1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
21 static struct page *no_page_table(struct vm_area_struct *vma,
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
32 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
33 return ERR_PTR(-EFAULT);
37 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
38 pte_t *pte, unsigned int flags)
40 /* No page to get reference */
44 if (flags & FOLL_TOUCH) {
47 if (flags & FOLL_WRITE)
48 entry = pte_mkdirty(entry);
49 entry = pte_mkyoung(entry);
51 if (!pte_same(*pte, entry)) {
52 set_pte_at(vma->vm_mm, address, pte, entry);
53 update_mmu_cache(vma, address, pte);
57 /* Proper page table entry exists, but no corresponding struct page */
61 static struct page *follow_page_pte(struct vm_area_struct *vma,
62 unsigned long address, pmd_t *pmd, unsigned int flags)
64 struct mm_struct *mm = vma->vm_mm;
70 if (unlikely(pmd_bad(*pmd)))
71 return no_page_table(vma, flags);
73 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
75 if (!pte_present(pte)) {
78 * KSM's break_ksm() relies upon recognizing a ksm page
79 * even while it is being migrated, so for that case we
80 * need migration_entry_wait().
82 if (likely(!(flags & FOLL_MIGRATION)))
86 entry = pte_to_swp_entry(pte);
87 if (!is_migration_entry(entry))
89 pte_unmap_unlock(ptep, ptl);
90 migration_entry_wait(mm, pmd, address);
93 if ((flags & FOLL_NUMA) && pte_protnone(pte))
95 if ((flags & FOLL_WRITE) && !pte_write(pte)) {
96 pte_unmap_unlock(ptep, ptl);
100 page = vm_normal_page(vma, address, pte);
101 if (unlikely(!page)) {
102 if (flags & FOLL_DUMP) {
103 /* Avoid special (like zero) pages in core dumps */
104 page = ERR_PTR(-EFAULT);
108 if (is_zero_pfn(pte_pfn(pte))) {
109 page = pte_page(pte);
113 ret = follow_pfn_pte(vma, address, ptep, flags);
119 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
122 pte_unmap_unlock(ptep, ptl);
124 ret = split_huge_page(page);
132 if (flags & FOLL_GET)
134 if (flags & FOLL_TOUCH) {
135 if ((flags & FOLL_WRITE) &&
136 !pte_dirty(pte) && !PageDirty(page))
137 set_page_dirty(page);
139 * pte_mkyoung() would be more correct here, but atomic care
140 * is needed to avoid losing the dirty bit: it is easier to use
141 * mark_page_accessed().
143 mark_page_accessed(page);
145 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
147 * The preliminary mapping check is mainly to avoid the
148 * pointless overhead of lock_page on the ZERO_PAGE
149 * which might bounce very badly if there is contention.
151 * If the page is already locked, we don't need to
152 * handle it now - vmscan will handle it later if and
153 * when it attempts to reclaim the page.
155 if (page->mapping && trylock_page(page)) {
156 lru_add_drain(); /* push cached pages to LRU */
158 * Because we lock page here, and migration is
159 * blocked by the pte's page reference, and we
160 * know the page is still mapped, we don't even
161 * need to check for file-cache page truncation.
163 mlock_vma_page(page);
168 pte_unmap_unlock(ptep, ptl);
171 pte_unmap_unlock(ptep, ptl);
174 return no_page_table(vma, flags);
178 * follow_page_mask - look up a page descriptor from a user-virtual address
179 * @vma: vm_area_struct mapping @address
180 * @address: virtual address to look up
181 * @flags: flags modifying lookup behaviour
182 * @page_mask: on output, *page_mask is set according to the size of the page
184 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
186 * Returns the mapped (struct page *), %NULL if no mapping exists, or
187 * an error pointer if there is a mapping to something not represented
188 * by a page descriptor (see also vm_normal_page()).
