1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 * when auto defrag is enabled we
36 * queue up these defrag structs to remember which
37 * inodes need defragging passes
40 struct rb_node rb_node;
44 * transid where the defrag was added, we search for
45 * extents newer than this
52 /* last offset we were able to defrag */
55 /* if we've wrapped around back to zero once already */
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60 struct inode_defrag *defrag2)
62 if (defrag1->root > defrag2->root)
64 else if (defrag1->root < defrag2->root)
66 else if (defrag1->ino > defrag2->ino)
68 else if (defrag1->ino < defrag2->ino)
74 /* pop a record for an inode into the defrag tree. The lock
75 * must be held already
77 * If you're inserting a record for an older transid than an
78 * existing record, the transid already in the tree is lowered
80 * If an existing record is found the defrag item you
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84 struct inode_defrag *defrag)
86 struct btrfs_fs_info *fs_info = inode->root->fs_info;
87 struct inode_defrag *entry;
89 struct rb_node *parent = NULL;
92 p = &fs_info->defrag_inodes.rb_node;
95 entry = rb_entry(parent, struct inode_defrag, rb_node);
97 ret = __compare_inode_defrag(defrag, entry);
101 p = &parent->rb_right;
103 /* if we're reinserting an entry for
104 * an old defrag run, make sure to
105 * lower the transid of our existing record
107 if (defrag->transid < entry->transid)
108 entry->transid = defrag->transid;
109 if (defrag->last_offset > entry->last_offset)
110 entry->last_offset = defrag->last_offset;
114 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115 rb_link_node(&defrag->rb_node, parent, p);
116 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
125 if (btrfs_fs_closing(fs_info))
132 * insert a defrag record for this inode if auto defrag is
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136 struct btrfs_inode *inode)
138 struct btrfs_root *root = inode->root;
139 struct btrfs_fs_info *fs_info = root->fs_info;
140 struct inode_defrag *defrag;
144 if (!__need_auto_defrag(fs_info))
147 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
151 transid = trans->transid;
153 transid = inode->root->last_trans;
155 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
159 defrag->ino = btrfs_ino(inode);
160 defrag->transid = transid;
161 defrag->root = root->root_key.objectid;
163 spin_lock(&fs_info->defrag_inodes_lock);
164 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 * If we set IN_DEFRAG flag and evict the inode from memory,
167 * and then re-read this inode, this new inode doesn't have
168 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 ret = __btrfs_add_inode_defrag(inode, defrag);
172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 spin_unlock(&fs_info->defrag_inodes_lock);
181 * Requeue the defrag object. If there is a defrag object that points to
182 * the same inode in the tree, we will merge them together (by
183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186 struct inode_defrag *defrag)
188 struct btrfs_fs_info *fs_info = inode->root->fs_info;
191 if (!__need_auto_defrag(fs_info))
195 * Here we don't check the IN_DEFRAG flag, because we need merge
198 spin_lock(&fs_info->defrag_inodes_lock);
199 ret = __btrfs_add_inode_defrag(inode, defrag);
200 spin_unlock(&fs_info->defrag_inodes_lock);
205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
209 * pick the defragable inode that we want, if it doesn't exist, we will get
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 struct inode_defrag *entry = NULL;
216 struct inode_defrag tmp;
218 struct rb_node *parent = NULL;
224 spin_lock(&fs_info->defrag_inodes_lock);
225 p = fs_info->defrag_inodes.rb_node;
228 entry = rb_entry(parent, struct inode_defrag, rb_node);
230 ret = __compare_inode_defrag(&tmp, entry);
234 p = parent->rb_right;
239 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240 parent = rb_next(parent);
242 entry = rb_entry(parent, struct inode_defrag, rb_node);
248 rb_erase(parent, &fs_info->defrag_inodes);
249 spin_unlock(&fs_info->defrag_inodes_lock);
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 struct inode_defrag *defrag;
256 struct rb_node *node;
258 spin_lock(&fs_info->defrag_inodes_lock);
259 node = rb_first(&fs_info->defrag_inodes);
261 rb_erase(node, &fs_info->defrag_inodes);
262 defrag = rb_entry(node, struct inode_defrag, rb_node);
263 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265 cond_resched_lock(&fs_info->defrag_inodes_lock);
267 node = rb_first(&fs_info->defrag_inodes);
269 spin_unlock(&fs_info->defrag_inodes_lock);
272 #define BTRFS_DEFRAG_BATCH 1024
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275 struct inode_defrag *defrag)
277 struct btrfs_root *inode_root;
279 struct btrfs_ioctl_defrag_range_args range;
284 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
285 if (IS_ERR(inode_root)) {
286 ret = PTR_ERR(inode_root);
290 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
291 btrfs_put_root(inode_root);
293 ret = PTR_ERR(inode);
297 /* do a chunk of defrag */
298 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
299 memset(&range, 0, sizeof(range));
301 range.start = defrag->last_offset;
303 sb_start_write(fs_info->sb);
304 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306 sb_end_write(fs_info->sb);
308 * if we filled the whole defrag batch, there
309 * must be more work to do. Queue this defrag
312 if (num_defrag == BTRFS_DEFRAG_BATCH) {
313 defrag->last_offset = range.start;
314 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
315 } else if (defrag->last_offset && !defrag->cycled) {
317 * we didn't fill our defrag batch, but
318 * we didn't start at zero. Make sure we loop
319 * around to the start of the file.
321 defrag->last_offset = 0;
323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
336 * run through the list of inodes in the FS that need
339 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 struct inode_defrag *defrag;
343 u64 root_objectid = 0;
345 atomic_inc(&fs_info->defrag_running);
347 /* Pause the auto defragger. */
348 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
352 if (!__need_auto_defrag(fs_info))
355 /* find an inode to defrag */
356 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
359 if (root_objectid || first_ino) {
368 first_ino = defrag->ino + 1;
369 root_objectid = defrag->root;
371 __btrfs_run_defrag_inode(fs_info, defrag);
373 atomic_dec(&fs_info->defrag_running);
376 * during unmount, we use the transaction_wait queue to
377 * wait for the defragger to stop
379 wake_up(&fs_info->transaction_wait);
383 /* simple helper to fault in pages and copy. This should go away
384 * and be replaced with calls into generic code.
386 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
387 struct page **prepared_pages,
391 size_t total_copied = 0;
393 int offset = offset_in_page(pos);
395 while (write_bytes > 0) {
396 size_t count = min_t(size_t,
397 PAGE_SIZE - offset, write_bytes);
398 struct page *page = prepared_pages[pg];
400 * Copy data from userspace to the current page
402 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
404 /* Flush processor's dcache for this page */
405 flush_dcache_page(page);
408 * if we get a partial write, we can end up with
409 * partially up to date pages. These add
410 * a lot of complexity, so make sure they don't
411 * happen by forcing this copy to be retried.
413 * The rest of the btrfs_file_write code will fall
414 * back to page at a time copies after we return 0.
416 if (!PageUptodate(page) && copied < count)
419 iov_iter_advance(i, copied);
420 write_bytes -= copied;
421 total_copied += copied;
423 /* Return to btrfs_file_write_iter to fault page */
424 if (unlikely(copied == 0))
427 if (copied < PAGE_SIZE - offset) {
438 * unlocks pages after btrfs_file_write is done with them
440 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
443 for (i = 0; i < num_pages; i++) {
444 /* page checked is some magic around finding pages that
445 * have been modified without going through btrfs_set_page_dirty
446 * clear it here. There should be no need to mark the pages
447 * accessed as prepare_pages should have marked them accessed
448 * in prepare_pages via find_or_create_page()
450 ClearPageChecked(pages[i]);
451 unlock_page(pages[i]);
457 * After btrfs_copy_from_user(), update the following things for delalloc:
458 * - Mark newly dirtied pages as DELALLOC in the io tree.
459 * Used to advise which range is to be written back.
460 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461 * - Update inode size for past EOF write
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 size_t num_pages, loff_t pos, size_t write_bytes,
465 struct extent_state **cached, bool noreserve)
467 struct btrfs_fs_info *fs_info = inode->root->fs_info;
472 u64 end_of_last_block;
473 u64 end_pos = pos + write_bytes;
474 loff_t isize = i_size_read(&inode->vfs_inode);
475 unsigned int extra_bits = 0;
477 if (write_bytes == 0)
481 extra_bits |= EXTENT_NORESERVE;
483 start_pos = round_down(pos, fs_info->sectorsize);
484 num_bytes = round_up(write_bytes + pos - start_pos,
485 fs_info->sectorsize);
486 ASSERT(num_bytes <= U32_MAX);
488 end_of_last_block = start_pos + num_bytes - 1;
491 * The pages may have already been dirty, clear out old accounting so
492 * we can set things up properly
494 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
495 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
506 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
508 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
512 * we've only changed i_size in ram, and we haven't updated
513 * the disk i_size. There is no need to log the inode
517 i_size_write(&inode->vfs_inode, end_pos);
522 * this drops all the extents in the cache that intersect the range
523 * [start, end]. Existing extents are split as required.
