920 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 refcount_inc(&skb->users);
1923 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1927 struct packet_type **pt,
1928 struct net_device *orig_dev,
1930 struct list_head *ptype_list)
1932 struct packet_type *ptype, *pt_prev = *pt;
1934 list_for_each_entry_rcu(ptype, ptype_list, list) {
1935 if (ptype->type != type)
1938 deliver_skb(skb, pt_prev, orig_dev);
1944 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 if (!ptype->af_packet_priv || !skb->sk)
1949 if (ptype->id_match)
1950 return ptype->id_match(ptype, skb->sk);
1951 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1958 * Support routine. Sends outgoing frames to any network
1959 * taps currently in use.
1962 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 struct packet_type *ptype;
1965 struct sk_buff *skb2 = NULL;
1966 struct packet_type *pt_prev = NULL;
1967 struct list_head *ptype_list = &ptype_all;
1971 list_for_each_entry_rcu(ptype, ptype_list, list) {
1972 /* Never send packets back to the socket
1975 if (skb_loop_sk(ptype, skb))
1979 deliver_skb(skb2, pt_prev, skb->dev);
1984 /* need to clone skb, done only once */
1985 skb2 = skb_clone(skb, GFP_ATOMIC);
1989 net_timestamp_set(skb2);
1991 /* skb->nh should be correctly
1992 * set by sender, so that the second statement is
1993 * just protection against buggy protocols.
1995 skb_reset_mac_header(skb2);
1997 if (skb_network_header(skb2) < skb2->data ||
1998 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1999 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2000 ntohs(skb2->protocol),
2002 skb_reset_network_header(skb2);
2005 skb2->transport_header = skb2->network_header;
2006 skb2->pkt_type = PACKET_OUTGOING;
2010 if (ptype_list == &ptype_all) {
2011 ptype_list = &dev->ptype_all;
2016 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2017 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2023 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2027 * @dev: Network device
2028 * @txq: number of queues available
2030 * If real_num_tx_queues is changed the tc mappings may no longer be
2031 * valid. To resolve this verify the tc mapping remains valid and if
2032 * not NULL the mapping. With no priorities mapping to this
2033 * offset/count pair it will no longer be used. In the worst case TC0
2034 * is invalid nothing can be done so disable priority mappings. If is
2035 * expected that drivers will fix this mapping if they can before
2036 * calling netif_set_real_num_tx_queues.
2038 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043 /* If TC0 is invalidated disable TC mapping */
2044 if (tc->offset + tc->count > txq) {
2045 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2050 /* Invalidated prio to tc mappings set to TC0 */
2051 for (i = 1; i < TC_BITMASK + 1; i++) {
2052 int q = netdev_get_prio_tc_map(dev, i);
2054 tc = &dev->tc_to_txq[q];
2055 if (tc->offset + tc->count > txq) {
2056 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 netdev_set_prio_tc_map(dev, i, 0);
2063 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 /* walk through the TCs and see if it falls into any of them */
2070 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071 if ((txq - tc->offset) < tc->count)
2075 /* didn't find it, just return -1 to indicate no match */
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2084 struct static_key xps_needed __read_mostly;
2085 EXPORT_SYMBOL(xps_needed);
2086 struct static_key xps_rxqs_needed __read_mostly;
2087 EXPORT_SYMBOL(xps_rxqs_needed);
2088 static DEFINE_MUTEX(xps_map_mutex);
2089 #define xmap_dereference(P) \
2090 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2095 struct xps_map *map = NULL;
2099 map = xmap_dereference(dev_maps->attr_map[tci]);
2103 for (pos = map->len; pos--;) {
2104 if (map->queues[pos] != index)
2108 map->queues[pos] = map->queues[--map->len];
2112 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2113 kfree_rcu(map, rcu);
2120 static bool remove_xps_queue_cpu(struct net_device *dev,
2121 struct xps_dev_maps *dev_maps,
2122 int cpu, u16 offset, u16 count)
2124 int num_tc = dev->num_tc ? : 1;
2125 bool active = false;
2128 for (tci = cpu * num_tc; num_tc--; tci++) {
2131 for (i = count, j = offset; i--; j++) {
2132 if (!remove_xps_queue(dev_maps, tci, j))
2142 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2143 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2144 u16 offset, u16 count, bool is_rxqs_map)
2146 bool active = false;
2149 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2155 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159 for (i = offset + (count - 1); count--; i--)
2160 netdev_queue_numa_node_write(
2161 netdev_get_tx_queue(dev, i),
2164 kfree_rcu(dev_maps, rcu);
2168 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2171 const unsigned long *possible_mask = NULL;
2172 struct xps_dev_maps *dev_maps;
2173 unsigned int nr_ids;
2175 if (!static_key_false(&xps_needed))
2179 mutex_lock(&xps_map_mutex);
2181 if (static_key_false(&xps_rxqs_needed)) {
2182 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2184 nr_ids = dev->num_rx_queues;
2185 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186 offset, count, true);
2190 dev_maps = xmap_dereference(dev->xps_cpus_map);
2194 if (num_possible_cpus() > 1)
2195 possible_mask = cpumask_bits(cpu_possible_mask);
2196 nr_ids = nr_cpu_ids;
2197 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2201 if (static_key_enabled(&xps_rxqs_needed))
2202 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2204 static_key_slow_dec_cpuslocked(&xps_needed);
2205 mutex_unlock(&xps_map_mutex);
2209 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2211 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2214 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2215 u16 index, bool is_rxqs_map)
2217 struct xps_map *new_map;
2218 int alloc_len = XPS_MIN_MAP_ALLOC;
2221 for (pos = 0; map && pos < map->len; pos++) {
2222 if (map->queues[pos] != index)
2227 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2229 if (pos < map->alloc_len)
2232 alloc_len = map->alloc_len * 2;
2235 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2239 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2241 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2242 cpu_to_node(attr_index));
2246 for (i = 0; i < pos; i++)
2247 new_map->queues[i] = map->queues[i];
2248 new_map->alloc_len = alloc_len;
2254 /* Must be called under cpus_read_lock */
2255 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2256 u16 index, bool is_rxqs_map)
2258 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2259 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2260 int i, j, tci, numa_node_id = -2;
2261 int maps_sz, num_tc = 1, tc = 0;
2262 struct xps_map *map, *new_map;
2263 bool active = false;
2264 unsigned int nr_ids;
2267 /* Do not allow XPS on subordinate device directly */
2268 num_tc = dev->num_tc;
2272 /* If queue belongs to subordinate dev use its map */
2273 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2275 tc = netdev_txq_to_tc(dev, index);
2280 mutex_lock(&xps_map_mutex);
2282 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2283 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2284 nr_ids = dev->num_rx_queues;
2286 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2287 if (num_possible_cpus() > 1) {
2288 online_mask = cpumask_bits(cpu_online_mask);
2289 possible_mask = cpumask_bits(cpu_possible_mask);
2291 dev_maps = xmap_dereference(dev->xps_cpus_map);
2292 nr_ids = nr_cpu_ids;
2295 if (maps_sz < L1_CACHE_BYTES)
2296 maps_sz = L1_CACHE_BYTES;
2298 /* allocate memory for queue storage */
2299 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2302 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2303 if (!new_dev_maps) {
2304 mutex_unlock(&xps_map_mutex);
2308 tci = j * num_tc + tc;
2309 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2312 map = expand_xps_map(map, j, index, is_rxqs_map);
2316 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2320 goto out_no_new_maps;
2322 static_key_slow_inc_cpuslocked(&xps_needed);
2324 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2326 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2328 /* copy maps belonging to foreign traffic classes */
2329 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2330 /* fill in the new device map from the old device map */
2331 map = xmap_dereference(dev_maps->attr_map[tci]);
2332 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2335 /* We need to explicitly update tci as prevous loop
2336 * could break out early if dev_maps is NULL.
2338 tci = j * num_tc + tc;
2340 if (netif_attr_test_mask(j, mask, nr_ids) &&
2341 netif_attr_test_online(j, online_mask, nr_ids)) {
2342 /* add tx-queue to CPU/rx-queue maps */
2345 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2346 while ((pos < map->len) && (map->queues[pos] != index))
2349 if (pos == map->len)
2350 map->queues[map->len++] = index;
2353 if (numa_node_id == -2)
2354 numa_node_id = cpu_to_node(j);
2355 else if (numa_node_id != cpu_to_node(j))
2359 } else if (dev_maps) {
2360 /* fill in the new device map from the old device map */
2361 map = xmap_dereference(dev_maps->attr_map[tci]);
2362 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2365 /* copy maps belonging to foreign traffic classes */
2366 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2367 /* fill in the new device map from the old device map */
2368 map = xmap_dereference(dev_maps->attr_map[tci]);
2369 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2376 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2378 /* Cleanup old maps */
2380 goto out_no_old_maps;
2382 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2384 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2385 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2386 map = xmap_dereference(dev_maps->attr_map[tci]);
2387 if (map && map != new_map)
2388 kfree_rcu(map, rcu);
2392 kfree_rcu(dev_maps, rcu);
2395 dev_maps = new_dev_maps;
2400 /* update Tx queue numa node */
2401 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2402 (numa_node_id >= 0) ?
2403 numa_node_id : NUMA_NO_NODE);
2409 /* removes tx-queue from unused CPUs/rx-queues */
2410 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2412 for (i = tc, tci = j * num_tc; i--; tci++)
2413 active |= remove_xps_queue(dev_maps, tci, index);
2414 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2415 !netif_attr_test_online(j, online_mask, nr_ids))
2416 active |= remove_xps_queue(dev_maps, tci, index);
2417 for (i = num_tc - tc, tci++; --i; tci++)
2418 active |= remove_xps_queue(dev_maps, tci, index);
2421 /* free map if not active */
2424 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2426 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2427 kfree_rcu(dev_maps, rcu);
2431 mutex_unlock(&xps_map_mutex);
2435 /* remove any maps that we added */
2436 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2438 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2439 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2441 xmap_dereference(dev_maps->attr_map[tci]) :
2443 if (new_map && new_map != map)
2448 mutex_unlock(&xps_map_mutex);
2450 kfree(new_dev_maps);
2453 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2455 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2461 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2466 EXPORT_SYMBOL(netif_set_xps_queue);
2469 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2471 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2473 /* Unbind any subordinate channels */
2474 while (txq-- != &dev->_tx[0]) {
2476 netdev_unbind_sb_channel(dev, txq->sb_dev);
2480 void netdev_reset_tc(struct net_device *dev)
2483 netif_reset_xps_queues_gt(dev, 0);
2485 netdev_unbind_all_sb_channels(dev);
2487 /* Reset TC configuration of device */
2489 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2490 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2492 EXPORT_SYMBOL(netdev_reset_tc);
2494 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2496 if (tc >= dev->num_tc)
2500 netif_reset_xps_queues(dev, offset, count);
2502 dev->tc_to_txq[tc].count = count;
2503 dev->tc_to_txq[tc].offset = offset;
2506 EXPORT_SYMBOL(netdev_set_tc_queue);
2508 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2510 if (num_tc > TC_MAX_QUEUE)
2514 netif_reset_xps_queues_gt(dev, 0);
2516 netdev_unbind_all_sb_channels(dev);
2518 dev->num_tc = num_tc;
2521 EXPORT_SYMBOL(netdev_set_num_tc);
2523 void netdev_unbind_sb_channel(struct net_device *dev,
2524 struct net_device *sb_dev)
2526 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2529 netif_reset_xps_queues_gt(sb_dev, 0);
2531 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2532 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2534 while (txq-- != &dev->_tx[0]) {
2535 if (txq->sb_dev == sb_dev)
2539 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2541 int netdev_bind_sb_channel_queue(struct net_device *dev,
2542 struct net_device *sb_dev,
2543 u8 tc, u16 count, u16 offset)
2545 /* Make certain the sb_dev and dev are already configured */
2546 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2549 /* We cannot hand out queues we don't have */
2550 if ((offset + count) > dev->real_num_tx_queues)
2553 /* Record the mapping */
2554 sb_dev->tc_to_txq[tc].count = count;
2555 sb_dev->tc_to_txq[tc].offset = offset;
2557 /* Provide a way for Tx queue to find the tc_to_txq map or
2558 * XPS map for itself.
2561 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2565 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2567 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2569 /* Do not use a multiqueue device to represent a subordinate channel */
2570 if (netif_is_multiqueue(dev))
2573 /* We allow channels 1 - 32767 to be used for subordinate channels.
2574 * Channel 0 is meant to be "native" mode and used only to represent
2575 * the main root device. We allow writing 0 to reset the device back
2576 * to normal mode after being used as a subordinate channel.
2578 if (channel > S16_MAX)
2581 dev->num_tc = -channel;
2585 EXPORT_SYMBOL(netdev_set_sb_channel);
2588 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2589 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2591 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2596 disabling = txq < dev->real_num_tx_queues;
2598 if (txq < 1 || txq > dev->num_tx_queues)
2601 if (dev->reg_state == NETREG_REGISTERED ||
2602 dev->reg_state == NETREG_UNREGISTERING) {
2605 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2611 netif_setup_tc(dev, txq);
2613 dev->real_num_tx_queues = txq;
2617 qdisc_reset_all_tx_gt(dev, txq);
2619 netif_reset_xps_queues_gt(dev, txq);
2623 dev->real_num_tx_queues = txq;
2628 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2632 * netif_set_real_num_rx_queues - set actual number of RX queues used
2633 * @dev: Network device
2634 * @rxq: Actual number of RX queues
2636 * This must be called either with the rtnl_lock held or before
2637 * registration of the net device. Returns 0 on success, or a
2638 * negative error code. If called before registration, it always
2641 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2645 if (rxq < 1 || rxq > dev->num_rx_queues)
2648 if (dev->reg_state == NETREG_REGISTERED) {
2651 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2657 dev->real_num_rx_queues = rxq;
2660 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2664 * netif_get_num_default_rss_queues - default number of RSS queues
2666 * This routine should set an upper limit on the number of RSS queues
2667 * used by default by multiqueue devices.
2669 int netif_get_num_default_rss_queues(void)
2671 return is_kdump_kernel() ?
2672 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2674 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2676 static void __netif_reschedule(struct Qdisc *q)
2678 struct softnet_data *sd;
2679 unsigned long flags;
2681 local_irq_save(flags);
2682 sd = this_cpu_ptr(&softnet_data);
2683 q->next_sched = NULL;
2684 *sd->output_queue_tailp = q;
2685 sd->output_queue_tailp = &q->next_sched;
2686 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2687 local_irq_restore(flags);
2690 void __netif_schedule(struct Qdisc *q)
2692 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2693 __netif_reschedule(q);
2695 EXPORT_SYMBOL(__netif_schedule);
2697 struct dev_kfree_skb_cb {
2698 enum skb_free_reason reason;
2701 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2703 return (struct dev_kfree_skb_cb *)skb->cb;
2706 void netif_schedule_queue(struct netdev_queue *txq)
2709 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2710 struct Qdisc *q = rcu_dereference(txq->qdisc);
2712 __netif_schedule(q);
2716 EXPORT_SYMBOL(netif_schedule_queue);
2718 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2720 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2724 q = rcu_dereference(dev_queue->qdisc);
2725 __netif_schedule(q);
2729 EXPORT_SYMBOL(netif_tx_wake_queue);
2731 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2733 unsigned long flags;
2738 if (likely(refcount_read(&skb->users) == 1)) {
2740 refcount_set(&skb->users, 0);
2741 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2744 get_kfree_skb_cb(skb)->reason = reason;
2745 local_irq_save(flags);
2746 skb->next = __this_cpu_read(softnet_data.completion_queue);
2747 __this_cpu_write(softnet_data.completion_queue, skb);
2748 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2749 local_irq_restore(flags);
2751 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2753 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2755 if (in_irq() || irqs_disabled())
2756 __dev_kfree_skb_irq(skb, reason);
2760 EXPORT_SYMBOL(__dev_kfree_skb_any);
2764 * netif_device_detach - mark device as removed
2765 * @dev: network device
2767 * Mark device as removed from system and therefore no longer available.
2769 void netif_device_detach(struct net_device *dev)
2771 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2772 netif_running(dev)) {
2773 netif_tx_stop_all_queues(dev);
2776 EXPORT_SYMBOL(netif_device_detach);
2779 * netif_device_attach - mark device as attached
2780 * @dev: network device
2782 * Mark device as attached from system and restart if needed.
2784 void netif_device_attach(struct net_device *dev)
2786 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2787 netif_running(dev)) {
2788 netif_tx_wake_all_queues(dev);
2789 __netdev_watchdog_up(dev);
2792 EXPORT_SYMBOL(netif_device_attach);
2795 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2796 * to be used as a distribution range.
2798 static u16 skb_tx_hash(const struct net_device *dev,
2799 const struct net_device *sb_dev,
2800 struct sk_buff *skb)
2804 u16 qcount = dev->real_num_tx_queues;
2807 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2809 qoffset = sb_dev->tc_to_txq[tc].offset;
2810 qcount = sb_dev->tc_to_txq[tc].count;
2813 if (skb_rx_queue_recorded(skb)) {
2814 hash = skb_get_rx_queue(skb);
2815 while (unlikely(hash >= qcount))
2817 return hash + qoffset;
2820 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2823 static void skb_warn_bad_offload(const struct sk_buff *skb)
2825 static const netdev_features_t null_features;
2826 struct net_device *dev = skb->dev;
2827 const char *name = "";
2829 if (!net_ratelimit())
2833 if (dev->dev.parent)
2834 name = dev_driver_string(dev->dev.parent);
2836 name = netdev_name(dev);
2838 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2839 "gso_type=%d ip_summed=%d\n",
2840 name, dev ? &dev->features : &null_features,
2841 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2842 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2843 skb_shinfo(skb)->gso_type, skb->ip_summed);
2847 * Invalidate hardware checksum when packet is to be mangled, and
2848 * complete checksum manually on outgoing path.
2850 int skb_checksum_help(struct sk_buff *skb)
2853 int ret = 0, offset;
2855 if (skb->ip_summed == CHECKSUM_COMPLETE)
2856 goto out_set_summed;
2858 if (unlikely(skb_shinfo(skb)->gso_size)) {
2859 skb_warn_bad_offload(skb);
2863 /* Before computing a checksum, we should make sure no frag could
2864 * be modified by an external entity : checksum could be wrong.
2866 if (skb_has_shared_frag(skb)) {
2867 ret = __skb_linearize(skb);
2872 offset = skb_checksum_start_offset(skb);
2873 BUG_ON(offset >= skb_headlen(skb));
2874 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2876 offset += skb->csum_offset;
2877 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2879 if (skb_cloned(skb) &&
2880 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2881 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2886 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2888 skb->ip_summed = CHECKSUM_NONE;
2892 EXPORT_SYMBOL(skb_checksum_help);
2894 int skb_crc32c_csum_help(struct sk_buff *skb)
2897 int ret = 0, offset, start;
2899 if (skb->ip_summed != CHECKSUM_PARTIAL)
2902 if (unlikely(skb_is_gso(skb)))
2905 /* Before computing a checksum, we should make sure no frag could
2906 * be modified by an external entity : checksum could be wrong.
2908 if (unlikely(skb_has_shared_frag(skb))) {
2909 ret = __skb_linearize(skb);
2913 start = skb_checksum_start_offset(skb);
2914 offset = start + offsetof(struct sctphdr, checksum);
2915 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2919 if (skb_cloned(skb) &&
2920 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2921 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2925 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2926 skb->len - start, ~(__u32)0,
2928 *(__le32 *)(skb->data + offset) = crc32c_csum;
2929 skb->ip_summed = CHECKSUM_NONE;
2930 skb->csum_not_inet = 0;
2935 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2937 __be16 type = skb->protocol;
2939 /* Tunnel gso handlers can set protocol to ethernet. */
2940 if (type == htons(ETH_P_TEB)) {
2943 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2946 eth = (struct ethhdr *)skb->data;
2947 type = eth->h_proto;
2950 return __vlan_get_protocol(skb, type, depth);
2954 * skb_mac_gso_segment - mac layer segmentation handler.