190 struct page *follow_page_mask(struct vm_area_struct *vma,
191 unsigned long address, unsigned int flags,
192 unsigned int *page_mask)
199 struct mm_struct *mm = vma->vm_mm;
203 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
205 BUG_ON(flags & FOLL_GET);
209 pgd = pgd_offset(mm, address);
210 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
211 return no_page_table(vma, flags);
213 pud = pud_offset(pgd, address);
215 return no_page_table(vma, flags);
216 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
217 page = follow_huge_pud(mm, address, pud, flags);
220 return no_page_table(vma, flags);
222 if (unlikely(pud_bad(*pud)))
223 return no_page_table(vma, flags);
225 pmd = pmd_offset(pud, address);
227 return no_page_table(vma, flags);
228 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
229 page = follow_huge_pmd(mm, address, pmd, flags);
232 return no_page_table(vma, flags);
234 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
235 return no_page_table(vma, flags);
236 if (likely(!pmd_trans_huge(*pmd)))
237 return follow_page_pte(vma, address, pmd, flags);
239 ptl = pmd_lock(mm, pmd);
240 if (unlikely(!pmd_trans_huge(*pmd))) {
242 return follow_page_pte(vma, address, pmd, flags);
244 if (flags & FOLL_SPLIT) {
246 page = pmd_page(*pmd);
247 if (is_huge_zero_page(page)) {
250 split_huge_pmd(vma, pmd, address);
255 ret = split_huge_page(page);
260 return ret ? ERR_PTR(ret) :
261 follow_page_pte(vma, address, pmd, flags);
264 page = follow_trans_huge_pmd(vma, address, pmd, flags);
266 *page_mask = HPAGE_PMD_NR - 1;
270 static int get_gate_page(struct mm_struct *mm, unsigned long address,
271 unsigned int gup_flags, struct vm_area_struct **vma,
280 /* user gate pages are read-only */
281 if (gup_flags & FOLL_WRITE)
283 if (address > TASK_SIZE)
284 pgd = pgd_offset_k(address);
286 pgd = pgd_offset_gate(mm, address);
287 BUG_ON(pgd_none(*pgd));
288 pud = pud_offset(pgd, address);
289 BUG_ON(pud_none(*pud));
290 pmd = pmd_offset(pud, address);
293 VM_BUG_ON(pmd_trans_huge(*pmd));
294 pte = pte_offset_map(pmd, address);
297 *vma = get_gate_vma(mm);
300 *page = vm_normal_page(*vma, address, *pte);
302 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
304 *page = pte_page(*pte);
315 * mmap_sem must be held on entry. If @nonblocking != NULL and
316 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
317 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
319 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
320 unsigned long address, unsigned int *flags, int *nonblocking)
322 struct mm_struct *mm = vma->vm_mm;
323 unsigned int fault_flags = 0;
326 /* mlock all present pages, but do not fault in new pages */
327 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
329 /* For mm_populate(), just skip the stack guard page. */
330 if ((*flags & FOLL_POPULATE) &&
331 (stack_guard_page_start(vma, address) ||
332 stack_guard_page_end(vma, address + PAGE_SIZE)))
334 if (*flags & FOLL_WRITE)
335 fault_flags |= FAULT_FLAG_WRITE;
337 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
338 if (*flags & FOLL_NOWAIT)
339 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
340 if (*flags & FOLL_TRIED) {
341 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
342 fault_flags |= FAULT_FLAG_TRIED;
345 ret = handle_mm_fault(mm, vma, address, fault_flags);
346 if (ret & VM_FAULT_ERROR) {
347 if (ret & VM_FAULT_OOM)
349 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
350 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
351 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
357 if (ret & VM_FAULT_MAJOR)
363 if (ret & VM_FAULT_RETRY) {
370 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
371 * necessary, even if maybe_mkwrite decided not to set pte_write. We
372 * can thus safely do subsequent page lookups as if they were reads.
373 * But only do so when looping for pte_write is futile: in some cases
374 * userspace may also be wanting to write to the gotten user page,
375 * which a read fault here might prevent (a readonly page might get
376 * reCOWed by userspace write).