525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
528 struct extent_map *em;
529 struct extent_map *split = NULL;
530 struct extent_map *split2 = NULL;
531 struct extent_map_tree *em_tree = &inode->extent_tree;
532 u64 len = end - start + 1;
540 WARN_ON(end < start);
541 if (end == (u64)-1) {
550 split = alloc_extent_map();
552 split2 = alloc_extent_map();
553 if (!split || !split2)
556 write_lock(&em_tree->lock);
557 em = lookup_extent_mapping(em_tree, start, len);
559 write_unlock(&em_tree->lock);
563 gen = em->generation;
564 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
565 if (testend && em->start + em->len >= start + len) {
567 write_unlock(&em_tree->lock);
570 start = em->start + em->len;
572 len = start + len - (em->start + em->len);
574 write_unlock(&em_tree->lock);
577 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
578 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
579 clear_bit(EXTENT_FLAG_LOGGING, &flags);
580 modified = !list_empty(&em->list);
584 if (em->start < start) {
585 split->start = em->start;
586 split->len = start - em->start;
588 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589 split->orig_start = em->orig_start;
590 split->block_start = em->block_start;
593 split->block_len = em->block_len;
595 split->block_len = split->len;
596 split->orig_block_len = max(split->block_len,
598 split->ram_bytes = em->ram_bytes;
600 split->orig_start = split->start;
601 split->block_len = 0;
602 split->block_start = em->block_start;
603 split->orig_block_len = 0;
604 split->ram_bytes = split->len;
607 split->generation = gen;
608 split->flags = flags;
609 split->compress_type = em->compress_type;
610 replace_extent_mapping(em_tree, em, split, modified);
611 free_extent_map(split);
615 if (testend && em->start + em->len > start + len) {
616 u64 diff = start + len - em->start;
618 split->start = start + len;
619 split->len = em->start + em->len - (start + len);
620 split->flags = flags;
621 split->compress_type = em->compress_type;
622 split->generation = gen;
624 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625 split->orig_block_len = max(em->block_len,
628 split->ram_bytes = em->ram_bytes;
630 split->block_len = em->block_len;
631 split->block_start = em->block_start;
632 split->orig_start = em->orig_start;
634 split->block_len = split->len;
635 split->block_start = em->block_start
637 split->orig_start = em->orig_start;
640 split->ram_bytes = split->len;
641 split->orig_start = split->start;
642 split->block_len = 0;
643 split->block_start = em->block_start;
644 split->orig_block_len = 0;
647 if (extent_map_in_tree(em)) {
648 replace_extent_mapping(em_tree, em, split,
651 ret = add_extent_mapping(em_tree, split,
653 ASSERT(ret == 0); /* Logic error */
655 free_extent_map(split);
659 if (extent_map_in_tree(em))
660 remove_extent_mapping(em_tree, em);
661 write_unlock(&em_tree->lock);
665 /* once for the tree*/
669 free_extent_map(split);
671 free_extent_map(split2);
675 * this is very complex, but the basic idea is to drop all extents
676 * in the range start - end. hint_block is filled in with a block number
677 * that would be a good hint to the block allocator for this file.
679 * If an extent intersects the range but is not entirely inside the range
680 * it is either truncated or split. Anything entirely inside the range
681 * is deleted from the tree.
683 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684 * to deal with that. We set the field 'bytes_found' of the arguments structure
685 * with the number of allocated bytes found in the target range, so that the
686 * caller can update the inode's number of bytes in an atomic way when
687 * replacing extents in a range to avoid races with stat(2).
689 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root, struct btrfs_inode *inode,
691 struct btrfs_drop_extents_args *args)
693 struct btrfs_fs_info *fs_info = root->fs_info;
694 struct extent_buffer *leaf;
695 struct btrfs_file_extent_item *fi;
696 struct btrfs_ref ref = { 0 };
697 struct btrfs_key key;
698 struct btrfs_key new_key;
699 u64 ino = btrfs_ino(inode);
700 u64 search_start = args->start;
703 u64 extent_offset = 0;
705 u64 last_end = args->start;
711 int modify_tree = -1;
714 int leafs_visited = 0;
715 struct btrfs_path *path = args->path;
717 args->bytes_found = 0;
718 args->extent_inserted = false;
720 /* Must always have a path if ->replace_extent is true */
721 ASSERT(!(args->replace_extent && !args->path));
724 path = btrfs_alloc_path();
731 if (args->drop_cache)
732 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
734 if (args->start >= inode->disk_i_size && !args->replace_extent)
737 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
738 root == fs_info->tree_root);
741 ret = btrfs_lookup_file_extent(trans, root, path, ino,
742 search_start, modify_tree);
745 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
746 leaf = path->nodes[0];
747 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
748 if (key.objectid == ino &&
749 key.type == BTRFS_EXTENT_DATA_KEY)
755 leaf = path->nodes[0];
756 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
758 ret = btrfs_next_leaf(root, path);
766 leaf = path->nodes[0];
770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
772 if (key.objectid > ino)
774 if (WARN_ON_ONCE(key.objectid < ino) ||
775 key.type < BTRFS_EXTENT_DATA_KEY) {
780 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
783 fi = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_file_extent_item);
785 extent_type = btrfs_file_extent_type(leaf, fi);
787 if (extent_type == BTRFS_FILE_EXTENT_REG ||
788 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
789 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
790 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
791 extent_offset = btrfs_file_extent_offset(leaf, fi);
792 extent_end = key.offset +
793 btrfs_file_extent_num_bytes(leaf, fi);
794 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
795 extent_end = key.offset +
796 btrfs_file_extent_ram_bytes(leaf, fi);
803 * Don't skip extent items representing 0 byte lengths. They
804 * used to be created (bug) if while punching holes we hit
805 * -ENOSPC condition. So if we find one here, just ensure we
806 * delete it, otherwise we would insert a new file extent item
807 * with the same key (offset) as that 0 bytes length file
808 * extent item in the call to setup_items_for_insert() later
811 if (extent_end == key.offset && extent_end >= search_start) {
812 last_end = extent_end;
813 goto delete_extent_item;
816 if (extent_end <= search_start) {
822 search_start = max(key.offset, args->start);
823 if (recow || !modify_tree) {
825 btrfs_release_path(path);
830 * | - range to drop - |
831 * | -------- extent -------- |
833 if (args->start > key.offset && args->end < extent_end) {
835 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
840 memcpy(&new_key, &key, sizeof(new_key));
841 new_key.offset = args->start;
842 ret = btrfs_duplicate_item(trans, root, path,
844 if (ret == -EAGAIN) {
845 btrfs_release_path(path);
851 leaf = path->nodes[0];
852 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
853 struct btrfs_file_extent_item);
854 btrfs_set_file_extent_num_bytes(leaf, fi,
855 args->start - key.offset);
857 fi = btrfs_item_ptr(leaf, path->slots[0],
858 struct btrfs_file_extent_item);
860 extent_offset += args->start - key.offset;
861 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
862 btrfs_set_file_extent_num_bytes(leaf, fi,
863 extent_end - args->start);
864 btrfs_mark_buffer_dirty(leaf);
866 if (update_refs && disk_bytenr > 0) {
867 btrfs_init_generic_ref(&ref,
868 BTRFS_ADD_DELAYED_REF,
869 disk_bytenr, num_bytes, 0);
870 btrfs_init_data_ref(&ref,
871 root->root_key.objectid,
873 args->start - extent_offset);
874 ret = btrfs_inc_extent_ref(trans, &ref);
875 BUG_ON(ret); /* -ENOMEM */
877 key.offset = args->start;
880 * From here on out we will have actually dropped something, so
881 * last_end can be updated.
883 last_end = extent_end;
886 * | ---- range to drop ----- |
887 * | -------- extent -------- |
889 if (args->start <= key.offset && args->end < extent_end) {
890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 memcpy(&new_key, &key, sizeof(new_key));
896 new_key.offset = args->end;
897 btrfs_set_item_key_safe(fs_info, path, &new_key);
899 extent_offset += args->end - key.offset;
900 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
901 btrfs_set_file_extent_num_bytes(leaf, fi,
902 extent_end - args->end);
903 btrfs_mark_buffer_dirty(leaf);
904 if (update_refs && disk_bytenr > 0)
905 args->bytes_found += args->end - key.offset;
909 search_start = extent_end;
911 * | ---- range to drop ----- |
912 * | -------- extent -------- |
914 if (args->start > key.offset && args->end >= extent_end) {
916 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
921 btrfs_set_file_extent_num_bytes(leaf, fi,
922 args->start - key.offset);
923 btrfs_mark_buffer_dirty(leaf);
924 if (update_refs && disk_bytenr > 0)
925 args->bytes_found += extent_end - args->start;
926 if (args->end == extent_end)
934 * | ---- range to drop ----- |
935 * | ------ extent ------ |
937 if (args->start <= key.offset && args->end >= extent_end) {
940 del_slot = path->slots[0];
943 BUG_ON(del_slot + del_nr != path->slots[0]);
948 extent_type == BTRFS_FILE_EXTENT_INLINE) {
949 args->bytes_found += extent_end - key.offset;
950 extent_end = ALIGN(extent_end,
951 fs_info->sectorsize);
952 } else if (update_refs && disk_bytenr > 0) {
953 btrfs_init_generic_ref(&ref,
954 BTRFS_DROP_DELAYED_REF,
955 disk_bytenr, num_bytes, 0);
956 btrfs_init_data_ref(&ref,
957 root->root_key.objectid,
959 key.offset - extent_offset);
960 ret = btrfs_free_extent(trans, &ref);
961 BUG_ON(ret); /* -ENOMEM */
962 args->bytes_found += extent_end - key.offset;
965 if (args->end == extent_end)
968 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
973 ret = btrfs_del_items(trans, root, path, del_slot,
976 btrfs_abort_transaction(trans, ret);
983 btrfs_release_path(path);
990 if (!ret && del_nr > 0) {
992 * Set path->slots[0] to first slot, so that after the delete
993 * if items are move off from our leaf to its immediate left or
994 * right neighbor leafs, we end up with a correct and adjusted
995 * path->slots[0] for our insertion (if args->replace_extent).
