2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
31 #define pr_fmt(fmt) "rcu: " fmt
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
71 #define MODULE_PARAM_PREFIX "rcutree."
73 /* Data structures. */
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 .level = { &sname##_state.node[0] }, \
98 .rda = &sname##_data, \
100 .gp_state = RCU_GP_IDLE, \
101 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
137 * optimize synchronize_rcu() to a simple barrier(). When this variable
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
159 static int rcu_scheduler_fully_active __read_mostly;
162 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
163 struct rcu_node *rnp, unsigned long gps, unsigned long flags);
164 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
165 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
166 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
167 static void invoke_rcu_core(void);
168 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
169 static void rcu_report_exp_rdp(struct rcu_state *rsp,
170 struct rcu_data *rdp, bool wake);
171 static void sync_sched_exp_online_cleanup(int cpu);
173 /* rcuc/rcub kthread realtime priority */
174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175 module_param(kthread_prio, int, 0644);
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 static int gp_preinit_delay;
180 module_param(gp_preinit_delay, int, 0444);
181 static int gp_init_delay;
182 module_param(gp_init_delay, int, 0444);
183 static int gp_cleanup_delay;
184 module_param(gp_cleanup_delay, int, 0444);
186 /* Retreive RCU kthreads priority for rcutorture */
187 int rcu_get_gp_kthreads_prio(void)
191 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
194 * Number of grace periods between delays, normalized by the duration of
195 * the delay. The longer the delay, the more the grace periods between
196 * each delay. The reason for this normalization is that it means that,
197 * for non-zero delays, the overall slowdown of grace periods is constant
198 * regardless of the duration of the delay. This arrangement balances
199 * the need for long delays to increase some race probabilities with the
200 * need for fast grace periods to increase other race probabilities.
202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
205 * Compute the mask of online CPUs for the specified rcu_node structure.
206 * This will not be stable unless the rcu_node structure's ->lock is
207 * held, but the bit corresponding to the current CPU will be stable
210 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
212 return READ_ONCE(rnp->qsmaskinitnext);
216 * Return true if an RCU grace period is in progress. The READ_ONCE()s
217 * permit this function to be invoked without holding the root rcu_node
218 * structure's ->lock, but of course results can be subject to change.
220 static int rcu_gp_in_progress(struct rcu_state *rsp)
222 return rcu_seq_state(rcu_seq_current(&rsp->gp_seq));
226 * Note a quiescent state. Because we do not need to know
227 * how many quiescent states passed, just if there was at least
228 * one since the start of the grace period, this just sets a flag.
229 * The caller must have disabled preemption.
231 void rcu_sched_qs(void)
233 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
234 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
236 trace_rcu_grace_period(TPS("rcu_sched"),
237 __this_cpu_read(rcu_sched_data.gp_seq),
239 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
240 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
242 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
243 rcu_report_exp_rdp(&rcu_sched_state,
244 this_cpu_ptr(&rcu_sched_data), true);
249 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
250 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
251 trace_rcu_grace_period(TPS("rcu_bh"),
252 __this_cpu_read(rcu_bh_data.gp_seq),
254 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
259 * Steal a bit from the bottom of ->dynticks for idle entry/exit
260 * control. Initially this is for TLB flushing.
262 #define RCU_DYNTICK_CTRL_MASK 0x1
263 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
264 #ifndef rcu_eqs_special_exit
265 #define rcu_eqs_special_exit() do { } while (0)
268 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
269 .dynticks_nesting = 1,
270 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
271 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
275 * Record entry into an extended quiescent state. This is only to be
276 * called when not already in an extended quiescent state.
278 static void rcu_dynticks_eqs_enter(void)
280 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
284 * CPUs seeing atomic_add_return() must see prior RCU read-side
285 * critical sections, and we also must force ordering with the
288 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
289 /* Better be in an extended quiescent state! */
290 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
291 (seq & RCU_DYNTICK_CTRL_CTR));
292 /* Better not have special action (TLB flush) pending! */
293 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
294 (seq & RCU_DYNTICK_CTRL_MASK));
298 * Record exit from an extended quiescent state. This is only to be
299 * called from an extended quiescent state.
301 static void rcu_dynticks_eqs_exit(void)
303 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
307 * CPUs seeing atomic_add_return() must see prior idle sojourns,
308 * and we also must force ordering with the next RCU read-side
311 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
312 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
313 !(seq & RCU_DYNTICK_CTRL_CTR));
314 if (seq & RCU_DYNTICK_CTRL_MASK) {
315 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
316 smp_mb__after_atomic(); /* _exit after clearing mask. */
317 /* Prefer duplicate flushes to losing a flush. */
318 rcu_eqs_special_exit();
323 * Reset the current CPU's ->dynticks counter to indicate that the
324 * newly onlined CPU is no longer in an extended quiescent state.
325 * This will either leave the counter unchanged, or increment it
326 * to the next non-quiescent value.
328 * The non-atomic test/increment sequence works because the upper bits
329 * of the ->dynticks counter are manipulated only by the corresponding CPU,
330 * or when the corresponding CPU is offline.
332 static void rcu_dynticks_eqs_online(void)
334 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
336 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
338 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
342 * Is the current CPU in an extended quiescent state?
344 * No ordering, as we are sampling CPU-local information.
346 bool rcu_dynticks_curr_cpu_in_eqs(void)
348 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
354 * Snapshot the ->dynticks counter with full ordering so as to allow
355 * stable comparison of this counter with past and future snapshots.
357 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
359 int snap = atomic_add_return(0, &rdtp->dynticks);
361 return snap & ~RCU_DYNTICK_CTRL_MASK;
365 * Return true if the snapshot returned from rcu_dynticks_snap()
366 * indicates that RCU is in an extended quiescent state.
368 static bool rcu_dynticks_in_eqs(int snap)
370 return !(snap & RCU_DYNTICK_CTRL_CTR);
374 * Return true if the CPU corresponding to the specified rcu_dynticks
375 * structure has spent some time in an extended quiescent state since
376 * rcu_dynticks_snap() returned the specified snapshot.
378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
380 return snap != rcu_dynticks_snap(rdtp);
384 * Set the special (bottom) bit of the specified CPU so that it
385 * will take special action (such as flushing its TLB) on the
386 * next exit from an extended quiescent state. Returns true if
387 * the bit was successfully set, or false if the CPU was not in
388 * an extended quiescent state.
390 bool rcu_eqs_special_set(int cpu)
394 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
397 old = atomic_read(&rdtp->dynticks);
398 if (old & RCU_DYNTICK_CTRL_CTR)
400 new = old | RCU_DYNTICK_CTRL_MASK;
401 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
406 * Let the RCU core know that this CPU has gone through the scheduler,
407 * which is a quiescent state. This is called when the need for a
408 * quiescent state is urgent, so we burn an atomic operation and full
409 * memory barriers to let the RCU core know about it, regardless of what
410 * this CPU might (or might not) do in the near future.
412 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
414 * The caller must have disabled interrupts and must not be idle.
416 static void rcu_momentary_dyntick_idle(void)
418 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
421 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
422 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
423 /* It is illegal to call this from idle state. */
424 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
428 * Note a context switch. This is a quiescent state for RCU-sched,
429 * and requires special handling for preemptible RCU.
430 * The caller must have disabled interrupts.
432 void rcu_note_context_switch(bool preempt)
434 barrier(); /* Avoid RCU read-side critical sections leaking down. */
435 trace_rcu_utilization(TPS("Start context switch"));
437 rcu_preempt_note_context_switch(preempt);
438 /* Load rcu_urgent_qs before other flags. */
439 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
441 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
442 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
443 rcu_momentary_dyntick_idle();
444 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
446 rcu_tasks_qs(current);
448 trace_rcu_utilization(TPS("End context switch"));
449 barrier(); /* Avoid RCU read-side critical sections leaking up. */
451 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
454 * Register a quiescent state for all RCU flavors. If there is an
455 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
456 * dyntick-idle quiescent state visible to other CPUs (but only for those
457 * RCU flavors in desperate need of a quiescent state, which will normally
458 * be none of them). Either way, do a lightweight quiescent state for
461 * The barrier() calls are redundant in the common case when this is
462 * called externally, but just in case this is called from within this
466 void rcu_all_qs(void)
470 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
473 /* Load rcu_urgent_qs before other flags. */
474 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
478 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
479 barrier(); /* Avoid RCU read-side critical sections leaking down. */
480 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
481 local_irq_save(flags);
482 rcu_momentary_dyntick_idle();
483 local_irq_restore(flags);
485 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
487 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
488 barrier(); /* Avoid RCU read-side critical sections leaking up. */
491 EXPORT_SYMBOL_GPL(rcu_all_qs);
493 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
494 static long blimit = DEFAULT_RCU_BLIMIT;
495 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
496 static long qhimark = DEFAULT_RCU_QHIMARK;
497 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
498 static long qlowmark = DEFAULT_RCU_QLOMARK;
500 module_param(blimit, long, 0444);
501 module_param(qhimark, long, 0444);
502 module_param(qlowmark, long, 0444);
504 static ulong jiffies_till_first_fqs = ULONG_MAX;
505 static ulong jiffies_till_next_fqs = ULONG_MAX;
506 static bool rcu_kick_kthreads;
508 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
511 int ret = kstrtoul(val, 0, &j);
514 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
518 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
521 int ret = kstrtoul(val, 0, &j);
524 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
528 static struct kernel_param_ops first_fqs_jiffies_ops = {
529 .set = param_set_first_fqs_jiffies,
530 .get = param_get_ulong,
533 static struct kernel_param_ops next_fqs_jiffies_ops = {
534 .set = param_set_next_fqs_jiffies,
535 .get = param_get_ulong,
538 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
539 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
540 module_param(rcu_kick_kthreads, bool, 0644);
543 * How long the grace period must be before we start recruiting
544 * quiescent-state help from rcu_note_context_switch().
546 static ulong jiffies_till_sched_qs = HZ / 10;
547 module_param(jiffies_till_sched_qs, ulong, 0444);
549 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
550 static void force_quiescent_state(struct rcu_state *rsp);
551 static int rcu_pending(void);
554 * Return the number of RCU GPs completed thus far for debug & stats.
556 unsigned long rcu_get_gp_seq(void)
558 return READ_ONCE(rcu_state_p->gp_seq);
560 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
563 * Return the number of RCU-sched GPs completed thus far for debug & stats.
565 unsigned long rcu_sched_get_gp_seq(void)
567 return READ_ONCE(rcu_sched_state.gp_seq);
569 EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq);
572 * Return the number of RCU-bh GPs completed thus far for debug & stats.
574 unsigned long rcu_bh_get_gp_seq(void)
576 return READ_ONCE(rcu_bh_state.gp_seq);
578 EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq);
581 * Return the number of RCU expedited batches completed thus far for
582 * debug & stats. Odd numbers mean that a batch is in progress, even
583 * numbers mean idle. The value returned will thus be roughly double
584 * the cumulative batches since boot.
586 unsigned long rcu_exp_batches_completed(void)
588 return rcu_state_p->expedited_sequence;
590 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
593 * Return the number of RCU-sched expedited batches completed thus far
594 * for debug & stats. Similar to rcu_exp_batches_completed().
596 unsigned long rcu_exp_batches_completed_sched(void)
598 return rcu_sched_state.expedited_sequence;
600 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
603 * Force a quiescent state.
605 void rcu_force_quiescent_state(void)
607 force_quiescent_state(rcu_state_p);
609 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
612 * Force a quiescent state for RCU BH.
614 void rcu_bh_force_quiescent_state(void)
616 force_quiescent_state(&rcu_bh_state);
618 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
621 * Force a quiescent state for RCU-sched.
623 void rcu_sched_force_quiescent_state(void)
625 force_quiescent_state(&rcu_sched_state);
627 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
630 * Show the state of the grace-period kthreads.
632 void show_rcu_gp_kthreads(void)
635 struct rcu_data *rdp;
636 struct rcu_node *rnp;
637 struct rcu_state *rsp;
639 for_each_rcu_flavor(rsp) {
640 pr_info("%s: wait state: %d ->state: %#lx\n",
641 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
642 rcu_for_each_node_breadth_first(rsp, rnp) {
643 if (ULONG_CMP_GE(rsp->gp_seq, rnp->gp_seq_needed))
645 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
646 rnp->grplo, rnp->grphi, rnp->gp_seq,
648 if (!rcu_is_leaf_node(rnp))
650 for_each_leaf_node_possible_cpu(rnp, cpu) {
651 rdp = per_cpu_ptr(rsp->rda, cpu);
653 ULONG_CMP_GE(rsp->gp_seq,
656 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
657 cpu, rdp->gp_seq_needed);
660 /* sched_show_task(rsp->gp_kthread); */
663 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
666 * Send along grace-period-related data for rcutorture diagnostics.
668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 unsigned long *gp_seq)
671 struct rcu_state *rsp = NULL;
680 case RCU_SCHED_FLAVOR:
681 rsp = &rcu_sched_state;
688 *flags = READ_ONCE(rsp->gp_flags);
689 *gp_seq = rcu_seq_current(&rsp->gp_seq);
691 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
694 * Return the root node of the specified rcu_state structure.
