1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
77 #include <trace/events/kmem.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
84 #include <asm/tlbflush.h>
86 #include "pgalloc-track.h"
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
98 EXPORT_SYMBOL(mem_map);
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
109 EXPORT_SYMBOL(high_memory);
112 * Randomize the address space (stacks, mmaps, brk, etc.).
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
148 static int __init disable_randmaps(char *s)
150 randomize_va_space = 0;
153 __setup("norandmaps", disable_randmaps);
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
158 unsigned long highest_memmap_pfn __read_mostly;
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 static int __init init_zero_pfn(void)
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
168 early_initcall(init_zero_pfn);
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 trace_rss_stat(mm, member, count);
175 #if defined(SPLIT_RSS_COUNTING)
177 void sync_mm_rss(struct mm_struct *mm)
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
187 current->rss_stat.events = 0;
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 struct task_struct *task = current;
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
197 add_mm_counter(mm, member, val);
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH (64)
204 static void check_sync_rss_stat(struct task_struct *task)
206 if (unlikely(task != current))
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 sync_mm_rss(task->mm);
211 #else /* SPLIT_RSS_COUNTING */
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 static void check_sync_rss_stat(struct task_struct *task)
220 #endif /* SPLIT_RSS_COUNTING */
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
229 pgtable_t token = pmd_pgtable(*pmd);
231 pte_free_tlb(tlb, token, addr);
232 mm_dec_nr_ptes(tlb->mm);
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
244 pmd = pmd_offset(pud, addr);
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
249 free_pte_range(tlb, pmd, addr);
250 } while (pmd++, addr = next, addr != end);
260 if (end - 1 > ceiling - 1)
263 pmd = pmd_offset(pud, start);
265 pmd_free_tlb(tlb, pmd, start);
266 mm_dec_nr_pmds(tlb->mm);
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
278 pud = pud_offset(p4d, addr);
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 } while (pud++, addr = next, addr != end);
294 if (end - 1 > ceiling - 1)
297 pud = pud_offset(p4d, start);
299 pud_free_tlb(tlb, pud, start);
300 mm_dec_nr_puds(tlb->mm);
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
312 p4d = p4d_offset(pgd, addr);
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
324 ceiling &= PGDIR_MASK;
328 if (end - 1 > ceiling - 1)
331 p4d = p4d_offset(pgd, start);
333 p4d_free_tlb(tlb, p4d, start);
337 * This function frees user-level page tables of a process.
339 void free_pgd_range(struct mmu_gather *tlb,
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
347 * The next few lines have given us lots of grief...
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
383 if (end - 1 > ceiling - 1)
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
391 tlb_change_page_size(tlb, PAGE_SIZE);
392 pgd = pgd_offset(tlb->mm, addr);
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 } while (pgd++, addr = next, addr != end);
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 unsigned long floor, unsigned long ceiling)
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
409 * Hide vma from rmap and truncate_pagecache before freeing
412 unlink_anon_vmas(vma);
413 unlink_file_vma(vma);
415 if (is_vm_hugetlb_page(vma)) {
416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
420 * Optimization: gather nearby vmas into one call down
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 && !is_vm_hugetlb_page(next)) {
426 unlink_anon_vmas(vma);
427 unlink_file_vma(vma);
429 free_pgd_range(tlb, addr, vma->vm_end,
430 floor, next ? next->vm_start : ceiling);
436 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 spinlock_t *ptl = pmd_lock(mm, pmd);
440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
443 * Ensure all pte setup (eg. pte page lock and page clearing) are
444 * visible before the pte is made visible to other CPUs by being
445 * put into page tables.
447 * The other side of the story is the pointer chasing in the page
448 * table walking code (when walking the page table without locking;
449 * ie. most of the time). Fortunately, these data accesses consist
450 * of a chain of data-dependent loads, meaning most CPUs (alpha
451 * being the notable exception) will already guarantee loads are
452 * seen in-order. See the alpha page table accessors for the
453 * smp_rmb() barriers in page table walking code.
455 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
456 pmd_populate(mm, pmd, *pte);
462 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 pgtable_t new = pte_alloc_one(mm);
468 pmd_install(mm, pmd, &new);
474 int __pte_alloc_kernel(pmd_t *pmd)
476 pte_t *new = pte_alloc_one_kernel(&init_mm);
480 spin_lock(&init_mm.page_table_lock);
481 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
482 smp_wmb(); /* See comment in pmd_install() */
483 pmd_populate_kernel(&init_mm, pmd, new);
486 spin_unlock(&init_mm.page_table_lock);
488 pte_free_kernel(&init_mm, new);
492 static inline void init_rss_vec(int *rss)
494 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
497 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
501 if (current->mm == mm)
503 for (i = 0; i < NR_MM_COUNTERS; i++)
505 add_mm_counter(mm, i, rss[i]);
509 * This function is called to print an error when a bad pte
510 * is found. For example, we might have a PFN-mapped pte in
511 * a region that doesn't allow it.
513 * The calling function must still handle the error.
515 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
516 pte_t pte, struct page *page)
518 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
519 p4d_t *p4d = p4d_offset(pgd, addr);
520 pud_t *pud = pud_offset(p4d, addr);
521 pmd_t *pmd = pmd_offset(pud, addr);
522 struct address_space *mapping;
524 static unsigned long resume;
525 static unsigned long nr_shown;
526 static unsigned long nr_unshown;
529 * Allow a burst of 60 reports, then keep quiet for that minute;
530 * or allow a steady drip of one report per second.
532 if (nr_shown == 60) {
533 if (time_before(jiffies, resume)) {
538 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
545 resume = jiffies + 60 * HZ;
547 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
548 index = linear_page_index(vma, addr);
550 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
552 (long long)pte_val(pte), (long long)pmd_val(*pmd));
554 dump_page(page, "bad pte");
555 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
556 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
557 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559 vma->vm_ops ? vma->vm_ops->fault : NULL,
560 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
561 mapping ? mapping->a_ops->readpage : NULL);
563 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
567 * vm_normal_page -- This function gets the "struct page" associated with a pte.
569 * "Special" mappings do not wish to be associated with a "struct page" (either
570 * it doesn't exist, or it exists but they don't want to touch it). In this
571 * case, NULL is returned here. "Normal" mappings do have a struct page.
573 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
574 * pte bit, in which case this function is trivial. Secondly, an architecture
575 * may not have a spare pte bit, which requires a more complicated scheme,
578 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
579 * special mapping (even if there are underlying and valid "struct pages").
580 * COWed pages of a VM_PFNMAP are always normal.
582 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
583 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
584 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
585 * mapping will always honor the rule
587 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589 * And for normal mappings this is false.
591 * This restricts such mappings to be a linear translation from virtual address
592 * to pfn. To get around this restriction, we allow arbitrary mappings so long
593 * as the vma is not a COW mapping; in that case, we know that all ptes are
594 * special (because none can have been COWed).
597 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
600 * page" backing, however the difference is that _all_ pages with a struct
601 * page (that is, those where pfn_valid is true) are refcounted and considered
602 * normal pages by the VM. The disadvantage is that pages are refcounted
603 * (which can be slower and simply not an option for some PFNMAP users). The
604 * advantage is that we don't have to follow the strict linearity rule of
605 * PFNMAP mappings in order to support COWable mappings.
608 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
611 unsigned long pfn = pte_pfn(pte);
613 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
614 if (likely(!pte_special(pte)))
616 if (vma->vm_ops && vma->vm_ops->find_special_page)
617 return vma->vm_ops->find_special_page(vma, addr);
618 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 if (is_zero_pfn(pfn))
625 print_bad_pte(vma, addr, pte, NULL);
629 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
632 if (vma->vm_flags & VM_MIXEDMAP) {
638 off = (addr - vma->vm_start) >> PAGE_SHIFT;
639 if (pfn == vma->vm_pgoff + off)
641 if (!is_cow_mapping(vma->vm_flags))
646 if (is_zero_pfn(pfn))
650 if (unlikely(pfn > highest_memmap_pfn)) {
651 print_bad_pte(vma, addr, pte, NULL);
656 * NOTE! We still have PageReserved() pages in the page tables.
657 * eg. VDSO mappings can cause them to exist.
660 return pfn_to_page(pfn);
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
667 unsigned long pfn = pmd_pfn(pmd);
670 * There is no pmd_special() but there may be special pmds, e.g.
671 * in a direct-access (dax) mapping, so let's just replicate the
672 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
675 if (vma->vm_flags & VM_MIXEDMAP) {
681 off = (addr - vma->vm_start) >> PAGE_SHIFT;
682 if (pfn == vma->vm_pgoff + off)
684 if (!is_cow_mapping(vma->vm_flags))
691 if (is_huge_zero_pmd(pmd))
693 if (unlikely(pfn > highest_memmap_pfn))
697 * NOTE! We still have PageReserved() pages in the page tables.
698 * eg. VDSO mappings can cause them to exist.
701 return pfn_to_page(pfn);
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706 struct page *page, unsigned long address,
712 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
713 if (pte_swp_soft_dirty(*ptep))
714 pte = pte_mksoft_dirty(pte);
716 entry = pte_to_swp_entry(*ptep);
717 if (pte_swp_uffd_wp(*ptep))
718 pte = pte_mkuffd_wp(pte);
719 else if (is_writable_device_exclusive_entry(entry))
720 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722 set_pte_at(vma->vm_mm, address, ptep, pte);
725 * No need to take a page reference as one was already
726 * created when the swap entry was made.
729 page_add_anon_rmap(page, vma, address, false);
732 * Currently device exclusive access only supports anonymous
733 * memory so the entry shouldn't point to a filebacked page.
735 WARN_ON_ONCE(!PageAnon(page));
737 if (vma->vm_flags & VM_LOCKED)
738 mlock_vma_page(page);
741 * No need to invalidate - it was non-present before. However
742 * secondary CPUs may have mappings that need invalidating.
744 update_mmu_cache(vma, address, ptep);
748 * Tries to restore an exclusive pte if the page lock can be acquired without
752 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
755 swp_entry_t entry = pte_to_swp_entry(*src_pte);
756 struct page *page = pfn_swap_entry_to_page(entry);
758 if (trylock_page(page)) {
759 restore_exclusive_pte(vma, page, addr, src_pte);
768 * copy one vm_area from one task to the other. Assumes the page tables
769 * already present in the new task to be cleared in the whole range
770 * covered by this vma.
774 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
775 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
776 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 unsigned long vm_flags = dst_vma->vm_flags;
779 pte_t pte = *src_pte;
781 swp_entry_t entry = pte_to_swp_entry(pte);
783 if (likely(!non_swap_entry(entry))) {
784 if (swap_duplicate(entry) < 0)
787 /* make sure dst_mm is on swapoff's mmlist. */
788 if (unlikely(list_empty(&dst_mm->mmlist))) {
789 spin_lock(&mmlist_lock);
790 if (list_empty(&dst_mm->mmlist))
791 list_add(&dst_mm->mmlist,
793 spin_unlock(&mmlist_lock);
796 } else if (is_migration_entry(entry)) {
797 page = pfn_swap_entry_to_page(entry);
799 rss[mm_counter(page)]++;
801 if (is_writable_migration_entry(entry) &&
802 is_cow_mapping(vm_flags)) {
804 * COW mappings require pages in both
805 * parent and child to be set to read.
807 entry = make_readable_migration_entry(
809 pte = swp_entry_to_pte(entry);
810 if (pte_swp_soft_dirty(*src_pte))
811 pte = pte_swp_mksoft_dirty(pte);
812 if (pte_swp_uffd_wp(*src_pte))
813 pte = pte_swp_mkuffd_wp(pte);
814 set_pte_at(src_mm, addr, src_pte, pte);
816 } else if (is_device_private_entry(entry)) {
817 page = pfn_swap_entry_to_page(entry);
820 * Update rss count even for unaddressable pages, as
821 * they should treated just like normal pages in this
824 * We will likely want to have some new rss counters
825 * for unaddressable pages, at some point. But for now
826 * keep things as they are.
829 rss[mm_counter(page)]++;
830 page_dup_rmap(page, false);
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
839 if (is_writable_device_private_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 entry = make_readable_device_private_entry(
843 pte = swp_entry_to_pte(entry);
844 if (pte_swp_uffd_wp(*src_pte))
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
848 } else if (is_device_exclusive_entry(entry)) {
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 if (!userfaultfd_wp(dst_vma))
861 pte = pte_swp_clear_uffd_wp(pte);
862 set_pte_at(dst_mm, addr, dst_pte, pte);
867 * Copy a present and normal page if necessary.
869 * NOTE! The usual case is that this doesn't need to do
870 * anything, and can just return a positive value. That
871 * will let the caller know that it can just increase
872 * the page refcount and re-use the pte the traditional
875 * But _if_ we need to copy it because it needs to be
876 * pinned in the parent (and the child should get its own
877 * copy rather than just a reference to the same page),
878 * we'll do that here and return zero to let the caller
881 * And if we need a pre-allocated page but don't yet have
882 * one, return a negative error to let the preallocation
883 * code know so that it can do so outside the page table
887 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
888 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
889 struct page **prealloc, pte_t pte, struct page *page)
891 struct page *new_page;
894 * What we want to do is to check whether this page may
895 * have been pinned by the parent process. If so,
896 * instead of wrprotect the pte on both sides, we copy
897 * the page immediately so that we'll always guarantee
898 * the pinned page won't be randomly replaced in the
901 * The page pinning checks are just "has this mm ever
902 * seen pinning", along with the (inexact) check of
903 * the page count. That might give false positives for
904 * for pinning, but it will work correctly.
906 if (likely(!page_needs_cow_for_dma(src_vma, page)))
909 new_page = *prealloc;
914 * We have a prealloc page, all good! Take it
915 * over and copy the page & arm it.
918 copy_user_highpage(new_page, page, addr, src_vma);
919 __SetPageUptodate(new_page);
920 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
921 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
922 rss[mm_counter(new_page)]++;
924 /* All done, just insert the new page copy in the child */
925 pte = mk_pte(new_page, dst_vma->vm_page_prot);
926 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
927 if (userfaultfd_pte_wp(dst_vma, *src_pte))
928 /* Uffd-wp needs to be delivered to dest pte as well */
929 pte = pte_wrprotect(pte_mkuffd_wp(pte));
930 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
935 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
936 * is required to copy this pte.