997 path->slots[0] = del_slot;
998 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1000 btrfs_abort_transaction(trans, ret);
1003 leaf = path->nodes[0];
1005 * If btrfs_del_items() was called, it might have deleted a leaf, in
1006 * which case it unlocked our path, so check path->locks[0] matches a
1009 if (!ret && args->replace_extent && leafs_visited == 1 &&
1010 path->locks[0] == BTRFS_WRITE_LOCK &&
1011 btrfs_leaf_free_space(leaf) >=
1012 sizeof(struct btrfs_item) + args->extent_item_size) {
1015 key.type = BTRFS_EXTENT_DATA_KEY;
1016 key.offset = args->start;
1017 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1018 struct btrfs_key slot_key;
1020 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1021 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1024 setup_items_for_insert(root, path, &key,
1025 &args->extent_item_size, 1);
1026 args->extent_inserted = true;
1030 btrfs_free_path(path);
1031 else if (!args->extent_inserted)
1032 btrfs_release_path(path);
1034 args->drop_end = found ? min(args->end, last_end) : args->end;
1039 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1040 u64 objectid, u64 bytenr, u64 orig_offset,
1041 u64 *start, u64 *end)
1043 struct btrfs_file_extent_item *fi;
1044 struct btrfs_key key;
1047 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1050 btrfs_item_key_to_cpu(leaf, &key, slot);
1051 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1054 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1055 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1056 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1057 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1058 btrfs_file_extent_compression(leaf, fi) ||
1059 btrfs_file_extent_encryption(leaf, fi) ||
1060 btrfs_file_extent_other_encoding(leaf, fi))
1063 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1064 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1067 *start = key.offset;
1073 * Mark extent in the range start - end as written.
1075 * This changes extent type from 'pre-allocated' to 'regular'. If only
1076 * part of extent is marked as written, the extent will be split into
1079 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1080 struct btrfs_inode *inode, u64 start, u64 end)
1082 struct btrfs_fs_info *fs_info = trans->fs_info;
1083 struct btrfs_root *root = inode->root;
1084 struct extent_buffer *leaf;
1085 struct btrfs_path *path;
1086 struct btrfs_file_extent_item *fi;
1087 struct btrfs_ref ref = { 0 };
1088 struct btrfs_key key;
1089 struct btrfs_key new_key;
1101 u64 ino = btrfs_ino(inode);
1103 path = btrfs_alloc_path();
1110 key.type = BTRFS_EXTENT_DATA_KEY;
1113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1116 if (ret > 0 && path->slots[0] > 0)
1119 leaf = path->nodes[0];
1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121 if (key.objectid != ino ||
1122 key.type != BTRFS_EXTENT_DATA_KEY) {
1124 btrfs_abort_transaction(trans, ret);
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1129 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1131 btrfs_abort_transaction(trans, ret);
1134 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1135 if (key.offset > start || extent_end < end) {
1137 btrfs_abort_transaction(trans, ret);
1141 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1142 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1143 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1144 memcpy(&new_key, &key, sizeof(new_key));
1146 if (start == key.offset && end < extent_end) {
1149 if (extent_mergeable(leaf, path->slots[0] - 1,
1150 ino, bytenr, orig_offset,
1151 &other_start, &other_end)) {
1152 new_key.offset = end;
1153 btrfs_set_item_key_safe(fs_info, path, &new_key);
1154 fi = btrfs_item_ptr(leaf, path->slots[0],
1155 struct btrfs_file_extent_item);
1156 btrfs_set_file_extent_generation(leaf, fi,
1158 btrfs_set_file_extent_num_bytes(leaf, fi,
1160 btrfs_set_file_extent_offset(leaf, fi,
1162 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1163 struct btrfs_file_extent_item);
1164 btrfs_set_file_extent_generation(leaf, fi,
1166 btrfs_set_file_extent_num_bytes(leaf, fi,
1168 btrfs_mark_buffer_dirty(leaf);
1173 if (start > key.offset && end == extent_end) {
1176 if (extent_mergeable(leaf, path->slots[0] + 1,
1177 ino, bytenr, orig_offset,
1178 &other_start, &other_end)) {
1179 fi = btrfs_item_ptr(leaf, path->slots[0],
1180 struct btrfs_file_extent_item);
1181 btrfs_set_file_extent_num_bytes(leaf, fi,
1182 start - key.offset);
1183 btrfs_set_file_extent_generation(leaf, fi,
1186 new_key.offset = start;
1187 btrfs_set_item_key_safe(fs_info, path, &new_key);
1189 fi = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_file_extent_item);
1191 btrfs_set_file_extent_generation(leaf, fi,
1193 btrfs_set_file_extent_num_bytes(leaf, fi,
1195 btrfs_set_file_extent_offset(leaf, fi,
1196 start - orig_offset);
1197 btrfs_mark_buffer_dirty(leaf);
1202 while (start > key.offset || end < extent_end) {
1203 if (key.offset == start)
1206 new_key.offset = split;
1207 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1208 if (ret == -EAGAIN) {
1209 btrfs_release_path(path);
1213 btrfs_abort_transaction(trans, ret);
1217 leaf = path->nodes[0];
1218 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1219 struct btrfs_file_extent_item);
1220 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1221 btrfs_set_file_extent_num_bytes(leaf, fi,
1222 split - key.offset);
1224 fi = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_file_extent_item);
1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1229 btrfs_set_file_extent_num_bytes(leaf, fi,
1230 extent_end - split);
1231 btrfs_mark_buffer_dirty(leaf);
1233 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1235 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1237 ret = btrfs_inc_extent_ref(trans, &ref);
1239 btrfs_abort_transaction(trans, ret);
1243 if (split == start) {
1246 if (start != key.offset) {
1248 btrfs_abort_transaction(trans, ret);
1259 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1261 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1262 if (extent_mergeable(leaf, path->slots[0] + 1,
1263 ino, bytenr, orig_offset,
1264 &other_start, &other_end)) {
1266 btrfs_release_path(path);
1269 extent_end = other_end;
1270 del_slot = path->slots[0] + 1;
1272 ret = btrfs_free_extent(trans, &ref);
1274 btrfs_abort_transaction(trans, ret);
1280 if (extent_mergeable(leaf, path->slots[0] - 1,
1281 ino, bytenr, orig_offset,
1282 &other_start, &other_end)) {
1284 btrfs_release_path(path);
1287 key.offset = other_start;
1288 del_slot = path->slots[0];
1290 ret = btrfs_free_extent(trans, &ref);
1292 btrfs_abort_transaction(trans, ret);
1297 fi = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_file_extent_item);
1299 btrfs_set_file_extent_type(leaf, fi,
1300 BTRFS_FILE_EXTENT_REG);
1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1302 btrfs_mark_buffer_dirty(leaf);
1304 fi = btrfs_item_ptr(leaf, del_slot - 1,
1305 struct btrfs_file_extent_item);
1306 btrfs_set_file_extent_type(leaf, fi,
1307 BTRFS_FILE_EXTENT_REG);
1308 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1309 btrfs_set_file_extent_num_bytes(leaf, fi,
1310 extent_end - key.offset);
1311 btrfs_mark_buffer_dirty(leaf);
1313 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1315 btrfs_abort_transaction(trans, ret);
1320 btrfs_free_path(path);
1325 * on error we return an unlocked page and the error value
1326 * on success we return a locked page and 0
1328 static int prepare_uptodate_page(struct inode *inode,
1329 struct page *page, u64 pos,
1330 bool force_uptodate)
1334 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1335 !PageUptodate(page)) {
1336 ret = btrfs_readpage(NULL, page);
1340 if (!PageUptodate(page)) {
1344 if (page->mapping != inode->i_mapping) {
1353 * this just gets pages into the page cache and locks them down.
1355 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1356 size_t num_pages, loff_t pos,
1357 size_t write_bytes, bool force_uptodate)
1360 unsigned long index = pos >> PAGE_SHIFT;
1361 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1365 for (i = 0; i < num_pages; i++) {
1367 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1368 mask | __GFP_WRITE);
1375 err = set_page_extent_mapped(pages[i]);
1382 err = prepare_uptodate_page(inode, pages[i], pos,
1384 if (!err && i == num_pages - 1)
1385 err = prepare_uptodate_page(inode, pages[i],
1386 pos + write_bytes, false);
1389 if (err == -EAGAIN) {
1396 wait_on_page_writeback(pages[i]);
1401 while (faili >= 0) {
1402 unlock_page(pages[faili]);
1403 put_page(pages[faili]);
1411 * This function locks the extent and properly waits for data=ordered extents
1412 * to finish before allowing the pages to be modified if need.
1415 * 1 - the extent is locked
1416 * 0 - the extent is not locked, and everything is OK
1417 * -EAGAIN - need re-prepare the pages
1418 * the other < 0 number - Something wrong happens
1421 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1422 size_t num_pages, loff_t pos,
1424 u64 *lockstart, u64 *lockend,
1425 struct extent_state **cached_state)
1427 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1433 start_pos = round_down(pos, fs_info->sectorsize);
1434 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1436 if (start_pos < inode->vfs_inode.i_size) {
1437 struct btrfs_ordered_extent *ordered;
1439 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1441 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1442 last_pos - start_pos + 1);
1444 ordered->file_offset + ordered->num_bytes > start_pos &&
1445 ordered->file_offset <= last_pos) {
1446 unlock_extent_cached(&inode->io_tree, start_pos,
1447 last_pos, cached_state);
1448 for (i = 0; i < num_pages; i++) {
1449 unlock_page(pages[i]);
1452 btrfs_start_ordered_extent(ordered, 1);
1453 btrfs_put_ordered_extent(ordered);
1457 btrfs_put_ordered_extent(ordered);
1459 *lockstart = start_pos;
1460 *lockend = last_pos;
1465 * We should be called after prepare_pages() which should have locked
1466 * all pages in the range.