696 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
698 return &rsp->node[0];
702 * Enter an RCU extended quiescent state, which can be either the
703 * idle loop or adaptive-tickless usermode execution.
705 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
706 * the possibility of usermode upcalls having messed up our count
707 * of interrupt nesting level during the prior busy period.
709 static void rcu_eqs_enter(bool user)
711 struct rcu_state *rsp;
712 struct rcu_data *rdp;
713 struct rcu_dynticks *rdtp;
715 rdtp = this_cpu_ptr(&rcu_dynticks);
716 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
717 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
718 rdtp->dynticks_nesting == 0);
719 if (rdtp->dynticks_nesting != 1) {
720 rdtp->dynticks_nesting--;
724 lockdep_assert_irqs_disabled();
725 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
727 for_each_rcu_flavor(rsp) {
728 rdp = this_cpu_ptr(rsp->rda);
729 do_nocb_deferred_wakeup(rdp);
731 rcu_prepare_for_idle();
732 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
733 rcu_dynticks_eqs_enter();
734 rcu_dynticks_task_enter();
738 * rcu_idle_enter - inform RCU that current CPU is entering idle
740 * Enter idle mode, in other words, -leave- the mode in which RCU
741 * read-side critical sections can occur. (Though RCU read-side
742 * critical sections can occur in irq handlers in idle, a possibility
743 * handled by irq_enter() and irq_exit().)
745 * If you add or remove a call to rcu_idle_enter(), be sure to test with
746 * CONFIG_RCU_EQS_DEBUG=y.
748 void rcu_idle_enter(void)
750 lockdep_assert_irqs_disabled();
751 rcu_eqs_enter(false);
754 #ifdef CONFIG_NO_HZ_FULL
756 * rcu_user_enter - inform RCU that we are resuming userspace.
758 * Enter RCU idle mode right before resuming userspace. No use of RCU
759 * is permitted between this call and rcu_user_exit(). This way the
760 * CPU doesn't need to maintain the tick for RCU maintenance purposes
761 * when the CPU runs in userspace.
763 * If you add or remove a call to rcu_user_enter(), be sure to test with
764 * CONFIG_RCU_EQS_DEBUG=y.
766 void rcu_user_enter(void)
768 lockdep_assert_irqs_disabled();
771 #endif /* CONFIG_NO_HZ_FULL */
774 * rcu_nmi_exit - inform RCU of exit from NMI context
776 * If we are returning from the outermost NMI handler that interrupted an
777 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
778 * to let the RCU grace-period handling know that the CPU is back to
781 * If you add or remove a call to rcu_nmi_exit(), be sure to test
782 * with CONFIG_RCU_EQS_DEBUG=y.
784 void rcu_nmi_exit(void)
786 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
789 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
790 * (We are exiting an NMI handler, so RCU better be paying attention
793 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
794 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
797 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
798 * leave it in non-RCU-idle state.
800 if (rdtp->dynticks_nmi_nesting != 1) {
801 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
802 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
803 rdtp->dynticks_nmi_nesting - 2);
807 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
808 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
809 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
810 rcu_dynticks_eqs_enter();
814 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
816 * Exit from an interrupt handler, which might possibly result in entering
817 * idle mode, in other words, leaving the mode in which read-side critical
818 * sections can occur. The caller must have disabled interrupts.
820 * This code assumes that the idle loop never does anything that might
821 * result in unbalanced calls to irq_enter() and irq_exit(). If your
822 * architecture's idle loop violates this assumption, RCU will give you what
823 * you deserve, good and hard. But very infrequently and irreproducibly.
825 * Use things like work queues to work around this limitation.
827 * You have been warned.
829 * If you add or remove a call to rcu_irq_exit(), be sure to test with
830 * CONFIG_RCU_EQS_DEBUG=y.
832 void rcu_irq_exit(void)
834 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
836 lockdep_assert_irqs_disabled();
837 if (rdtp->dynticks_nmi_nesting == 1)
838 rcu_prepare_for_idle();
840 if (rdtp->dynticks_nmi_nesting == 0)
841 rcu_dynticks_task_enter();
845 * Wrapper for rcu_irq_exit() where interrupts are enabled.
847 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
848 * with CONFIG_RCU_EQS_DEBUG=y.
850 void rcu_irq_exit_irqson(void)
854 local_irq_save(flags);
856 local_irq_restore(flags);
860 * Exit an RCU extended quiescent state, which can be either the
861 * idle loop or adaptive-tickless usermode execution.
863 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
864 * allow for the possibility of usermode upcalls messing up our count of
865 * interrupt nesting level during the busy period that is just now starting.
867 static void rcu_eqs_exit(bool user)
869 struct rcu_dynticks *rdtp;
872 lockdep_assert_irqs_disabled();
873 rdtp = this_cpu_ptr(&rcu_dynticks);
874 oldval = rdtp->dynticks_nesting;
875 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
877 rdtp->dynticks_nesting++;
880 rcu_dynticks_task_exit();
881 rcu_dynticks_eqs_exit();
882 rcu_cleanup_after_idle();
883 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
884 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
885 WRITE_ONCE(rdtp->dynticks_nesting, 1);
886 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
890 * rcu_idle_exit - inform RCU that current CPU is leaving idle
892 * Exit idle mode, in other words, -enter- the mode in which RCU
893 * read-side critical sections can occur.
895 * If you add or remove a call to rcu_idle_exit(), be sure to test with
896 * CONFIG_RCU_EQS_DEBUG=y.
898 void rcu_idle_exit(void)
902 local_irq_save(flags);
904 local_irq_restore(flags);
907 #ifdef CONFIG_NO_HZ_FULL
909 * rcu_user_exit - inform RCU that we are exiting userspace.
911 * Exit RCU idle mode while entering the kernel because it can
912 * run a RCU read side critical section anytime.
914 * If you add or remove a call to rcu_user_exit(), be sure to test with
915 * CONFIG_RCU_EQS_DEBUG=y.
917 void rcu_user_exit(void)
921 #endif /* CONFIG_NO_HZ_FULL */
924 * rcu_nmi_enter - inform RCU of entry to NMI context
926 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
927 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
928 * that the CPU is active. This implementation permits nested NMIs, as
929 * long as the nesting level does not overflow an int. (You will probably
930 * run out of stack space first.)
932 * If you add or remove a call to rcu_nmi_enter(), be sure to test
933 * with CONFIG_RCU_EQS_DEBUG=y.
935 void rcu_nmi_enter(void)
937 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
940 /* Complain about underflow. */
941 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
944 * If idle from RCU viewpoint, atomically increment ->dynticks
945 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
946 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
947 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
948 * to be in the outermost NMI handler that interrupted an RCU-idle
949 * period (observation due to Andy Lutomirski).
951 if (rcu_dynticks_curr_cpu_in_eqs()) {
952 rcu_dynticks_eqs_exit();
955 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
956 rdtp->dynticks_nmi_nesting,
957 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
958 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
959 rdtp->dynticks_nmi_nesting + incby);
964 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
966 * Enter an interrupt handler, which might possibly result in exiting
967 * idle mode, in other words, entering the mode in which read-side critical
968 * sections can occur. The caller must have disabled interrupts.
970 * Note that the Linux kernel is fully capable of entering an interrupt
971 * handler that it never exits, for example when doing upcalls to user mode!
972 * This code assumes that the idle loop never does upcalls to user mode.
973 * If your architecture's idle loop does do upcalls to user mode (or does
974 * anything else that results in unbalanced calls to the irq_enter() and
975 * irq_exit() functions), RCU will give you what you deserve, good and hard.
976 * But very infrequently and irreproducibly.
978 * Use things like work queues to work around this limitation.
980 * You have been warned.
982 * If you add or remove a call to rcu_irq_enter(), be sure to test with
983 * CONFIG_RCU_EQS_DEBUG=y.
985 void rcu_irq_enter(void)
987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
989 lockdep_assert_irqs_disabled();
990 if (rdtp->dynticks_nmi_nesting == 0)
991 rcu_dynticks_task_exit();
993 if (rdtp->dynticks_nmi_nesting == 1)
994 rcu_cleanup_after_idle();
998 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1000 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1001 * with CONFIG_RCU_EQS_DEBUG=y.
1003 void rcu_irq_enter_irqson(void)
1005 unsigned long flags;
1007 local_irq_save(flags);
1009 local_irq_restore(flags);
1013 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1015 * Return true if RCU is watching the running CPU, which means that this
1016 * CPU can safely enter RCU read-side critical sections. In other words,
1017 * if the current CPU is in its idle loop and is neither in an interrupt
1018 * or NMI handler, return true.
1020 bool notrace rcu_is_watching(void)
1024 preempt_disable_notrace();
1025 ret = !rcu_dynticks_curr_cpu_in_eqs();
1026 preempt_enable_notrace();
1029 EXPORT_SYMBOL_GPL(rcu_is_watching);
1032 * If a holdout task is actually running, request an urgent quiescent
1033 * state from its CPU. This is unsynchronized, so migrations can cause
1034 * the request to go to the wrong CPU. Which is OK, all that will happen
1035 * is that the CPU's next context switch will be a bit slower and next
1036 * time around this task will generate another request.
1038 void rcu_request_urgent_qs_task(struct task_struct *t)
1045 return; /* This task is not running on that CPU. */
1046 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1049 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1052 * Is the current CPU online as far as RCU is concerned?
1054 * Disable preemption to avoid false positives that could otherwise
1055 * happen due to the current CPU number being sampled, this task being
1056 * preempted, its old CPU being taken offline, resuming on some other CPU,
1057 * then determining that its old CPU is now offline. Because there are
1058 * multiple flavors of RCU, and because this function can be called in the
1059 * midst of updating the flavors while a given CPU coming online or going
1060 * offline, it is necessary to check all flavors. If any of the flavors
1061 * believe that given CPU is online, it is considered to be online.
1063 * Disable checking if in an NMI handler because we cannot safely
1064 * report errors from NMI handlers anyway. In addition, it is OK to use
1065 * RCU on an offline processor during initial boot, hence the check for
1066 * rcu_scheduler_fully_active.
1068 bool rcu_lockdep_current_cpu_online(void)
1070 struct rcu_data *rdp;
1071 struct rcu_node *rnp;
1072 struct rcu_state *rsp;
1074 if (in_nmi() || !rcu_scheduler_fully_active)
1077 for_each_rcu_flavor(rsp) {
1078 rdp = this_cpu_ptr(rsp->rda);
1080 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) {
1088 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1090 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1093 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1095 * If the current CPU is idle or running at a first-level (not nested)
1096 * interrupt from idle, return true. The caller must have at least
1097 * disabled preemption.
1099 static int rcu_is_cpu_rrupt_from_idle(void)
1101 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1102 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1106 * We are reporting a quiescent state on behalf of some other CPU, so
1107 * it is our responsibility to check for and handle potential overflow
1108 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1109 * After all, the CPU might be in deep idle state, and thus executing no
1112 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1114 raw_lockdep_assert_held_rcu_node(rnp);
1115 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1117 WRITE_ONCE(rdp->gpwrap, true);
1118 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1119 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1123 * Snapshot the specified CPU's dynticks counter so that we can later
1124 * credit them with an implicit quiescent state. Return 1 if this CPU
1125 * is in dynticks idle mode, which is an extended quiescent state.
1127 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1129 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1130 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1131 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1132 rcu_gpnum_ovf(rdp->mynode, rdp);
1139 * Handler for the irq_work request posted when a grace period has
1140 * gone on for too long, but not yet long enough for an RCU CPU
1141 * stall warning. Set state appropriately, but just complain if
1142 * there is unexpected state on entry.
1144 static void rcu_iw_handler(struct irq_work *iwp)
1146 struct rcu_data *rdp;
1147 struct rcu_node *rnp;
1149 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1151 raw_spin_lock_rcu_node(rnp);
1152 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1153 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1154 rdp->rcu_iw_pending = false;
1156 raw_spin_unlock_rcu_node(rnp);
1160 * Return true if the specified CPU has passed through a quiescent
1161 * state by virtue of being in or having passed through an dynticks
1162 * idle state since the last call to dyntick_save_progress_counter()
1163 * for this same CPU, or by virtue of having been offline.
1165 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1170 struct rcu_node *rnp = rdp->mynode;
1173 * If the CPU passed through or entered a dynticks idle phase with
1174 * no active irq/NMI handlers, then we can safely pretend that the CPU
1175 * already acknowledged the request to pass through a quiescent
1176 * state. Either way, that CPU cannot possibly be in an RCU
1177 * read-side critical section that started before the beginning
1178 * of the current RCU grace period.
1180 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1181 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1182 rdp->dynticks_fqs++;
1183 rcu_gpnum_ovf(rnp, rdp);
1188 * Has this CPU encountered a cond_resched() since the beginning
1189 * of the grace period? For this to be the case, the CPU has to
1190 * have noticed the current grace period. This might not be the
1191 * case for nohz_full CPUs looping in the kernel.