2955 * @skb: buffer to segment
2956 * @features: features for the output path (see dev->features)
2958 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2959 netdev_features_t features)
2961 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2962 struct packet_offload *ptype;
2963 int vlan_depth = skb->mac_len;
2964 __be16 type = skb_network_protocol(skb, &vlan_depth);
2966 if (unlikely(!type))
2967 return ERR_PTR(-EINVAL);
2969 __skb_pull(skb, vlan_depth);
2972 list_for_each_entry_rcu(ptype, &offload_base, list) {
2973 if (ptype->type == type && ptype->callbacks.gso_segment) {
2974 segs = ptype->callbacks.gso_segment(skb, features);
2980 __skb_push(skb, skb->data - skb_mac_header(skb));
2984 EXPORT_SYMBOL(skb_mac_gso_segment);
2987 /* openvswitch calls this on rx path, so we need a different check.
2989 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2992 return skb->ip_summed != CHECKSUM_PARTIAL &&
2993 skb->ip_summed != CHECKSUM_UNNECESSARY;
2995 return skb->ip_summed == CHECKSUM_NONE;
2999 * __skb_gso_segment - Perform segmentation on skb.
3000 * @skb: buffer to segment
3001 * @features: features for the output path (see dev->features)
3002 * @tx_path: whether it is called in TX path
3004 * This function segments the given skb and returns a list of segments.
3006 * It may return NULL if the skb requires no segmentation. This is
3007 * only possible when GSO is used for verifying header integrity.
3009 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3011 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3012 netdev_features_t features, bool tx_path)
3014 struct sk_buff *segs;
3016 if (unlikely(skb_needs_check(skb, tx_path))) {
3019 /* We're going to init ->check field in TCP or UDP header */
3020 err = skb_cow_head(skb, 0);
3022 return ERR_PTR(err);
3025 /* Only report GSO partial support if it will enable us to
3026 * support segmentation on this frame without needing additional
3029 if (features & NETIF_F_GSO_PARTIAL) {
3030 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3031 struct net_device *dev = skb->dev;
3033 partial_features |= dev->features & dev->gso_partial_features;
3034 if (!skb_gso_ok(skb, features | partial_features))
3035 features &= ~NETIF_F_GSO_PARTIAL;
3038 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3039 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3041 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3042 SKB_GSO_CB(skb)->encap_level = 0;
3044 skb_reset_mac_header(skb);
3045 skb_reset_mac_len(skb);
3047 segs = skb_mac_gso_segment(skb, features);
3049 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3050 skb_warn_bad_offload(skb);
3054 EXPORT_SYMBOL(__skb_gso_segment);
3056 /* Take action when hardware reception checksum errors are detected. */
3058 void netdev_rx_csum_fault(struct net_device *dev)
3060 if (net_ratelimit()) {
3061 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3065 EXPORT_SYMBOL(netdev_rx_csum_fault);
3068 /* XXX: check that highmem exists at all on the given machine. */
3069 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3071 #ifdef CONFIG_HIGHMEM
3074 if (!(dev->features & NETIF_F_HIGHDMA)) {
3075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3078 if (PageHighMem(skb_frag_page(frag)))
3086 /* If MPLS offload request, verify we are testing hardware MPLS features
3087 * instead of standard features for the netdev.
3089 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3090 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3091 netdev_features_t features,
3094 if (eth_p_mpls(type))
3095 features &= skb->dev->mpls_features;
3100 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3101 netdev_features_t features,
3108 static netdev_features_t harmonize_features(struct sk_buff *skb,
3109 netdev_features_t features)
3114 type = skb_network_protocol(skb, &tmp);
3115 features = net_mpls_features(skb, features, type);
3117 if (skb->ip_summed != CHECKSUM_NONE &&
3118 !can_checksum_protocol(features, type)) {
3119 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3121 if (illegal_highdma(skb->dev, skb))
3122 features &= ~NETIF_F_SG;
3127 netdev_features_t passthru_features_check(struct sk_buff *skb,
3128 struct net_device *dev,
3129 netdev_features_t features)
3133 EXPORT_SYMBOL(passthru_features_check);
3135 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3136 struct net_device *dev,
3137 netdev_features_t features)
3139 return vlan_features_check(skb, features);
3142 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3143 struct net_device *dev,
3144 netdev_features_t features)
3146 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3148 if (gso_segs > dev->gso_max_segs)
3149 return features & ~NETIF_F_GSO_MASK;
3151 /* Support for GSO partial features requires software
3152 * intervention before we can actually process the packets
3153 * so we need to strip support for any partial features now
3154 * and we can pull them back in after we have partially
3155 * segmented the frame.
3157 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3158 features &= ~dev->gso_partial_features;
3160 /* Make sure to clear the IPv4 ID mangling feature if the
3161 * IPv4 header has the potential to be fragmented.
3163 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3164 struct iphdr *iph = skb->encapsulation ?
3165 inner_ip_hdr(skb) : ip_hdr(skb);
3167 if (!(iph->frag_off & htons(IP_DF)))
3168 features &= ~NETIF_F_TSO_MANGLEID;
3174 netdev_features_t netif_skb_features(struct sk_buff *skb)
3176 struct net_device *dev = skb->dev;
3177 netdev_features_t features = dev->features;
3179 if (skb_is_gso(skb))
3180 features = gso_features_check(skb, dev, features);
3182 /* If encapsulation offload request, verify we are testing
3183 * hardware encapsulation features instead of standard
3184 * features for the netdev
3186 if (skb->encapsulation)
3187 features &= dev->hw_enc_features;
3189 if (skb_vlan_tagged(skb))
3190 features = netdev_intersect_features(features,
3191 dev->vlan_features |
3192 NETIF_F_HW_VLAN_CTAG_TX |
3193 NETIF_F_HW_VLAN_STAG_TX);
3195 if (dev->netdev_ops->ndo_features_check)
3196 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3199 features &= dflt_features_check(skb, dev, features);
3201 return harmonize_features(skb, features);
3203 EXPORT_SYMBOL(netif_skb_features);
3205 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3206 struct netdev_queue *txq, bool more)
3211 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3212 dev_queue_xmit_nit(skb, dev);
3215 trace_net_dev_start_xmit(skb, dev);
3216 rc = netdev_start_xmit(skb, dev, txq, more);
3217 trace_net_dev_xmit(skb, rc, dev, len);
3222 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3223 struct netdev_queue *txq, int *ret)
3225 struct sk_buff *skb = first;
3226 int rc = NETDEV_TX_OK;
3229 struct sk_buff *next = skb->next;
3232 rc = xmit_one(skb, dev, txq, next != NULL);
3233 if (unlikely(!dev_xmit_complete(rc))) {
3239 if (netif_xmit_stopped(txq) && skb) {
3240 rc = NETDEV_TX_BUSY;
3250 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3251 netdev_features_t features)
3253 if (skb_vlan_tag_present(skb) &&
3254 !vlan_hw_offload_capable(features, skb->vlan_proto))
3255 skb = __vlan_hwaccel_push_inside(skb);
3259 int skb_csum_hwoffload_help(struct sk_buff *skb,
3260 const netdev_features_t features)
3262 if (unlikely(skb->csum_not_inet))
3263 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3264 skb_crc32c_csum_help(skb);
3266 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3268 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3270 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3272 netdev_features_t features;
3274 features = netif_skb_features(skb);
3275 skb = validate_xmit_vlan(skb, features);
3279 skb = sk_validate_xmit_skb(skb, dev);
3283 if (netif_needs_gso(skb, features)) {
3284 struct sk_buff *segs;
3286 segs = skb_gso_segment(skb, features);
3294 if (skb_needs_linearize(skb, features) &&
3295 __skb_linearize(skb))
3298 /* If packet is not checksummed and device does not
3299 * support checksumming for this protocol, complete
3300 * checksumming here.
3302 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3303 if (skb->encapsulation)
3304 skb_set_inner_transport_header(skb,
3305 skb_checksum_start_offset(skb));
3307 skb_set_transport_header(skb,
3308 skb_checksum_start_offset(skb));
3309 if (skb_csum_hwoffload_help(skb, features))
3314 skb = validate_xmit_xfrm(skb, features, again);
3321 atomic_long_inc(&dev->tx_dropped);
3325 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3327 struct sk_buff *next, *head = NULL, *tail;
3329 for (; skb != NULL; skb = next) {
3333 /* in case skb wont be segmented, point to itself */
3336 skb = validate_xmit_skb(skb, dev, again);
3344 /* If skb was segmented, skb->prev points to
3345 * the last segment. If not, it still contains skb.
3351 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3353 static void qdisc_pkt_len_init(struct sk_buff *skb)
3355 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3357 qdisc_skb_cb(skb)->pkt_len = skb->len;
3359 /* To get more precise estimation of bytes sent on wire,
3360 * we add to pkt_len the headers size of all segments
3362 if (shinfo->gso_size) {
3363 unsigned int hdr_len;
3364 u16 gso_segs = shinfo->gso_segs;
3366 /* mac layer + network layer */
3367 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3369 /* + transport layer */
3370 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3371 const struct tcphdr *th;
3372 struct tcphdr _tcphdr;
3374 th = skb_header_pointer(skb, skb_transport_offset(skb),
3375 sizeof(_tcphdr), &_tcphdr);
3377 hdr_len += __tcp_hdrlen(th);
3379 struct udphdr _udphdr;
3381 if (skb_header_pointer(skb, skb_transport_offset(skb),
3382 sizeof(_udphdr), &_udphdr))
3383 hdr_len += sizeof(struct udphdr);
3386 if (shinfo->gso_type & SKB_GSO_DODGY)
3387 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3390 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3394 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3395 struct net_device *dev,
3396 struct netdev_queue *txq)
3398 spinlock_t *root_lock = qdisc_lock(q);
3399 struct sk_buff *to_free = NULL;
3403 qdisc_calculate_pkt_len(skb, q);
3405 if (q->flags & TCQ_F_NOLOCK) {
3406 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3407 __qdisc_drop(skb, &to_free);
3410 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3414 if (unlikely(to_free))
3415 kfree_skb_list(to_free);
3420 * Heuristic to force contended enqueues to serialize on a
3421 * separate lock before trying to get qdisc main lock.
3422 * This permits qdisc->running owner to get the lock more
3423 * often and dequeue packets faster.
3425 contended = qdisc_is_running(q);
3426 if (unlikely(contended))
3427 spin_lock(&q->busylock);
3429 spin_lock(root_lock);
3430 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3431 __qdisc_drop(skb, &to_free);
3433 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3434 qdisc_run_begin(q)) {
3436 * This is a work-conserving queue; there are no old skbs
3437 * waiting to be sent out; and the qdisc is not running -
3438 * xmit the skb directly.
3441 qdisc_bstats_update(q, skb);
3443 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3444 if (unlikely(contended)) {
3445 spin_unlock(&q->busylock);
3452 rc = NET_XMIT_SUCCESS;
3454 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3455 if (qdisc_run_begin(q)) {
3456 if (unlikely(contended)) {
3457 spin_unlock(&q->busylock);
3464 spin_unlock(root_lock);
3465 if (unlikely(to_free))
3466 kfree_skb_list(to_free);
3467 if (unlikely(contended))
3468 spin_unlock(&q->busylock);
3472 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3473 static void skb_update_prio(struct sk_buff *skb)
3475 const struct netprio_map *map;
3476 const struct sock *sk;
3477 unsigned int prioidx;
3481 map = rcu_dereference_bh(skb->dev->priomap);
3484 sk = skb_to_full_sk(skb);
3488 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3490 if (prioidx < map->priomap_len)
3491 skb->priority = map->priomap[prioidx];
3494 #define skb_update_prio(skb)
3497 DEFINE_PER_CPU(int, xmit_recursion);
3498 EXPORT_SYMBOL(xmit_recursion);
3501 * dev_loopback_xmit - loop back @skb
3502 * @net: network namespace this loopback is happening in
3503 * @sk: sk needed to be a netfilter okfn
3504 * @skb: buffer to transmit
3506 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3508 skb_reset_mac_header(skb);
3509 __skb_pull(skb, skb_network_offset(skb));
3510 skb->pkt_type = PACKET_LOOPBACK;
3511 skb->ip_summed = CHECKSUM_UNNECESSARY;
3512 WARN_ON(!skb_dst(skb));
3517 EXPORT_SYMBOL(dev_loopback_xmit);
3519 #ifdef CONFIG_NET_EGRESS
3520 static struct sk_buff *
3521 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3523 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3524 struct tcf_result cl_res;
3529 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3530 mini_qdisc_bstats_cpu_update(miniq, skb);
3532 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3534 case TC_ACT_RECLASSIFY:
3535 skb->tc_index = TC_H_MIN(cl_res.classid);
3538 mini_qdisc_qstats_cpu_drop(miniq);
3539 *ret = NET_XMIT_DROP;
3545 *ret = NET_XMIT_SUCCESS;
3548 case TC_ACT_REDIRECT:
3549 /* No need to push/pop skb's mac_header here on egress! */
3550 skb_do_redirect(skb);
3551 *ret = NET_XMIT_SUCCESS;
3559 #endif /* CONFIG_NET_EGRESS */
3562 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3563 struct xps_dev_maps *dev_maps, unsigned int tci)
3565 struct xps_map *map;
3566 int queue_index = -1;
3570 tci += netdev_get_prio_tc_map(dev, skb->priority);
3573 map = rcu_dereference(dev_maps->attr_map[tci]);
3576 queue_index = map->queues[0];
3578 queue_index = map->queues[reciprocal_scale(
3579 skb_get_hash(skb), map->len)];
3580 if (unlikely(queue_index >= dev->real_num_tx_queues))
3587 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3588 struct sk_buff *skb)
3591 struct xps_dev_maps *dev_maps;
3592 struct sock *sk = skb->sk;
3593 int queue_index = -1;
3595 if (!static_key_false(&xps_needed))
3599 if (!static_key_false(&xps_rxqs_needed))
3602 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3604 int tci = sk_rx_queue_get(sk);
3606 if (tci >= 0 && tci < dev->num_rx_queues)
3607 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3612 if (queue_index < 0) {
3613 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3615 unsigned int tci = skb->sender_cpu - 1;
3617 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3629 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3630 struct net_device *sb_dev,
3631 select_queue_fallback_t fallback)
3635 EXPORT_SYMBOL(dev_pick_tx_zero);
3637 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3638 struct net_device *sb_dev,
3639 select_queue_fallback_t fallback)
3641 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3643 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3645 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3646 struct net_device *sb_dev)
3648 struct sock *sk = skb->sk;
3649 int queue_index = sk_tx_queue_get(sk);
3651 sb_dev = sb_dev ? : dev;
3653 if (queue_index < 0 || skb->ooo_okay ||
3654 queue_index >= dev->real_num_tx_queues) {
3655 int new_index = get_xps_queue(dev, sb_dev, skb);
3658 new_index = skb_tx_hash(dev, sb_dev, skb);
3660 if (queue_index != new_index && sk &&
3662 rcu_access_pointer(sk->sk_dst_cache))
3663 sk_tx_queue_set(sk, new_index);
3665 queue_index = new_index;
3671 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3672 struct sk_buff *skb,
3673 struct net_device *sb_dev)
3675 int queue_index = 0;
3678 u32 sender_cpu = skb->sender_cpu - 1;
3680 if (sender_cpu >= (u32)NR_CPUS)
3681 skb->sender_cpu = raw_smp_processor_id() + 1;
3684 if (dev->real_num_tx_queues != 1) {
3685 const struct net_device_ops *ops = dev->netdev_ops;
3687 if (ops->ndo_select_queue)
3688 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3691 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3693 queue_index = netdev_cap_txqueue(dev, queue_index);
3696 skb_set_queue_mapping(skb, queue_index);
3697 return netdev_get_tx_queue(dev, queue_index);
3701 * __dev_queue_xmit - transmit a buffer
3702 * @skb: buffer to transmit
3703 * @sb_dev: suboordinate device used for L2 forwarding offload
3705 * Queue a buffer for transmission to a network device. The caller must
3706 * have set the device and priority and built the buffer before calling
3707 * this function. The function can be called from an interrupt.
3709 * A negative errno code is returned on a failure. A success does not
3710 * guarantee the frame will be transmitted as it may be dropped due
3711 * to congestion or traffic shaping.
3713 * -----------------------------------------------------------------------------------
3714 * I notice this method can also return errors from the queue disciplines,
3715 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3718 * Regardless of the return value, the skb is consumed, so it is currently
3719 * difficult to retry a send to this method. (You can bump the ref count
3720 * before sending to hold a reference for retry if you are careful.)
3722 * When calling this method, interrupts MUST be enabled. This is because
3723 * the BH enable code must have IRQs enabled so that it will not deadlock.
3726 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3728 struct net_device *dev = skb->dev;
3729 struct netdev_queue *txq;
3734 skb_reset_mac_header(skb);
3736 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3737 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3739 /* Disable soft irqs for various locks below. Also
3740 * stops preemption for RCU.
3744 skb_update_prio(skb);
3746 qdisc_pkt_len_init(skb);
3747 #ifdef CONFIG_NET_CLS_ACT
3748 skb->tc_at_ingress = 0;
3749 # ifdef CONFIG_NET_EGRESS
3750 if (static_branch_unlikely(&egress_needed_key)) {
3751 skb = sch_handle_egress(skb, &rc, dev);
3757 /* If device/qdisc don't need skb->dst, release it right now while
3758 * its hot in this cpu cache.
3760 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3765 txq = netdev_pick_tx(dev, skb, sb_dev);
3766 q = rcu_dereference_bh(txq->qdisc);
3768 trace_net_dev_queue(skb);
3770 rc = __dev_xmit_skb(skb, q, dev, txq);
3774 /* The device has no queue. Common case for software devices:
3775 * loopback, all the sorts of tunnels...
3777 * Really, it is unlikely that netif_tx_lock protection is necessary
3778 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3780 * However, it is possible, that they rely on protection
3783 * Check this and shot the lock. It is not prone from deadlocks.
3784 *Either shot noqueue qdisc, it is even simpler 8)
3786 if (dev->flags & IFF_UP) {
3787 int cpu = smp_processor_id(); /* ok because BHs are off */
3789 if (txq->xmit_lock_owner != cpu) {
3790 if (unlikely(__this_cpu_read(xmit_recursion) >
3791 XMIT_RECURSION_LIMIT))
3792 goto recursion_alert;
3794 skb = validate_xmit_skb(skb, dev, &again);
3798 HARD_TX_LOCK(dev, txq, cpu);
3800 if (!netif_xmit_stopped(txq)) {
3801 __this_cpu_inc(xmit_recursion);
3802 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3803 __this_cpu_dec(xmit_recursion);
3804 if (dev_xmit_complete(rc)) {
3805 HARD_TX_UNLOCK(dev, txq);
3809 HARD_TX_UNLOCK(dev, txq);
3810 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3813 /* Recursion is detected! It is possible,
3817 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3823 rcu_read_unlock_bh();
3825 atomic_long_inc(&dev->tx_dropped);
3826 kfree_skb_list(skb);
3829 rcu_read_unlock_bh();
3833 int dev_queue_xmit(struct sk_buff *skb)
3835 return __dev_queue_xmit(skb, NULL);
3837 EXPORT_SYMBOL(dev_queue_xmit);
3839 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3841 return __dev_queue_xmit(skb, sb_dev);
3843 EXPORT_SYMBOL(dev_queue_xmit_accel);
3845 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3847 struct net_device *dev = skb->dev;
3848 struct sk_buff *orig_skb = skb;
3849 struct netdev_queue *txq;
3850 int ret = NETDEV_TX_BUSY;
3853 if (unlikely(!netif_running(dev) ||
3854 !netif_carrier_ok(dev)))
3857 skb = validate_xmit_skb_list(skb, dev, &again);
3858 if (skb != orig_skb)
3861 skb_set_queue_mapping(skb, queue_id);
3862 txq = skb_get_tx_queue(dev, skb);
3866 HARD_TX_LOCK(dev, txq, smp_processor_id());
3867 if (!netif_xmit_frozen_or_drv_stopped(txq))
3868 ret = netdev_start_xmit(skb, dev, txq, false);
3869 HARD_TX_UNLOCK(dev, txq);
3873 if (!dev_xmit_complete(ret))
3878 atomic_long_inc(&dev->tx_dropped);
3879 kfree_skb_list(skb);
3880 return NET_XMIT_DROP;
3882 EXPORT_SYMBOL(dev_direct_xmit);
3884 /*************************************************************************
3886 *************************************************************************/
3888 int netdev_max_backlog __read_mostly = 1000;
3889 EXPORT_SYMBOL(netdev_max_backlog);
3891 int netdev_tstamp_prequeue __read_mostly = 1;
3892 int netdev_budget __read_mostly = 300;
3893 unsigned int __read_mostly netdev_budget_usecs = 2000;
3894 int weight_p __read_mostly = 64; /* old backlog weight */
3895 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3896 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3897 int dev_rx_weight __read_mostly = 64;
3898 int dev_tx_weight __read_mostly = 64;
3900 /* Called with irq disabled */
3901 static inline void ____napi_schedule(struct softnet_data *sd,
3902 struct napi_struct *napi)
3904 list_add_tail(&napi->poll_list, &sd->poll_list);
3905 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3910 /* One global table that all flow-based protocols share. */
3911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3912 EXPORT_SYMBOL(rps_sock_flow_table);
3913 u32 rps_cpu_mask __read_mostly;
3914 EXPORT_SYMBOL(rps_cpu_mask);
3916 struct static_key rps_needed __read_mostly;
3917 EXPORT_SYMBOL(rps_needed);
3918 struct static_key rfs_needed __read_mostly;
3919 EXPORT_SYMBOL(rfs_needed);
3921 static struct rps_dev_flow *
3922 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3923 struct rps_dev_flow *rflow, u16 next_cpu)
3925 if (next_cpu < nr_cpu_ids) {
3926 #ifdef CONFIG_RFS_ACCEL
3927 struct netdev_rx_queue *rxqueue;
3928 struct rps_dev_flow_table *flow_table;
3929 struct rps_dev_flow *old_rflow;
3934 /* Should we steer this flow to a different hardware queue? */
3935 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3936 !(dev->features & NETIF_F_NTUPLE))
3938 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3939 if (rxq_index == skb_get_rx_queue(skb))
3942 rxqueue = dev->_rx + rxq_index;
3943 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3946 flow_id = skb_get_hash(skb) & flow_table->mask;
3947 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3948 rxq_index, flow_id);
3952 rflow = &flow_table->flows[flow_id];
3954 if (old_rflow->filter == rflow->filter)
3955 old_rflow->filter = RPS_NO_FILTER;
3959 per_cpu(softnet_data, next_cpu).input_queue_head;
3962 rflow->cpu = next_cpu;
3967 * get_rps_cpu is called from netif_receive_skb and returns the target
3968 * CPU from the RPS map of the receiving queue for a given skb.