1468 for (i = 0; i < num_pages; i++)
1469 WARN_ON(!PageLocked(pages[i]));
1474 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1475 size_t *write_bytes, bool nowait)
1477 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1478 struct btrfs_root *root = inode->root;
1479 u64 lockstart, lockend;
1483 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1486 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1489 lockstart = round_down(pos, fs_info->sectorsize);
1490 lockend = round_up(pos + *write_bytes,
1491 fs_info->sectorsize) - 1;
1492 num_bytes = lockend - lockstart + 1;
1495 struct btrfs_ordered_extent *ordered;
1497 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1500 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1503 btrfs_put_ordered_extent(ordered);
1508 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1512 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1513 NULL, NULL, NULL, false);
1517 btrfs_drew_write_unlock(&root->snapshot_lock);
1519 *write_bytes = min_t(size_t, *write_bytes ,
1520 num_bytes - pos + lockstart);
1523 unlock_extent(&inode->io_tree, lockstart, lockend);
1528 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1529 size_t *write_bytes)
1531 return check_can_nocow(inode, pos, write_bytes, true);
1535 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1538 * @write_bytes: The length to write, will be updated to the nocow writeable
1541 * This function will flush ordered extents in the range to ensure proper
1545 * >0 and update @write_bytes if we can do nocow write
1546 * 0 if we can't do nocow write
1547 * -EAGAIN if we can't get the needed lock or there are ordered extents
1548 * for * (nowait == true) case
1549 * <0 if other error happened
1551 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1553 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1554 size_t *write_bytes)
1556 return check_can_nocow(inode, pos, write_bytes, false);
1559 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1561 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1564 static void update_time_for_write(struct inode *inode)
1566 struct timespec64 now;
1568 if (IS_NOCMTIME(inode))
1571 now = current_time(inode);
1572 if (!timespec64_equal(&inode->i_mtime, &now))
1573 inode->i_mtime = now;
1575 if (!timespec64_equal(&inode->i_ctime, &now))
1576 inode->i_ctime = now;
1578 if (IS_I_VERSION(inode))
1579 inode_inc_iversion(inode);
1582 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1585 struct file *file = iocb->ki_filp;
1586 struct inode *inode = file_inode(file);
1587 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1588 loff_t pos = iocb->ki_pos;
1593 if (iocb->ki_flags & IOCB_NOWAIT) {
1594 size_t nocow_bytes = count;
1596 /* We will allocate space in case nodatacow is not set, so bail */
1597 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1600 * There are holes in the range or parts of the range that must
1601 * be COWed (shared extents, RO block groups, etc), so just bail
1604 if (nocow_bytes < count)
1608 current->backing_dev_info = inode_to_bdi(inode);
1609 ret = file_remove_privs(file);
1614 * We reserve space for updating the inode when we reserve space for the
1615 * extent we are going to write, so we will enospc out there. We don't
1616 * need to start yet another transaction to update the inode as we will
1617 * update the inode when we finish writing whatever data we write.
1619 update_time_for_write(inode);
1621 start_pos = round_down(pos, fs_info->sectorsize);
1622 oldsize = i_size_read(inode);
1623 if (start_pos > oldsize) {
1624 /* Expand hole size to cover write data, preventing empty gap */
1625 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1627 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1629 current->backing_dev_info = NULL;
1637 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1640 struct file *file = iocb->ki_filp;
1642 struct inode *inode = file_inode(file);
1643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1644 struct page **pages = NULL;
1645 struct extent_changeset *data_reserved = NULL;
1646 u64 release_bytes = 0;
1649 size_t num_written = 0;
1652 bool only_release_metadata = false;
1653 bool force_page_uptodate = false;
1654 loff_t old_isize = i_size_read(inode);
1655 unsigned int ilock_flags = 0;
1657 if (iocb->ki_flags & IOCB_NOWAIT)
1658 ilock_flags |= BTRFS_ILOCK_TRY;
1660 ret = btrfs_inode_lock(inode, ilock_flags);
1664 ret = generic_write_checks(iocb, i);
1668 ret = btrfs_write_check(iocb, i, ret);
1673 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1674 PAGE_SIZE / (sizeof(struct page *)));
1675 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1676 nrptrs = max(nrptrs, 8);
1677 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1683 while (iov_iter_count(i) > 0) {
1684 struct extent_state *cached_state = NULL;
1685 size_t offset = offset_in_page(pos);
1686 size_t sector_offset;
1687 size_t write_bytes = min(iov_iter_count(i),
1688 nrptrs * (size_t)PAGE_SIZE -
1691 size_t reserve_bytes;
1694 size_t dirty_sectors;
1699 * Fault pages before locking them in prepare_pages
1700 * to avoid recursive lock
1702 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1707 only_release_metadata = false;
1708 sector_offset = pos & (fs_info->sectorsize - 1);
1710 extent_changeset_release(data_reserved);
1711 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1712 &data_reserved, pos,
1716 * If we don't have to COW at the offset, reserve
1717 * metadata only. write_bytes may get smaller than
1720 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1722 only_release_metadata = true;
1727 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1728 WARN_ON(num_pages > nrptrs);
1729 reserve_bytes = round_up(write_bytes + sector_offset,
1730 fs_info->sectorsize);
1731 WARN_ON(reserve_bytes == 0);
1732 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1735 if (!only_release_metadata)
1736 btrfs_free_reserved_data_space(BTRFS_I(inode),
1740 btrfs_check_nocow_unlock(BTRFS_I(inode));
1744 release_bytes = reserve_bytes;
1747 * This is going to setup the pages array with the number of
1748 * pages we want, so we don't really need to worry about the
1749 * contents of pages from loop to loop
1751 ret = prepare_pages(inode, pages, num_pages,
1753 force_page_uptodate);
1755 btrfs_delalloc_release_extents(BTRFS_I(inode),
1760 extents_locked = lock_and_cleanup_extent_if_need(
1761 BTRFS_I(inode), pages,
1762 num_pages, pos, write_bytes, &lockstart,
1763 &lockend, &cached_state);
1764 if (extents_locked < 0) {
1765 if (extents_locked == -EAGAIN)
1767 btrfs_delalloc_release_extents(BTRFS_I(inode),
1769 ret = extents_locked;
1773 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1775 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1776 dirty_sectors = round_up(copied + sector_offset,
1777 fs_info->sectorsize);
1778 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1781 * if we have trouble faulting in the pages, fall
1782 * back to one page at a time
1784 if (copied < write_bytes)
1788 force_page_uptodate = true;
1792 force_page_uptodate = false;
1793 dirty_pages = DIV_ROUND_UP(copied + offset,
1797 if (num_sectors > dirty_sectors) {
1798 /* release everything except the sectors we dirtied */
1799 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1800 if (only_release_metadata) {
1801 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1802 release_bytes, true);
1806 __pos = round_down(pos,
1807 fs_info->sectorsize) +
1808 (dirty_pages << PAGE_SHIFT);
1809 btrfs_delalloc_release_space(BTRFS_I(inode),
1810 data_reserved, __pos,
1811 release_bytes, true);
1815 release_bytes = round_up(copied + sector_offset,
1816 fs_info->sectorsize);
1818 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1819 dirty_pages, pos, copied,
1820 &cached_state, only_release_metadata);
1823 * If we have not locked the extent range, because the range's
1824 * start offset is >= i_size, we might still have a non-NULL
1825 * cached extent state, acquired while marking the extent range
1826 * as delalloc through btrfs_dirty_pages(). Therefore free any
1827 * possible cached extent state to avoid a memory leak.
1830 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1831 lockstart, lockend, &cached_state);
1833 free_extent_state(cached_state);
1835 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1837 btrfs_drop_pages(pages, num_pages);
1842 if (only_release_metadata)
1843 btrfs_check_nocow_unlock(BTRFS_I(inode));
1845 btrfs_drop_pages(pages, num_pages);
1849 balance_dirty_pages_ratelimited(inode->i_mapping);
1852 num_written += copied;
1857 if (release_bytes) {
1858 if (only_release_metadata) {
1859 btrfs_check_nocow_unlock(BTRFS_I(inode));
1860 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1861 release_bytes, true);
1863 btrfs_delalloc_release_space(BTRFS_I(inode),
1865 round_down(pos, fs_info->sectorsize),
1866 release_bytes, true);
1870 extent_changeset_free(data_reserved);
1871 if (num_written > 0) {
1872 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1873 iocb->ki_pos += num_written;
1876 btrfs_inode_unlock(inode, ilock_flags);
1877 return num_written ? num_written : ret;
1880 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1881 const struct iov_iter *iter, loff_t offset)
1883 const u32 blocksize_mask = fs_info->sectorsize - 1;
1885 if (offset & blocksize_mask)
1888 if (iov_iter_alignment(iter) & blocksize_mask)
1894 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1896 struct file *file = iocb->ki_filp;
1897 struct inode *inode = file_inode(file);
1898 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1900 ssize_t written = 0;
1901 ssize_t written_buffered;
1904 unsigned int ilock_flags = 0;
1905 struct iomap_dio *dio = NULL;
1907 if (iocb->ki_flags & IOCB_NOWAIT)
1908 ilock_flags |= BTRFS_ILOCK_TRY;
1910 /* If the write DIO is within EOF, use a shared lock */
1911 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1912 ilock_flags |= BTRFS_ILOCK_SHARED;
1915 err = btrfs_inode_lock(inode, ilock_flags);
1919 err = generic_write_checks(iocb, from);
1921 btrfs_inode_unlock(inode, ilock_flags);
1925 err = btrfs_write_check(iocb, from, err);
1927 btrfs_inode_unlock(inode, ilock_flags);
1933 * Re-check since file size may have changed just before taking the
1934 * lock or pos may have changed because of O_APPEND in generic_write_check()
1936 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1937 pos + iov_iter_count(from) > i_size_read(inode)) {
1938 btrfs_inode_unlock(inode, ilock_flags);
1939 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1943 if (check_direct_IO(fs_info, from, pos)) {
1944 btrfs_inode_unlock(inode, ilock_flags);
1948 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1951 btrfs_inode_unlock(inode, ilock_flags);
1953 if (IS_ERR_OR_NULL(dio)) {
1954 err = PTR_ERR_OR_ZERO(dio);
1955 if (err < 0 && err != -ENOTBLK)
1958 written = iomap_dio_complete(dio);
1961 if (written < 0 || !iov_iter_count(from)) {
1968 written_buffered = btrfs_buffered_write(iocb, from);
1969 if (written_buffered < 0) {
1970 err = written_buffered;
1974 * Ensure all data is persisted. We want the next direct IO read to be
1975 * able to read what was just written.