378 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
379 *flags &= ~FOLL_WRITE;
383 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
385 vm_flags_t vm_flags = vma->vm_flags;
387 if (vm_flags & (VM_IO | VM_PFNMAP))
390 if (gup_flags & FOLL_WRITE) {
391 if (!(vm_flags & VM_WRITE)) {
392 if (!(gup_flags & FOLL_FORCE))
395 * We used to let the write,force case do COW in a
396 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
397 * set a breakpoint in a read-only mapping of an
398 * executable, without corrupting the file (yet only
399 * when that file had been opened for writing!).
400 * Anon pages in shared mappings are surprising: now
403 if (!is_cow_mapping(vm_flags)) {
404 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
408 } else if (!(vm_flags & VM_READ)) {
409 if (!(gup_flags & FOLL_FORCE))
412 * Is there actually any vma we can reach here which does not
413 * have VM_MAYREAD set?
415 if (!(vm_flags & VM_MAYREAD))
422 * __get_user_pages() - pin user pages in memory
423 * @tsk: task_struct of target task
424 * @mm: mm_struct of target mm
425 * @start: starting user address
426 * @nr_pages: number of pages from start to pin
427 * @gup_flags: flags modifying pin behaviour
428 * @pages: array that receives pointers to the pages pinned.
429 * Should be at least nr_pages long. Or NULL, if caller
430 * only intends to ensure the pages are faulted in.
431 * @vmas: array of pointers to vmas corresponding to each page.
432 * Or NULL if the caller does not require them.
433 * @nonblocking: whether waiting for disk IO or mmap_sem contention
435 * Returns number of pages pinned. This may be fewer than the number
436 * requested. If nr_pages is 0 or negative, returns 0. If no pages
437 * were pinned, returns -errno. Each page returned must be released
438 * with a put_page() call when it is finished with. vmas will only
439 * remain valid while mmap_sem is held.
441 * Must be called with mmap_sem held. It may be released. See below.
443 * __get_user_pages walks a process's page tables and takes a reference to
444 * each struct page that each user address corresponds to at a given
445 * instant. That is, it takes the page that would be accessed if a user
446 * thread accesses the given user virtual address at that instant.
448 * This does not guarantee that the page exists in the user mappings when
449 * __get_user_pages returns, and there may even be a completely different
450 * page there in some cases (eg. if mmapped pagecache has been invalidated
451 * and subsequently re faulted). However it does guarantee that the page
452 * won't be freed completely. And mostly callers simply care that the page
453 * contains data that was valid *at some point in time*. Typically, an IO
454 * or similar operation cannot guarantee anything stronger anyway because
455 * locks can't be held over the syscall boundary.
457 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
458 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
459 * appropriate) must be called after the page is finished with, and
460 * before put_page is called.
462 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
463 * or mmap_sem contention, and if waiting is needed to pin all pages,
464 * *@nonblocking will be set to 0. Further, if @gup_flags does not
465 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
468 * A caller using such a combination of @nonblocking and @gup_flags
469 * must therefore hold the mmap_sem for reading only, and recognize
470 * when it's been released. Otherwise, it must be held for either
471 * reading or writing and will not be released.
473 * In most cases, get_user_pages or get_user_pages_fast should be used
474 * instead of __get_user_pages. __get_user_pages should be used only if
475 * you need some special @gup_flags.