3969 * rcu_read_lock must be held on entry.
3971 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3972 struct rps_dev_flow **rflowp)
3974 const struct rps_sock_flow_table *sock_flow_table;
3975 struct netdev_rx_queue *rxqueue = dev->_rx;
3976 struct rps_dev_flow_table *flow_table;
3977 struct rps_map *map;
3982 if (skb_rx_queue_recorded(skb)) {
3983 u16 index = skb_get_rx_queue(skb);
3985 if (unlikely(index >= dev->real_num_rx_queues)) {
3986 WARN_ONCE(dev->real_num_rx_queues > 1,
3987 "%s received packet on queue %u, but number "
3988 "of RX queues is %u\n",
3989 dev->name, index, dev->real_num_rx_queues);
3995 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3997 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3998 map = rcu_dereference(rxqueue->rps_map);
3999 if (!flow_table && !map)
4002 skb_reset_network_header(skb);
4003 hash = skb_get_hash(skb);
4007 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4008 if (flow_table && sock_flow_table) {
4009 struct rps_dev_flow *rflow;
4013 /* First check into global flow table if there is a match */
4014 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4015 if ((ident ^ hash) & ~rps_cpu_mask)
4018 next_cpu = ident & rps_cpu_mask;
4020 /* OK, now we know there is a match,
4021 * we can look at the local (per receive queue) flow table
4023 rflow = &flow_table->flows[hash & flow_table->mask];
4027 * If the desired CPU (where last recvmsg was done) is
4028 * different from current CPU (one in the rx-queue flow
4029 * table entry), switch if one of the following holds:
4030 * - Current CPU is unset (>= nr_cpu_ids).
4031 * - Current CPU is offline.
4032 * - The current CPU's queue tail has advanced beyond the
4033 * last packet that was enqueued using this table entry.
4034 * This guarantees that all previous packets for the flow
4035 * have been dequeued, thus preserving in order delivery.
4037 if (unlikely(tcpu != next_cpu) &&
4038 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4039 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4040 rflow->last_qtail)) >= 0)) {
4042 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4045 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4055 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4056 if (cpu_online(tcpu)) {
4066 #ifdef CONFIG_RFS_ACCEL
4069 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4070 * @dev: Device on which the filter was set
4071 * @rxq_index: RX queue index
4072 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4073 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4075 * Drivers that implement ndo_rx_flow_steer() should periodically call
4076 * this function for each installed filter and remove the filters for
4077 * which it returns %true.
4079 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4080 u32 flow_id, u16 filter_id)
4082 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4083 struct rps_dev_flow_table *flow_table;
4084 struct rps_dev_flow *rflow;
4089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4090 if (flow_table && flow_id <= flow_table->mask) {
4091 rflow = &flow_table->flows[flow_id];
4092 cpu = READ_ONCE(rflow->cpu);
4093 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4094 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4095 rflow->last_qtail) <
4096 (int)(10 * flow_table->mask)))
4102 EXPORT_SYMBOL(rps_may_expire_flow);
4104 #endif /* CONFIG_RFS_ACCEL */
4106 /* Called from hardirq (IPI) context */
4107 static void rps_trigger_softirq(void *data)
4109 struct softnet_data *sd = data;
4111 ____napi_schedule(sd, &sd->backlog);
4115 #endif /* CONFIG_RPS */
4118 * Check if this softnet_data structure is another cpu one
4119 * If yes, queue it to our IPI list and return 1
4122 static int rps_ipi_queued(struct softnet_data *sd)
4125 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4128 sd->rps_ipi_next = mysd->rps_ipi_list;
4129 mysd->rps_ipi_list = sd;
4131 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4134 #endif /* CONFIG_RPS */
4138 #ifdef CONFIG_NET_FLOW_LIMIT
4139 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4142 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4144 #ifdef CONFIG_NET_FLOW_LIMIT
4145 struct sd_flow_limit *fl;
4146 struct softnet_data *sd;
4147 unsigned int old_flow, new_flow;
4149 if (qlen < (netdev_max_backlog >> 1))
4152 sd = this_cpu_ptr(&softnet_data);
4155 fl = rcu_dereference(sd->flow_limit);
4157 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4158 old_flow = fl->history[fl->history_head];
4159 fl->history[fl->history_head] = new_flow;
4162 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4164 if (likely(fl->buckets[old_flow]))
4165 fl->buckets[old_flow]--;
4167 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4179 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4180 * queue (may be a remote CPU queue).
4182 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4183 unsigned int *qtail)
4185 struct softnet_data *sd;
4186 unsigned long flags;
4189 sd = &per_cpu(softnet_data, cpu);
4191 local_irq_save(flags);
4194 if (!netif_running(skb->dev))
4196 qlen = skb_queue_len(&sd->input_pkt_queue);
4197 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4200 __skb_queue_tail(&sd->input_pkt_queue, skb);
4201 input_queue_tail_incr_save(sd, qtail);
4203 local_irq_restore(flags);
4204 return NET_RX_SUCCESS;
4207 /* Schedule NAPI for backlog device
4208 * We can use non atomic operation since we own the queue lock
4210 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4211 if (!rps_ipi_queued(sd))
4212 ____napi_schedule(sd, &sd->backlog);
4221 local_irq_restore(flags);
4223 atomic_long_inc(&skb->dev->rx_dropped);
4228 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4230 struct net_device *dev = skb->dev;
4231 struct netdev_rx_queue *rxqueue;
4235 if (skb_rx_queue_recorded(skb)) {
4236 u16 index = skb_get_rx_queue(skb);
4238 if (unlikely(index >= dev->real_num_rx_queues)) {
4239 WARN_ONCE(dev->real_num_rx_queues > 1,
4240 "%s received packet on queue %u, but number "
4241 "of RX queues is %u\n",
4242 dev->name, index, dev->real_num_rx_queues);
4244 return rxqueue; /* Return first rxqueue */
4251 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4252 struct xdp_buff *xdp,
4253 struct bpf_prog *xdp_prog)
4255 struct netdev_rx_queue *rxqueue;
4256 void *orig_data, *orig_data_end;
4257 u32 metalen, act = XDP_DROP;
4261 /* Reinjected packets coming from act_mirred or similar should
4262 * not get XDP generic processing.
4264 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4267 /* XDP packets must be linear and must have sufficient headroom
4268 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4269 * native XDP provides, thus we need to do it here as well.
4271 if (skb_is_nonlinear(skb) ||
4272 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4273 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4274 int troom = skb->tail + skb->data_len - skb->end;
4276 /* In case we have to go down the path and also linearize,
4277 * then lets do the pskb_expand_head() work just once here.
4279 if (pskb_expand_head(skb,
4280 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4281 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4283 if (skb_linearize(skb))
4287 /* The XDP program wants to see the packet starting at the MAC
4290 mac_len = skb->data - skb_mac_header(skb);
4291 hlen = skb_headlen(skb) + mac_len;
4292 xdp->data = skb->data - mac_len;
4293 xdp->data_meta = xdp->data;
4294 xdp->data_end = xdp->data + hlen;
4295 xdp->data_hard_start = skb->data - skb_headroom(skb);
4296 orig_data_end = xdp->data_end;
4297 orig_data = xdp->data;
4299 rxqueue = netif_get_rxqueue(skb);
4300 xdp->rxq = &rxqueue->xdp_rxq;
4302 act = bpf_prog_run_xdp(xdp_prog, xdp);
4304 off = xdp->data - orig_data;
4306 __skb_pull(skb, off);
4308 __skb_push(skb, -off);
4309 skb->mac_header += off;
4311 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4314 off = orig_data_end - xdp->data_end;
4316 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4324 __skb_push(skb, mac_len);
4327 metalen = xdp->data - xdp->data_meta;
4329 skb_metadata_set(skb, metalen);
4332 bpf_warn_invalid_xdp_action(act);
4335 trace_xdp_exception(skb->dev, xdp_prog, act);
4346 /* When doing generic XDP we have to bypass the qdisc layer and the
4347 * network taps in order to match in-driver-XDP behavior.
4349 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4351 struct net_device *dev = skb->dev;
4352 struct netdev_queue *txq;
4353 bool free_skb = true;
4356 txq = netdev_pick_tx(dev, skb, NULL);
4357 cpu = smp_processor_id();
4358 HARD_TX_LOCK(dev, txq, cpu);
4359 if (!netif_xmit_stopped(txq)) {
4360 rc = netdev_start_xmit(skb, dev, txq, 0);
4361 if (dev_xmit_complete(rc))
4364 HARD_TX_UNLOCK(dev, txq);
4366 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4370 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4372 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4374 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4377 struct xdp_buff xdp;
4381 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4382 if (act != XDP_PASS) {
4385 err = xdp_do_generic_redirect(skb->dev, skb,
4391 generic_xdp_tx(skb, xdp_prog);
4402 EXPORT_SYMBOL_GPL(do_xdp_generic);
4404 static int netif_rx_internal(struct sk_buff *skb)
4408 net_timestamp_check(netdev_tstamp_prequeue, skb);
4410 trace_netif_rx(skb);
4412 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4417 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4421 /* Consider XDP consuming the packet a success from
4422 * the netdev point of view we do not want to count
4425 if (ret != XDP_PASS)
4426 return NET_RX_SUCCESS;
4430 if (static_key_false(&rps_needed)) {
4431 struct rps_dev_flow voidflow, *rflow = &voidflow;
4437 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4439 cpu = smp_processor_id();
4441 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4450 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4457 * netif_rx - post buffer to the network code
4458 * @skb: buffer to post
4460 * This function receives a packet from a device driver and queues it for
4461 * the upper (protocol) levels to process. It always succeeds. The buffer
4462 * may be dropped during processing for congestion control or by the
4466 * NET_RX_SUCCESS (no congestion)
4467 * NET_RX_DROP (packet was dropped)
4471 int netif_rx(struct sk_buff *skb)
4473 trace_netif_rx_entry(skb);
4475 return netif_rx_internal(skb);
4477 EXPORT_SYMBOL(netif_rx);
4479 int netif_rx_ni(struct sk_buff *skb)
4483 trace_netif_rx_ni_entry(skb);
4486 err = netif_rx_internal(skb);
4487 if (local_softirq_pending())
4493 EXPORT_SYMBOL(netif_rx_ni);
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4499 if (sd->completion_queue) {
4500 struct sk_buff *clist;
4502 local_irq_disable();
4503 clist = sd->completion_queue;
4504 sd->completion_queue = NULL;
4508 struct sk_buff *skb = clist;
4510 clist = clist->next;
4512 WARN_ON(refcount_read(&skb->users));
4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 trace_consume_skb(skb);
4516 trace_kfree_skb(skb, net_tx_action);
4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4521 __kfree_skb_defer(skb);
4524 __kfree_skb_flush();
4527 if (sd->output_queue) {
4530 local_irq_disable();
4531 head = sd->output_queue;
4532 sd->output_queue = NULL;
4533 sd->output_queue_tailp = &sd->output_queue;
4537 struct Qdisc *q = head;
4538 spinlock_t *root_lock = NULL;
4540 head = head->next_sched;
4542 if (!(q->flags & TCQ_F_NOLOCK)) {
4543 root_lock = qdisc_lock(q);
4544 spin_lock(root_lock);
4546 /* We need to make sure head->next_sched is read
4547 * before clearing __QDISC_STATE_SCHED
4549 smp_mb__before_atomic();
4550 clear_bit(__QDISC_STATE_SCHED, &q->state);
4553 spin_unlock(root_lock);
4557 xfrm_dev_backlog(sd);
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 struct net_device *orig_dev)
4571 #ifdef CONFIG_NET_CLS_ACT
4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573 struct tcf_result cl_res;
4575 /* If there's at least one ingress present somewhere (so
4576 * we get here via enabled static key), remaining devices
4577 * that are not configured with an ingress qdisc will bail
4584 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4588 qdisc_skb_cb(skb)->pkt_len = skb->len;
4589 skb->tc_at_ingress = 1;
4590 mini_qdisc_bstats_cpu_update(miniq, skb);
4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4594 case TC_ACT_RECLASSIFY:
4595 skb->tc_index = TC_H_MIN(cl_res.classid);
4598 mini_qdisc_qstats_cpu_drop(miniq);
4606 case TC_ACT_REDIRECT:
4607 /* skb_mac_header check was done by cls/act_bpf, so
4608 * we can safely push the L2 header back before
4609 * redirecting to another netdev
4611 __skb_push(skb, skb->mac_len);
4612 skb_do_redirect(skb);
4614 case TC_ACT_REINSERT:
4615 /* this does not scrub the packet, and updates stats on error */
4616 skb_tc_reinsert(skb, &cl_res);
4621 #endif /* CONFIG_NET_CLS_ACT */
4626 * netdev_is_rx_handler_busy - check if receive handler is registered
4627 * @dev: device to check
4629 * Check if a receive handler is already registered for a given device.
4630 * Return true if there one.
4632 * The caller must hold the rtnl_mutex.
4634 bool netdev_is_rx_handler_busy(struct net_device *dev)
4637 return dev && rtnl_dereference(dev->rx_handler);
4639 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4642 * netdev_rx_handler_register - register receive handler
4643 * @dev: device to register a handler for
4644 * @rx_handler: receive handler to register
4645 * @rx_handler_data: data pointer that is used by rx handler
4647 * Register a receive handler for a device. This handler will then be
4648 * called from __netif_receive_skb. A negative errno code is returned
4651 * The caller must hold the rtnl_mutex.
4653 * For a general description of rx_handler, see enum rx_handler_result.
4655 int netdev_rx_handler_register(struct net_device *dev,
4656 rx_handler_func_t *rx_handler,
4657 void *rx_handler_data)
4659 if (netdev_is_rx_handler_busy(dev))
4662 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4665 /* Note: rx_handler_data must be set before rx_handler */
4666 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4667 rcu_assign_pointer(dev->rx_handler, rx_handler);
4671 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4674 * netdev_rx_handler_unregister - unregister receive handler
4675 * @dev: device to unregister a handler from
4677 * Unregister a receive handler from a device.
4679 * The caller must hold the rtnl_mutex.
4681 void netdev_rx_handler_unregister(struct net_device *dev)
4685 RCU_INIT_POINTER(dev->rx_handler, NULL);
4686 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4687 * section has a guarantee to see a non NULL rx_handler_data
4691 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4696 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4697 * the special handling of PFMEMALLOC skbs.
4699 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4701 switch (skb->protocol) {
4702 case htons(ETH_P_ARP):
4703 case htons(ETH_P_IP):
4704 case htons(ETH_P_IPV6):
4705 case htons(ETH_P_8021Q):
4706 case htons(ETH_P_8021AD):
4713 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4714 int *ret, struct net_device *orig_dev)
4716 #ifdef CONFIG_NETFILTER_INGRESS
4717 if (nf_hook_ingress_active(skb)) {
4721 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4726 ingress_retval = nf_hook_ingress(skb);
4728 return ingress_retval;
4730 #endif /* CONFIG_NETFILTER_INGRESS */
4734 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4735 struct packet_type **ppt_prev)
4737 struct packet_type *ptype, *pt_prev;
4738 rx_handler_func_t *rx_handler;
4739 struct net_device *orig_dev;
4740 bool deliver_exact = false;
4741 int ret = NET_RX_DROP;
4744 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4746 trace_netif_receive_skb(skb);
4748 orig_dev = skb->dev;
4750 skb_reset_network_header(skb);
4751 if (!skb_transport_header_was_set(skb))
4752 skb_reset_transport_header(skb);
4753 skb_reset_mac_len(skb);
4758 skb->skb_iif = skb->dev->ifindex;
4760 __this_cpu_inc(softnet_data.processed);
4762 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4763 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4764 skb = skb_vlan_untag(skb);
4769 if (skb_skip_tc_classify(skb))
4775 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4777 ret = deliver_skb(skb, pt_prev, orig_dev);
4781 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4783 ret = deliver_skb(skb, pt_prev, orig_dev);
4788 #ifdef CONFIG_NET_INGRESS
4789 if (static_branch_unlikely(&ingress_needed_key)) {
4790 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4794 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4800 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4803 if (skb_vlan_tag_present(skb)) {
4805 ret = deliver_skb(skb, pt_prev, orig_dev);
4808 if (vlan_do_receive(&skb))
4810 else if (unlikely(!skb))
4814 rx_handler = rcu_dereference(skb->dev->rx_handler);
4817 ret = deliver_skb(skb, pt_prev, orig_dev);
4820 switch (rx_handler(&skb)) {
4821 case RX_HANDLER_CONSUMED:
4822 ret = NET_RX_SUCCESS;
4824 case RX_HANDLER_ANOTHER:
4826 case RX_HANDLER_EXACT:
4827 deliver_exact = true;
4828 case RX_HANDLER_PASS:
4835 if (unlikely(skb_vlan_tag_present(skb))) {
4836 if (skb_vlan_tag_get_id(skb))
4837 skb->pkt_type = PACKET_OTHERHOST;
4838 /* Note: we might in the future use prio bits
4839 * and set skb->priority like in vlan_do_receive()
4840 * For the time being, just ignore Priority Code Point
4845 type = skb->protocol;
4847 /* deliver only exact match when indicated */
4848 if (likely(!deliver_exact)) {
4849 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4850 &ptype_base[ntohs(type) &
4854 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4855 &orig_dev->ptype_specific);
4857 if (unlikely(skb->dev != orig_dev)) {
4858 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4859 &skb->dev->ptype_specific);
4863 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4865 *ppt_prev = pt_prev;
4869 atomic_long_inc(&skb->dev->rx_dropped);
4871 atomic_long_inc(&skb->dev->rx_nohandler);
4873 /* Jamal, now you will not able to escape explaining
4874 * me how you were going to use this. :-)
4883 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4885 struct net_device *orig_dev = skb->dev;
4886 struct packet_type *pt_prev = NULL;
4889 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4891 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4896 * netif_receive_skb_core - special purpose version of netif_receive_skb
4897 * @skb: buffer to process
4899 * More direct receive version of netif_receive_skb(). It should
4900 * only be used by callers that have a need to skip RPS and Generic XDP.
4901 * Caller must also take care of handling if (page_is_)pfmemalloc.