939 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
940 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
941 struct page **prealloc)
943 struct mm_struct *src_mm = src_vma->vm_mm;
944 unsigned long vm_flags = src_vma->vm_flags;
945 pte_t pte = *src_pte;
948 page = vm_normal_page(src_vma, addr, pte);
952 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
953 addr, rss, prealloc, pte, page);
958 page_dup_rmap(page, false);
959 rss[mm_counter(page)]++;
963 * If it's a COW mapping, write protect it both
964 * in the parent and the child
966 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
967 ptep_set_wrprotect(src_mm, addr, src_pte);
968 pte = pte_wrprotect(pte);
972 * If it's a shared mapping, mark it clean in
975 if (vm_flags & VM_SHARED)
976 pte = pte_mkclean(pte);
977 pte = pte_mkold(pte);
979 if (!userfaultfd_wp(dst_vma))
980 pte = pte_clear_uffd_wp(pte);
982 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
986 static inline struct page *
987 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
990 struct page *new_page;
992 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
996 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1000 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1006 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1007 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1010 struct mm_struct *dst_mm = dst_vma->vm_mm;
1011 struct mm_struct *src_mm = src_vma->vm_mm;
1012 pte_t *orig_src_pte, *orig_dst_pte;
1013 pte_t *src_pte, *dst_pte;
1014 spinlock_t *src_ptl, *dst_ptl;
1015 int progress, ret = 0;
1016 int rss[NR_MM_COUNTERS];
1017 swp_entry_t entry = (swp_entry_t){0};
1018 struct page *prealloc = NULL;
1024 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 src_pte = pte_offset_map(src_pmd, addr);
1030 src_ptl = pte_lockptr(src_mm, src_pmd);
1031 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032 orig_src_pte = src_pte;
1033 orig_dst_pte = dst_pte;
1034 arch_enter_lazy_mmu_mode();
1038 * We are holding two locks at this point - either of them
1039 * could generate latencies in another task on another CPU.
1041 if (progress >= 32) {
1043 if (need_resched() ||
1044 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1047 if (pte_none(*src_pte)) {
1051 if (unlikely(!pte_present(*src_pte))) {
1052 ret = copy_nonpresent_pte(dst_mm, src_mm,
1057 entry = pte_to_swp_entry(*src_pte);
1059 } else if (ret == -EBUSY) {
1067 * Device exclusive entry restored, continue by copying
1068 * the now present pte.
1070 WARN_ON_ONCE(ret != -ENOENT);
1072 /* copy_present_pte() will clear `*prealloc' if consumed */
1073 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074 addr, rss, &prealloc);
1076 * If we need a pre-allocated page for this pte, drop the
1077 * locks, allocate, and try again.
1079 if (unlikely(ret == -EAGAIN))
1081 if (unlikely(prealloc)) {
1083 * pre-alloc page cannot be reused by next time so as
1084 * to strictly follow mempolicy (e.g., alloc_page_vma()
1085 * will allocate page according to address). This
1086 * could only happen if one pinned pte changed.
1092 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1094 arch_leave_lazy_mmu_mode();
1095 spin_unlock(src_ptl);
1096 pte_unmap(orig_src_pte);
1097 add_mm_rss_vec(dst_mm, rss);
1098 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1102 VM_WARN_ON_ONCE(!entry.val);
1103 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1108 } else if (ret == -EBUSY) {
1110 } else if (ret == -EAGAIN) {
1111 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1118 /* We've captured and resolved the error. Reset, try again. */
1124 if (unlikely(prealloc))
1130 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1134 struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 struct mm_struct *src_mm = src_vma->vm_mm;
1136 pmd_t *src_pmd, *dst_pmd;
1139 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1142 src_pmd = pmd_offset(src_pud, addr);
1144 next = pmd_addr_end(addr, end);
1145 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146 || pmd_devmap(*src_pmd)) {
1148 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1149 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150 addr, dst_vma, src_vma);
1157 if (pmd_none_or_clear_bad(src_pmd))
1159 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1162 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1167 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1171 struct mm_struct *dst_mm = dst_vma->vm_mm;
1172 struct mm_struct *src_mm = src_vma->vm_mm;
1173 pud_t *src_pud, *dst_pud;
1176 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1179 src_pud = pud_offset(src_p4d, addr);
1181 next = pud_addr_end(addr, end);
1182 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1185 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1186 err = copy_huge_pud(dst_mm, src_mm,
1187 dst_pud, src_pud, addr, src_vma);
1194 if (pud_none_or_clear_bad(src_pud))
1196 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1199 } while (dst_pud++, src_pud++, addr = next, addr != end);
1204 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1208 struct mm_struct *dst_mm = dst_vma->vm_mm;
1209 p4d_t *src_p4d, *dst_p4d;
1212 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1215 src_p4d = p4d_offset(src_pgd, addr);
1217 next = p4d_addr_end(addr, end);
1218 if (p4d_none_or_clear_bad(src_p4d))
1220 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1223 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1228 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1230 pgd_t *src_pgd, *dst_pgd;
1232 unsigned long addr = src_vma->vm_start;
1233 unsigned long end = src_vma->vm_end;
1234 struct mm_struct *dst_mm = dst_vma->vm_mm;
1235 struct mm_struct *src_mm = src_vma->vm_mm;
1236 struct mmu_notifier_range range;
1241 * Don't copy ptes where a page fault will fill them correctly.
1242 * Fork becomes much lighter when there are big shared or private
1243 * readonly mappings. The tradeoff is that copy_page_range is more
1244 * efficient than faulting.
1246 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1250 if (is_vm_hugetlb_page(src_vma))
1251 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1253 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1255 * We do not free on error cases below as remove_vma
1256 * gets called on error from higher level routine
1258 ret = track_pfn_copy(src_vma);
1264 * We need to invalidate the secondary MMU mappings only when
1265 * there could be a permission downgrade on the ptes of the
1266 * parent mm. And a permission downgrade will only happen if
1267 * is_cow_mapping() returns true.
1269 is_cow = is_cow_mapping(src_vma->vm_flags);
1272 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1273 0, src_vma, src_mm, addr, end);
1274 mmu_notifier_invalidate_range_start(&range);
1276 * Disabling preemption is not needed for the write side, as
1277 * the read side doesn't spin, but goes to the mmap_lock.
1279 * Use the raw variant of the seqcount_t write API to avoid
1280 * lockdep complaining about preemptibility.
1282 mmap_assert_write_locked(src_mm);
1283 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1287 dst_pgd = pgd_offset(dst_mm, addr);
1288 src_pgd = pgd_offset(src_mm, addr);
1290 next = pgd_addr_end(addr, end);
1291 if (pgd_none_or_clear_bad(src_pgd))
1293 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1298 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1301 raw_write_seqcount_end(&src_mm->write_protect_seq);
1302 mmu_notifier_invalidate_range_end(&range);
1307 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1308 struct vm_area_struct *vma, pmd_t *pmd,
1309 unsigned long addr, unsigned long end,
1310 struct zap_details *details)
1312 struct mm_struct *mm = tlb->mm;
1313 int force_flush = 0;
1314 int rss[NR_MM_COUNTERS];
1320 tlb_change_page_size(tlb, PAGE_SIZE);
1323 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1325 flush_tlb_batched_pending(mm);
1326 arch_enter_lazy_mmu_mode();
1329 if (pte_none(ptent))
1335 if (pte_present(ptent)) {
1338 page = vm_normal_page(vma, addr, ptent);
1339 if (unlikely(zap_skip_check_mapping(details, page)))
1341 ptent = ptep_get_and_clear_full(mm, addr, pte,
1343 tlb_remove_tlb_entry(tlb, pte, addr);
1344 if (unlikely(!page))
1347 if (!PageAnon(page)) {
1348 if (pte_dirty(ptent)) {
1350 set_page_dirty(page);
1352 if (pte_young(ptent) &&
1353 likely(!(vma->vm_flags & VM_SEQ_READ)))
1354 mark_page_accessed(page);
1356 rss[mm_counter(page)]--;
1357 page_remove_rmap(page, false);
1358 if (unlikely(page_mapcount(page) < 0))
1359 print_bad_pte(vma, addr, ptent, page);
1360 if (unlikely(__tlb_remove_page(tlb, page))) {
1368 entry = pte_to_swp_entry(ptent);
1369 if (is_device_private_entry(entry) ||
1370 is_device_exclusive_entry(entry)) {
1371 struct page *page = pfn_swap_entry_to_page(entry);
1373 if (unlikely(zap_skip_check_mapping(details, page)))
1375 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1376 rss[mm_counter(page)]--;
1378 if (is_device_private_entry(entry))
1379 page_remove_rmap(page, false);
1385 /* If details->check_mapping, we leave swap entries. */
1386 if (unlikely(details))
1389 if (!non_swap_entry(entry))
1391 else if (is_migration_entry(entry)) {
1394 page = pfn_swap_entry_to_page(entry);
1395 rss[mm_counter(page)]--;
1397 if (unlikely(!free_swap_and_cache(entry)))
1398 print_bad_pte(vma, addr, ptent, NULL);
1399 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1400 } while (pte++, addr += PAGE_SIZE, addr != end);
1402 add_mm_rss_vec(mm, rss);
1403 arch_leave_lazy_mmu_mode();
1405 /* Do the actual TLB flush before dropping ptl */
1407 tlb_flush_mmu_tlbonly(tlb);
1408 pte_unmap_unlock(start_pte, ptl);
1411 * If we forced a TLB flush (either due to running out of
1412 * batch buffers or because we needed to flush dirty TLB
1413 * entries before releasing the ptl), free the batched
1414 * memory too. Restart if we didn't do everything.
1429 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1430 struct vm_area_struct *vma, pud_t *pud,
1431 unsigned long addr, unsigned long end,
1432 struct zap_details *details)
1437 pmd = pmd_offset(pud, addr);
1439 next = pmd_addr_end(addr, end);
1440 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1441 if (next - addr != HPAGE_PMD_SIZE)
1442 __split_huge_pmd(vma, pmd, addr, false, NULL);
1443 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1446 } else if (details && details->single_page &&
1447 PageTransCompound(details->single_page) &&
1448 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1449 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1451 * Take and drop THP pmd lock so that we cannot return
1452 * prematurely, while zap_huge_pmd() has cleared *pmd,
1453 * but not yet decremented compound_mapcount().
1459 * Here there can be other concurrent MADV_DONTNEED or
1460 * trans huge page faults running, and if the pmd is
1461 * none or trans huge it can change under us. This is
1462 * because MADV_DONTNEED holds the mmap_lock in read
1465 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1467 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1470 } while (pmd++, addr = next, addr != end);
1475 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1476 struct vm_area_struct *vma, p4d_t *p4d,
1477 unsigned long addr, unsigned long end,
1478 struct zap_details *details)
1483 pud = pud_offset(p4d, addr);
1485 next = pud_addr_end(addr, end);
1486 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1487 if (next - addr != HPAGE_PUD_SIZE) {
1488 mmap_assert_locked(tlb->mm);
1489 split_huge_pud(vma, pud, addr);
1490 } else if (zap_huge_pud(tlb, vma, pud, addr))
1494 if (pud_none_or_clear_bad(pud))
1496 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1499 } while (pud++, addr = next, addr != end);
1504 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1505 struct vm_area_struct *vma, pgd_t *pgd,
1506 unsigned long addr, unsigned long end,
1507 struct zap_details *details)
1512 p4d = p4d_offset(pgd, addr);
1514 next = p4d_addr_end(addr, end);
1515 if (p4d_none_or_clear_bad(p4d))
1517 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1518 } while (p4d++, addr = next, addr != end);
1523 void unmap_page_range(struct mmu_gather *tlb,
1524 struct vm_area_struct *vma,
1525 unsigned long addr, unsigned long end,
1526 struct zap_details *details)
1531 BUG_ON(addr >= end);
1532 tlb_start_vma(tlb, vma);
1533 pgd = pgd_offset(vma->vm_mm, addr);
1535 next = pgd_addr_end(addr, end);
1536 if (pgd_none_or_clear_bad(pgd))
1538 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1539 } while (pgd++, addr = next, addr != end);
1540 tlb_end_vma(tlb, vma);
1544 static void unmap_single_vma(struct mmu_gather *tlb,
1545 struct vm_area_struct *vma, unsigned long start_addr,
1546 unsigned long end_addr,
1547 struct zap_details *details)
1549 unsigned long start = max(vma->vm_start, start_addr);
1552 if (start >= vma->vm_end)
1554 end = min(vma->vm_end, end_addr);
1555 if (end <= vma->vm_start)
1559 uprobe_munmap(vma, start, end);
1561 if (unlikely(vma->vm_flags & VM_PFNMAP))
1562 untrack_pfn(vma, 0, 0);
1565 if (unlikely(is_vm_hugetlb_page(vma))) {
1567 * It is undesirable to test vma->vm_file as it
1568 * should be non-null for valid hugetlb area.
1569 * However, vm_file will be NULL in the error
1570 * cleanup path of mmap_region. When
1571 * hugetlbfs ->mmap method fails,
1572 * mmap_region() nullifies vma->vm_file
1573 * before calling this function to clean up.
1574 * Since no pte has actually been setup, it is
1575 * safe to do nothing in this case.
1578 i_mmap_lock_write(vma->vm_file->f_mapping);
1579 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1580 i_mmap_unlock_write(vma->vm_file->f_mapping);
1583 unmap_page_range(tlb, vma, start, end, details);
1588 * unmap_vmas - unmap a range of memory covered by a list of vma's
1589 * @tlb: address of the caller's struct mmu_gather
1590 * @vma: the starting vma
1591 * @start_addr: virtual address at which to start unmapping
1592 * @end_addr: virtual address at which to end unmapping
1594 * Unmap all pages in the vma list.
1596 * Only addresses between `start' and `end' will be unmapped.
1598 * The VMA list must be sorted in ascending virtual address order.
1600 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1601 * range after unmap_vmas() returns. So the only responsibility here is to
1602 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1603 * drops the lock and schedules.
1605 void unmap_vmas(struct mmu_gather *tlb,
1606 struct vm_area_struct *vma, unsigned long start_addr,
1607 unsigned long end_addr)
1609 struct mmu_notifier_range range;
1611 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1612 start_addr, end_addr);
1613 mmu_notifier_invalidate_range_start(&range);
1614 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1615 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1616 mmu_notifier_invalidate_range_end(&range);
1620 * zap_page_range - remove user pages in a given range
1621 * @vma: vm_area_struct holding the applicable pages
1622 * @start: starting address of pages to zap
1623 * @size: number of bytes to zap
1625 * Caller must protect the VMA list
1627 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1630 struct mmu_notifier_range range;
1631 struct mmu_gather tlb;
1634 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1635 start, start + size);
1636 tlb_gather_mmu(&tlb, vma->vm_mm);
1637 update_hiwater_rss(vma->vm_mm);
1638 mmu_notifier_invalidate_range_start(&range);
1639 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1640 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1641 mmu_notifier_invalidate_range_end(&range);
1642 tlb_finish_mmu(&tlb);
1646 * zap_page_range_single - remove user pages in a given range
1647 * @vma: vm_area_struct holding the applicable pages
1648 * @address: starting address of pages to zap
1649 * @size: number of bytes to zap
1650 * @details: details of shared cache invalidation
1652 * The range must fit into one VMA.
