1 /******************************************************************************
3 * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *****************************************************************************/
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/delay.h>
32 #include <linux/sched.h>
33 #include <linux/skbuff.h>
34 #include <linux/netdevice.h>
35 #include <net/mac80211.h>
36 #include <linux/etherdevice.h>
37 #include <asm/unaligned.h>
43 * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
44 * using sample data 100 bytes apart. If these sample points are good,
45 * it's a pretty good bet that everything between them is good, too.
48 il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
55 D_INFO("ucode inst image size is %u\n", len);
57 for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
58 /* read data comes through single port, auto-incr addr */
59 /* NOTE: Use the debugless read so we don't flood kernel log
60 * if IL_DL_IO is set */
61 il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
62 val = _il_rd(il, HBUS_TARG_MEM_RDAT);
63 if (val != le32_to_cpu(*image)) {
75 * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
76 * looking at all data.
79 il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
86 D_INFO("ucode inst image size is %u\n", len);
88 il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
91 for (; len > 0; len -= sizeof(u32), image++) {
92 /* read data comes through single port, auto-incr addr */
93 /* NOTE: Use the debugless read so we don't flood kernel log
94 * if IL_DL_IO is set */
95 val = _il_rd(il, HBUS_TARG_MEM_RDAT);
96 if (val != le32_to_cpu(*image)) {
97 IL_ERR("uCode INST section is invalid at "
98 "offset 0x%x, is 0x%x, s/b 0x%x\n",
99 save_len - len, val, le32_to_cpu(*image));
108 D_INFO("ucode image in INSTRUCTION memory is good\n");
114 * il4965_verify_ucode - determine which instruction image is in SRAM,
115 * and verify its contents
118 il4965_verify_ucode(struct il_priv *il)
125 image = (__le32 *) il->ucode_boot.v_addr;
126 len = il->ucode_boot.len;
127 ret = il4965_verify_inst_sparse(il, image, len);
129 D_INFO("Bootstrap uCode is good in inst SRAM\n");
134 image = (__le32 *) il->ucode_init.v_addr;
135 len = il->ucode_init.len;
136 ret = il4965_verify_inst_sparse(il, image, len);
138 D_INFO("Initialize uCode is good in inst SRAM\n");
142 /* Try runtime/protocol */
143 image = (__le32 *) il->ucode_code.v_addr;
144 len = il->ucode_code.len;
145 ret = il4965_verify_inst_sparse(il, image, len);
147 D_INFO("Runtime uCode is good in inst SRAM\n");
151 IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
153 /* Since nothing seems to match, show first several data entries in
154 * instruction SRAM, so maybe visual inspection will give a clue.
155 * Selection of bootstrap image (vs. other images) is arbitrary. */
156 image = (__le32 *) il->ucode_boot.v_addr;
157 len = il->ucode_boot.len;
158 ret = il4965_verify_inst_full(il, image, len);
163 /******************************************************************************
165 * EEPROM related functions
167 ******************************************************************************/
170 * The device's EEPROM semaphore prevents conflicts between driver and uCode
171 * when accessing the EEPROM; each access is a series of pulses to/from the
172 * EEPROM chip, not a single event, so even reads could conflict if they
173 * weren't arbitrated by the semaphore.
176 il4965_eeprom_acquire_semaphore(struct il_priv *il)
181 for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
182 /* Request semaphore */
183 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
184 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
186 /* See if we got it */
188 _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
189 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
190 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
200 il4965_eeprom_release_semaphore(struct il_priv *il)
202 il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
203 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
208 il4965_eeprom_check_version(struct il_priv *il)
213 eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
214 calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
216 if (eeprom_ver < il->cfg->eeprom_ver ||
217 calib_ver < il->cfg->eeprom_calib_ver)
220 IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
224 IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
225 "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
226 calib_ver, il->cfg->eeprom_calib_ver);
232 il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
234 const u8 *addr = il_eeprom_query_addr(il,
236 memcpy(mac, addr, ETH_ALEN);
239 /* Send led command */
241 il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
243 struct il_host_cmd cmd = {
245 .len = sizeof(struct il_led_cmd),
252 reg = _il_rd(il, CSR_LED_REG);
253 if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
254 _il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
256 return il_send_cmd(il, &cmd);
259 /* Set led register off */
261 il4965_led_enable(struct il_priv *il)
263 _il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
266 static int il4965_send_tx_power(struct il_priv *il);
267 static int il4965_hw_get_temperature(struct il_priv *il);
269 /* Highest firmware API version supported */
270 #define IL4965_UCODE_API_MAX 2
272 /* Lowest firmware API version supported */
273 #define IL4965_UCODE_API_MIN 2
275 #define IL4965_FW_PRE "iwlwifi-4965-"
276 #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
277 #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
279 /* check contents of special bootstrap uCode SRAM */
281 il4965_verify_bsm(struct il_priv *il)
283 __le32 *image = il->ucode_boot.v_addr;
284 u32 len = il->ucode_boot.len;
288 D_INFO("Begin verify bsm\n");
290 /* verify BSM SRAM contents */
291 val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
292 for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
293 reg += sizeof(u32), image++) {
294 val = il_rd_prph(il, reg);
295 if (val != le32_to_cpu(*image)) {
296 IL_ERR("BSM uCode verification failed at "
297 "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
298 BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
299 len, val, le32_to_cpu(*image));
304 D_INFO("BSM bootstrap uCode image OK\n");
310 * il4965_load_bsm - Load bootstrap instructions
314 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
315 * in special SRAM that does not power down during RFKILL. When powering back
316 * up after power-saving sleeps (or during initial uCode load), the BSM loads
317 * the bootstrap program into the on-board processor, and starts it.