4903 * This function may only be called from softirq context and interrupts
4904 * should be enabled.
4906 * Return values (usually ignored):
4907 * NET_RX_SUCCESS: no congestion
4908 * NET_RX_DROP: packet was dropped
4910 int netif_receive_skb_core(struct sk_buff *skb)
4915 ret = __netif_receive_skb_one_core(skb, false);
4920 EXPORT_SYMBOL(netif_receive_skb_core);
4922 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4923 struct packet_type *pt_prev,
4924 struct net_device *orig_dev)
4926 struct sk_buff *skb, *next;
4930 if (list_empty(head))
4932 if (pt_prev->list_func != NULL)
4933 pt_prev->list_func(head, pt_prev, orig_dev);
4935 list_for_each_entry_safe(skb, next, head, list)
4936 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4939 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4941 /* Fast-path assumptions:
4942 * - There is no RX handler.
4943 * - Only one packet_type matches.
4944 * If either of these fails, we will end up doing some per-packet
4945 * processing in-line, then handling the 'last ptype' for the whole
4946 * sublist. This can't cause out-of-order delivery to any single ptype,
4947 * because the 'last ptype' must be constant across the sublist, and all
4948 * other ptypes are handled per-packet.
4950 /* Current (common) ptype of sublist */
4951 struct packet_type *pt_curr = NULL;
4952 /* Current (common) orig_dev of sublist */
4953 struct net_device *od_curr = NULL;
4954 struct list_head sublist;
4955 struct sk_buff *skb, *next;
4957 INIT_LIST_HEAD(&sublist);
4958 list_for_each_entry_safe(skb, next, head, list) {
4959 struct net_device *orig_dev = skb->dev;
4960 struct packet_type *pt_prev = NULL;
4962 list_del(&skb->list);
4963 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4966 if (pt_curr != pt_prev || od_curr != orig_dev) {
4967 /* dispatch old sublist */
4968 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4969 /* start new sublist */
4970 INIT_LIST_HEAD(&sublist);
4974 list_add_tail(&skb->list, &sublist);
4977 /* dispatch final sublist */
4978 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4981 static int __netif_receive_skb(struct sk_buff *skb)
4985 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4986 unsigned int noreclaim_flag;
4989 * PFMEMALLOC skbs are special, they should
4990 * - be delivered to SOCK_MEMALLOC sockets only
4991 * - stay away from userspace
4992 * - have bounded memory usage
4994 * Use PF_MEMALLOC as this saves us from propagating the allocation
4995 * context down to all allocation sites.
4997 noreclaim_flag = memalloc_noreclaim_save();
4998 ret = __netif_receive_skb_one_core(skb, true);
4999 memalloc_noreclaim_restore(noreclaim_flag);
5001 ret = __netif_receive_skb_one_core(skb, false);
5006 static void __netif_receive_skb_list(struct list_head *head)
5008 unsigned long noreclaim_flag = 0;
5009 struct sk_buff *skb, *next;
5010 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5012 list_for_each_entry_safe(skb, next, head, list) {
5013 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5014 struct list_head sublist;
5016 /* Handle the previous sublist */
5017 list_cut_before(&sublist, head, &skb->list);
5018 if (!list_empty(&sublist))
5019 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5020 pfmemalloc = !pfmemalloc;
5021 /* See comments in __netif_receive_skb */
5023 noreclaim_flag = memalloc_noreclaim_save();
5025 memalloc_noreclaim_restore(noreclaim_flag);
5028 /* Handle the remaining sublist */
5029 if (!list_empty(head))
5030 __netif_receive_skb_list_core(head, pfmemalloc);
5031 /* Restore pflags */
5033 memalloc_noreclaim_restore(noreclaim_flag);
5036 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5038 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5039 struct bpf_prog *new = xdp->prog;
5042 switch (xdp->command) {
5043 case XDP_SETUP_PROG:
5044 rcu_assign_pointer(dev->xdp_prog, new);
5049 static_branch_dec(&generic_xdp_needed_key);
5050 } else if (new && !old) {
5051 static_branch_inc(&generic_xdp_needed_key);
5052 dev_disable_lro(dev);
5053 dev_disable_gro_hw(dev);
5057 case XDP_QUERY_PROG:
5058 xdp->prog_id = old ? old->aux->id : 0;
5069 static int netif_receive_skb_internal(struct sk_buff *skb)
5073 net_timestamp_check(netdev_tstamp_prequeue, skb);
5075 if (skb_defer_rx_timestamp(skb))
5076 return NET_RX_SUCCESS;
5078 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5083 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5087 if (ret != XDP_PASS)
5093 if (static_key_false(&rps_needed)) {
5094 struct rps_dev_flow voidflow, *rflow = &voidflow;
5095 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5098 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5104 ret = __netif_receive_skb(skb);
5109 static void netif_receive_skb_list_internal(struct list_head *head)
5111 struct bpf_prog *xdp_prog = NULL;
5112 struct sk_buff *skb, *next;
5113 struct list_head sublist;
5115 INIT_LIST_HEAD(&sublist);
5116 list_for_each_entry_safe(skb, next, head, list) {
5117 net_timestamp_check(netdev_tstamp_prequeue, skb);
5118 list_del(&skb->list);
5119 if (!skb_defer_rx_timestamp(skb))
5120 list_add_tail(&skb->list, &sublist);
5122 list_splice_init(&sublist, head);
5124 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5127 list_for_each_entry_safe(skb, next, head, list) {
5128 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5129 list_del(&skb->list);
5130 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5131 list_add_tail(&skb->list, &sublist);
5135 /* Put passed packets back on main list */
5136 list_splice_init(&sublist, head);
5141 if (static_key_false(&rps_needed)) {
5142 list_for_each_entry_safe(skb, next, head, list) {
5143 struct rps_dev_flow voidflow, *rflow = &voidflow;
5144 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5147 /* Will be handled, remove from list */
5148 list_del(&skb->list);
5149 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5154 __netif_receive_skb_list(head);
5159 * netif_receive_skb - process receive buffer from network
5160 * @skb: buffer to process
5162 * netif_receive_skb() is the main receive data processing function.
5163 * It always succeeds. The buffer may be dropped during processing
5164 * for congestion control or by the protocol layers.
5166 * This function may only be called from softirq context and interrupts
5167 * should be enabled.
5169 * Return values (usually ignored):
5170 * NET_RX_SUCCESS: no congestion
5171 * NET_RX_DROP: packet was dropped
5173 int netif_receive_skb(struct sk_buff *skb)
5175 trace_netif_receive_skb_entry(skb);
5177 return netif_receive_skb_internal(skb);
5179 EXPORT_SYMBOL(netif_receive_skb);
5182 * netif_receive_skb_list - process many receive buffers from network
5183 * @head: list of skbs to process.
5185 * Since return value of netif_receive_skb() is normally ignored, and
5186 * wouldn't be meaningful for a list, this function returns void.
5188 * This function may only be called from softirq context and interrupts
5189 * should be enabled.
5191 void netif_receive_skb_list(struct list_head *head)
5193 struct sk_buff *skb;
5195 if (list_empty(head))
5197 list_for_each_entry(skb, head, list)
5198 trace_netif_receive_skb_list_entry(skb);
5199 netif_receive_skb_list_internal(head);
5201 EXPORT_SYMBOL(netif_receive_skb_list);
5203 DEFINE_PER_CPU(struct work_struct, flush_works);
5205 /* Network device is going away, flush any packets still pending */
5206 static void flush_backlog(struct work_struct *work)
5208 struct sk_buff *skb, *tmp;
5209 struct softnet_data *sd;
5212 sd = this_cpu_ptr(&softnet_data);
5214 local_irq_disable();
5216 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5217 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5218 __skb_unlink(skb, &sd->input_pkt_queue);
5220 input_queue_head_incr(sd);
5226 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5227 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5228 __skb_unlink(skb, &sd->process_queue);
5230 input_queue_head_incr(sd);
5236 static void flush_all_backlogs(void)
5242 for_each_online_cpu(cpu)
5243 queue_work_on(cpu, system_highpri_wq,
5244 per_cpu_ptr(&flush_works, cpu));
5246 for_each_online_cpu(cpu)
5247 flush_work(per_cpu_ptr(&flush_works, cpu));
5252 static int napi_gro_complete(struct sk_buff *skb)
5254 struct packet_offload *ptype;
5255 __be16 type = skb->protocol;
5256 struct list_head *head = &offload_base;
5259 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5261 if (NAPI_GRO_CB(skb)->count == 1) {
5262 skb_shinfo(skb)->gso_size = 0;
5267 list_for_each_entry_rcu(ptype, head, list) {
5268 if (ptype->type != type || !ptype->callbacks.gro_complete)
5271 err = ptype->callbacks.gro_complete(skb, 0);
5277 WARN_ON(&ptype->list == head);
5279 return NET_RX_SUCCESS;
5283 return netif_receive_skb_internal(skb);
5286 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5289 struct list_head *head = &napi->gro_hash[index].list;
5290 struct sk_buff *skb, *p;
5292 list_for_each_entry_safe_reverse(skb, p, head, list) {
5293 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5295 list_del(&skb->list);
5297 napi_gro_complete(skb);
5298 napi->gro_hash[index].count--;
5301 if (!napi->gro_hash[index].count)
5302 __clear_bit(index, &napi->gro_bitmask);
5305 /* napi->gro_hash[].list contains packets ordered by age.
5306 * youngest packets at the head of it.
5307 * Complete skbs in reverse order to reduce latencies.
5309 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5313 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5314 if (test_bit(i, &napi->gro_bitmask))
5315 __napi_gro_flush_chain(napi, i, flush_old);
5318 EXPORT_SYMBOL(napi_gro_flush);
5320 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5321 struct sk_buff *skb)
5323 unsigned int maclen = skb->dev->hard_header_len;
5324 u32 hash = skb_get_hash_raw(skb);
5325 struct list_head *head;
5328 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5329 list_for_each_entry(p, head, list) {
5330 unsigned long diffs;
5332 NAPI_GRO_CB(p)->flush = 0;
5334 if (hash != skb_get_hash_raw(p)) {
5335 NAPI_GRO_CB(p)->same_flow = 0;
5339 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5340 diffs |= p->vlan_tci ^ skb->vlan_tci;
5341 diffs |= skb_metadata_dst_cmp(p, skb);
5342 diffs |= skb_metadata_differs(p, skb);
5343 if (maclen == ETH_HLEN)
5344 diffs |= compare_ether_header(skb_mac_header(p),
5345 skb_mac_header(skb));
5347 diffs = memcmp(skb_mac_header(p),
5348 skb_mac_header(skb),
5350 NAPI_GRO_CB(p)->same_flow = !diffs;
5356 static void skb_gro_reset_offset(struct sk_buff *skb)
5358 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5359 const skb_frag_t *frag0 = &pinfo->frags[0];
5361 NAPI_GRO_CB(skb)->data_offset = 0;
5362 NAPI_GRO_CB(skb)->frag0 = NULL;
5363 NAPI_GRO_CB(skb)->frag0_len = 0;
5365 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5367 !PageHighMem(skb_frag_page(frag0))) {
5368 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5369 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5370 skb_frag_size(frag0),
5371 skb->end - skb->tail);
5375 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5377 struct skb_shared_info *pinfo = skb_shinfo(skb);
5379 BUG_ON(skb->end - skb->tail < grow);
5381 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5383 skb->data_len -= grow;
5386 pinfo->frags[0].page_offset += grow;
5387 skb_frag_size_sub(&pinfo->frags[0], grow);
5389 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5390 skb_frag_unref(skb, 0);
5391 memmove(pinfo->frags, pinfo->frags + 1,
5392 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5396 static void gro_flush_oldest(struct list_head *head)
5398 struct sk_buff *oldest;
5400 oldest = list_last_entry(head, struct sk_buff, list);
5402 /* We are called with head length >= MAX_GRO_SKBS, so this is
5405 if (WARN_ON_ONCE(!oldest))
5408 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5411 list_del(&oldest->list);
5412 napi_gro_complete(oldest);
5415 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5417 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5418 struct list_head *head = &offload_base;
5419 struct packet_offload *ptype;
5420 __be16 type = skb->protocol;
5421 struct list_head *gro_head;
5422 struct sk_buff *pp = NULL;
5423 enum gro_result ret;
5427 if (netif_elide_gro(skb->dev))
5430 gro_head = gro_list_prepare(napi, skb);
5433 list_for_each_entry_rcu(ptype, head, list) {
5434 if (ptype->type != type || !ptype->callbacks.gro_receive)
5437 skb_set_network_header(skb, skb_gro_offset(skb));
5438 skb_reset_mac_len(skb);
5439 NAPI_GRO_CB(skb)->same_flow = 0;
5440 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5441 NAPI_GRO_CB(skb)->free = 0;
5442 NAPI_GRO_CB(skb)->encap_mark = 0;
5443 NAPI_GRO_CB(skb)->recursion_counter = 0;
5444 NAPI_GRO_CB(skb)->is_fou = 0;
5445 NAPI_GRO_CB(skb)->is_atomic = 1;
5446 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5448 /* Setup for GRO checksum validation */
5449 switch (skb->ip_summed) {
5450 case CHECKSUM_COMPLETE:
5451 NAPI_GRO_CB(skb)->csum = skb->csum;
5452 NAPI_GRO_CB(skb)->csum_valid = 1;
5453 NAPI_GRO_CB(skb)->csum_cnt = 0;
5455 case CHECKSUM_UNNECESSARY:
5456 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5457 NAPI_GRO_CB(skb)->csum_valid = 0;
5460 NAPI_GRO_CB(skb)->csum_cnt = 0;
5461 NAPI_GRO_CB(skb)->csum_valid = 0;
5464 pp = ptype->callbacks.gro_receive(gro_head, skb);
5469 if (&ptype->list == head)
5472 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5477 same_flow = NAPI_GRO_CB(skb)->same_flow;
5478 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5481 list_del(&pp->list);
5483 napi_gro_complete(pp);
5484 napi->gro_hash[hash].count--;
5490 if (NAPI_GRO_CB(skb)->flush)
5493 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5494 gro_flush_oldest(gro_head);
5496 napi->gro_hash[hash].count++;
5498 NAPI_GRO_CB(skb)->count = 1;
5499 NAPI_GRO_CB(skb)->age = jiffies;
5500 NAPI_GRO_CB(skb)->last = skb;
5501 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5502 list_add(&skb->list, gro_head);
5506 grow = skb_gro_offset(skb) - skb_headlen(skb);
5508 gro_pull_from_frag0(skb, grow);
5510 if (napi->gro_hash[hash].count) {
5511 if (!test_bit(hash, &napi->gro_bitmask))
5512 __set_bit(hash, &napi->gro_bitmask);
5513 } else if (test_bit(hash, &napi->gro_bitmask)) {
5514 __clear_bit(hash, &napi->gro_bitmask);
5524 struct packet_offload *gro_find_receive_by_type(__be16 type)
5526 struct list_head *offload_head = &offload_base;
5527 struct packet_offload *ptype;
5529 list_for_each_entry_rcu(ptype, offload_head, list) {
5530 if (ptype->type != type || !ptype->callbacks.gro_receive)
5536 EXPORT_SYMBOL(gro_find_receive_by_type);
5538 struct packet_offload *gro_find_complete_by_type(__be16 type)
5540 struct list_head *offload_head = &offload_base;
5541 struct packet_offload *ptype;
5543 list_for_each_entry_rcu(ptype, offload_head, list) {
5544 if (ptype->type != type || !ptype->callbacks.gro_complete)
5550 EXPORT_SYMBOL(gro_find_complete_by_type);
5552 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5556 kmem_cache_free(skbuff_head_cache, skb);
5559 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5563 if (netif_receive_skb_internal(skb))
5571 case GRO_MERGED_FREE:
5572 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5573 napi_skb_free_stolen_head(skb);
5587 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5589 skb_mark_napi_id(skb, napi);
5590 trace_napi_gro_receive_entry(skb);
5592 skb_gro_reset_offset(skb);
5594 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5596 EXPORT_SYMBOL(napi_gro_receive);
5598 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5600 if (unlikely(skb->pfmemalloc)) {
5604 __skb_pull(skb, skb_headlen(skb));
5605 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5606 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5608 skb->dev = napi->dev;
5610 skb->encapsulation = 0;
5611 skb_shinfo(skb)->gso_type = 0;
5612 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5618 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5620 struct sk_buff *skb = napi->skb;
5623 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5626 skb_mark_napi_id(skb, napi);
5631 EXPORT_SYMBOL(napi_get_frags);
5633 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5634 struct sk_buff *skb,
5640 __skb_push(skb, ETH_HLEN);
5641 skb->protocol = eth_type_trans(skb, skb->dev);
5642 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5647 napi_reuse_skb(napi, skb);
5650 case GRO_MERGED_FREE:
5651 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5652 napi_skb_free_stolen_head(skb);
5654 napi_reuse_skb(napi, skb);
5665 /* Upper GRO stack assumes network header starts at gro_offset=0
5666 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5667 * We copy ethernet header into skb->data to have a common layout.
5669 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5671 struct sk_buff *skb = napi->skb;
5672 const struct ethhdr *eth;
5673 unsigned int hlen = sizeof(*eth);
5677 skb_reset_mac_header(skb);
5678 skb_gro_reset_offset(skb);
5680 eth = skb_gro_header_fast(skb, 0);
5681 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5682 eth = skb_gro_header_slow(skb, hlen, 0);
5683 if (unlikely(!eth)) {
5684 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5685 __func__, napi->dev->name);
5686 napi_reuse_skb(napi, skb);
5690 gro_pull_from_frag0(skb, hlen);
5691 NAPI_GRO_CB(skb)->frag0 += hlen;
5692 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5694 __skb_pull(skb, hlen);
5697 * This works because the only protocols we care about don't require
5699 * We'll fix it up properly in napi_frags_finish()
5701 skb->protocol = eth->h_proto;
5706 gro_result_t napi_gro_frags(struct napi_struct *napi)
5708 struct sk_buff *skb = napi_frags_skb(napi);
5713 trace_napi_gro_frags_entry(skb);
5715 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5717 EXPORT_SYMBOL(napi_gro_frags);
5719 /* Compute the checksum from gro_offset and return the folded value
5720 * after adding in any pseudo checksum.
5722 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5727 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5729 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5730 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5732 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5733 !skb->csum_complete_sw)
5734 netdev_rx_csum_fault(skb->dev);
5737 NAPI_GRO_CB(skb)->csum = wsum;
5738 NAPI_GRO_CB(skb)->csum_valid = 1;
5742 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5744 static void net_rps_send_ipi(struct softnet_data *remsd)
5748 struct softnet_data *next = remsd->rps_ipi_next;
5750 if (cpu_online(remsd->cpu))
5751 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5758 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5759 * Note: called with local irq disabled, but exits with local irq enabled.
5761 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5764 struct softnet_data *remsd = sd->rps_ipi_list;
5767 sd->rps_ipi_list = NULL;
5771 /* Send pending IPI's to kick RPS processing on remote cpus. */
5772 net_rps_send_ipi(remsd);
5778 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5781 return sd->rps_ipi_list != NULL;
5787 static int process_backlog(struct napi_struct *napi, int quota)
5789 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5793 /* Check if we have pending ipi, its better to send them now,
5794 * not waiting net_rx_action() end.
5796 if (sd_has_rps_ipi_waiting(sd)) {
5797 local_irq_disable();
5798 net_rps_action_and_irq_enable(sd);
5801 napi->weight = dev_rx_weight;
5803 struct sk_buff *skb;
5805 while ((skb = __skb_dequeue(&sd->process_queue))) {
5807 __netif_receive_skb(skb);
5809 input_queue_head_incr(sd);
5810 if (++work >= quota)
5815 local_irq_disable();
5817 if (skb_queue_empty(&sd->input_pkt_queue)) {
5819 * Inline a custom version of __napi_complete().
5820 * only current cpu owns and manipulates this napi,
5821 * and NAPI_STATE_SCHED is the only possible flag set
5823 * We can use a plain write instead of clear_bit(),
5824 * and we dont need an smp_mb() memory barrier.
5829 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5830 &sd->process_queue);
5840 * __napi_schedule - schedule for receive
5841 * @n: entry to schedule
5843 * The entry's receive function will be scheduled to run.