1977 endbyte = pos + written_buffered - 1;
1978 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1981 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1984 written += written_buffered;
1985 iocb->ki_pos = pos + written_buffered;
1986 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1987 endbyte >> PAGE_SHIFT);
1989 return written ? written : err;
1992 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1993 struct iov_iter *from)
1995 struct file *file = iocb->ki_filp;
1996 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1997 ssize_t num_written = 0;
1998 const bool sync = iocb->ki_flags & IOCB_DSYNC;
2001 * If the fs flips readonly due to some impossible error, although we
2002 * have opened a file as writable, we have to stop this write operation
2003 * to ensure consistency.
2005 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2008 if (!(iocb->ki_flags & IOCB_DIRECT) &&
2009 (iocb->ki_flags & IOCB_NOWAIT))
2013 atomic_inc(&inode->sync_writers);
2015 if (iocb->ki_flags & IOCB_DIRECT)
2016 num_written = btrfs_direct_write(iocb, from);
2018 num_written = btrfs_buffered_write(iocb, from);
2020 btrfs_set_inode_last_sub_trans(inode);
2022 if (num_written > 0)
2023 num_written = generic_write_sync(iocb, num_written);
2026 atomic_dec(&inode->sync_writers);
2028 current->backing_dev_info = NULL;
2032 int btrfs_release_file(struct inode *inode, struct file *filp)
2034 struct btrfs_file_private *private = filp->private_data;
2036 if (private && private->filldir_buf)
2037 kfree(private->filldir_buf);
2039 filp->private_data = NULL;
2042 * Set by setattr when we are about to truncate a file from a non-zero
2043 * size to a zero size. This tries to flush down new bytes that may
2044 * have been written if the application were using truncate to replace
2047 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2048 &BTRFS_I(inode)->runtime_flags))
2049 filemap_flush(inode->i_mapping);
2053 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2056 struct blk_plug plug;
2059 * This is only called in fsync, which would do synchronous writes, so
2060 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2061 * multiple disks using raid profile, a large IO can be split to
2062 * several segments of stripe length (currently 64K).
2064 blk_start_plug(&plug);
2065 atomic_inc(&BTRFS_I(inode)->sync_writers);
2066 ret = btrfs_fdatawrite_range(inode, start, end);
2067 atomic_dec(&BTRFS_I(inode)->sync_writers);
2068 blk_finish_plug(&plug);
2073 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2075 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2076 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2078 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2079 list_empty(&ctx->ordered_extents))
2083 * If we are doing a fast fsync we can not bail out if the inode's
2084 * last_trans is <= then the last committed transaction, because we only
2085 * update the last_trans of the inode during ordered extent completion,
2086 * and for a fast fsync we don't wait for that, we only wait for the
2087 * writeback to complete.
2089 if (inode->last_trans <= fs_info->last_trans_committed &&
2090 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2091 list_empty(&ctx->ordered_extents)))
2098 * fsync call for both files and directories. This logs the inode into
2099 * the tree log instead of forcing full commits whenever possible.
2101 * It needs to call filemap_fdatawait so that all ordered extent updates are
2102 * in the metadata btree are up to date for copying to the log.
2104 * It drops the inode mutex before doing the tree log commit. This is an
2105 * important optimization for directories because holding the mutex prevents
2106 * new operations on the dir while we write to disk.
2108 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2110 struct dentry *dentry = file_dentry(file);
2111 struct inode *inode = d_inode(dentry);
2112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2113 struct btrfs_root *root = BTRFS_I(inode)->root;
2114 struct btrfs_trans_handle *trans;
2115 struct btrfs_log_ctx ctx;
2120 trace_btrfs_sync_file(file, datasync);
2122 btrfs_init_log_ctx(&ctx, inode);
2125 * Always set the range to a full range, otherwise we can get into
2126 * several problems, from missing file extent items to represent holes
2127 * when not using the NO_HOLES feature, to log tree corruption due to
2128 * races between hole detection during logging and completion of ordered
2129 * extents outside the range, to missing checksums due to ordered extents
2130 * for which we flushed only a subset of their pages.
2134 len = (u64)LLONG_MAX + 1;
2137 * We write the dirty pages in the range and wait until they complete
2138 * out of the ->i_mutex. If so, we can flush the dirty pages by
2139 * multi-task, and make the performance up. See
2140 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2142 ret = start_ordered_ops(inode, start, end);
2146 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2148 atomic_inc(&root->log_batch);
2151 * Always check for the full sync flag while holding the inode's lock,
2152 * to avoid races with other tasks. The flag must be either set all the
2153 * time during logging or always off all the time while logging.
2155 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2156 &BTRFS_I(inode)->runtime_flags);
2159 * Before we acquired the inode's lock and the mmap lock, someone may
2160 * have dirtied more pages in the target range. We need to make sure
2161 * that writeback for any such pages does not start while we are logging
2162 * the inode, because if it does, any of the following might happen when
2163 * we are not doing a full inode sync:
2165 * 1) We log an extent after its writeback finishes but before its
2166 * checksums are added to the csum tree, leading to -EIO errors
2167 * when attempting to read the extent after a log replay.
2169 * 2) We can end up logging an extent before its writeback finishes.
2170 * Therefore after the log replay we will have a file extent item
2171 * pointing to an unwritten extent (and no data checksums as well).
2173 * So trigger writeback for any eventual new dirty pages and then we
2174 * wait for all ordered extents to complete below.
2176 ret = start_ordered_ops(inode, start, end);
2178 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2183 * We have to do this here to avoid the priority inversion of waiting on
2184 * IO of a lower priority task while holding a transaction open.
2186 * For a full fsync we wait for the ordered extents to complete while
2187 * for a fast fsync we wait just for writeback to complete, and then
2188 * attach the ordered extents to the transaction so that a transaction
2189 * commit waits for their completion, to avoid data loss if we fsync,
2190 * the current transaction commits before the ordered extents complete
2191 * and a power failure happens right after that.
2193 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2194 * logical address recorded in the ordered extent may change. We need
2195 * to wait for the IO to stabilize the logical address.
2197 if (full_sync || btrfs_is_zoned(fs_info)) {
2198 ret = btrfs_wait_ordered_range(inode, start, len);
2201 * Get our ordered extents as soon as possible to avoid doing
2202 * checksum lookups in the csum tree, and use instead the
2203 * checksums attached to the ordered extents.
2205 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2206 &ctx.ordered_extents);
2207 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2211 goto out_release_extents;
2213 atomic_inc(&root->log_batch);
2216 if (skip_inode_logging(&ctx)) {
2218 * We've had everything committed since the last time we were
2219 * modified so clear this flag in case it was set for whatever
2220 * reason, it's no longer relevant.
2222 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2223 &BTRFS_I(inode)->runtime_flags);
2225 * An ordered extent might have started before and completed
2226 * already with io errors, in which case the inode was not
2227 * updated and we end up here. So check the inode's mapping
2228 * for any errors that might have happened since we last
2229 * checked called fsync.
2231 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2232 goto out_release_extents;
2236 * We use start here because we will need to wait on the IO to complete
2237 * in btrfs_sync_log, which could require joining a transaction (for
2238 * example checking cross references in the nocow path). If we use join
2239 * here we could get into a situation where we're waiting on IO to
2240 * happen that is blocked on a transaction trying to commit. With start
2241 * we inc the extwriter counter, so we wait for all extwriters to exit
2242 * before we start blocking joiners. This comment is to keep somebody
2243 * from thinking they are super smart and changing this to
2244 * btrfs_join_transaction *cough*Josef*cough*.
2246 trans = btrfs_start_transaction(root, 0);
2247 if (IS_ERR(trans)) {
2248 ret = PTR_ERR(trans);
2249 goto out_release_extents;
2251 trans->in_fsync = true;
2253 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2254 btrfs_release_log_ctx_extents(&ctx);
2256 /* Fallthrough and commit/free transaction. */
2260 /* we've logged all the items and now have a consistent
2261 * version of the file in the log. It is possible that
2262 * someone will come in and modify the file, but that's
2263 * fine because the log is consistent on disk, and we
2264 * have references to all of the file's extents
2266 * It is possible that someone will come in and log the
2267 * file again, but that will end up using the synchronization
2268 * inside btrfs_sync_log to keep things safe.
2270 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2272 if (ret != BTRFS_NO_LOG_SYNC) {
2274 ret = btrfs_sync_log(trans, root, &ctx);
2276 ret = btrfs_end_transaction(trans);
2281 ret = btrfs_wait_ordered_range(inode, start, len);
2283 btrfs_end_transaction(trans);
2287 ret = btrfs_commit_transaction(trans);
2289 ret = btrfs_end_transaction(trans);
2292 ASSERT(list_empty(&ctx.list));
2293 err = file_check_and_advance_wb_err(file);
2296 return ret > 0 ? -EIO : ret;
2298 out_release_extents:
2299 btrfs_release_log_ctx_extents(&ctx);
2300 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2304 static const struct vm_operations_struct btrfs_file_vm_ops = {
2305 .fault = filemap_fault,
2306 .map_pages = filemap_map_pages,
2307 .page_mkwrite = btrfs_page_mkwrite,
2310 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2312 struct address_space *mapping = filp->f_mapping;
2314 if (!mapping->a_ops->readpage)
2317 file_accessed(filp);
2318 vma->vm_ops = &btrfs_file_vm_ops;
2323 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2324 int slot, u64 start, u64 end)
2326 struct btrfs_file_extent_item *fi;
2327 struct btrfs_key key;
2329 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2332 btrfs_item_key_to_cpu(leaf, &key, slot);
2333 if (key.objectid != btrfs_ino(inode) ||
2334 key.type != BTRFS_EXTENT_DATA_KEY)
2337 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2339 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2342 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2345 if (key.offset == end)
2347 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2352 static int fill_holes(struct btrfs_trans_handle *trans,
2353 struct btrfs_inode *inode,
2354 struct btrfs_path *path, u64 offset, u64 end)
2356 struct btrfs_fs_info *fs_info = trans->fs_info;
2357 struct btrfs_root *root = inode->root;
2358 struct extent_buffer *leaf;
2359 struct btrfs_file_extent_item *fi;
2360 struct extent_map *hole_em;
2361 struct extent_map_tree *em_tree = &inode->extent_tree;
2362 struct btrfs_key key;
2365 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2368 key.objectid = btrfs_ino(inode);
2369 key.type = BTRFS_EXTENT_DATA_KEY;
2370 key.offset = offset;
2372 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2375 * We should have dropped this offset, so if we find it then
2376 * something has gone horribly wrong.