319 * The bootstrap program loads (via DMA) instructions and data for a new
320 * program from host DRAM locations indicated by the host driver in the
321 * BSM_DRAM_* registers. Once the new program is loaded, it starts
324 * When initializing the NIC, the host driver points the BSM to the
325 * "initialize" uCode image. This uCode sets up some internal data, then
326 * notifies host via "initialize alive" that it is complete.
328 * The host then replaces the BSM_DRAM_* pointer values to point to the
329 * normal runtime uCode instructions and a backup uCode data cache buffer
330 * (filled initially with starting data values for the on-board processor),
331 * then triggers the "initialize" uCode to load and launch the runtime uCode,
332 * which begins normal operation.
334 * When doing a power-save shutdown, runtime uCode saves data SRAM into
335 * the backup data cache in DRAM before SRAM is powered down.
337 * When powering back up, the BSM loads the bootstrap program. This reloads
338 * the runtime uCode instructions and the backup data cache into SRAM,
339 * and re-launches the runtime uCode from where it left off.
342 il4965_load_bsm(struct il_priv *il)
344 __le32 *image = il->ucode_boot.v_addr;
345 u32 len = il->ucode_boot.len;
355 D_INFO("Begin load bsm\n");
357 il->ucode_type = UCODE_RT;
359 /* make sure bootstrap program is no larger than BSM's SRAM size */
360 if (len > IL49_MAX_BSM_SIZE)
363 /* Tell bootstrap uCode where to find the "Initialize" uCode
364 * in host DRAM ... host DRAM physical address bits 35:4 for 4965.
365 * NOTE: il_init_alive_start() will replace these values,
366 * after the "initialize" uCode has run, to point to
367 * runtime/protocol instructions and backup data cache.
369 pinst = il->ucode_init.p_addr >> 4;
370 pdata = il->ucode_init_data.p_addr >> 4;
371 inst_len = il->ucode_init.len;
372 data_len = il->ucode_init_data.len;
374 il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
375 il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
376 il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
377 il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
379 /* Fill BSM memory with bootstrap instructions */
380 for (reg_offset = BSM_SRAM_LOWER_BOUND;
381 reg_offset < BSM_SRAM_LOWER_BOUND + len;
382 reg_offset += sizeof(u32), image++)
383 _il_wr_prph(il, reg_offset, le32_to_cpu(*image));
385 ret = il4965_verify_bsm(il);
389 /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
390 il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
391 il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
392 il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
394 /* Load bootstrap code into instruction SRAM now,
395 * to prepare to load "initialize" uCode */
396 il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
398 /* Wait for load of bootstrap uCode to finish */
399 for (i = 0; i < 100; i++) {
400 done = il_rd_prph(il, BSM_WR_CTRL_REG);
401 if (!(done & BSM_WR_CTRL_REG_BIT_START))
406 D_INFO("BSM write complete, poll %d iterations\n", i);
408 IL_ERR("BSM write did not complete!\n");
412 /* Enable future boot loads whenever power management unit triggers it
413 * (e.g. when powering back up after power-save shutdown) */
414 il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
420 * il4965_set_ucode_ptrs - Set uCode address location
422 * Tell initialization uCode where to find runtime uCode.
424 * BSM registers initially contain pointers to initialization uCode.
425 * We need to replace them to load runtime uCode inst and data,
426 * and to save runtime data when powering down.
429 il4965_set_ucode_ptrs(struct il_priv *il)
435 /* bits 35:4 for 4965 */
436 pinst = il->ucode_code.p_addr >> 4;
437 pdata = il->ucode_data_backup.p_addr >> 4;
439 /* Tell bootstrap uCode where to find image to load */
440 il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
441 il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
442 il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
444 /* Inst byte count must be last to set up, bit 31 signals uCode
445 * that all new ptr/size info is in place */
446 il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
447 il->ucode_code.len | BSM_DRAM_INST_LOAD);
448 D_INFO("Runtime uCode pointers are set.\n");
454 * il4965_init_alive_start - Called after N_ALIVE notification received
456 * Called after N_ALIVE notification received from "initialize" uCode.
458 * The 4965 "initialize" ALIVE reply contains calibration data for:
459 * Voltage, temperature, and MIMO tx gain correction, now stored in il
460 * (3945 does not contain this data).
462 * Tell "initialize" uCode to go ahead and load the runtime uCode.
465 il4965_init_alive_start(struct il_priv *il)
467 /* Bootstrap uCode has loaded initialize uCode ... verify inst image.
468 * This is a paranoid check, because we would not have gotten the
469 * "initialize" alive if code weren't properly loaded. */
470 if (il4965_verify_ucode(il)) {
471 /* Runtime instruction load was bad;
472 * take it all the way back down so we can try again */
473 D_INFO("Bad \"initialize\" uCode load.\n");
477 /* Calculate temperature */
478 il->temperature = il4965_hw_get_temperature(il);
480 /* Send pointers to protocol/runtime uCode image ... init code will
481 * load and launch runtime uCode, which will send us another "Alive"
483 D_INFO("Initialization Alive received.\n");
484 if (il4965_set_ucode_ptrs(il)) {
485 /* Runtime instruction load won't happen;
486 * take it all the way back down so we can try again */
487 D_INFO("Couldn't set up uCode pointers.\n");
493 queue_work(il->workqueue, &il->restart);
497 iw4965_is_ht40_channel(__le32 rxon_flags)
500 le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
501 RXON_FLG_CHANNEL_MODE_POS;
502 return (chan_mod == CHANNEL_MODE_PURE_40 ||
503 chan_mod == CHANNEL_MODE_MIXED);
507 il4965_nic_config(struct il_priv *il)
512 spin_lock_irqsave(&il->lock, flags);
514 radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
516 /* write radio config values to register */
517 if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
518 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
519 EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
520 EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
521 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
523 /* set CSR_HW_CONFIG_REG for uCode use */
524 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
525 CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
526 CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
529 (struct il_eeprom_calib_info *)
530 il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
532 spin_unlock_irqrestore(&il->lock, flags);
535 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
536 * Called after every association, but this runs only once!
537 * ... once chain noise is calibrated the first time, it's good forever. */
539 il4965_chain_noise_reset(struct il_priv *il)
541 struct il_chain_noise_data *data = &(il->chain_noise_data);
543 if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
544 struct il_calib_diff_gain_cmd cmd;
546 /* clear data for chain noise calibration algorithm */
547 data->chain_noise_a = 0;
548 data->chain_noise_b = 0;
549 data->chain_noise_c = 0;
550 data->chain_signal_a = 0;
551 data->chain_signal_b = 0;
552 data->chain_signal_c = 0;
553 data->beacon_count = 0;
555 memset(&cmd, 0, sizeof(cmd));
556 cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
560 if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
561 IL_ERR("Could not send C_PHY_CALIBRATION\n");
562 data->state = IL_CHAIN_NOISE_ACCUMULATE;
563 D_CALIB("Run chain_noise_calibrate\n");
568 il4965_math_div_round(s32 num, s32 denom, s32 * res)
581 *res = ((num * 2 + denom) / (denom * 2)) * sign;
587 * il4965_get_voltage_compensation - Power supply voltage comp for txpower
589 * Determines power supply voltage compensation for txpower calculations.
590 * Returns number of 1/2-dB steps to subtract from gain table idx,
591 * to compensate for difference between power supply voltage during
592 * factory measurements, vs. current power supply voltage.
594 * Voltage indication is higher for lower voltage.
595 * Lower voltage requires more gain (lower gain table idx).
598 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
602 if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
603 TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
606 il4965_math_div_round(current_voltage - eeprom_voltage,
607 TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
609 if (current_voltage > eeprom_voltage)
611 if ((comp < -2) || (comp > 2))
618 il4965_get_tx_atten_grp(u16 channel)
620 if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
621 channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
622 return CALIB_CH_GROUP_5;
624 if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
625 channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
626 return CALIB_CH_GROUP_1;
628 if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
629 channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
630 return CALIB_CH_GROUP_2;
632 if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
633 channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
634 return CALIB_CH_GROUP_3;
636 if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
637 channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
638 return CALIB_CH_GROUP_4;
644 il4965_get_sub_band(const struct il_priv *il, u32 channel)
648 for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
649 if (il->calib_info->band_info[b].ch_from == 0)
652 if (channel >= il->calib_info->band_info[b].ch_from &&
653 channel <= il->calib_info->band_info[b].ch_to)
661 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
668 il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
674 * il4965_interpolate_chan - Interpolate factory measurements for one channel
676 * Interpolates factory measurements from the two sample channels within a
677 * sub-band, to apply to channel of interest. Interpolation is proportional to
678 * differences in channel frequencies, which is proportional to differences
682 il4965_interpolate_chan(struct il_priv *il, u32 channel,
683 struct il_eeprom_calib_ch_info *chan_info)
688 const struct il_eeprom_calib_measure *m1;
689 const struct il_eeprom_calib_measure *m2;
690 struct il_eeprom_calib_measure *omeas;
694 s = il4965_get_sub_band(il, channel);
695 if (s >= EEPROM_TX_POWER_BANDS) {
696 IL_ERR("Tx Power can not find channel %d\n", channel);
700 ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
701 ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
702 chan_info->ch_num = (u8) channel;
704 D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
707 for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
708 for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
709 m1 = &(il->calib_info->band_info[s].ch1.
711 m2 = &(il->calib_info->band_info[s].ch2.
713 omeas = &(chan_info->measurements[c][m]);
716 (u8) il4965_interpolate_value(channel, ch_i1,
717 m1->actual_pow, ch_i2,
720 (u8) il4965_interpolate_value(channel, ch_i1,
724 (u8) il4965_interpolate_value(channel, ch_i1,
729 (s8) il4965_interpolate_value(channel, ch_i1,
733 D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
734 m, m1->actual_pow, m2->actual_pow,
736 D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
737 m, m1->gain_idx, m2->gain_idx,
739 D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
740 m, m1->pa_det, m2->pa_det, omeas->pa_det);
741 D_TXPOWER("chain %d meas %d T1=%d T2=%d T=%d\n", c,
742 m, m1->temperature, m2->temperature,
750 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
751 * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
752 static s32 back_off_table[] = {
753 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
754 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
755 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
756 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
760 /* Thermal compensation values for txpower for various frequency ranges ...
761 * ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
762 static struct il4965_txpower_comp_entry {
763 s32 degrees_per_05db_a;
764 s32 degrees_per_05db_a_denom;
765 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
767 9, 2}, /* group 0 5.2, ch 34-43 */
769 4, 1}, /* group 1 5.2, ch 44-70 */
771 4, 1}, /* group 2 5.2, ch 71-124 */
773 4, 1}, /* group 3 5.2, ch 125-200 */
775 3, 1} /* group 4 2.4, ch all */
779 get_min_power_idx(s32 rate_power_idx, u32 band)
782 if ((rate_power_idx & 7) <= 4)
783 return MIN_TX_GAIN_IDX_52GHZ_EXT;
785 return MIN_TX_GAIN_IDX;
793 static const struct gain_entry gain_table[2][108] = {
794 /* 5.2GHz power gain idx table */
796 {123, 0x3F}, /* highest txpower */
905 /* 2.4GHz power gain idx table */
907 {110, 0x3f}, /* highest txpower */
1019 il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1021 struct il4965_tx_power_db *tx_power_tbl)
1023 u8 saturation_power;
1025 s32 user_target_power;
1029 s32 current_regulatory;
1030 s32 txatten_grp = CALIB_CH_GROUP_MAX;
1033 const struct il_channel_info *ch_info = NULL;
1034 struct il_eeprom_calib_ch_info ch_eeprom_info;
1035 const struct il_eeprom_calib_measure *measurement;
1038 s32 voltage_compensation;
1039 s32 degrees_per_05db_num;
1040 s32 degrees_per_05db_denom;
1042 s32 temperature_comp[2];
1043 s32 factory_gain_idx[2];
1044 s32 factory_actual_pwr[2];
1047 /* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1048 * are used for idxing into txpower table) */
1049 user_target_power = 2 * il->tx_power_user_lmt;
1051 /* Get current (RXON) channel, band, width */
1052 D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1054 ch_info = il_get_channel_info(il, il->band, channel);
1056 if (!il_is_channel_valid(ch_info))
1059 /* get txatten group, used to select 1) thermal txpower adjustment
1060 * and 2) mimo txpower balance between Tx chains. */
1061 txatten_grp = il4965_get_tx_atten_grp(channel);
1062 if (txatten_grp < 0) {
1063 IL_ERR("Can't find txatten group for channel %d.\n", channel);
1067 D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1077 /* hardware txpower limits ...
1078 * saturation (clipping distortion) txpowers are in half-dBm */
1080 saturation_power = il->calib_info->saturation_power24;
1082 saturation_power = il->calib_info->saturation_power52;
1084 if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1085 saturation_power > IL_TX_POWER_SATURATION_MAX) {
1087 saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1089 saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1092 /* regulatory txpower limits ... reg_limit values are in half-dBm,
1093 * max_power_avg values are in dBm, convert * 2 */
1095 reg_limit = ch_info->ht40_max_power_avg * 2;
1097 reg_limit = ch_info->max_power_avg * 2;
1099 if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1100 (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1102 reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1104 reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1107 /* Interpolate txpower calibration values for this channel,
1108 * based on factory calibration tests on spaced channels. */
1109 il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1111 /* calculate tx gain adjustment based on power supply voltage */
1112 voltage = le16_to_cpu(il->calib_info->voltage);
1113 init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1114 voltage_compensation =
1115 il4965_get_voltage_compensation(voltage, init_voltage);
1117 D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1118 voltage, voltage_compensation);
1120 /* get current temperature (Celsius) */
1121 current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1122 current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1123 current_temp = KELVIN_TO_CELSIUS(current_temp);
1125 /* select thermal txpower adjustment params, based on channel group
1126 * (same frequency group used for mimo txatten adjustment) */
1127 degrees_per_05db_num =
1128 tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1129 degrees_per_05db_denom =
1130 tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1132 /* get per-chain txpower values from factory measurements */
1133 for (c = 0; c < 2; c++) {
1134 measurement = &ch_eeprom_info.measurements[c][1];
1136 /* txgain adjustment (in half-dB steps) based on difference
1137 * between factory and current temperature */
1138 factory_temp = measurement->temperature;
1139 il4965_math_div_round((current_temp -
1140 factory_temp) * degrees_per_05db_denom,
1141 degrees_per_05db_num,
1142 &temperature_comp[c]);
1144 factory_gain_idx[c] = measurement->gain_idx;
1145 factory_actual_pwr[c] = measurement->actual_pow;
1147 D_TXPOWER("chain = %d\n", c);
1148 D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1149 factory_temp, current_temp, temperature_comp[c]);
1151 D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1152 factory_actual_pwr[c]);
1155 /* for each of 33 bit-rates (including 1 for CCK) */
1156 for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1158 union il4965_tx_power_dual_stream tx_power;
1160 /* for mimo, reduce each chain's txpower by half
1161 * (3dB, 6 steps), so total output power is regulatory
1164 current_regulatory =
1166 IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1169 current_regulatory = reg_limit;
1173 /* find txpower limit, either hardware or regulatory */
1174 power_limit = saturation_power - back_off_table[i];
1175 if (power_limit > current_regulatory)
1176 power_limit = current_regulatory;
1178 /* reduce user's txpower request if necessary
1179 * for this rate on this channel */
1180 target_power = user_target_power;
1181 if (target_power > power_limit)
1182 target_power = power_limit;
1184 D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1185 saturation_power - back_off_table[i],
1186 current_regulatory, user_target_power, target_power);
1188 /* for each of 2 Tx chains (radio transmitters) */
1189 for (c = 0; c < 2; c++) {
1194 (s32) le32_to_cpu(il->card_alive_init.
1195 tx_atten[txatten_grp][c]);
1199 /* calculate idx; higher idx means lower txpower */
1201 (u8) (factory_gain_idx[c] -
1202 (target_power - factory_actual_pwr[c]) -
1203 temperature_comp[c] - voltage_compensation +
1206 /* D_TXPOWER("calculated txpower idx %d\n",
1209 if (power_idx < get_min_power_idx(i, band))
1210 power_idx = get_min_power_idx(i, band);
1212 /* adjust 5 GHz idx to support negative idxes */
1216 /* CCK, rate 32, reduce txpower for CCK */
1217 if (i == POWER_TBL_CCK_ENTRY)
1219 IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1221 /* stay within the table! */
1222 if (power_idx > 107) {
1223 IL_WARN("txpower idx %d > 107\n", power_idx);
1226 if (power_idx < 0) {
1227 IL_WARN("txpower idx %d < 0\n", power_idx);
1231 /* fill txpower command for this rate/chain */
1232 tx_power.s.radio_tx_gain[c] =
1233 gain_table[band][power_idx].radio;
1234 tx_power.s.dsp_predis_atten[c] =
1235 gain_table[band][power_idx].dsp;
1237 D_TXPOWER("chain %d mimo %d idx %d "
1238 "gain 0x%02x dsp %d\n", c, atten_value,
1239 power_idx, tx_power.s.radio_tx_gain[c],
1240 tx_power.s.dsp_predis_atten[c]);
1241 } /* for each chain */
1243 tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1245 } /* for each rate */
1251 * il4965_send_tx_power - Configure the TXPOWER level user limit
1253 * Uses the active RXON for channel, band, and characteristics (ht40, high)
1254 * The power limit is taken from il->tx_power_user_lmt.
1257 il4965_send_tx_power(struct il_priv *il)
1259 struct il4965_txpowertable_cmd cmd = { 0 };
1262 bool is_ht40 = false;
1263 u8 ctrl_chan_high = 0;
1266 (test_bit(S_SCAN_HW, &il->status),
1267 "TX Power requested while scanning!\n"))
1270 band = il->band == NL80211_BAND_2GHZ;
1272 is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1274 if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1278 cmd.channel = il->active.channel;
1281 il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1282 is_ht40, ctrl_chan_high, &cmd.tx_power);
1286 ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1293 il4965_send_rxon_assoc(struct il_priv *il)
1296 struct il4965_rxon_assoc_cmd rxon_assoc;
1297 const struct il_rxon_cmd *rxon1 = &il->staging;
1298 const struct il_rxon_cmd *rxon2 = &il->active;
1300 if (rxon1->flags == rxon2->flags &&
1301 rxon1->filter_flags == rxon2->filter_flags &&
1302 rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1303 rxon1->ofdm_ht_single_stream_basic_rates ==
1304 rxon2->ofdm_ht_single_stream_basic_rates &&
1305 rxon1->ofdm_ht_dual_stream_basic_rates ==
1306 rxon2->ofdm_ht_dual_stream_basic_rates &&
1307 rxon1->rx_chain == rxon2->rx_chain &&
1308 rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1309 D_INFO("Using current RXON_ASSOC. Not resending.\n");
1313 rxon_assoc.flags = il->staging.flags;
1314 rxon_assoc.filter_flags = il->staging.filter_flags;
1315 rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1316 rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1317 rxon_assoc.reserved = 0;
1318 rxon_assoc.ofdm_ht_single_stream_basic_rates =
1319 il->staging.ofdm_ht_single_stream_basic_rates;
1320 rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1321 il->staging.ofdm_ht_dual_stream_basic_rates;
1322 rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1325 il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1332 il4965_commit_rxon(struct il_priv *il)
1334 /* cast away the const for active_rxon in this function */
1335 struct il_rxon_cmd *active_rxon = (void *)&il->active;
1337 bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1339 if (!il_is_alive(il))
1342 /* always get timestamp with Rx frame */
1343 il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1345 ret = il_check_rxon_cmd(il);
1347 IL_ERR("Invalid RXON configuration. Not committing.\n");
1352 * receive commit_rxon request
1353 * abort any previous channel switch if still in process
1355 if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1356 il->switch_channel != il->staging.channel) {
1357 D_11H("abort channel switch on %d\n",
1358 le16_to_cpu(il->switch_channel));
1359 il_chswitch_done(il, false);
1362 /* If we don't need to send a full RXON, we can use
1363 * il_rxon_assoc_cmd which is used to reconfigure filter
1364 * and other flags for the current radio configuration. */
1365 if (!il_full_rxon_required(il)) {
1366 ret = il_send_rxon_assoc(il);
1368 IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1372 memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1373 il_print_rx_config_cmd(il);
1375 * We do not commit tx power settings while channel changing,
1376 * do it now if tx power changed.
1378 il_set_tx_power(il, il->tx_power_next, false);
1382 /* If we are currently associated and the new config requires
1383 * an RXON_ASSOC and the new config wants the associated mask enabled,
1384 * we must clear the associated from the active configuration
1385 * before we apply the new config */
1386 if (il_is_associated(il) && new_assoc) {
1387 D_INFO("Toggling associated bit on current RXON\n");
1388 active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1391 il_send_cmd_pdu(il, C_RXON,
1392 sizeof(struct il_rxon_cmd), active_rxon);
1394 /* If the mask clearing failed then we set
1395 * active_rxon back to what it was previously */
1397 active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1398 IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1401 il_clear_ucode_stations(il);
1402 il_restore_stations(il);
1403 ret = il4965_restore_default_wep_keys(il);
1405 IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1410 D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1411 "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1412 le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1414 il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1416 /* Apply the new configuration
1417 * RXON unassoc clears the station table in uCode so restoration of
1418 * stations is needed after it (the RXON command) completes
1422 il_send_cmd_pdu(il, C_RXON,
1423 sizeof(struct il_rxon_cmd), &il->staging);
1425 IL_ERR("Error setting new RXON (%d)\n", ret);
1428 D_INFO("Return from !new_assoc RXON.\n");
1429 memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1430 il_clear_ucode_stations(il);
1431 il_restore_stations(il);
1432 ret = il4965_restore_default_wep_keys(il);
1434 IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1439 il->start_calib = 0;
1440 /* Apply the new configuration
1441 * RXON assoc doesn't clear the station table in uCode,
1444 il_send_cmd_pdu(il, C_RXON,
1445 sizeof(struct il_rxon_cmd), &il->staging);
1447 IL_ERR("Error setting new RXON (%d)\n", ret);
1450 memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1452 il_print_rx_config_cmd(il);
1454 il4965_init_sensitivity(il);
1456 /* If we issue a new RXON command which required a tune then we must
1457 * send a new TXPOWER command or we won't be able to Tx any frames */
1458 ret = il_set_tx_power(il, il->tx_power_next, true);
1460 IL_ERR("Error sending TX power (%d)\n", ret);
1468 il4965_hw_channel_switch(struct il_priv *il,
1469 struct ieee80211_channel_switch *ch_switch)
1473 bool is_ht40 = false;
1474 u8 ctrl_chan_high = 0;
1475 struct il4965_channel_switch_cmd cmd;
1476 const struct il_channel_info *ch_info;
1477 u32 switch_time_in_usec, ucode_switch_time;
1481 u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1482 struct ieee80211_vif *vif = il->vif;
1483 band = (il->band == NL80211_BAND_2GHZ);
1485 if (WARN_ON_ONCE(vif == NULL))
1488 is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1490 if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1494 cmd.expect_beacon = 0;
1495 ch = ch_switch->chandef.chan->hw_value;
1496 cmd.channel = cpu_to_le16(ch);
1497 cmd.rxon_flags = il->staging.flags;
1498 cmd.rxon_filter_flags = il->staging.filter_flags;
1499 switch_count = ch_switch->count;
1500 tsf_low = ch_switch->timestamp & 0x0ffffffff;
1502 * calculate the ucode channel switch time
1503 * adding TSF as one of the factor for when to switch
1505 if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1507 ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1509 (il->ucode_beacon_time - tsf_low) / beacon_interval;
1513 if (switch_count <= 1)
1514 cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1516 switch_time_in_usec =
1517 vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1519 il_usecs_to_beacons(il, switch_time_in_usec,
1522 il_add_beacon_time(il, il->ucode_beacon_time,
1523 ucode_switch_time, beacon_interval);
1525 D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1526 ch_info = il_get_channel_info(il, il->band, ch);
1528 cmd.expect_beacon = il_is_channel_radar(ch_info);
1530 IL_ERR("invalid channel switch from %u to %u\n",
1531 il->active.channel, ch);
1535 rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1538 D_11H("error:%d fill txpower_tbl\n", rc);
1542 return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1546 * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1549 il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1552 struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1553 int txq_id = txq->q.id;
1554 int write_ptr = txq->q.write_ptr;
1555 int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1558 WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1560 bc_ent = cpu_to_le16(len & 0xFFF);
1561 /* Set up byte count within first 256 entries */
1562 scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1564 /* If within first 64 entries, duplicate at end */
1565 if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1566 scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1571 * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1572 * @stats: Provides the temperature reading from the uCode
1574 * A return of <0 indicates bogus data in the stats
1577 il4965_hw_get_temperature(struct il_priv *il)
1584 if (test_bit(S_TEMPERATURE, &il->status) &&
1585 (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1586 D_TEMP("Running HT40 temperature calibration\n");
1587 R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1588 R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1589 R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1590 R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1592 D_TEMP("Running temperature calibration\n");
1593 R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1594 R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1595 R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1596 R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1600 * Temperature is only 23 bits, so sign extend out to 32.