1654 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1655 unsigned long size, struct zap_details *details)
1657 struct mmu_notifier_range range;
1658 struct mmu_gather tlb;
1661 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662 address, address + size);
1663 tlb_gather_mmu(&tlb, vma->vm_mm);
1664 update_hiwater_rss(vma->vm_mm);
1665 mmu_notifier_invalidate_range_start(&range);
1666 unmap_single_vma(&tlb, vma, address, range.end, details);
1667 mmu_notifier_invalidate_range_end(&range);
1668 tlb_finish_mmu(&tlb);
1672 * zap_vma_ptes - remove ptes mapping the vma
1673 * @vma: vm_area_struct holding ptes to be zapped
1674 * @address: starting address of pages to zap
1675 * @size: number of bytes to zap
1677 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1679 * The entire address range must be fully contained within the vma.
1682 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1685 if (address < vma->vm_start || address + size > vma->vm_end ||
1686 !(vma->vm_flags & VM_PFNMAP))
1689 zap_page_range_single(vma, address, size, NULL);
1691 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1693 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1700 pgd = pgd_offset(mm, addr);
1701 p4d = p4d_alloc(mm, pgd, addr);
1704 pud = pud_alloc(mm, p4d, addr);
1707 pmd = pmd_alloc(mm, pud, addr);
1711 VM_BUG_ON(pmd_trans_huge(*pmd));
1715 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1718 pmd_t *pmd = walk_to_pmd(mm, addr);
1722 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1725 static int validate_page_before_insert(struct page *page)
1727 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1729 flush_dcache_page(page);
1733 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1734 unsigned long addr, struct page *page, pgprot_t prot)
1736 if (!pte_none(*pte))
1738 /* Ok, finally just insert the thing.. */
1740 inc_mm_counter_fast(mm, mm_counter_file(page));
1741 page_add_file_rmap(page, false);
1742 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1747 * This is the old fallback for page remapping.
1749 * For historical reasons, it only allows reserved pages. Only
1750 * old drivers should use this, and they needed to mark their
1751 * pages reserved for the old functions anyway.
1753 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1754 struct page *page, pgprot_t prot)
1756 struct mm_struct *mm = vma->vm_mm;
1761 retval = validate_page_before_insert(page);
1765 pte = get_locked_pte(mm, addr, &ptl);
1768 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1769 pte_unmap_unlock(pte, ptl);
1775 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1776 unsigned long addr, struct page *page, pgprot_t prot)
1780 if (!page_count(page))
1782 err = validate_page_before_insert(page);
1785 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1788 /* insert_pages() amortizes the cost of spinlock operations
1789 * when inserting pages in a loop. Arch *must* define pte_index.
1791 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1792 struct page **pages, unsigned long *num, pgprot_t prot)
1795 pte_t *start_pte, *pte;
1796 spinlock_t *pte_lock;
1797 struct mm_struct *const mm = vma->vm_mm;
1798 unsigned long curr_page_idx = 0;
1799 unsigned long remaining_pages_total = *num;
1800 unsigned long pages_to_write_in_pmd;
1804 pmd = walk_to_pmd(mm, addr);
1808 pages_to_write_in_pmd = min_t(unsigned long,
1809 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1811 /* Allocate the PTE if necessary; takes PMD lock once only. */
1813 if (pte_alloc(mm, pmd))
1816 while (pages_to_write_in_pmd) {
1818 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1820 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1821 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1822 int err = insert_page_in_batch_locked(mm, pte,
1823 addr, pages[curr_page_idx], prot);
1824 if (unlikely(err)) {
1825 pte_unmap_unlock(start_pte, pte_lock);
1827 remaining_pages_total -= pte_idx;
1833 pte_unmap_unlock(start_pte, pte_lock);
1834 pages_to_write_in_pmd -= batch_size;
1835 remaining_pages_total -= batch_size;
1837 if (remaining_pages_total)
1841 *num = remaining_pages_total;
1844 #endif /* ifdef pte_index */
1847 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1848 * @vma: user vma to map to
1849 * @addr: target start user address of these pages
1850 * @pages: source kernel pages
1851 * @num: in: number of pages to map. out: number of pages that were *not*
1852 * mapped. (0 means all pages were successfully mapped).
1854 * Preferred over vm_insert_page() when inserting multiple pages.
1856 * In case of error, we may have mapped a subset of the provided
1857 * pages. It is the caller's responsibility to account for this case.
1859 * The same restrictions apply as in vm_insert_page().
1861 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1862 struct page **pages, unsigned long *num)
1865 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1867 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1869 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1870 BUG_ON(mmap_read_trylock(vma->vm_mm));
1871 BUG_ON(vma->vm_flags & VM_PFNMAP);
1872 vma->vm_flags |= VM_MIXEDMAP;
1874 /* Defer page refcount checking till we're about to map that page. */
1875 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1877 unsigned long idx = 0, pgcount = *num;
1880 for (; idx < pgcount; ++idx) {
1881 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1885 *num = pgcount - idx;
1887 #endif /* ifdef pte_index */
1889 EXPORT_SYMBOL(vm_insert_pages);
1892 * vm_insert_page - insert single page into user vma
1893 * @vma: user vma to map to
1894 * @addr: target user address of this page
1895 * @page: source kernel page
1897 * This allows drivers to insert individual pages they've allocated
1900 * The page has to be a nice clean _individual_ kernel allocation.
1901 * If you allocate a compound page, you need to have marked it as
1902 * such (__GFP_COMP), or manually just split the page up yourself
1903 * (see split_page()).
1905 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1906 * took an arbitrary page protection parameter. This doesn't allow
1907 * that. Your vma protection will have to be set up correctly, which
1908 * means that if you want a shared writable mapping, you'd better
1909 * ask for a shared writable mapping!
1911 * The page does not need to be reserved.
1913 * Usually this function is called from f_op->mmap() handler
1914 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1915 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1916 * function from other places, for example from page-fault handler.
1918 * Return: %0 on success, negative error code otherwise.
1920 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1923 if (addr < vma->vm_start || addr >= vma->vm_end)
1925 if (!page_count(page))
1927 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1928 BUG_ON(mmap_read_trylock(vma->vm_mm));
1929 BUG_ON(vma->vm_flags & VM_PFNMAP);
1930 vma->vm_flags |= VM_MIXEDMAP;
1932 return insert_page(vma, addr, page, vma->vm_page_prot);
1934 EXPORT_SYMBOL(vm_insert_page);
1937 * __vm_map_pages - maps range of kernel pages into user vma
1938 * @vma: user vma to map to
1939 * @pages: pointer to array of source kernel pages
1940 * @num: number of pages in page array
1941 * @offset: user's requested vm_pgoff
1943 * This allows drivers to map range of kernel pages into a user vma.
1945 * Return: 0 on success and error code otherwise.
1947 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1948 unsigned long num, unsigned long offset)
1950 unsigned long count = vma_pages(vma);
1951 unsigned long uaddr = vma->vm_start;
1954 /* Fail if the user requested offset is beyond the end of the object */
1958 /* Fail if the user requested size exceeds available object size */
1959 if (count > num - offset)
1962 for (i = 0; i < count; i++) {
1963 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1973 * vm_map_pages - maps range of kernel pages starts with non zero offset
1974 * @vma: user vma to map to
1975 * @pages: pointer to array of source kernel pages
1976 * @num: number of pages in page array
1978 * Maps an object consisting of @num pages, catering for the user's
1979 * requested vm_pgoff
1981 * If we fail to insert any page into the vma, the function will return
1982 * immediately leaving any previously inserted pages present. Callers
1983 * from the mmap handler may immediately return the error as their caller
1984 * will destroy the vma, removing any successfully inserted pages. Other
1985 * callers should make their own arrangements for calling unmap_region().
1987 * Context: Process context. Called by mmap handlers.
1988 * Return: 0 on success and error code otherwise.
1990 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1993 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1995 EXPORT_SYMBOL(vm_map_pages);
1998 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1999 * @vma: user vma to map to
2000 * @pages: pointer to array of source kernel pages
2001 * @num: number of pages in page array
2003 * Similar to vm_map_pages(), except that it explicitly sets the offset
2004 * to 0. This function is intended for the drivers that did not consider
2007 * Context: Process context. Called by mmap handlers.
2008 * Return: 0 on success and error code otherwise.
2010 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2013 return __vm_map_pages(vma, pages, num, 0);
2015 EXPORT_SYMBOL(vm_map_pages_zero);
2017 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2018 pfn_t pfn, pgprot_t prot, bool mkwrite)
2020 struct mm_struct *mm = vma->vm_mm;
2024 pte = get_locked_pte(mm, addr, &ptl);
2026 return VM_FAULT_OOM;
2027 if (!pte_none(*pte)) {
2030 * For read faults on private mappings the PFN passed
2031 * in may not match the PFN we have mapped if the
2032 * mapped PFN is a writeable COW page. In the mkwrite
2033 * case we are creating a writable PTE for a shared
2034 * mapping and we expect the PFNs to match. If they
2035 * don't match, we are likely racing with block
2036 * allocation and mapping invalidation so just skip the
2039 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2040 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2043 entry = pte_mkyoung(*pte);
2044 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2046 update_mmu_cache(vma, addr, pte);
2051 /* Ok, finally just insert the thing.. */
2052 if (pfn_t_devmap(pfn))
2053 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2055 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2058 entry = pte_mkyoung(entry);
2059 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2062 set_pte_at(mm, addr, pte, entry);
2063 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2066 pte_unmap_unlock(pte, ptl);
2067 return VM_FAULT_NOPAGE;
2071 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2072 * @vma: user vma to map to
2073 * @addr: target user address of this page
2074 * @pfn: source kernel pfn
2075 * @pgprot: pgprot flags for the inserted page
2077 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2078 * to override pgprot on a per-page basis.
2080 * This only makes sense for IO mappings, and it makes no sense for
2081 * COW mappings. In general, using multiple vmas is preferable;
2082 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2085 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2086 * a value of @pgprot different from that of @vma->vm_page_prot.
2088 * Context: Process context. May allocate using %GFP_KERNEL.
2089 * Return: vm_fault_t value.
2091 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2092 unsigned long pfn, pgprot_t pgprot)
2095 * Technically, architectures with pte_special can avoid all these
2096 * restrictions (same for remap_pfn_range). However we would like
2097 * consistency in testing and feature parity among all, so we should
2098 * try to keep these invariants in place for everybody.
2100 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2101 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2102 (VM_PFNMAP|VM_MIXEDMAP));
2103 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2104 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2106 if (addr < vma->vm_start || addr >= vma->vm_end)
2107 return VM_FAULT_SIGBUS;
2109 if (!pfn_modify_allowed(pfn, pgprot))
2110 return VM_FAULT_SIGBUS;
2112 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2114 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2117 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2120 * vmf_insert_pfn - insert single pfn into user vma
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2125 * Similar to vm_insert_page, this allows drivers to insert individual pages
2126 * they've allocated into a user vma. Same comments apply.
2128 * This function should only be called from a vm_ops->fault handler, and
2129 * in that case the handler should return the result of this function.
2131 * vma cannot be a COW mapping.
2133 * As this is called only for pages that do not currently exist, we
2134 * do not need to flush old virtual caches or the TLB.
2136 * Context: Process context. May allocate using %GFP_KERNEL.
2137 * Return: vm_fault_t value.
2139 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2142 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2144 EXPORT_SYMBOL(vmf_insert_pfn);
2146 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2148 /* these checks mirror the abort conditions in vm_normal_page */
2149 if (vma->vm_flags & VM_MIXEDMAP)
2151 if (pfn_t_devmap(pfn))
2153 if (pfn_t_special(pfn))
2155 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2160 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2161 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2166 BUG_ON(!vm_mixed_ok(vma, pfn));
2168 if (addr < vma->vm_start || addr >= vma->vm_end)
2169 return VM_FAULT_SIGBUS;
2171 track_pfn_insert(vma, &pgprot, pfn);
2173 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2174 return VM_FAULT_SIGBUS;
2177 * If we don't have pte special, then we have to use the pfn_valid()
2178 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2179 * refcount the page if pfn_valid is true (hence insert_page rather
2180 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2181 * without pte special, it would there be refcounted as a normal page.
2183 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2184 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2188 * At this point we are committed to insert_page()
2189 * regardless of whether the caller specified flags that
2190 * result in pfn_t_has_page() == false.
2192 page = pfn_to_page(pfn_t_to_pfn(pfn));
2193 err = insert_page(vma, addr, page, pgprot);
2195 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2199 return VM_FAULT_OOM;
2200 if (err < 0 && err != -EBUSY)
2201 return VM_FAULT_SIGBUS;
2203 return VM_FAULT_NOPAGE;
2207 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2208 * @vma: user vma to map to
2209 * @addr: target user address of this page
2210 * @pfn: source kernel pfn
2211 * @pgprot: pgprot flags for the inserted page
2213 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2214 * to override pgprot on a per-page basis.
2216 * Typically this function should be used by drivers to set caching- and
2217 * encryption bits different than those of @vma->vm_page_prot, because
2218 * the caching- or encryption mode may not be known at mmap() time.
2219 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2220 * to set caching and encryption bits for those vmas (except for COW pages).
2221 * This is ensured by core vm only modifying these page table entries using
2222 * functions that don't touch caching- or encryption bits, using pte_modify()
2223 * if needed. (See for example mprotect()).
2224 * Also when new page-table entries are created, this is only done using the
2225 * fault() callback, and never using the value of vma->vm_page_prot,
2226 * except for page-table entries that point to anonymous pages as the result
2229 * Context: Process context. May allocate using %GFP_KERNEL.
2230 * Return: vm_fault_t value.
2232 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2233 pfn_t pfn, pgprot_t pgprot)
2235 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2237 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2239 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2242 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2244 EXPORT_SYMBOL(vmf_insert_mixed);
2247 * If the insertion of PTE failed because someone else already added a
2248 * different entry in the mean time, we treat that as success as we assume
2249 * the same entry was actually inserted.