2383 leaf = path->nodes[0];
2384 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2388 fi = btrfs_item_ptr(leaf, path->slots[0],
2389 struct btrfs_file_extent_item);
2390 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2392 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2393 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2394 btrfs_set_file_extent_offset(leaf, fi, 0);
2395 btrfs_mark_buffer_dirty(leaf);
2399 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2402 key.offset = offset;
2403 btrfs_set_item_key_safe(fs_info, path, &key);
2404 fi = btrfs_item_ptr(leaf, path->slots[0],
2405 struct btrfs_file_extent_item);
2406 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2408 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2409 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2410 btrfs_set_file_extent_offset(leaf, fi, 0);
2411 btrfs_mark_buffer_dirty(leaf);
2414 btrfs_release_path(path);
2416 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2417 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2422 btrfs_release_path(path);
2424 hole_em = alloc_extent_map();
2426 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2427 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2429 hole_em->start = offset;
2430 hole_em->len = end - offset;
2431 hole_em->ram_bytes = hole_em->len;
2432 hole_em->orig_start = offset;
2434 hole_em->block_start = EXTENT_MAP_HOLE;
2435 hole_em->block_len = 0;
2436 hole_em->orig_block_len = 0;
2437 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2438 hole_em->generation = trans->transid;
2441 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2442 write_lock(&em_tree->lock);
2443 ret = add_extent_mapping(em_tree, hole_em, 1);
2444 write_unlock(&em_tree->lock);
2445 } while (ret == -EEXIST);
2446 free_extent_map(hole_em);
2448 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2449 &inode->runtime_flags);
2456 * Find a hole extent on given inode and change start/len to the end of hole
2457 * extent.(hole/vacuum extent whose em->start <= start &&
2458 * em->start + em->len > start)
2459 * When a hole extent is found, return 1 and modify start/len.
2461 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2463 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2464 struct extent_map *em;
2467 em = btrfs_get_extent(inode, NULL, 0,
2468 round_down(*start, fs_info->sectorsize),
2469 round_up(*len, fs_info->sectorsize));
2473 /* Hole or vacuum extent(only exists in no-hole mode) */
2474 if (em->block_start == EXTENT_MAP_HOLE) {
2476 *len = em->start + em->len > *start + *len ?
2477 0 : *start + *len - em->start - em->len;
2478 *start = em->start + em->len;
2480 free_extent_map(em);
2484 static int btrfs_punch_hole_lock_range(struct inode *inode,
2485 const u64 lockstart,
2487 struct extent_state **cached_state)
2490 * For subpage case, if the range is not at page boundary, we could
2491 * have pages at the leading/tailing part of the range.
2492 * This could lead to dead loop since filemap_range_has_page()
2493 * will always return true.
2494 * So here we need to do extra page alignment for
2495 * filemap_range_has_page().
2497 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2498 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2501 struct btrfs_ordered_extent *ordered;
2504 truncate_pagecache_range(inode, lockstart, lockend);
2506 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2508 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2512 * We need to make sure we have no ordered extents in this range
2513 * and nobody raced in and read a page in this range, if we did
2514 * we need to try again.
2517 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2518 ordered->file_offset > lockend)) &&
2519 !filemap_range_has_page(inode->i_mapping,
2520 page_lockstart, page_lockend)) {
2522 btrfs_put_ordered_extent(ordered);
2526 btrfs_put_ordered_extent(ordered);
2527 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2528 lockend, cached_state);
2529 ret = btrfs_wait_ordered_range(inode, lockstart,
2530 lockend - lockstart + 1);
2537 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2538 struct btrfs_inode *inode,
2539 struct btrfs_path *path,
2540 struct btrfs_replace_extent_info *extent_info,
2541 const u64 replace_len,
2542 const u64 bytes_to_drop)
2544 struct btrfs_fs_info *fs_info = trans->fs_info;
2545 struct btrfs_root *root = inode->root;
2546 struct btrfs_file_extent_item *extent;
2547 struct extent_buffer *leaf;
2548 struct btrfs_key key;
2550 struct btrfs_ref ref = { 0 };
2553 if (replace_len == 0)
2556 if (extent_info->disk_offset == 0 &&
2557 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2558 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2562 key.objectid = btrfs_ino(inode);
2563 key.type = BTRFS_EXTENT_DATA_KEY;
2564 key.offset = extent_info->file_offset;
2565 ret = btrfs_insert_empty_item(trans, root, path, &key,
2566 sizeof(struct btrfs_file_extent_item));
2569 leaf = path->nodes[0];
2570 slot = path->slots[0];
2571 write_extent_buffer(leaf, extent_info->extent_buf,
2572 btrfs_item_ptr_offset(leaf, slot),
2573 sizeof(struct btrfs_file_extent_item));
2574 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2575 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2576 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2577 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2578 if (extent_info->is_new_extent)
2579 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2580 btrfs_mark_buffer_dirty(leaf);
2581 btrfs_release_path(path);
2583 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2588 /* If it's a hole, nothing more needs to be done. */
2589 if (extent_info->disk_offset == 0) {
2590 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2594 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2596 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2597 key.objectid = extent_info->disk_offset;
2598 key.type = BTRFS_EXTENT_ITEM_KEY;
2599 key.offset = extent_info->disk_len;
2600 ret = btrfs_alloc_reserved_file_extent(trans, root,
2602 extent_info->file_offset,
2603 extent_info->qgroup_reserved,
2608 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2609 extent_info->disk_offset,
2610 extent_info->disk_len, 0);
2611 ref_offset = extent_info->file_offset - extent_info->data_offset;
2612 btrfs_init_data_ref(&ref, root->root_key.objectid,
2613 btrfs_ino(inode), ref_offset);
2614 ret = btrfs_inc_extent_ref(trans, &ref);
2617 extent_info->insertions++;
2623 * The respective range must have been previously locked, as well as the inode.
2624 * The end offset is inclusive (last byte of the range).
2625 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2626 * the file range with an extent.
2627 * When not punching a hole, we don't want to end up in a state where we dropped
2628 * extents without inserting a new one, so we must abort the transaction to avoid
2631 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2632 struct btrfs_path *path, const u64 start,
2634 struct btrfs_replace_extent_info *extent_info,
2635 struct btrfs_trans_handle **trans_out)
2637 struct btrfs_drop_extents_args drop_args = { 0 };
2638 struct btrfs_root *root = inode->root;
2639 struct btrfs_fs_info *fs_info = root->fs_info;
2640 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2641 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2642 struct btrfs_trans_handle *trans = NULL;
2643 struct btrfs_block_rsv *rsv;
2644 unsigned int rsv_count;
2646 u64 len = end - start;
2652 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2657 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2661 * 1 - update the inode
2662 * 1 - removing the extents in the range
2663 * 1 - adding the hole extent if no_holes isn't set or if we are
2664 * replacing the range with a new extent
2666 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2671 trans = btrfs_start_transaction(root, rsv_count);
2672 if (IS_ERR(trans)) {
2673 ret = PTR_ERR(trans);
2678 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2681 trans->block_rsv = rsv;
2684 drop_args.path = path;
2685 drop_args.end = end + 1;
2686 drop_args.drop_cache = true;
2687 while (cur_offset < end) {
2688 drop_args.start = cur_offset;
2689 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2690 /* If we are punching a hole decrement the inode's byte count */
2692 btrfs_update_inode_bytes(inode, 0,
2693 drop_args.bytes_found);
2694 if (ret != -ENOSPC) {
2696 * When cloning we want to avoid transaction aborts when
2697 * nothing was done and we are attempting to clone parts
2698 * of inline extents, in such cases -EOPNOTSUPP is
2699 * returned by __btrfs_drop_extents() without having
2700 * changed anything in the file.
2702 if (extent_info && !extent_info->is_new_extent &&
2703 ret && ret != -EOPNOTSUPP)
2704 btrfs_abort_transaction(trans, ret);
2708 trans->block_rsv = &fs_info->trans_block_rsv;
2710 if (!extent_info && cur_offset < drop_args.drop_end &&
2711 cur_offset < ino_size) {
2712 ret = fill_holes(trans, inode, path, cur_offset,
2713 drop_args.drop_end);
2716 * If we failed then we didn't insert our hole
2717 * entries for the area we dropped, so now the
2718 * fs is corrupted, so we must abort the
2721 btrfs_abort_transaction(trans, ret);
2724 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2726 * We are past the i_size here, but since we didn't
2727 * insert holes we need to clear the mapped area so we
2728 * know to not set disk_i_size in this area until a new
2729 * file extent is inserted here.