477 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
478 unsigned long start, unsigned long nr_pages,
479 unsigned int gup_flags, struct page **pages,
480 struct vm_area_struct **vmas, int *nonblocking)
483 unsigned int page_mask;
484 struct vm_area_struct *vma = NULL;
489 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
492 * If FOLL_FORCE is set then do not force a full fault as the hinting
493 * fault information is unrelated to the reference behaviour of a task
494 * using the address space
496 if (!(gup_flags & FOLL_FORCE))
497 gup_flags |= FOLL_NUMA;
501 unsigned int foll_flags = gup_flags;
502 unsigned int page_increm;
504 /* first iteration or cross vma bound */
505 if (!vma || start >= vma->vm_end) {
506 vma = find_extend_vma(mm, start);
507 if (!vma && in_gate_area(mm, start)) {
509 ret = get_gate_page(mm, start & PAGE_MASK,
511 pages ? &pages[i] : NULL);
518 if (!vma || check_vma_flags(vma, gup_flags))
519 return i ? : -EFAULT;
520 if (is_vm_hugetlb_page(vma)) {
521 i = follow_hugetlb_page(mm, vma, pages, vmas,
522 &start, &nr_pages, i,
529 * If we have a pending SIGKILL, don't keep faulting pages and
530 * potentially allocating memory.
532 if (unlikely(fatal_signal_pending(current)))
533 return i ? i : -ERESTARTSYS;
535 page = follow_page_mask(vma, start, foll_flags, &page_mask);
538 ret = faultin_page(tsk, vma, start, &foll_flags,
553 } else if (PTR_ERR(page) == -EEXIST) {
555 * Proper page table entry exists, but no corresponding
559 } else if (IS_ERR(page)) {
560 return i ? i : PTR_ERR(page);
564 flush_anon_page(vma, page, start);
565 flush_dcache_page(page);
573 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
574 if (page_increm > nr_pages)
575 page_increm = nr_pages;
577 start += page_increm * PAGE_SIZE;
578 nr_pages -= page_increm;
582 EXPORT_SYMBOL(__get_user_pages);
585 * fixup_user_fault() - manually resolve a user page fault
586 * @tsk: the task_struct to use for page fault accounting, or
587 * NULL if faults are not to be recorded.
588 * @mm: mm_struct of target mm
589 * @address: user address
590 * @fault_flags:flags to pass down to handle_mm_fault()
592 * This is meant to be called in the specific scenario where for locking reasons
593 * we try to access user memory in atomic context (within a pagefault_disable()
594 * section), this returns -EFAULT, and we want to resolve the user fault before
597 * Typically this is meant to be used by the futex code.
599 * The main difference with get_user_pages() is that this function will
600 * unconditionally call handle_mm_fault() which will in turn perform all the
601 * necessary SW fixup of the dirty and young bits in the PTE, while
602 * handle_mm_fault() only guarantees to update these in the struct page.
604 * This is important for some architectures where those bits also gate the
605 * access permission to the page because they are maintained in software. On
606 * such architectures, gup() will not be enough to make a subsequent access
609 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
611 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
612 unsigned long address, unsigned int fault_flags)
614 struct vm_area_struct *vma;
618 vma = find_extend_vma(mm, address);
619 if (!vma || address < vma->vm_start)
622 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
623 if (!(vm_flags & vma->vm_flags))
626 ret = handle_mm_fault(mm, vma, address, fault_flags);
627 if (ret & VM_FAULT_ERROR) {
628 if (ret & VM_FAULT_OOM)
630 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
632 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
637 if (ret & VM_FAULT_MAJOR)
645 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
646 struct mm_struct *mm,
648 unsigned long nr_pages,
649 int write, int force,
651 struct vm_area_struct **vmas,
652 int *locked, bool notify_drop,
655 long ret, pages_done;
659 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
661 /* check caller initialized locked */
662 BUG_ON(*locked != 1);
673 lock_dropped = false;
675 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
678 /* VM_FAULT_RETRY couldn't trigger, bypass */
681 /* VM_FAULT_RETRY cannot return errors */
684 BUG_ON(ret >= nr_pages);
688 /* If it's a prefault don't insist harder */
698 /* VM_FAULT_RETRY didn't trigger */
703 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
705 start += ret << PAGE_SHIFT;
708 * Repeat on the address that fired VM_FAULT_RETRY
709 * without FAULT_FLAG_ALLOW_RETRY but with
714 down_read(&mm->mmap_sem);
715 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
730 if (notify_drop && lock_dropped && *locked) {
732 * We must let the caller know we temporarily dropped the lock
733 * and so the critical section protected by it was lost.