1193 jtsq = jiffies_till_sched_qs;
1194 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1195 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1196 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1197 rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) {
1198 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc"));
1199 rcu_gpnum_ovf(rnp, rdp);
1201 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1202 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1203 smp_store_release(ruqp, true);
1206 /* If waiting too long on an offline CPU, complain. */
1207 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1208 time_after(jiffies, rdp->rsp->gp_start + HZ)) {
1210 struct rcu_node *rnp1;
1212 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1213 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1214 __func__, rnp->grplo, rnp->grphi, rnp->level,
1215 (long)rnp->gp_seq, (long)rnp->completedqs);
1216 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1217 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1218 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1219 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1220 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1221 __func__, rdp->cpu, ".o"[onl],
1222 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1223 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1224 return 1; /* Break things loose after complaining. */
1228 * A CPU running for an extended time within the kernel can
1229 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1230 * even context-switching back and forth between a pair of
1231 * in-kernel CPU-bound tasks cannot advance grace periods.
1232 * So if the grace period is old enough, make the CPU pay attention.
1233 * Note that the unsynchronized assignments to the per-CPU
1234 * rcu_need_heavy_qs variable are safe. Yes, setting of
1235 * bits can be lost, but they will be set again on the next
1236 * force-quiescent-state pass. So lost bit sets do not result
1237 * in incorrect behavior, merely in a grace period lasting
1238 * a few jiffies longer than it might otherwise. Because
1239 * there are at most four threads involved, and because the
1240 * updates are only once every few jiffies, the probability of
1241 * lossage (and thus of slight grace-period extension) is
1244 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1245 if (!READ_ONCE(*rnhqp) &&
1246 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1247 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1248 WRITE_ONCE(*rnhqp, true);
1249 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1250 smp_store_release(ruqp, true);
1251 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1255 * If more than halfway to RCU CPU stall-warning time, do a
1256 * resched_cpu() to try to loosen things up a bit. Also check to
1257 * see if the CPU is getting hammered with interrupts, but only
1258 * once per grace period, just to keep the IPIs down to a dull roar.
1260 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1261 resched_cpu(rdp->cpu);
1262 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1263 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1264 (rnp->ffmask & rdp->grpmask)) {
1265 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1266 rdp->rcu_iw_pending = true;
1267 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1268 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1275 static void record_gp_stall_check_time(struct rcu_state *rsp)
1277 unsigned long j = jiffies;
1281 j1 = rcu_jiffies_till_stall_check();
1282 /* Record ->gp_start before ->jiffies_stall. */
1283 smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */
1284 rsp->jiffies_resched = j + j1 / 2;
1285 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1289 * Convert a ->gp_state value to a character string.
1291 static const char *gp_state_getname(short gs)
1293 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1295 return gp_state_names[gs];
1299 * Complain about starvation of grace-period kthread.
1301 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1307 gpa = READ_ONCE(rsp->gp_activity);
1308 if (j - gpa > 2 * HZ) {
1309 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1311 (long)rcu_seq_current(&rsp->gp_seq),
1313 gp_state_getname(rsp->gp_state), rsp->gp_state,
1314 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1315 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1316 if (rsp->gp_kthread) {
1317 pr_err("RCU grace-period kthread stack dump:\n");
1318 sched_show_task(rsp->gp_kthread);
1319 wake_up_process(rsp->gp_kthread);
1325 * Dump stacks of all tasks running on stalled CPUs. First try using
1326 * NMIs, but fall back to manual remote stack tracing on architectures
1327 * that don't support NMI-based stack dumps. The NMI-triggered stack
1328 * traces are more accurate because they are printed by the target CPU.
1330 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1333 unsigned long flags;
1334 struct rcu_node *rnp;
1336 rcu_for_each_leaf_node(rsp, rnp) {
1337 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1338 for_each_leaf_node_possible_cpu(rnp, cpu)
1339 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1340 if (!trigger_single_cpu_backtrace(cpu))
1342 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347 * If too much time has passed in the current grace period, and if
1348 * so configured, go kick the relevant kthreads.
1350 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1354 if (!rcu_kick_kthreads)
1356 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1357 if (time_after(jiffies, j) && rsp->gp_kthread &&
1358 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1359 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1360 rcu_ftrace_dump(DUMP_ALL);
1361 wake_up_process(rsp->gp_kthread);
1362 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1366 static void panic_on_rcu_stall(void)
1368 if (sysctl_panic_on_rcu_stall)
1369 panic("RCU Stall\n");
1372 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq)
1375 unsigned long flags;
1379 struct rcu_node *rnp = rcu_get_root(rsp);
1382 /* Kick and suppress, if so configured. */
1383 rcu_stall_kick_kthreads(rsp);
1384 if (rcu_cpu_stall_suppress)
1388 * OK, time to rat on our buddy...
1389 * See Documentation/RCU/stallwarn.txt for info on how to debug
1390 * RCU CPU stall warnings.
1392 pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name);
1393 print_cpu_stall_info_begin();
1394 rcu_for_each_leaf_node(rsp, rnp) {
1395 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1396 ndetected += rcu_print_task_stall(rnp);
1397 if (rnp->qsmask != 0) {
1398 for_each_leaf_node_possible_cpu(rnp, cpu)
1399 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1400 print_cpu_stall_info(rsp, cpu);
1404 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1407 print_cpu_stall_info_end();
1408 for_each_possible_cpu(cpu)
1409 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1411 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1412 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1413 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
1415 rcu_dump_cpu_stacks(rsp);
1417 /* Complain about tasks blocking the grace period. */
1418 rcu_print_detail_task_stall(rsp);
1420 if (rcu_seq_current(&rsp->gp_seq) != gp_seq) {
1421 pr_err("INFO: Stall ended before state dump start\n");
1424 gpa = READ_ONCE(rsp->gp_activity);
1425 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1426 rsp->name, j - gpa, j, gpa,
1427 jiffies_till_next_fqs,
1428 rcu_get_root(rsp)->qsmask);
1429 /* In this case, the current CPU might be at fault. */
1430 sched_show_task(current);
1433 /* Rewrite if needed in case of slow consoles. */
1434 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1435 WRITE_ONCE(rsp->jiffies_stall,
1436 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1438 rcu_check_gp_kthread_starvation(rsp);
1440 panic_on_rcu_stall();
1442 force_quiescent_state(rsp); /* Kick them all. */
1445 static void print_cpu_stall(struct rcu_state *rsp)
1448 unsigned long flags;
1449 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1450 struct rcu_node *rnp = rcu_get_root(rsp);
1453 /* Kick and suppress, if so configured. */
1454 rcu_stall_kick_kthreads(rsp);
1455 if (rcu_cpu_stall_suppress)
1459 * OK, time to rat on ourselves...
1460 * See Documentation/RCU/stallwarn.txt for info on how to debug
1461 * RCU CPU stall warnings.
1463 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1464 print_cpu_stall_info_begin();
1465 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1466 print_cpu_stall_info(rsp, smp_processor_id());
1467 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1468 print_cpu_stall_info_end();
1469 for_each_possible_cpu(cpu)
1470 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1472 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1473 jiffies - rsp->gp_start,
1474 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
1476 rcu_check_gp_kthread_starvation(rsp);
1478 rcu_dump_cpu_stacks(rsp);
1480 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1481 /* Rewrite if needed in case of slow consoles. */
1482 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1483 WRITE_ONCE(rsp->jiffies_stall,
1484 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1485 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1487 panic_on_rcu_stall();
1490 * Attempt to revive the RCU machinery by forcing a context switch.
1492 * A context switch would normally allow the RCU state machine to make
1493 * progress and it could be we're stuck in kernel space without context
1494 * switches for an entirely unreasonable amount of time.
1496 resched_cpu(smp_processor_id());
1499 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1507 struct rcu_node *rnp;
1509 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1510 !rcu_gp_in_progress(rsp))
1512 rcu_stall_kick_kthreads(rsp);
1516 * Lots of memory barriers to reject false positives.
1518 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
1519 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
1520 * These values are updated in the opposite order with memory
1521 * barriers (or equivalent) during grace-period initialization
1522 * and cleanup. Now, a false positive can occur if we get an new
1523 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
1524 * But given the memory barriers, the only way that this can happen
1525 * is if one grace period ends and another starts between these
1526 * two fetches. This is detected by comparing the second fetch
1527 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
1529 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1530 * and rsp->gp_start suffice to forestall false positives.
1532 gs1 = READ_ONCE(rsp->gp_seq);
1533 smp_rmb(); /* Pick up ->gp_seq first... */
1534 js = READ_ONCE(rsp->jiffies_stall);
1535 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1536 gps = READ_ONCE(rsp->gp_start);
1537 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1538 gs2 = READ_ONCE(rsp->gp_seq);
1540 ULONG_CMP_LT(j, js) ||
1541 ULONG_CMP_GE(gps, js))
1542 return; /* No stall or GP completed since entering function. */
1544 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1545 if (rcu_gp_in_progress(rsp) &&
1546 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1547 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
1549 /* We haven't checked in, so go dump stack. */
1550 print_cpu_stall(rsp);
1552 } else if (rcu_gp_in_progress(rsp) &&
1553 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1554 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
1556 /* They had a few time units to dump stack, so complain. */
1557 print_other_cpu_stall(rsp, gs2);
1562 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1564 * Set the stall-warning timeout way off into the future, thus preventing
1565 * any RCU CPU stall-warning messages from appearing in the current set of
1566 * RCU grace periods.
1568 * The caller must disable hard irqs.
1570 void rcu_cpu_stall_reset(void)
1572 struct rcu_state *rsp;
1574 for_each_rcu_flavor(rsp)
1575 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1578 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1579 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1580 unsigned long gp_seq_req, const char *s)
1582 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req,
1583 rnp->level, rnp->grplo, rnp->grphi, s);
1587 * rcu_start_this_gp - Request the start of a particular grace period
1588 * @rnp_start: The leaf node of the CPU from which to start.
1589 * @rdp: The rcu_data corresponding to the CPU from which to start.
1590 * @gp_seq_req: The gp_seq of the grace period to start.
1592 * Start the specified grace period, as needed to handle newly arrived
1593 * callbacks. The required future grace periods are recorded in each
1594 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1595 * is reason to awaken the grace-period kthread.
1597 * The caller must hold the specified rcu_node structure's ->lock, which
1598 * is why the caller is responsible for waking the grace-period kthread.
1600 * Returns true if the GP thread needs to be awakened else false.
1602 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1603 unsigned long gp_seq_req)
1606 struct rcu_state *rsp = rdp->rsp;
1607 struct rcu_node *rnp;
1610 * Use funnel locking to either acquire the root rcu_node
1611 * structure's lock or bail out if the need for this grace period
1612 * has already been recorded -- or if that grace period has in
1613 * fact already started. If there is already a grace period in
1614 * progress in a non-leaf node, no recording is needed because the
1615 * end of the grace period will scan the leaf rcu_node structures.
1616 * Note that rnp_start->lock must not be released.
1618 raw_lockdep_assert_held_rcu_node(rnp_start);
1619 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1620 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1621 if (rnp != rnp_start)
1622 raw_spin_lock_rcu_node(rnp);
1623 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1624 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1625 (rnp != rnp_start &&
1626 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1627 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1631 rnp->gp_seq_needed = gp_seq_req;
1632 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1634 * We just marked the leaf or internal node, and a
1635 * grace period is in progress, which means that
1636 * rcu_gp_cleanup() will see the marking. Bail to
1637 * reduce contention.
1639 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1640 TPS("Startedleaf"));
1643 if (rnp != rnp_start && rnp->parent != NULL)
1644 raw_spin_unlock_rcu_node(rnp);
1646 break; /* At root, and perhaps also leaf. */
1649 /* If GP already in progress, just leave, otherwise start one. */
1650 if (rcu_gp_in_progress(rsp)) {
1651 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1654 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1655 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
1656 rsp->gp_req_activity = jiffies;
1657 if (!rsp->gp_kthread) {
1658 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1661 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq"));
1662 ret = true; /* Caller must wake GP kthread. */
1664 /* Push furthest requested GP to leaf node and rcu_data structure. */
1665 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1666 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1667 rdp->gp_seq_needed = rnp->gp_seq_needed;
1669 if (rnp != rnp_start)
1670 raw_spin_unlock_rcu_node(rnp);
1675 * Clean up any old requests for the just-ended grace period. Also return
1676 * whether any additional grace periods have been requested.
1678 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1681 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1683 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1685 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1686 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1687 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1692 * Awaken the grace-period kthread for the specified flavor of RCU.
1693 * Don't do a self-awaken, and don't bother awakening when there is
1694 * nothing for the grace-period kthread to do (as in several CPUs
1695 * raced to awaken, and we lost), and finally don't try to awaken
1696 * a kthread that has not yet been created.