2731 ret = btrfs_inode_clear_file_extent_range(inode,
2733 drop_args.drop_end - cur_offset);
2736 * We couldn't clear our area, so we could
2737 * presumably adjust up and corrupt the fs, so
2740 btrfs_abort_transaction(trans, ret);
2746 drop_args.drop_end > extent_info->file_offset) {
2747 u64 replace_len = drop_args.drop_end -
2748 extent_info->file_offset;
2750 ret = btrfs_insert_replace_extent(trans, inode, path,
2751 extent_info, replace_len,
2752 drop_args.bytes_found);
2754 btrfs_abort_transaction(trans, ret);
2757 extent_info->data_len -= replace_len;
2758 extent_info->data_offset += replace_len;
2759 extent_info->file_offset += replace_len;
2762 ret = btrfs_update_inode(trans, root, inode);
2766 btrfs_end_transaction(trans);
2767 btrfs_btree_balance_dirty(fs_info);
2769 trans = btrfs_start_transaction(root, rsv_count);
2770 if (IS_ERR(trans)) {
2771 ret = PTR_ERR(trans);
2776 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2777 rsv, min_size, false);
2778 BUG_ON(ret); /* shouldn't happen */
2779 trans->block_rsv = rsv;
2781 cur_offset = drop_args.drop_end;
2782 len = end - cur_offset;
2783 if (!extent_info && len) {
2784 ret = find_first_non_hole(inode, &cur_offset, &len);
2785 if (unlikely(ret < 0))
2795 * If we were cloning, force the next fsync to be a full one since we
2796 * we replaced (or just dropped in the case of cloning holes when
2797 * NO_HOLES is enabled) file extent items and did not setup new extent
2798 * maps for the replacement extents (or holes).
2800 if (extent_info && !extent_info->is_new_extent)
2801 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2806 trans->block_rsv = &fs_info->trans_block_rsv;
2808 * If we are using the NO_HOLES feature we might have had already an
2809 * hole that overlaps a part of the region [lockstart, lockend] and
2810 * ends at (or beyond) lockend. Since we have no file extent items to
2811 * represent holes, drop_end can be less than lockend and so we must
2812 * make sure we have an extent map representing the existing hole (the
2813 * call to __btrfs_drop_extents() might have dropped the existing extent
2814 * map representing the existing hole), otherwise the fast fsync path
2815 * will not record the existence of the hole region
2816 * [existing_hole_start, lockend].
2818 if (drop_args.drop_end <= end)
2819 drop_args.drop_end = end + 1;
2821 * Don't insert file hole extent item if it's for a range beyond eof
2822 * (because it's useless) or if it represents a 0 bytes range (when
2823 * cur_offset == drop_end).
2825 if (!extent_info && cur_offset < ino_size &&
2826 cur_offset < drop_args.drop_end) {
2827 ret = fill_holes(trans, inode, path, cur_offset,
2828 drop_args.drop_end);
2830 /* Same comment as above. */
2831 btrfs_abort_transaction(trans, ret);
2834 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2835 /* See the comment in the loop above for the reasoning here. */
2836 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2837 drop_args.drop_end - cur_offset);
2839 btrfs_abort_transaction(trans, ret);
2845 ret = btrfs_insert_replace_extent(trans, inode, path,
2846 extent_info, extent_info->data_len,
2847 drop_args.bytes_found);
2849 btrfs_abort_transaction(trans, ret);
2858 trans->block_rsv = &fs_info->trans_block_rsv;
2860 btrfs_end_transaction(trans);
2864 btrfs_free_block_rsv(fs_info, rsv);
2869 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2872 struct btrfs_root *root = BTRFS_I(inode)->root;
2873 struct extent_state *cached_state = NULL;
2874 struct btrfs_path *path;
2875 struct btrfs_trans_handle *trans = NULL;
2880 u64 orig_start = offset;
2884 bool truncated_block = false;
2885 bool updated_inode = false;
2887 ret = btrfs_wait_ordered_range(inode, offset, len);
2891 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2892 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2893 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2895 goto out_only_mutex;
2897 /* Already in a large hole */
2899 goto out_only_mutex;
2902 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2903 lockend = round_down(offset + len,
2904 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2905 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2906 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2908 * We needn't truncate any block which is beyond the end of the file
2909 * because we are sure there is no data there.
2912 * Only do this if we are in the same block and we aren't doing the
2915 if (same_block && len < fs_info->sectorsize) {
2916 if (offset < ino_size) {
2917 truncated_block = true;
2918 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2923 goto out_only_mutex;
2926 /* zero back part of the first block */
2927 if (offset < ino_size) {
2928 truncated_block = true;
2929 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2931 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2936 /* Check the aligned pages after the first unaligned page,
2937 * if offset != orig_start, which means the first unaligned page
2938 * including several following pages are already in holes,
2939 * the extra check can be skipped */
2940 if (offset == orig_start) {
2941 /* after truncate page, check hole again */
2942 len = offset + len - lockstart;
2944 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2946 goto out_only_mutex;
2949 goto out_only_mutex;
2954 /* Check the tail unaligned part is in a hole */
2955 tail_start = lockend + 1;
2956 tail_len = offset + len - tail_start;
2958 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2959 if (unlikely(ret < 0))
2960 goto out_only_mutex;
2962 /* zero the front end of the last page */
2963 if (tail_start + tail_len < ino_size) {
2964 truncated_block = true;
2965 ret = btrfs_truncate_block(BTRFS_I(inode),
2966 tail_start + tail_len,
2969 goto out_only_mutex;
2974 if (lockend < lockstart) {
2976 goto out_only_mutex;
2979 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2982 goto out_only_mutex;
2984 path = btrfs_alloc_path();
2990 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2991 lockend, NULL, &trans);
2992 btrfs_free_path(path);
2996 ASSERT(trans != NULL);
2997 inode_inc_iversion(inode);
2998 inode->i_mtime = inode->i_ctime = current_time(inode);
2999 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3000 updated_inode = true;
3001 btrfs_end_transaction(trans);
3002 btrfs_btree_balance_dirty(fs_info);
3004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3007 if (!updated_inode && truncated_block && !ret) {
3009 * If we only end up zeroing part of a page, we still need to
3010 * update the inode item, so that all the time fields are
3011 * updated as well as the necessary btrfs inode in memory fields
3012 * for detecting, at fsync time, if the inode isn't yet in the
3013 * log tree or it's there but not up to date.
3015 struct timespec64 now = current_time(inode);
3017 inode_inc_iversion(inode);
3018 inode->i_mtime = now;
3019 inode->i_ctime = now;
3020 trans = btrfs_start_transaction(root, 1);
3021 if (IS_ERR(trans)) {
3022 ret = PTR_ERR(trans);
3026 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3027 ret2 = btrfs_end_transaction(trans);
3032 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3036 /* Helper structure to record which range is already reserved */
3037 struct falloc_range {
3038 struct list_head list;
3044 * Helper function to add falloc range
3046 * Caller should have locked the larger range of extent containing
3049 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3051 struct falloc_range *range = NULL;
3053 if (!list_empty(head)) {
3055 * As fallocate iterates by bytenr order, we only need to check
3058 range = list_last_entry(head, struct falloc_range, list);
3059 if (range->start + range->len == start) {
3065 range = kmalloc(sizeof(*range), GFP_KERNEL);
3068 range->start = start;
3070 list_add_tail(&range->list, head);
3074 static int btrfs_fallocate_update_isize(struct inode *inode,
3078 struct btrfs_trans_handle *trans;
3079 struct btrfs_root *root = BTRFS_I(inode)->root;
3083 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3086 trans = btrfs_start_transaction(root, 1);
3088 return PTR_ERR(trans);
3090 inode->i_ctime = current_time(inode);
3091 i_size_write(inode, end);
3092 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3093 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3094 ret2 = btrfs_end_transaction(trans);
3096 return ret ? ret : ret2;
3100 RANGE_BOUNDARY_WRITTEN_EXTENT,
3101 RANGE_BOUNDARY_PREALLOC_EXTENT,
3102 RANGE_BOUNDARY_HOLE,
3105 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3108 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3109 struct extent_map *em;
3112 offset = round_down(offset, sectorsize);
3113 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3117 if (em->block_start == EXTENT_MAP_HOLE)
3118 ret = RANGE_BOUNDARY_HOLE;
3119 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3120 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3122 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3124 free_extent_map(em);
3128 static int btrfs_zero_range(struct inode *inode,
3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134 struct extent_map *em;
3135 struct extent_changeset *data_reserved = NULL;
3138 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3139 u64 alloc_start = round_down(offset, sectorsize);
3140 u64 alloc_end = round_up(offset + len, sectorsize);
3141 u64 bytes_to_reserve = 0;
3142 bool space_reserved = false;
3144 inode_dio_wait(inode);
3146 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3147 alloc_end - alloc_start);
3154 * Avoid hole punching and extent allocation for some cases. More cases
3155 * could be considered, but these are unlikely common and we keep things
3156 * as simple as possible for now. Also, intentionally, if the target
3157 * range contains one or more prealloc extents together with regular
3158 * extents and holes, we drop all the existing extents and allocate a
3159 * new prealloc extent, so that we get a larger contiguous disk extent.
3161 if (em->start <= alloc_start &&
3162 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3163 const u64 em_end = em->start + em->len;
3165 if (em_end >= offset + len) {
3167 * The whole range is already a prealloc extent,
3168 * do nothing except updating the inode's i_size if
3171 free_extent_map(em);
3172 ret = btrfs_fallocate_update_isize(inode, offset + len,
3177 * Part of the range is already a prealloc extent, so operate
3178 * only on the remaining part of the range.