2251 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2252 unsigned long addr, pfn_t pfn)
2254 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2256 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2259 * maps a range of physical memory into the requested pages. the old
2260 * mappings are removed. any references to nonexistent pages results
2261 * in null mappings (currently treated as "copy-on-access")
2263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2264 unsigned long addr, unsigned long end,
2265 unsigned long pfn, pgprot_t prot)
2267 pte_t *pte, *mapped_pte;
2271 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2274 arch_enter_lazy_mmu_mode();
2276 BUG_ON(!pte_none(*pte));
2277 if (!pfn_modify_allowed(pfn, prot)) {
2281 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2283 } while (pte++, addr += PAGE_SIZE, addr != end);
2284 arch_leave_lazy_mmu_mode();
2285 pte_unmap_unlock(mapped_pte, ptl);
2289 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2290 unsigned long addr, unsigned long end,
2291 unsigned long pfn, pgprot_t prot)
2297 pfn -= addr >> PAGE_SHIFT;
2298 pmd = pmd_alloc(mm, pud, addr);
2301 VM_BUG_ON(pmd_trans_huge(*pmd));
2303 next = pmd_addr_end(addr, end);
2304 err = remap_pte_range(mm, pmd, addr, next,
2305 pfn + (addr >> PAGE_SHIFT), prot);
2308 } while (pmd++, addr = next, addr != end);
2312 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2313 unsigned long addr, unsigned long end,
2314 unsigned long pfn, pgprot_t prot)
2320 pfn -= addr >> PAGE_SHIFT;
2321 pud = pud_alloc(mm, p4d, addr);
2325 next = pud_addr_end(addr, end);
2326 err = remap_pmd_range(mm, pud, addr, next,
2327 pfn + (addr >> PAGE_SHIFT), prot);
2330 } while (pud++, addr = next, addr != end);
2334 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2335 unsigned long addr, unsigned long end,
2336 unsigned long pfn, pgprot_t prot)
2342 pfn -= addr >> PAGE_SHIFT;
2343 p4d = p4d_alloc(mm, pgd, addr);
2347 next = p4d_addr_end(addr, end);
2348 err = remap_pud_range(mm, p4d, addr, next,
2349 pfn + (addr >> PAGE_SHIFT), prot);
2352 } while (p4d++, addr = next, addr != end);
2357 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2358 * must have pre-validated the caching bits of the pgprot_t.
2360 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2361 unsigned long pfn, unsigned long size, pgprot_t prot)
2365 unsigned long end = addr + PAGE_ALIGN(size);
2366 struct mm_struct *mm = vma->vm_mm;
2369 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2373 * Physically remapped pages are special. Tell the
2374 * rest of the world about it:
2375 * VM_IO tells people not to look at these pages
2376 * (accesses can have side effects).
2377 * VM_PFNMAP tells the core MM that the base pages are just
2378 * raw PFN mappings, and do not have a "struct page" associated
2381 * Disable vma merging and expanding with mremap().
2383 * Omit vma from core dump, even when VM_IO turned off.
2385 * There's a horrible special case to handle copy-on-write
2386 * behaviour that some programs depend on. We mark the "original"
2387 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2388 * See vm_normal_page() for details.
2390 if (is_cow_mapping(vma->vm_flags)) {
2391 if (addr != vma->vm_start || end != vma->vm_end)
2393 vma->vm_pgoff = pfn;
2396 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2398 BUG_ON(addr >= end);
2399 pfn -= addr >> PAGE_SHIFT;
2400 pgd = pgd_offset(mm, addr);
2401 flush_cache_range(vma, addr, end);
2403 next = pgd_addr_end(addr, end);
2404 err = remap_p4d_range(mm, pgd, addr, next,
2405 pfn + (addr >> PAGE_SHIFT), prot);
2408 } while (pgd++, addr = next, addr != end);
2414 * remap_pfn_range - remap kernel memory to userspace
2415 * @vma: user vma to map to
2416 * @addr: target page aligned user address to start at
2417 * @pfn: page frame number of kernel physical memory address
2418 * @size: size of mapping area
2419 * @prot: page protection flags for this mapping
2421 * Note: this is only safe if the mm semaphore is held when called.
2423 * Return: %0 on success, negative error code otherwise.
2425 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2426 unsigned long pfn, unsigned long size, pgprot_t prot)
2430 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2434 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2436 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2439 EXPORT_SYMBOL(remap_pfn_range);
2442 * vm_iomap_memory - remap memory to userspace
2443 * @vma: user vma to map to
2444 * @start: start of the physical memory to be mapped
2445 * @len: size of area
2447 * This is a simplified io_remap_pfn_range() for common driver use. The
2448 * driver just needs to give us the physical memory range to be mapped,
2449 * we'll figure out the rest from the vma information.
2451 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2452 * whatever write-combining details or similar.
2454 * Return: %0 on success, negative error code otherwise.
2456 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2458 unsigned long vm_len, pfn, pages;
2460 /* Check that the physical memory area passed in looks valid */
2461 if (start + len < start)
2464 * You *really* shouldn't map things that aren't page-aligned,
2465 * but we've historically allowed it because IO memory might
2466 * just have smaller alignment.
2468 len += start & ~PAGE_MASK;
2469 pfn = start >> PAGE_SHIFT;
2470 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2471 if (pfn + pages < pfn)
2474 /* We start the mapping 'vm_pgoff' pages into the area */
2475 if (vma->vm_pgoff > pages)
2477 pfn += vma->vm_pgoff;
2478 pages -= vma->vm_pgoff;
2480 /* Can we fit all of the mapping? */
2481 vm_len = vma->vm_end - vma->vm_start;
2482 if (vm_len >> PAGE_SHIFT > pages)
2485 /* Ok, let it rip */
2486 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2488 EXPORT_SYMBOL(vm_iomap_memory);
2490 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2491 unsigned long addr, unsigned long end,
2492 pte_fn_t fn, void *data, bool create,
2493 pgtbl_mod_mask *mask)
2495 pte_t *pte, *mapped_pte;
2500 mapped_pte = pte = (mm == &init_mm) ?
2501 pte_alloc_kernel_track(pmd, addr, mask) :
2502 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2506 mapped_pte = pte = (mm == &init_mm) ?
2507 pte_offset_kernel(pmd, addr) :
2508 pte_offset_map_lock(mm, pmd, addr, &ptl);
2511 BUG_ON(pmd_huge(*pmd));
2513 arch_enter_lazy_mmu_mode();
2517 if (create || !pte_none(*pte)) {
2518 err = fn(pte++, addr, data);
2522 } while (addr += PAGE_SIZE, addr != end);
2524 *mask |= PGTBL_PTE_MODIFIED;
2526 arch_leave_lazy_mmu_mode();
2529 pte_unmap_unlock(mapped_pte, ptl);
2533 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2534 unsigned long addr, unsigned long end,
2535 pte_fn_t fn, void *data, bool create,
2536 pgtbl_mod_mask *mask)
2542 BUG_ON(pud_huge(*pud));
2545 pmd = pmd_alloc_track(mm, pud, addr, mask);
2549 pmd = pmd_offset(pud, addr);
2552 next = pmd_addr_end(addr, end);
2553 if (pmd_none(*pmd) && !create)
2555 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2557 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2562 err = apply_to_pte_range(mm, pmd, addr, next,
2563 fn, data, create, mask);
2566 } while (pmd++, addr = next, addr != end);
2571 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2572 unsigned long addr, unsigned long end,
2573 pte_fn_t fn, void *data, bool create,
2574 pgtbl_mod_mask *mask)
2581 pud = pud_alloc_track(mm, p4d, addr, mask);
2585 pud = pud_offset(p4d, addr);
2588 next = pud_addr_end(addr, end);
2589 if (pud_none(*pud) && !create)
2591 if (WARN_ON_ONCE(pud_leaf(*pud)))
2593 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2598 err = apply_to_pmd_range(mm, pud, addr, next,
2599 fn, data, create, mask);
2602 } while (pud++, addr = next, addr != end);
2607 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2608 unsigned long addr, unsigned long end,
2609 pte_fn_t fn, void *data, bool create,
2610 pgtbl_mod_mask *mask)
2617 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2621 p4d = p4d_offset(pgd, addr);
2624 next = p4d_addr_end(addr, end);
2625 if (p4d_none(*p4d) && !create)
2627 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2629 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2634 err = apply_to_pud_range(mm, p4d, addr, next,
2635 fn, data, create, mask);
2638 } while (p4d++, addr = next, addr != end);
2643 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2644 unsigned long size, pte_fn_t fn,
2645 void *data, bool create)
2648 unsigned long start = addr, next;
2649 unsigned long end = addr + size;
2650 pgtbl_mod_mask mask = 0;
2653 if (WARN_ON(addr >= end))
2656 pgd = pgd_offset(mm, addr);
2658 next = pgd_addr_end(addr, end);
2659 if (pgd_none(*pgd) && !create)
2661 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2663 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2668 err = apply_to_p4d_range(mm, pgd, addr, next,
2669 fn, data, create, &mask);
2672 } while (pgd++, addr = next, addr != end);
2674 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2675 arch_sync_kernel_mappings(start, start + size);
2681 * Scan a region of virtual memory, filling in page tables as necessary
2682 * and calling a provided function on each leaf page table.
2684 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2685 unsigned long size, pte_fn_t fn, void *data)
2687 return __apply_to_page_range(mm, addr, size, fn, data, true);
2689 EXPORT_SYMBOL_GPL(apply_to_page_range);
2692 * Scan a region of virtual memory, calling a provided function on
2693 * each leaf page table where it exists.
2695 * Unlike apply_to_page_range, this does _not_ fill in page tables
2696 * where they are absent.
2698 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2699 unsigned long size, pte_fn_t fn, void *data)
2701 return __apply_to_page_range(mm, addr, size, fn, data, false);
2703 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2706 * handle_pte_fault chooses page fault handler according to an entry which was
2707 * read non-atomically. Before making any commitment, on those architectures
2708 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2709 * parts, do_swap_page must check under lock before unmapping the pte and
2710 * proceeding (but do_wp_page is only called after already making such a check;
2711 * and do_anonymous_page can safely check later on).
2713 static inline int pte_unmap_same(struct vm_fault *vmf)
2716 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2717 if (sizeof(pte_t) > sizeof(unsigned long)) {
2718 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2720 same = pte_same(*vmf->pte, vmf->orig_pte);
2724 pte_unmap(vmf->pte);
2729 static inline bool cow_user_page(struct page *dst, struct page *src,
2730 struct vm_fault *vmf)
2735 bool locked = false;
2736 struct vm_area_struct *vma = vmf->vma;
2737 struct mm_struct *mm = vma->vm_mm;
2738 unsigned long addr = vmf->address;
2741 copy_user_highpage(dst, src, addr, vma);
2746 * If the source page was a PFN mapping, we don't have
2747 * a "struct page" for it. We do a best-effort copy by
2748 * just copying from the original user address. If that
2749 * fails, we just zero-fill it. Live with it.
2751 kaddr = kmap_atomic(dst);
2752 uaddr = (void __user *)(addr & PAGE_MASK);
2755 * On architectures with software "accessed" bits, we would
2756 * take a double page fault, so mark it accessed here.
2758 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2761 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2763 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2765 * Other thread has already handled the fault
2766 * and update local tlb only
2768 update_mmu_tlb(vma, addr, vmf->pte);
2773 entry = pte_mkyoung(vmf->orig_pte);
2774 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2775 update_mmu_cache(vma, addr, vmf->pte);
2779 * This really shouldn't fail, because the page is there
2780 * in the page tables. But it might just be unreadable,
2781 * in which case we just give up and fill the result with
2784 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2788 /* Re-validate under PTL if the page is still mapped */
2789 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2792 /* The PTE changed under us, update local tlb */
2793 update_mmu_tlb(vma, addr, vmf->pte);
2799 * The same page can be mapped back since last copy attempt.
2800 * Try to copy again under PTL.
2802 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2804 * Give a warn in case there can be some obscure
2817 pte_unmap_unlock(vmf->pte, vmf->ptl);
2818 kunmap_atomic(kaddr);
2819 flush_dcache_page(dst);
2824 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2826 struct file *vm_file = vma->vm_file;
2829 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2832 * Special mappings (e.g. VDSO) do not have any file so fake
2833 * a default GFP_KERNEL for them.
2839 * Notify the address space that the page is about to become writable so that
2840 * it can prohibit this or wait for the page to get into an appropriate state.
2842 * We do this without the lock held, so that it can sleep if it needs to.
2844 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2847 struct page *page = vmf->page;
2848 unsigned int old_flags = vmf->flags;
2850 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2852 if (vmf->vma->vm_file &&
2853 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2854 return VM_FAULT_SIGBUS;
2856 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2857 /* Restore original flags so that caller is not surprised */
2858 vmf->flags = old_flags;
2859 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2861 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2863 if (!page->mapping) {
2865 return 0; /* retry */
2867 ret |= VM_FAULT_LOCKED;
2869 VM_BUG_ON_PAGE(!PageLocked(page), page);
2874 * Handle dirtying of a page in shared file mapping on a write fault.
2876 * The function expects the page to be locked and unlocks it.
2878 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2880 struct vm_area_struct *vma = vmf->vma;
2881 struct address_space *mapping;
2882 struct page *page = vmf->page;
2884 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2886 dirtied = set_page_dirty(page);
2887 VM_BUG_ON_PAGE(PageAnon(page), page);
2889 * Take a local copy of the address_space - page.mapping may be zeroed
2890 * by truncate after unlock_page(). The address_space itself remains
2891 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2892 * release semantics to prevent the compiler from undoing this copying.
2894 mapping = page_rmapping(page);
2898 file_update_time(vma->vm_file);
2901 * Throttle page dirtying rate down to writeback speed.
2903 * mapping may be NULL here because some device drivers do not
2904 * set page.mapping but still dirty their pages
2906 * Drop the mmap_lock before waiting on IO, if we can. The file
2907 * is pinning the mapping, as per above.
2909 if ((dirtied || page_mkwrite) && mapping) {
2912 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2913 balance_dirty_pages_ratelimited(mapping);
2916 return VM_FAULT_RETRY;
2924 * Handle write page faults for pages that can be reused in the current vma
2926 * This can happen either due to the mapping being with the VM_SHARED flag,
2927 * or due to us being the last reference standing to the page. In either
2928 * case, all we need to do here is to mark the page as writable and update
2929 * any related book-keeping.
2931 static inline void wp_page_reuse(struct vm_fault *vmf)
2932 __releases(vmf->ptl)
2934 struct vm_area_struct *vma = vmf->vma;
2935 struct page *page = vmf->page;
2938 * Clear the pages cpupid information as the existing
2939 * information potentially belongs to a now completely
2940 * unrelated process.