1698 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1700 if (current == rsp->gp_kthread ||
1701 !READ_ONCE(rsp->gp_flags) ||
1704 swake_up_one(&rsp->gp_wq);
1708 * If there is room, assign a ->gp_seq number to any callbacks on this
1709 * CPU that have not already been assigned. Also accelerate any callbacks
1710 * that were previously assigned a ->gp_seq number that has since proven
1711 * to be too conservative, which can happen if callbacks get assigned a
1712 * ->gp_seq number while RCU is idle, but with reference to a non-root
1713 * rcu_node structure. This function is idempotent, so it does not hurt
1714 * to call it repeatedly. Returns an flag saying that we should awaken
1715 * the RCU grace-period kthread.
1717 * The caller must hold rnp->lock with interrupts disabled.
1719 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1720 struct rcu_data *rdp)
1722 unsigned long gp_seq_req;
1725 raw_lockdep_assert_held_rcu_node(rnp);
1727 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1728 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1732 * Callbacks are often registered with incomplete grace-period
1733 * information. Something about the fact that getting exact
1734 * information requires acquiring a global lock... RCU therefore
1735 * makes a conservative estimate of the grace period number at which
1736 * a given callback will become ready to invoke. The following
1737 * code checks this estimate and improves it when possible, thus
1738 * accelerating callback invocation to an earlier grace-period
1741 gp_seq_req = rcu_seq_snap(&rsp->gp_seq);
1742 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1743 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1745 /* Trace depending on how much we were able to accelerate. */
1746 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1747 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB"));
1749 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB"));
1754 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1755 * rcu_node structure's ->lock be held. It consults the cached value
1756 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1757 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1758 * while holding the leaf rcu_node structure's ->lock.
1760 static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp,
1761 struct rcu_node *rnp,
1762 struct rcu_data *rdp)
1767 lockdep_assert_irqs_disabled();
1768 c = rcu_seq_snap(&rsp->gp_seq);
1769 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1770 /* Old request still live, so mark recent callbacks. */
1771 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1774 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1775 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1776 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1778 rcu_gp_kthread_wake(rsp);
1782 * Move any callbacks whose grace period has completed to the
1783 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1784 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1785 * sublist. This function is idempotent, so it does not hurt to
1786 * invoke it repeatedly. As long as it is not invoked -too- often...
1787 * Returns true if the RCU grace-period kthread needs to be awakened.
1789 * The caller must hold rnp->lock with interrupts disabled.
1791 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1792 struct rcu_data *rdp)
1794 raw_lockdep_assert_held_rcu_node(rnp);
1796 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1797 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1801 * Find all callbacks whose ->gp_seq numbers indicate that they
1802 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1804 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1806 /* Classify any remaining callbacks. */
1807 return rcu_accelerate_cbs(rsp, rnp, rdp);
1811 * Update CPU-local rcu_data state to record the beginnings and ends of
1812 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1813 * structure corresponding to the current CPU, and must have irqs disabled.
1814 * Returns true if the grace-period kthread needs to be awakened.
1816 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1817 struct rcu_data *rdp)
1822 raw_lockdep_assert_held_rcu_node(rnp);
1824 if (rdp->gp_seq == rnp->gp_seq)
1825 return false; /* Nothing to do. */
1827 /* Handle the ends of any preceding grace periods first. */
1828 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1829 unlikely(READ_ONCE(rdp->gpwrap))) {
1830 ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */
1831 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend"));
1833 ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */
1836 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1837 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1838 unlikely(READ_ONCE(rdp->gpwrap))) {
1840 * If the current grace period is waiting for this CPU,
1841 * set up to detect a quiescent state, otherwise don't
1842 * go looking for one.
1844 trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart"));
1845 need_gp = !!(rnp->qsmask & rdp->grpmask);
1846 rdp->cpu_no_qs.b.norm = need_gp;
1847 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1848 rdp->core_needs_qs = need_gp;
1849 zero_cpu_stall_ticks(rdp);
1851 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1852 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1853 rdp->gp_seq_needed = rnp->gp_seq_needed;
1854 WRITE_ONCE(rdp->gpwrap, false);
1855 rcu_gpnum_ovf(rnp, rdp);
1859 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1861 unsigned long flags;
1863 struct rcu_node *rnp;
1865 local_irq_save(flags);
1867 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1868 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1869 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1870 local_irq_restore(flags);
1873 needwake = __note_gp_changes(rsp, rnp, rdp);
1874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1876 rcu_gp_kthread_wake(rsp);
1879 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1882 !(rcu_seq_ctr(rsp->gp_seq) %
1883 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1884 schedule_timeout_uninterruptible(delay);
1888 * Initialize a new grace period. Return false if no grace period required.
1890 static bool rcu_gp_init(struct rcu_state *rsp)
1892 unsigned long flags;
1893 unsigned long oldmask;
1895 struct rcu_data *rdp;
1896 struct rcu_node *rnp = rcu_get_root(rsp);
1898 WRITE_ONCE(rsp->gp_activity, jiffies);
1899 raw_spin_lock_irq_rcu_node(rnp);
1900 if (!READ_ONCE(rsp->gp_flags)) {
1901 /* Spurious wakeup, tell caller to go back to sleep. */
1902 raw_spin_unlock_irq_rcu_node(rnp);
1905 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1907 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1909 * Grace period already in progress, don't start another.
1910 * Not supposed to be able to happen.
1912 raw_spin_unlock_irq_rcu_node(rnp);
1916 /* Advance to a new grace period and initialize state. */
1917 record_gp_stall_check_time(rsp);
1918 /* Record GP times before starting GP, hence rcu_seq_start(). */
1919 rcu_seq_start(&rsp->gp_seq);
1920 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start"));
1921 raw_spin_unlock_irq_rcu_node(rnp);
1924 * Apply per-leaf buffered online and offline operations to the
1925 * rcu_node tree. Note that this new grace period need not wait
1926 * for subsequent online CPUs, and that quiescent-state forcing
1927 * will handle subsequent offline CPUs.
1929 rsp->gp_state = RCU_GP_ONOFF;
1930 rcu_for_each_leaf_node(rsp, rnp) {
1931 spin_lock(&rsp->ofl_lock);
1932 raw_spin_lock_irq_rcu_node(rnp);
1933 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1934 !rnp->wait_blkd_tasks) {
1935 /* Nothing to do on this leaf rcu_node structure. */
1936 raw_spin_unlock_irq_rcu_node(rnp);
1937 spin_unlock(&rsp->ofl_lock);
1941 /* Record old state, apply changes to ->qsmaskinit field. */
1942 oldmask = rnp->qsmaskinit;
1943 rnp->qsmaskinit = rnp->qsmaskinitnext;
1945 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1946 if (!oldmask != !rnp->qsmaskinit) {
1947 if (!oldmask) { /* First online CPU for rcu_node. */
1948 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1949 rcu_init_new_rnp(rnp);
1950 } else if (rcu_preempt_has_tasks(rnp)) {
1951 rnp->wait_blkd_tasks = true; /* blocked tasks */
1952 } else { /* Last offline CPU and can propagate. */
1953 rcu_cleanup_dead_rnp(rnp);
1958 * If all waited-on tasks from prior grace period are
1959 * done, and if all this rcu_node structure's CPUs are
1960 * still offline, propagate up the rcu_node tree and
1961 * clear ->wait_blkd_tasks. Otherwise, if one of this
1962 * rcu_node structure's CPUs has since come back online,
1963 * simply clear ->wait_blkd_tasks.
1965 if (rnp->wait_blkd_tasks &&
1966 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1967 rnp->wait_blkd_tasks = false;
1968 if (!rnp->qsmaskinit)
1969 rcu_cleanup_dead_rnp(rnp);
1972 raw_spin_unlock_irq_rcu_node(rnp);
1973 spin_unlock(&rsp->ofl_lock);
1975 rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */
1978 * Set the quiescent-state-needed bits in all the rcu_node
1979 * structures for all currently online CPUs in breadth-first order,
1980 * starting from the root rcu_node structure, relying on the layout
1981 * of the tree within the rsp->node[] array. Note that other CPUs
1982 * will access only the leaves of the hierarchy, thus seeing that no
1983 * grace period is in progress, at least until the corresponding
1984 * leaf node has been initialized.
1986 * The grace period cannot complete until the initialization
1987 * process finishes, because this kthread handles both.
1989 rsp->gp_state = RCU_GP_INIT;
1990 rcu_for_each_node_breadth_first(rsp, rnp) {
1991 rcu_gp_slow(rsp, gp_init_delay);
1992 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1993 rdp = this_cpu_ptr(rsp->rda);
1994 rcu_preempt_check_blocked_tasks(rsp, rnp);
1995 rnp->qsmask = rnp->qsmaskinit;
1996 WRITE_ONCE(rnp->gp_seq, rsp->gp_seq);
1997 if (rnp == rdp->mynode)
1998 (void)__note_gp_changes(rsp, rnp, rdp);
1999 rcu_preempt_boost_start_gp(rnp);
2000 trace_rcu_grace_period_init(rsp->name, rnp->gp_seq,
2001 rnp->level, rnp->grplo,
2002 rnp->grphi, rnp->qsmask);
2003 /* Quiescent states for tasks on any now-offline CPUs. */
2004 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
2005 rnp->rcu_gp_init_mask = mask;
2006 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
2007 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2009 raw_spin_unlock_irq_rcu_node(rnp);
2010 cond_resched_tasks_rcu_qs();
2011 WRITE_ONCE(rsp->gp_activity, jiffies);
2018 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
2021 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2023 struct rcu_node *rnp = rcu_get_root(rsp);
2025 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2026 *gfp = READ_ONCE(rsp->gp_flags);
2027 if (*gfp & RCU_GP_FLAG_FQS)
2030 /* The current grace period has completed. */
2031 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2038 * Do one round of quiescent-state forcing.
2040 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2042 struct rcu_node *rnp = rcu_get_root(rsp);
2044 WRITE_ONCE(rsp->gp_activity, jiffies);
2047 /* Collect dyntick-idle snapshots. */
2048 force_qs_rnp(rsp, dyntick_save_progress_counter);
2050 /* Handle dyntick-idle and offline CPUs. */
2051 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2053 /* Clear flag to prevent immediate re-entry. */
2054 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2055 raw_spin_lock_irq_rcu_node(rnp);
2056 WRITE_ONCE(rsp->gp_flags,
2057 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2058 raw_spin_unlock_irq_rcu_node(rnp);
2063 * Clean up after the old grace period.
2065 static void rcu_gp_cleanup(struct rcu_state *rsp)
2067 unsigned long gp_duration;
2068 bool needgp = false;
2069 unsigned long new_gp_seq;
2070 struct rcu_data *rdp;
2071 struct rcu_node *rnp = rcu_get_root(rsp);
2072 struct swait_queue_head *sq;
2074 WRITE_ONCE(rsp->gp_activity, jiffies);
2075 raw_spin_lock_irq_rcu_node(rnp);
2076 gp_duration = jiffies - rsp->gp_start;
2077 if (gp_duration > rsp->gp_max)
2078 rsp->gp_max = gp_duration;
2081 * We know the grace period is complete, but to everyone else
2082 * it appears to still be ongoing. But it is also the case
2083 * that to everyone else it looks like there is nothing that
2084 * they can do to advance the grace period. It is therefore
2085 * safe for us to drop the lock in order to mark the grace
2086 * period as completed in all of the rcu_node structures.
2088 raw_spin_unlock_irq_rcu_node(rnp);
2091 * Propagate new ->gp_seq value to rcu_node structures so that
2092 * other CPUs don't have to wait until the start of the next grace
2093 * period to process their callbacks. This also avoids some nasty
2094 * RCU grace-period initialization races by forcing the end of
2095 * the current grace period to be completely recorded in all of
2096 * the rcu_node structures before the beginning of the next grace
2097 * period is recorded in any of the rcu_node structures.
2099 new_gp_seq = rsp->gp_seq;
2100 rcu_seq_end(&new_gp_seq);
2101 rcu_for_each_node_breadth_first(rsp, rnp) {
2102 raw_spin_lock_irq_rcu_node(rnp);
2103 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2104 dump_blkd_tasks(rsp, rnp, 10);
2105 WARN_ON_ONCE(rnp->qsmask);
2106 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2107 rdp = this_cpu_ptr(rsp->rda);
2108 if (rnp == rdp->mynode)
2109 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2110 /* smp_mb() provided by prior unlock-lock pair. */
2111 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
2112 sq = rcu_nocb_gp_get(rnp);
2113 raw_spin_unlock_irq_rcu_node(rnp);
2114 rcu_nocb_gp_cleanup(sq);
2115 cond_resched_tasks_rcu_qs();
2116 WRITE_ONCE(rsp->gp_activity, jiffies);
2117 rcu_gp_slow(rsp, gp_cleanup_delay);
2119 rnp = rcu_get_root(rsp);
2120 raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */
2122 /* Declare grace period done. */
2123 rcu_seq_end(&rsp->gp_seq);
2124 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end"));
2125 rsp->gp_state = RCU_GP_IDLE;
2126 /* Check for GP requests since above loop. */
2127 rdp = this_cpu_ptr(rsp->rda);
2128 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2129 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2130 TPS("CleanupMore"));
2133 /* Advance CBs to reduce false positives below. */
2134 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
2135 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2136 rsp->gp_req_activity = jiffies;
2137 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq),
2140 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
2142 raw_spin_unlock_irq_rcu_node(rnp);
2146 * Body of kthread that handles grace periods.