735 up_read(&mm->mmap_sem);
742 * We can leverage the VM_FAULT_RETRY functionality in the page fault
743 * paths better by using either get_user_pages_locked() or
744 * get_user_pages_unlocked().
746 * get_user_pages_locked() is suitable to replace the form:
748 * down_read(&mm->mmap_sem);
750 * get_user_pages(tsk, mm, ..., pages, NULL);
751 * up_read(&mm->mmap_sem);
756 * down_read(&mm->mmap_sem);
758 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
760 * up_read(&mm->mmap_sem);
762 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
763 unsigned long start, unsigned long nr_pages,
764 int write, int force, struct page **pages,
767 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
768 pages, NULL, locked, true, FOLL_TOUCH);
770 EXPORT_SYMBOL(get_user_pages_locked);
773 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
774 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
776 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
777 * caller if required (just like with __get_user_pages). "FOLL_GET",
778 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
779 * according to the parameters "pages", "write", "force"
782 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
783 unsigned long start, unsigned long nr_pages,
784 int write, int force, struct page **pages,
785 unsigned int gup_flags)
789 down_read(&mm->mmap_sem);
790 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
791 pages, NULL, &locked, false, gup_flags);
793 up_read(&mm->mmap_sem);
796 EXPORT_SYMBOL(__get_user_pages_unlocked);
799 * get_user_pages_unlocked() is suitable to replace the form:
801 * down_read(&mm->mmap_sem);
802 * get_user_pages(tsk, mm, ..., pages, NULL);
803 * up_read(&mm->mmap_sem);
807 * get_user_pages_unlocked(tsk, mm, ..., pages);
809 * It is functionally equivalent to get_user_pages_fast so
810 * get_user_pages_fast should be used instead, if the two parameters
811 * "tsk" and "mm" are respectively equal to current and current->mm,
812 * or if "force" shall be set to 1 (get_user_pages_fast misses the
813 * "force" parameter).
815 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
816 unsigned long start, unsigned long nr_pages,
817 int write, int force, struct page **pages)
819 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
820 force, pages, FOLL_TOUCH);
822 EXPORT_SYMBOL(get_user_pages_unlocked);
825 * get_user_pages() - pin user pages in memory
826 * @tsk: the task_struct to use for page fault accounting, or
827 * NULL if faults are not to be recorded.
828 * @mm: mm_struct of target mm
829 * @start: starting user address
830 * @nr_pages: number of pages from start to pin
831 * @write: whether pages will be written to by the caller
832 * @force: whether to force access even when user mapping is currently
833 * protected (but never forces write access to shared mapping).
834 * @pages: array that receives pointers to the pages pinned.
835 * Should be at least nr_pages long. Or NULL, if caller
836 * only intends to ensure the pages are faulted in.
837 * @vmas: array of pointers to vmas corresponding to each page.
838 * Or NULL if the caller does not require them.
840 * Returns number of pages pinned. This may be fewer than the number
841 * requested. If nr_pages is 0 or negative, returns 0. If no pages
842 * were pinned, returns -errno. Each page returned must be released
843 * with a put_page() call when it is finished with. vmas will only
844 * remain valid while mmap_sem is held.
846 * Must be called with mmap_sem held for read or write.
848 * get_user_pages walks a process's page tables and takes a reference to
849 * each struct page that each user address corresponds to at a given
850 * instant. That is, it takes the page that would be accessed if a user
851 * thread accesses the given user virtual address at that instant.
853 * This does not guarantee that the page exists in the user mappings when
854 * get_user_pages returns, and there may even be a completely different
855 * page there in some cases (eg. if mmapped pagecache has been invalidated
856 * and subsequently re faulted). However it does guarantee that the page
857 * won't be freed completely. And mostly callers simply care that the page
858 * contains data that was valid *at some point in time*. Typically, an IO
859 * or similar operation cannot guarantee anything stronger anyway because
860 * locks can't be held over the syscall boundary.