5844 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5846 void __napi_schedule(struct napi_struct *n)
5848 unsigned long flags;
5850 local_irq_save(flags);
5851 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5852 local_irq_restore(flags);
5854 EXPORT_SYMBOL(__napi_schedule);
5857 * napi_schedule_prep - check if napi can be scheduled
5860 * Test if NAPI routine is already running, and if not mark
5861 * it as running. This is used as a condition variable
5862 * insure only one NAPI poll instance runs. We also make
5863 * sure there is no pending NAPI disable.
5865 bool napi_schedule_prep(struct napi_struct *n)
5867 unsigned long val, new;
5870 val = READ_ONCE(n->state);
5871 if (unlikely(val & NAPIF_STATE_DISABLE))
5873 new = val | NAPIF_STATE_SCHED;
5875 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5876 * This was suggested by Alexander Duyck, as compiler
5877 * emits better code than :
5878 * if (val & NAPIF_STATE_SCHED)
5879 * new |= NAPIF_STATE_MISSED;
5881 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5883 } while (cmpxchg(&n->state, val, new) != val);
5885 return !(val & NAPIF_STATE_SCHED);
5887 EXPORT_SYMBOL(napi_schedule_prep);
5890 * __napi_schedule_irqoff - schedule for receive
5891 * @n: entry to schedule
5893 * Variant of __napi_schedule() assuming hard irqs are masked
5895 void __napi_schedule_irqoff(struct napi_struct *n)
5897 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5899 EXPORT_SYMBOL(__napi_schedule_irqoff);
5901 bool napi_complete_done(struct napi_struct *n, int work_done)
5903 unsigned long flags, val, new;
5906 * 1) Don't let napi dequeue from the cpu poll list
5907 * just in case its running on a different cpu.
5908 * 2) If we are busy polling, do nothing here, we have
5909 * the guarantee we will be called later.
5911 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5912 NAPIF_STATE_IN_BUSY_POLL)))
5915 if (n->gro_bitmask) {
5916 unsigned long timeout = 0;
5919 timeout = n->dev->gro_flush_timeout;
5922 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5923 HRTIMER_MODE_REL_PINNED);
5925 napi_gro_flush(n, false);
5927 if (unlikely(!list_empty(&n->poll_list))) {
5928 /* If n->poll_list is not empty, we need to mask irqs */
5929 local_irq_save(flags);
5930 list_del_init(&n->poll_list);
5931 local_irq_restore(flags);
5935 val = READ_ONCE(n->state);
5937 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5939 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5941 /* If STATE_MISSED was set, leave STATE_SCHED set,
5942 * because we will call napi->poll() one more time.
5943 * This C code was suggested by Alexander Duyck to help gcc.
5945 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5947 } while (cmpxchg(&n->state, val, new) != val);
5949 if (unlikely(val & NAPIF_STATE_MISSED)) {
5956 EXPORT_SYMBOL(napi_complete_done);
5958 /* must be called under rcu_read_lock(), as we dont take a reference */
5959 static struct napi_struct *napi_by_id(unsigned int napi_id)
5961 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5962 struct napi_struct *napi;
5964 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5965 if (napi->napi_id == napi_id)
5971 #if defined(CONFIG_NET_RX_BUSY_POLL)
5973 #define BUSY_POLL_BUDGET 8
5975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5979 /* Busy polling means there is a high chance device driver hard irq
5980 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5981 * set in napi_schedule_prep().
5982 * Since we are about to call napi->poll() once more, we can safely
5983 * clear NAPI_STATE_MISSED.
5985 * Note: x86 could use a single "lock and ..." instruction
5986 * to perform these two clear_bit()
5988 clear_bit(NAPI_STATE_MISSED, &napi->state);
5989 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5993 /* All we really want here is to re-enable device interrupts.
5994 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5996 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5997 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5998 netpoll_poll_unlock(have_poll_lock);
5999 if (rc == BUSY_POLL_BUDGET)
6000 __napi_schedule(napi);
6004 void napi_busy_loop(unsigned int napi_id,
6005 bool (*loop_end)(void *, unsigned long),
6008 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6009 int (*napi_poll)(struct napi_struct *napi, int budget);
6010 void *have_poll_lock = NULL;
6011 struct napi_struct *napi;
6018 napi = napi_by_id(napi_id);
6028 unsigned long val = READ_ONCE(napi->state);
6030 /* If multiple threads are competing for this napi,
6031 * we avoid dirtying napi->state as much as we can.
6033 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6034 NAPIF_STATE_IN_BUSY_POLL))
6036 if (cmpxchg(&napi->state, val,
6037 val | NAPIF_STATE_IN_BUSY_POLL |
6038 NAPIF_STATE_SCHED) != val)
6040 have_poll_lock = netpoll_poll_lock(napi);
6041 napi_poll = napi->poll;
6043 work = napi_poll(napi, BUSY_POLL_BUDGET);
6044 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6047 __NET_ADD_STATS(dev_net(napi->dev),
6048 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6051 if (!loop_end || loop_end(loop_end_arg, start_time))
6054 if (unlikely(need_resched())) {
6056 busy_poll_stop(napi, have_poll_lock);
6060 if (loop_end(loop_end_arg, start_time))
6067 busy_poll_stop(napi, have_poll_lock);
6072 EXPORT_SYMBOL(napi_busy_loop);
6074 #endif /* CONFIG_NET_RX_BUSY_POLL */
6076 static void napi_hash_add(struct napi_struct *napi)
6078 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6079 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6082 spin_lock(&napi_hash_lock);
6084 /* 0..NR_CPUS range is reserved for sender_cpu use */
6086 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6087 napi_gen_id = MIN_NAPI_ID;
6088 } while (napi_by_id(napi_gen_id));
6089 napi->napi_id = napi_gen_id;
6091 hlist_add_head_rcu(&napi->napi_hash_node,
6092 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6094 spin_unlock(&napi_hash_lock);
6097 /* Warning : caller is responsible to make sure rcu grace period
6098 * is respected before freeing memory containing @napi
6100 bool napi_hash_del(struct napi_struct *napi)
6102 bool rcu_sync_needed = false;
6104 spin_lock(&napi_hash_lock);
6106 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6107 rcu_sync_needed = true;
6108 hlist_del_rcu(&napi->napi_hash_node);
6110 spin_unlock(&napi_hash_lock);
6111 return rcu_sync_needed;
6113 EXPORT_SYMBOL_GPL(napi_hash_del);
6115 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6117 struct napi_struct *napi;
6119 napi = container_of(timer, struct napi_struct, timer);
6121 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6122 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6124 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6125 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6126 __napi_schedule_irqoff(napi);
6128 return HRTIMER_NORESTART;
6131 static void init_gro_hash(struct napi_struct *napi)
6135 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6136 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6137 napi->gro_hash[i].count = 0;
6139 napi->gro_bitmask = 0;
6142 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6143 int (*poll)(struct napi_struct *, int), int weight)
6145 INIT_LIST_HEAD(&napi->poll_list);
6146 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6147 napi->timer.function = napi_watchdog;
6148 init_gro_hash(napi);
6151 if (weight > NAPI_POLL_WEIGHT)
6152 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6154 napi->weight = weight;
6155 list_add(&napi->dev_list, &dev->napi_list);
6157 #ifdef CONFIG_NETPOLL
6158 napi->poll_owner = -1;
6160 set_bit(NAPI_STATE_SCHED, &napi->state);
6161 napi_hash_add(napi);
6163 EXPORT_SYMBOL(netif_napi_add);
6165 void napi_disable(struct napi_struct *n)
6168 set_bit(NAPI_STATE_DISABLE, &n->state);
6170 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6172 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6175 hrtimer_cancel(&n->timer);
6177 clear_bit(NAPI_STATE_DISABLE, &n->state);
6179 EXPORT_SYMBOL(napi_disable);
6181 static void flush_gro_hash(struct napi_struct *napi)
6185 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6186 struct sk_buff *skb, *n;
6188 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6190 napi->gro_hash[i].count = 0;
6194 /* Must be called in process context */
6195 void netif_napi_del(struct napi_struct *napi)
6198 if (napi_hash_del(napi))
6200 list_del_init(&napi->dev_list);
6201 napi_free_frags(napi);
6203 flush_gro_hash(napi);
6204 napi->gro_bitmask = 0;
6206 EXPORT_SYMBOL(netif_napi_del);
6208 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6213 list_del_init(&n->poll_list);
6215 have = netpoll_poll_lock(n);
6219 /* This NAPI_STATE_SCHED test is for avoiding a race
6220 * with netpoll's poll_napi(). Only the entity which
6221 * obtains the lock and sees NAPI_STATE_SCHED set will
6222 * actually make the ->poll() call. Therefore we avoid
6223 * accidentally calling ->poll() when NAPI is not scheduled.
6226 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6227 work = n->poll(n, weight);
6228 trace_napi_poll(n, work, weight);
6231 WARN_ON_ONCE(work > weight);
6233 if (likely(work < weight))
6236 /* Drivers must not modify the NAPI state if they
6237 * consume the entire weight. In such cases this code
6238 * still "owns" the NAPI instance and therefore can
6239 * move the instance around on the list at-will.
6241 if (unlikely(napi_disable_pending(n))) {
6246 if (n->gro_bitmask) {
6247 /* flush too old packets
6248 * If HZ < 1000, flush all packets.
6250 napi_gro_flush(n, HZ >= 1000);
6253 /* Some drivers may have called napi_schedule
6254 * prior to exhausting their budget.
6256 if (unlikely(!list_empty(&n->poll_list))) {
6257 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6258 n->dev ? n->dev->name : "backlog");
6262 list_add_tail(&n->poll_list, repoll);
6265 netpoll_poll_unlock(have);
6270 static __latent_entropy void net_rx_action(struct softirq_action *h)
6272 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6273 unsigned long time_limit = jiffies +
6274 usecs_to_jiffies(netdev_budget_usecs);
6275 int budget = netdev_budget;
6279 local_irq_disable();
6280 list_splice_init(&sd->poll_list, &list);
6284 struct napi_struct *n;
6286 if (list_empty(&list)) {
6287 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6292 n = list_first_entry(&list, struct napi_struct, poll_list);
6293 budget -= napi_poll(n, &repoll);
6295 /* If softirq window is exhausted then punt.
6296 * Allow this to run for 2 jiffies since which will allow
6297 * an average latency of 1.5/HZ.
6299 if (unlikely(budget <= 0 ||
6300 time_after_eq(jiffies, time_limit))) {
6306 local_irq_disable();
6308 list_splice_tail_init(&sd->poll_list, &list);
6309 list_splice_tail(&repoll, &list);
6310 list_splice(&list, &sd->poll_list);
6311 if (!list_empty(&sd->poll_list))
6312 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6314 net_rps_action_and_irq_enable(sd);
6316 __kfree_skb_flush();
6319 struct netdev_adjacent {
6320 struct net_device *dev;
6322 /* upper master flag, there can only be one master device per list */
6325 /* counter for the number of times this device was added to us */
6328 /* private field for the users */
6331 struct list_head list;
6332 struct rcu_head rcu;
6335 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6336 struct list_head *adj_list)
6338 struct netdev_adjacent *adj;
6340 list_for_each_entry(adj, adj_list, list) {
6341 if (adj->dev == adj_dev)
6347 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6349 struct net_device *dev = data;
6351 return upper_dev == dev;
6355 * netdev_has_upper_dev - Check if device is linked to an upper device
6357 * @upper_dev: upper device to check
6359 * Find out if a device is linked to specified upper device and return true
6360 * in case it is. Note that this checks only immediate upper device,
6361 * not through a complete stack of devices. The caller must hold the RTNL lock.
6363 bool netdev_has_upper_dev(struct net_device *dev,
6364 struct net_device *upper_dev)
6368 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6371 EXPORT_SYMBOL(netdev_has_upper_dev);
6374 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6376 * @upper_dev: upper device to check
6378 * Find out if a device is linked to specified upper device and return true
6379 * in case it is. Note that this checks the entire upper device chain.
6380 * The caller must hold rcu lock.
6383 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6384 struct net_device *upper_dev)
6386 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6389 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6392 * netdev_has_any_upper_dev - Check if device is linked to some device
6395 * Find out if a device is linked to an upper device and return true in case
6396 * it is. The caller must hold the RTNL lock.
6398 bool netdev_has_any_upper_dev(struct net_device *dev)
6402 return !list_empty(&dev->adj_list.upper);
6404 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6407 * netdev_master_upper_dev_get - Get master upper device
6410 * Find a master upper device and return pointer to it or NULL in case
6411 * it's not there. The caller must hold the RTNL lock.
6413 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6415 struct netdev_adjacent *upper;
6419 if (list_empty(&dev->adj_list.upper))
6422 upper = list_first_entry(&dev->adj_list.upper,
6423 struct netdev_adjacent, list);
6424 if (likely(upper->master))
6428 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6431 * netdev_has_any_lower_dev - Check if device is linked to some device
6434 * Find out if a device is linked to a lower device and return true in case
6435 * it is. The caller must hold the RTNL lock.
6437 static bool netdev_has_any_lower_dev(struct net_device *dev)
6441 return !list_empty(&dev->adj_list.lower);
6444 void *netdev_adjacent_get_private(struct list_head *adj_list)
6446 struct netdev_adjacent *adj;
6448 adj = list_entry(adj_list, struct netdev_adjacent, list);
6450 return adj->private;
6452 EXPORT_SYMBOL(netdev_adjacent_get_private);
6455 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6457 * @iter: list_head ** of the current position
6459 * Gets the next device from the dev's upper list, starting from iter
6460 * position. The caller must hold RCU read lock.
6462 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6463 struct list_head **iter)
6465 struct netdev_adjacent *upper;
6467 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6469 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6471 if (&upper->list == &dev->adj_list.upper)
6474 *iter = &upper->list;
6478 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6480 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6481 struct list_head **iter)
6483 struct netdev_adjacent *upper;
6485 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6487 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6489 if (&upper->list == &dev->adj_list.upper)
6492 *iter = &upper->list;
6497 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6498 int (*fn)(struct net_device *dev,
6502 struct net_device *udev;
6503 struct list_head *iter;
6506 for (iter = &dev->adj_list.upper,
6507 udev = netdev_next_upper_dev_rcu(dev, &iter);
6509 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6510 /* first is the upper device itself */
6511 ret = fn(udev, data);
6515 /* then look at all of its upper devices */
6516 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6523 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6526 * netdev_lower_get_next_private - Get the next ->private from the
6527 * lower neighbour list
6529 * @iter: list_head ** of the current position
6531 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6532 * list, starting from iter position. The caller must hold either hold the
6533 * RTNL lock or its own locking that guarantees that the neighbour lower
6534 * list will remain unchanged.
6536 void *netdev_lower_get_next_private(struct net_device *dev,
6537 struct list_head **iter)
6539 struct netdev_adjacent *lower;
6541 lower = list_entry(*iter, struct netdev_adjacent, list);
6543 if (&lower->list == &dev->adj_list.lower)
6546 *iter = lower->list.next;
6548 return lower->private;
6550 EXPORT_SYMBOL(netdev_lower_get_next_private);
6553 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6554 * lower neighbour list, RCU
6557 * @iter: list_head ** of the current position
6559 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6560 * list, starting from iter position. The caller must hold RCU read lock.
6562 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6563 struct list_head **iter)
6565 struct netdev_adjacent *lower;
6567 WARN_ON_ONCE(!rcu_read_lock_held());
6569 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6571 if (&lower->list == &dev->adj_list.lower)
6574 *iter = &lower->list;
6576 return lower->private;
6578 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6581 * netdev_lower_get_next - Get the next device from the lower neighbour
6584 * @iter: list_head ** of the current position
6586 * Gets the next netdev_adjacent from the dev's lower neighbour
6587 * list, starting from iter position. The caller must hold RTNL lock or
6588 * its own locking that guarantees that the neighbour lower
6589 * list will remain unchanged.
6591 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6593 struct netdev_adjacent *lower;
6595 lower = list_entry(*iter, struct netdev_adjacent, list);
6597 if (&lower->list == &dev->adj_list.lower)
6600 *iter = lower->list.next;
6604 EXPORT_SYMBOL(netdev_lower_get_next);
6606 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6607 struct list_head **iter)
6609 struct netdev_adjacent *lower;
6611 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6613 if (&lower->list == &dev->adj_list.lower)
6616 *iter = &lower->list;
6621 int netdev_walk_all_lower_dev(struct net_device *dev,
6622 int (*fn)(struct net_device *dev,
6626 struct net_device *ldev;
6627 struct list_head *iter;
6630 for (iter = &dev->adj_list.lower,
6631 ldev = netdev_next_lower_dev(dev, &iter);
6633 ldev = netdev_next_lower_dev(dev, &iter)) {
6634 /* first is the lower device itself */
6635 ret = fn(ldev, data);
6639 /* then look at all of its lower devices */
6640 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6647 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6649 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6650 struct list_head **iter)
6652 struct netdev_adjacent *lower;
6654 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6655 if (&lower->list == &dev->adj_list.lower)
6658 *iter = &lower->list;
6663 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6664 int (*fn)(struct net_device *dev,
6668 struct net_device *ldev;
6669 struct list_head *iter;
6672 for (iter = &dev->adj_list.lower,
6673 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6675 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6676 /* first is the lower device itself */
6677 ret = fn(ldev, data);
6681 /* then look at all of its lower devices */
6682 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6689 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6692 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6693 * lower neighbour list, RCU
6697 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6698 * list. The caller must hold RCU read lock.
6700 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6702 struct netdev_adjacent *lower;
6704 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6705 struct netdev_adjacent, list);
6707 return lower->private;
6710 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6713 * netdev_master_upper_dev_get_rcu - Get master upper device
6716 * Find a master upper device and return pointer to it or NULL in case
6717 * it's not there. The caller must hold the RCU read lock.
6719 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6721 struct netdev_adjacent *upper;
6723 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6724 struct netdev_adjacent, list);
6725 if (upper && likely(upper->master))
6729 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6731 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6732 struct net_device *adj_dev,
6733 struct list_head *dev_list)
6735 char linkname[IFNAMSIZ+7];
6737 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6738 "upper_%s" : "lower_%s", adj_dev->name);
6739 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6742 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6744 struct list_head *dev_list)
6746 char linkname[IFNAMSIZ+7];
6748 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6749 "upper_%s" : "lower_%s", name);
6750 sysfs_remove_link(&(dev->dev.kobj), linkname);
6753 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6754 struct net_device *adj_dev,
6755 struct list_head *dev_list)
6757 return (dev_list == &dev->adj_list.upper ||
6758 dev_list == &dev->adj_list.lower) &&
6759 net_eq(dev_net(dev), dev_net(adj_dev));
6762 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6763 struct net_device *adj_dev,
6764 struct list_head *dev_list,
6765 void *private, bool master)
6767 struct netdev_adjacent *adj;
6770 adj = __netdev_find_adj(adj_dev, dev_list);
6774 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6775 dev->name, adj_dev->name, adj->ref_nr);
6780 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6785 adj->master = master;
6787 adj->private = private;
6790 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6791 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6793 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6794 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6799 /* Ensure that master link is always the first item in list. */
6801 ret = sysfs_create_link(&(dev->dev.kobj),
6802 &(adj_dev->dev.kobj), "master");
6804 goto remove_symlinks;
6806 list_add_rcu(&adj->list, dev_list);
6808 list_add_tail_rcu(&adj->list, dev_list);
6814 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6815 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6823 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6824 struct net_device *adj_dev,
6826 struct list_head *dev_list)
6828 struct netdev_adjacent *adj;
6830 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6831 dev->name, adj_dev->name, ref_nr);
6833 adj = __netdev_find_adj(adj_dev, dev_list);
6836 pr_err("Adjacency does not exist for device %s from %s\n",
6837 dev->name, adj_dev->name);
6842 if (adj->ref_nr > ref_nr) {
6843 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6844 dev->name, adj_dev->name, ref_nr,
6845 adj->ref_nr - ref_nr);
6846 adj->ref_nr -= ref_nr;
6851 sysfs_remove_link(&(dev->dev.kobj), "master");
6853 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6854 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6856 list_del_rcu(&adj->list);
6857 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6858 adj_dev->name, dev->name, adj_dev->name);
6860 kfree_rcu(adj, rcu);
6863 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6864 struct net_device *upper_dev,
6865 struct list_head *up_list,
6866 struct list_head *down_list,
6867 void *private, bool master)
6871 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6876 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6879 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6886 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6887 struct net_device *upper_dev,
6889 struct list_head *up_list,
6890 struct list_head *down_list)
6892 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6893 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6896 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6897 struct net_device *upper_dev,
6898 void *private, bool master)
6900 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6901 &dev->adj_list.upper,
6902 &upper_dev->adj_list.lower,
6906 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6907 struct net_device *upper_dev)
6909 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6910 &dev->adj_list.upper,
6911 &upper_dev->adj_list.lower);
6914 static int __netdev_upper_dev_link(struct net_device *dev,
6915 struct net_device *upper_dev, bool master,
6916 void *upper_priv, void *upper_info,
6917 struct netlink_ext_ack *extack)
6919 struct netdev_notifier_changeupper_info changeupper_info = {
6924 .upper_dev = upper_dev,
6927 .upper_info = upper_info,
6929 struct net_device *master_dev;
6934 if (dev == upper_dev)
6937 /* To prevent loops, check if dev is not upper device to upper_dev. */
6938 if (netdev_has_upper_dev(upper_dev, dev))
6942 if (netdev_has_upper_dev(dev, upper_dev))
6945 master_dev = netdev_master_upper_dev_get(dev);
6947 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6950 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6951 &changeupper_info.info);
6952 ret = notifier_to_errno(ret);
6956 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6961 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6962 &changeupper_info.info);
6963 ret = notifier_to_errno(ret);
6970 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6976 * netdev_upper_dev_link - Add a link to the upper device
6978 * @upper_dev: new upper device
6979 * @extack: netlink extended ack
6981 * Adds a link to device which is upper to this one. The caller must hold
6982 * the RTNL lock. On a failure a negative errno code is returned.