2148 static int __noreturn rcu_gp_kthread(void *arg)
2154 struct rcu_state *rsp = arg;
2155 struct rcu_node *rnp = rcu_get_root(rsp);
2157 rcu_bind_gp_kthread();
2160 /* Handle grace-period start. */
2162 trace_rcu_grace_period(rsp->name,
2163 READ_ONCE(rsp->gp_seq),
2165 rsp->gp_state = RCU_GP_WAIT_GPS;
2166 swait_event_idle_exclusive(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2168 rsp->gp_state = RCU_GP_DONE_GPS;
2169 /* Locking provides needed memory barrier. */
2170 if (rcu_gp_init(rsp))
2172 cond_resched_tasks_rcu_qs();
2173 WRITE_ONCE(rsp->gp_activity, jiffies);
2174 WARN_ON(signal_pending(current));
2175 trace_rcu_grace_period(rsp->name,
2176 READ_ONCE(rsp->gp_seq),
2180 /* Handle quiescent-state forcing. */
2181 first_gp_fqs = true;
2182 j = jiffies_till_first_fqs;
2186 rsp->jiffies_force_qs = jiffies + j;
2187 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2190 trace_rcu_grace_period(rsp->name,
2191 READ_ONCE(rsp->gp_seq),
2193 rsp->gp_state = RCU_GP_WAIT_FQS;
2194 ret = swait_event_idle_timeout_exclusive(rsp->gp_wq,
2195 rcu_gp_fqs_check_wake(rsp, &gf), j);
2196 rsp->gp_state = RCU_GP_DOING_FQS;
2197 /* Locking provides needed memory barriers. */
2198 /* If grace period done, leave loop. */
2199 if (!READ_ONCE(rnp->qsmask) &&
2200 !rcu_preempt_blocked_readers_cgp(rnp))
2202 /* If time for quiescent-state forcing, do it. */
2203 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2204 (gf & RCU_GP_FLAG_FQS)) {
2205 trace_rcu_grace_period(rsp->name,
2206 READ_ONCE(rsp->gp_seq),
2208 rcu_gp_fqs(rsp, first_gp_fqs);
2209 first_gp_fqs = false;
2210 trace_rcu_grace_period(rsp->name,
2211 READ_ONCE(rsp->gp_seq),
2213 cond_resched_tasks_rcu_qs();
2214 WRITE_ONCE(rsp->gp_activity, jiffies);
2215 ret = 0; /* Force full wait till next FQS. */
2216 j = jiffies_till_next_fqs;
2218 /* Deal with stray signal. */
2219 cond_resched_tasks_rcu_qs();
2220 WRITE_ONCE(rsp->gp_activity, jiffies);
2221 WARN_ON(signal_pending(current));
2222 trace_rcu_grace_period(rsp->name,
2223 READ_ONCE(rsp->gp_seq),
2225 ret = 1; /* Keep old FQS timing. */
2227 if (time_after(jiffies, rsp->jiffies_force_qs))
2230 j = rsp->jiffies_force_qs - j;
2234 /* Handle grace-period end. */
2235 rsp->gp_state = RCU_GP_CLEANUP;
2236 rcu_gp_cleanup(rsp);
2237 rsp->gp_state = RCU_GP_CLEANED;
2242 * Report a full set of quiescent states to the specified rcu_state data
2243 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2244 * kthread if another grace period is required. Whether we wake
2245 * the grace-period kthread or it awakens itself for the next round
2246 * of quiescent-state forcing, that kthread will clean up after the
2247 * just-completed grace period. Note that the caller must hold rnp->lock,
2248 * which is released before return.
2250 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2251 __releases(rcu_get_root(rsp)->lock)
2253 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2254 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2255 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2256 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2257 rcu_gp_kthread_wake(rsp);
2261 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2262 * Allows quiescent states for a group of CPUs to be reported at one go
2263 * to the specified rcu_node structure, though all the CPUs in the group
2264 * must be represented by the same rcu_node structure (which need not be a
2265 * leaf rcu_node structure, though it often will be). The gps parameter
2266 * is the grace-period snapshot, which means that the quiescent states
2267 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2268 * must be held upon entry, and it is released before return.
2270 * As a special case, if mask is zero, the bit-already-cleared check is
2271 * disabled. This allows propagating quiescent state due to resumed tasks
2272 * during grace-period initialization.
2275 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2276 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2277 __releases(rnp->lock)
2279 unsigned long oldmask = 0;
2280 struct rcu_node *rnp_c;
2282 raw_lockdep_assert_held_rcu_node(rnp);
2284 /* Walk up the rcu_node hierarchy. */
2286 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2289 * Our bit has already been cleared, or the
2290 * relevant grace period is already over, so done.
2292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2295 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2296 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2297 rcu_preempt_blocked_readers_cgp(rnp));
2298 rnp->qsmask &= ~mask;
2299 trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq,
2300 mask, rnp->qsmask, rnp->level,
2301 rnp->grplo, rnp->grphi,
2303 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2305 /* Other bits still set at this level, so done. */
2306 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2309 rnp->completedqs = rnp->gp_seq;
2310 mask = rnp->grpmask;
2311 if (rnp->parent == NULL) {
2313 /* No more levels. Exit loop holding root lock. */
2317 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2320 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2321 oldmask = rnp_c->qsmask;
2325 * Get here if we are the last CPU to pass through a quiescent
2326 * state for this grace period. Invoke rcu_report_qs_rsp()
2327 * to clean up and start the next grace period if one is needed.
2329 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2333 * Record a quiescent state for all tasks that were previously queued
2334 * on the specified rcu_node structure and that were blocking the current
2335 * RCU grace period. The caller must hold the specified rnp->lock with
2336 * irqs disabled, and this lock is released upon return, but irqs remain
2339 static void __maybe_unused
2340 rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2341 struct rcu_node *rnp, unsigned long flags)
2342 __releases(rnp->lock)
2346 struct rcu_node *rnp_p;
2348 raw_lockdep_assert_held_rcu_node(rnp);
2349 if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) ||
2350 WARN_ON_ONCE(rsp != rcu_state_p) ||
2351 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2353 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2354 return; /* Still need more quiescent states! */
2357 rnp->completedqs = rnp->gp_seq;
2358 rnp_p = rnp->parent;
2359 if (rnp_p == NULL) {
2361 * Only one rcu_node structure in the tree, so don't
2362 * try to report up to its nonexistent parent!
2364 rcu_report_qs_rsp(rsp, flags);
2368 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2370 mask = rnp->grpmask;
2371 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2372 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2373 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2377 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2378 * structure. This must be called from the specified CPU.
2381 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2383 unsigned long flags;
2386 struct rcu_node *rnp;
2389 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2390 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2394 * The grace period in which this quiescent state was
2395 * recorded has ended, so don't report it upwards.
2396 * We will instead need a new quiescent state that lies
2397 * within the current grace period.
2399 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2400 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2404 mask = rdp->grpmask;
2405 if ((rnp->qsmask & mask) == 0) {
2406 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2408 rdp->core_needs_qs = false;
2411 * This GP can't end until cpu checks in, so all of our
2412 * callbacks can be processed during the next GP.
2414 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2416 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2417 /* ^^^ Released rnp->lock */
2419 rcu_gp_kthread_wake(rsp);
2424 * Check to see if there is a new grace period of which this CPU
2425 * is not yet aware, and if so, set up local rcu_data state for it.
2426 * Otherwise, see if this CPU has just passed through its first
2427 * quiescent state for this grace period, and record that fact if so.
2430 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2432 /* Check for grace-period ends and beginnings. */
2433 note_gp_changes(rsp, rdp);
2436 * Does this CPU still need to do its part for current grace period?
2437 * If no, return and let the other CPUs do their part as well.
2439 if (!rdp->core_needs_qs)
2443 * Was there a quiescent state since the beginning of the grace
2444 * period? If no, then exit and wait for the next call.
2446 if (rdp->cpu_no_qs.b.norm)
2450 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2453 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2457 * Trace the fact that this CPU is going offline.
2459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2461 RCU_TRACE(bool blkd;)
2462 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2463 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2465 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2468 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2469 trace_rcu_grace_period(rsp->name, rnp->gp_seq,
2470 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2474 * All CPUs for the specified rcu_node structure have gone offline,
2475 * and all tasks that were preempted within an RCU read-side critical
2476 * section while running on one of those CPUs have since exited their RCU
2477 * read-side critical section. Some other CPU is reporting this fact with
2478 * the specified rcu_node structure's ->lock held and interrupts disabled.
2479 * This function therefore goes up the tree of rcu_node structures,
2480 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2481 * the leaf rcu_node structure's ->qsmaskinit field has already been
2484 * This function does check that the specified rcu_node structure has
2485 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2486 * prematurely. That said, invoking it after the fact will cost you
2487 * a needless lock acquisition. So once it has done its work, don't
2490 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2493 struct rcu_node *rnp = rnp_leaf;
2495 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2496 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2497 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2498 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2501 mask = rnp->grpmask;
2505 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2506 rnp->qsmaskinit &= ~mask;
2507 /* Between grace periods, so better already be zero! */
2508 WARN_ON_ONCE(rnp->qsmask);
2509 if (rnp->qsmaskinit) {
2510 raw_spin_unlock_rcu_node(rnp);
2511 /* irqs remain disabled. */
2514 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2519 * The CPU has been completely removed, and some other CPU is reporting
2520 * this fact from process context. Do the remainder of the cleanup.
2521 * There can only be one CPU hotplug operation at a time, so no need for
2524 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2526 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2527 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2529 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2532 /* Adjust any no-longer-needed kthreads. */
2533 rcu_boost_kthread_setaffinity(rnp, -1);
2537 * Invoke any RCU callbacks that have made it to the end of their grace
2538 * period. Thottle as specified by rdp->blimit.
2540 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2542 unsigned long flags;
2543 struct rcu_head *rhp;
2544 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2547 /* If no callbacks are ready, just return. */
2548 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2549 trace_rcu_batch_start(rsp->name,
2550 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2551 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2552 trace_rcu_batch_end(rsp->name, 0,
2553 !rcu_segcblist_empty(&rdp->cblist),
2554 need_resched(), is_idle_task(current),
2555 rcu_is_callbacks_kthread());
2560 * Extract the list of ready callbacks, disabling to prevent
2561 * races with call_rcu() from interrupt handlers. Leave the
2562 * callback counts, as rcu_barrier() needs to be conservative.
2564 local_irq_save(flags);
2565 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2567 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2568 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2569 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2570 local_irq_restore(flags);
2572 /* Invoke callbacks. */
2573 rhp = rcu_cblist_dequeue(&rcl);
2574 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2575 debug_rcu_head_unqueue(rhp);
2576 if (__rcu_reclaim(rsp->name, rhp))
2577 rcu_cblist_dequeued_lazy(&rcl);
2579 * Stop only if limit reached and CPU has something to do.
2580 * Note: The rcl structure counts down from zero.
2582 if (-rcl.len >= bl &&
2584 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2588 local_irq_save(flags);
2590 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2591 is_idle_task(current), rcu_is_callbacks_kthread());
2593 /* Update counts and requeue any remaining callbacks. */
2594 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2595 smp_mb(); /* List handling before counting for rcu_barrier(). */
2596 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2598 /* Reinstate batch limit if we have worked down the excess. */
2599 count = rcu_segcblist_n_cbs(&rdp->cblist);
2600 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2601 rdp->blimit = blimit;
2603 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2604 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2605 rdp->qlen_last_fqs_check = 0;
2606 rdp->n_force_qs_snap = rsp->n_force_qs;
2607 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2608 rdp->qlen_last_fqs_check = count;
2611 * The following usually indicates a double call_rcu(). To track
2612 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2614 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2616 local_irq_restore(flags);
2618 /* Re-invoke RCU core processing if there are callbacks remaining. */
2619 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2624 * Check to see if this CPU is in a non-context-switch quiescent state
2625 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2626 * Also schedule RCU core processing.
2628 * This function must be called from hardirq context. It is normally
2629 * invoked from the scheduling-clock interrupt.
2631 void rcu_check_callbacks(int user)
2633 trace_rcu_utilization(TPS("Start scheduler-tick"));
2634 increment_cpu_stall_ticks();
2635 if (user || rcu_is_cpu_rrupt_from_idle()) {
2638 * Get here if this CPU took its interrupt from user
2639 * mode or from the idle loop, and if this is not a
2640 * nested interrupt. In this case, the CPU is in
2641 * a quiescent state, so note it.
2643 * No memory barrier is required here because both
2644 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2645 * variables that other CPUs neither access nor modify,
2646 * at least not while the corresponding CPU is online.