1602 * NOTE If we haven't received a stats notification yet
1603 * with an updated temperature, use R4 provided to us in the
1604 * "initialize" ALIVE response.
1606 if (!test_bit(S_TEMPERATURE, &il->status))
1607 vt = sign_extend32(R4, 23);
1609 vt = sign_extend32(le32_to_cpu
1610 (il->_4965.stats.general.common.temperature),
1613 D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1616 IL_ERR("Calibration conflict R1 == R3\n");
1620 /* Calculate temperature in degrees Kelvin, adjust by 97%.
1621 * Add offset to center the adjustment around 0 degrees Centigrade. */
1622 temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1623 temperature /= (R3 - R1);
1625 (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1627 D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
1628 KELVIN_TO_CELSIUS(temperature));
1633 /* Adjust Txpower only if temperature variance is greater than threshold. */
1634 #define IL_TEMPERATURE_THRESHOLD 3
1637 * il4965_is_temp_calib_needed - determines if new calibration is needed
1639 * If the temperature changed has changed sufficiently, then a recalibration
1642 * Assumes caller will replace il->last_temperature once calibration
1646 il4965_is_temp_calib_needed(struct il_priv *il)
1650 if (!test_bit(S_STATS, &il->status)) {
1651 D_TEMP("Temperature not updated -- no stats.\n");
1655 temp_diff = il->temperature - il->last_temperature;
1657 /* get absolute value */
1658 if (temp_diff < 0) {
1659 D_POWER("Getting cooler, delta %d\n", temp_diff);
1660 temp_diff = -temp_diff;
1661 } else if (temp_diff == 0)
1662 D_POWER("Temperature unchanged\n");
1664 D_POWER("Getting warmer, delta %d\n", temp_diff);
1666 if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1667 D_POWER(" => thermal txpower calib not needed\n");
1671 D_POWER(" => thermal txpower calib needed\n");
1677 il4965_temperature_calib(struct il_priv *il)
1681 temp = il4965_hw_get_temperature(il);
1682 if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1685 if (il->temperature != temp) {
1686 if (il->temperature)
1687 D_TEMP("Temperature changed " "from %dC to %dC\n",
1688 KELVIN_TO_CELSIUS(il->temperature),
1689 KELVIN_TO_CELSIUS(temp));
1691 D_TEMP("Temperature " "initialized to %dC\n",
1692 KELVIN_TO_CELSIUS(temp));
1695 il->temperature = temp;
1696 set_bit(S_TEMPERATURE, &il->status);
1698 if (!il->disable_tx_power_cal &&
1699 unlikely(!test_bit(S_SCANNING, &il->status)) &&
1700 il4965_is_temp_calib_needed(il))
1701 queue_work(il->workqueue, &il->txpower_work);
1705 il4965_get_hcmd_size(u8 cmd_id, u16 len)
1709 return (u16) sizeof(struct il4965_rxon_cmd);
1716 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1718 struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1719 addsta->mode = cmd->mode;
1720 memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1721 memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1722 addsta->station_flags = cmd->station_flags;
1723 addsta->station_flags_msk = cmd->station_flags_msk;
1724 addsta->tid_disable_tx = cmd->tid_disable_tx;
1725 addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1726 addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1727 addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1728 addsta->sleep_tx_count = cmd->sleep_tx_count;
1729 addsta->reserved1 = cpu_to_le16(0);
1730 addsta->reserved2 = cpu_to_le16(0);
1732 return (u16) sizeof(struct il4965_addsta_cmd);
1736 il4965_post_scan(struct il_priv *il)
1739 * Since setting the RXON may have been deferred while
1740 * performing the scan, fire one off if needed
1742 if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1747 il4965_post_associate(struct il_priv *il)
1749 struct ieee80211_vif *vif = il->vif;
1752 if (!vif || !il->is_open)
1755 if (test_bit(S_EXIT_PENDING, &il->status))
1758 il_scan_cancel_timeout(il, 200);
1760 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1763 ret = il_send_rxon_timing(il);
1765 IL_WARN("RXON timing - " "Attempting to continue.\n");
1767 il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1769 il_set_rxon_ht(il, &il->current_ht_config);
1771 if (il->ops->set_rxon_chain)
1772 il->ops->set_rxon_chain(il);
1774 il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1776 D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1777 vif->bss_conf.beacon_int);
1779 if (vif->bss_conf.use_short_preamble)
1780 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1782 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1784 if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1785 if (vif->bss_conf.use_short_slot)
1786 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1788 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1793 D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1794 il->active.bssid_addr);
1796 switch (vif->type) {
1797 case NL80211_IFTYPE_STATION:
1799 case NL80211_IFTYPE_ADHOC:
1800 il4965_send_beacon_cmd(il);
1803 IL_ERR("%s Should not be called in %d mode\n", __func__,
1808 /* the chain noise calibration will enabled PM upon completion
1809 * If chain noise has already been run, then we need to enable
1810 * power management here */
1811 if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1812 il_power_update_mode(il, false);
1814 /* Enable Rx differential gain and sensitivity calibrations */
1815 il4965_chain_noise_reset(il);
1816 il->start_calib = 1;
1820 il4965_config_ap(struct il_priv *il)
1822 struct ieee80211_vif *vif = il->vif;
1825 lockdep_assert_held(&il->mutex);
1827 if (test_bit(S_EXIT_PENDING, &il->status))
1830 /* The following should be done only at AP bring up */
1831 if (!il_is_associated(il)) {
1833 /* RXON - unassoc (to set timing command) */
1834 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1838 ret = il_send_rxon_timing(il);
1840 IL_WARN("RXON timing failed - "
1841 "Attempting to continue.\n");
1843 /* AP has all antennas */
1844 il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1845 il_set_rxon_ht(il, &il->current_ht_config);
1846 if (il->ops->set_rxon_chain)
1847 il->ops->set_rxon_chain(il);
1849 il->staging.assoc_id = 0;
1851 if (vif->bss_conf.use_short_preamble)
1852 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1854 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1856 if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1857 if (vif->bss_conf.use_short_slot)
1858 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1860 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1862 /* need to send beacon cmd before committing assoc RXON! */
1863 il4965_send_beacon_cmd(il);
1864 /* restore RXON assoc */
1865 il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1868 il4965_send_beacon_cmd(il);
1871 const struct il_ops il4965_ops = {
1872 .txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1873 .txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1874 .txq_free_tfd = il4965_hw_txq_free_tfd,
1875 .txq_init = il4965_hw_tx_queue_init,
1876 .is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1877 .init_alive_start = il4965_init_alive_start,
1878 .load_ucode = il4965_load_bsm,
1879 .dump_nic_error_log = il4965_dump_nic_error_log,
1880 .dump_fh = il4965_dump_fh,
1881 .set_channel_switch = il4965_hw_channel_switch,
1882 .apm_init = il_apm_init,
1883 .send_tx_power = il4965_send_tx_power,
1884 .update_chain_flags = il4965_update_chain_flags,
1885 .eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1886 .eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1888 .rxon_assoc = il4965_send_rxon_assoc,
1889 .commit_rxon = il4965_commit_rxon,
1890 .set_rxon_chain = il4965_set_rxon_chain,
1892 .get_hcmd_size = il4965_get_hcmd_size,
1893 .build_addsta_hcmd = il4965_build_addsta_hcmd,
1894 .request_scan = il4965_request_scan,
1895 .post_scan = il4965_post_scan,
1897 .post_associate = il4965_post_associate,
1898 .config_ap = il4965_config_ap,
1899 .manage_ibss_station = il4965_manage_ibss_station,
1900 .update_bcast_stations = il4965_update_bcast_stations,
1902 .send_led_cmd = il4965_send_led_cmd,
1905 struct il_cfg il4965_cfg = {
1906 .name = "Intel(R) Wireless WiFi Link 4965AGN",
1907 .fw_name_pre = IL4965_FW_PRE,
1908 .ucode_api_max = IL4965_UCODE_API_MAX,
1909 .ucode_api_min = IL4965_UCODE_API_MIN,
1910 .sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1911 .valid_tx_ant = ANT_AB,
1912 .valid_rx_ant = ANT_ABC,
1913 .eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1914 .eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1915 .mod_params = &il4965_mod_params,
1916 .led_mode = IL_LED_BLINK,
1918 * Force use of chains B and C for scan RX on 5 GHz band
1919 * because the device has off-channel reception on chain A.
1921 .scan_rx_antennas[NL80211_BAND_5GHZ] = ANT_BC,
1923 .eeprom_size = IL4965_EEPROM_IMG_SIZE,
1924 .num_of_queues = IL49_NUM_QUEUES,
1925 .num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1929 .led_compensation = 61,
1930 .chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1931 .wd_timeout = IL_DEF_WD_TIMEOUT,
1932 .temperature_kelvin = true,
1933 .ucode_tracing = true,
1934 .sensitivity_calib_by_driver = true,
1935 .chain_noise_calib_by_driver = true,
1937 .regulatory_bands = {
1938 EEPROM_REGULATORY_BAND_1_CHANNELS,
1939 EEPROM_REGULATORY_BAND_2_CHANNELS,
1940 EEPROM_REGULATORY_BAND_3_CHANNELS,
1941 EEPROM_REGULATORY_BAND_4_CHANNELS,
1942 EEPROM_REGULATORY_BAND_5_CHANNELS,
1943 EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1944 EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1949 /* Module firmware */
1950 MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));