862 * If write=0, the page must not be written to. If the page is written to,
863 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
864 * after the page is finished with, and before put_page is called.
866 * get_user_pages is typically used for fewer-copy IO operations, to get a
867 * handle on the memory by some means other than accesses via the user virtual
868 * addresses. The pages may be submitted for DMA to devices or accessed via
869 * their kernel linear mapping (via the kmap APIs). Care should be taken to
870 * use the correct cache flushing APIs.
872 * See also get_user_pages_fast, for performance critical applications.
874 * get_user_pages should be phased out in favor of
875 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
876 * should use get_user_pages because it cannot pass
877 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
879 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
880 unsigned long start, unsigned long nr_pages, int write,
881 int force, struct page **pages, struct vm_area_struct **vmas)
883 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
884 pages, vmas, NULL, false, FOLL_TOUCH);
886 EXPORT_SYMBOL(get_user_pages);
889 * populate_vma_page_range() - populate a range of pages in the vma.
891 * @start: start address
895 * This takes care of mlocking the pages too if VM_LOCKED is set.
897 * return 0 on success, negative error code on error.
899 * vma->vm_mm->mmap_sem must be held.
901 * If @nonblocking is NULL, it may be held for read or write and will
904 * If @nonblocking is non-NULL, it must held for read only and may be
905 * released. If it's released, *@nonblocking will be set to 0.
907 long populate_vma_page_range(struct vm_area_struct *vma,
908 unsigned long start, unsigned long end, int *nonblocking)
910 struct mm_struct *mm = vma->vm_mm;
911 unsigned long nr_pages = (end - start) / PAGE_SIZE;
914 VM_BUG_ON(start & ~PAGE_MASK);
915 VM_BUG_ON(end & ~PAGE_MASK);
916 VM_BUG_ON_VMA(start < vma->vm_start, vma);
917 VM_BUG_ON_VMA(end > vma->vm_end, vma);
918 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
920 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
921 if (vma->vm_flags & VM_LOCKONFAULT)
922 gup_flags &= ~FOLL_POPULATE;
923 if (vma->vm_flags & VM_LOCKED)
924 gup_flags |= FOLL_SPLIT;
926 * We want to touch writable mappings with a write fault in order
927 * to break COW, except for shared mappings because these don't COW
928 * and we would not want to dirty them for nothing.
930 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
931 gup_flags |= FOLL_WRITE;
934 * We want mlock to succeed for regions that have any permissions
935 * other than PROT_NONE.
937 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
938 gup_flags |= FOLL_FORCE;
941 * We made sure addr is within a VMA, so the following will
942 * not result in a stack expansion that recurses back here.
944 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
945 NULL, NULL, nonblocking);
949 * __mm_populate - populate and/or mlock pages within a range of address space.
951 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
952 * flags. VMAs must be already marked with the desired vm_flags, and
953 * mmap_sem must not be held.
955 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
957 struct mm_struct *mm = current->mm;
958 unsigned long end, nstart, nend;
959 struct vm_area_struct *vma = NULL;
963 VM_BUG_ON(start & ~PAGE_MASK);
964 VM_BUG_ON(len != PAGE_ALIGN(len));
967 for (nstart = start; nstart < end; nstart = nend) {
969 * We want to fault in pages for [nstart; end) address range.
970 * Find first corresponding VMA.
974 down_read(&mm->mmap_sem);
975 vma = find_vma(mm, nstart);
976 } else if (nstart >= vma->vm_end)
978 if (!vma || vma->vm_start >= end)
981 * Set [nstart; nend) to intersection of desired address
982 * range with the first VMA. Also, skip undesirable VMA types.
984 nend = min(end, vma->vm_end);
985 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
987 if (nstart < vma->vm_start)
988 nstart = vma->vm_start;
990 * Now fault in a range of pages. populate_vma_page_range()
991 * double checks the vma flags, so that it won't mlock pages
992 * if the vma was already munlocked.