6983 * On success the reference counts are adjusted and the function
6986 int netdev_upper_dev_link(struct net_device *dev,
6987 struct net_device *upper_dev,
6988 struct netlink_ext_ack *extack)
6990 return __netdev_upper_dev_link(dev, upper_dev, false,
6991 NULL, NULL, extack);
6993 EXPORT_SYMBOL(netdev_upper_dev_link);
6996 * netdev_master_upper_dev_link - Add a master link to the upper device
6998 * @upper_dev: new upper device
6999 * @upper_priv: upper device private
7000 * @upper_info: upper info to be passed down via notifier
7001 * @extack: netlink extended ack
7003 * Adds a link to device which is upper to this one. In this case, only
7004 * one master upper device can be linked, although other non-master devices
7005 * might be linked as well. The caller must hold the RTNL lock.
7006 * On a failure a negative errno code is returned. On success the reference
7007 * counts are adjusted and the function returns zero.
7009 int netdev_master_upper_dev_link(struct net_device *dev,
7010 struct net_device *upper_dev,
7011 void *upper_priv, void *upper_info,
7012 struct netlink_ext_ack *extack)
7014 return __netdev_upper_dev_link(dev, upper_dev, true,
7015 upper_priv, upper_info, extack);
7017 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7020 * netdev_upper_dev_unlink - Removes a link to upper device
7022 * @upper_dev: new upper device
7024 * Removes a link to device which is upper to this one. The caller must hold
7027 void netdev_upper_dev_unlink(struct net_device *dev,
7028 struct net_device *upper_dev)
7030 struct netdev_notifier_changeupper_info changeupper_info = {
7034 .upper_dev = upper_dev,
7040 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7042 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7043 &changeupper_info.info);
7045 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7047 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7048 &changeupper_info.info);
7050 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7053 * netdev_bonding_info_change - Dispatch event about slave change
7055 * @bonding_info: info to dispatch
7057 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7058 * The caller must hold the RTNL lock.
7060 void netdev_bonding_info_change(struct net_device *dev,
7061 struct netdev_bonding_info *bonding_info)
7063 struct netdev_notifier_bonding_info info = {
7067 memcpy(&info.bonding_info, bonding_info,
7068 sizeof(struct netdev_bonding_info));
7069 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7072 EXPORT_SYMBOL(netdev_bonding_info_change);
7074 static void netdev_adjacent_add_links(struct net_device *dev)
7076 struct netdev_adjacent *iter;
7078 struct net *net = dev_net(dev);
7080 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7081 if (!net_eq(net, dev_net(iter->dev)))
7083 netdev_adjacent_sysfs_add(iter->dev, dev,
7084 &iter->dev->adj_list.lower);
7085 netdev_adjacent_sysfs_add(dev, iter->dev,
7086 &dev->adj_list.upper);
7089 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7090 if (!net_eq(net, dev_net(iter->dev)))
7092 netdev_adjacent_sysfs_add(iter->dev, dev,
7093 &iter->dev->adj_list.upper);
7094 netdev_adjacent_sysfs_add(dev, iter->dev,
7095 &dev->adj_list.lower);
7099 static void netdev_adjacent_del_links(struct net_device *dev)
7101 struct netdev_adjacent *iter;
7103 struct net *net = dev_net(dev);
7105 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7106 if (!net_eq(net, dev_net(iter->dev)))
7108 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7109 &iter->dev->adj_list.lower);
7110 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7111 &dev->adj_list.upper);
7114 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7115 if (!net_eq(net, dev_net(iter->dev)))
7117 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7118 &iter->dev->adj_list.upper);
7119 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7120 &dev->adj_list.lower);
7124 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7126 struct netdev_adjacent *iter;
7128 struct net *net = dev_net(dev);
7130 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7131 if (!net_eq(net, dev_net(iter->dev)))
7133 netdev_adjacent_sysfs_del(iter->dev, oldname,
7134 &iter->dev->adj_list.lower);
7135 netdev_adjacent_sysfs_add(iter->dev, dev,
7136 &iter->dev->adj_list.lower);
7139 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7140 if (!net_eq(net, dev_net(iter->dev)))
7142 netdev_adjacent_sysfs_del(iter->dev, oldname,
7143 &iter->dev->adj_list.upper);
7144 netdev_adjacent_sysfs_add(iter->dev, dev,
7145 &iter->dev->adj_list.upper);
7149 void *netdev_lower_dev_get_private(struct net_device *dev,
7150 struct net_device *lower_dev)
7152 struct netdev_adjacent *lower;
7156 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7160 return lower->private;
7162 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7165 int dev_get_nest_level(struct net_device *dev)
7167 struct net_device *lower = NULL;
7168 struct list_head *iter;
7174 netdev_for_each_lower_dev(dev, lower, iter) {
7175 nest = dev_get_nest_level(lower);
7176 if (max_nest < nest)
7180 return max_nest + 1;
7182 EXPORT_SYMBOL(dev_get_nest_level);
7185 * netdev_lower_change - Dispatch event about lower device state change
7186 * @lower_dev: device
7187 * @lower_state_info: state to dispatch
7189 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7190 * The caller must hold the RTNL lock.
7192 void netdev_lower_state_changed(struct net_device *lower_dev,
7193 void *lower_state_info)
7195 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7196 .info.dev = lower_dev,
7200 changelowerstate_info.lower_state_info = lower_state_info;
7201 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7202 &changelowerstate_info.info);
7204 EXPORT_SYMBOL(netdev_lower_state_changed);
7206 static void dev_change_rx_flags(struct net_device *dev, int flags)
7208 const struct net_device_ops *ops = dev->netdev_ops;
7210 if (ops->ndo_change_rx_flags)
7211 ops->ndo_change_rx_flags(dev, flags);
7214 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7216 unsigned int old_flags = dev->flags;
7222 dev->flags |= IFF_PROMISC;
7223 dev->promiscuity += inc;
7224 if (dev->promiscuity == 0) {
7227 * If inc causes overflow, untouch promisc and return error.
7230 dev->flags &= ~IFF_PROMISC;
7232 dev->promiscuity -= inc;
7233 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7238 if (dev->flags != old_flags) {
7239 pr_info("device %s %s promiscuous mode\n",
7241 dev->flags & IFF_PROMISC ? "entered" : "left");
7242 if (audit_enabled) {
7243 current_uid_gid(&uid, &gid);
7244 audit_log(audit_context(), GFP_ATOMIC,
7245 AUDIT_ANOM_PROMISCUOUS,
7246 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7247 dev->name, (dev->flags & IFF_PROMISC),
7248 (old_flags & IFF_PROMISC),
7249 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7250 from_kuid(&init_user_ns, uid),
7251 from_kgid(&init_user_ns, gid),
7252 audit_get_sessionid(current));
7255 dev_change_rx_flags(dev, IFF_PROMISC);
7258 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7263 * dev_set_promiscuity - update promiscuity count on a device
7267 * Add or remove promiscuity from a device. While the count in the device
7268 * remains above zero the interface remains promiscuous. Once it hits zero
7269 * the device reverts back to normal filtering operation. A negative inc
7270 * value is used to drop promiscuity on the device.
7271 * Return 0 if successful or a negative errno code on error.
7273 int dev_set_promiscuity(struct net_device *dev, int inc)
7275 unsigned int old_flags = dev->flags;
7278 err = __dev_set_promiscuity(dev, inc, true);
7281 if (dev->flags != old_flags)
7282 dev_set_rx_mode(dev);
7285 EXPORT_SYMBOL(dev_set_promiscuity);
7287 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7289 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7293 dev->flags |= IFF_ALLMULTI;
7294 dev->allmulti += inc;
7295 if (dev->allmulti == 0) {
7298 * If inc causes overflow, untouch allmulti and return error.
7301 dev->flags &= ~IFF_ALLMULTI;
7303 dev->allmulti -= inc;
7304 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7309 if (dev->flags ^ old_flags) {
7310 dev_change_rx_flags(dev, IFF_ALLMULTI);
7311 dev_set_rx_mode(dev);
7313 __dev_notify_flags(dev, old_flags,
7314 dev->gflags ^ old_gflags);
7320 * dev_set_allmulti - update allmulti count on a device
7324 * Add or remove reception of all multicast frames to a device. While the
7325 * count in the device remains above zero the interface remains listening
7326 * to all interfaces. Once it hits zero the device reverts back to normal
7327 * filtering operation. A negative @inc value is used to drop the counter
7328 * when releasing a resource needing all multicasts.
7329 * Return 0 if successful or a negative errno code on error.
7332 int dev_set_allmulti(struct net_device *dev, int inc)
7334 return __dev_set_allmulti(dev, inc, true);
7336 EXPORT_SYMBOL(dev_set_allmulti);
7339 * Upload unicast and multicast address lists to device and
7340 * configure RX filtering. When the device doesn't support unicast
7341 * filtering it is put in promiscuous mode while unicast addresses
7344 void __dev_set_rx_mode(struct net_device *dev)
7346 const struct net_device_ops *ops = dev->netdev_ops;
7348 /* dev_open will call this function so the list will stay sane. */
7349 if (!(dev->flags&IFF_UP))
7352 if (!netif_device_present(dev))
7355 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7356 /* Unicast addresses changes may only happen under the rtnl,
7357 * therefore calling __dev_set_promiscuity here is safe.
7359 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7360 __dev_set_promiscuity(dev, 1, false);
7361 dev->uc_promisc = true;
7362 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7363 __dev_set_promiscuity(dev, -1, false);
7364 dev->uc_promisc = false;
7368 if (ops->ndo_set_rx_mode)
7369 ops->ndo_set_rx_mode(dev);
7372 void dev_set_rx_mode(struct net_device *dev)
7374 netif_addr_lock_bh(dev);
7375 __dev_set_rx_mode(dev);
7376 netif_addr_unlock_bh(dev);
7380 * dev_get_flags - get flags reported to userspace
7383 * Get the combination of flag bits exported through APIs to userspace.
7385 unsigned int dev_get_flags(const struct net_device *dev)
7389 flags = (dev->flags & ~(IFF_PROMISC |
7394 (dev->gflags & (IFF_PROMISC |
7397 if (netif_running(dev)) {
7398 if (netif_oper_up(dev))
7399 flags |= IFF_RUNNING;
7400 if (netif_carrier_ok(dev))
7401 flags |= IFF_LOWER_UP;
7402 if (netif_dormant(dev))
7403 flags |= IFF_DORMANT;
7408 EXPORT_SYMBOL(dev_get_flags);
7410 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7412 unsigned int old_flags = dev->flags;
7418 * Set the flags on our device.
7421 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7422 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7424 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7428 * Load in the correct multicast list now the flags have changed.
7431 if ((old_flags ^ flags) & IFF_MULTICAST)
7432 dev_change_rx_flags(dev, IFF_MULTICAST);
7434 dev_set_rx_mode(dev);
7437 * Have we downed the interface. We handle IFF_UP ourselves
7438 * according to user attempts to set it, rather than blindly
7443 if ((old_flags ^ flags) & IFF_UP) {
7444 if (old_flags & IFF_UP)
7447 ret = __dev_open(dev);
7450 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7451 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7452 unsigned int old_flags = dev->flags;
7454 dev->gflags ^= IFF_PROMISC;
7456 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7457 if (dev->flags != old_flags)
7458 dev_set_rx_mode(dev);
7461 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7462 * is important. Some (broken) drivers set IFF_PROMISC, when
7463 * IFF_ALLMULTI is requested not asking us and not reporting.
7465 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7466 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7468 dev->gflags ^= IFF_ALLMULTI;
7469 __dev_set_allmulti(dev, inc, false);
7475 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7476 unsigned int gchanges)
7478 unsigned int changes = dev->flags ^ old_flags;
7481 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7483 if (changes & IFF_UP) {
7484 if (dev->flags & IFF_UP)
7485 call_netdevice_notifiers(NETDEV_UP, dev);
7487 call_netdevice_notifiers(NETDEV_DOWN, dev);
7490 if (dev->flags & IFF_UP &&
7491 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7492 struct netdev_notifier_change_info change_info = {
7496 .flags_changed = changes,
7499 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7504 * dev_change_flags - change device settings
7506 * @flags: device state flags
7508 * Change settings on device based state flags. The flags are
7509 * in the userspace exported format.
7511 int dev_change_flags(struct net_device *dev, unsigned int flags)
7514 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7516 ret = __dev_change_flags(dev, flags);
7520 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7521 __dev_notify_flags(dev, old_flags, changes);
7524 EXPORT_SYMBOL(dev_change_flags);
7526 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7528 const struct net_device_ops *ops = dev->netdev_ops;
7530 if (ops->ndo_change_mtu)
7531 return ops->ndo_change_mtu(dev, new_mtu);
7536 EXPORT_SYMBOL(__dev_set_mtu);
7539 * dev_set_mtu_ext - Change maximum transfer unit
7541 * @new_mtu: new transfer unit
7542 * @extack: netlink extended ack
7544 * Change the maximum transfer size of the network device.
7546 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7547 struct netlink_ext_ack *extack)
7551 if (new_mtu == dev->mtu)
7554 /* MTU must be positive, and in range */
7555 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7556 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7560 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7561 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7565 if (!netif_device_present(dev))
7568 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7569 err = notifier_to_errno(err);
7573 orig_mtu = dev->mtu;
7574 err = __dev_set_mtu(dev, new_mtu);
7577 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7578 err = notifier_to_errno(err);
7580 /* setting mtu back and notifying everyone again,
7581 * so that they have a chance to revert changes.
7583 __dev_set_mtu(dev, orig_mtu);
7584 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7590 int dev_set_mtu(struct net_device *dev, int new_mtu)
7592 struct netlink_ext_ack extack;
7595 memset(&extack, 0, sizeof(extack));
7596 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7597 if (err && extack._msg)
7598 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7601 EXPORT_SYMBOL(dev_set_mtu);
7604 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7606 * @new_len: new tx queue length
7608 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7610 unsigned int orig_len = dev->tx_queue_len;
7613 if (new_len != (unsigned int)new_len)
7616 if (new_len != orig_len) {
7617 dev->tx_queue_len = new_len;
7618 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7619 res = notifier_to_errno(res);
7622 res = dev_qdisc_change_tx_queue_len(dev);
7630 netdev_err(dev, "refused to change device tx_queue_len\n");
7631 dev->tx_queue_len = orig_len;
7636 * dev_set_group - Change group this device belongs to
7638 * @new_group: group this device should belong to
7640 void dev_set_group(struct net_device *dev, int new_group)
7642 dev->group = new_group;
7644 EXPORT_SYMBOL(dev_set_group);
7647 * dev_set_mac_address - Change Media Access Control Address
7651 * Change the hardware (MAC) address of the device
7653 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7655 const struct net_device_ops *ops = dev->netdev_ops;
7658 if (!ops->ndo_set_mac_address)
7660 if (sa->sa_family != dev->type)
7662 if (!netif_device_present(dev))
7664 err = ops->ndo_set_mac_address(dev, sa);
7667 dev->addr_assign_type = NET_ADDR_SET;
7668 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7669 add_device_randomness(dev->dev_addr, dev->addr_len);
7672 EXPORT_SYMBOL(dev_set_mac_address);
7675 * dev_change_carrier - Change device carrier
7677 * @new_carrier: new value
7679 * Change device carrier
7681 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7683 const struct net_device_ops *ops = dev->netdev_ops;
7685 if (!ops->ndo_change_carrier)
7687 if (!netif_device_present(dev))
7689 return ops->ndo_change_carrier(dev, new_carrier);
7691 EXPORT_SYMBOL(dev_change_carrier);
7694 * dev_get_phys_port_id - Get device physical port ID
7698 * Get device physical port ID
7700 int dev_get_phys_port_id(struct net_device *dev,
7701 struct netdev_phys_item_id *ppid)
7703 const struct net_device_ops *ops = dev->netdev_ops;
7705 if (!ops->ndo_get_phys_port_id)
7707 return ops->ndo_get_phys_port_id(dev, ppid);
7709 EXPORT_SYMBOL(dev_get_phys_port_id);
7712 * dev_get_phys_port_name - Get device physical port name
7715 * @len: limit of bytes to copy to name
7717 * Get device physical port name
7719 int dev_get_phys_port_name(struct net_device *dev,
7720 char *name, size_t len)
7722 const struct net_device_ops *ops = dev->netdev_ops;
7724 if (!ops->ndo_get_phys_port_name)
7726 return ops->ndo_get_phys_port_name(dev, name, len);
7728 EXPORT_SYMBOL(dev_get_phys_port_name);
7731 * dev_change_proto_down - update protocol port state information
7733 * @proto_down: new value
7735 * This info can be used by switch drivers to set the phys state of the
7738 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7740 const struct net_device_ops *ops = dev->netdev_ops;
7742 if (!ops->ndo_change_proto_down)
7744 if (!netif_device_present(dev))
7746 return ops->ndo_change_proto_down(dev, proto_down);
7748 EXPORT_SYMBOL(dev_change_proto_down);
7750 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7751 enum bpf_netdev_command cmd)
7753 struct netdev_bpf xdp;
7758 memset(&xdp, 0, sizeof(xdp));
7761 /* Query must always succeed. */
7762 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7767 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7768 struct netlink_ext_ack *extack, u32 flags,
7769 struct bpf_prog *prog)
7771 struct netdev_bpf xdp;
7773 memset(&xdp, 0, sizeof(xdp));
7774 if (flags & XDP_FLAGS_HW_MODE)
7775 xdp.command = XDP_SETUP_PROG_HW;
7777 xdp.command = XDP_SETUP_PROG;
7778 xdp.extack = extack;
7782 return bpf_op(dev, &xdp);
7785 static void dev_xdp_uninstall(struct net_device *dev)
7787 struct netdev_bpf xdp;
7790 /* Remove generic XDP */
7791 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7793 /* Remove from the driver */
7794 ndo_bpf = dev->netdev_ops->ndo_bpf;
7798 memset(&xdp, 0, sizeof(xdp));
7799 xdp.command = XDP_QUERY_PROG;
7800 WARN_ON(ndo_bpf(dev, &xdp));
7802 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7805 /* Remove HW offload */
7806 memset(&xdp, 0, sizeof(xdp));
7807 xdp.command = XDP_QUERY_PROG_HW;
7808 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7809 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7814 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7816 * @extack: netlink extended ack
7817 * @fd: new program fd or negative value to clear
7818 * @flags: xdp-related flags
7820 * Set or clear a bpf program for a device
7822 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7825 const struct net_device_ops *ops = dev->netdev_ops;
7826 enum bpf_netdev_command query;
7827 struct bpf_prog *prog = NULL;
7828 bpf_op_t bpf_op, bpf_chk;
7833 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7835 bpf_op = bpf_chk = ops->ndo_bpf;
7836 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7838 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7839 bpf_op = generic_xdp_install;
7840 if (bpf_op == bpf_chk)
7841 bpf_chk = generic_xdp_install;
7844 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7845 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7847 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7848 __dev_xdp_query(dev, bpf_op, query))
7851 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7852 bpf_op == ops->ndo_bpf);
7854 return PTR_ERR(prog);
7856 if (!(flags & XDP_FLAGS_HW_MODE) &&
7857 bpf_prog_is_dev_bound(prog->aux)) {
7858 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7864 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7865 if (err < 0 && prog)
7872 * dev_new_index - allocate an ifindex
7873 * @net: the applicable net namespace
7875 * Returns a suitable unique value for a new device interface
7876 * number. The caller must hold the rtnl semaphore or the
7877 * dev_base_lock to be sure it remains unique.