2943 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2945 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2946 entry = pte_mkyoung(vmf->orig_pte);
2947 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2948 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2949 update_mmu_cache(vma, vmf->address, vmf->pte);
2950 pte_unmap_unlock(vmf->pte, vmf->ptl);
2951 count_vm_event(PGREUSE);
2955 * Handle the case of a page which we actually need to copy to a new page.
2957 * Called with mmap_lock locked and the old page referenced, but
2958 * without the ptl held.
2960 * High level logic flow:
2962 * - Allocate a page, copy the content of the old page to the new one.
2963 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2964 * - Take the PTL. If the pte changed, bail out and release the allocated page
2965 * - If the pte is still the way we remember it, update the page table and all
2966 * relevant references. This includes dropping the reference the page-table
2967 * held to the old page, as well as updating the rmap.
2968 * - In any case, unlock the PTL and drop the reference we took to the old page.
2970 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2972 struct vm_area_struct *vma = vmf->vma;
2973 struct mm_struct *mm = vma->vm_mm;
2974 struct page *old_page = vmf->page;
2975 struct page *new_page = NULL;
2977 int page_copied = 0;
2978 struct mmu_notifier_range range;
2980 if (unlikely(anon_vma_prepare(vma)))
2983 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2984 new_page = alloc_zeroed_user_highpage_movable(vma,
2989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2994 if (!cow_user_page(new_page, old_page, vmf)) {
2996 * COW failed, if the fault was solved by other,
2997 * it's fine. If not, userspace would re-fault on
2998 * the same address and we will handle the fault
2999 * from the second attempt.
3008 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3010 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3012 __SetPageUptodate(new_page);
3014 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3015 vmf->address & PAGE_MASK,
3016 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3017 mmu_notifier_invalidate_range_start(&range);
3020 * Re-check the pte - we dropped the lock
3022 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3023 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3025 if (!PageAnon(old_page)) {
3026 dec_mm_counter_fast(mm,
3027 mm_counter_file(old_page));
3028 inc_mm_counter_fast(mm, MM_ANONPAGES);
3031 inc_mm_counter_fast(mm, MM_ANONPAGES);
3033 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3034 entry = mk_pte(new_page, vma->vm_page_prot);
3035 entry = pte_sw_mkyoung(entry);
3036 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3039 * Clear the pte entry and flush it first, before updating the
3040 * pte with the new entry, to keep TLBs on different CPUs in
3041 * sync. This code used to set the new PTE then flush TLBs, but
3042 * that left a window where the new PTE could be loaded into
3043 * some TLBs while the old PTE remains in others.
3045 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3046 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3047 lru_cache_add_inactive_or_unevictable(new_page, vma);
3049 * We call the notify macro here because, when using secondary
3050 * mmu page tables (such as kvm shadow page tables), we want the
3051 * new page to be mapped directly into the secondary page table.
3053 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3054 update_mmu_cache(vma, vmf->address, vmf->pte);
3057 * Only after switching the pte to the new page may
3058 * we remove the mapcount here. Otherwise another
3059 * process may come and find the rmap count decremented
3060 * before the pte is switched to the new page, and
3061 * "reuse" the old page writing into it while our pte
3062 * here still points into it and can be read by other
3065 * The critical issue is to order this
3066 * page_remove_rmap with the ptp_clear_flush above.
3067 * Those stores are ordered by (if nothing else,)
3068 * the barrier present in the atomic_add_negative
3069 * in page_remove_rmap.
3071 * Then the TLB flush in ptep_clear_flush ensures that
3072 * no process can access the old page before the
3073 * decremented mapcount is visible. And the old page
3074 * cannot be reused until after the decremented
3075 * mapcount is visible. So transitively, TLBs to
3076 * old page will be flushed before it can be reused.
3078 page_remove_rmap(old_page, false);
3081 /* Free the old page.. */
3082 new_page = old_page;
3085 update_mmu_tlb(vma, vmf->address, vmf->pte);
3091 pte_unmap_unlock(vmf->pte, vmf->ptl);
3093 * No need to double call mmu_notifier->invalidate_range() callback as
3094 * the above ptep_clear_flush_notify() did already call it.
3096 mmu_notifier_invalidate_range_only_end(&range);
3099 * Don't let another task, with possibly unlocked vma,
3100 * keep the mlocked page.
3102 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3103 lock_page(old_page); /* LRU manipulation */
3104 if (PageMlocked(old_page))
3105 munlock_vma_page(old_page);
3106 unlock_page(old_page);
3109 free_swap_cache(old_page);
3112 return page_copied ? VM_FAULT_WRITE : 0;
3118 return VM_FAULT_OOM;
3122 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3123 * writeable once the page is prepared
3125 * @vmf: structure describing the fault
3127 * This function handles all that is needed to finish a write page fault in a
3128 * shared mapping due to PTE being read-only once the mapped page is prepared.
3129 * It handles locking of PTE and modifying it.
3131 * The function expects the page to be locked or other protection against
3132 * concurrent faults / writeback (such as DAX radix tree locks).
3134 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3135 * we acquired PTE lock.
3137 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3139 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3140 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3143 * We might have raced with another page fault while we released the
3144 * pte_offset_map_lock.
3146 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3147 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3148 pte_unmap_unlock(vmf->pte, vmf->ptl);
3149 return VM_FAULT_NOPAGE;
3156 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3159 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3161 struct vm_area_struct *vma = vmf->vma;
3163 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3166 pte_unmap_unlock(vmf->pte, vmf->ptl);
3167 vmf->flags |= FAULT_FLAG_MKWRITE;
3168 ret = vma->vm_ops->pfn_mkwrite(vmf);
3169 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3171 return finish_mkwrite_fault(vmf);
3174 return VM_FAULT_WRITE;
3177 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3178 __releases(vmf->ptl)
3180 struct vm_area_struct *vma = vmf->vma;
3181 vm_fault_t ret = VM_FAULT_WRITE;
3183 get_page(vmf->page);
3185 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189 tmp = do_page_mkwrite(vmf);
3190 if (unlikely(!tmp || (tmp &
3191 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3192 put_page(vmf->page);
3195 tmp = finish_mkwrite_fault(vmf);
3196 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3197 unlock_page(vmf->page);
3198 put_page(vmf->page);
3203 lock_page(vmf->page);
3205 ret |= fault_dirty_shared_page(vmf);
3206 put_page(vmf->page);
3212 * This routine handles present pages, when users try to write
3213 * to a shared page. It is done by copying the page to a new address
3214 * and decrementing the shared-page counter for the old page.
3216 * Note that this routine assumes that the protection checks have been
3217 * done by the caller (the low-level page fault routine in most cases).
3218 * Thus we can safely just mark it writable once we've done any necessary
3221 * We also mark the page dirty at this point even though the page will
3222 * change only once the write actually happens. This avoids a few races,
3223 * and potentially makes it more efficient.
3225 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3226 * but allow concurrent faults), with pte both mapped and locked.
3227 * We return with mmap_lock still held, but pte unmapped and unlocked.
3229 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3230 __releases(vmf->ptl)
3232 struct vm_area_struct *vma = vmf->vma;
3234 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3235 pte_unmap_unlock(vmf->pte, vmf->ptl);
3236 return handle_userfault(vmf, VM_UFFD_WP);
3240 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3241 * is flushed in this case before copying.
3243 if (unlikely(userfaultfd_wp(vmf->vma) &&
3244 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3245 flush_tlb_page(vmf->vma, vmf->address);
3247 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3250 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3253 * We should not cow pages in a shared writeable mapping.
3254 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3256 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3257 (VM_WRITE|VM_SHARED))
3258 return wp_pfn_shared(vmf);
3260 pte_unmap_unlock(vmf->pte, vmf->ptl);
3261 return wp_page_copy(vmf);
3265 * Take out anonymous pages first, anonymous shared vmas are
3266 * not dirty accountable.
3268 if (PageAnon(vmf->page)) {
3269 struct page *page = vmf->page;
3271 /* PageKsm() doesn't necessarily raise the page refcount */
3272 if (PageKsm(page) || page_count(page) != 1)
3274 if (!trylock_page(page))
3276 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3281 * Ok, we've got the only map reference, and the only
3282 * page count reference, and the page is locked,
3283 * it's dark out, and we're wearing sunglasses. Hit it.
3287 return VM_FAULT_WRITE;
3288 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3289 (VM_WRITE|VM_SHARED))) {
3290 return wp_page_shared(vmf);
3294 * Ok, we need to copy. Oh, well..
3296 get_page(vmf->page);
3298 pte_unmap_unlock(vmf->pte, vmf->ptl);
3299 return wp_page_copy(vmf);
3302 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3303 unsigned long start_addr, unsigned long end_addr,
3304 struct zap_details *details)
3306 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3309 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3310 pgoff_t first_index,
3312 struct zap_details *details)
3314 struct vm_area_struct *vma;
3315 pgoff_t vba, vea, zba, zea;
3317 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3318 vba = vma->vm_pgoff;
3319 vea = vba + vma_pages(vma) - 1;
3327 unmap_mapping_range_vma(vma,
3328 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3329 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3335 * unmap_mapping_page() - Unmap single page from processes.
3336 * @page: The locked page to be unmapped.
3338 * Unmap this page from any userspace process which still has it mmaped.
3339 * Typically, for efficiency, the range of nearby pages has already been
3340 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3341 * truncation or invalidation holds the lock on a page, it may find that
3342 * the page has been remapped again: and then uses unmap_mapping_page()
3343 * to unmap it finally.
3345 void unmap_mapping_page(struct page *page)
3347 struct address_space *mapping = page->mapping;
3348 struct zap_details details = { };
3349 pgoff_t first_index;
3352 VM_BUG_ON(!PageLocked(page));
3353 VM_BUG_ON(PageTail(page));
3355 first_index = page->index;
3356 last_index = page->index + thp_nr_pages(page) - 1;
3358 details.zap_mapping = mapping;
3359 details.single_page = page;
3361 i_mmap_lock_write(mapping);
3362 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3363 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3364 last_index, &details);
3365 i_mmap_unlock_write(mapping);
3369 * unmap_mapping_pages() - Unmap pages from processes.
3370 * @mapping: The address space containing pages to be unmapped.
3371 * @start: Index of first page to be unmapped.
3372 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3373 * @even_cows: Whether to unmap even private COWed pages.
3375 * Unmap the pages in this address space from any userspace process which
3376 * has them mmaped. Generally, you want to remove COWed pages as well when
3377 * a file is being truncated, but not when invalidating pages from the page
3380 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3381 pgoff_t nr, bool even_cows)
3383 struct zap_details details = { };
3384 pgoff_t first_index = start;
3385 pgoff_t last_index = start + nr - 1;
3387 details.zap_mapping = even_cows ? NULL : mapping;
3388 if (last_index < first_index)
3389 last_index = ULONG_MAX;
3391 i_mmap_lock_write(mapping);
3392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3393 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394 last_index, &details);
3395 i_mmap_unlock_write(mapping);
3397 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3400 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3401 * address_space corresponding to the specified byte range in the underlying
3404 * @mapping: the address space containing mmaps to be unmapped.
3405 * @holebegin: byte in first page to unmap, relative to the start of
3406 * the underlying file. This will be rounded down to a PAGE_SIZE
3407 * boundary. Note that this is different from truncate_pagecache(), which
3408 * must keep the partial page. In contrast, we must get rid of
3410 * @holelen: size of prospective hole in bytes. This will be rounded
3411 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3413 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3414 * but 0 when invalidating pagecache, don't throw away private data.
3416 void unmap_mapping_range(struct address_space *mapping,
3417 loff_t const holebegin, loff_t const holelen, int even_cows)
3419 pgoff_t hba = holebegin >> PAGE_SHIFT;
3420 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3422 /* Check for overflow. */
3423 if (sizeof(holelen) > sizeof(hlen)) {
3425 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3426 if (holeend & ~(long long)ULONG_MAX)
3427 hlen = ULONG_MAX - hba + 1;
3430 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3432 EXPORT_SYMBOL(unmap_mapping_range);
3435 * Restore a potential device exclusive pte to a working pte entry
3437 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3439 struct page *page = vmf->page;
3440 struct vm_area_struct *vma = vmf->vma;
3441 struct mmu_notifier_range range;
3443 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3444 return VM_FAULT_RETRY;
3445 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3446 vma->vm_mm, vmf->address & PAGE_MASK,
3447 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3448 mmu_notifier_invalidate_range_start(&range);
3450 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3452 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3453 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3455 pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 mmu_notifier_invalidate_range_end(&range);
3463 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3464 * but allow concurrent faults), and pte mapped but not yet locked.
3465 * We return with pte unmapped and unlocked.
3467 * We return with the mmap_lock locked or unlocked in the same cases
3468 * as does filemap_fault().
3470 vm_fault_t do_swap_page(struct vm_fault *vmf)
3472 struct vm_area_struct *vma = vmf->vma;
3473 struct page *page = NULL, *swapcache;
3474 struct swap_info_struct *si = NULL;
3480 void *shadow = NULL;
3482 if (!pte_unmap_same(vmf))
3485 entry = pte_to_swp_entry(vmf->orig_pte);
3486 if (unlikely(non_swap_entry(entry))) {
3487 if (is_migration_entry(entry)) {
3488 migration_entry_wait(vma->vm_mm, vmf->pmd,
3490 } else if (is_device_exclusive_entry(entry)) {
3491 vmf->page = pfn_swap_entry_to_page(entry);
3492 ret = remove_device_exclusive_entry(vmf);
3493 } else if (is_device_private_entry(entry)) {
3494 vmf->page = pfn_swap_entry_to_page(entry);
3495 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3496 } else if (is_hwpoison_entry(entry)) {
3497 ret = VM_FAULT_HWPOISON;
3499 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3500 ret = VM_FAULT_SIGBUS;
3505 /* Prevent swapoff from happening to us. */
3506 si = get_swap_device(entry);
3510 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3511 page = lookup_swap_cache(entry, vma, vmf->address);
3515 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3516 __swap_count(entry) == 1) {
3517 /* skip swapcache */
3518 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3521 __SetPageLocked(page);
3522 __SetPageSwapBacked(page);
3524 if (mem_cgroup_swapin_charge_page(page,
3525 vma->vm_mm, GFP_KERNEL, entry)) {
3529 mem_cgroup_swapin_uncharge_swap(entry);
3531 shadow = get_shadow_from_swap_cache(entry);
3533 workingset_refault(page_folio(page),
3536 lru_cache_add(page);
3538 /* To provide entry to swap_readpage() */
3539 set_page_private(page, entry.val);
3540 swap_readpage(page, true);
3541 set_page_private(page, 0);
3544 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3551 * Back out if somebody else faulted in this pte
3552 * while we released the pte lock.