2651 rcu_note_voluntary_context_switch(current);
2653 } else if (!in_softirq()) {
2656 * Get here if this CPU did not take its interrupt from
2657 * softirq, in other words, if it is not interrupting
2658 * a rcu_bh read-side critical section. This is an _bh
2659 * critical section, so note it.
2664 rcu_preempt_check_callbacks();
2668 trace_rcu_utilization(TPS("End scheduler-tick"));
2672 * Scan the leaf rcu_node structures, processing dyntick state for any that
2673 * have not yet encountered a quiescent state, using the function specified.
2674 * Also initiate boosting for any threads blocked on the root rcu_node.
2676 * The caller must have suppressed start of new grace periods.
2678 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2681 unsigned long flags;
2683 struct rcu_node *rnp;
2685 rcu_for_each_leaf_node(rsp, rnp) {
2686 cond_resched_tasks_rcu_qs();
2688 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2689 if (rnp->qsmask == 0) {
2690 if (rcu_state_p == &rcu_sched_state ||
2691 rsp != rcu_state_p ||
2692 rcu_preempt_blocked_readers_cgp(rnp)) {
2694 * No point in scanning bits because they
2695 * are all zero. But we might need to
2696 * priority-boost blocked readers.
2698 rcu_initiate_boost(rnp, flags);
2699 /* rcu_initiate_boost() releases rnp->lock */
2702 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2705 for_each_leaf_node_possible_cpu(rnp, cpu) {
2706 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2707 if ((rnp->qsmask & bit) != 0) {
2708 if (f(per_cpu_ptr(rsp->rda, cpu)))
2713 /* Idle/offline CPUs, report (releases rnp->lock). */
2714 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2716 /* Nothing to do here, so just drop the lock. */
2717 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2723 * Force quiescent states on reluctant CPUs, and also detect which
2724 * CPUs are in dyntick-idle mode.
2726 static void force_quiescent_state(struct rcu_state *rsp)
2728 unsigned long flags;
2730 struct rcu_node *rnp;
2731 struct rcu_node *rnp_old = NULL;
2733 /* Funnel through hierarchy to reduce memory contention. */
2734 rnp = __this_cpu_read(rsp->rda->mynode);
2735 for (; rnp != NULL; rnp = rnp->parent) {
2736 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2737 !raw_spin_trylock(&rnp->fqslock);
2738 if (rnp_old != NULL)
2739 raw_spin_unlock(&rnp_old->fqslock);
2744 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2746 /* Reached the root of the rcu_node tree, acquire lock. */
2747 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2748 raw_spin_unlock(&rnp_old->fqslock);
2749 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2750 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2751 return; /* Someone beat us to it. */
2753 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2754 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2755 rcu_gp_kthread_wake(rsp);
2759 * This function checks for grace-period requests that fail to motivate
2760 * RCU to come out of its idle mode.
2763 rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp,
2764 struct rcu_data *rdp)
2766 const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
2767 unsigned long flags;
2769 struct rcu_node *rnp_root = rcu_get_root(rsp);
2770 static atomic_t warned = ATOMIC_INIT(0);
2772 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) ||
2773 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2775 j = jiffies; /* Expensive access, and in common case don't get here. */
2776 if (time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
2777 time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
2778 atomic_read(&warned))
2781 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2783 if (rcu_gp_in_progress(rsp) ||
2784 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2785 time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
2786 time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
2787 atomic_read(&warned)) {
2788 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2791 /* Hold onto the leaf lock to make others see warned==1. */
2793 if (rnp_root != rnp)
2794 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2796 if (rcu_gp_in_progress(rsp) ||
2797 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2798 time_before(j, rsp->gp_req_activity + gpssdelay) ||
2799 time_before(j, rsp->gp_activity + gpssdelay) ||
2800 atomic_xchg(&warned, 1)) {
2801 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2802 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2805 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2806 __func__, (long)READ_ONCE(rsp->gp_seq),
2807 (long)READ_ONCE(rnp_root->gp_seq_needed),
2808 j - rsp->gp_req_activity, j - rsp->gp_activity,
2809 rsp->gp_flags, rsp->gp_state, rsp->name,
2810 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL);
2812 if (rnp_root != rnp)
2813 raw_spin_unlock_rcu_node(rnp_root);
2814 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2818 * This does the RCU core processing work for the specified rcu_state
2819 * and rcu_data structures. This may be called only from the CPU to
2820 * whom the rdp belongs.
2823 __rcu_process_callbacks(struct rcu_state *rsp)
2825 unsigned long flags;
2826 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2827 struct rcu_node *rnp = rdp->mynode;
2829 WARN_ON_ONCE(!rdp->beenonline);
2831 /* Update RCU state based on any recent quiescent states. */
2832 rcu_check_quiescent_state(rsp, rdp);
2834 /* No grace period and unregistered callbacks? */
2835 if (!rcu_gp_in_progress(rsp) &&
2836 rcu_segcblist_is_enabled(&rdp->cblist)) {
2837 local_irq_save(flags);
2838 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2839 rcu_accelerate_cbs_unlocked(rsp, rnp, rdp);
2840 local_irq_restore(flags);
2843 rcu_check_gp_start_stall(rsp, rnp, rdp);
2845 /* If there are callbacks ready, invoke them. */
2846 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2847 invoke_rcu_callbacks(rsp, rdp);
2849 /* Do any needed deferred wakeups of rcuo kthreads. */
2850 do_nocb_deferred_wakeup(rdp);
2854 * Do RCU core processing for the current CPU.
2856 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2858 struct rcu_state *rsp;
2860 if (cpu_is_offline(smp_processor_id()))
2862 trace_rcu_utilization(TPS("Start RCU core"));
2863 for_each_rcu_flavor(rsp)
2864 __rcu_process_callbacks(rsp);
2865 trace_rcu_utilization(TPS("End RCU core"));
2869 * Schedule RCU callback invocation. If the specified type of RCU
2870 * does not support RCU priority boosting, just do a direct call,
2871 * otherwise wake up the per-CPU kernel kthread. Note that because we
2872 * are running on the current CPU with softirqs disabled, the
2873 * rcu_cpu_kthread_task cannot disappear out from under us.
2875 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2877 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2879 if (likely(!rsp->boost)) {
2880 rcu_do_batch(rsp, rdp);
2883 invoke_rcu_callbacks_kthread();
2886 static void invoke_rcu_core(void)
2888 if (cpu_online(smp_processor_id()))
2889 raise_softirq(RCU_SOFTIRQ);
2893 * Handle any core-RCU processing required by a call_rcu() invocation.
2895 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2896 struct rcu_head *head, unsigned long flags)
2899 * If called from an extended quiescent state, invoke the RCU
2900 * core in order to force a re-evaluation of RCU's idleness.
2902 if (!rcu_is_watching())
2905 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2906 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2910 * Force the grace period if too many callbacks or too long waiting.
2911 * Enforce hysteresis, and don't invoke force_quiescent_state()
2912 * if some other CPU has recently done so. Also, don't bother
2913 * invoking force_quiescent_state() if the newly enqueued callback
2914 * is the only one waiting for a grace period to complete.
2916 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2917 rdp->qlen_last_fqs_check + qhimark)) {
2919 /* Are we ignoring a completed grace period? */
2920 note_gp_changes(rsp, rdp);
2922 /* Start a new grace period if one not already started. */
2923 if (!rcu_gp_in_progress(rsp)) {
2924 rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp);
2926 /* Give the grace period a kick. */
2927 rdp->blimit = LONG_MAX;
2928 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2929 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2930 force_quiescent_state(rsp);
2931 rdp->n_force_qs_snap = rsp->n_force_qs;
2932 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2938 * RCU callback function to leak a callback.
2940 static void rcu_leak_callback(struct rcu_head *rhp)
2945 * Helper function for call_rcu() and friends. The cpu argument will
2946 * normally be -1, indicating "currently running CPU". It may specify
2947 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2948 * is expected to specify a CPU.
2951 __call_rcu(struct rcu_head *head, rcu_callback_t func,
2952 struct rcu_state *rsp, int cpu, bool lazy)
2954 unsigned long flags;
2955 struct rcu_data *rdp;
2957 /* Misaligned rcu_head! */
2958 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2960 if (debug_rcu_head_queue(head)) {
2962 * Probable double call_rcu(), so leak the callback.
2963 * Use rcu:rcu_callback trace event to find the previous
2964 * time callback was passed to __call_rcu().
2966 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2968 WRITE_ONCE(head->func, rcu_leak_callback);
2973 local_irq_save(flags);
2974 rdp = this_cpu_ptr(rsp->rda);
2976 /* Add the callback to our list. */
2977 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2981 rdp = per_cpu_ptr(rsp->rda, cpu);
2982 if (likely(rdp->mynode)) {
2983 /* Post-boot, so this should be for a no-CBs CPU. */
2984 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2985 WARN_ON_ONCE(offline);
2986 /* Offline CPU, _call_rcu() illegal, leak callback. */
2987 local_irq_restore(flags);
2991 * Very early boot, before rcu_init(). Initialize if needed
2992 * and then drop through to queue the callback.
2995 WARN_ON_ONCE(!rcu_is_watching());
2996 if (rcu_segcblist_empty(&rdp->cblist))
2997 rcu_segcblist_init(&rdp->cblist);
2999 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3001 rcu_idle_count_callbacks_posted();
3003 if (__is_kfree_rcu_offset((unsigned long)func))
3004 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3005 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3006 rcu_segcblist_n_cbs(&rdp->cblist));
3008 trace_rcu_callback(rsp->name, head,
3009 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3010 rcu_segcblist_n_cbs(&rdp->cblist));
3012 /* Go handle any RCU core processing required. */
3013 __call_rcu_core(rsp, rdp, head, flags);
3014 local_irq_restore(flags);
3018 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3019 * @head: structure to be used for queueing the RCU updates.
3020 * @func: actual callback function to be invoked after the grace period
3022 * The callback function will be invoked some time after a full grace
3023 * period elapses, in other words after all currently executing RCU
3024 * read-side critical sections have completed. call_rcu_sched() assumes
3025 * that the read-side critical sections end on enabling of preemption
3026 * or on voluntary preemption.
3027 * RCU read-side critical sections are delimited by:
3029 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3030 * - anything that disables preemption.
3032 * These may be nested.
3034 * See the description of call_rcu() for more detailed information on
3035 * memory ordering guarantees.
3037 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3039 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3041 EXPORT_SYMBOL_GPL(call_rcu_sched);
3044 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3045 * @head: structure to be used for queueing the RCU updates.
3046 * @func: actual callback function to be invoked after the grace period
3048 * The callback function will be invoked some time after a full grace
3049 * period elapses, in other words after all currently executing RCU
3050 * read-side critical sections have completed. call_rcu_bh() assumes
3051 * that the read-side critical sections end on completion of a softirq
3052 * handler. This means that read-side critical sections in process
3053 * context must not be interrupted by softirqs. This interface is to be
3054 * used when most of the read-side critical sections are in softirq context.
3055 * RCU read-side critical sections are delimited by:
3057 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3058 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3060 * These may be nested.
3062 * See the description of call_rcu() for more detailed information on
3063 * memory ordering guarantees.
3065 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3067 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3069 EXPORT_SYMBOL_GPL(call_rcu_bh);
3072 * Queue an RCU callback for lazy invocation after a grace period.
3073 * This will likely be later named something like "call_rcu_lazy()",
3074 * but this change will require some way of tagging the lazy RCU
3075 * callbacks in the list of pending callbacks. Until then, this
3076 * function may only be called from __kfree_rcu().
3078 void kfree_call_rcu(struct rcu_head *head,
3079 rcu_callback_t func)
3081 __call_rcu(head, func, rcu_state_p, -1, 1);
3083 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3086 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3087 * any blocking grace-period wait automatically implies a grace period
3088 * if there is only one CPU online at any point time during execution
3089 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3090 * occasionally incorrectly indicate that there are multiple CPUs online
3091 * when there was in fact only one the whole time, as this just adds
3092 * some overhead: RCU still operates correctly.
3094 static int rcu_blocking_is_gp(void)
3098 might_sleep(); /* Check for RCU read-side critical section. */
3100 ret = num_online_cpus() <= 1;
3106 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3108 * Control will return to the caller some time after a full rcu-sched
3109 * grace period has elapsed, in other words after all currently executing
3110 * rcu-sched read-side critical sections have completed. These read-side
3111 * critical sections are delimited by rcu_read_lock_sched() and
3112 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3113 * local_irq_disable(), and so on may be used in place of
3114 * rcu_read_lock_sched().
3116 * This means that all preempt_disable code sequences, including NMI and
3117 * non-threaded hardware-interrupt handlers, in progress on entry will
3118 * have completed before this primitive returns. However, this does not
3119 * guarantee that softirq handlers will have completed, since in some
3120 * kernels, these handlers can run in process context, and can block.
3122 * Note that this guarantee implies further memory-ordering guarantees.