7879 static int dev_new_index(struct net *net)
7881 int ifindex = net->ifindex;
7886 if (!__dev_get_by_index(net, ifindex))
7887 return net->ifindex = ifindex;
7891 /* Delayed registration/unregisteration */
7892 static LIST_HEAD(net_todo_list);
7893 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7895 static void net_set_todo(struct net_device *dev)
7897 list_add_tail(&dev->todo_list, &net_todo_list);
7898 dev_net(dev)->dev_unreg_count++;
7901 static void rollback_registered_many(struct list_head *head)
7903 struct net_device *dev, *tmp;
7904 LIST_HEAD(close_head);
7906 BUG_ON(dev_boot_phase);
7909 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7910 /* Some devices call without registering
7911 * for initialization unwind. Remove those
7912 * devices and proceed with the remaining.
7914 if (dev->reg_state == NETREG_UNINITIALIZED) {
7915 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7919 list_del(&dev->unreg_list);
7922 dev->dismantle = true;
7923 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7926 /* If device is running, close it first. */
7927 list_for_each_entry(dev, head, unreg_list)
7928 list_add_tail(&dev->close_list, &close_head);
7929 dev_close_many(&close_head, true);
7931 list_for_each_entry(dev, head, unreg_list) {
7932 /* And unlink it from device chain. */
7933 unlist_netdevice(dev);
7935 dev->reg_state = NETREG_UNREGISTERING;
7937 flush_all_backlogs();
7941 list_for_each_entry(dev, head, unreg_list) {
7942 struct sk_buff *skb = NULL;
7944 /* Shutdown queueing discipline. */
7947 dev_xdp_uninstall(dev);
7949 /* Notify protocols, that we are about to destroy
7950 * this device. They should clean all the things.
7952 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7954 if (!dev->rtnl_link_ops ||
7955 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7956 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7957 GFP_KERNEL, NULL, 0);
7960 * Flush the unicast and multicast chains
7965 if (dev->netdev_ops->ndo_uninit)
7966 dev->netdev_ops->ndo_uninit(dev);
7969 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7971 /* Notifier chain MUST detach us all upper devices. */
7972 WARN_ON(netdev_has_any_upper_dev(dev));
7973 WARN_ON(netdev_has_any_lower_dev(dev));
7975 /* Remove entries from kobject tree */
7976 netdev_unregister_kobject(dev);
7978 /* Remove XPS queueing entries */
7979 netif_reset_xps_queues_gt(dev, 0);
7985 list_for_each_entry(dev, head, unreg_list)
7989 static void rollback_registered(struct net_device *dev)
7993 list_add(&dev->unreg_list, &single);
7994 rollback_registered_many(&single);
7998 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7999 struct net_device *upper, netdev_features_t features)
8001 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8002 netdev_features_t feature;
8005 for_each_netdev_feature(&upper_disables, feature_bit) {
8006 feature = __NETIF_F_BIT(feature_bit);
8007 if (!(upper->wanted_features & feature)
8008 && (features & feature)) {
8009 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8010 &feature, upper->name);
8011 features &= ~feature;
8018 static void netdev_sync_lower_features(struct net_device *upper,
8019 struct net_device *lower, netdev_features_t features)
8021 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8022 netdev_features_t feature;
8025 for_each_netdev_feature(&upper_disables, feature_bit) {
8026 feature = __NETIF_F_BIT(feature_bit);
8027 if (!(features & feature) && (lower->features & feature)) {
8028 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8029 &feature, lower->name);
8030 lower->wanted_features &= ~feature;
8031 netdev_update_features(lower);
8033 if (unlikely(lower->features & feature))
8034 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8035 &feature, lower->name);
8040 static netdev_features_t netdev_fix_features(struct net_device *dev,
8041 netdev_features_t features)
8043 /* Fix illegal checksum combinations */
8044 if ((features & NETIF_F_HW_CSUM) &&
8045 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8046 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8047 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8050 /* TSO requires that SG is present as well. */
8051 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8052 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8053 features &= ~NETIF_F_ALL_TSO;
8056 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8057 !(features & NETIF_F_IP_CSUM)) {
8058 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8059 features &= ~NETIF_F_TSO;
8060 features &= ~NETIF_F_TSO_ECN;
8063 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8064 !(features & NETIF_F_IPV6_CSUM)) {
8065 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8066 features &= ~NETIF_F_TSO6;
8069 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8070 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8071 features &= ~NETIF_F_TSO_MANGLEID;
8073 /* TSO ECN requires that TSO is present as well. */
8074 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8075 features &= ~NETIF_F_TSO_ECN;
8077 /* Software GSO depends on SG. */
8078 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8079 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8080 features &= ~NETIF_F_GSO;
8083 /* GSO partial features require GSO partial be set */
8084 if ((features & dev->gso_partial_features) &&
8085 !(features & NETIF_F_GSO_PARTIAL)) {
8087 "Dropping partially supported GSO features since no GSO partial.\n");
8088 features &= ~dev->gso_partial_features;
8091 if (!(features & NETIF_F_RXCSUM)) {
8092 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8093 * successfully merged by hardware must also have the
8094 * checksum verified by hardware. If the user does not
8095 * want to enable RXCSUM, logically, we should disable GRO_HW.
8097 if (features & NETIF_F_GRO_HW) {
8098 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8099 features &= ~NETIF_F_GRO_HW;
8103 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8104 if (features & NETIF_F_RXFCS) {
8105 if (features & NETIF_F_LRO) {
8106 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8107 features &= ~NETIF_F_LRO;
8110 if (features & NETIF_F_GRO_HW) {
8111 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8112 features &= ~NETIF_F_GRO_HW;
8119 int __netdev_update_features(struct net_device *dev)
8121 struct net_device *upper, *lower;
8122 netdev_features_t features;
8123 struct list_head *iter;
8128 features = netdev_get_wanted_features(dev);
8130 if (dev->netdev_ops->ndo_fix_features)
8131 features = dev->netdev_ops->ndo_fix_features(dev, features);
8133 /* driver might be less strict about feature dependencies */
8134 features = netdev_fix_features(dev, features);
8136 /* some features can't be enabled if they're off an an upper device */
8137 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8138 features = netdev_sync_upper_features(dev, upper, features);
8140 if (dev->features == features)
8143 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8144 &dev->features, &features);
8146 if (dev->netdev_ops->ndo_set_features)
8147 err = dev->netdev_ops->ndo_set_features(dev, features);
8151 if (unlikely(err < 0)) {
8153 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8154 err, &features, &dev->features);
8155 /* return non-0 since some features might have changed and
8156 * it's better to fire a spurious notification than miss it
8162 /* some features must be disabled on lower devices when disabled
8163 * on an upper device (think: bonding master or bridge)
8165 netdev_for_each_lower_dev(dev, lower, iter)
8166 netdev_sync_lower_features(dev, lower, features);
8169 netdev_features_t diff = features ^ dev->features;
8171 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8172 /* udp_tunnel_{get,drop}_rx_info both need
8173 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8174 * device, or they won't do anything.
8175 * Thus we need to update dev->features
8176 * *before* calling udp_tunnel_get_rx_info,
8177 * but *after* calling udp_tunnel_drop_rx_info.
8179 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8180 dev->features = features;
8181 udp_tunnel_get_rx_info(dev);
8183 udp_tunnel_drop_rx_info(dev);
8187 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8188 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189 dev->features = features;
8190 err |= vlan_get_rx_ctag_filter_info(dev);
8192 vlan_drop_rx_ctag_filter_info(dev);
8196 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8197 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8198 dev->features = features;
8199 err |= vlan_get_rx_stag_filter_info(dev);
8201 vlan_drop_rx_stag_filter_info(dev);
8205 dev->features = features;
8208 return err < 0 ? 0 : 1;
8212 * netdev_update_features - recalculate device features
8213 * @dev: the device to check
8215 * Recalculate dev->features set and send notifications if it
8216 * has changed. Should be called after driver or hardware dependent
8217 * conditions might have changed that influence the features.
8219 void netdev_update_features(struct net_device *dev)
8221 if (__netdev_update_features(dev))
8222 netdev_features_change(dev);
8224 EXPORT_SYMBOL(netdev_update_features);
8227 * netdev_change_features - recalculate device features
8228 * @dev: the device to check
8230 * Recalculate dev->features set and send notifications even
8231 * if they have not changed. Should be called instead of
8232 * netdev_update_features() if also dev->vlan_features might
8233 * have changed to allow the changes to be propagated to stacked
8236 void netdev_change_features(struct net_device *dev)
8238 __netdev_update_features(dev);
8239 netdev_features_change(dev);
8241 EXPORT_SYMBOL(netdev_change_features);
8244 * netif_stacked_transfer_operstate - transfer operstate
8245 * @rootdev: the root or lower level device to transfer state from
8246 * @dev: the device to transfer operstate to
8248 * Transfer operational state from root to device. This is normally
8249 * called when a stacking relationship exists between the root
8250 * device and the device(a leaf device).
8252 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8253 struct net_device *dev)
8255 if (rootdev->operstate == IF_OPER_DORMANT)
8256 netif_dormant_on(dev);
8258 netif_dormant_off(dev);
8260 if (netif_carrier_ok(rootdev))
8261 netif_carrier_on(dev);
8263 netif_carrier_off(dev);
8265 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8267 static int netif_alloc_rx_queues(struct net_device *dev)
8269 unsigned int i, count = dev->num_rx_queues;
8270 struct netdev_rx_queue *rx;
8271 size_t sz = count * sizeof(*rx);
8276 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8282 for (i = 0; i < count; i++) {
8285 /* XDP RX-queue setup */
8286 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8293 /* Rollback successful reg's and free other resources */
8295 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8301 static void netif_free_rx_queues(struct net_device *dev)
8303 unsigned int i, count = dev->num_rx_queues;
8305 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8309 for (i = 0; i < count; i++)
8310 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8315 static void netdev_init_one_queue(struct net_device *dev,
8316 struct netdev_queue *queue, void *_unused)
8318 /* Initialize queue lock */
8319 spin_lock_init(&queue->_xmit_lock);
8320 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8321 queue->xmit_lock_owner = -1;
8322 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8325 dql_init(&queue->dql, HZ);
8329 static void netif_free_tx_queues(struct net_device *dev)
8334 static int netif_alloc_netdev_queues(struct net_device *dev)
8336 unsigned int count = dev->num_tx_queues;
8337 struct netdev_queue *tx;
8338 size_t sz = count * sizeof(*tx);
8340 if (count < 1 || count > 0xffff)
8343 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8349 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8350 spin_lock_init(&dev->tx_global_lock);
8355 void netif_tx_stop_all_queues(struct net_device *dev)
8359 for (i = 0; i < dev->num_tx_queues; i++) {
8360 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8362 netif_tx_stop_queue(txq);
8365 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8368 * register_netdevice - register a network device
8369 * @dev: device to register
8371 * Take a completed network device structure and add it to the kernel
8372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8373 * chain. 0 is returned on success. A negative errno code is returned
8374 * on a failure to set up the device, or if the name is a duplicate.
8376 * Callers must hold the rtnl semaphore. You may want
8377 * register_netdev() instead of this.
8380 * The locking appears insufficient to guarantee two parallel registers
8381 * will not get the same name.
8384 int register_netdevice(struct net_device *dev)
8387 struct net *net = dev_net(dev);
8389 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8390 NETDEV_FEATURE_COUNT);
8391 BUG_ON(dev_boot_phase);
8396 /* When net_device's are persistent, this will be fatal. */
8397 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8400 spin_lock_init(&dev->addr_list_lock);
8401 netdev_set_addr_lockdep_class(dev);
8403 ret = dev_get_valid_name(net, dev, dev->name);
8407 /* Init, if this function is available */
8408 if (dev->netdev_ops->ndo_init) {
8409 ret = dev->netdev_ops->ndo_init(dev);
8417 if (((dev->hw_features | dev->features) &
8418 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8419 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8420 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8421 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8428 dev->ifindex = dev_new_index(net);
8429 else if (__dev_get_by_index(net, dev->ifindex))
8432 /* Transfer changeable features to wanted_features and enable
8433 * software offloads (GSO and GRO).
8435 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8436 dev->features |= NETIF_F_SOFT_FEATURES;
8438 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8439 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8440 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8443 dev->wanted_features = dev->features & dev->hw_features;
8445 if (!(dev->flags & IFF_LOOPBACK))
8446 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8448 /* If IPv4 TCP segmentation offload is supported we should also
8449 * allow the device to enable segmenting the frame with the option
8450 * of ignoring a static IP ID value. This doesn't enable the
8451 * feature itself but allows the user to enable it later.
8453 if (dev->hw_features & NETIF_F_TSO)
8454 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8455 if (dev->vlan_features & NETIF_F_TSO)
8456 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8457 if (dev->mpls_features & NETIF_F_TSO)
8458 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8459 if (dev->hw_enc_features & NETIF_F_TSO)
8460 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8462 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8464 dev->vlan_features |= NETIF_F_HIGHDMA;
8466 /* Make NETIF_F_SG inheritable to tunnel devices.
8468 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8470 /* Make NETIF_F_SG inheritable to MPLS.
8472 dev->mpls_features |= NETIF_F_SG;
8474 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8475 ret = notifier_to_errno(ret);
8479 ret = netdev_register_kobject(dev);
8482 dev->reg_state = NETREG_REGISTERED;
8484 __netdev_update_features(dev);
8487 * Default initial state at registry is that the
8488 * device is present.
8491 set_bit(__LINK_STATE_PRESENT, &dev->state);
8493 linkwatch_init_dev(dev);
8495 dev_init_scheduler(dev);
8497 list_netdevice(dev);
8498 add_device_randomness(dev->dev_addr, dev->addr_len);
8500 /* If the device has permanent device address, driver should
8501 * set dev_addr and also addr_assign_type should be set to
8502 * NET_ADDR_PERM (default value).
8504 if (dev->addr_assign_type == NET_ADDR_PERM)
8505 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8507 /* Notify protocols, that a new device appeared. */
8508 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8509 ret = notifier_to_errno(ret);
8511 rollback_registered(dev);
8512 dev->reg_state = NETREG_UNREGISTERED;
8515 * Prevent userspace races by waiting until the network
8516 * device is fully setup before sending notifications.
8518 if (!dev->rtnl_link_ops ||
8519 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8520 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8526 if (dev->netdev_ops->ndo_uninit)
8527 dev->netdev_ops->ndo_uninit(dev);
8528 if (dev->priv_destructor)
8529 dev->priv_destructor(dev);
8532 EXPORT_SYMBOL(register_netdevice);
8535 * init_dummy_netdev - init a dummy network device for NAPI
8536 * @dev: device to init
8538 * This takes a network device structure and initialize the minimum
8539 * amount of fields so it can be used to schedule NAPI polls without
8540 * registering a full blown interface. This is to be used by drivers
8541 * that need to tie several hardware interfaces to a single NAPI
8542 * poll scheduler due to HW limitations.
8544 int init_dummy_netdev(struct net_device *dev)
8546 /* Clear everything. Note we don't initialize spinlocks
8547 * are they aren't supposed to be taken by any of the
8548 * NAPI code and this dummy netdev is supposed to be
8549 * only ever used for NAPI polls
8551 memset(dev, 0, sizeof(struct net_device));
8553 /* make sure we BUG if trying to hit standard
8554 * register/unregister code path
8556 dev->reg_state = NETREG_DUMMY;
8558 /* NAPI wants this */
8559 INIT_LIST_HEAD(&dev->napi_list);
8561 /* a dummy interface is started by default */
8562 set_bit(__LINK_STATE_PRESENT, &dev->state);
8563 set_bit(__LINK_STATE_START, &dev->state);
8565 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8566 * because users of this 'device' dont need to change
8572 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8576 * register_netdev - register a network device
8577 * @dev: device to register
8579 * Take a completed network device structure and add it to the kernel
8580 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8581 * chain. 0 is returned on success. A negative errno code is returned
8582 * on a failure to set up the device, or if the name is a duplicate.
8584 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8585 * and expands the device name if you passed a format string to
8588 int register_netdev(struct net_device *dev)
8592 if (rtnl_lock_killable())
8594 err = register_netdevice(dev);
8598 EXPORT_SYMBOL(register_netdev);
8600 int netdev_refcnt_read(const struct net_device *dev)
8604 for_each_possible_cpu(i)
8605 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8608 EXPORT_SYMBOL(netdev_refcnt_read);
8611 * netdev_wait_allrefs - wait until all references are gone.
8612 * @dev: target net_device
8614 * This is called when unregistering network devices.
8616 * Any protocol or device that holds a reference should register
8617 * for netdevice notification, and cleanup and put back the
8618 * reference if they receive an UNREGISTER event.
8619 * We can get stuck here if buggy protocols don't correctly
8622 static void netdev_wait_allrefs(struct net_device *dev)
8624 unsigned long rebroadcast_time, warning_time;
8627 linkwatch_forget_dev(dev);
8629 rebroadcast_time = warning_time = jiffies;
8630 refcnt = netdev_refcnt_read(dev);
8632 while (refcnt != 0) {
8633 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8636 /* Rebroadcast unregister notification */
8637 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8643 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8645 /* We must not have linkwatch events
8646 * pending on unregister. If this
8647 * happens, we simply run the queue
8648 * unscheduled, resulting in a noop
8651 linkwatch_run_queue();
8656 rebroadcast_time = jiffies;
8661 refcnt = netdev_refcnt_read(dev);
8663 if (time_after(jiffies, warning_time + 10 * HZ)) {
8664 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8666 warning_time = jiffies;
8675 * register_netdevice(x1);
8676 * register_netdevice(x2);
8678 * unregister_netdevice(y1);
8679 * unregister_netdevice(y2);
8685 * We are invoked by rtnl_unlock().
8686 * This allows us to deal with problems:
8687 * 1) We can delete sysfs objects which invoke hotplug
8688 * without deadlocking with linkwatch via keventd.
8689 * 2) Since we run with the RTNL semaphore not held, we can sleep
8690 * safely in order to wait for the netdev refcnt to drop to zero.
8692 * We must not return until all unregister events added during
8693 * the interval the lock was held have been completed.
8695 void netdev_run_todo(void)
8697 struct list_head list;
8699 /* Snapshot list, allow later requests */
8700 list_replace_init(&net_todo_list, &list);
8705 /* Wait for rcu callbacks to finish before next phase */
8706 if (!list_empty(&list))
8709 while (!list_empty(&list)) {
8710 struct net_device *dev
8711 = list_first_entry(&list, struct net_device, todo_list);
8712 list_del(&dev->todo_list);
8714 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8715 pr_err("network todo '%s' but state %d\n",
8716 dev->name, dev->reg_state);
8721 dev->reg_state = NETREG_UNREGISTERED;
8723 netdev_wait_allrefs(dev);
8726 BUG_ON(netdev_refcnt_read(dev));
8727 BUG_ON(!list_empty(&dev->ptype_all));
8728 BUG_ON(!list_empty(&dev->ptype_specific));
8729 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8730 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8731 #if IS_ENABLED(CONFIG_DECNET)
8732 WARN_ON(dev->dn_ptr);
8734 if (dev->priv_destructor)
8735 dev->priv_destructor(dev);
8736 if (dev->needs_free_netdev)
8739 /* Report a network device has been unregistered */
8741 dev_net(dev)->dev_unreg_count--;
8743 wake_up(&netdev_unregistering_wq);
8745 /* Free network device */
8746 kobject_put(&dev->dev.kobj);
8750 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8751 * all the same fields in the same order as net_device_stats, with only
8752 * the type differing, but rtnl_link_stats64 may have additional fields
8753 * at the end for newer counters.