3180 alloc_start = em_end;
3181 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3182 len = offset + len - alloc_start;
3183 offset = alloc_start;
3184 alloc_hint = em->block_start + em->len;
3186 free_extent_map(em);
3188 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3189 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3190 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3197 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3198 free_extent_map(em);
3199 ret = btrfs_fallocate_update_isize(inode, offset + len,
3203 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3204 free_extent_map(em);
3205 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3208 ret = btrfs_fallocate_update_isize(inode,
3213 free_extent_map(em);
3214 alloc_start = round_down(offset, sectorsize);
3215 alloc_end = alloc_start + sectorsize;
3219 alloc_start = round_up(offset, sectorsize);
3220 alloc_end = round_down(offset + len, sectorsize);
3223 * For unaligned ranges, check the pages at the boundaries, they might
3224 * map to an extent, in which case we need to partially zero them, or
3225 * they might map to a hole, in which case we need our allocation range
3228 if (!IS_ALIGNED(offset, sectorsize)) {
3229 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3233 if (ret == RANGE_BOUNDARY_HOLE) {
3234 alloc_start = round_down(offset, sectorsize);
3236 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3237 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3245 if (!IS_ALIGNED(offset + len, sectorsize)) {
3246 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3250 if (ret == RANGE_BOUNDARY_HOLE) {
3251 alloc_end = round_up(offset + len, sectorsize);
3253 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3254 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3264 if (alloc_start < alloc_end) {
3265 struct extent_state *cached_state = NULL;
3266 const u64 lockstart = alloc_start;
3267 const u64 lockend = alloc_end - 1;
3269 bytes_to_reserve = alloc_end - alloc_start;
3270 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3274 space_reserved = true;
3275 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3279 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3280 alloc_start, bytes_to_reserve);
3282 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3283 lockend, &cached_state);
3286 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3287 alloc_end - alloc_start,
3289 offset + len, &alloc_hint);
3290 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3291 lockend, &cached_state);
3292 /* btrfs_prealloc_file_range releases reserved space on error */
3294 space_reserved = false;
3298 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3300 if (ret && space_reserved)
3301 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3302 alloc_start, bytes_to_reserve);
3303 extent_changeset_free(data_reserved);
3308 static long btrfs_fallocate(struct file *file, int mode,
3309 loff_t offset, loff_t len)
3311 struct inode *inode = file_inode(file);
3312 struct extent_state *cached_state = NULL;
3313 struct extent_changeset *data_reserved = NULL;
3314 struct falloc_range *range;
3315 struct falloc_range *tmp;
3316 struct list_head reserve_list;
3324 struct extent_map *em;
3325 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3328 /* Do not allow fallocate in ZONED mode */
3329 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3332 alloc_start = round_down(offset, blocksize);
3333 alloc_end = round_up(offset + len, blocksize);
3334 cur_offset = alloc_start;
3336 /* Make sure we aren't being give some crap mode */
3337 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3338 FALLOC_FL_ZERO_RANGE))
3341 if (mode & FALLOC_FL_PUNCH_HOLE)
3342 return btrfs_punch_hole(inode, offset, len);
3345 * Only trigger disk allocation, don't trigger qgroup reserve
3347 * For qgroup space, it will be checked later.
3349 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3350 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3351 alloc_end - alloc_start);
3356 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3358 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3359 ret = inode_newsize_ok(inode, offset + len);
3365 * TODO: Move these two operations after we have checked
3366 * accurate reserved space, or fallocate can still fail but
3367 * with page truncated or size expanded.
3369 * But that's a minor problem and won't do much harm BTW.
3371 if (alloc_start > inode->i_size) {
3372 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3376 } else if (offset + len > inode->i_size) {
3378 * If we are fallocating from the end of the file onward we
3379 * need to zero out the end of the block if i_size lands in the
3380 * middle of a block.
3382 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3388 * wait for ordered IO before we have any locks. We'll loop again
3389 * below with the locks held.
3391 ret = btrfs_wait_ordered_range(inode, alloc_start,
3392 alloc_end - alloc_start);
3396 if (mode & FALLOC_FL_ZERO_RANGE) {
3397 ret = btrfs_zero_range(inode, offset, len, mode);
3398 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3402 locked_end = alloc_end - 1;
3404 struct btrfs_ordered_extent *ordered;
3406 /* the extent lock is ordered inside the running
3409 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3410 locked_end, &cached_state);
3411 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3415 ordered->file_offset + ordered->num_bytes > alloc_start &&
3416 ordered->file_offset < alloc_end) {
3417 btrfs_put_ordered_extent(ordered);
3418 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3419 alloc_start, locked_end,
3422 * we can't wait on the range with the transaction
3423 * running or with the extent lock held
3425 ret = btrfs_wait_ordered_range(inode, alloc_start,
3426 alloc_end - alloc_start);
3431 btrfs_put_ordered_extent(ordered);
3436 /* First, check if we exceed the qgroup limit */
3437 INIT_LIST_HEAD(&reserve_list);
3438 while (cur_offset < alloc_end) {
3439 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3440 alloc_end - cur_offset);
3445 last_byte = min(extent_map_end(em), alloc_end);
3446 actual_end = min_t(u64, extent_map_end(em), offset + len);
3447 last_byte = ALIGN(last_byte, blocksize);
3448 if (em->block_start == EXTENT_MAP_HOLE ||
3449 (cur_offset >= inode->i_size &&
3450 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3451 ret = add_falloc_range(&reserve_list, cur_offset,
3452 last_byte - cur_offset);
3454 free_extent_map(em);
3457 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3458 &data_reserved, cur_offset,
3459 last_byte - cur_offset);
3461 cur_offset = last_byte;
3462 free_extent_map(em);
3467 * Do not need to reserve unwritten extent for this
3468 * range, free reserved data space first, otherwise
3469 * it'll result in false ENOSPC error.
3471 btrfs_free_reserved_data_space(BTRFS_I(inode),
3472 data_reserved, cur_offset,
3473 last_byte - cur_offset);
3475 free_extent_map(em);
3476 cur_offset = last_byte;
3480 * If ret is still 0, means we're OK to fallocate.
3481 * Or just cleanup the list and exit.
3483 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3485 ret = btrfs_prealloc_file_range(inode, mode,
3487 range->len, i_blocksize(inode),
3488 offset + len, &alloc_hint);
3490 btrfs_free_reserved_data_space(BTRFS_I(inode),
3491 data_reserved, range->start,
3493 list_del(&range->list);
3500 * We didn't need to allocate any more space, but we still extended the
3501 * size of the file so we need to update i_size and the inode item.
3503 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3505 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3508 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3509 /* Let go of our reservation. */
3510 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3511 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3512 cur_offset, alloc_end - cur_offset);
3513 extent_changeset_free(data_reserved);
3517 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3520 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3521 struct extent_map *em = NULL;
3522 struct extent_state *cached_state = NULL;
3523 loff_t i_size = inode->vfs_inode.i_size;
3530 if (i_size == 0 || offset >= i_size)
3534 * offset can be negative, in this case we start finding DATA/HOLE from
3535 * the very start of the file.
3537 start = max_t(loff_t, 0, offset);
3539 lockstart = round_down(start, fs_info->sectorsize);
3540 lockend = round_up(i_size, fs_info->sectorsize);
3541 if (lockend <= lockstart)
3542 lockend = lockstart + fs_info->sectorsize;
3544 len = lockend - lockstart + 1;
3546 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3548 while (start < i_size) {
3549 em = btrfs_get_extent_fiemap(inode, start, len);
3556 if (whence == SEEK_HOLE &&
3557 (em->block_start == EXTENT_MAP_HOLE ||
3558 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3560 else if (whence == SEEK_DATA &&
3561 (em->block_start != EXTENT_MAP_HOLE &&
3562 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3565 start = em->start + em->len;
3566 free_extent_map(em);
3570 free_extent_map(em);
3571 unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3576 if (whence == SEEK_DATA && start >= i_size)
3579 offset = min_t(loff_t, start, i_size);
3585 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3587 struct inode *inode = file->f_mapping->host;
3591 return generic_file_llseek(file, offset, whence);
3594 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3595 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3596 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3603 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3606 static int btrfs_file_open(struct inode *inode, struct file *filp)
3608 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3609 return generic_file_open(inode, filp);
3612 static int check_direct_read(struct btrfs_fs_info *fs_info,
3613 const struct iov_iter *iter, loff_t offset)
3618 ret = check_direct_IO(fs_info, iter, offset);
3622 if (!iter_is_iovec(iter))
3625 for (seg = 0; seg < iter->nr_segs; seg++)
3626 for (i = seg + 1; i < iter->nr_segs; i++)
3627 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3632 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3634 struct inode *inode = file_inode(iocb->ki_filp);
3637 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3640 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3641 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3642 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3646 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3650 if (iocb->ki_flags & IOCB_DIRECT) {
3651 ret = btrfs_direct_read(iocb, to);
3652 if (ret < 0 || !iov_iter_count(to) ||
3653 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3657 return filemap_read(iocb, to, ret);
3660 const struct file_operations btrfs_file_operations = {
3661 .llseek = btrfs_file_llseek,
3662 .read_iter = btrfs_file_read_iter,
3663 .splice_read = generic_file_splice_read,
3664 .write_iter = btrfs_file_write_iter,
3665 .splice_write = iter_file_splice_write,
3666 .mmap = btrfs_file_mmap,
3667 .open = btrfs_file_open,
3668 .release = btrfs_release_file,
3669 .fsync = btrfs_sync_file,
3670 .fallocate = btrfs_fallocate,
3671 .unlocked_ioctl = btrfs_ioctl,
3672 #ifdef CONFIG_COMPAT
3673 .compat_ioctl = btrfs_compat_ioctl,
3675 .remap_file_range = btrfs_remap_file_range,
3678 void __cold btrfs_auto_defrag_exit(void)
3680 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3683 int __init btrfs_auto_defrag_init(void)
3685 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3686 sizeof(struct inode_defrag), 0,
3689 if (!btrfs_inode_defrag_cachep)
3695 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3700 * So with compression we will find and lock a dirty page and clear the
3701 * first one as dirty, setup an async extent, and immediately return
3702 * with the entire range locked but with nobody actually marked with
3703 * writeback. So we can't just filemap_write_and_wait_range() and
3704 * expect it to work since it will just kick off a thread to do the
3705 * actual work. So we need to call filemap_fdatawrite_range _again_
3706 * since it will wait on the page lock, which won't be unlocked until
3707 * after the pages have been marked as writeback and so we're good to go
3708 * from there. We have to do this otherwise we'll miss the ordered
3709 * extents and that results in badness. Please Josef, do not think you
3710 * know better and pull this out at some point in the future, it is
3711 * right and you are wrong.
3713 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3714 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3715 &BTRFS_I(inode)->runtime_flags))
3716 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);