3123 * On systems with more than one CPU, when synchronize_sched() returns,
3124 * each CPU is guaranteed to have executed a full memory barrier since the
3125 * end of its last RCU-sched read-side critical section whose beginning
3126 * preceded the call to synchronize_sched(). In addition, each CPU having
3127 * an RCU read-side critical section that extends beyond the return from
3128 * synchronize_sched() is guaranteed to have executed a full memory barrier
3129 * after the beginning of synchronize_sched() and before the beginning of
3130 * that RCU read-side critical section. Note that these guarantees include
3131 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3132 * that are executing in the kernel.
3134 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3135 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3136 * to have executed a full memory barrier during the execution of
3137 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3138 * again only if the system has more than one CPU).
3140 void synchronize_sched(void)
3142 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3143 lock_is_held(&rcu_lock_map) ||
3144 lock_is_held(&rcu_sched_lock_map),
3145 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3146 if (rcu_blocking_is_gp())
3148 if (rcu_gp_is_expedited())
3149 synchronize_sched_expedited();
3151 wait_rcu_gp(call_rcu_sched);
3153 EXPORT_SYMBOL_GPL(synchronize_sched);
3156 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3158 * Control will return to the caller some time after a full rcu_bh grace
3159 * period has elapsed, in other words after all currently executing rcu_bh
3160 * read-side critical sections have completed. RCU read-side critical
3161 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3162 * and may be nested.
3164 * See the description of synchronize_sched() for more detailed information
3165 * on memory ordering guarantees.
3167 void synchronize_rcu_bh(void)
3169 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3170 lock_is_held(&rcu_lock_map) ||
3171 lock_is_held(&rcu_sched_lock_map),
3172 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3173 if (rcu_blocking_is_gp())
3175 if (rcu_gp_is_expedited())
3176 synchronize_rcu_bh_expedited();
3178 wait_rcu_gp(call_rcu_bh);
3180 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3183 * get_state_synchronize_rcu - Snapshot current RCU state
3185 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3186 * to determine whether or not a full grace period has elapsed in the
3189 unsigned long get_state_synchronize_rcu(void)
3192 * Any prior manipulation of RCU-protected data must happen
3193 * before the load from ->gp_seq.
3196 return rcu_seq_snap(&rcu_state_p->gp_seq);
3198 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3201 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3203 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3205 * If a full RCU grace period has elapsed since the earlier call to
3206 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3207 * synchronize_rcu() to wait for a full grace period.
3209 * Yes, this function does not take counter wrap into account. But
3210 * counter wrap is harmless. If the counter wraps, we have waited for
3211 * more than 2 billion grace periods (and way more on a 64-bit system!),
3212 * so waiting for one additional grace period should be just fine.
3214 void cond_synchronize_rcu(unsigned long oldstate)
3216 if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate))
3219 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3221 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3224 * get_state_synchronize_sched - Snapshot current RCU-sched state
3226 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3227 * to determine whether or not a full grace period has elapsed in the
3230 unsigned long get_state_synchronize_sched(void)
3233 * Any prior manipulation of RCU-protected data must happen
3234 * before the load from ->gp_seq.
3237 return rcu_seq_snap(&rcu_sched_state.gp_seq);
3239 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3242 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3244 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3246 * If a full RCU-sched grace period has elapsed since the earlier call to
3247 * get_state_synchronize_sched(), just return. Otherwise, invoke
3248 * synchronize_sched() to wait for a full grace period.
3250 * Yes, this function does not take counter wrap into account. But
3251 * counter wrap is harmless. If the counter wraps, we have waited for
3252 * more than 2 billion grace periods (and way more on a 64-bit system!),
3253 * so waiting for one additional grace period should be just fine.
3255 void cond_synchronize_sched(unsigned long oldstate)
3257 if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate))
3258 synchronize_sched();
3260 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3262 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3265 * Check to see if there is any immediate RCU-related work to be done
3266 * by the current CPU, for the specified type of RCU, returning 1 if so.
3267 * The checks are in order of increasing expense: checks that can be
3268 * carried out against CPU-local state are performed first. However,
3269 * we must check for CPU stalls first, else we might not get a chance.
3271 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3273 struct rcu_node *rnp = rdp->mynode;
3275 /* Check for CPU stalls, if enabled. */
3276 check_cpu_stall(rsp, rdp);
3278 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3279 if (rcu_nohz_full_cpu(rsp))
3282 /* Is the RCU core waiting for a quiescent state from this CPU? */
3283 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3286 /* Does this CPU have callbacks ready to invoke? */
3287 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3290 /* Has RCU gone idle with this CPU needing another grace period? */
3291 if (!rcu_gp_in_progress(rsp) &&
3292 rcu_segcblist_is_enabled(&rdp->cblist) &&
3293 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3296 /* Have RCU grace period completed or started? */
3297 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3298 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3301 /* Does this CPU need a deferred NOCB wakeup? */
3302 if (rcu_nocb_need_deferred_wakeup(rdp))
3310 * Check to see if there is any immediate RCU-related work to be done
3311 * by the current CPU, returning 1 if so. This function is part of the
3312 * RCU implementation; it is -not- an exported member of the RCU API.
3314 static int rcu_pending(void)
3316 struct rcu_state *rsp;
3318 for_each_rcu_flavor(rsp)
3319 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3325 * Return true if the specified CPU has any callback. If all_lazy is
3326 * non-NULL, store an indication of whether all callbacks are lazy.
3327 * (If there are no callbacks, all of them are deemed to be lazy.)
3329 static bool rcu_cpu_has_callbacks(bool *all_lazy)
3333 struct rcu_data *rdp;
3334 struct rcu_state *rsp;
3336 for_each_rcu_flavor(rsp) {
3337 rdp = this_cpu_ptr(rsp->rda);
3338 if (rcu_segcblist_empty(&rdp->cblist))
3341 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3352 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3353 * the compiler is expected to optimize this away.
3355 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3356 int cpu, unsigned long done)
3358 trace_rcu_barrier(rsp->name, s, cpu,
3359 atomic_read(&rsp->barrier_cpu_count), done);
3363 * RCU callback function for _rcu_barrier(). If we are last, wake
3364 * up the task executing _rcu_barrier().
3366 static void rcu_barrier_callback(struct rcu_head *rhp)
3368 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3369 struct rcu_state *rsp = rdp->rsp;
3371 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3372 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3373 rsp->barrier_sequence);
3374 complete(&rsp->barrier_completion);
3376 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3381 * Called with preemption disabled, and from cross-cpu IRQ context.
3383 static void rcu_barrier_func(void *type)
3385 struct rcu_state *rsp = type;
3386 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3388 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3389 rdp->barrier_head.func = rcu_barrier_callback;
3390 debug_rcu_head_queue(&rdp->barrier_head);
3391 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3392 atomic_inc(&rsp->barrier_cpu_count);
3394 debug_rcu_head_unqueue(&rdp->barrier_head);
3395 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3396 rsp->barrier_sequence);
3401 * Orchestrate the specified type of RCU barrier, waiting for all
3402 * RCU callbacks of the specified type to complete.
3404 static void _rcu_barrier(struct rcu_state *rsp)
3407 struct rcu_data *rdp;
3408 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3410 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3412 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3413 mutex_lock(&rsp->barrier_mutex);
3415 /* Did someone else do our work for us? */
3416 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3417 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3418 rsp->barrier_sequence);
3419 smp_mb(); /* caller's subsequent code after above check. */
3420 mutex_unlock(&rsp->barrier_mutex);
3424 /* Mark the start of the barrier operation. */
3425 rcu_seq_start(&rsp->barrier_sequence);
3426 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3429 * Initialize the count to one rather than to zero in order to
3430 * avoid a too-soon return to zero in case of a short grace period
3431 * (or preemption of this task). Exclude CPU-hotplug operations
3432 * to ensure that no offline CPU has callbacks queued.
3434 init_completion(&rsp->barrier_completion);
3435 atomic_set(&rsp->barrier_cpu_count, 1);
3439 * Force each CPU with callbacks to register a new callback.
3440 * When that callback is invoked, we will know that all of the
3441 * corresponding CPU's preceding callbacks have been invoked.
3443 for_each_possible_cpu(cpu) {
3444 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3446 rdp = per_cpu_ptr(rsp->rda, cpu);
3447 if (rcu_is_nocb_cpu(cpu)) {
3448 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3449 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3450 rsp->barrier_sequence);
3452 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3453 rsp->barrier_sequence);
3454 smp_mb__before_atomic();
3455 atomic_inc(&rsp->barrier_cpu_count);
3456 __call_rcu(&rdp->barrier_head,
3457 rcu_barrier_callback, rsp, cpu, 0);
3459 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3460 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3461 rsp->barrier_sequence);
3462 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3464 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3465 rsp->barrier_sequence);
3471 * Now that we have an rcu_barrier_callback() callback on each
3472 * CPU, and thus each counted, remove the initial count.
3474 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3475 complete(&rsp->barrier_completion);
3477 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3478 wait_for_completion(&rsp->barrier_completion);
3480 /* Mark the end of the barrier operation. */
3481 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3482 rcu_seq_end(&rsp->barrier_sequence);
3484 /* Other rcu_barrier() invocations can now safely proceed. */
3485 mutex_unlock(&rsp->barrier_mutex);
3489 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3491 void rcu_barrier_bh(void)
3493 _rcu_barrier(&rcu_bh_state);
3495 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3498 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3500 void rcu_barrier_sched(void)
3502 _rcu_barrier(&rcu_sched_state);
3504 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3507 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3508 * first CPU in a given leaf rcu_node structure coming online. The caller
3509 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3512 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3516 struct rcu_node *rnp = rnp_leaf;
3518 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3519 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3521 mask = rnp->grpmask;
3525 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3526 oldmask = rnp->qsmaskinit;
3527 rnp->qsmaskinit |= mask;
3528 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3535 * Do boot-time initialization of a CPU's per-CPU RCU data.
3538 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3540 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3542 /* Set up local state, ensuring consistent view of global state. */
3543 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3544 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3545 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3546 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3547 rdp->rcu_ofl_gp_seq = rsp->gp_seq;
3548 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3549 rdp->rcu_onl_gp_seq = rsp->gp_seq;
3550 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3553 rcu_boot_init_nocb_percpu_data(rdp);
3557 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3558 * offline event can be happening at a given time. Note also that we can
3559 * accept some slop in the rsp->gp_seq access due to the fact that this
3560 * CPU cannot possibly have any RCU callbacks in flight yet.
3563 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3565 unsigned long flags;
3566 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3567 struct rcu_node *rnp = rcu_get_root(rsp);
3569 /* Set up local state, ensuring consistent view of global state. */
3570 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3571 rdp->qlen_last_fqs_check = 0;
3572 rdp->n_force_qs_snap = rsp->n_force_qs;
3573 rdp->blimit = blimit;
3574 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3575 !init_nocb_callback_list(rdp))
3576 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3577 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
3578 rcu_dynticks_eqs_online();
3579 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3582 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3583 * propagation up the rcu_node tree will happen at the beginning
3584 * of the next grace period.
3587 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3588 rdp->beenonline = true; /* We have now been online. */
3589 rdp->gp_seq = rnp->gp_seq;
3590 rdp->gp_seq_needed = rnp->gp_seq;
3591 rdp->cpu_no_qs.b.norm = true;
3592 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3593 rdp->core_needs_qs = false;
3594 rdp->rcu_iw_pending = false;
3595 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3596 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl"));
3597 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3601 * Invoked early in the CPU-online process, when pretty much all
3602 * services are available. The incoming CPU is not present.
3604 int rcutree_prepare_cpu(unsigned int cpu)
3606 struct rcu_state *rsp;
3608 for_each_rcu_flavor(rsp)
3609 rcu_init_percpu_data(cpu, rsp);
3611 rcu_prepare_kthreads(cpu);
3612 rcu_spawn_all_nocb_kthreads(cpu);
3618 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3620 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3622 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3624 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3628 * Near the end of the CPU-online process. Pretty much all services
3629 * enabled, and the CPU is now very much alive.
3631 int rcutree_online_cpu(unsigned int cpu)
3633 unsigned long flags;
3634 struct rcu_data *rdp;
3635 struct rcu_node *rnp;
3636 struct rcu_state *rsp;
3638 for_each_rcu_flavor(rsp) {
3639 rdp = per_cpu_ptr(rsp->rda, cpu);
3641 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3642 rnp->ffmask |= rdp->grpmask;
3643 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3645 if (IS_ENABLED(CONFIG_TREE_SRCU))
3646 srcu_online_cpu(cpu);
3647 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3648 return 0; /* Too early in boot for scheduler work. */
3649 sync_sched_exp_online_cleanup(cpu);
3650 rcutree_affinity_setting(cpu, -1);
3655 * Near the beginning of the process. The CPU is still very much alive
3656 * with pretty much all services enabled.
3658 int rcutree_offline_cpu(unsigned int cpu)
3660 unsigned long flags;
3661 struct rcu_data *rdp;
3662 struct rcu_node *rnp;
3663 struct rcu_state *rsp;
3665 for_each_rcu_flavor(rsp) {
3666 rdp = per_cpu_ptr(rsp->rda, cpu);
3668 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3669 rnp->ffmask &= ~rdp->grpmask;
3670 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3673 rcutree_affinity_setting(cpu, cpu);
3674 if (IS_ENABLED(CONFIG_TREE_SRCU))
3675 srcu_offline_cpu(cpu);
3680 * Near the end of the offline process. We do only tracing here.
3682 int rcutree_dying_cpu(unsigned int cpu)
3684 struct rcu_state *rsp;
3686 for_each_rcu_flavor(rsp)
3687 rcu_cleanup_dying_cpu(rsp);
3692 * The outgoing CPU is gone and we are running elsewhere.
3694 int rcutree_dead_cpu(unsigned int cpu)
3696 struct rcu_state *rsp;
3698 for_each_rcu_flavor(rsp) {
3699 rcu_cleanup_dead_cpu(cpu, rsp);
3700 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3705 static DEFINE_PER_CPU(int, rcu_cpu_started);
3708 * Mark the specified CPU as being online so that subsequent grace periods
3709 * (both expedited and normal) will wait on it. Note that this means that
3710 * incoming CPUs are not allowed to use RCU read-side critical sections
3711 * until this function is called. Failing to observe this restriction
3712 * will result in lockdep splats.
3714 * Note that this function is special in that it is invoked directly
3715 * from the incoming CPU rather than from the cpuhp_step mechanism.
3716 * This is because this function must be invoked at a precise location.
3718 void rcu_cpu_starting(unsigned int cpu)
3720 unsigned long flags;
3723 unsigned long oldmask;
3724 struct rcu_data *rdp;
3725 struct rcu_node *rnp;
3726 struct rcu_state *rsp;
3728 if (per_cpu(rcu_cpu_started, cpu))
3731 per_cpu(rcu_cpu_started, cpu) = 1;
3733 for_each_rcu_flavor(rsp) {
3734 rdp = per_cpu_ptr(rsp->rda, cpu);
3736 mask = rdp->grpmask;
3737 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3738 rnp->qsmaskinitnext |= mask;
3739 oldmask = rnp->expmaskinitnext;
3740 rnp->expmaskinitnext |= mask;
3741 oldmask ^= rnp->expmaskinitnext;
3742 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3743 /* Allow lockless access for expedited grace periods. */
3744 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3745 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3746 rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq);
3747 rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags);
3748 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3749 /* Report QS -after- changing ->qsmaskinitnext! */
3750 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3752 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3755 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3758 #ifdef CONFIG_HOTPLUG_CPU
3760 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3761 * function. We now remove it from the rcu_node tree's ->qsmaskinitnext
3764 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3766 unsigned long flags;
3768 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3769 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3771 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3772 mask = rdp->grpmask;
3773 spin_lock(&rsp->ofl_lock);
3774 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3775 rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq);
3776 rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags);
3777 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3778 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3779 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3780 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3782 rnp->qsmaskinitnext &= ~mask;
3783 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3784 spin_unlock(&rsp->ofl_lock);
3788 * The outgoing function has no further need of RCU, so remove it from
3789 * the list of CPUs that RCU must track.
3791 * Note that this function is special in that it is invoked directly
3792 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3793 * This is because this function must be invoked at a precise location.
3795 void rcu_report_dead(unsigned int cpu)
3797 struct rcu_state *rsp;
3799 /* QS for any half-done expedited RCU-sched GP. */
3801 rcu_report_exp_rdp(&rcu_sched_state,
3802 this_cpu_ptr(rcu_sched_state.rda), true);
3804 for_each_rcu_flavor(rsp)
3805 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3807 per_cpu(rcu_cpu_started, cpu) = 0;
3810 /* Migrate the dead CPU's callbacks to the current CPU. */
3811 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3813 unsigned long flags;
3814 struct rcu_data *my_rdp;
3815 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3816 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3819 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3820 return; /* No callbacks to migrate. */
3822 local_irq_save(flags);
3823 my_rdp = this_cpu_ptr(rsp->rda);
3824 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3825 local_irq_restore(flags);
3828 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3829 /* Leverage recent GPs and set GP for new callbacks. */
3830 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3831 rcu_advance_cbs(rsp, rnp_root, my_rdp);
3832 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3833 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3834 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3835 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3837 rcu_gp_kthread_wake(rsp);
3838 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3839 !rcu_segcblist_empty(&rdp->cblist),
3840 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3841 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3842 rcu_segcblist_first_cb(&rdp->cblist));
3846 * The outgoing CPU has just passed through the dying-idle state,
3847 * and we are being invoked from the CPU that was IPIed to continue the
3848 * offline operation. We need to migrate the outgoing CPU's callbacks.
3850 void rcutree_migrate_callbacks(int cpu)
3852 struct rcu_state *rsp;
3854 for_each_rcu_flavor(rsp)
3855 rcu_migrate_callbacks(cpu, rsp);
3860 * On non-huge systems, use expedited RCU grace periods to make suspend
3861 * and hibernation run faster.
3863 static int rcu_pm_notify(struct notifier_block *self,
3864 unsigned long action, void *hcpu)
3867 case PM_HIBERNATION_PREPARE:
3868 case PM_SUSPEND_PREPARE:
3869 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3872 case PM_POST_HIBERNATION:
3873 case PM_POST_SUSPEND:
3874 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3875 rcu_unexpedite_gp();
3884 * Spawn the kthreads that handle each RCU flavor's grace periods.
3886 static int __init rcu_spawn_gp_kthread(void)
3888 unsigned long flags;
3889 int kthread_prio_in = kthread_prio;
3890 struct rcu_node *rnp;
3891 struct rcu_state *rsp;
3892 struct sched_param sp;
3893 struct task_struct *t;
3895 /* Force priority into range. */
3896 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3897 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3899 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3901 else if (kthread_prio < 0)
3903 else if (kthread_prio > 99)
3906 if (kthread_prio != kthread_prio_in)
3907 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3908 kthread_prio, kthread_prio_in);
3910 rcu_scheduler_fully_active = 1;
3911 for_each_rcu_flavor(rsp) {
3912 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3914 rnp = rcu_get_root(rsp);
3915 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3916 rsp->gp_kthread = t;
3918 sp.sched_priority = kthread_prio;
3919 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3924 rcu_spawn_nocb_kthreads();
3925 rcu_spawn_boost_kthreads();
3928 early_initcall(rcu_spawn_gp_kthread);
3931 * This function is invoked towards the end of the scheduler's
3932 * initialization process. Before this is called, the idle task might
3933 * contain synchronous grace-period primitives (during which time, this idle
3934 * task is booting the system, and such primitives are no-ops). After this
3935 * function is called, any synchronous grace-period primitives are run as
3936 * expedited, with the requesting task driving the grace period forward.
3937 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3938 * runtime RCU functionality.
3940 void rcu_scheduler_starting(void)
3942 WARN_ON(num_online_cpus() != 1);
3943 WARN_ON(nr_context_switches() > 0);
3944 rcu_test_sync_prims();
3945 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3946 rcu_test_sync_prims();
3950 * Helper function for rcu_init() that initializes one rcu_state structure.
3952 static void __init rcu_init_one(struct rcu_state *rsp)
3954 static const char * const buf[] = RCU_NODE_NAME_INIT;
3955 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3956 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3957 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3959 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3963 struct rcu_node *rnp;
3965 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3967 /* Silence gcc 4.8 false positive about array index out of range. */
3968 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3969 panic("rcu_init_one: rcu_num_lvls out of range");
3971 /* Initialize the level-tracking arrays. */
3973 for (i = 1; i < rcu_num_lvls; i++)
3974 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3975 rcu_init_levelspread(levelspread, num_rcu_lvl);
3977 /* Initialize the elements themselves, starting from the leaves. */
3979 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3980 cpustride *= levelspread[i];
3981 rnp = rsp->level[i];
3982 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3983 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3984 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3985 &rcu_node_class[i], buf[i]);
3986 raw_spin_lock_init(&rnp->fqslock);
3987 lockdep_set_class_and_name(&rnp->fqslock,
3988 &rcu_fqs_class[i], fqs[i]);
3989 rnp->gp_seq = rsp->gp_seq;
3990 rnp->gp_seq_needed = rsp->gp_seq;
3991 rnp->completedqs = rsp->gp_seq;
3993 rnp->qsmaskinit = 0;
3994 rnp->grplo = j * cpustride;
3995 rnp->grphi = (j + 1) * cpustride - 1;
3996 if (rnp->grphi >= nr_cpu_ids)
3997 rnp->grphi = nr_cpu_ids - 1;
4003 rnp->grpnum = j % levelspread[i - 1];
4004 rnp->grpmask = 1UL << rnp->grpnum;
4005 rnp->parent = rsp->level[i - 1] +
4006 j / levelspread[i - 1];
4009 INIT_LIST_HEAD(&rnp->blkd_tasks);
4010 rcu_init_one_nocb(rnp);
4011 init_waitqueue_head(&rnp->exp_wq[0]);
4012 init_waitqueue_head(&rnp->exp_wq[1]);
4013 init_waitqueue_head(&rnp->exp_wq[2]);
4014 init_waitqueue_head(&rnp->exp_wq[3]);
4015 spin_lock_init(&rnp->exp_lock);
4019 init_swait_queue_head(&rsp->gp_wq);
4020 init_swait_queue_head(&rsp->expedited_wq);
4021 rnp = rcu_first_leaf_node(rsp);
4022 for_each_possible_cpu(i) {
4023 while (i > rnp->grphi)
4025 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4026 rcu_boot_init_percpu_data(i, rsp);
4028 list_add(&rsp->flavors, &rcu_struct_flavors);
4032 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4033 * replace the definitions in tree.h because those are needed to size
4034 * the ->node array in the rcu_state structure.
4036 static void __init rcu_init_geometry(void)
4040 int rcu_capacity[RCU_NUM_LVLS];
4043 * Initialize any unspecified boot parameters.
4044 * The default values of jiffies_till_first_fqs and
4045 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4046 * value, which is a function of HZ, then adding one for each
4047 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4049 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4050 if (jiffies_till_first_fqs == ULONG_MAX)
4051 jiffies_till_first_fqs = d;
4052 if (jiffies_till_next_fqs == ULONG_MAX)
4053 jiffies_till_next_fqs = d;
4055 /* If the compile-time values are accurate, just leave. */
4056 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4057 nr_cpu_ids == NR_CPUS)
4059 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4060 rcu_fanout_leaf, nr_cpu_ids);
4063 * The boot-time rcu_fanout_leaf parameter must be at least two
4064 * and cannot exceed the number of bits in the rcu_node masks.
4065 * Complain and fall back to the compile-time values if this
4066 * limit is exceeded.
4068 if (rcu_fanout_leaf < 2 ||
4069 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4070 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4076 * Compute number of nodes that can be handled an rcu_node tree
4077 * with the given number of levels.
4079 rcu_capacity[0] = rcu_fanout_leaf;
4080 for (i = 1; i < RCU_NUM_LVLS; i++)
4081 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4084 * The tree must be able to accommodate the configured number of CPUs.
4085 * If this limit is exceeded, fall back to the compile-time values.
4087 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4088 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4093 /* Calculate the number of levels in the tree. */
4094 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4096 rcu_num_lvls = i + 1;
4098 /* Calculate the number of rcu_nodes at each level of the tree. */
4099 for (i = 0; i < rcu_num_lvls; i++) {
4100 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4101 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4104 /* Calculate the total number of rcu_node structures. */
4106 for (i = 0; i < rcu_num_lvls; i++)
4107 rcu_num_nodes += num_rcu_lvl[i];
4111 * Dump out the structure of the rcu_node combining tree associated
4112 * with the rcu_state structure referenced by rsp.
4114 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4117 struct rcu_node *rnp;
4119 pr_info("rcu_node tree layout dump\n");
4121 rcu_for_each_node_breadth_first(rsp, rnp) {
4122 if (rnp->level != level) {
4127 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4132 struct workqueue_struct *rcu_gp_wq;
4133 struct workqueue_struct *rcu_par_gp_wq;
4135 void __init rcu_init(void)
4139 rcu_early_boot_tests();
4141 rcu_bootup_announce();
4142 rcu_init_geometry();
4143 rcu_init_one(&rcu_bh_state);
4144 rcu_init_one(&rcu_sched_state);
4146 rcu_dump_rcu_node_tree(&rcu_sched_state);
4147 __rcu_init_preempt();
4148 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4151 * We don't need protection against CPU-hotplug here because
4152 * this is called early in boot, before either interrupts
4153 * or the scheduler are operational.
4155 pm_notifier(rcu_pm_notify, 0);
4156 for_each_online_cpu(cpu) {
4157 rcutree_prepare_cpu(cpu);
4158 rcu_cpu_starting(cpu);
4159 rcutree_online_cpu(cpu);
4162 /* Create workqueue for expedited GPs and for Tree SRCU. */
4163 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4164 WARN_ON(!rcu_gp_wq);
4165 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4166 WARN_ON(!rcu_par_gp_wq);
4169 #include "tree_exp.h"
4170 #include "tree_plugin.h"