]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igb/igb_ethtool.c
Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <[email protected]>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* ethtool support for igb */
25
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define IGB_STAT(_name, _stat) { \
48         .stat_string = _name, \
49         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50         .stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53         IGB_STAT("rx_packets", stats.gprc),
54         IGB_STAT("tx_packets", stats.gptc),
55         IGB_STAT("rx_bytes", stats.gorc),
56         IGB_STAT("tx_bytes", stats.gotc),
57         IGB_STAT("rx_broadcast", stats.bprc),
58         IGB_STAT("tx_broadcast", stats.bptc),
59         IGB_STAT("rx_multicast", stats.mprc),
60         IGB_STAT("tx_multicast", stats.mptc),
61         IGB_STAT("multicast", stats.mprc),
62         IGB_STAT("collisions", stats.colc),
63         IGB_STAT("rx_crc_errors", stats.crcerrs),
64         IGB_STAT("rx_no_buffer_count", stats.rnbc),
65         IGB_STAT("rx_missed_errors", stats.mpc),
66         IGB_STAT("tx_aborted_errors", stats.ecol),
67         IGB_STAT("tx_carrier_errors", stats.tncrs),
68         IGB_STAT("tx_window_errors", stats.latecol),
69         IGB_STAT("tx_abort_late_coll", stats.latecol),
70         IGB_STAT("tx_deferred_ok", stats.dc),
71         IGB_STAT("tx_single_coll_ok", stats.scc),
72         IGB_STAT("tx_multi_coll_ok", stats.mcc),
73         IGB_STAT("tx_timeout_count", tx_timeout_count),
74         IGB_STAT("rx_long_length_errors", stats.roc),
75         IGB_STAT("rx_short_length_errors", stats.ruc),
76         IGB_STAT("rx_align_errors", stats.algnerrc),
77         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81         IGB_STAT("tx_flow_control_xon", stats.xontxc),
82         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83         IGB_STAT("rx_long_byte_count", stats.gorc),
84         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85         IGB_STAT("tx_smbus", stats.mgptc),
86         IGB_STAT("rx_smbus", stats.mgprc),
87         IGB_STAT("dropped_smbus", stats.mgpdc),
88         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93         IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
94         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
95 };
96
97 #define IGB_NETDEV_STAT(_net_stat) { \
98         .stat_string = __stringify(_net_stat), \
99         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
100         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
101 }
102 static const struct igb_stats igb_gstrings_net_stats[] = {
103         IGB_NETDEV_STAT(rx_errors),
104         IGB_NETDEV_STAT(tx_errors),
105         IGB_NETDEV_STAT(tx_dropped),
106         IGB_NETDEV_STAT(rx_length_errors),
107         IGB_NETDEV_STAT(rx_over_errors),
108         IGB_NETDEV_STAT(rx_frame_errors),
109         IGB_NETDEV_STAT(rx_fifo_errors),
110         IGB_NETDEV_STAT(tx_fifo_errors),
111         IGB_NETDEV_STAT(tx_heartbeat_errors)
112 };
113
114 #define IGB_GLOBAL_STATS_LEN    \
115         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
116 #define IGB_NETDEV_STATS_LEN    \
117         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
118 #define IGB_RX_QUEUE_STATS_LEN \
119         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
120
121 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
122
123 #define IGB_QUEUE_STATS_LEN \
124         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
125           IGB_RX_QUEUE_STATS_LEN) + \
126          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
127           IGB_TX_QUEUE_STATS_LEN))
128 #define IGB_STATS_LEN \
129         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
130
131 enum igb_diagnostics_results {
132         TEST_REG = 0,
133         TEST_EEP,
134         TEST_IRQ,
135         TEST_LOOP,
136         TEST_LINK
137 };
138
139 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
140         [TEST_REG]  = "Register test  (offline)",
141         [TEST_EEP]  = "Eeprom test    (offline)",
142         [TEST_IRQ]  = "Interrupt test (offline)",
143         [TEST_LOOP] = "Loopback test  (offline)",
144         [TEST_LINK] = "Link test   (on/offline)"
145 };
146 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
147
148 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
149 #define IGB_PRIV_FLAGS_LEGACY_RX        BIT(0)
150         "legacy-rx",
151 };
152
153 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
154
155 static int igb_get_link_ksettings(struct net_device *netdev,
156                                   struct ethtool_link_ksettings *cmd)
157 {
158         struct igb_adapter *adapter = netdev_priv(netdev);
159         struct e1000_hw *hw = &adapter->hw;
160         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
161         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
162         u32 status;
163         u32 speed;
164         u32 supported, advertising;
165
166         status = rd32(E1000_STATUS);
167         if (hw->phy.media_type == e1000_media_type_copper) {
168
169                 supported = (SUPPORTED_10baseT_Half |
170                              SUPPORTED_10baseT_Full |
171                              SUPPORTED_100baseT_Half |
172                              SUPPORTED_100baseT_Full |
173                              SUPPORTED_1000baseT_Full|
174                              SUPPORTED_Autoneg |
175                              SUPPORTED_TP |
176                              SUPPORTED_Pause);
177                 advertising = ADVERTISED_TP;
178
179                 if (hw->mac.autoneg == 1) {
180                         advertising |= ADVERTISED_Autoneg;
181                         /* the e1000 autoneg seems to match ethtool nicely */
182                         advertising |= hw->phy.autoneg_advertised;
183                 }
184
185                 cmd->base.port = PORT_TP;
186                 cmd->base.phy_address = hw->phy.addr;
187         } else {
188                 supported = (SUPPORTED_FIBRE |
189                              SUPPORTED_1000baseKX_Full |
190                              SUPPORTED_Autoneg |
191                              SUPPORTED_Pause);
192                 advertising = (ADVERTISED_FIBRE |
193                                ADVERTISED_1000baseKX_Full);
194                 if (hw->mac.type == e1000_i354) {
195                         if ((hw->device_id ==
196                              E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
197                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
198                                 supported |= SUPPORTED_2500baseX_Full;
199                                 supported &= ~SUPPORTED_1000baseKX_Full;
200                                 advertising |= ADVERTISED_2500baseX_Full;
201                                 advertising &= ~ADVERTISED_1000baseKX_Full;
202                         }
203                 }
204                 if (eth_flags->e100_base_fx) {
205                         supported |= SUPPORTED_100baseT_Full;
206                         advertising |= ADVERTISED_100baseT_Full;
207                 }
208                 if (hw->mac.autoneg == 1)
209                         advertising |= ADVERTISED_Autoneg;
210
211                 cmd->base.port = PORT_FIBRE;
212         }
213         if (hw->mac.autoneg != 1)
214                 advertising &= ~(ADVERTISED_Pause |
215                                  ADVERTISED_Asym_Pause);
216
217         switch (hw->fc.requested_mode) {
218         case e1000_fc_full:
219                 advertising |= ADVERTISED_Pause;
220                 break;
221         case e1000_fc_rx_pause:
222                 advertising |= (ADVERTISED_Pause |
223                                 ADVERTISED_Asym_Pause);
224                 break;
225         case e1000_fc_tx_pause:
226                 advertising |=  ADVERTISED_Asym_Pause;
227                 break;
228         default:
229                 advertising &= ~(ADVERTISED_Pause |
230                                  ADVERTISED_Asym_Pause);
231         }
232         if (status & E1000_STATUS_LU) {
233                 if ((status & E1000_STATUS_2P5_SKU) &&
234                     !(status & E1000_STATUS_2P5_SKU_OVER)) {
235                         speed = SPEED_2500;
236                 } else if (status & E1000_STATUS_SPEED_1000) {
237                         speed = SPEED_1000;
238                 } else if (status & E1000_STATUS_SPEED_100) {
239                         speed = SPEED_100;
240                 } else {
241                         speed = SPEED_10;
242                 }
243                 if ((status & E1000_STATUS_FD) ||
244                     hw->phy.media_type != e1000_media_type_copper)
245                         cmd->base.duplex = DUPLEX_FULL;
246                 else
247                         cmd->base.duplex = DUPLEX_HALF;
248         } else {
249                 speed = SPEED_UNKNOWN;
250                 cmd->base.duplex = DUPLEX_UNKNOWN;
251         }
252         cmd->base.speed = speed;
253         if ((hw->phy.media_type == e1000_media_type_fiber) ||
254             hw->mac.autoneg)
255                 cmd->base.autoneg = AUTONEG_ENABLE;
256         else
257                 cmd->base.autoneg = AUTONEG_DISABLE;
258
259         /* MDI-X => 2; MDI =>1; Invalid =>0 */
260         if (hw->phy.media_type == e1000_media_type_copper)
261                 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
262                                                       ETH_TP_MDI;
263         else
264                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
265
266         if (hw->phy.mdix == AUTO_ALL_MODES)
267                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
268         else
269                 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
270
271         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
272                                                 supported);
273         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
274                                                 advertising);
275
276         return 0;
277 }
278
279 static int igb_set_link_ksettings(struct net_device *netdev,
280                                   const struct ethtool_link_ksettings *cmd)
281 {
282         struct igb_adapter *adapter = netdev_priv(netdev);
283         struct e1000_hw *hw = &adapter->hw;
284         u32 advertising;
285
286         /* When SoL/IDER sessions are active, autoneg/speed/duplex
287          * cannot be changed
288          */
289         if (igb_check_reset_block(hw)) {
290                 dev_err(&adapter->pdev->dev,
291                         "Cannot change link characteristics when SoL/IDER is active.\n");
292                 return -EINVAL;
293         }
294
295         /* MDI setting is only allowed when autoneg enabled because
296          * some hardware doesn't allow MDI setting when speed or
297          * duplex is forced.
298          */
299         if (cmd->base.eth_tp_mdix_ctrl) {
300                 if (hw->phy.media_type != e1000_media_type_copper)
301                         return -EOPNOTSUPP;
302
303                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
304                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
305                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
306                         return -EINVAL;
307                 }
308         }
309
310         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
311                 usleep_range(1000, 2000);
312
313         ethtool_convert_link_mode_to_legacy_u32(&advertising,
314                                                 cmd->link_modes.advertising);
315
316         if (cmd->base.autoneg == AUTONEG_ENABLE) {
317                 hw->mac.autoneg = 1;
318                 if (hw->phy.media_type == e1000_media_type_fiber) {
319                         hw->phy.autoneg_advertised = advertising |
320                                                      ADVERTISED_FIBRE |
321                                                      ADVERTISED_Autoneg;
322                         switch (adapter->link_speed) {
323                         case SPEED_2500:
324                                 hw->phy.autoneg_advertised =
325                                         ADVERTISED_2500baseX_Full;
326                                 break;
327                         case SPEED_1000:
328                                 hw->phy.autoneg_advertised =
329                                         ADVERTISED_1000baseT_Full;
330                                 break;
331                         case SPEED_100:
332                                 hw->phy.autoneg_advertised =
333                                         ADVERTISED_100baseT_Full;
334                                 break;
335                         default:
336                                 break;
337                         }
338                 } else {
339                         hw->phy.autoneg_advertised = advertising |
340                                                      ADVERTISED_TP |
341                                                      ADVERTISED_Autoneg;
342                 }
343                 advertising = hw->phy.autoneg_advertised;
344                 if (adapter->fc_autoneg)
345                         hw->fc.requested_mode = e1000_fc_default;
346         } else {
347                 u32 speed = cmd->base.speed;
348                 /* calling this overrides forced MDI setting */
349                 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
350                         clear_bit(__IGB_RESETTING, &adapter->state);
351                         return -EINVAL;
352                 }
353         }
354
355         /* MDI-X => 2; MDI => 1; Auto => 3 */
356         if (cmd->base.eth_tp_mdix_ctrl) {
357                 /* fix up the value for auto (3 => 0) as zero is mapped
358                  * internally to auto
359                  */
360                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
361                         hw->phy.mdix = AUTO_ALL_MODES;
362                 else
363                         hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
364         }
365
366         /* reset the link */
367         if (netif_running(adapter->netdev)) {
368                 igb_down(adapter);
369                 igb_up(adapter);
370         } else
371                 igb_reset(adapter);
372
373         clear_bit(__IGB_RESETTING, &adapter->state);
374         return 0;
375 }
376
377 static u32 igb_get_link(struct net_device *netdev)
378 {
379         struct igb_adapter *adapter = netdev_priv(netdev);
380         struct e1000_mac_info *mac = &adapter->hw.mac;
381
382         /* If the link is not reported up to netdev, interrupts are disabled,
383          * and so the physical link state may have changed since we last
384          * looked. Set get_link_status to make sure that the true link
385          * state is interrogated, rather than pulling a cached and possibly
386          * stale link state from the driver.