8755 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8756 const struct net_device_stats *netdev_stats)
8758 #if BITS_PER_LONG == 64
8759 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8760 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8761 /* zero out counters that only exist in rtnl_link_stats64 */
8762 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8763 sizeof(*stats64) - sizeof(*netdev_stats));
8765 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8766 const unsigned long *src = (const unsigned long *)netdev_stats;
8767 u64 *dst = (u64 *)stats64;
8769 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8770 for (i = 0; i < n; i++)
8772 /* zero out counters that only exist in rtnl_link_stats64 */
8773 memset((char *)stats64 + n * sizeof(u64), 0,
8774 sizeof(*stats64) - n * sizeof(u64));
8777 EXPORT_SYMBOL(netdev_stats_to_stats64);
8780 * dev_get_stats - get network device statistics
8781 * @dev: device to get statistics from
8782 * @storage: place to store stats
8784 * Get network statistics from device. Return @storage.
8785 * The device driver may provide its own method by setting
8786 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8787 * otherwise the internal statistics structure is used.
8789 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8790 struct rtnl_link_stats64 *storage)
8792 const struct net_device_ops *ops = dev->netdev_ops;
8794 if (ops->ndo_get_stats64) {
8795 memset(storage, 0, sizeof(*storage));
8796 ops->ndo_get_stats64(dev, storage);
8797 } else if (ops->ndo_get_stats) {
8798 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8800 netdev_stats_to_stats64(storage, &dev->stats);
8802 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8803 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8804 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8807 EXPORT_SYMBOL(dev_get_stats);
8809 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8811 struct netdev_queue *queue = dev_ingress_queue(dev);
8813 #ifdef CONFIG_NET_CLS_ACT
8816 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8819 netdev_init_one_queue(dev, queue, NULL);
8820 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8821 queue->qdisc_sleeping = &noop_qdisc;
8822 rcu_assign_pointer(dev->ingress_queue, queue);
8827 static const struct ethtool_ops default_ethtool_ops;
8829 void netdev_set_default_ethtool_ops(struct net_device *dev,
8830 const struct ethtool_ops *ops)
8832 if (dev->ethtool_ops == &default_ethtool_ops)
8833 dev->ethtool_ops = ops;
8835 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8837 void netdev_freemem(struct net_device *dev)
8839 char *addr = (char *)dev - dev->padded;
8845 * alloc_netdev_mqs - allocate network device
8846 * @sizeof_priv: size of private data to allocate space for
8847 * @name: device name format string
8848 * @name_assign_type: origin of device name
8849 * @setup: callback to initialize device
8850 * @txqs: the number of TX subqueues to allocate
8851 * @rxqs: the number of RX subqueues to allocate
8853 * Allocates a struct net_device with private data area for driver use
8854 * and performs basic initialization. Also allocates subqueue structs
8855 * for each queue on the device.
8857 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8858 unsigned char name_assign_type,
8859 void (*setup)(struct net_device *),
8860 unsigned int txqs, unsigned int rxqs)
8862 struct net_device *dev;
8863 unsigned int alloc_size;
8864 struct net_device *p;
8866 BUG_ON(strlen(name) >= sizeof(dev->name));
8869 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8874 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8878 alloc_size = sizeof(struct net_device);
8880 /* ensure 32-byte alignment of private area */
8881 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8882 alloc_size += sizeof_priv;
8884 /* ensure 32-byte alignment of whole construct */
8885 alloc_size += NETDEV_ALIGN - 1;
8887 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8891 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8892 dev->padded = (char *)dev - (char *)p;
8894 dev->pcpu_refcnt = alloc_percpu(int);
8895 if (!dev->pcpu_refcnt)
8898 if (dev_addr_init(dev))
8904 dev_net_set(dev, &init_net);
8906 dev->gso_max_size = GSO_MAX_SIZE;
8907 dev->gso_max_segs = GSO_MAX_SEGS;
8909 INIT_LIST_HEAD(&dev->napi_list);
8910 INIT_LIST_HEAD(&dev->unreg_list);
8911 INIT_LIST_HEAD(&dev->close_list);
8912 INIT_LIST_HEAD(&dev->link_watch_list);
8913 INIT_LIST_HEAD(&dev->adj_list.upper);
8914 INIT_LIST_HEAD(&dev->adj_list.lower);
8915 INIT_LIST_HEAD(&dev->ptype_all);
8916 INIT_LIST_HEAD(&dev->ptype_specific);
8917 #ifdef CONFIG_NET_SCHED
8918 hash_init(dev->qdisc_hash);
8920 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8923 if (!dev->tx_queue_len) {
8924 dev->priv_flags |= IFF_NO_QUEUE;
8925 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8928 dev->num_tx_queues = txqs;
8929 dev->real_num_tx_queues = txqs;
8930 if (netif_alloc_netdev_queues(dev))
8933 dev->num_rx_queues = rxqs;
8934 dev->real_num_rx_queues = rxqs;
8935 if (netif_alloc_rx_queues(dev))
8938 strcpy(dev->name, name);
8939 dev->name_assign_type = name_assign_type;
8940 dev->group = INIT_NETDEV_GROUP;
8941 if (!dev->ethtool_ops)
8942 dev->ethtool_ops = &default_ethtool_ops;
8944 nf_hook_ingress_init(dev);
8953 free_percpu(dev->pcpu_refcnt);
8955 netdev_freemem(dev);
8958 EXPORT_SYMBOL(alloc_netdev_mqs);
8961 * free_netdev - free network device
8964 * This function does the last stage of destroying an allocated device
8965 * interface. The reference to the device object is released. If this
8966 * is the last reference then it will be freed.Must be called in process
8969 void free_netdev(struct net_device *dev)
8971 struct napi_struct *p, *n;
8974 netif_free_tx_queues(dev);
8975 netif_free_rx_queues(dev);
8977 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8979 /* Flush device addresses */
8980 dev_addr_flush(dev);
8982 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8985 free_percpu(dev->pcpu_refcnt);
8986 dev->pcpu_refcnt = NULL;
8988 /* Compatibility with error handling in drivers */
8989 if (dev->reg_state == NETREG_UNINITIALIZED) {
8990 netdev_freemem(dev);
8994 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8995 dev->reg_state = NETREG_RELEASED;
8997 /* will free via device release */
8998 put_device(&dev->dev);
9000 EXPORT_SYMBOL(free_netdev);
9003 * synchronize_net - Synchronize with packet receive processing
9005 * Wait for packets currently being received to be done.
9006 * Does not block later packets from starting.
9008 void synchronize_net(void)
9011 if (rtnl_is_locked())
9012 synchronize_rcu_expedited();
9016 EXPORT_SYMBOL(synchronize_net);
9019 * unregister_netdevice_queue - remove device from the kernel
9023 * This function shuts down a device interface and removes it
9024 * from the kernel tables.
9025 * If head not NULL, device is queued to be unregistered later.
9027 * Callers must hold the rtnl semaphore. You may want
9028 * unregister_netdev() instead of this.
9031 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9036 list_move_tail(&dev->unreg_list, head);
9038 rollback_registered(dev);
9039 /* Finish processing unregister after unlock */
9043 EXPORT_SYMBOL(unregister_netdevice_queue);
9046 * unregister_netdevice_many - unregister many devices
9047 * @head: list of devices
9049 * Note: As most callers use a stack allocated list_head,
9050 * we force a list_del() to make sure stack wont be corrupted later.
9052 void unregister_netdevice_many(struct list_head *head)
9054 struct net_device *dev;
9056 if (!list_empty(head)) {
9057 rollback_registered_many(head);
9058 list_for_each_entry(dev, head, unreg_list)
9063 EXPORT_SYMBOL(unregister_netdevice_many);
9066 * unregister_netdev - remove device from the kernel
9069 * This function shuts down a device interface and removes it
9070 * from the kernel tables.
9072 * This is just a wrapper for unregister_netdevice that takes
9073 * the rtnl semaphore. In general you want to use this and not
9074 * unregister_netdevice.
9076 void unregister_netdev(struct net_device *dev)
9079 unregister_netdevice(dev);
9082 EXPORT_SYMBOL(unregister_netdev);
9085 * dev_change_net_namespace - move device to different nethost namespace
9087 * @net: network namespace
9088 * @pat: If not NULL name pattern to try if the current device name
9089 * is already taken in the destination network namespace.
9091 * This function shuts down a device interface and moves it
9092 * to a new network namespace. On success 0 is returned, on
9093 * a failure a netagive errno code is returned.
9095 * Callers must hold the rtnl semaphore.
9098 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9100 int err, new_nsid, new_ifindex;
9104 /* Don't allow namespace local devices to be moved. */
9106 if (dev->features & NETIF_F_NETNS_LOCAL)
9109 /* Ensure the device has been registrered */
9110 if (dev->reg_state != NETREG_REGISTERED)
9113 /* Get out if there is nothing todo */
9115 if (net_eq(dev_net(dev), net))
9118 /* Pick the destination device name, and ensure
9119 * we can use it in the destination network namespace.
9122 if (__dev_get_by_name(net, dev->name)) {
9123 /* We get here if we can't use the current device name */
9126 err = dev_get_valid_name(net, dev, pat);
9132 * And now a mini version of register_netdevice unregister_netdevice.
9135 /* If device is running close it first. */
9138 /* And unlink it from device chain */
9139 unlist_netdevice(dev);
9143 /* Shutdown queueing discipline. */
9146 /* Notify protocols, that we are about to destroy
9147 * this device. They should clean all the things.
9149 * Note that dev->reg_state stays at NETREG_REGISTERED.
9150 * This is wanted because this way 8021q and macvlan know
9151 * the device is just moving and can keep their slaves up.
9153 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9156 new_nsid = peernet2id_alloc(dev_net(dev), net);
9157 /* If there is an ifindex conflict assign a new one */
9158 if (__dev_get_by_index(net, dev->ifindex))
9159 new_ifindex = dev_new_index(net);
9161 new_ifindex = dev->ifindex;
9163 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9167 * Flush the unicast and multicast chains
9172 /* Send a netdev-removed uevent to the old namespace */
9173 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9174 netdev_adjacent_del_links(dev);
9176 /* Actually switch the network namespace */
9177 dev_net_set(dev, net);
9178 dev->ifindex = new_ifindex;
9180 /* Send a netdev-add uevent to the new namespace */
9181 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9182 netdev_adjacent_add_links(dev);
9184 /* Fixup kobjects */
9185 err = device_rename(&dev->dev, dev->name);
9188 /* Add the device back in the hashes */
9189 list_netdevice(dev);
9191 /* Notify protocols, that a new device appeared. */
9192 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9195 * Prevent userspace races by waiting until the network
9196 * device is fully setup before sending notifications.
9198 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9205 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9207 static int dev_cpu_dead(unsigned int oldcpu)
9209 struct sk_buff **list_skb;
9210 struct sk_buff *skb;
9212 struct softnet_data *sd, *oldsd, *remsd = NULL;
9214 local_irq_disable();
9215 cpu = smp_processor_id();
9216 sd = &per_cpu(softnet_data, cpu);
9217 oldsd = &per_cpu(softnet_data, oldcpu);
9219 /* Find end of our completion_queue. */
9220 list_skb = &sd->completion_queue;
9222 list_skb = &(*list_skb)->next;
9223 /* Append completion queue from offline CPU. */
9224 *list_skb = oldsd->completion_queue;
9225 oldsd->completion_queue = NULL;
9227 /* Append output queue from offline CPU. */
9228 if (oldsd->output_queue) {
9229 *sd->output_queue_tailp = oldsd->output_queue;
9230 sd->output_queue_tailp = oldsd->output_queue_tailp;
9231 oldsd->output_queue = NULL;
9232 oldsd->output_queue_tailp = &oldsd->output_queue;
9234 /* Append NAPI poll list from offline CPU, with one exception :
9235 * process_backlog() must be called by cpu owning percpu backlog.
9236 * We properly handle process_queue & input_pkt_queue later.
9238 while (!list_empty(&oldsd->poll_list)) {
9239 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9243 list_del_init(&napi->poll_list);
9244 if (napi->poll == process_backlog)
9247 ____napi_schedule(sd, napi);
9250 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9254 remsd = oldsd->rps_ipi_list;
9255 oldsd->rps_ipi_list = NULL;
9257 /* send out pending IPI's on offline CPU */
9258 net_rps_send_ipi(remsd);
9260 /* Process offline CPU's input_pkt_queue */
9261 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9263 input_queue_head_incr(oldsd);
9265 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9267 input_queue_head_incr(oldsd);
9274 * netdev_increment_features - increment feature set by one
9275 * @all: current feature set
9276 * @one: new feature set
9277 * @mask: mask feature set
9279 * Computes a new feature set after adding a device with feature set
9280 * @one to the master device with current feature set @all. Will not
9281 * enable anything that is off in @mask. Returns the new feature set.
9283 netdev_features_t netdev_increment_features(netdev_features_t all,
9284 netdev_features_t one, netdev_features_t mask)
9286 if (mask & NETIF_F_HW_CSUM)
9287 mask |= NETIF_F_CSUM_MASK;
9288 mask |= NETIF_F_VLAN_CHALLENGED;
9290 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9291 all &= one | ~NETIF_F_ALL_FOR_ALL;
9293 /* If one device supports hw checksumming, set for all. */
9294 if (all & NETIF_F_HW_CSUM)
9295 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9299 EXPORT_SYMBOL(netdev_increment_features);
9301 static struct hlist_head * __net_init netdev_create_hash(void)
9304 struct hlist_head *hash;
9306 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9308 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9309 INIT_HLIST_HEAD(&hash[i]);
9314 /* Initialize per network namespace state */
9315 static int __net_init netdev_init(struct net *net)
9317 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9318 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9320 if (net != &init_net)
9321 INIT_LIST_HEAD(&net->dev_base_head);
9323 net->dev_name_head = netdev_create_hash();
9324 if (net->dev_name_head == NULL)
9327 net->dev_index_head = netdev_create_hash();
9328 if (net->dev_index_head == NULL)
9334 kfree(net->dev_name_head);
9340 * netdev_drivername - network driver for the device
9341 * @dev: network device
9343 * Determine network driver for device.
9345 const char *netdev_drivername(const struct net_device *dev)
9347 const struct device_driver *driver;
9348 const struct device *parent;
9349 const char *empty = "";
9351 parent = dev->dev.parent;
9355 driver = parent->driver;
9356 if (driver && driver->name)
9357 return driver->name;
9361 static void __netdev_printk(const char *level, const struct net_device *dev,
9362 struct va_format *vaf)
9364 if (dev && dev->dev.parent) {
9365 dev_printk_emit(level[1] - '0',
9368 dev_driver_string(dev->dev.parent),
9369 dev_name(dev->dev.parent),
9370 netdev_name(dev), netdev_reg_state(dev),
9373 printk("%s%s%s: %pV",
9374 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9376 printk("%s(NULL net_device): %pV", level, vaf);
9380 void netdev_printk(const char *level, const struct net_device *dev,
9381 const char *format, ...)
9383 struct va_format vaf;
9386 va_start(args, format);
9391 __netdev_printk(level, dev, &vaf);
9395 EXPORT_SYMBOL(netdev_printk);
9397 #define define_netdev_printk_level(func, level) \
9398 void func(const struct net_device *dev, const char *fmt, ...) \
9400 struct va_format vaf; \
9403 va_start(args, fmt); \
9408 __netdev_printk(level, dev, &vaf); \
9412 EXPORT_SYMBOL(func);
9414 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9415 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9416 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9417 define_netdev_printk_level(netdev_err, KERN_ERR);
9418 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9419 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9420 define_netdev_printk_level(netdev_info, KERN_INFO);
9422 static void __net_exit netdev_exit(struct net *net)
9424 kfree(net->dev_name_head);
9425 kfree(net->dev_index_head);
9426 if (net != &init_net)
9427 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9430 static struct pernet_operations __net_initdata netdev_net_ops = {
9431 .init = netdev_init,
9432 .exit = netdev_exit,
9435 static void __net_exit default_device_exit(struct net *net)
9437 struct net_device *dev, *aux;
9439 * Push all migratable network devices back to the
9440 * initial network namespace
9443 for_each_netdev_safe(net, dev, aux) {
9445 char fb_name[IFNAMSIZ];
9447 /* Ignore unmoveable devices (i.e. loopback) */
9448 if (dev->features & NETIF_F_NETNS_LOCAL)
9451 /* Leave virtual devices for the generic cleanup */
9452 if (dev->rtnl_link_ops)
9455 /* Push remaining network devices to init_net */
9456 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9457 err = dev_change_net_namespace(dev, &init_net, fb_name);
9459 pr_emerg("%s: failed to move %s to init_net: %d\n",
9460 __func__, dev->name, err);
9467 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9469 /* Return with the rtnl_lock held when there are no network
9470 * devices unregistering in any network namespace in net_list.
9474 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9476 add_wait_queue(&netdev_unregistering_wq, &wait);
9478 unregistering = false;
9480 list_for_each_entry(net, net_list, exit_list) {
9481 if (net->dev_unreg_count > 0) {
9482 unregistering = true;
9490 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9492 remove_wait_queue(&netdev_unregistering_wq, &wait);
9495 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9497 /* At exit all network devices most be removed from a network
9498 * namespace. Do this in the reverse order of registration.
9499 * Do this across as many network namespaces as possible to
9500 * improve batching efficiency.
9502 struct net_device *dev;
9504 LIST_HEAD(dev_kill_list);
9506 /* To prevent network device cleanup code from dereferencing
9507 * loopback devices or network devices that have been freed
9508 * wait here for all pending unregistrations to complete,
9509 * before unregistring the loopback device and allowing the
9510 * network namespace be freed.
9512 * The netdev todo list containing all network devices
9513 * unregistrations that happen in default_device_exit_batch
9514 * will run in the rtnl_unlock() at the end of
9515 * default_device_exit_batch.
9517 rtnl_lock_unregistering(net_list);
9518 list_for_each_entry(net, net_list, exit_list) {
9519 for_each_netdev_reverse(net, dev) {
9520 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9521 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9523 unregister_netdevice_queue(dev, &dev_kill_list);
9526 unregister_netdevice_many(&dev_kill_list);
9530 static struct pernet_operations __net_initdata default_device_ops = {
9531 .exit = default_device_exit,
9532 .exit_batch = default_device_exit_batch,
9536 * Initialize the DEV module. At boot time this walks the device list and
9537 * unhooks any devices that fail to initialise (normally hardware not
9538 * present) and leaves us with a valid list of present and active devices.
9543 * This is called single threaded during boot, so no need
9544 * to take the rtnl semaphore.
9546 static int __init net_dev_init(void)
9548 int i, rc = -ENOMEM;
9550 BUG_ON(!dev_boot_phase);
9552 if (dev_proc_init())
9555 if (netdev_kobject_init())
9558 INIT_LIST_HEAD(&ptype_all);
9559 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9560 INIT_LIST_HEAD(&ptype_base[i]);
9562 INIT_LIST_HEAD(&offload_base);
9564 if (register_pernet_subsys(&netdev_net_ops))
9568 * Initialise the packet receive queues.
9571 for_each_possible_cpu(i) {
9572 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9573 struct softnet_data *sd = &per_cpu(softnet_data, i);
9575 INIT_WORK(flush, flush_backlog);
9577 skb_queue_head_init(&sd->input_pkt_queue);
9578 skb_queue_head_init(&sd->process_queue);
9579 #ifdef CONFIG_XFRM_OFFLOAD
9580 skb_queue_head_init(&sd->xfrm_backlog);
9582 INIT_LIST_HEAD(&sd->poll_list);
9583 sd->output_queue_tailp = &sd->output_queue;
9585 sd->csd.func = rps_trigger_softirq;
9590 init_gro_hash(&sd->backlog);
9591 sd->backlog.poll = process_backlog;
9592 sd->backlog.weight = weight_p;
9597 /* The loopback device is special if any other network devices
9598 * is present in a network namespace the loopback device must
9599 * be present. Since we now dynamically allocate and free the
9600 * loopback device ensure this invariant is maintained by
9601 * keeping the loopback device as the first device on the
9602 * list of network devices. Ensuring the loopback devices
9603 * is the first device that appears and the last network device
9606 if (register_pernet_device(&loopback_net_ops))
9609 if (register_pernet_device(&default_device_ops))
9612 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9613 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9615 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9616 NULL, dev_cpu_dead);
9623 subsys_initcall(net_dev_init);