3554 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3555 vmf->address, &vmf->ptl);
3556 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3558 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3562 /* Had to read the page from swap area: Major fault */
3563 ret = VM_FAULT_MAJOR;
3564 count_vm_event(PGMAJFAULT);
3565 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3566 } else if (PageHWPoison(page)) {
3568 * hwpoisoned dirty swapcache pages are kept for killing
3569 * owner processes (which may be unknown at hwpoison time)
3571 ret = VM_FAULT_HWPOISON;
3572 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3576 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3578 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3580 ret |= VM_FAULT_RETRY;
3585 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3586 * release the swapcache from under us. The page pin, and pte_same
3587 * test below, are not enough to exclude that. Even if it is still
3588 * swapcache, we need to check that the page's swap has not changed.
3590 if (unlikely((!PageSwapCache(page) ||
3591 page_private(page) != entry.val)) && swapcache)
3594 page = ksm_might_need_to_copy(page, vma, vmf->address);
3595 if (unlikely(!page)) {
3601 cgroup_throttle_swaprate(page, GFP_KERNEL);
3604 * Back out if somebody else already faulted in this pte.
3606 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3608 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3611 if (unlikely(!PageUptodate(page))) {
3612 ret = VM_FAULT_SIGBUS;
3617 * The page isn't present yet, go ahead with the fault.
3619 * Be careful about the sequence of operations here.
3620 * To get its accounting right, reuse_swap_page() must be called
3621 * while the page is counted on swap but not yet in mapcount i.e.
3622 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3623 * must be called after the swap_free(), or it will never succeed.
3626 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3627 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3628 pte = mk_pte(page, vma->vm_page_prot);
3629 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3630 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3631 vmf->flags &= ~FAULT_FLAG_WRITE;
3632 ret |= VM_FAULT_WRITE;
3633 exclusive = RMAP_EXCLUSIVE;
3635 flush_icache_page(vma, page);
3636 if (pte_swp_soft_dirty(vmf->orig_pte))
3637 pte = pte_mksoft_dirty(pte);
3638 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3639 pte = pte_mkuffd_wp(pte);
3640 pte = pte_wrprotect(pte);
3642 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3643 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3644 vmf->orig_pte = pte;
3646 /* ksm created a completely new copy */
3647 if (unlikely(page != swapcache && swapcache)) {
3648 page_add_new_anon_rmap(page, vma, vmf->address, false);
3649 lru_cache_add_inactive_or_unevictable(page, vma);
3651 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3655 if (mem_cgroup_swap_full(page) ||
3656 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3657 try_to_free_swap(page);
3659 if (page != swapcache && swapcache) {
3661 * Hold the lock to avoid the swap entry to be reused
3662 * until we take the PT lock for the pte_same() check
3663 * (to avoid false positives from pte_same). For
3664 * further safety release the lock after the swap_free
3665 * so that the swap count won't change under a
3666 * parallel locked swapcache.
3668 unlock_page(swapcache);
3669 put_page(swapcache);
3672 if (vmf->flags & FAULT_FLAG_WRITE) {
3673 ret |= do_wp_page(vmf);
3674 if (ret & VM_FAULT_ERROR)
3675 ret &= VM_FAULT_ERROR;
3679 /* No need to invalidate - it was non-present before */
3680 update_mmu_cache(vma, vmf->address, vmf->pte);
3682 pte_unmap_unlock(vmf->pte, vmf->ptl);
3685 put_swap_device(si);
3688 pte_unmap_unlock(vmf->pte, vmf->ptl);
3693 if (page != swapcache && swapcache) {
3694 unlock_page(swapcache);
3695 put_page(swapcache);
3698 put_swap_device(si);
3703 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3704 * but allow concurrent faults), and pte mapped but not yet locked.
3705 * We return with mmap_lock still held, but pte unmapped and unlocked.
3707 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3709 struct vm_area_struct *vma = vmf->vma;
3714 /* File mapping without ->vm_ops ? */
3715 if (vma->vm_flags & VM_SHARED)
3716 return VM_FAULT_SIGBUS;
3719 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3720 * pte_offset_map() on pmds where a huge pmd might be created
3721 * from a different thread.
3723 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3724 * parallel threads are excluded by other means.
3726 * Here we only have mmap_read_lock(mm).
3728 if (pte_alloc(vma->vm_mm, vmf->pmd))
3729 return VM_FAULT_OOM;
3731 /* See comment in handle_pte_fault() */
3732 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3735 /* Use the zero-page for reads */
3736 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3737 !mm_forbids_zeropage(vma->vm_mm)) {
3738 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3739 vma->vm_page_prot));
3740 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3741 vmf->address, &vmf->ptl);
3742 if (!pte_none(*vmf->pte)) {
3743 update_mmu_tlb(vma, vmf->address, vmf->pte);
3746 ret = check_stable_address_space(vma->vm_mm);
3749 /* Deliver the page fault to userland, check inside PT lock */
3750 if (userfaultfd_missing(vma)) {
3751 pte_unmap_unlock(vmf->pte, vmf->ptl);
3752 return handle_userfault(vmf, VM_UFFD_MISSING);
3757 /* Allocate our own private page. */
3758 if (unlikely(anon_vma_prepare(vma)))
3760 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3764 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3766 cgroup_throttle_swaprate(page, GFP_KERNEL);
3769 * The memory barrier inside __SetPageUptodate makes sure that
3770 * preceding stores to the page contents become visible before
3771 * the set_pte_at() write.
3773 __SetPageUptodate(page);
3775 entry = mk_pte(page, vma->vm_page_prot);
3776 entry = pte_sw_mkyoung(entry);
3777 if (vma->vm_flags & VM_WRITE)
3778 entry = pte_mkwrite(pte_mkdirty(entry));
3780 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3782 if (!pte_none(*vmf->pte)) {
3783 update_mmu_cache(vma, vmf->address, vmf->pte);
3787 ret = check_stable_address_space(vma->vm_mm);
3791 /* Deliver the page fault to userland, check inside PT lock */
3792 if (userfaultfd_missing(vma)) {
3793 pte_unmap_unlock(vmf->pte, vmf->ptl);
3795 return handle_userfault(vmf, VM_UFFD_MISSING);
3798 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3799 page_add_new_anon_rmap(page, vma, vmf->address, false);
3800 lru_cache_add_inactive_or_unevictable(page, vma);
3802 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3804 /* No need to invalidate - it was non-present before */
3805 update_mmu_cache(vma, vmf->address, vmf->pte);
3807 pte_unmap_unlock(vmf->pte, vmf->ptl);
3815 return VM_FAULT_OOM;
3819 * The mmap_lock must have been held on entry, and may have been
3820 * released depending on flags and vma->vm_ops->fault() return value.
3821 * See filemap_fault() and __lock_page_retry().
3823 static vm_fault_t __do_fault(struct vm_fault *vmf)
3825 struct vm_area_struct *vma = vmf->vma;
3829 * Preallocate pte before we take page_lock because this might lead to
3830 * deadlocks for memcg reclaim which waits for pages under writeback:
3832 * SetPageWriteback(A)
3838 * wait_on_page_writeback(A)
3839 * SetPageWriteback(B)
3841 * # flush A, B to clear the writeback
3843 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3844 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3845 if (!vmf->prealloc_pte)
3846 return VM_FAULT_OOM;
3849 ret = vma->vm_ops->fault(vmf);
3850 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3851 VM_FAULT_DONE_COW)))
3854 if (unlikely(PageHWPoison(vmf->page))) {
3855 if (ret & VM_FAULT_LOCKED)
3856 unlock_page(vmf->page);
3857 put_page(vmf->page);
3859 return VM_FAULT_HWPOISON;
3862 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3863 lock_page(vmf->page);
3865 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3871 static void deposit_prealloc_pte(struct vm_fault *vmf)
3873 struct vm_area_struct *vma = vmf->vma;
3875 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3877 * We are going to consume the prealloc table,
3878 * count that as nr_ptes.
3880 mm_inc_nr_ptes(vma->vm_mm);
3881 vmf->prealloc_pte = NULL;
3884 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3886 struct vm_area_struct *vma = vmf->vma;
3887 bool write = vmf->flags & FAULT_FLAG_WRITE;
3888 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3891 vm_fault_t ret = VM_FAULT_FALLBACK;
3893 if (!transhuge_vma_suitable(vma, haddr))
3896 page = compound_head(page);
3897 if (compound_order(page) != HPAGE_PMD_ORDER)
3901 * Just backoff if any subpage of a THP is corrupted otherwise
3902 * the corrupted page may mapped by PMD silently to escape the
3903 * check. This kind of THP just can be PTE mapped. Access to
3904 * the corrupted subpage should trigger SIGBUS as expected.
3906 if (unlikely(PageHasHWPoisoned(page)))
3910 * Archs like ppc64 need additional space to store information
3911 * related to pte entry. Use the preallocated table for that.
3913 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3914 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3915 if (!vmf->prealloc_pte)
3916 return VM_FAULT_OOM;
3919 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3920 if (unlikely(!pmd_none(*vmf->pmd)))
3923 for (i = 0; i < HPAGE_PMD_NR; i++)
3924 flush_icache_page(vma, page + i);
3926 entry = mk_huge_pmd(page, vma->vm_page_prot);
3928 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3930 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3931 page_add_file_rmap(page, true);
3933 * deposit and withdraw with pmd lock held
3935 if (arch_needs_pgtable_deposit())
3936 deposit_prealloc_pte(vmf);
3938 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3940 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3942 /* fault is handled */
3944 count_vm_event(THP_FILE_MAPPED);
3946 spin_unlock(vmf->ptl);
3950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3952 return VM_FAULT_FALLBACK;
3956 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3958 struct vm_area_struct *vma = vmf->vma;
3959 bool write = vmf->flags & FAULT_FLAG_WRITE;
3960 bool prefault = vmf->address != addr;
3963 flush_icache_page(vma, page);
3964 entry = mk_pte(page, vma->vm_page_prot);
3966 if (prefault && arch_wants_old_prefaulted_pte())
3967 entry = pte_mkold(entry);
3969 entry = pte_sw_mkyoung(entry);
3972 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3973 /* copy-on-write page */
3974 if (write && !(vma->vm_flags & VM_SHARED)) {
3975 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3976 page_add_new_anon_rmap(page, vma, addr, false);
3977 lru_cache_add_inactive_or_unevictable(page, vma);
3979 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3980 page_add_file_rmap(page, false);
3982 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3986 * finish_fault - finish page fault once we have prepared the page to fault
3988 * @vmf: structure describing the fault
3990 * This function handles all that is needed to finish a page fault once the
3991 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3992 * given page, adds reverse page mapping, handles memcg charges and LRU
3995 * The function expects the page to be locked and on success it consumes a
3996 * reference of a page being mapped (for the PTE which maps it).
3998 * Return: %0 on success, %VM_FAULT_ code in case of error.
4000 vm_fault_t finish_fault(struct vm_fault *vmf)
4002 struct vm_area_struct *vma = vmf->vma;
4006 /* Did we COW the page? */
4007 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4008 page = vmf->cow_page;
4013 * check even for read faults because we might have lost our CoWed
4016 if (!(vma->vm_flags & VM_SHARED)) {
4017 ret = check_stable_address_space(vma->vm_mm);
4022 if (pmd_none(*vmf->pmd)) {
4023 if (PageTransCompound(page)) {
4024 ret = do_set_pmd(vmf, page);
4025 if (ret != VM_FAULT_FALLBACK)
4029 if (vmf->prealloc_pte)
4030 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4031 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4032 return VM_FAULT_OOM;
4035 /* See comment in handle_pte_fault() */
4036 if (pmd_devmap_trans_unstable(vmf->pmd))
4039 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4040 vmf->address, &vmf->ptl);
4042 /* Re-check under ptl */
4043 if (likely(pte_none(*vmf->pte)))
4044 do_set_pte(vmf, page, vmf->address);
4046 ret = VM_FAULT_NOPAGE;
4048 update_mmu_tlb(vma, vmf->address, vmf->pte);
4049 pte_unmap_unlock(vmf->pte, vmf->ptl);
4053 static unsigned long fault_around_bytes __read_mostly =
4054 rounddown_pow_of_two(65536);
4056 #ifdef CONFIG_DEBUG_FS
4057 static int fault_around_bytes_get(void *data, u64 *val)
4059 *val = fault_around_bytes;
4064 * fault_around_bytes must be rounded down to the nearest page order as it's
4065 * what do_fault_around() expects to see.
4067 static int fault_around_bytes_set(void *data, u64 val)
4069 if (val / PAGE_SIZE > PTRS_PER_PTE)
4071 if (val > PAGE_SIZE)
4072 fault_around_bytes = rounddown_pow_of_two(val);
4074 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4077 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4078 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4080 static int __init fault_around_debugfs(void)
4082 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4083 &fault_around_bytes_fops);
4086 late_initcall(fault_around_debugfs);
4090 * do_fault_around() tries to map few pages around the fault address. The hope
4091 * is that the pages will be needed soon and this will lower the number of
4094 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4095 * not ready to be mapped: not up-to-date, locked, etc.
4097 * This function is called with the page table lock taken. In the split ptlock
4098 * case the page table lock only protects only those entries which belong to
4099 * the page table corresponding to the fault address.
4101 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4104 * fault_around_bytes defines how many bytes we'll try to map.
4105 * do_fault_around() expects it to be set to a power of two less than or equal
4108 * The virtual address of the area that we map is naturally aligned to
4109 * fault_around_bytes rounded down to the machine page size
4110 * (and therefore to page order). This way it's easier to guarantee
4111 * that we don't cross page table boundaries.
4113 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4115 unsigned long address = vmf->address, nr_pages, mask;
4116 pgoff_t start_pgoff = vmf->pgoff;
4120 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4121 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4123 address = max(address & mask, vmf->vma->vm_start);
4124 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4128 * end_pgoff is either the end of the page table, the end of
4129 * the vma or nr_pages from start_pgoff, depending what is nearest.