994 ret = populate_vma_page_range(vma, nstart, nend, &locked);
998 continue; /* continue at next VMA */
1002 nend = nstart + ret * PAGE_SIZE;
1006 up_read(&mm->mmap_sem);
1007 return ret; /* 0 or negative error code */
1011 * get_dump_page() - pin user page in memory while writing it to core dump
1012 * @addr: user address
1014 * Returns struct page pointer of user page pinned for dump,
1015 * to be freed afterwards by page_cache_release() or put_page().
1017 * Returns NULL on any kind of failure - a hole must then be inserted into
1018 * the corefile, to preserve alignment with its headers; and also returns
1019 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1020 * allowing a hole to be left in the corefile to save diskspace.
1022 * Called without mmap_sem, but after all other threads have been killed.
1024 #ifdef CONFIG_ELF_CORE
1025 struct page *get_dump_page(unsigned long addr)
1027 struct vm_area_struct *vma;
1030 if (__get_user_pages(current, current->mm, addr, 1,
1031 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1034 flush_cache_page(vma, addr, page_to_pfn(page));
1037 #endif /* CONFIG_ELF_CORE */
1040 * Generic RCU Fast GUP
1042 * get_user_pages_fast attempts to pin user pages by walking the page
1043 * tables directly and avoids taking locks. Thus the walker needs to be
1044 * protected from page table pages being freed from under it, and should
1045 * block any THP splits.
1047 * One way to achieve this is to have the walker disable interrupts, and
1048 * rely on IPIs from the TLB flushing code blocking before the page table
1049 * pages are freed. This is unsuitable for architectures that do not need
1050 * to broadcast an IPI when invalidating TLBs.
1052 * Another way to achieve this is to batch up page table containing pages
1053 * belonging to more than one mm_user, then rcu_sched a callback to free those
1054 * pages. Disabling interrupts will allow the fast_gup walker to both block
1055 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1056 * (which is a relatively rare event). The code below adopts this strategy.
1058 * Before activating this code, please be aware that the following assumptions
1059 * are currently made:
1061 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1062 * pages containing page tables.
1064 * *) ptes can be read atomically by the architecture.
1066 * *) access_ok is sufficient to validate userspace address ranges.
1068 * The last two assumptions can be relaxed by the addition of helper functions.
1070 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1072 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1074 #ifdef __HAVE_ARCH_PTE_SPECIAL
1075 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1076 int write, struct page **pages, int *nr)
1081 ptem = ptep = pte_offset_map(&pmd, addr);
1084 * In the line below we are assuming that the pte can be read
1085 * atomically. If this is not the case for your architecture,
1086 * please wrap this in a helper function!
1088 * for an example see gup_get_pte in arch/x86/mm/gup.c
1090 pte_t pte = READ_ONCE(*ptep);
1091 struct page *head, *page;
1094 * Similar to the PMD case below, NUMA hinting must take slow
1095 * path using the pte_protnone check.
1097 if (!pte_present(pte) || pte_special(pte) ||
1098 pte_protnone(pte) || (write && !pte_write(pte)))
1101 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1102 page = pte_page(pte);
1103 head = compound_head(page);
1105 if (!page_cache_get_speculative(head))
1108 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1113 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1117 } while (ptep++, addr += PAGE_SIZE, addr != end);
1128 * If we can't determine whether or not a pte is special, then fail immediately
1129 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1132 * For a futex to be placed on a THP tail page, get_futex_key requires a
1133 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1134 * useful to have gup_huge_pmd even if we can't operate on ptes.