387          */
388         if (!netif_carrier_ok(netdev))
389                 mac->get_link_status = 1;
390
391         return igb_has_link(adapter);
392 }
393
394 static void igb_get_pauseparam(struct net_device *netdev,
395                                struct ethtool_pauseparam *pause)
396 {
397         struct igb_adapter *adapter = netdev_priv(netdev);
398         struct e1000_hw *hw = &adapter->hw;
399
400         pause->autoneg =
401                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
402
403         if (hw->fc.current_mode == e1000_fc_rx_pause)
404                 pause->rx_pause = 1;
405         else if (hw->fc.current_mode == e1000_fc_tx_pause)
406                 pause->tx_pause = 1;
407         else if (hw->fc.current_mode == e1000_fc_full) {
408                 pause->rx_pause = 1;
409                 pause->tx_pause = 1;
410         }
411 }
412
413 static int igb_set_pauseparam(struct net_device *netdev,
414                               struct ethtool_pauseparam *pause)
415 {
416         struct igb_adapter *adapter = netdev_priv(netdev);
417         struct e1000_hw *hw = &adapter->hw;
418         int retval = 0;
419
420         /* 100basefx does not support setting link flow control */
421         if (hw->dev_spec._82575.eth_flags.e100_base_fx)
422                 return -EINVAL;
423
424         adapter->fc_autoneg = pause->autoneg;
425
426         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
427                 usleep_range(1000, 2000);
428
429         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
430                 hw->fc.requested_mode = e1000_fc_default;
431                 if (netif_running(adapter->netdev)) {
432                         igb_down(adapter);
433                         igb_up(adapter);
434                 } else {
435                         igb_reset(adapter);
436                 }
437         } else {
438                 if (pause->rx_pause && pause->tx_pause)
439                         hw->fc.requested_mode = e1000_fc_full;
440                 else if (pause->rx_pause && !pause->tx_pause)
441                         hw->fc.requested_mode = e1000_fc_rx_pause;
442                 else if (!pause->rx_pause && pause->tx_pause)
443                         hw->fc.requested_mode = e1000_fc_tx_pause;
444                 else if (!pause->rx_pause && !pause->tx_pause)
445                         hw->fc.requested_mode = e1000_fc_none;
446
447                 hw->fc.current_mode = hw->fc.requested_mode;
448
449                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
450                           igb_force_mac_fc(hw) : igb_setup_link(hw));
451         }
452
453         clear_bit(__IGB_RESETTING, &adapter->state);
454         return retval;
455 }
456
457 static u32 igb_get_msglevel(struct net_device *netdev)
458 {
459         struct igb_adapter *adapter = netdev_priv(netdev);
460         return adapter->msg_enable;
461 }
462
463 static void igb_set_msglevel(struct net_device *netdev, u32 data)
464 {
465         struct igb_adapter *adapter = netdev_priv(netdev);
466         adapter->msg_enable = data;
467 }
468
469 static int igb_get_regs_len(struct net_device *netdev)
470 {
471 #define IGB_REGS_LEN 739
472         return IGB_REGS_LEN * sizeof(u32);
473 }
474
475 static void igb_get_regs(struct net_device *netdev,
476                          struct ethtool_regs *regs, void *p)
477 {
478         struct igb_adapter *adapter = netdev_priv(netdev);
479         struct e1000_hw *hw = &adapter->hw;
480         u32 *regs_buff = p;
481         u8 i;
482
483         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
484
485         regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
486
487         /* General Registers */
488         regs_buff[0] = rd32(E1000_CTRL);
489         regs_buff[1] = rd32(E1000_STATUS);
490         regs_buff[2] = rd32(E1000_CTRL_EXT);
491         regs_buff[3] = rd32(E1000_MDIC);
492         regs_buff[4] = rd32(E1000_SCTL);
493         regs_buff[5] = rd32(E1000_CONNSW);
494         regs_buff[6] = rd32(E1000_VET);
495         regs_buff[7] = rd32(E1000_LEDCTL);
496         regs_buff[8] = rd32(E1000_PBA);
497         regs_buff[9] = rd32(E1000_PBS);
498         regs_buff[10] = rd32(E1000_FRTIMER);
499         regs_buff[11] = rd32(E1000_TCPTIMER);
500
501         /* NVM Register */
502         regs_buff[12] = rd32(E1000_EECD);
503
504         /* Interrupt */
505         /* Reading EICS for EICR because they read the
506          * same but EICS does not clear on read
507          */
508         regs_buff[13] = rd32(E1000_EICS);
509         regs_buff[14] = rd32(E1000_EICS);
510         regs_buff[15] = rd32(E1000_EIMS);
511         regs_buff[16] = rd32(E1000_EIMC);
512         regs_buff[17] = rd32(E1000_EIAC);
513         regs_buff[18] = rd32(E1000_EIAM);
514         /* Reading ICS for ICR because they read the
515          * same but ICS does not clear on read
516          */
517         regs_buff[19] = rd32(E1000_ICS);
518         regs_buff[20] = rd32(E1000_ICS);
519         regs_buff[21] = rd32(E1000_IMS);
520         regs_buff[22] = rd32(E1000_IMC);
521         regs_buff[23] = rd32(E1000_IAC);
522         regs_buff[24] = rd32(E1000_IAM);
523         regs_buff[25] = rd32(E1000_IMIRVP);
524
525         /* Flow Control */
526         regs_buff[26] = rd32(E1000_FCAL);
527         regs_buff[27] = rd32(E1000_FCAH);
528         regs_buff[28] = rd32(E1000_FCTTV);
529         regs_buff[29] = rd32(E1000_FCRTL);
530         regs_buff[30] = rd32(E1000_FCRTH);
531         regs_buff[31] = rd32(E1000_FCRTV);
532
533         /* Receive */
534         regs_buff[32] = rd32(E1000_RCTL);
535         regs_buff[33] = rd32(E1000_RXCSUM);
536         regs_buff[34] = rd32(E1000_RLPML);
537         regs_buff[35] = rd32(E1000_RFCTL);
538         regs_buff[36] = rd32(E1000_MRQC);
539         regs_buff[37] = rd32(E1000_VT_CTL);
540
541         /* Transmit */
542         regs_buff[38] = rd32(E1000_TCTL);
543         regs_buff[39] = rd32(E1000_TCTL_EXT);
544         regs_buff[40] = rd32(E1000_TIPG);
545         regs_buff[41] = rd32(E1000_DTXCTL);
546
547         /* Wake Up */
548         regs_buff[42] = rd32(E1000_WUC);
549         regs_buff[43] = rd32(E1000_WUFC);
550         regs_buff[44] = rd32(E1000_WUS);
551         regs_buff[45] = rd32(E1000_IPAV);
552         regs_buff[46] = rd32(E1000_WUPL);
553
554         /* MAC */
555         regs_buff[47] = rd32(E1000_PCS_CFG0);
556         regs_buff[48] = rd32(E1000_PCS_LCTL);
557         regs_buff[49] = rd32(E1000_PCS_LSTAT);
558         regs_buff[50] = rd32(E1000_PCS_ANADV);
559         regs_buff[51] = rd32(E1000_PCS_LPAB);
560         regs_buff[52] = rd32(E1000_PCS_NPTX);
561         regs_buff[53] = rd32(E1000_PCS_LPABNP);
562
563         /* Statistics */
564         regs_buff[54] = adapter->stats.crcerrs;
565         regs_buff[55] = adapter->stats.algnerrc;
566         regs_buff[56] = adapter->stats.symerrs;
567         regs_buff[57] = adapter->stats.rxerrc;
568         regs_buff[58] = adapter->stats.mpc;
569         regs_buff[59] = adapter->stats.scc;
570         regs_buff[60] = adapter->stats.ecol;
571         regs_buff[61] = adapter->stats.mcc;
572         regs_buff[62] = adapter->stats.latecol;
573         regs_buff[63] = adapter->stats.colc;
574         regs_buff[64] = adapter->stats.dc;
575         regs_buff[65] = adapter->stats.tncrs;
576         regs_buff[66] = adapter->stats.sec;
577         regs_buff[67] = adapter->stats.htdpmc;
578         regs_buff[68] = adapter->stats.rlec;
579         regs_buff[69] = adapter->stats.xonrxc;
580         regs_buff[70] = adapter->stats.xontxc;
581         regs_buff[71] = adapter->stats.xoffrxc;
582         regs_buff[72] = adapter->stats.xofftxc;
583         regs_buff[73] = adapter->stats.fcruc;
584         regs_buff[74] = adapter->stats.prc64;
585         regs_buff[75] = adapter->stats.prc127;
586         regs_buff[76] = adapter->stats.prc255;
587         regs_buff[77] = adapter->stats.prc511;
588         regs_buff[78] = adapter->stats.prc1023;
589         regs_buff[79] = adapter->stats.prc1522;
590         regs_buff[80] = adapter->stats.gprc;
591         regs_buff[81] = adapter->stats.bprc;
592         regs_buff[82] = adapter->stats.mprc;
593         regs_buff[83] = adapter->stats.gptc;
594         regs_buff[84] = adapter->stats.gorc;
595         regs_buff[86] = adapter->stats.gotc;
596         regs_buff[88] = adapter->stats.rnbc;
597         regs_buff[89] = adapter->stats.ruc;
598         regs_buff[90] = adapter->stats.rfc;
599         regs_buff[91] = adapter->stats.roc;
600         regs_buff[92] = adapter->stats.rjc;
601         regs_buff[93] = adapter->stats.mgprc;
602         regs_buff[94] = adapter->stats.mgpdc;
603         regs_buff[95] = adapter->stats.mgptc;
604         regs_buff[96] = adapter->stats.tor;
605         regs_buff[98] = adapter->stats.tot;
606         regs_buff[100] = adapter->stats.tpr;
607         regs_buff[101] = adapter->stats.tpt;
608         regs_buff[102] = adapter->stats.ptc64;
609         regs_buff[103] = adapter->stats.ptc127;
610         regs_buff[104] = adapter->stats.ptc255;
611         regs_buff[105] = adapter->stats.ptc511;
612         regs_buff[106] = adapter->stats.ptc1023;
613         regs_buff[107] = adapter->stats.ptc1522;
614         regs_buff[108] = adapter->stats.mptc;
615         regs_buff[109] = adapter->stats.bptc;
616         regs_buff[110] = adapter->stats.tsctc;
617         regs_buff[111] = adapter->stats.iac;
618         regs_buff[112] = adapter->stats.rpthc;
619         regs_buff[113] = adapter->stats.hgptc;
620         regs_buff[114] = adapter->stats.hgorc;
621         regs_buff[116] = adapter->stats.hgotc;
622         regs_buff[118] = adapter->stats.lenerrs;
623         regs_buff[119] = adapter->stats.scvpc;
624         regs_buff[120] = adapter->stats.hrmpc;
625
626         for (i = 0; i < 4; i++)
627                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
628         for (i = 0; i < 4; i++)
629                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
630         for (i = 0; i < 4; i++)
631                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
632         for (i = 0; i < 4; i++)
633                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
634         for (i = 0; i < 4; i++)
635                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
636         for (i = 0; i < 4; i++)
637                 regs_buff[141 + i] = rd32(E1000_RDH(i));
638         for (i = 0; i < 4; i++)
639                 regs_buff[145 + i] = rd32(E1000_RDT(i));
640         for (i = 0; i < 4; i++)
641                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
642
643         for (i = 0; i < 10; i++)
644                 regs_buff[153 + i] = rd32(E1000_EITR(i));
645         for (i = 0; i < 8; i++)
646                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
647         for (i = 0; i < 8; i++)
648                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
649         for (i = 0; i < 16; i++)
650                 regs_buff[179 + i] = rd32(E1000_RAL(i));
651         for (i = 0; i < 16; i++)
652                 regs_buff[195 + i] = rd32(E1000_RAH(i));
653
654         for (i = 0; i < 4; i++)
655                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
656         for (i = 0; i < 4; i++)
657                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
658         for (i = 0; i < 4; i++)
659                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
660         for (i = 0; i < 4; i++)
661                 regs_buff[223 + i] = rd32(E1000_TDH(i));
662         for (i = 0; i < 4; i++)
663                 regs_buff[227 + i] = rd32(E1000_TDT(i));
664         for (i = 0; i < 4; i++)
665                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
666         for (i = 0; i < 4; i++)
667                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
668         for (i = 0; i < 4; i++)
669                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
670         for (i = 0; i < 4; i++)
671                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
672
673         for (i = 0; i < 4; i++)
674                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
675         for (i = 0; i < 4; i++)
676                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
677         for (i = 0; i < 32; i++)
678                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
679         for (i = 0; i < 128; i++)
680                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
681         for (i = 0; i < 128; i++)
682                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
683         for (i = 0; i < 4; i++)
684                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
685
686         regs_buff[547] = rd32(E1000_TDFH);
687         regs_buff[548] = rd32(E1000_TDFT);
688         regs_buff[549] = rd32(E1000_TDFHS);
689         regs_buff[550] = rd32(E1000_TDFPC);
690
691         if (hw->mac.type > e1000_82580) {
692                 regs_buff[551] = adapter->stats.o2bgptc;
693                 regs_buff[552] = adapter->stats.b2ospc;
694                 regs_buff[553] = adapter->stats.o2bspc;
695                 regs_buff[554] = adapter->stats.b2ogprc;
696         }
697
698         if (hw->mac.type != e1000_82576)
699                 return;
700         for (i = 0; i < 12; i++)
701                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
702         for (i = 0; i < 4; i++)
703                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
704         for (i = 0; i < 12; i++)
705                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
706         for (i = 0; i < 12; i++)
707                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
708         for (i = 0; i < 12; i++)
709                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
710         for (i = 0; i < 12; i++)
711                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
712         for (i = 0; i < 12; i++)
713                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
714         for (i = 0; i < 12; i++)
715                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
716
717         for (i = 0; i < 12; i++)
718                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
719         for (i = 0; i < 12; i++)
720                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
721         for (i = 0; i < 12; i++)
722                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
723         for (i = 0; i < 12; i++)
724                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
725         for (i = 0; i < 12; i++)
726                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
727         for (i = 0; i < 12; i++)
728                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
729         for (i = 0; i < 12; i++)
730                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
731         for (i = 0; i < 12; i++)
732                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
733 }
734
735 static int igb_get_eeprom_len(struct net_device *netdev)
736 {
737         struct igb_adapter *adapter = netdev_priv(netdev);
738         return adapter->hw.nvm.word_size * 2;
739 }
740
741 static int igb_get_eeprom(struct net_device *netdev,
742                           struct ethtool_eeprom *eeprom, u8 *bytes)
743 {
744         struct igb_adapter *adapter = netdev_priv(netdev);
745         struct e1000_hw *hw = &adapter->hw;
746         u16 *eeprom_buff;
747         int first_word, last_word;
748         int ret_val = 0;
749         u16 i;
750
751         if (eeprom->len == 0)
752                 return -EINVAL;
753
754         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
755
756         first_word = eeprom->offset >> 1;
757         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
758
759         eeprom_buff = kmalloc(sizeof(u16) *
760                         (last_word - first_word + 1), GFP_KERNEL);
761         if (!eeprom_buff)
762                 return -ENOMEM;
763
764         if (hw->nvm.type == e1000_nvm_eeprom_spi)
765                 ret_val = hw->nvm.ops.read(hw, first_word,
766                                            last_word - first_word + 1,
767                                            eeprom_buff);
768         else {
769                 for (i = 0; i < last_word - first_word + 1; i++) {
770                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
771                                                    &eeprom_buff[i]);
772                         if (ret_val)
773                                 break;
774                 }
775         }
776
777         /* Device's eeprom is always little-endian, word addressable */
778         for (i = 0; i < last_word - first_word + 1; i++)
779                 le16_to_cpus(&eeprom_buff[i]);
780
781         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
782                         eeprom->len);
783         kfree(eeprom_buff);
784
785         return ret_val;
786 }
787
788 static int igb_set_eeprom(struct net_device *netdev,
789                           struct ethtool_eeprom *eeprom, u8 *bytes)
790 {
791         struct igb_adapter *adapter = netdev_priv(netdev);
792         struct e1000_hw *hw = &adapter->hw;
793         u16 *eeprom_buff;
794         void *ptr;
795         int max_len, first_word, last_word, ret_val = 0;
796         u16 i;
797
798         if (eeprom->len == 0)
799                 return -EOPNOTSUPP;
800
801         if ((hw->mac.type >= e1000_i210) &&
802             !igb_get_flash_presence_i210(hw)) {
803                 return -EOPNOTSUPP;
804         }
805
806         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
807                 return -EFAULT;
808
809         max_len = hw->nvm.word_size * 2;
810
811         first_word = eeprom->offset >> 1;
812         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
813         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
814         if (!eeprom_buff)
815                 return -ENOMEM;
816
817         ptr = (void *)eeprom_buff;
818
819         if (eeprom->offset & 1) {
820                 /* need read/modify/write of first changed EEPROM word
821                  * only the second byte of the word is being modified
822                  */
823                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
824                                             &eeprom_buff[0]);
825                 ptr++;
826         }
827         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
828                 /* need read/modify/write of last changed EEPROM word
829                  * only the first byte of the word is being modified
830                  */
831                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
832                                    &eeprom_buff[last_word - first_word]);
833         }
834
835         /* Device's eeprom is always little-endian, word addressable */
836         for (i = 0; i < last_word - first_word + 1; i++)
837                 le16_to_cpus(&eeprom_buff[i]);
838
839         memcpy(ptr, bytes, eeprom->len);
840
841         for (i = 0; i < last_word - first_word + 1; i++)
842                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
843
844         ret_val = hw->nvm.ops.write(hw, first_word,
845                                     last_word - first_word + 1, eeprom_buff);
846
847         /* Update the checksum if nvm write succeeded */
848         if (ret_val == 0)
849                 hw->nvm.ops.update(hw);
850
851         igb_set_fw_version(adapter);
852         kfree(eeprom_buff);
853         return ret_val;
854 }
855
856 static void igb_get_drvinfo(struct net_device *netdev,
857                             struct ethtool_drvinfo *drvinfo)
858 {
859         struct igb_adapter *adapter = netdev_priv(netdev);
860
861         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
862         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
863
864         /* EEPROM image version # is reported as firmware version # for
865          * 82575 controllers
866          */
867         strlcpy(drvinfo->fw_version, adapter->fw_version,
868                 sizeof(drvinfo->fw_version));
869         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
870                 sizeof(drvinfo->bus_info));
871
872         drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
873 }
874
875 static void igb_get_ringparam(struct net_device *netdev,
876                               struct ethtool_ringparam *ring)
877 {
878         struct igb_adapter *adapter = netdev_priv(netdev);
879
880         ring->rx_max_pending = IGB_MAX_RXD;
881         ring->tx_max_pending = IGB_MAX_TXD;
882         ring->rx_pending = adapter->rx_ring_count;
883         ring->tx_pending = adapter->tx_ring_count;
884 }
885
886 static int igb_set_ringparam(struct net_device *netdev,
887                              struct ethtool_ringparam *ring)
888 {
889         struct igb_adapter *adapter = netdev_priv(netdev);
890         struct igb_ring *temp_ring;
891         int i, err = 0;
892         u16 new_rx_count, new_tx_count;
893
894         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
895                 return -EINVAL;
896
897         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
898         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
899         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
900
901         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
902         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
903         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
904
905         if ((new_tx_count == adapter->tx_ring_count) &&
906             (new_rx_count == adapter->rx_ring_count)) {
907                 /* nothing to do */
908                 return 0;
909         }
910
911         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
912                 usleep_range(1000, 2000);
913
914         if (!netif_running(adapter->netdev)) {
915                 for (i = 0; i < adapter->num_tx_queues; i++)
916                         adapter->tx_ring[i]->count = new_tx_count;
917                 for (i = 0; i < adapter->num_rx_queues; i++)
918                         adapter->rx_ring[i]->count = new_rx_count;
919                 adapter->tx_ring_count = new_tx_count;
920                 adapter->rx_ring_count = new_rx_count;
921                 goto clear_reset;
922         }
923
924         if (adapter->num_tx_queues > adapter->num_rx_queues)
925                 temp_ring = vmalloc(adapter->num_tx_queues *
926                                     sizeof(struct igb_ring));
927         else
928                 temp_ring = vmalloc(adapter->num_rx_queues *
929                                     sizeof(struct igb_ring));
930
931         if (!temp_ring) {
932                 err = -ENOMEM;
933                 goto clear_reset;
934         }
935
936         igb_down(adapter);
937
938         /* We can't just free everything and then setup again,
939          * because the ISRs in MSI-X mode get passed pointers
940          * to the Tx and Rx ring structs.
941          */
942         if (new_tx_count != adapter->tx_ring_count) {
943                 for (i = 0; i < adapter->num_tx_queues; i++) {
944                         memcpy(&temp_ring[i], adapter->tx_ring[i],
945                                sizeof(struct igb_ring));
946
947                         temp_ring[i].count = new_tx_count;
948                         err = igb_setup_tx_resources(&temp_ring[i]);
949                         if (err) {
950                                 while (i) {
951                                         i--;
952                                         igb_free_tx_resources(&temp_ring[i]);
953                                 }
954                                 goto err_setup;
955                         }
956                 }
957
958                 for (i = 0; i < adapter->num_tx_queues; i++) {
959                         igb_free_tx_resources(adapter->tx_ring[i]);
960
961                         memcpy(adapter->tx_ring[i], &temp_ring[i],
962                                sizeof(struct igb_ring));
963                 }
964
965                 adapter->tx_ring_count = new_tx_count;
966         }
967
968         if (new_rx_count != adapter->rx_ring_count) {
969                 for (i = 0; i < adapter->num_rx_queues; i++) {
970                         memcpy(&temp_ring[i], adapter->rx_ring[i],
971                                sizeof(struct igb_ring));
972
973                         temp_ring[i].count = new_rx_count;
974                         err = igb_setup_rx_resources(&temp_ring[i]);
975                         if (err) {
976                                 while (i) {
977                                         i--;
978                                         igb_free_rx_resources(&temp_ring[i]);
979                                 }
980                                 goto err_setup;
981                         }
982
983                 }
984
985                 for (i = 0; i < adapter->num_rx_queues; i++) {
986                         igb_free_rx_resources(adapter->rx_ring[i]);
987
988                         memcpy(adapter->rx_ring[i], &temp_ring[i],
989                                sizeof(struct igb_ring));
990                 }
991
992                 adapter->rx_ring_count = new_rx_count;
993         }
994 err_setup:
995         igb_up(adapter);
996         vfree(temp_ring);
997 clear_reset:
998         clear_bit(__IGB_RESETTING, &adapter->state);
999         return err;
1000 }
1001
1002 /* ethtool register test data */
1003 struct igb_reg_test {
1004         u16 reg;
1005         u16 reg_offset;
1006         u16 array_len;
1007         u16 test_type;
1008         u32 mask;
1009         u32 write;
1010 };
1011
1012 /* In the hardware, registers are laid out either singly, in arrays
1013  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1014  * most tests take place on arrays or single registers (handled
1015  * as a single-element array) and special-case the tables.
1016  * Table tests are always pattern tests.
1017  *
1018  * We also make provision for some required setup steps by specifying
1019  * registers to be written without any read-back testing.
1020  */
1021
1022 #define PATTERN_TEST    1
1023 #define SET_READ_TEST   2
1024 #define WRITE_NO_TEST   3
1025 #define TABLE32_TEST    4
1026 #define TABLE64_TEST_LO 5
1027 #define TABLE64_TEST_HI 6
1028
1029 /* i210 reg test */
1030 static struct igb_reg_test reg_test_i210[] = {
1031         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1032         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1033         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1034         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1035         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1037         /* RDH is read-only for i210, only test RDT. */
1038         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1040         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1042         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1047         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1048         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1049         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1050         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1051                                                 0xFFFFFFFF, 0xFFFFFFFF },
1052         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1053                                                 0x900FFFFF, 0xFFFFFFFF },
1054         { E1000_MTA,       0, 128, TABLE32_TEST,
1055                                                 0xFFFFFFFF, 0xFFFFFFFF },
1056         { 0, 0, 0, 0, 0 }
1057 };
1058
1059 /* i350 reg test */
1060 static struct igb_reg_test reg_test_i350[] = {
1061         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1063         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1064         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1065         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1066         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1067         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1068         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1069         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1070         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1071         /* RDH is read-only for i350, only test RDT. */
1072         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1073         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1075         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1076         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1077         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1080         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1083         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1086         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1087         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1088         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1089         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1090                                                 0xFFFFFFFF, 0xFFFFFFFF },
1091         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1092                                                 0xC3FFFFFF, 0xFFFFFFFF },
1093         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1094                                                 0xFFFFFFFF, 0xFFFFFFFF },
1095         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1096                                                 0xC3FFFFFF, 0xFFFFFFFF },
1097         { E1000_MTA,       0, 128, TABLE32_TEST,
1098                                                 0xFFFFFFFF, 0xFFFFFFFF },
1099         { 0, 0, 0, 0 }
1100 };
1101
1102 /* 82580 reg test */
1103 static struct igb_reg_test reg_test_82580[] = {
1104         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1106         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1107         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1109         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1110         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1111         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1112         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1114         /* RDH is read-only for 82580, only test RDT. */
1115         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1116         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1118         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1119         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1120         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1121         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1123         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1127         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1128         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1129         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1130         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1131         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1132         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1133                                                 0xFFFFFFFF, 0xFFFFFFFF },
1134         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1135                                                 0x83FFFFFF, 0xFFFFFFFF },
1136         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1137                                                 0xFFFFFFFF, 0xFFFFFFFF },
1138         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1139                                                 0x83FFFFFF, 0xFFFFFFFF },
1140         { E1000_MTA,       0, 128, TABLE32_TEST,
1141                                                 0xFFFFFFFF, 0xFFFFFFFF },
1142         { 0, 0, 0, 0 }
1143 };
1144
1145 /* 82576 reg test */
1146 static struct igb_reg_test reg_test_82576[] = {
1147         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1149         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1150         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1152         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1153         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1154         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1155         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1157         /* Enable all RX queues before testing. */
1158         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1159           E1000_RXDCTL_QUEUE_ENABLE },
1160         { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1161           E1000_RXDCTL_QUEUE_ENABLE },
1162         /* RDH is read-only for 82576, only test RDT. */
1163         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1165         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1166         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1167         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1168         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1169         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1170         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1171         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1173         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1174         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1175         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1176         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1177         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1178         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1179         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1180         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1182         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1183         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1184         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1185         { 0, 0, 0, 0 }
1186 };
1187
1188 /* 82575 register test */
1189 static struct igb_reg_test reg_test_82575[] = {
1190         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1192         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1193         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1194         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1195         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1196         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1197         /* Enable all four RX queues before testing. */
1198         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1199           E1000_RXDCTL_QUEUE_ENABLE },
1200         /* RDH is read-only for 82575, only test RDT. */
1201         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1202         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1203         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1204         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1205         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1206         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1207         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1208         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1209         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1210         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1211         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1212         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1213         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1214         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1215         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1216         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1217         { 0, 0, 0, 0 }
1218 };
1219
1220 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1221                              int reg, u32 mask, u32 write)
1222 {
1223         struct e1000_hw *hw = &adapter->hw;
1224         u32 pat, val;
1225         static const u32 _test[] = {
1226                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1227         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1228                 wr32(reg, (_test[pat] & write));
1229                 val = rd32(reg) & mask;
1230                 if (val != (_test[pat] & write & mask)) {
1231                         dev_err(&adapter->pdev->dev,
1232                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1233                                 reg, val, (_test[pat] & write & mask));
1234                         *data = reg;
1235                         return true;
1236                 }
1237         }
1238
1239         return false;
1240 }
1241
1242 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1243                               int reg, u32 mask, u32 write)
1244 {
1245         struct e1000_hw *hw = &adapter->hw;
1246         u32 val;
1247
1248         wr32(reg, write & mask);
1249         val = rd32(reg);
1250         if ((write & mask) != (val & mask)) {
1251                 dev_err(&adapter->pdev->dev,
1252                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1253                         reg, (val & mask), (write & mask));
1254                 *data = reg;
1255                 return true;
1256         }
1257
1258         return false;
1259 }
1260
1261 #define REG_PATTERN_TEST(reg, mask, write) \
1262         do { \
1263                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1264                         return 1; \
1265         } while (0)
1266
1267 #define REG_SET_AND_CHECK(reg, mask, write) \
1268         do { \
1269                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1270                         return 1; \
1271         } while (0)
1272
1273 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1274 {
1275         struct e1000_hw *hw = &adapter->hw;
1276         struct igb_reg_test *test;
1277         u32 value, before, after;
1278         u32 i, toggle;
1279
1280         switch (adapter->hw.mac.type) {
1281         case e1000_i350:
1282         case e1000_i354:
1283                 test = reg_test_i350;
1284                 toggle = 0x7FEFF3FF;
1285                 break;
1286         case e1000_i210:
1287         case e1000_i211:
1288                 test = reg_test_i210;
1289                 toggle = 0x7FEFF3FF;
1290                 break;
1291         case e1000_82580:
1292                 test = reg_test_82580;
1293                 toggle = 0x7FEFF3FF;
1294                 break;
1295         case e1000_82576:
1296                 test = reg_test_82576;
1297                 toggle = 0x7FFFF3FF;
1298                 break;
1299         default:
1300                 test = reg_test_82575;
1301                 toggle = 0x7FFFF3FF;
1302                 break;
1303         }
1304
1305         /* Because the status register is such a special case,
1306          * we handle it separately from the rest of the register
1307          * tests.  Some bits are read-only, some toggle, and some
1308          * are writable on newer MACs.
1309          */
1310         before = rd32(E1000_STATUS);
1311         value = (rd32(E1000_STATUS) & toggle);
1312         wr32(E1000_STATUS, toggle);
1313         after = rd32(E1000_STATUS) & toggle;
1314         if (value != after) {
1315                 dev_err(&adapter->pdev->dev,
1316                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1317                         after, value);
1318                 *data = 1;
1319                 return 1;
1320         }
1321         /* restore previous status */
1322         wr32(E1000_STATUS, before);
1323
1324         /* Perform the remainder of the register test, looping through
1325          * the test table until we either fail or reach the null entry.
1326          */
1327         while (test->reg) {
1328                 for (i = 0; i < test->array_len; i++) {
1329                         switch (test->test_type) {
1330                         case PATTERN_TEST:
1331                                 REG_PATTERN_TEST(test->reg +
1332                                                 (i * test->reg_offset),
1333                                                 test->mask,
1334                                                 test->write);
1335                                 break;
1336                         case SET_READ_TEST:
1337                                 REG_SET_AND_CHECK(test->reg +
1338                                                 (i * test->reg_offset),
1339                                                 test->mask,
1340                                                 test->write);
1341                                 break;
1342                         case WRITE_NO_TEST:
1343                                 writel(test->write,
1344                                     (adapter->hw.hw_addr + test->reg)
1345                                         + (i * test->reg_offset));
1346                                 break;
1347                         case TABLE32_TEST:
1348                                 REG_PATTERN_TEST(test->reg + (i * 4),
1349                                                 test->mask,
1350                                                 test->write);
1351                                 break;
1352                         case TABLE64_TEST_LO:
1353                                 REG_PATTERN_TEST(test->reg + (i * 8),
1354                                                 test->mask,
1355                                                 test->write);
1356                                 break;
1357                         case TABLE64_TEST_HI:
1358                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1359                                                 test->mask,
1360                                                 test->write);
1361                                 break;
1362                         }
1363                 }
1364                 test++;
1365         }
1366
1367         *data = 0;
1368         return 0;
1369 }
1370
1371 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1372 {
1373         struct e1000_hw *hw = &adapter->hw;
1374
1375         *data = 0;
1376
1377         /* Validate eeprom on all parts but flashless */
1378         switch (hw->mac.type) {
1379         case e1000_i210:
1380         case e1000_i211:
1381                 if (igb_get_flash_presence_i210(hw)) {
1382                         if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1383                                 *data = 2;
1384                 }
1385                 break;
1386         default:
1387                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1388                         *data = 2;
1389                 break;
1390         }
1391
1392         return *data;
1393 }
1394
1395 static irqreturn_t igb_test_intr(int irq, void *data)
1396 {
1397         struct igb_adapter *adapter = (struct igb_adapter *) data;
1398         struct e1000_hw *hw = &adapter->hw;
1399
1400         adapter->test_icr |= rd32(E1000_ICR);
1401
1402         return IRQ_HANDLED;
1403 }
1404
1405 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1406 {
1407         struct e1000_hw *hw = &adapter->hw;
1408         struct net_device *netdev = adapter->netdev;
1409         u32 mask, ics_mask, i = 0, shared_int = true;
1410         u32 irq = adapter->pdev->irq;
1411
1412         *data = 0;
1413
1414         /* Hook up test interrupt handler just for this test */
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 if (request_irq(adapter->msix_entries[0].vector,
1417                                 igb_test_intr, 0, netdev->name, adapter)) {
1418                         *data = 1;
1419                         return -1;
1420                 }
1421         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1422                 shared_int = false;
1423                 if (request_irq(irq,
1424                                 igb_test_intr, 0, netdev->name, adapter)) {
1425                         *data = 1;
1426                         return -1;
1427                 }
1428         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1429                                 netdev->name, adapter)) {
1430                 shared_int = false;
1431         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1432                  netdev->name, adapter)) {
1433                 *data = 1;
1434                 return -1;
1435         }
1436         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1437                 (shared_int ? "shared" : "unshared"));
1438
1439         /* Disable all the interrupts */
1440         wr32(E1000_IMC, ~0);
1441         wrfl();
1442         usleep_range(10000, 11000);
1443
1444         /* Define all writable bits for ICS */
1445         switch (hw->mac.type) {
1446         case e1000_82575:
1447                 ics_mask = 0x37F47EDD;
1448                 break;
1449         case e1000_82576:
1450                 ics_mask = 0x77D4FBFD;
1451                 break;
1452         case e1000_82580:
1453                 ics_mask = 0x77DCFED5;
1454                 break;
1455         case e1000_i350:
1456         case e1000_i354:
1457         case e1000_i210:
1458         case e1000_i211:
1459                 ics_mask = 0x77DCFED5;
1460                 break;
1461         default:
1462                 ics_mask = 0x7FFFFFFF;
1463                 break;
1464         }
1465
1466         /* Test each interrupt */
1467         for (; i < 31; i++) {
1468                 /* Interrupt to test */
1469                 mask = BIT(i);
1470
1471                 if (!(mask & ics_mask))
1472                         continue;
1473
1474                 if (!shared_int) {
1475                         /* Disable the interrupt to be reported in
1476                          * the cause register and then force the same
1477                          * interrupt and see if one gets posted.  If
1478                          * an interrupt was posted to the bus, the
1479                          * test failed.
1480                          */
1481                         adapter->test_icr = 0;
1482
1483                         /* Flush any pending interrupts */
1484                         wr32(E1000_ICR, ~0);
1485
1486                         wr32(E1000_IMC, mask);
1487                         wr32(E1000_ICS, mask);
1488                         wrfl();
1489                         usleep_range(10000, 11000);
1490
1491                         if (adapter->test_icr & mask) {
1492                                 *data = 3;
1493                                 break;
1494                         }
1495                 }
1496
1497                 /* Enable the interrupt to be reported in
1498                  * the cause register and then force the same
1499                  * interrupt and see if one gets posted.  If
1500                  * an interrupt was not posted to the bus, the
1501                  * test failed.
1502                  */
1503                 adapter->test_icr = 0;
1504
1505                 /* Flush any pending interrupts */
1506                 wr32(E1000_ICR, ~0);
1507
1508                 wr32(E1000_IMS, mask);
1509                 wr32(E1000_ICS, mask);
1510                 wrfl();
1511                 usleep_range(10000, 11000);
1512
1513                 if (!(adapter->test_icr & mask)) {
1514                         *data = 4;
1515                         break;
1516                 }
1517
1518                 if (!shared_int) {
1519                         /* Disable the other interrupts to be reported in
1520                          * the cause register and then force the other
1521                          * interrupts and see if any get posted.  If
1522                          * an interrupt was posted to the bus, the
1523                          * test failed.
1524                          */
1525                         adapter->test_icr = 0;
1526
1527                         /* Flush any pending interrupts */
1528                         wr32(E1000_ICR, ~0);
1529
1530                         wr32(E1000_IMC, ~mask);
1531                         wr32(E1000_ICS, ~mask);
1532                         wrfl();
1533                         usleep_range(10000, 11000);
1534
1535                         if (adapter->test_icr & mask) {
1536                                 *data = 5;
1537                                 break;
1538                         }
1539                 }
1540         }
1541
1542         /* Disable all the interrupts */
1543         wr32(E1000_IMC, ~0);
1544         wrfl();
1545         usleep_range(10000, 11000);
1546
1547         /* Unhook test interrupt handler */
1548         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1549                 free_irq(adapter->msix_entries[0].vector, adapter);
1550         else
1551                 free_irq(irq, adapter);
1552
1553         return *data;
1554 }
1555
1556 static void igb_free_desc_rings(struct igb_adapter *adapter)
1557 {
1558         igb_free_tx_resources(&adapter->test_tx_ring);
1559         igb_free_rx_resources(&adapter->test_rx_ring);
1560 }
1561
1562 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1563 {
1564         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1565         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1566         struct e1000_hw *hw = &adapter->hw;
1567         int ret_val;
1568
1569         /* Setup Tx descriptor ring and Tx buffers */
1570         tx_ring->count = IGB_DEFAULT_TXD;
1571         tx_ring->dev = &adapter->pdev->dev;
1572         tx_ring->netdev = adapter->netdev;
1573         tx_ring->reg_idx = adapter->vfs_allocated_count;
1574
1575         if (igb_setup_tx_resources(tx_ring)) {
1576                 ret_val = 1;
1577                 goto err_nomem;
1578         }
1579
1580         igb_setup_tctl(adapter);
1581         igb_configure_tx_ring(adapter, tx_ring);
1582
1583         /* Setup Rx descriptor ring and Rx buffers */
1584         rx_ring->count = IGB_DEFAULT_RXD;
1585         rx_ring->dev = &adapter->pdev->dev;
1586         rx_ring->netdev = adapter->netdev;
1587         rx_ring->reg_idx = adapter->vfs_allocated_count;
1588
1589         if (igb_setup_rx_resources(rx_ring)) {
1590                 ret_val = 3;
1591                 goto err_nomem;
1592         }
1593
1594         /* set the default queue to queue 0 of PF */
1595         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1596
1597         /* enable receive ring */
1598         igb_setup_rctl(adapter);
1599         igb_configure_rx_ring(adapter, rx_ring);
1600
1601         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1602
1603         return 0;
1604
1605 err_nomem:
1606         igb_free_desc_rings(adapter);
1607         return ret_val;
1608 }
1609
1610 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1611 {
1612         struct e1000_hw *hw = &adapter->hw;
1613
1614         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1615         igb_write_phy_reg(hw, 29, 0x001F);
1616         igb_write_phy_reg(hw, 30, 0x8FFC);
1617         igb_write_phy_reg(hw, 29, 0x001A);
1618         igb_write_phy_reg(hw, 30, 0x8FF0);
1619 }
1620
1621 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1622 {
1623         struct e1000_hw *hw = &adapter->hw;
1624         u32 ctrl_reg = 0;
1625
1626         hw->mac.autoneg = false;
1627
1628         if (hw->phy.type == e1000_phy_m88) {
1629                 if (hw->phy.id != I210_I_PHY_ID) {
1630                         /* Auto-MDI/MDIX Off */
1631                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1632                         /* reset to update Auto-MDI/MDIX */
1633                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1634                         /* autoneg off */
1635                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1636                 } else {
1637                         /* force 1000, set loopback  */
1638                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1639                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1640                 }
1641         } else if (hw->phy.type == e1000_phy_82580) {
1642                 /* enable MII loopback */
1643                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1644         }
1645
1646         /* add small delay to avoid loopback test failure */
1647         msleep(50);
1648
1649         /* force 1000, set loopback */
1650         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1651
1652         /* Now set up the MAC to the same speed/duplex as the PHY. */
1653         ctrl_reg = rd32(E1000_CTRL);
1654         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1655         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1656                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1657                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1658                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1659                      E1000_CTRL_SLU);    /* Set link up enable bit */
1660
1661         if (hw->phy.type == e1000_phy_m88)
1662                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1663
1664         wr32(E1000_CTRL, ctrl_reg);
1665
1666         /* Disable the receiver on the PHY so when a cable is plugged in, the
1667          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1668          */
1669         if (hw->phy.type == e1000_phy_m88)
1670                 igb_phy_disable_receiver(adapter);
1671
1672         mdelay(500);
1673         return 0;
1674 }
1675
1676 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1677 {
1678         return igb_integrated_phy_loopback(adapter);
1679 }
1680
1681 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1682 {
1683         struct e1000_hw *hw = &adapter->hw;
1684         u32 reg;
1685
1686         reg = rd32(E1000_CTRL_EXT);
1687
1688         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1689         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1690                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1691                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1692                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1693                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1694                 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1695                 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1696                         /* Enable DH89xxCC MPHY for near end loopback */
1697                         reg = rd32(E1000_MPHY_ADDR_CTL);
1698                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1699                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1700                         wr32(E1000_MPHY_ADDR_CTL, reg);
1701
1702                         reg = rd32(E1000_MPHY_DATA);
1703                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1704                         wr32(E1000_MPHY_DATA, reg);
1705                 }
1706
1707                 reg = rd32(E1000_RCTL);
1708                 reg |= E1000_RCTL_LBM_TCVR;
1709                 wr32(E1000_RCTL, reg);
1710
1711                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1712
1713                 reg = rd32(E1000_CTRL);
1714                 reg &= ~(E1000_CTRL_RFCE |
1715                          E1000_CTRL_TFCE |
1716                          E1000_CTRL_LRST);
1717                 reg |= E1000_CTRL_SLU |
1718                        E1000_CTRL_FD;
1719                 wr32(E1000_CTRL, reg);
1720
1721                 /* Unset switch control to serdes energy detect */
1722                 reg = rd32(E1000_CONNSW);
1723                 reg &= ~E1000_CONNSW_ENRGSRC;
1724                 wr32(E1000_CONNSW, reg);
1725
1726                 /* Unset sigdetect for SERDES loopback on
1727                  * 82580 and newer devices.
1728                  */
1729                 if (hw->mac.type >= e1000_82580) {
1730                         reg = rd32(E1000_PCS_CFG0);
1731                         reg |= E1000_PCS_CFG_IGN_SD;
1732                         wr32(E1000_PCS_CFG0, reg);
1733                 }
1734
1735                 /* Set PCS register for forced speed */
1736                 reg = rd32(E1000_PCS_LCTL);
1737                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1738                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1739                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1740                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1741                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1742                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1743                 wr32(E1000_PCS_LCTL, reg);
1744
1745                 return 0;
1746         }
1747
1748         return igb_set_phy_loopback(adapter);
1749 }
1750
1751 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1752 {
1753         struct e1000_hw *hw = &adapter->hw;
1754         u32 rctl;
1755         u16 phy_reg;
1756
1757         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1758         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1759         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1760         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1761         (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1762                 u32 reg;
1763
1764                 /* Disable near end loopback on DH89xxCC */
1765                 reg = rd32(E1000_MPHY_ADDR_CTL);
1766                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1767                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1768                 wr32(E1000_MPHY_ADDR_CTL, reg);
1769
1770                 reg = rd32(E1000_MPHY_DATA);
1771                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1772                 wr32(E1000_MPHY_DATA, reg);
1773         }
1774
1775         rctl = rd32(E1000_RCTL);
1776         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1777         wr32(E1000_RCTL, rctl);
1778
1779         hw->mac.autoneg = true;
1780         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1781         if (phy_reg & MII_CR_LOOPBACK) {
1782                 phy_reg &= ~MII_CR_LOOPBACK;
1783                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1784                 igb_phy_sw_reset(hw);
1785         }
1786 }
1787
1788 static void igb_create_lbtest_frame(struct sk_buff *skb,
1789                                     unsigned int frame_size)
1790 {
1791         memset(skb->data, 0xFF, frame_size);
1792         frame_size /= 2;
1793         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1794         memset(&skb->data[frame_size + 10], 0xBE, 1);
1795         memset(&skb->data[frame_size + 12], 0xAF, 1);
1796 }
1797
1798 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1799                                   unsigned int frame_size)
1800 {
1801         unsigned char *data;
1802         bool match = true;
1803
1804         frame_size >>= 1;
1805
1806         data = kmap(rx_buffer->page);
1807
1808         if (data[3] != 0xFF ||
1809             data[frame_size + 10] != 0xBE ||
1810             data[frame_size + 12] != 0xAF)
1811                 match = false;
1812
1813         kunmap(rx_buffer->page);
1814
1815         return match;
1816 }
1817
1818 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1819                                 struct igb_ring *tx_ring,
1820                                 unsigned int size)
1821 {
1822         union e1000_adv_rx_desc *rx_desc;
1823         struct igb_rx_buffer *rx_buffer_info;
1824         struct igb_tx_buffer *tx_buffer_info;
1825         u16 rx_ntc, tx_ntc, count = 0;
1826
1827         /* initialize next to clean and descriptor values */
1828         rx_ntc = rx_ring->next_to_clean;
1829         tx_ntc = tx_ring->next_to_clean;
1830         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1831
1832         while (rx_desc->wb.upper.length) {
1833                 /* check Rx buffer */
1834                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1835
1836                 /* sync Rx buffer for CPU read */
1837                 dma_sync_single_for_cpu(rx_ring->dev,
1838                                         rx_buffer_info->dma,
1839                                         size,
1840                                         DMA_FROM_DEVICE);
1841
1842                 /* verify contents of skb */
1843                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1844                         count++;
1845
1846                 /* sync Rx buffer for device write */
1847                 dma_sync_single_for_device(rx_ring->dev,
1848                                            rx_buffer_info->dma,
1849                                            size,
1850                                            DMA_FROM_DEVICE);
1851
1852                 /* unmap buffer on Tx side */
1853                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1854
1855                 /* Free all the Tx ring sk_buffs */
1856                 dev_kfree_skb_any(tx_buffer_info->skb);
1857
1858                 /* unmap skb header data */
1859                 dma_unmap_single(tx_ring->dev,
1860                                  dma_unmap_addr(tx_buffer_info, dma),
1861                                  dma_unmap_len(tx_buffer_info, len),
1862                                  DMA_TO_DEVICE);
1863                 dma_unmap_len_set(tx_buffer_info, len, 0);
1864
1865                 /* increment Rx/Tx next to clean counters */
1866                 rx_ntc++;
1867                 if (rx_ntc == rx_ring->count)
1868                         rx_ntc = 0;
1869                 tx_ntc++;
1870                 if (tx_ntc == tx_ring->count)
1871                         tx_ntc = 0;
1872
1873                 /* fetch next descriptor */
1874                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1875         }
1876
1877         netdev_tx_reset_queue(txring_txq(tx_ring));
1878
1879         /* re-map buffers to ring, store next to clean values */
1880         igb_alloc_rx_buffers(rx_ring, count);
1881         rx_ring->next_to_clean = rx_ntc;
1882         tx_ring->next_to_clean = tx_ntc;
1883
1884         return count;
1885 }
1886
1887 static int igb_run_loopback_test(struct igb_adapter *adapter)
1888 {
1889         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1890         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1891         u16 i, j, lc, good_cnt;
1892         int ret_val = 0;
1893         unsigned int size = IGB_RX_HDR_LEN;
1894         netdev_tx_t tx_ret_val;
1895         struct sk_buff *skb;
1896
1897         /* allocate test skb */
1898         skb = alloc_skb(size, GFP_KERNEL);
1899         if (!skb)
1900                 return 11;
1901
1902         /* place data into test skb */
1903         igb_create_lbtest_frame(skb, size);
1904         skb_put(skb, size);
1905
1906         /* Calculate the loop count based on the largest descriptor ring
1907          * The idea is to wrap the largest ring a number of times using 64
1908          * send/receive pairs during each loop
1909          */
1910
1911         if (rx_ring->count <= tx_ring->count)
1912                 lc = ((tx_ring->count / 64) * 2) + 1;
1913         else
1914                 lc = ((rx_ring->count / 64) * 2) + 1;
1915
1916         for (j = 0; j <= lc; j++) { /* loop count loop */
1917                 /* reset count of good packets */
1918                 good_cnt = 0;
1919
1920                 /* place 64 packets on the transmit queue*/
1921                 for (i = 0; i < 64; i++) {
1922                         skb_get(skb);
1923                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1924                         if (tx_ret_val == NETDEV_TX_OK)
1925                                 good_cnt++;
1926                 }
1927
1928                 if (good_cnt != 64) {
1929                         ret_val = 12;
1930                         break;
1931                 }
1932
1933                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1934                 msleep(200);
1935
1936                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1937                 if (good_cnt != 64) {
1938                         ret_val = 13;
1939                         break;
1940                 }
1941         } /* end loop count loop */
1942
1943         /* free the original skb */
1944         kfree_skb(skb);
1945
1946         return ret_val;
1947 }
1948
1949 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1950 {
1951         /* PHY loopback cannot be performed if SoL/IDER
1952          * sessions are active
1953          */
1954         if (igb_check_reset_block(&adapter->hw)) {
1955                 dev_err(&adapter->pdev->dev,
1956                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1957                 *data = 0;
1958                 goto out;
1959         }
1960
1961         if (adapter->hw.mac.type == e1000_i354) {
1962                 dev_info(&adapter->pdev->dev,
1963                         "Loopback test not supported on i354.\n");
1964                 *data = 0;
1965                 goto out;
1966         }
1967         *data = igb_setup_desc_rings(adapter);
1968         if (*data)
1969                 goto out;
1970         *data = igb_setup_loopback_test(adapter);
1971         if (*data)
1972                 goto err_loopback;
1973         *data = igb_run_loopback_test(adapter);
1974         igb_loopback_cleanup(adapter);
1975
1976 err_loopback:
1977         igb_free_desc_rings(adapter);
1978 out:
1979         return *data;
1980 }
1981
1982 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1983 {
1984         struct e1000_hw *hw = &adapter->hw;
1985         *data = 0;
1986         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1987                 int i = 0;
1988
1989                 hw->mac.serdes_has_link = false;
1990
1991                 /* On some blade server designs, link establishment
1992                  * could take as long as 2-3 minutes
1993                  */
1994                 do {
1995                         hw->mac.ops.check_for_link(&adapter->hw);
1996                         if (hw->mac.serdes_has_link)
1997                                 return *data;
1998                         msleep(20);
1999                 } while (i++ < 3750);
2000
2001                 *data = 1;
2002         } else {
2003                 hw->mac.ops.check_for_link(&adapter->hw);
2004                 if (hw->mac.autoneg)
2005                         msleep(5000);
2006
2007                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2008                         *data = 1;
2009         }
2010         return *data;
2011 }
2012
2013 static void igb_diag_test(struct net_device *netdev,
2014                           struct ethtool_test *eth_test, u64 *data)
2015 {
2016         struct igb_adapter *adapter = netdev_priv(netdev);
2017         u16 autoneg_advertised;
2018         u8 forced_speed_duplex, autoneg;
2019         bool if_running = netif_running(netdev);
2020
2021         set_bit(__IGB_TESTING, &adapter->state);
2022
2023         /* can't do offline tests on media switching devices */
2024         if (adapter->hw.dev_spec._82575.mas_capable)
2025                 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2026         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2027                 /* Offline tests */
2028
2029                 /* save speed, duplex, autoneg settings */
2030                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2031                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2032                 autoneg = adapter->hw.mac.autoneg;
2033
2034                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2035
2036                 /* power up link for link test */
2037                 igb_power_up_link(adapter);
2038
2039                 /* Link test performed before hardware reset so autoneg doesn't
2040                  * interfere with test result
2041                  */
2042                 if (igb_link_test(adapter, &data[TEST_LINK]))
2043                         eth_test->flags |= ETH_TEST_FL_FAILED;
2044
2045                 if (if_running)
2046                         /* indicate we're in test mode */
2047                         igb_close(netdev);
2048                 else
2049                         igb_reset(adapter);
2050
2051                 if (igb_reg_test(adapter, &data[TEST_REG]))
2052                         eth_test->flags |= ETH_TEST_FL_FAILED;
2053
2054                 igb_reset(adapter);
2055                 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2056                         eth_test->flags |= ETH_TEST_FL_FAILED;
2057
2058                 igb_reset(adapter);
2059                 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2060                         eth_test->flags |= ETH_TEST_FL_FAILED;
2061
2062                 igb_reset(adapter);
2063                 /* power up link for loopback test */
2064                 igb_power_up_link(adapter);
2065                 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2066                         eth_test->flags |= ETH_TEST_FL_FAILED;
2067
2068                 /* restore speed, duplex, autoneg settings */
2069                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2070                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2071                 adapter->hw.mac.autoneg = autoneg;
2072
2073                 /* force this routine to wait until autoneg complete/timeout */
2074                 adapter->hw.phy.autoneg_wait_to_complete = true;
2075                 igb_reset(adapter);
2076                 adapter->hw.phy.autoneg_wait_to_complete = false;
2077
2078                 clear_bit(__IGB_TESTING, &adapter->state);
2079                 if (if_running)
2080                         igb_open(netdev);
2081         } else {
2082                 dev_info(&adapter->pdev->dev, "online testing starting\n");
2083
2084                 /* PHY is powered down when interface is down */
2085                 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2086                         eth_test->flags |= ETH_TEST_FL_FAILED;
2087                 else
2088                         data[TEST_LINK] = 0;
2089
2090                 /* Online tests aren't run; pass by default */
2091                 data[TEST_REG] = 0;
2092                 data[TEST_EEP] = 0;
2093                 data[TEST_IRQ] = 0;
2094                 data[TEST_LOOP] = 0;
2095
2096                 clear_bit(__IGB_TESTING, &adapter->state);
2097         }
2098         msleep_interruptible(4 * 1000);
2099 }
2100
2101 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2102 {
2103         struct igb_adapter *adapter = netdev_priv(netdev);
2104
2105         wol->wolopts = 0;
2106
2107         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2108                 return;
2109
2110         wol->supported = WAKE_UCAST | WAKE_MCAST |
2111                          WAKE_BCAST | WAKE_MAGIC |
2112                          WAKE_PHY;
2113
2114         /* apply any specific unsupported masks here */
2115         switch (adapter->hw.device_id) {
2116         default:
2117                 break;
2118         }
2119
2120         if (adapter->wol & E1000_WUFC_EX)
2121                 wol->wolopts |= WAKE_UCAST;
2122         if (adapter->wol & E1000_WUFC_MC)
2123                 wol->wolopts |= WAKE_MCAST;
2124         if (adapter->wol & E1000_WUFC_BC)
2125                 wol->wolopts |= WAKE_BCAST;
2126         if (adapter->wol & E1000_WUFC_MAG)
2127                 wol->wolopts |= WAKE_MAGIC;
2128         if (adapter->wol & E1000_WUFC_LNKC)
2129                 wol->wolopts |= WAKE_PHY;
2130 }
2131
2132 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2133 {
2134         struct igb_adapter *adapter = netdev_priv(netdev);
2135
2136         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2137                 return -EOPNOTSUPP;
2138
2139         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2140                 return wol->wolopts ? -EOPNOTSUPP : 0;
2141
2142         /* these settings will always override what we currently have */
2143         adapter->wol = 0;
2144
2145         if (wol->wolopts & WAKE_UCAST)
2146                 adapter->wol |= E1000_WUFC_EX;
2147         if (wol->wolopts & WAKE_MCAST)
2148                 adapter->wol |= E1000_WUFC_MC;
2149         if (wol->wolopts & WAKE_BCAST)
2150                 adapter->wol |= E1000_WUFC_BC;
2151         if (wol->wolopts & WAKE_MAGIC)
2152                 adapter->wol |= E1000_WUFC_MAG;
2153         if (wol->wolopts & WAKE_PHY)
2154                 adapter->wol |= E1000_WUFC_LNKC;
2155         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2156
2157         return 0;
2158 }
2159
2160 /* bit defines for adapter->led_status */
2161 #define IGB_LED_ON              0
2162
2163 static int igb_set_phys_id(struct net_device *netdev,
2164                            enum ethtool_phys_id_state state)
2165 {
2166         struct igb_adapter *adapter = netdev_priv(netdev);
2167         struct e1000_hw *hw = &adapter->hw;
2168
2169         switch (state) {
2170         case ETHTOOL_ID_ACTIVE:
2171                 igb_blink_led(hw);
2172                 return 2;
2173         case ETHTOOL_ID_ON:
2174                 igb_blink_led(hw);
2175                 break;
2176         case ETHTOOL_ID_OFF:
2177                 igb_led_off(hw);
2178                 break;
2179         case ETHTOOL_ID_INACTIVE:
2180                 igb_led_off(hw);
2181                 clear_bit(IGB_LED_ON, &adapter->led_status);
2182                 igb_cleanup_led(hw);
2183                 break;
2184         }
2185
2186         return 0;
2187 }
2188
2189 static int igb_set_coalesce(struct net_device *netdev,
2190                             struct ethtool_coalesce *ec)
2191 {
2192         struct igb_adapter *adapter = netdev_priv(netdev);
2193         int i;
2194
2195         if (ec->rx_max_coalesced_frames ||
2196             ec->rx_coalesce_usecs_irq ||
2197             ec->rx_max_coalesced_frames_irq ||
2198             ec->tx_max_coalesced_frames ||
2199             ec->tx_coalesce_usecs_irq ||
2200             ec->stats_block_coalesce_usecs ||
2201             ec->use_adaptive_rx_coalesce ||
2202             ec->use_adaptive_tx_coalesce ||
2203             ec->pkt_rate_low ||
2204             ec->rx_coalesce_usecs_low ||
2205             ec->rx_max_coalesced_frames_low ||
2206             ec->tx_coalesce_usecs_low ||
2207             ec->tx_max_coalesced_frames_low ||
2208             ec->pkt_rate_high ||
2209             ec->rx_coalesce_usecs_high ||
2210             ec->rx_max_coalesced_frames_high ||
2211             ec->tx_coalesce_usecs_high ||
2212             ec->tx_max_coalesced_frames_high ||
2213             ec->rate_sample_interval)
2214                 return -ENOTSUPP;
2215
2216         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2217             ((ec->rx_coalesce_usecs > 3) &&
2218              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2219             (ec->rx_coalesce_usecs == 2))
2220                 return -EINVAL;
2221
2222         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2223             ((ec->tx_coalesce_usecs > 3) &&
2224              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2225             (ec->tx_coalesce_usecs == 2))
2226                 return -EINVAL;
2227
2228         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2229                 return -EINVAL;
2230
2231         /* If ITR is disabled, disable DMAC */
2232         if (ec->rx_coalesce_usecs == 0) {
2233                 if (adapter->flags & IGB_FLAG_DMAC)
2234                         adapter->flags &= ~IGB_FLAG_DMAC;
2235         }
2236
2237         /* convert to rate of irq's per second */
2238         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2239                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2240         else
2241                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2242
2243         /* convert to rate of irq's per second */
2244         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2245                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2246         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2247                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2248         else
2249                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2250
2251         for (i = 0; i < adapter->num_q_vectors; i++) {
2252                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2253                 q_vector->tx.work_limit = adapter->tx_work_limit;
2254                 if (q_vector->rx.ring)
2255                         q_vector->itr_val = adapter->rx_itr_setting;
2256                 else
2257                         q_vector->itr_val = adapter->tx_itr_setting;
2258                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2259                         q_vector->itr_val = IGB_START_ITR;
2260                 q_vector->set_itr = 1;
2261         }
2262
2263         return 0;
2264 }
2265
2266 static int igb_get_coalesce(struct net_device *netdev,
2267                             struct ethtool_coalesce *ec)
2268 {
2269         struct igb_adapter *adapter = netdev_priv(netdev);
2270
2271         if (adapter->rx_itr_setting <= 3)
2272                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2273         else
2274                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2275
2276         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2277                 if (adapter->tx_itr_setting <= 3)
2278                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2279                 else
2280                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2281         }
2282
2283         return 0;
2284 }
2285
2286 static int igb_nway_reset(struct net_device *netdev)
2287 {
2288         struct igb_adapter *adapter = netdev_priv(netdev);
2289         if (netif_running(netdev))
2290                 igb_reinit_locked(adapter);
2291         return 0;
2292 }
2293
2294 static int igb_get_sset_count(struct net_device *netdev, int sset)
2295 {
2296         switch (sset) {
2297         case ETH_SS_STATS:
2298                 return IGB_STATS_LEN;
2299         case ETH_SS_TEST:
2300                 return IGB_TEST_LEN;
2301         case ETH_SS_PRIV_FLAGS:
2302                 return IGB_PRIV_FLAGS_STR_LEN;
2303         default:
2304                 return -ENOTSUPP;
2305         }
2306 }
2307
2308 static void igb_get_ethtool_stats(struct net_device *netdev,
2309                                   struct ethtool_stats *stats, u64 *data)
2310 {
2311         struct igb_adapter *adapter = netdev_priv(netdev);
2312         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2313         unsigned int start;
2314         struct igb_ring *ring;
2315         int i, j;
2316         char *p;
2317
2318         spin_lock(&adapter->stats64_lock);
2319         igb_update_stats(adapter);
2320
2321         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2322                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2323                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2324                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2325         }
2326         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2327                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2328                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2329                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2330         }
2331         for (j = 0; j < adapter->num_tx_queues; j++) {
2332                 u64     restart2;
2333
2334                 ring = adapter->tx_ring[j];
2335                 do {
2336                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2337                         data[i]   = ring->tx_stats.packets;
2338                         data[i+1] = ring->tx_stats.bytes;
2339                         data[i+2] = ring->tx_stats.restart_queue;
2340                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2341                 do {
2342                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2343                         restart2  = ring->tx_stats.restart_queue2;
2344                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2345                 data[i+2] += restart2;
2346
2347                 i += IGB_TX_QUEUE_STATS_LEN;
2348         }
2349         for (j = 0; j < adapter->num_rx_queues; j++) {
2350                 ring = adapter->rx_ring[j];
2351                 do {
2352                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2353                         data[i]   = ring->rx_stats.packets;
2354                         data[i+1] = ring->rx_stats.bytes;
2355                         data[i+2] = ring->rx_stats.drops;
2356                         data[i+3] = ring->rx_stats.csum_err;
2357                         data[i+4] = ring->rx_stats.alloc_failed;
2358                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2359                 i += IGB_RX_QUEUE_STATS_LEN;
2360         }
2361         spin_unlock(&adapter->stats64_lock);
2362 }
2363
2364 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2365 {
2366         struct igb_adapter *adapter = netdev_priv(netdev);
2367         u8 *p = data;
2368         int i;
2369
2370         switch (stringset) {
2371         case ETH_SS_TEST:
2372                 memcpy(data, *igb_gstrings_test,
2373                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2374                 break;
2375         case ETH_SS_STATS:
2376                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2377                         memcpy(p, igb_gstrings_stats[i].stat_string,
2378                                ETH_GSTRING_LEN);
2379                         p += ETH_GSTRING_LEN;
2380                 }
2381                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2382                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2383                                ETH_GSTRING_LEN);
2384                         p += ETH_GSTRING_LEN;
2385                 }
2386                 for (i = 0; i < adapter->num_tx_queues; i++) {
2387                         sprintf(p, "tx_queue_%u_packets", i);
2388                         p += ETH_GSTRING_LEN;
2389                         sprintf(p, "tx_queue_%u_bytes", i);
2390                         p += ETH_GSTRING_LEN;
2391                         sprintf(p, "tx_queue_%u_restart", i);
2392                         p += ETH_GSTRING_LEN;
2393                 }
2394                 for (i = 0; i < adapter->num_rx_queues; i++) {
2395                         sprintf(p, "rx_queue_%u_packets", i);
2396                         p += ETH_GSTRING_LEN;
2397                         sprintf(p, "rx_queue_%u_bytes", i);
2398                         p += ETH_GSTRING_LEN;
2399                         sprintf(p, "rx_queue_%u_drops", i);
2400                         p += ETH_GSTRING_LEN;
2401                         sprintf(p, "rx_queue_%u_csum_err", i);
2402                         p += ETH_GSTRING_LEN;
2403                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2404                         p += ETH_GSTRING_LEN;
2405                 }
2406                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2407                 break;
2408         case ETH_SS_PRIV_FLAGS:
2409                 memcpy(data, igb_priv_flags_strings,
2410                        IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2411                 break;
2412         }
2413 }
2414
2415 static int igb_get_ts_info(struct net_device *dev,
2416                            struct ethtool_ts_info *info)
2417 {
2418         struct igb_adapter *adapter = netdev_priv(dev);
2419
2420         if (adapter->ptp_clock)
2421                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2422         else
2423                 info->phc_index = -1;
2424
2425         switch (adapter->hw.mac.type) {
2426         case e1000_82575:
2427                 info->so_timestamping =
2428                         SOF_TIMESTAMPING_TX_SOFTWARE |
2429                         SOF_TIMESTAMPING_RX_SOFTWARE |
2430                         SOF_TIMESTAMPING_SOFTWARE;
2431                 return 0;
2432         case e1000_82576:
2433         case e1000_82580:
2434         case e1000_i350:
2435         case e1000_i354:
2436         case e1000_i210:
2437         case e1000_i211:
2438                 info->so_timestamping =
2439                         SOF_TIMESTAMPING_TX_SOFTWARE |
2440                         SOF_TIMESTAMPING_RX_SOFTWARE |
2441                         SOF_TIMESTAMPING_SOFTWARE |
2442                         SOF_TIMESTAMPING_TX_HARDWARE |
2443                         SOF_TIMESTAMPING_RX_HARDWARE |
2444                         SOF_TIMESTAMPING_RAW_HARDWARE;
2445
2446                 info->tx_types =
2447                         BIT(HWTSTAMP_TX_OFF) |
2448                         BIT(HWTSTAMP_TX_ON);
2449
2450                 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2451
2452                 /* 82576 does not support timestamping all packets. */
2453                 if (adapter->hw.mac.type >= e1000_82580)
2454                         info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2455                 else
2456                         info->rx_filters |=
2457                                 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2458                                 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2459                                 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2460
2461                 return 0;
2462         default:
2463                 return -EOPNOTSUPP;
2464         }
2465 }
2466
2467 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2468 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2469                                      struct ethtool_rxnfc *cmd)
2470 {
2471         struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2472         struct igb_nfc_filter *rule = NULL;
2473
2474         /* report total rule count */
2475         cmd->data = IGB_MAX_RXNFC_FILTERS;
2476
2477         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2478                 if (fsp->location <= rule->sw_idx)
2479                         break;
2480         }
2481
2482         if (!rule || fsp->location != rule->sw_idx)
2483                 return -EINVAL;
2484
2485         if (rule->filter.match_flags) {
2486                 fsp->flow_type = ETHER_FLOW;
2487                 fsp->ring_cookie = rule->action;
2488                 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2489                         fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2490                         fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2491                 }
2492                 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2493                         fsp->flow_type |= FLOW_EXT;
2494                         fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2495                         fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2496                 }
2497                 return 0;
2498         }
2499         return -EINVAL;
2500 }
2501
2502 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2503                                    struct ethtool_rxnfc *cmd,
2504                                    u32 *rule_locs)
2505 {
2506         struct igb_nfc_filter *rule;
2507         int cnt = 0;
2508
2509         /* report total rule count */
2510         cmd->data = IGB_MAX_RXNFC_FILTERS;
2511
2512         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2513                 if (cnt == cmd->rule_cnt)
2514                         return -EMSGSIZE;
2515                 rule_locs[cnt] = rule->sw_idx;
2516                 cnt++;
2517         }
2518
2519         cmd->rule_cnt = cnt;
2520
2521         return 0;
2522 }
2523
2524 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2525                                  struct ethtool_rxnfc *cmd)
2526 {
2527         cmd->data = 0;
2528
2529         /* Report default options for RSS on igb */
2530         switch (cmd->flow_type) {
2531         case TCP_V4_FLOW:
2532                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2533                 /* Fall through */
2534         case UDP_V4_FLOW:
2535                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2536                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2537                 /* Fall through */
2538         case SCTP_V4_FLOW:
2539         case AH_ESP_V4_FLOW:
2540         case AH_V4_FLOW:
2541         case ESP_V4_FLOW:
2542         case IPV4_FLOW:
2543                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2544                 break;
2545         case TCP_V6_FLOW:
2546                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2547                 /* Fall through */
2548         case UDP_V6_FLOW:
2549                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2550                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2551                 /* Fall through */
2552         case SCTP_V6_FLOW:
2553         case AH_ESP_V6_FLOW:
2554         case AH_V6_FLOW:
2555         case ESP_V6_FLOW:
2556         case IPV6_FLOW:
2557                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2558                 break;
2559         default:
2560                 return -EINVAL;
2561         }
2562
2563         return 0;
2564 }
2565
2566 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2567                          u32 *rule_locs)
2568 {
2569         struct igb_adapter *adapter = netdev_priv(dev);
2570         int ret = -EOPNOTSUPP;
2571
2572         switch (cmd->cmd) {
2573         case ETHTOOL_GRXRINGS:
2574                 cmd->data = adapter->num_rx_queues;
2575                 ret = 0;
2576                 break;
2577         case ETHTOOL_GRXCLSRLCNT:
2578                 cmd->rule_cnt = adapter->nfc_filter_count;
2579                 ret = 0;
2580                 break;
2581         case ETHTOOL_GRXCLSRULE:
2582                 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2583                 break;
2584         case ETHTOOL_GRXCLSRLALL:
2585                 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2586                 break;
2587         case ETHTOOL_GRXFH:
2588                 ret = igb_get_rss_hash_opts(adapter, cmd);
2589                 break;
2590         default:
2591                 break;
2592         }
2593
2594         return ret;
2595 }
2596
2597 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2598                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2599 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2600                                 struct ethtool_rxnfc *nfc)
2601 {
2602         u32 flags = adapter->flags;
2603
2604         /* RSS does not support anything other than hashing
2605          * to queues on src and dst IPs and ports
2606          */
2607         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2608                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2609                 return -EINVAL;
2610
2611         switch (nfc->flow_type) {
2612         case TCP_V4_FLOW:
2613         case TCP_V6_FLOW:
2614                 if (!(nfc->data & RXH_IP_SRC) ||
2615                     !(nfc->data & RXH_IP_DST) ||
2616                     !(nfc->data & RXH_L4_B_0_1) ||
2617                     !(nfc->data & RXH_L4_B_2_3))
2618                         return -EINVAL;
2619                 break;
2620         case UDP_V4_FLOW:
2621                 if (!(nfc->data & RXH_IP_SRC) ||
2622                     !(nfc->data & RXH_IP_DST))
2623                         return -EINVAL;
2624                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2625                 case 0:
2626                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2627                         break;
2628                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2629                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2630                         break;
2631                 default:
2632                         return -EINVAL;
2633                 }
2634                 break;
2635         case UDP_V6_FLOW:
2636                 if (!(nfc->data & RXH_IP_SRC) ||
2637                     !(nfc->data & RXH_IP_DST))
2638                         return -EINVAL;
2639                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2640                 case 0:
2641                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2642                         break;
2643                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2644                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2645                         break;
2646                 default:
2647                         return -EINVAL;
2648                 }
2649                 break;
2650         case AH_ESP_V4_FLOW:
2651         case AH_V4_FLOW:
2652         case ESP_V4_FLOW:
2653         case SCTP_V4_FLOW:
2654         case AH_ESP_V6_FLOW:
2655         case AH_V6_FLOW:
2656         case ESP_V6_FLOW:
2657         case SCTP_V6_FLOW:
2658                 if (!(nfc->data & RXH_IP_SRC) ||
2659                     !(nfc->data & RXH_IP_DST) ||
2660                     (nfc->data & RXH_L4_B_0_1) ||
2661                     (nfc->data & RXH_L4_B_2_3))
2662                         return -EINVAL;
2663                 break;
2664         default:
2665                 return -EINVAL;
2666         }
2667
2668         /* if we changed something we need to update flags */
2669         if (flags != adapter->flags) {
2670                 struct e1000_hw *hw = &adapter->hw;
2671                 u32 mrqc = rd32(E1000_MRQC);
2672
2673                 if ((flags & UDP_RSS_FLAGS) &&
2674                     !(adapter->flags & UDP_RSS_FLAGS))
2675                         dev_err(&adapter->pdev->dev,
2676                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2677
2678                 adapter->flags = flags;
2679
2680                 /* Perform hash on these packet types */
2681                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2682                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2683                         E1000_MRQC_RSS_FIELD_IPV6 |
2684                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2685
2686                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2687                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2688
2689                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2690                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2691
2692                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2693                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2694
2695                 wr32(E1000_MRQC, mrqc);
2696         }
2697
2698         return 0;
2699 }
2700
2701 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2702                                         struct igb_nfc_filter *input)
2703 {
2704         struct e1000_hw *hw = &adapter->hw;
2705         u8 i;
2706         u32 etqf;
2707         u16 etype;
2708
2709         /* find an empty etype filter register */
2710         for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2711                 if (!adapter->etype_bitmap[i])
2712                         break;
2713         }
2714         if (i == MAX_ETYPE_FILTER) {
2715                 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2716                 return -EINVAL;
2717         }
2718
2719         adapter->etype_bitmap[i] = true;
2720
2721         etqf = rd32(E1000_ETQF(i));
2722         etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2723
2724         etqf |= E1000_ETQF_FILTER_ENABLE;
2725         etqf &= ~E1000_ETQF_ETYPE_MASK;
2726         etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2727
2728         etqf &= ~E1000_ETQF_QUEUE_MASK;
2729         etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2730                 & E1000_ETQF_QUEUE_MASK);
2731         etqf |= E1000_ETQF_QUEUE_ENABLE;
2732
2733         wr32(E1000_ETQF(i), etqf);
2734
2735         input->etype_reg_index = i;
2736
2737         return 0;
2738 }
2739
2740 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2741                                             struct igb_nfc_filter *input)
2742 {
2743         struct e1000_hw *hw = &adapter->hw;
2744         u8 vlan_priority;
2745         u16 queue_index;
2746         u32 vlapqf;
2747
2748         vlapqf = rd32(E1000_VLAPQF);
2749         vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2750                                 >> VLAN_PRIO_SHIFT;
2751         queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2752
2753         /* check whether this vlan prio is already set */
2754         if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2755             (queue_index != input->action)) {
2756                 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2757                 return -EEXIST;
2758         }
2759
2760         vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2761         vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2762
2763         wr32(E1000_VLAPQF, vlapqf);
2764
2765         return 0;
2766 }
2767
2768 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2769 {
2770         int err = -EINVAL;
2771
2772         if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2773                 err = igb_rxnfc_write_etype_filter(adapter, input);
2774                 if (err)
2775                         return err;
2776         }
2777
2778         if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2779                 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2780
2781         return err;
2782 }
2783
2784 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2785                                         u16 reg_index)
2786 {
2787         struct e1000_hw *hw = &adapter->hw;
2788         u32 etqf = rd32(E1000_ETQF(reg_index));
2789
2790         etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2791         etqf &= ~E1000_ETQF_QUEUE_MASK;
2792         etqf &= ~E1000_ETQF_FILTER_ENABLE;
2793
2794         wr32(E1000_ETQF(reg_index), etqf);
2795
2796         adapter->etype_bitmap[reg_index] = false;
2797 }
2798
2799 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2800                                        u16 vlan_tci)
2801 {
2802         struct e1000_hw *hw = &adapter->hw;
2803         u8 vlan_priority;
2804         u32 vlapqf;
2805
2806         vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2807
2808         vlapqf = rd32(E1000_VLAPQF);
2809         vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2810         vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2811                                                 E1000_VLAPQF_QUEUE_MASK);
2812
2813         wr32(E1000_VLAPQF, vlapqf);
2814 }
2815
2816 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2817 {
2818         if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2819                 igb_clear_etype_filter_regs(adapter,
2820                                             input->etype_reg_index);
2821
2822         if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2823                 igb_clear_vlan_prio_filter(adapter,
2824                                            ntohs(input->filter.vlan_tci));
2825
2826         return 0;
2827 }
2828
2829 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2830                                         struct igb_nfc_filter *input,
2831                                         u16 sw_idx)
2832 {
2833         struct igb_nfc_filter *rule, *parent;
2834         int err = -EINVAL;
2835
2836         parent = NULL;
2837         rule = NULL;
2838
2839         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2840                 /* hash found, or no matching entry */
2841                 if (rule->sw_idx >= sw_idx)
2842                         break;
2843                 parent = rule;
2844         }
2845
2846         /* if there is an old rule occupying our place remove it */
2847         if (rule && (rule->sw_idx == sw_idx)) {
2848                 if (!input)
2849                         err = igb_erase_filter(adapter, rule);
2850
2851                 hlist_del(&rule->nfc_node);
2852                 kfree(rule);
2853                 adapter->nfc_filter_count--;
2854         }
2855
2856         /* If no input this was a delete, err should be 0 if a rule was
2857          * successfully found and removed from the list else -EINVAL
2858          */
2859         if (!input)
2860                 return err;
2861
2862         /* initialize node */
2863         INIT_HLIST_NODE(&input->nfc_node);
2864
2865         /* add filter to the list */
2866         if (parent)
2867                 hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2868         else
2869                 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2870
2871         /* update counts */
2872         adapter->nfc_filter_count++;
2873
2874         return 0;
2875 }
2876
2877 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2878                                      struct ethtool_rxnfc *cmd)
2879 {
2880         struct net_device *netdev = adapter->netdev;
2881         struct ethtool_rx_flow_spec *fsp =
2882                 (struct ethtool_rx_flow_spec *)&cmd->fs;
2883         struct igb_nfc_filter *input, *rule;
2884         int err = 0;
2885
2886         if (!(netdev->hw_features & NETIF_F_NTUPLE))
2887                 return -EOPNOTSUPP;
2888
2889         /* Don't allow programming if the action is a queue greater than
2890          * the number of online Rx queues.
2891          */
2892         if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2893             (fsp->ring_cookie >= adapter->num_rx_queues)) {
2894                 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2895                 return -EINVAL;
2896         }
2897
2898         /* Don't allow indexes to exist outside of available space */
2899         if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2900                 dev_err(&adapter->pdev->dev, "Location out of range\n");
2901                 return -EINVAL;
2902         }
2903
2904         if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2905                 return -EINVAL;
2906
2907         if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2908             fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2909                 return -EINVAL;
2910
2911         input = kzalloc(sizeof(*input), GFP_KERNEL);
2912         if (!input)
2913                 return -ENOMEM;
2914
2915         if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2916                 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2917                 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2918         }
2919
2920         if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2921                 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2922                         err = -EINVAL;
2923                         goto err_out;
2924                 }
2925                 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2926                 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2927         }
2928
2929         input->action = fsp->ring_cookie;
2930         input->sw_idx = fsp->location;
2931
2932         spin_lock(&adapter->nfc_lock);
2933
2934         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2935                 if (!memcmp(&input->filter, &rule->filter,
2936                             sizeof(input->filter))) {
2937                         err = -EEXIST;
2938                         dev_err(&adapter->pdev->dev,
2939                                 "ethtool: this filter is already set\n");
2940                         goto err_out_w_lock;
2941                 }
2942         }
2943
2944         err = igb_add_filter(adapter, input);
2945         if (err)
2946                 goto err_out_w_lock;
2947
2948         igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2949
2950         spin_unlock(&adapter->nfc_lock);
2951         return 0;
2952
2953 err_out_w_lock:
2954         spin_unlock(&adapter->nfc_lock);
2955 err_out:
2956         kfree(input);
2957         return err;
2958 }
2959
2960 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2961                                      struct ethtool_rxnfc *cmd)
2962 {
2963         struct ethtool_rx_flow_spec *fsp =
2964                 (struct ethtool_rx_flow_spec *)&cmd->fs;
2965         int err;
2966
2967         spin_lock(&adapter->nfc_lock);
2968         err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2969         spin_unlock(&adapter->nfc_lock);
2970
2971         return err;
2972 }
2973
2974 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2975 {
2976         struct igb_adapter *adapter = netdev_priv(dev);
2977         int ret = -EOPNOTSUPP;
2978
2979         switch (cmd->cmd) {
2980         case ETHTOOL_SRXFH:
2981                 ret = igb_set_rss_hash_opt(adapter, cmd);
2982                 break;
2983         case ETHTOOL_SRXCLSRLINS:
2984                 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2985                 break;
2986         case ETHTOOL_SRXCLSRLDEL:
2987                 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2988         default:
2989                 break;
2990         }
2991
2992         return ret;
2993 }
2994
2995 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2996 {
2997         struct igb_adapter *adapter = netdev_priv(netdev);
2998         struct e1000_hw *hw = &adapter->hw;
2999         u32 ret_val;
3000         u16 phy_data;
3001
3002         if ((hw->mac.type < e1000_i350) ||
3003             (hw->phy.media_type != e1000_media_type_copper))
3004                 return -EOPNOTSUPP;
3005
3006         edata->supported = (SUPPORTED_1000baseT_Full |
3007                             SUPPORTED_100baseT_Full);
3008         if (!hw->dev_spec._82575.eee_disable)
3009                 edata->advertised =
3010                         mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3011
3012         /* The IPCNFG and EEER registers are not supported on I354. */
3013         if (hw->mac.type == e1000_i354) {
3014                 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3015         } else {
3016                 u32 eeer;
3017
3018                 eeer = rd32(E1000_EEER);
3019
3020                 /* EEE status on negotiated link */
3021                 if (eeer & E1000_EEER_EEE_NEG)
3022                         edata->eee_active = true;
3023
3024                 if (eeer & E1000_EEER_TX_LPI_EN)
3025                         edata->tx_lpi_enabled = true;
3026         }
3027
3028         /* EEE Link Partner Advertised */
3029         switch (hw->mac.type) {
3030         case e1000_i350:
3031                 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3032                                            &phy_data);
3033                 if (ret_val)
3034                         return -ENODATA;
3035
3036                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3037                 break;
3038         case e1000_i354:
3039         case e1000_i210:
3040         case e1000_i211:
3041                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3042                                              E1000_EEE_LP_ADV_DEV_I210,
3043                                              &phy_data);
3044                 if (ret_val)
3045                         return -ENODATA;
3046
3047                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3048
3049                 break;
3050         default:
3051                 break;
3052         }
3053
3054         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3055
3056         if ((hw->mac.type == e1000_i354) &&
3057             (edata->eee_enabled))
3058                 edata->tx_lpi_enabled = true;
3059
3060         /* Report correct negotiated EEE status for devices that
3061          * wrongly report EEE at half-duplex
3062          */
3063         if (adapter->link_duplex == HALF_DUPLEX) {
3064                 edata->eee_enabled = false;
3065                 edata->eee_active = false;
3066                 edata->tx_lpi_enabled = false;
3067                 edata->advertised &= ~edata->advertised;
3068         }
3069
3070         return 0;
3071 }
3072
3073 static int igb_set_eee(struct net_device *netdev,
3074                        struct ethtool_eee *edata)
3075 {
3076         struct igb_adapter *adapter = netdev_priv(netdev);
3077         struct e1000_hw *hw = &adapter->hw;
3078         struct ethtool_eee eee_curr;
3079         bool adv1g_eee = true, adv100m_eee = true;
3080         s32 ret_val;
3081
3082         if ((hw->mac.type < e1000_i350) ||
3083             (hw->phy.media_type != e1000_media_type_copper))
3084                 return -EOPNOTSUPP;
3085
3086         memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3087
3088         ret_val = igb_get_eee(netdev, &eee_curr);
3089         if (ret_val)
3090                 return ret_val;
3091
3092         if (eee_curr.eee_enabled) {
3093                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3094                         dev_err(&adapter->pdev->dev,
3095                                 "Setting EEE tx-lpi is not supported\n");
3096                         return -EINVAL;
3097                 }
3098
3099                 /* Tx LPI timer is not implemented currently */
3100                 if (edata->tx_lpi_timer) {
3101                         dev_err(&adapter->pdev->dev,
3102                                 "Setting EEE Tx LPI timer is not supported\n");
3103                         return -EINVAL;
3104                 }
3105
3106                 if (!edata->advertised || (edata->advertised &
3107                     ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3108                         dev_err(&adapter->pdev->dev,
3109                                 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3110                         return -EINVAL;
3111                 }
3112                 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3113                 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3114
3115         } else if (!edata->eee_enabled) {
3116                 dev_err(&adapter->pdev->dev,
3117                         "Setting EEE options are not supported with EEE disabled\n");
3118                         return -EINVAL;
3119                 }
3120
3121         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3122         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3123                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3124                 adapter->flags |= IGB_FLAG_EEE;
3125
3126                 /* reset link */
3127                 if (netif_running(netdev))
3128                         igb_reinit_locked(adapter);
3129                 else
3130                         igb_reset(adapter);
3131         }
3132
3133         if (hw->mac.type == e1000_i354)
3134                 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3135         else
3136                 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3137
3138         if (ret_val) {
3139                 dev_err(&adapter->pdev->dev,
3140                         "Problem setting EEE advertisement options\n");
3141                 return -EINVAL;
3142         }
3143
3144         return 0;
3145 }
3146
3147 static int igb_get_module_info(struct net_device *netdev,
3148                                struct ethtool_modinfo *modinfo)
3149 {
3150         struct igb_adapter *adapter = netdev_priv(netdev);
3151         struct e1000_hw *hw = &adapter->hw;
3152         u32 status = 0;
3153         u16 sff8472_rev, addr_mode;
3154         bool page_swap = false;
3155
3156         if ((hw->phy.media_type == e1000_media_type_copper) ||
3157             (hw->phy.media_type == e1000_media_type_unknown))
3158                 return -EOPNOTSUPP;
3159
3160         /* Check whether we support SFF-8472 or not */
3161         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3162         if (status)
3163                 return -EIO;
3164
3165         /* addressing mode is not supported */
3166         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3167         if (status)
3168                 return -EIO;
3169
3170         /* addressing mode is not supported */
3171         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3172                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3173                 page_swap = true;
3174         }
3175
3176         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3177                 /* We have an SFP, but it does not support SFF-8472 */
3178                 modinfo->type = ETH_MODULE_SFF_8079;
3179                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3180         } else {
3181                 /* We have an SFP which supports a revision of SFF-8472 */
3182                 modinfo->type = ETH_MODULE_SFF_8472;
3183                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3184         }
3185
3186         return 0;
3187 }
3188
3189 static int igb_get_module_eeprom(struct net_device *netdev,
3190                                  struct ethtool_eeprom *ee, u8 *data)
3191 {
3192         struct igb_adapter *adapter = netdev_priv(netdev);
3193         struct e1000_hw *hw = &adapter->hw;
3194         u32 status = 0;
3195         u16 *dataword;
3196         u16 first_word, last_word;
3197         int i = 0;
3198
3199         if (ee->len == 0)
3200                 return -EINVAL;
3201
3202         first_word = ee->offset >> 1;
3203         last_word = (ee->offset + ee->len - 1) >> 1;
3204
3205         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3206                            GFP_KERNEL);
3207         if (!dataword)
3208                 return -ENOMEM;
3209
3210         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3211         for (i = 0; i < last_word - first_word + 1; i++) {
3212                 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3213                                               &dataword[i]);
3214                 if (status) {
3215                         /* Error occurred while reading module */
3216                         kfree(dataword);
3217                         return -EIO;
3218                 }
3219
3220                 be16_to_cpus(&dataword[i]);
3221         }
3222
3223         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3224         kfree(dataword);
3225
3226         return 0;
3227 }
3228
3229 static int igb_ethtool_begin(struct net_device *netdev)
3230 {
3231         struct igb_adapter *adapter = netdev_priv(netdev);
3232         pm_runtime_get_sync(&adapter->pdev->dev);
3233         return 0;
3234 }
3235
3236 static void igb_ethtool_complete(struct net_device *netdev)
3237 {
3238         struct igb_adapter *adapter = netdev_priv(netdev);
3239         pm_runtime_put(&adapter->pdev->dev);
3240 }
3241
3242 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3243 {
3244         return IGB_RETA_SIZE;
3245 }
3246
3247 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3248                         u8 *hfunc)
3249 {
3250         struct igb_adapter *adapter = netdev_priv(netdev);
3251         int i;
3252
3253         if (hfunc)
3254                 *hfunc = ETH_RSS_HASH_TOP;
3255         if (!indir)
3256                 return 0;
3257         for (i = 0; i < IGB_RETA_SIZE; i++)
3258                 indir[i] = adapter->rss_indir_tbl[i];
3259
3260         return 0;
3261 }
3262
3263 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3264 {
3265         struct e1000_hw *hw = &adapter->hw;
3266         u32 reg = E1000_RETA(0);
3267         u32 shift = 0;
3268         int i = 0;
3269
3270         switch (hw->mac.type) {
3271         case e1000_82575:
3272                 shift = 6;
3273                 break;
3274         case e1000_82576:
3275                 /* 82576 supports 2 RSS queues for SR-IOV */
3276                 if (adapter->vfs_allocated_count)
3277                         shift = 3;
3278                 break;
3279         default:
3280                 break;
3281         }
3282
3283         while (i < IGB_RETA_SIZE) {
3284                 u32 val = 0;
3285                 int j;
3286
3287                 for (j = 3; j >= 0; j--) {
3288                         val <<= 8;
3289                         val |= adapter->rss_indir_tbl[i + j];
3290                 }
3291
3292                 wr32(reg, val << shift);
3293                 reg += 4;
3294                 i += 4;
3295         }
3296 }
3297
3298 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3299                         const u8 *key, const u8 hfunc)
3300 {
3301         struct igb_adapter *adapter = netdev_priv(netdev);
3302         struct e1000_hw *hw = &adapter->hw;
3303         int i;
3304         u32 num_queues;
3305
3306         /* We do not allow change in unsupported parameters */
3307         if (key ||
3308             (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3309                 return -EOPNOTSUPP;
3310         if (!indir)
3311                 return 0;
3312
3313         num_queues = adapter->rss_queues;
3314
3315         switch (hw->mac.type) {
3316         case e1000_82576:
3317                 /* 82576 supports 2 RSS queues for SR-IOV */
3318                 if (adapter->vfs_allocated_count)
3319                         num_queues = 2;
3320                 break;
3321         default:
3322                 break;
3323         }
3324
3325         /* Verify user input. */
3326         for (i = 0; i < IGB_RETA_SIZE; i++)
3327                 if (indir[i] >= num_queues)
3328                         return -EINVAL;
3329
3330
3331         for (i = 0; i < IGB_RETA_SIZE; i++)
3332                 adapter->rss_indir_tbl[i] = indir[i];
3333
3334         igb_write_rss_indir_tbl(adapter);
3335
3336         return 0;
3337 }
3338
3339 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3340 {
3341         struct e1000_hw *hw = &adapter->hw;
3342         unsigned int max_combined = 0;
3343
3344         switch (hw->mac.type) {
3345         case e1000_i211:
3346                 max_combined = IGB_MAX_RX_QUEUES_I211;
3347                 break;
3348         case e1000_82575:
3349         case e1000_i210:
3350                 max_combined = IGB_MAX_RX_QUEUES_82575;
3351                 break;
3352         case e1000_i350:
3353                 if (!!adapter->vfs_allocated_count) {
3354                         max_combined = 1;
3355                         break;
3356                 }
3357                 /* fall through */
3358         case e1000_82576:
3359                 if (!!adapter->vfs_allocated_count) {
3360                         max_combined = 2;
3361                         break;
3362                 }
3363                 /* fall through */
3364         case e1000_82580:
3365         case e1000_i354:
3366         default:
3367                 max_combined = IGB_MAX_RX_QUEUES;
3368                 break;
3369         }
3370
3371         return max_combined;
3372 }
3373
3374 static void igb_get_channels(struct net_device *netdev,
3375                              struct ethtool_channels *ch)
3376 {
3377         struct igb_adapter *adapter = netdev_priv(netdev);
3378
3379         /* Report maximum channels */
3380         ch->max_combined = igb_max_channels(adapter);
3381
3382         /* Report info for other vector */
3383         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3384                 ch->max_other = NON_Q_VECTORS;
3385                 ch->other_count = NON_Q_VECTORS;
3386         }
3387
3388         ch->combined_count = adapter->rss_queues;
3389 }
3390
3391 static int igb_set_channels(struct net_device *netdev,
3392                             struct ethtool_channels *ch)
3393 {
3394         struct igb_adapter *adapter = netdev_priv(netdev);
3395         unsigned int count = ch->combined_count;
3396         unsigned int max_combined = 0;
3397
3398         /* Verify they are not requesting separate vectors */
3399         if (!count || ch->rx_count || ch->tx_count)
3400                 return -EINVAL;
3401
3402         /* Verify other_count is valid and has not been changed */
3403         if (ch->other_count != NON_Q_VECTORS)
3404                 return -EINVAL;
3405
3406         /* Verify the number of channels doesn't exceed hw limits */
3407         max_combined = igb_max_channels(adapter);
3408         if (count > max_combined)
3409                 return -EINVAL;
3410
3411         if (count != adapter->rss_queues) {
3412                 adapter->rss_queues = count;
3413                 igb_set_flag_queue_pairs(adapter, max_combined);
3414
3415                 /* Hardware has to reinitialize queues and interrupts to
3416                  * match the new configuration.
3417                  */
3418                 return igb_reinit_queues(adapter);
3419         }
3420
3421         return 0;
3422 }
3423
3424 static u32 igb_get_priv_flags(struct net_device *netdev)
3425 {
3426         struct igb_adapter *adapter = netdev_priv(netdev);
3427         u32 priv_flags = 0;
3428
3429         if (adapter->flags & IGB_FLAG_RX_LEGACY)
3430                 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3431
3432         return priv_flags;
3433 }
3434
3435 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3436 {
3437         struct igb_adapter *adapter = netdev_priv(netdev);
3438         unsigned int flags = adapter->flags;
3439
3440         flags &= ~IGB_FLAG_RX_LEGACY;
3441         if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3442                 flags |= IGB_FLAG_RX_LEGACY;
3443
3444         if (flags != adapter->flags) {
3445                 adapter->flags = flags;
3446
3447                 /* reset interface to repopulate queues */
3448                 if (netif_running(netdev))
3449                         igb_reinit_locked(adapter);
3450         }
3451
3452         return 0;
3453 }
3454
3455 static const struct ethtool_ops igb_ethtool_ops = {
3456         .get_drvinfo            = igb_get_drvinfo,
3457         .get_regs_len           = igb_get_regs_len,
3458         .get_regs               = igb_get_regs,
3459         .get_wol                = igb_get_wol,
3460         .set_wol                = igb_set_wol,
3461         .get_msglevel           = igb_get_msglevel,
3462         .set_msglevel           = igb_set_msglevel,
3463         .nway_reset             = igb_nway_reset,
3464         .get_link               = igb_get_link,
3465         .get_eeprom_len         = igb_get_eeprom_len,
3466         .get_eeprom             = igb_get_eeprom,
3467         .set_eeprom             = igb_set_eeprom,
3468         .get_ringparam          = igb_get_ringparam,
3469         .set_ringparam          = igb_set_ringparam,
3470         .get_pauseparam         = igb_get_pauseparam,
3471         .set_pauseparam         = igb_set_pauseparam,
3472         .self_test              = igb_diag_test,
3473         .get_strings            = igb_get_strings,
3474         .set_phys_id            = igb_set_phys_id,
3475         .get_sset_count         = igb_get_sset_count,
3476         .get_ethtool_stats      = igb_get_ethtool_stats,
3477         .get_coalesce           = igb_get_coalesce,
3478         .set_coalesce           = igb_set_coalesce,
3479         .get_ts_info            = igb_get_ts_info,
3480         .get_rxnfc              = igb_get_rxnfc,
3481         .set_rxnfc              = igb_set_rxnfc,
3482         .get_eee                = igb_get_eee,
3483         .set_eee                = igb_set_eee,
3484         .get_module_info        = igb_get_module_info,
3485         .get_module_eeprom      = igb_get_module_eeprom,
3486         .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3487         .get_rxfh               = igb_get_rxfh,
3488         .set_rxfh               = igb_set_rxfh,
3489         .get_channels           = igb_get_channels,
3490         .set_channels           = igb_set_channels,
3491         .get_priv_flags         = igb_get_priv_flags,
3492         .set_priv_flags         = igb_set_priv_flags,
3493         .begin                  = igb_ethtool_begin,
3494         .complete               = igb_ethtool_complete,
3495         .get_link_ksettings     = igb_get_link_ksettings,
3496         .set_link_ksettings     = igb_set_link_ksettings,
3497 };
3498
3499 void igb_set_ethtool_ops(struct net_device *netdev)
3500 {
3501         netdev->ethtool_ops = &igb_ethtool_ops;
3502 }
This page took 0.253407 seconds and 4 git commands to generate.