4131 end_pgoff = start_pgoff -
4132 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4134 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4135 start_pgoff + nr_pages - 1);
4137 if (pmd_none(*vmf->pmd)) {
4138 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4139 if (!vmf->prealloc_pte)
4140 return VM_FAULT_OOM;
4143 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4146 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4148 struct vm_area_struct *vma = vmf->vma;
4152 * Let's call ->map_pages() first and use ->fault() as fallback
4153 * if page by the offset is not ready to be mapped (cold cache or
4156 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4157 if (likely(!userfaultfd_minor(vmf->vma))) {
4158 ret = do_fault_around(vmf);
4164 ret = __do_fault(vmf);
4165 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4168 ret |= finish_fault(vmf);
4169 unlock_page(vmf->page);
4170 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4171 put_page(vmf->page);
4175 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4177 struct vm_area_struct *vma = vmf->vma;
4180 if (unlikely(anon_vma_prepare(vma)))
4181 return VM_FAULT_OOM;
4183 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4185 return VM_FAULT_OOM;
4187 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4189 put_page(vmf->cow_page);
4190 return VM_FAULT_OOM;
4192 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4194 ret = __do_fault(vmf);
4195 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4197 if (ret & VM_FAULT_DONE_COW)
4200 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4201 __SetPageUptodate(vmf->cow_page);
4203 ret |= finish_fault(vmf);
4204 unlock_page(vmf->page);
4205 put_page(vmf->page);
4206 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4210 put_page(vmf->cow_page);
4214 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4216 struct vm_area_struct *vma = vmf->vma;
4217 vm_fault_t ret, tmp;
4219 ret = __do_fault(vmf);
4220 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4224 * Check if the backing address space wants to know that the page is
4225 * about to become writable
4227 if (vma->vm_ops->page_mkwrite) {
4228 unlock_page(vmf->page);
4229 tmp = do_page_mkwrite(vmf);
4230 if (unlikely(!tmp ||
4231 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4232 put_page(vmf->page);
4237 ret |= finish_fault(vmf);
4238 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4240 unlock_page(vmf->page);
4241 put_page(vmf->page);
4245 ret |= fault_dirty_shared_page(vmf);
4250 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4251 * but allow concurrent faults).
4252 * The mmap_lock may have been released depending on flags and our
4253 * return value. See filemap_fault() and __folio_lock_or_retry().
4254 * If mmap_lock is released, vma may become invalid (for example
4255 * by other thread calling munmap()).
4257 static vm_fault_t do_fault(struct vm_fault *vmf)
4259 struct vm_area_struct *vma = vmf->vma;
4260 struct mm_struct *vm_mm = vma->vm_mm;
4264 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4266 if (!vma->vm_ops->fault) {
4268 * If we find a migration pmd entry or a none pmd entry, which
4269 * should never happen, return SIGBUS
4271 if (unlikely(!pmd_present(*vmf->pmd)))
4272 ret = VM_FAULT_SIGBUS;
4274 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4279 * Make sure this is not a temporary clearing of pte
4280 * by holding ptl and checking again. A R/M/W update
4281 * of pte involves: take ptl, clearing the pte so that
4282 * we don't have concurrent modification by hardware
4283 * followed by an update.
4285 if (unlikely(pte_none(*vmf->pte)))
4286 ret = VM_FAULT_SIGBUS;
4288 ret = VM_FAULT_NOPAGE;
4290 pte_unmap_unlock(vmf->pte, vmf->ptl);
4292 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4293 ret = do_read_fault(vmf);
4294 else if (!(vma->vm_flags & VM_SHARED))
4295 ret = do_cow_fault(vmf);
4297 ret = do_shared_fault(vmf);
4299 /* preallocated pagetable is unused: free it */
4300 if (vmf->prealloc_pte) {
4301 pte_free(vm_mm, vmf->prealloc_pte);
4302 vmf->prealloc_pte = NULL;
4307 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4308 unsigned long addr, int page_nid, int *flags)
4312 count_vm_numa_event(NUMA_HINT_FAULTS);
4313 if (page_nid == numa_node_id()) {
4314 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4315 *flags |= TNF_FAULT_LOCAL;
4318 return mpol_misplaced(page, vma, addr);
4321 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4323 struct vm_area_struct *vma = vmf->vma;
4324 struct page *page = NULL;
4325 int page_nid = NUMA_NO_NODE;
4329 bool was_writable = pte_savedwrite(vmf->orig_pte);
4333 * The "pte" at this point cannot be used safely without
4334 * validation through pte_unmap_same(). It's of NUMA type but
4335 * the pfn may be screwed if the read is non atomic.
4337 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4338 spin_lock(vmf->ptl);
4339 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4340 pte_unmap_unlock(vmf->pte, vmf->ptl);
4344 /* Get the normal PTE */
4345 old_pte = ptep_get(vmf->pte);
4346 pte = pte_modify(old_pte, vma->vm_page_prot);
4348 page = vm_normal_page(vma, vmf->address, pte);
4352 /* TODO: handle PTE-mapped THP */
4353 if (PageCompound(page))
4357 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4358 * much anyway since they can be in shared cache state. This misses
4359 * the case where a mapping is writable but the process never writes
4360 * to it but pte_write gets cleared during protection updates and
4361 * pte_dirty has unpredictable behaviour between PTE scan updates,
4362 * background writeback, dirty balancing and application behaviour.
4365 flags |= TNF_NO_GROUP;
4368 * Flag if the page is shared between multiple address spaces. This
4369 * is later used when determining whether to group tasks together
4371 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4372 flags |= TNF_SHARED;
4374 last_cpupid = page_cpupid_last(page);
4375 page_nid = page_to_nid(page);
4376 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4378 if (target_nid == NUMA_NO_NODE) {
4382 pte_unmap_unlock(vmf->pte, vmf->ptl);
4384 /* Migrate to the requested node */
4385 if (migrate_misplaced_page(page, vma, target_nid)) {
4386 page_nid = target_nid;
4387 flags |= TNF_MIGRATED;
4389 flags |= TNF_MIGRATE_FAIL;
4390 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4391 spin_lock(vmf->ptl);
4392 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4393 pte_unmap_unlock(vmf->pte, vmf->ptl);
4400 if (page_nid != NUMA_NO_NODE)
4401 task_numa_fault(last_cpupid, page_nid, 1, flags);
4405 * Make it present again, depending on how arch implements
4406 * non-accessible ptes, some can allow access by kernel mode.
4408 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4409 pte = pte_modify(old_pte, vma->vm_page_prot);
4410 pte = pte_mkyoung(pte);
4412 pte = pte_mkwrite(pte);
4413 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4414 update_mmu_cache(vma, vmf->address, vmf->pte);
4415 pte_unmap_unlock(vmf->pte, vmf->ptl);
4419 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4421 if (vma_is_anonymous(vmf->vma))
4422 return do_huge_pmd_anonymous_page(vmf);
4423 if (vmf->vma->vm_ops->huge_fault)
4424 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4425 return VM_FAULT_FALLBACK;
4428 /* `inline' is required to avoid gcc 4.1.2 build error */
4429 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4431 if (vma_is_anonymous(vmf->vma)) {
4432 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4433 return handle_userfault(vmf, VM_UFFD_WP);
4434 return do_huge_pmd_wp_page(vmf);
4436 if (vmf->vma->vm_ops->huge_fault) {
4437 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4439 if (!(ret & VM_FAULT_FALLBACK))
4443 /* COW or write-notify handled on pte level: split pmd. */
4444 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4446 return VM_FAULT_FALLBACK;
4449 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4452 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4453 /* No support for anonymous transparent PUD pages yet */
4454 if (vma_is_anonymous(vmf->vma))
4456 if (vmf->vma->vm_ops->huge_fault) {
4457 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4459 if (!(ret & VM_FAULT_FALLBACK))
4463 /* COW or write-notify not handled on PUD level: split pud.*/
4464 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4466 return VM_FAULT_FALLBACK;
4469 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4472 /* No support for anonymous transparent PUD pages yet */
4473 if (vma_is_anonymous(vmf->vma))
4474 return VM_FAULT_FALLBACK;
4475 if (vmf->vma->vm_ops->huge_fault)
4476 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4477 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4478 return VM_FAULT_FALLBACK;
4482 * These routines also need to handle stuff like marking pages dirty
4483 * and/or accessed for architectures that don't do it in hardware (most
4484 * RISC architectures). The early dirtying is also good on the i386.
4486 * There is also a hook called "update_mmu_cache()" that architectures
4487 * with external mmu caches can use to update those (ie the Sparc or
4488 * PowerPC hashed page tables that act as extended TLBs).
4490 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4491 * concurrent faults).
4493 * The mmap_lock may have been released depending on flags and our return value.
4494 * See filemap_fault() and __folio_lock_or_retry().
4496 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4500 if (unlikely(pmd_none(*vmf->pmd))) {
4502 * Leave __pte_alloc() until later: because vm_ops->fault may
4503 * want to allocate huge page, and if we expose page table
4504 * for an instant, it will be difficult to retract from
4505 * concurrent faults and from rmap lookups.
4510 * If a huge pmd materialized under us just retry later. Use
4511 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4512 * of pmd_trans_huge() to ensure the pmd didn't become
4513 * pmd_trans_huge under us and then back to pmd_none, as a
4514 * result of MADV_DONTNEED running immediately after a huge pmd
4515 * fault in a different thread of this mm, in turn leading to a
4516 * misleading pmd_trans_huge() retval. All we have to ensure is
4517 * that it is a regular pmd that we can walk with
4518 * pte_offset_map() and we can do that through an atomic read
4519 * in C, which is what pmd_trans_unstable() provides.
4521 if (pmd_devmap_trans_unstable(vmf->pmd))
4524 * A regular pmd is established and it can't morph into a huge
4525 * pmd from under us anymore at this point because we hold the
4526 * mmap_lock read mode and khugepaged takes it in write mode.
4527 * So now it's safe to run pte_offset_map().
4529 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4530 vmf->orig_pte = *vmf->pte;
4533 * some architectures can have larger ptes than wordsize,
4534 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4535 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4536 * accesses. The code below just needs a consistent view
4537 * for the ifs and we later double check anyway with the
4538 * ptl lock held. So here a barrier will do.
4541 if (pte_none(vmf->orig_pte)) {
4542 pte_unmap(vmf->pte);
4548 if (vma_is_anonymous(vmf->vma))
4549 return do_anonymous_page(vmf);
4551 return do_fault(vmf);
4554 if (!pte_present(vmf->orig_pte))
4555 return do_swap_page(vmf);
4557 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4558 return do_numa_page(vmf);
4560 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4561 spin_lock(vmf->ptl);
4562 entry = vmf->orig_pte;
4563 if (unlikely(!pte_same(*vmf->pte, entry))) {
4564 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4567 if (vmf->flags & FAULT_FLAG_WRITE) {
4568 if (!pte_write(entry))
4569 return do_wp_page(vmf);
4570 entry = pte_mkdirty(entry);
4572 entry = pte_mkyoung(entry);
4573 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4574 vmf->flags & FAULT_FLAG_WRITE)) {
4575 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4577 /* Skip spurious TLB flush for retried page fault */
4578 if (vmf->flags & FAULT_FLAG_TRIED)
4581 * This is needed only for protection faults but the arch code
4582 * is not yet telling us if this is a protection fault or not.
4583 * This still avoids useless tlb flushes for .text page faults
4586 if (vmf->flags & FAULT_FLAG_WRITE)
4587 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4590 pte_unmap_unlock(vmf->pte, vmf->ptl);
4595 * By the time we get here, we already hold the mm semaphore
4597 * The mmap_lock may have been released depending on flags and our
4598 * return value. See filemap_fault() and __folio_lock_or_retry().
4600 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4601 unsigned long address, unsigned int flags)
4603 struct vm_fault vmf = {
4605 .address = address & PAGE_MASK,
4607 .pgoff = linear_page_index(vma, address),
4608 .gfp_mask = __get_fault_gfp_mask(vma),
4610 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4611 struct mm_struct *mm = vma->vm_mm;
4616 pgd = pgd_offset(mm, address);
4617 p4d = p4d_alloc(mm, pgd, address);
4619 return VM_FAULT_OOM;
4621 vmf.pud = pud_alloc(mm, p4d, address);
4623 return VM_FAULT_OOM;
4625 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4626 ret = create_huge_pud(&vmf);
4627 if (!(ret & VM_FAULT_FALLBACK))
4630 pud_t orig_pud = *vmf.pud;
4633 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4635 /* NUMA case for anonymous PUDs would go here */
4637 if (dirty && !pud_write(orig_pud)) {
4638 ret = wp_huge_pud(&vmf, orig_pud);
4639 if (!(ret & VM_FAULT_FALLBACK))
4642 huge_pud_set_accessed(&vmf, orig_pud);
4648 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4650 return VM_FAULT_OOM;
4652 /* Huge pud page fault raced with pmd_alloc? */
4653 if (pud_trans_unstable(vmf.pud))
4656 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4657 ret = create_huge_pmd(&vmf);
4658 if (!(ret & VM_FAULT_FALLBACK))
4661 vmf.orig_pmd = *vmf.pmd;
4664 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4665 VM_BUG_ON(thp_migration_supported() &&
4666 !is_pmd_migration_entry(vmf.orig_pmd));
4667 if (is_pmd_migration_entry(vmf.orig_pmd))
4668 pmd_migration_entry_wait(mm, vmf.pmd);
4671 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4672 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4673 return do_huge_pmd_numa_page(&vmf);
4675 if (dirty && !pmd_write(vmf.orig_pmd)) {
4676 ret = wp_huge_pmd(&vmf);
4677 if (!(ret & VM_FAULT_FALLBACK))
4680 huge_pmd_set_accessed(&vmf);
4686 return handle_pte_fault(&vmf);
4690 * mm_account_fault - Do page fault accounting
4692 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4693 * of perf event counters, but we'll still do the per-task accounting to
4694 * the task who triggered this page fault.
4695 * @address: the faulted address.
4696 * @flags: the fault flags.
4697 * @ret: the fault retcode.
4699 * This will take care of most of the page fault accounting. Meanwhile, it
4700 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4701 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4702 * still be in per-arch page fault handlers at the entry of page fault.
4704 static inline void mm_account_fault(struct pt_regs *regs,
4705 unsigned long address, unsigned int flags,
4711 * We don't do accounting for some specific faults:
4713 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4714 * includes arch_vma_access_permitted() failing before reaching here.
4715 * So this is not a "this many hardware page faults" counter. We
4716 * should use the hw profiling for that.
4718 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4719 * once they're completed.
4721 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4725 * We define the fault as a major fault when the final successful fault
4726 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4727 * handle it immediately previously).
4729 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4737 * If the fault is done for GUP, regs will be NULL. We only do the
4738 * accounting for the per thread fault counters who triggered the
4739 * fault, and we skip the perf event updates.
4745 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4747 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4751 * By the time we get here, we already hold the mm semaphore
4753 * The mmap_lock may have been released depending on flags and our
4754 * return value. See filemap_fault() and __folio_lock_or_retry().
4756 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4757 unsigned int flags, struct pt_regs *regs)
4761 __set_current_state(TASK_RUNNING);
4763 count_vm_event(PGFAULT);
4764 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4766 /* do counter updates before entering really critical section. */
4767 check_sync_rss_stat(current);
4769 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4770 flags & FAULT_FLAG_INSTRUCTION,
4771 flags & FAULT_FLAG_REMOTE))
4772 return VM_FAULT_SIGSEGV;
4775 * Enable the memcg OOM handling for faults triggered in user
4776 * space. Kernel faults are handled more gracefully.
4778 if (flags & FAULT_FLAG_USER)
4779 mem_cgroup_enter_user_fault();
4781 if (unlikely(is_vm_hugetlb_page(vma)))
4782 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4784 ret = __handle_mm_fault(vma, address, flags);
4786 if (flags & FAULT_FLAG_USER) {
4787 mem_cgroup_exit_user_fault();
4789 * The task may have entered a memcg OOM situation but
4790 * if the allocation error was handled gracefully (no
4791 * VM_FAULT_OOM), there is no need to kill anything.
4792 * Just clean up the OOM state peacefully.
4794 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4795 mem_cgroup_oom_synchronize(false);
4798 mm_account_fault(regs, address, flags, ret);
4802 EXPORT_SYMBOL_GPL(handle_mm_fault);
4804 #ifndef __PAGETABLE_P4D_FOLDED
4806 * Allocate p4d page table.
4807 * We've already handled the fast-path in-line.
4809 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4811 p4d_t *new = p4d_alloc_one(mm, address);
4815 spin_lock(&mm->page_table_lock);
4816 if (pgd_present(*pgd)) { /* Another has populated it */
4819 smp_wmb(); /* See comment in pmd_install() */
4820 pgd_populate(mm, pgd, new);
4822 spin_unlock(&mm->page_table_lock);
4825 #endif /* __PAGETABLE_P4D_FOLDED */
4827 #ifndef __PAGETABLE_PUD_FOLDED
4829 * Allocate page upper directory.
4830 * We've already handled the fast-path in-line.
4832 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4834 pud_t *new = pud_alloc_one(mm, address);
4838 spin_lock(&mm->page_table_lock);
4839 if (!p4d_present(*p4d)) {
4841 smp_wmb(); /* See comment in pmd_install() */
4842 p4d_populate(mm, p4d, new);
4843 } else /* Another has populated it */
4845 spin_unlock(&mm->page_table_lock);
4848 #endif /* __PAGETABLE_PUD_FOLDED */
4850 #ifndef __PAGETABLE_PMD_FOLDED
4852 * Allocate page middle directory.
4853 * We've already handled the fast-path in-line.
4855 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4858 pmd_t *new = pmd_alloc_one(mm, address);
4862 ptl = pud_lock(mm, pud);
4863 if (!pud_present(*pud)) {
4865 smp_wmb(); /* See comment in pmd_install() */
4866 pud_populate(mm, pud, new);
4867 } else { /* Another has populated it */
4873 #endif /* __PAGETABLE_PMD_FOLDED */
4875 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4876 struct mmu_notifier_range *range, pte_t **ptepp,
4877 pmd_t **pmdpp, spinlock_t **ptlp)
4885 pgd = pgd_offset(mm, address);
4886 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4889 p4d = p4d_offset(pgd, address);
4890 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4893 pud = pud_offset(p4d, address);
4894 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4897 pmd = pmd_offset(pud, address);
4898 VM_BUG_ON(pmd_trans_huge(*pmd));
4900 if (pmd_huge(*pmd)) {
4905 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4906 NULL, mm, address & PMD_MASK,
4907 (address & PMD_MASK) + PMD_SIZE);
4908 mmu_notifier_invalidate_range_start(range);
4910 *ptlp = pmd_lock(mm, pmd);
4911 if (pmd_huge(*pmd)) {
4917 mmu_notifier_invalidate_range_end(range);
4920 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4924 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4925 address & PAGE_MASK,
4926 (address & PAGE_MASK) + PAGE_SIZE);
4927 mmu_notifier_invalidate_range_start(range);
4929 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4930 if (!pte_present(*ptep))
4935 pte_unmap_unlock(ptep, *ptlp);
4937 mmu_notifier_invalidate_range_end(range);
4943 * follow_pte - look up PTE at a user virtual address
4944 * @mm: the mm_struct of the target address space
4945 * @address: user virtual address
4946 * @ptepp: location to store found PTE
4947 * @ptlp: location to store the lock for the PTE
4949 * On a successful return, the pointer to the PTE is stored in @ptepp;
4950 * the corresponding lock is taken and its location is stored in @ptlp.
4951 * The contents of the PTE are only stable until @ptlp is released;
4952 * any further use, if any, must be protected against invalidation
4953 * with MMU notifiers.
4955 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4956 * should be taken for read.
4958 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4959 * it is not a good general-purpose API.
4961 * Return: zero on success, -ve otherwise.
4963 int follow_pte(struct mm_struct *mm, unsigned long address,
4964 pte_t **ptepp, spinlock_t **ptlp)
4966 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4968 EXPORT_SYMBOL_GPL(follow_pte);
4971 * follow_pfn - look up PFN at a user virtual address
4972 * @vma: memory mapping
4973 * @address: user virtual address
4974 * @pfn: location to store found PFN
4976 * Only IO mappings and raw PFN mappings are allowed.
4978 * This function does not allow the caller to read the permissions
4979 * of the PTE. Do not use it.
4981 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4983 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4990 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4993 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4996 *pfn = pte_pfn(*ptep);
4997 pte_unmap_unlock(ptep, ptl);
5000 EXPORT_SYMBOL(follow_pfn);
5002 #ifdef CONFIG_HAVE_IOREMAP_PROT
5003 int follow_phys(struct vm_area_struct *vma,
5004 unsigned long address, unsigned int flags,
5005 unsigned long *prot, resource_size_t *phys)
5011 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5014 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5018 if ((flags & FOLL_WRITE) && !pte_write(pte))
5021 *prot = pgprot_val(pte_pgprot(pte));
5022 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5026 pte_unmap_unlock(ptep, ptl);
5032 * generic_access_phys - generic implementation for iomem mmap access
5033 * @vma: the vma to access
5034 * @addr: userspace address, not relative offset within @vma
5035 * @buf: buffer to read/write
5036 * @len: length of transfer
5037 * @write: set to FOLL_WRITE when writing, otherwise reading
5039 * This is a generic implementation for &vm_operations_struct.access for an
5040 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5043 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5044 void *buf, int len, int write)
5046 resource_size_t phys_addr;
5047 unsigned long prot = 0;
5048 void __iomem *maddr;
5051 int offset = offset_in_page(addr);
5054 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5058 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5061 pte_unmap_unlock(ptep, ptl);
5063 prot = pgprot_val(pte_pgprot(pte));
5064 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5066 if ((write & FOLL_WRITE) && !pte_write(pte))
5069 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5073 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5076 if (!pte_same(pte, *ptep)) {
5077 pte_unmap_unlock(ptep, ptl);
5084 memcpy_toio(maddr + offset, buf, len);
5086 memcpy_fromio(buf, maddr + offset, len);
5088 pte_unmap_unlock(ptep, ptl);
5094 EXPORT_SYMBOL_GPL(generic_access_phys);
5098 * Access another process' address space as given in mm.
5100 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5101 int len, unsigned int gup_flags)
5103 struct vm_area_struct *vma;
5104 void *old_buf = buf;
5105 int write = gup_flags & FOLL_WRITE;
5107 if (mmap_read_lock_killable(mm))
5110 /* ignore errors, just check how much was successfully transferred */
5112 int bytes, ret, offset;
5114 struct page *page = NULL;
5116 ret = get_user_pages_remote(mm, addr, 1,
5117 gup_flags, &page, &vma, NULL);
5119 #ifndef CONFIG_HAVE_IOREMAP_PROT
5123 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5124 * we can access using slightly different code.
5126 vma = vma_lookup(mm, addr);
5129 if (vma->vm_ops && vma->vm_ops->access)
5130 ret = vma->vm_ops->access(vma, addr, buf,
5138 offset = addr & (PAGE_SIZE-1);
5139 if (bytes > PAGE_SIZE-offset)
5140 bytes = PAGE_SIZE-offset;
5144 copy_to_user_page(vma, page, addr,
5145 maddr + offset, buf, bytes);
5146 set_page_dirty_lock(page);
5148 copy_from_user_page(vma, page, addr,
5149 buf, maddr + offset, bytes);
5158 mmap_read_unlock(mm);
5160 return buf - old_buf;
5164 * access_remote_vm - access another process' address space
5165 * @mm: the mm_struct of the target address space
5166 * @addr: start address to access
5167 * @buf: source or destination buffer
5168 * @len: number of bytes to transfer
5169 * @gup_flags: flags modifying lookup behaviour
5171 * The caller must hold a reference on @mm.
5173 * Return: number of bytes copied from source to destination.
5175 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5176 void *buf, int len, unsigned int gup_flags)
5178 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5182 * Access another process' address space.
5183 * Source/target buffer must be kernel space,
5184 * Do not walk the page table directly, use get_user_pages
5186 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5187 void *buf, int len, unsigned int gup_flags)
5189 struct mm_struct *mm;
5192 mm = get_task_mm(tsk);
5196 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5202 EXPORT_SYMBOL_GPL(access_process_vm);
5205 * Print the name of a VMA.
5207 void print_vma_addr(char *prefix, unsigned long ip)
5209 struct mm_struct *mm = current->mm;
5210 struct vm_area_struct *vma;
5213 * we might be running from an atomic context so we cannot sleep
5215 if (!mmap_read_trylock(mm))
5218 vma = find_vma(mm, ip);
5219 if (vma && vma->vm_file) {
5220 struct file *f = vma->vm_file;
5221 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5225 p = file_path(f, buf, PAGE_SIZE);
5228 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5230 vma->vm_end - vma->vm_start);
5231 free_page((unsigned long)buf);
5234 mmap_read_unlock(mm);
5237 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5238 void __might_fault(const char *file, int line)
5241 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5242 * holding the mmap_lock, this is safe because kernel memory doesn't
5243 * get paged out, therefore we'll never actually fault, and the
5244 * below annotations will generate false positives.
5246 if (uaccess_kernel())
5248 if (pagefault_disabled())
5250 __might_sleep(file, line);
5251 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5253 might_lock_read(¤t->mm->mmap_lock);
5256 EXPORT_SYMBOL(__might_fault);
5259 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5261 * Process all subpages of the specified huge page with the specified
5262 * operation. The target subpage will be processed last to keep its
5265 static inline void process_huge_page(
5266 unsigned long addr_hint, unsigned int pages_per_huge_page,
5267 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5271 unsigned long addr = addr_hint &
5272 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5274 /* Process target subpage last to keep its cache lines hot */
5276 n = (addr_hint - addr) / PAGE_SIZE;
5277 if (2 * n <= pages_per_huge_page) {
5278 /* If target subpage in first half of huge page */
5281 /* Process subpages at the end of huge page */
5282 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5284 process_subpage(addr + i * PAGE_SIZE, i, arg);
5287 /* If target subpage in second half of huge page */
5288 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5289 l = pages_per_huge_page - n;
5290 /* Process subpages at the begin of huge page */
5291 for (i = 0; i < base; i++) {
5293 process_subpage(addr + i * PAGE_SIZE, i, arg);
5297 * Process remaining subpages in left-right-left-right pattern
5298 * towards the target subpage
5300 for (i = 0; i < l; i++) {
5301 int left_idx = base + i;
5302 int right_idx = base + 2 * l - 1 - i;
5305 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5307 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5311 static void clear_gigantic_page(struct page *page,
5313 unsigned int pages_per_huge_page)
5316 struct page *p = page;
5319 for (i = 0; i < pages_per_huge_page;
5320 i++, p = mem_map_next(p, page, i)) {
5322 clear_user_highpage(p, addr + i * PAGE_SIZE);
5326 static void clear_subpage(unsigned long addr, int idx, void *arg)
5328 struct page *page = arg;
5330 clear_user_highpage(page + idx, addr);
5333 void clear_huge_page(struct page *page,
5334 unsigned long addr_hint, unsigned int pages_per_huge_page)
5336 unsigned long addr = addr_hint &
5337 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5339 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5340 clear_gigantic_page(page, addr, pages_per_huge_page);
5344 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5347 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5349 struct vm_area_struct *vma,
5350 unsigned int pages_per_huge_page)
5353 struct page *dst_base = dst;
5354 struct page *src_base = src;
5356 for (i = 0; i < pages_per_huge_page; ) {
5358 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5361 dst = mem_map_next(dst, dst_base, i);
5362 src = mem_map_next(src, src_base, i);
5366 struct copy_subpage_arg {
5369 struct vm_area_struct *vma;
5372 static void copy_subpage(unsigned long addr, int idx, void *arg)
5374 struct copy_subpage_arg *copy_arg = arg;
5376 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5377 addr, copy_arg->vma);
5380 void copy_user_huge_page(struct page *dst, struct page *src,
5381 unsigned long addr_hint, struct vm_area_struct *vma,
5382 unsigned int pages_per_huge_page)
5384 unsigned long addr = addr_hint &
5385 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5386 struct copy_subpage_arg arg = {
5392 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5393 copy_user_gigantic_page(dst, src, addr, vma,
5394 pages_per_huge_page);
5398 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5401 long copy_huge_page_from_user(struct page *dst_page,
5402 const void __user *usr_src,
5403 unsigned int pages_per_huge_page,
5404 bool allow_pagefault)
5407 unsigned long i, rc = 0;
5408 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5409 struct page *subpage = dst_page;
5411 for (i = 0; i < pages_per_huge_page;
5412 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5413 if (allow_pagefault)
5414 page_kaddr = kmap(subpage);
5416 page_kaddr = kmap_atomic(subpage);
5417 rc = copy_from_user(page_kaddr,
5418 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5419 if (allow_pagefault)
5422 kunmap_atomic(page_kaddr);
5424 ret_val -= (PAGE_SIZE - rc);
5432 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5434 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5436 static struct kmem_cache *page_ptl_cachep;
5438 void __init ptlock_cache_init(void)
5440 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5444 bool ptlock_alloc(struct page *page)
5448 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5455 void ptlock_free(struct page *page)
5457 kmem_cache_free(page_ptl_cachep, page->ptl);