1136 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1137 int write, struct page **pages, int *nr)
1141 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1143 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1144 unsigned long end, int write, struct page **pages, int *nr)
1146 struct page *head, *page;
1149 if (write && !pmd_write(orig))
1153 head = pmd_page(orig);
1154 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1156 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1161 } while (addr += PAGE_SIZE, addr != end);
1163 if (!page_cache_add_speculative(head, refs)) {
1168 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1178 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1179 unsigned long end, int write, struct page **pages, int *nr)
1181 struct page *head, *page;
1184 if (write && !pud_write(orig))
1188 head = pud_page(orig);
1189 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1191 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1196 } while (addr += PAGE_SIZE, addr != end);
1198 if (!page_cache_add_speculative(head, refs)) {
1203 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1213 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1214 unsigned long end, int write,
1215 struct page **pages, int *nr)
1218 struct page *head, *page;
1220 if (write && !pgd_write(orig))
1224 head = pgd_page(orig);
1225 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1227 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1232 } while (addr += PAGE_SIZE, addr != end);
1234 if (!page_cache_add_speculative(head, refs)) {
1239 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1249 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1250 int write, struct page **pages, int *nr)
1255 pmdp = pmd_offset(&pud, addr);
1257 pmd_t pmd = READ_ONCE(*pmdp);
1259 next = pmd_addr_end(addr, end);
1263 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1265 * NUMA hinting faults need to be handled in the GUP
1266 * slowpath for accounting purposes and so that they
1267 * can be serialised against THP migration.
1269 if (pmd_protnone(pmd))
1272 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1276 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1278 * architecture have different format for hugetlbfs
1279 * pmd format and THP pmd format
1281 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1282 PMD_SHIFT, next, write, pages, nr))
1284 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1286 } while (pmdp++, addr = next, addr != end);
1291 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1292 int write, struct page **pages, int *nr)
1297 pudp = pud_offset(&pgd, addr);
1299 pud_t pud = READ_ONCE(*pudp);
1301 next = pud_addr_end(addr, end);
1304 if (unlikely(pud_huge(pud))) {
1305 if (!gup_huge_pud(pud, pudp, addr, next, write,
1308 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1309 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1310 PUD_SHIFT, next, write, pages, nr))
1312 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1314 } while (pudp++, addr = next, addr != end);
1320 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1321 * the regular GUP. It will only return non-negative values.
1323 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1324 struct page **pages)
1326 struct mm_struct *mm = current->mm;
1327 unsigned long addr, len, end;
1328 unsigned long next, flags;
1334 len = (unsigned long) nr_pages << PAGE_SHIFT;
1337 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1342 * Disable interrupts. We use the nested form as we can already have
1343 * interrupts disabled by get_futex_key.
1345 * With interrupts disabled, we block page table pages from being
1346 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1349 * We do not adopt an rcu_read_lock(.) here as we also want to
1350 * block IPIs that come from THPs splitting.
1353 local_irq_save(flags);
1354 pgdp = pgd_offset(mm, addr);
1356 pgd_t pgd = READ_ONCE(*pgdp);
1358 next = pgd_addr_end(addr, end);
1361 if (unlikely(pgd_huge(pgd))) {
1362 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1365 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1366 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1367 PGDIR_SHIFT, next, write, pages, &nr))
1369 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1371 } while (pgdp++, addr = next, addr != end);
1372 local_irq_restore(flags);
1378 * get_user_pages_fast() - pin user pages in memory
1379 * @start: starting user address
1380 * @nr_pages: number of pages from start to pin
1381 * @write: whether pages will be written to
1382 * @pages: array that receives pointers to the pages pinned.
1383 * Should be at least nr_pages long.
1385 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1386 * If not successful, it will fall back to taking the lock and
1387 * calling get_user_pages().
1389 * Returns number of pages pinned. This may be fewer than the number
1390 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1391 * were pinned, returns -errno.
1393 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1394 struct page **pages)
1396 struct mm_struct *mm = current->mm;
1400 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1403 if (nr < nr_pages) {
1404 /* Try to get the remaining pages with get_user_pages */
1405 start += nr << PAGE_SHIFT;
1408 ret = get_user_pages_unlocked(current, mm, start,
1409 nr_pages - nr, write, 0, pages);
1411 /* Have to be a bit careful with return values */
1423 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */