]> Git Repo - linux.git/blob - mm/swapfile.c
mm/swap: split swap cache into 64MB trunks
[linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88
89 static DEFINE_MUTEX(swapon_mutex);
90
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
98 }
99
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104         swp_entry_t entry = swp_entry(si->type, offset);
105         struct page *page;
106         int ret = 0;
107
108         page = find_get_page(swap_address_space(entry), swp_offset(entry));
109         if (!page)
110                 return 0;
111         /*
112          * This function is called from scan_swap_map() and it's called
113          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114          * We have to use trylock for avoiding deadlock. This is a special
115          * case and you should use try_to_free_swap() with explicit lock_page()
116          * in usual operations.
117          */
118         if (trylock_page(page)) {
119                 ret = try_to_free_swap(page);
120                 unlock_page(page);
121         }
122         put_page(page);
123         return ret;
124 }
125
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132         struct swap_extent *se;
133         sector_t start_block;
134         sector_t nr_blocks;
135         int err = 0;
136
137         /* Do not discard the swap header page! */
138         se = &si->first_swap_extent;
139         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141         if (nr_blocks) {
142                 err = blkdev_issue_discard(si->bdev, start_block,
143                                 nr_blocks, GFP_KERNEL, 0);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL, 0);
155                 if (err)
156                         break;
157
158                 cond_resched();
159         }
160         return err;             /* That will often be -EOPNOTSUPP */
161 }
162
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168                                  pgoff_t start_page, pgoff_t nr_pages)
169 {
170         struct swap_extent *se = si->curr_swap_extent;
171         int found_extent = 0;
172
173         while (nr_pages) {
174                 if (se->start_page <= start_page &&
175                     start_page < se->start_page + se->nr_pages) {
176                         pgoff_t offset = start_page - se->start_page;
177                         sector_t start_block = se->start_block + offset;
178                         sector_t nr_blocks = se->nr_pages - offset;
179
180                         if (nr_blocks > nr_pages)
181                                 nr_blocks = nr_pages;
182                         start_page += nr_blocks;
183                         nr_pages -= nr_blocks;
184
185                         if (!found_extent++)
186                                 si->curr_swap_extent = se;
187
188                         start_block <<= PAGE_SHIFT - 9;
189                         nr_blocks <<= PAGE_SHIFT - 9;
190                         if (blkdev_issue_discard(si->bdev, start_block,
191                                     nr_blocks, GFP_NOIO, 0))
192                                 break;
193                 }
194
195                 se = list_next_entry(se, list);
196         }
197 }
198
199 #define SWAPFILE_CLUSTER        256
200 #define LATENCY_LIMIT           256
201
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203         unsigned int flag)
204 {
205         info->flags = flag;
206 }
207
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210         return info->data;
211 }
212
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214                                      unsigned int c)
215 {
216         info->data = c;
217 }
218
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220                                          unsigned int c, unsigned int f)
221 {
222         info->flags = f;
223         info->data = c;
224 }
225
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232                                     unsigned int n)
233 {
234         info->data = n;
235 }
236
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238                                          unsigned int n, unsigned int f)
239 {
240         info->flags = f;
241         info->data = n;
242 }
243
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246         return info->flags & CLUSTER_FLAG_FREE;
247 }
248
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251         return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256         info->flags = CLUSTER_FLAG_NEXT_NULL;
257         info->data = 0;
258 }
259
260 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261                                                      unsigned long offset)
262 {
263         struct swap_cluster_info *ci;
264
265         ci = si->cluster_info;
266         if (ci) {
267                 ci += offset / SWAPFILE_CLUSTER;
268                 spin_lock(&ci->lock);
269         }
270         return ci;
271 }
272
273 static inline void unlock_cluster(struct swap_cluster_info *ci)
274 {
275         if (ci)
276                 spin_unlock(&ci->lock);
277 }
278
279 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280         struct swap_info_struct *si,
281         unsigned long offset)
282 {
283         struct swap_cluster_info *ci;
284
285         ci = lock_cluster(si, offset);
286         if (!ci)
287                 spin_lock(&si->lock);
288
289         return ci;
290 }
291
292 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293                                                struct swap_cluster_info *ci)
294 {
295         if (ci)
296                 unlock_cluster(ci);
297         else
298                 spin_unlock(&si->lock);
299 }
300
301 static inline bool cluster_list_empty(struct swap_cluster_list *list)
302 {
303         return cluster_is_null(&list->head);
304 }
305
306 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
307 {
308         return cluster_next(&list->head);
309 }
310
311 static void cluster_list_init(struct swap_cluster_list *list)
312 {
313         cluster_set_null(&list->head);
314         cluster_set_null(&list->tail);
315 }
316
317 static void cluster_list_add_tail(struct swap_cluster_list *list,
318                                   struct swap_cluster_info *ci,
319                                   unsigned int idx)
320 {
321         if (cluster_list_empty(list)) {
322                 cluster_set_next_flag(&list->head, idx, 0);
323                 cluster_set_next_flag(&list->tail, idx, 0);
324         } else {
325                 struct swap_cluster_info *ci_tail;
326                 unsigned int tail = cluster_next(&list->tail);
327
328                 /*
329                  * Nested cluster lock, but both cluster locks are
330                  * only acquired when we held swap_info_struct->lock
331                  */
332                 ci_tail = ci + tail;
333                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334                 cluster_set_next(ci_tail, idx);
335                 unlock_cluster(ci_tail);
336                 cluster_set_next_flag(&list->tail, idx, 0);
337         }
338 }
339
340 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341                                            struct swap_cluster_info *ci)
342 {
343         unsigned int idx;
344
345         idx = cluster_next(&list->head);
346         if (cluster_next(&list->tail) == idx) {
347                 cluster_set_null(&list->head);
348                 cluster_set_null(&list->tail);
349         } else
350                 cluster_set_next_flag(&list->head,
351                                       cluster_next(&ci[idx]), 0);
352
353         return idx;
354 }
355
356 /* Add a cluster to discard list and schedule it to do discard */
357 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
358                 unsigned int idx)
359 {
360         /*
361          * If scan_swap_map() can't find a free cluster, it will check
362          * si->swap_map directly. To make sure the discarding cluster isn't
363          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364          * will be cleared after discard
365          */
366         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
368
369         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
370
371         schedule_work(&si->discard_work);
372 }
373
374 /*
375  * Doing discard actually. After a cluster discard is finished, the cluster
376  * will be added to free cluster list. caller should hold si->lock.
377 */
378 static void swap_do_scheduled_discard(struct swap_info_struct *si)
379 {
380         struct swap_cluster_info *info, *ci;
381         unsigned int idx;
382
383         info = si->cluster_info;
384
385         while (!cluster_list_empty(&si->discard_clusters)) {
386                 idx = cluster_list_del_first(&si->discard_clusters, info);
387                 spin_unlock(&si->lock);
388
389                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
390                                 SWAPFILE_CLUSTER);
391
392                 spin_lock(&si->lock);
393                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
395                 unlock_cluster(ci);
396                 cluster_list_add_tail(&si->free_clusters, info, idx);
397                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
398                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399                                 0, SWAPFILE_CLUSTER);
400                 unlock_cluster(ci);
401         }
402 }
403
404 static void swap_discard_work(struct work_struct *work)
405 {
406         struct swap_info_struct *si;
407
408         si = container_of(work, struct swap_info_struct, discard_work);
409
410         spin_lock(&si->lock);
411         swap_do_scheduled_discard(si);
412         spin_unlock(&si->lock);
413 }
414
415 /*
416  * The cluster corresponding to page_nr will be used. The cluster will be
417  * removed from free cluster list and its usage counter will be increased.
418  */
419 static void inc_cluster_info_page(struct swap_info_struct *p,
420         struct swap_cluster_info *cluster_info, unsigned long page_nr)
421 {
422         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
423
424         if (!cluster_info)
425                 return;
426         if (cluster_is_free(&cluster_info[idx])) {
427                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428                 cluster_list_del_first(&p->free_clusters, cluster_info);
429                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
430         }
431
432         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433         cluster_set_count(&cluster_info[idx],
434                 cluster_count(&cluster_info[idx]) + 1);
435 }
436
437 /*
438  * The cluster corresponding to page_nr decreases one usage. If the usage
439  * counter becomes 0, which means no page in the cluster is in using, we can
440  * optionally discard the cluster and add it to free cluster list.
441  */
442 static void dec_cluster_info_page(struct swap_info_struct *p,
443         struct swap_cluster_info *cluster_info, unsigned long page_nr)
444 {
445         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
446
447         if (!cluster_info)
448                 return;
449
450         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451         cluster_set_count(&cluster_info[idx],
452                 cluster_count(&cluster_info[idx]) - 1);
453
454         if (cluster_count(&cluster_info[idx]) == 0) {
455                 /*
456                  * If the swap is discardable, prepare discard the cluster
457                  * instead of free it immediately. The cluster will be freed
458                  * after discard.
459                  */
460                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
462                         swap_cluster_schedule_discard(p, idx);
463                         return;
464                 }
465
466                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
467                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
468         }
469 }
470
471 /*
472  * It's possible scan_swap_map() uses a free cluster in the middle of free
473  * cluster list. Avoiding such abuse to avoid list corruption.
474  */
475 static bool
476 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
477         unsigned long offset)
478 {
479         struct percpu_cluster *percpu_cluster;
480         bool conflict;
481
482         offset /= SWAPFILE_CLUSTER;
483         conflict = !cluster_list_empty(&si->free_clusters) &&
484                 offset != cluster_list_first(&si->free_clusters) &&
485                 cluster_is_free(&si->cluster_info[offset]);
486
487         if (!conflict)
488                 return false;
489
490         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491         cluster_set_null(&percpu_cluster->index);
492         return true;
493 }
494
495 /*
496  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497  * might involve allocating a new cluster for current CPU too.
498  */
499 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500         unsigned long *offset, unsigned long *scan_base)
501 {
502         struct percpu_cluster *cluster;
503         struct swap_cluster_info *ci;
504         bool found_free;
505         unsigned long tmp, max;
506
507 new_cluster:
508         cluster = this_cpu_ptr(si->percpu_cluster);
509         if (cluster_is_null(&cluster->index)) {
510                 if (!cluster_list_empty(&si->free_clusters)) {
511                         cluster->index = si->free_clusters.head;
512                         cluster->next = cluster_next(&cluster->index) *
513                                         SWAPFILE_CLUSTER;
514                 } else if (!cluster_list_empty(&si->discard_clusters)) {
515                         /*
516                          * we don't have free cluster but have some clusters in
517                          * discarding, do discard now and reclaim them
518                          */
519                         swap_do_scheduled_discard(si);
520                         *scan_base = *offset = si->cluster_next;
521                         goto new_cluster;
522                 } else
523                         return;
524         }
525
526         found_free = false;
527
528         /*
529          * Other CPUs can use our cluster if they can't find a free cluster,
530          * check if there is still free entry in the cluster
531          */
532         tmp = cluster->next;
533         max = min_t(unsigned long, si->max,
534                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
535         if (tmp >= max) {
536                 cluster_set_null(&cluster->index);
537                 goto new_cluster;
538         }
539         ci = lock_cluster(si, tmp);
540         while (tmp < max) {
541                 if (!si->swap_map[tmp]) {
542                         found_free = true;
543                         break;
544                 }
545                 tmp++;
546         }
547         unlock_cluster(ci);
548         if (!found_free) {
549                 cluster_set_null(&cluster->index);
550                 goto new_cluster;
551         }
552         cluster->next = tmp + 1;
553         *offset = tmp;
554         *scan_base = tmp;
555 }
556
557 static unsigned long scan_swap_map(struct swap_info_struct *si,
558                                    unsigned char usage)
559 {
560         struct swap_cluster_info *ci;
561         unsigned long offset;
562         unsigned long scan_base;
563         unsigned long last_in_cluster = 0;
564         int latency_ration = LATENCY_LIMIT;
565
566         /*
567          * We try to cluster swap pages by allocating them sequentially
568          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
569          * way, however, we resort to first-free allocation, starting
570          * a new cluster.  This prevents us from scattering swap pages
571          * all over the entire swap partition, so that we reduce
572          * overall disk seek times between swap pages.  -- sct
573          * But we do now try to find an empty cluster.  -Andrea
574          * And we let swap pages go all over an SSD partition.  Hugh
575          */
576
577         si->flags += SWP_SCANNING;
578         scan_base = offset = si->cluster_next;
579
580         /* SSD algorithm */
581         if (si->cluster_info) {
582                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
583                 goto checks;
584         }
585
586         if (unlikely(!si->cluster_nr--)) {
587                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
588                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
589                         goto checks;
590                 }
591
592                 spin_unlock(&si->lock);
593
594                 /*
595                  * If seek is expensive, start searching for new cluster from
596                  * start of partition, to minimize the span of allocated swap.
597                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
598                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
599                  */
600                 scan_base = offset = si->lowest_bit;
601                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
602
603                 /* Locate the first empty (unaligned) cluster */
604                 for (; last_in_cluster <= si->highest_bit; offset++) {
605                         if (si->swap_map[offset])
606                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
607                         else if (offset == last_in_cluster) {
608                                 spin_lock(&si->lock);
609                                 offset -= SWAPFILE_CLUSTER - 1;
610                                 si->cluster_next = offset;
611                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
612                                 goto checks;
613                         }
614                         if (unlikely(--latency_ration < 0)) {
615                                 cond_resched();
616                                 latency_ration = LATENCY_LIMIT;
617                         }
618                 }
619
620                 offset = scan_base;
621                 spin_lock(&si->lock);
622                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
623         }
624
625 checks:
626         if (si->cluster_info) {
627                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
628                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
629         }
630         if (!(si->flags & SWP_WRITEOK))
631                 goto no_page;
632         if (!si->highest_bit)
633                 goto no_page;
634         if (offset > si->highest_bit)
635                 scan_base = offset = si->lowest_bit;
636
637         ci = lock_cluster(si, offset);
638         /* reuse swap entry of cache-only swap if not busy. */
639         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
640                 int swap_was_freed;
641                 unlock_cluster(ci);
642                 spin_unlock(&si->lock);
643                 swap_was_freed = __try_to_reclaim_swap(si, offset);
644                 spin_lock(&si->lock);
645                 /* entry was freed successfully, try to use this again */
646                 if (swap_was_freed)
647                         goto checks;
648                 goto scan; /* check next one */
649         }
650
651         if (si->swap_map[offset]) {
652                 unlock_cluster(ci);
653                 goto scan;
654         }
655
656         if (offset == si->lowest_bit)
657                 si->lowest_bit++;
658         if (offset == si->highest_bit)
659                 si->highest_bit--;
660         si->inuse_pages++;
661         if (si->inuse_pages == si->pages) {
662                 si->lowest_bit = si->max;
663                 si->highest_bit = 0;
664                 spin_lock(&swap_avail_lock);
665                 plist_del(&si->avail_list, &swap_avail_head);
666                 spin_unlock(&swap_avail_lock);
667         }
668         si->swap_map[offset] = usage;
669         inc_cluster_info_page(si, si->cluster_info, offset);
670         unlock_cluster(ci);
671         si->cluster_next = offset + 1;
672         si->flags -= SWP_SCANNING;
673
674         return offset;
675
676 scan:
677         spin_unlock(&si->lock);
678         while (++offset <= si->highest_bit) {
679                 if (!si->swap_map[offset]) {
680                         spin_lock(&si->lock);
681                         goto checks;
682                 }
683                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
684                         spin_lock(&si->lock);
685                         goto checks;
686                 }
687                 if (unlikely(--latency_ration < 0)) {
688                         cond_resched();
689                         latency_ration = LATENCY_LIMIT;
690                 }
691         }
692         offset = si->lowest_bit;
693         while (offset < scan_base) {
694                 if (!si->swap_map[offset]) {
695                         spin_lock(&si->lock);
696                         goto checks;
697                 }
698                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
699                         spin_lock(&si->lock);
700                         goto checks;
701                 }
702                 if (unlikely(--latency_ration < 0)) {
703                         cond_resched();
704                         latency_ration = LATENCY_LIMIT;
705                 }
706                 offset++;
707         }
708         spin_lock(&si->lock);
709
710 no_page:
711         si->flags -= SWP_SCANNING;
712         return 0;
713 }
714
715 swp_entry_t get_swap_page(void)
716 {
717         struct swap_info_struct *si, *next;
718         pgoff_t offset;
719
720         if (atomic_long_read(&nr_swap_pages) <= 0)
721                 goto noswap;
722         atomic_long_dec(&nr_swap_pages);
723
724         spin_lock(&swap_avail_lock);
725
726 start_over:
727         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
728                 /* requeue si to after same-priority siblings */
729                 plist_requeue(&si->avail_list, &swap_avail_head);
730                 spin_unlock(&swap_avail_lock);
731                 spin_lock(&si->lock);
732                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
733                         spin_lock(&swap_avail_lock);
734                         if (plist_node_empty(&si->avail_list)) {
735                                 spin_unlock(&si->lock);
736                                 goto nextsi;
737                         }
738                         WARN(!si->highest_bit,
739                              "swap_info %d in list but !highest_bit\n",
740                              si->type);
741                         WARN(!(si->flags & SWP_WRITEOK),
742                              "swap_info %d in list but !SWP_WRITEOK\n",
743                              si->type);
744                         plist_del(&si->avail_list, &swap_avail_head);
745                         spin_unlock(&si->lock);
746                         goto nextsi;
747                 }
748
749                 /* This is called for allocating swap entry for cache */
750                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
751                 spin_unlock(&si->lock);
752                 if (offset)
753                         return swp_entry(si->type, offset);
754                 pr_debug("scan_swap_map of si %d failed to find offset\n",
755                        si->type);
756                 spin_lock(&swap_avail_lock);
757 nextsi:
758                 /*
759                  * if we got here, it's likely that si was almost full before,
760                  * and since scan_swap_map() can drop the si->lock, multiple
761                  * callers probably all tried to get a page from the same si
762                  * and it filled up before we could get one; or, the si filled
763                  * up between us dropping swap_avail_lock and taking si->lock.
764                  * Since we dropped the swap_avail_lock, the swap_avail_head
765                  * list may have been modified; so if next is still in the
766                  * swap_avail_head list then try it, otherwise start over.
767                  */
768                 if (plist_node_empty(&next->avail_list))
769                         goto start_over;
770         }
771
772         spin_unlock(&swap_avail_lock);
773
774         atomic_long_inc(&nr_swap_pages);
775 noswap:
776         return (swp_entry_t) {0};
777 }
778
779 /* The only caller of this function is now suspend routine */
780 swp_entry_t get_swap_page_of_type(int type)
781 {
782         struct swap_info_struct *si;
783         pgoff_t offset;
784
785         si = swap_info[type];
786         spin_lock(&si->lock);
787         if (si && (si->flags & SWP_WRITEOK)) {
788                 atomic_long_dec(&nr_swap_pages);
789                 /* This is called for allocating swap entry, not cache */
790                 offset = scan_swap_map(si, 1);
791                 if (offset) {
792                         spin_unlock(&si->lock);
793                         return swp_entry(type, offset);
794                 }
795                 atomic_long_inc(&nr_swap_pages);
796         }
797         spin_unlock(&si->lock);
798         return (swp_entry_t) {0};
799 }
800
801 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
802 {
803         struct swap_info_struct *p;
804         unsigned long offset, type;
805
806         if (!entry.val)
807                 goto out;
808         type = swp_type(entry);
809         if (type >= nr_swapfiles)
810                 goto bad_nofile;
811         p = swap_info[type];
812         if (!(p->flags & SWP_USED))
813                 goto bad_device;
814         offset = swp_offset(entry);
815         if (offset >= p->max)
816                 goto bad_offset;
817         if (!p->swap_map[offset])
818                 goto bad_free;
819         return p;
820
821 bad_free:
822         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
823         goto out;
824 bad_offset:
825         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
826         goto out;
827 bad_device:
828         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
829         goto out;
830 bad_nofile:
831         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
832 out:
833         return NULL;
834 }
835
836 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
837 {
838         struct swap_info_struct *p;
839
840         p = _swap_info_get(entry);
841         if (p)
842                 spin_lock(&p->lock);
843         return p;
844 }
845
846 static unsigned char swap_entry_free(struct swap_info_struct *p,
847                                      swp_entry_t entry, unsigned char usage,
848                                      bool swap_info_locked)
849 {
850         struct swap_cluster_info *ci;
851         unsigned long offset = swp_offset(entry);
852         unsigned char count;
853         unsigned char has_cache;
854         bool lock_swap_info = false;
855
856         if (!swap_info_locked) {
857                 count = p->swap_map[offset];
858                 if (!p->cluster_info || count == usage || count == SWAP_MAP_SHMEM) {
859 lock_swap_info:
860                         swap_info_locked = true;
861                         lock_swap_info = true;
862                         spin_lock(&p->lock);
863                 }
864         }
865
866         ci = lock_cluster(p, offset);
867
868         count = p->swap_map[offset];
869
870         if (!swap_info_locked && (count == usage || count == SWAP_MAP_SHMEM)) {
871                 unlock_cluster(ci);
872                 goto lock_swap_info;
873         }
874
875         has_cache = count & SWAP_HAS_CACHE;
876         count &= ~SWAP_HAS_CACHE;
877
878         if (usage == SWAP_HAS_CACHE) {
879                 VM_BUG_ON(!has_cache);
880                 has_cache = 0;
881         } else if (count == SWAP_MAP_SHMEM) {
882                 /*
883                  * Or we could insist on shmem.c using a special
884                  * swap_shmem_free() and free_shmem_swap_and_cache()...
885                  */
886                 count = 0;
887         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
888                 if (count == COUNT_CONTINUED) {
889                         if (swap_count_continued(p, offset, count))
890                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
891                         else
892                                 count = SWAP_MAP_MAX;
893                 } else
894                         count--;
895         }
896
897         usage = count | has_cache;
898         p->swap_map[offset] = usage;
899
900         unlock_cluster(ci);
901
902         /* free if no reference */
903         if (!usage) {
904                 VM_BUG_ON(!swap_info_locked);
905                 mem_cgroup_uncharge_swap(entry);
906                 ci = lock_cluster(p, offset);
907                 dec_cluster_info_page(p, p->cluster_info, offset);
908                 unlock_cluster(ci);
909                 if (offset < p->lowest_bit)
910                         p->lowest_bit = offset;
911                 if (offset > p->highest_bit) {
912                         bool was_full = !p->highest_bit;
913                         p->highest_bit = offset;
914                         if (was_full && (p->flags & SWP_WRITEOK)) {
915                                 spin_lock(&swap_avail_lock);
916                                 WARN_ON(!plist_node_empty(&p->avail_list));
917                                 if (plist_node_empty(&p->avail_list))
918                                         plist_add(&p->avail_list,
919                                                   &swap_avail_head);
920                                 spin_unlock(&swap_avail_lock);
921                         }
922                 }
923                 atomic_long_inc(&nr_swap_pages);
924                 p->inuse_pages--;
925                 frontswap_invalidate_page(p->type, offset);
926                 if (p->flags & SWP_BLKDEV) {
927                         struct gendisk *disk = p->bdev->bd_disk;
928                         if (disk->fops->swap_slot_free_notify)
929                                 disk->fops->swap_slot_free_notify(p->bdev,
930                                                                   offset);
931                 }
932         }
933
934         if (lock_swap_info)
935                 spin_unlock(&p->lock);
936
937         return usage;
938 }
939
940 /*
941  * Caller has made sure that the swap device corresponding to entry
942  * is still around or has not been recycled.
943  */
944 void swap_free(swp_entry_t entry)
945 {
946         struct swap_info_struct *p;
947
948         p = _swap_info_get(entry);
949         if (p)
950                 swap_entry_free(p, entry, 1, false);
951 }
952
953 /*
954  * Called after dropping swapcache to decrease refcnt to swap entries.
955  */
956 void swapcache_free(swp_entry_t entry)
957 {
958         struct swap_info_struct *p;
959
960         p = _swap_info_get(entry);
961         if (p)
962                 swap_entry_free(p, entry, SWAP_HAS_CACHE, false);
963 }
964
965 /*
966  * How many references to page are currently swapped out?
967  * This does not give an exact answer when swap count is continued,
968  * but does include the high COUNT_CONTINUED flag to allow for that.
969  */
970 int page_swapcount(struct page *page)
971 {
972         int count = 0;
973         struct swap_info_struct *p;
974         struct swap_cluster_info *ci;
975         swp_entry_t entry;
976         unsigned long offset;
977
978         entry.val = page_private(page);
979         p = _swap_info_get(entry);
980         if (p) {
981                 offset = swp_offset(entry);
982                 ci = lock_cluster_or_swap_info(p, offset);
983                 count = swap_count(p->swap_map[offset]);
984                 unlock_cluster_or_swap_info(p, ci);
985         }
986         return count;
987 }
988
989 /*
990  * How many references to @entry are currently swapped out?
991  * This considers COUNT_CONTINUED so it returns exact answer.
992  */
993 int swp_swapcount(swp_entry_t entry)
994 {
995         int count, tmp_count, n;
996         struct swap_info_struct *p;
997         struct swap_cluster_info *ci;
998         struct page *page;
999         pgoff_t offset;
1000         unsigned char *map;
1001
1002         p = _swap_info_get(entry);
1003         if (!p)
1004                 return 0;
1005
1006         offset = swp_offset(entry);
1007
1008         ci = lock_cluster_or_swap_info(p, offset);
1009
1010         count = swap_count(p->swap_map[offset]);
1011         if (!(count & COUNT_CONTINUED))
1012                 goto out;
1013
1014         count &= ~COUNT_CONTINUED;
1015         n = SWAP_MAP_MAX + 1;
1016
1017         page = vmalloc_to_page(p->swap_map + offset);
1018         offset &= ~PAGE_MASK;
1019         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1020
1021         do {
1022                 page = list_next_entry(page, lru);
1023                 map = kmap_atomic(page);
1024                 tmp_count = map[offset];
1025                 kunmap_atomic(map);
1026
1027                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1028                 n *= (SWAP_CONT_MAX + 1);
1029         } while (tmp_count & COUNT_CONTINUED);
1030 out:
1031         unlock_cluster_or_swap_info(p, ci);
1032         return count;
1033 }
1034
1035 /*
1036  * We can write to an anon page without COW if there are no other references
1037  * to it.  And as a side-effect, free up its swap: because the old content
1038  * on disk will never be read, and seeking back there to write new content
1039  * later would only waste time away from clustering.
1040  *
1041  * NOTE: total_mapcount should not be relied upon by the caller if
1042  * reuse_swap_page() returns false, but it may be always overwritten
1043  * (see the other implementation for CONFIG_SWAP=n).
1044  */
1045 bool reuse_swap_page(struct page *page, int *total_mapcount)
1046 {
1047         int count;
1048
1049         VM_BUG_ON_PAGE(!PageLocked(page), page);
1050         if (unlikely(PageKsm(page)))
1051                 return false;
1052         count = page_trans_huge_mapcount(page, total_mapcount);
1053         if (count <= 1 && PageSwapCache(page)) {
1054                 count += page_swapcount(page);
1055                 if (count != 1)
1056                         goto out;
1057                 if (!PageWriteback(page)) {
1058                         delete_from_swap_cache(page);
1059                         SetPageDirty(page);
1060                 } else {
1061                         swp_entry_t entry;
1062                         struct swap_info_struct *p;
1063
1064                         entry.val = page_private(page);
1065                         p = swap_info_get(entry);
1066                         if (p->flags & SWP_STABLE_WRITES) {
1067                                 spin_unlock(&p->lock);
1068                                 return false;
1069                         }
1070                         spin_unlock(&p->lock);
1071                 }
1072         }
1073 out:
1074         return count <= 1;
1075 }
1076
1077 /*
1078  * If swap is getting full, or if there are no more mappings of this page,
1079  * then try_to_free_swap is called to free its swap space.
1080  */
1081 int try_to_free_swap(struct page *page)
1082 {
1083         VM_BUG_ON_PAGE(!PageLocked(page), page);
1084
1085         if (!PageSwapCache(page))
1086                 return 0;
1087         if (PageWriteback(page))
1088                 return 0;
1089         if (page_swapcount(page))
1090                 return 0;
1091
1092         /*
1093          * Once hibernation has begun to create its image of memory,
1094          * there's a danger that one of the calls to try_to_free_swap()
1095          * - most probably a call from __try_to_reclaim_swap() while
1096          * hibernation is allocating its own swap pages for the image,
1097          * but conceivably even a call from memory reclaim - will free
1098          * the swap from a page which has already been recorded in the
1099          * image as a clean swapcache page, and then reuse its swap for
1100          * another page of the image.  On waking from hibernation, the
1101          * original page might be freed under memory pressure, then
1102          * later read back in from swap, now with the wrong data.
1103          *
1104          * Hibernation suspends storage while it is writing the image
1105          * to disk so check that here.
1106          */
1107         if (pm_suspended_storage())
1108                 return 0;
1109
1110         delete_from_swap_cache(page);
1111         SetPageDirty(page);
1112         return 1;
1113 }
1114
1115 /*
1116  * Free the swap entry like above, but also try to
1117  * free the page cache entry if it is the last user.
1118  */
1119 int free_swap_and_cache(swp_entry_t entry)
1120 {
1121         struct swap_info_struct *p;
1122         struct page *page = NULL;
1123
1124         if (non_swap_entry(entry))
1125                 return 1;
1126
1127         p = swap_info_get(entry);
1128         if (p) {
1129                 if (swap_entry_free(p, entry, 1, true) == SWAP_HAS_CACHE) {
1130                         page = find_get_page(swap_address_space(entry),
1131                                              swp_offset(entry));
1132                         if (page && !trylock_page(page)) {
1133                                 put_page(page);
1134                                 page = NULL;
1135                         }
1136                 }
1137                 spin_unlock(&p->lock);
1138         }
1139         if (page) {
1140                 /*
1141                  * Not mapped elsewhere, or swap space full? Free it!
1142                  * Also recheck PageSwapCache now page is locked (above).
1143                  */
1144                 if (PageSwapCache(page) && !PageWriteback(page) &&
1145                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1146                         delete_from_swap_cache(page);
1147                         SetPageDirty(page);
1148                 }
1149                 unlock_page(page);
1150                 put_page(page);
1151         }
1152         return p != NULL;
1153 }
1154
1155 #ifdef CONFIG_HIBERNATION
1156 /*
1157  * Find the swap type that corresponds to given device (if any).
1158  *
1159  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1160  * from 0, in which the swap header is expected to be located.
1161  *
1162  * This is needed for the suspend to disk (aka swsusp).
1163  */
1164 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1165 {
1166         struct block_device *bdev = NULL;
1167         int type;
1168
1169         if (device)
1170                 bdev = bdget(device);
1171
1172         spin_lock(&swap_lock);
1173         for (type = 0; type < nr_swapfiles; type++) {
1174                 struct swap_info_struct *sis = swap_info[type];
1175
1176                 if (!(sis->flags & SWP_WRITEOK))
1177                         continue;
1178
1179                 if (!bdev) {
1180                         if (bdev_p)
1181                                 *bdev_p = bdgrab(sis->bdev);
1182
1183                         spin_unlock(&swap_lock);
1184                         return type;
1185                 }
1186                 if (bdev == sis->bdev) {
1187                         struct swap_extent *se = &sis->first_swap_extent;
1188
1189                         if (se->start_block == offset) {
1190                                 if (bdev_p)
1191                                         *bdev_p = bdgrab(sis->bdev);
1192
1193                                 spin_unlock(&swap_lock);
1194                                 bdput(bdev);
1195                                 return type;
1196                         }
1197                 }
1198         }
1199         spin_unlock(&swap_lock);
1200         if (bdev)
1201                 bdput(bdev);
1202
1203         return -ENODEV;
1204 }
1205
1206 /*
1207  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1208  * corresponding to given index in swap_info (swap type).
1209  */
1210 sector_t swapdev_block(int type, pgoff_t offset)
1211 {
1212         struct block_device *bdev;
1213
1214         if ((unsigned int)type >= nr_swapfiles)
1215                 return 0;
1216         if (!(swap_info[type]->flags & SWP_WRITEOK))
1217                 return 0;
1218         return map_swap_entry(swp_entry(type, offset), &bdev);
1219 }
1220
1221 /*
1222  * Return either the total number of swap pages of given type, or the number
1223  * of free pages of that type (depending on @free)
1224  *
1225  * This is needed for software suspend
1226  */
1227 unsigned int count_swap_pages(int type, int free)
1228 {
1229         unsigned int n = 0;
1230
1231         spin_lock(&swap_lock);
1232         if ((unsigned int)type < nr_swapfiles) {
1233                 struct swap_info_struct *sis = swap_info[type];
1234
1235                 spin_lock(&sis->lock);
1236                 if (sis->flags & SWP_WRITEOK) {
1237                         n = sis->pages;
1238                         if (free)
1239                                 n -= sis->inuse_pages;
1240                 }
1241                 spin_unlock(&sis->lock);
1242         }
1243         spin_unlock(&swap_lock);
1244         return n;
1245 }
1246 #endif /* CONFIG_HIBERNATION */
1247
1248 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1249 {
1250         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1251 }
1252
1253 /*
1254  * No need to decide whether this PTE shares the swap entry with others,
1255  * just let do_wp_page work it out if a write is requested later - to
1256  * force COW, vm_page_prot omits write permission from any private vma.
1257  */
1258 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1259                 unsigned long addr, swp_entry_t entry, struct page *page)
1260 {
1261         struct page *swapcache;
1262         struct mem_cgroup *memcg;
1263         spinlock_t *ptl;
1264         pte_t *pte;
1265         int ret = 1;
1266
1267         swapcache = page;
1268         page = ksm_might_need_to_copy(page, vma, addr);
1269         if (unlikely(!page))
1270                 return -ENOMEM;
1271
1272         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1273                                 &memcg, false)) {
1274                 ret = -ENOMEM;
1275                 goto out_nolock;
1276         }
1277
1278         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1279         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1280                 mem_cgroup_cancel_charge(page, memcg, false);
1281                 ret = 0;
1282                 goto out;
1283         }
1284
1285         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1286         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1287         get_page(page);
1288         set_pte_at(vma->vm_mm, addr, pte,
1289                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1290         if (page == swapcache) {
1291                 page_add_anon_rmap(page, vma, addr, false);
1292                 mem_cgroup_commit_charge(page, memcg, true, false);
1293         } else { /* ksm created a completely new copy */
1294                 page_add_new_anon_rmap(page, vma, addr, false);
1295                 mem_cgroup_commit_charge(page, memcg, false, false);
1296                 lru_cache_add_active_or_unevictable(page, vma);
1297         }
1298         swap_free(entry);
1299         /*
1300          * Move the page to the active list so it is not
1301          * immediately swapped out again after swapon.
1302          */
1303         activate_page(page);
1304 out:
1305         pte_unmap_unlock(pte, ptl);
1306 out_nolock:
1307         if (page != swapcache) {
1308                 unlock_page(page);
1309                 put_page(page);
1310         }
1311         return ret;
1312 }
1313
1314 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1315                                 unsigned long addr, unsigned long end,
1316                                 swp_entry_t entry, struct page *page)
1317 {
1318         pte_t swp_pte = swp_entry_to_pte(entry);
1319         pte_t *pte;
1320         int ret = 0;
1321
1322         /*
1323          * We don't actually need pte lock while scanning for swp_pte: since
1324          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1325          * page table while we're scanning; though it could get zapped, and on
1326          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1327          * of unmatched parts which look like swp_pte, so unuse_pte must
1328          * recheck under pte lock.  Scanning without pte lock lets it be
1329          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1330          */
1331         pte = pte_offset_map(pmd, addr);
1332         do {
1333                 /*
1334                  * swapoff spends a _lot_ of time in this loop!
1335                  * Test inline before going to call unuse_pte.
1336                  */
1337                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1338                         pte_unmap(pte);
1339                         ret = unuse_pte(vma, pmd, addr, entry, page);
1340                         if (ret)
1341                                 goto out;
1342                         pte = pte_offset_map(pmd, addr);
1343                 }
1344         } while (pte++, addr += PAGE_SIZE, addr != end);
1345         pte_unmap(pte - 1);
1346 out:
1347         return ret;
1348 }
1349
1350 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1351                                 unsigned long addr, unsigned long end,
1352                                 swp_entry_t entry, struct page *page)
1353 {
1354         pmd_t *pmd;
1355         unsigned long next;
1356         int ret;
1357
1358         pmd = pmd_offset(pud, addr);
1359         do {
1360                 cond_resched();
1361                 next = pmd_addr_end(addr, end);
1362                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1363                         continue;
1364                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1365                 if (ret)
1366                         return ret;
1367         } while (pmd++, addr = next, addr != end);
1368         return 0;
1369 }
1370
1371 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1372                                 unsigned long addr, unsigned long end,
1373                                 swp_entry_t entry, struct page *page)
1374 {
1375         pud_t *pud;
1376         unsigned long next;
1377         int ret;
1378
1379         pud = pud_offset(pgd, addr);
1380         do {
1381                 next = pud_addr_end(addr, end);
1382                 if (pud_none_or_clear_bad(pud))
1383                         continue;
1384                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1385                 if (ret)
1386                         return ret;
1387         } while (pud++, addr = next, addr != end);
1388         return 0;
1389 }
1390
1391 static int unuse_vma(struct vm_area_struct *vma,
1392                                 swp_entry_t entry, struct page *page)
1393 {
1394         pgd_t *pgd;
1395         unsigned long addr, end, next;
1396         int ret;
1397
1398         if (page_anon_vma(page)) {
1399                 addr = page_address_in_vma(page, vma);
1400                 if (addr == -EFAULT)
1401                         return 0;
1402                 else
1403                         end = addr + PAGE_SIZE;
1404         } else {
1405                 addr = vma->vm_start;
1406                 end = vma->vm_end;
1407         }
1408
1409         pgd = pgd_offset(vma->vm_mm, addr);
1410         do {
1411                 next = pgd_addr_end(addr, end);
1412                 if (pgd_none_or_clear_bad(pgd))
1413                         continue;
1414                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1415                 if (ret)
1416                         return ret;
1417         } while (pgd++, addr = next, addr != end);
1418         return 0;
1419 }
1420
1421 static int unuse_mm(struct mm_struct *mm,
1422                                 swp_entry_t entry, struct page *page)
1423 {
1424         struct vm_area_struct *vma;
1425         int ret = 0;
1426
1427         if (!down_read_trylock(&mm->mmap_sem)) {
1428                 /*
1429                  * Activate page so shrink_inactive_list is unlikely to unmap
1430                  * its ptes while lock is dropped, so swapoff can make progress.
1431                  */
1432                 activate_page(page);
1433                 unlock_page(page);
1434                 down_read(&mm->mmap_sem);
1435                 lock_page(page);
1436         }
1437         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1438                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1439                         break;
1440                 cond_resched();
1441         }
1442         up_read(&mm->mmap_sem);
1443         return (ret < 0)? ret: 0;
1444 }
1445
1446 /*
1447  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1448  * from current position to next entry still in use.
1449  * Recycle to start on reaching the end, returning 0 when empty.
1450  */
1451 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1452                                         unsigned int prev, bool frontswap)
1453 {
1454         unsigned int max = si->max;
1455         unsigned int i = prev;
1456         unsigned char count;
1457
1458         /*
1459          * No need for swap_lock here: we're just looking
1460          * for whether an entry is in use, not modifying it; false
1461          * hits are okay, and sys_swapoff() has already prevented new
1462          * allocations from this area (while holding swap_lock).
1463          */
1464         for (;;) {
1465                 if (++i >= max) {
1466                         if (!prev) {
1467                                 i = 0;
1468                                 break;
1469                         }
1470                         /*
1471                          * No entries in use at top of swap_map,
1472                          * loop back to start and recheck there.
1473                          */
1474                         max = prev + 1;
1475                         prev = 0;
1476                         i = 1;
1477                 }
1478                 count = READ_ONCE(si->swap_map[i]);
1479                 if (count && swap_count(count) != SWAP_MAP_BAD)
1480                         if (!frontswap || frontswap_test(si, i))
1481                                 break;
1482                 if ((i % LATENCY_LIMIT) == 0)
1483                         cond_resched();
1484         }
1485         return i;
1486 }
1487
1488 /*
1489  * We completely avoid races by reading each swap page in advance,
1490  * and then search for the process using it.  All the necessary
1491  * page table adjustments can then be made atomically.
1492  *
1493  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1494  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1495  */
1496 int try_to_unuse(unsigned int type, bool frontswap,
1497                  unsigned long pages_to_unuse)
1498 {
1499         struct swap_info_struct *si = swap_info[type];
1500         struct mm_struct *start_mm;
1501         volatile unsigned char *swap_map; /* swap_map is accessed without
1502                                            * locking. Mark it as volatile
1503                                            * to prevent compiler doing
1504                                            * something odd.
1505                                            */
1506         unsigned char swcount;
1507         struct page *page;
1508         swp_entry_t entry;
1509         unsigned int i = 0;
1510         int retval = 0;
1511
1512         /*
1513          * When searching mms for an entry, a good strategy is to
1514          * start at the first mm we freed the previous entry from
1515          * (though actually we don't notice whether we or coincidence
1516          * freed the entry).  Initialize this start_mm with a hold.
1517          *
1518          * A simpler strategy would be to start at the last mm we
1519          * freed the previous entry from; but that would take less
1520          * advantage of mmlist ordering, which clusters forked mms
1521          * together, child after parent.  If we race with dup_mmap(), we
1522          * prefer to resolve parent before child, lest we miss entries
1523          * duplicated after we scanned child: using last mm would invert
1524          * that.
1525          */
1526         start_mm = &init_mm;
1527         atomic_inc(&init_mm.mm_users);
1528
1529         /*
1530          * Keep on scanning until all entries have gone.  Usually,
1531          * one pass through swap_map is enough, but not necessarily:
1532          * there are races when an instance of an entry might be missed.
1533          */
1534         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1535                 if (signal_pending(current)) {
1536                         retval = -EINTR;
1537                         break;
1538                 }
1539
1540                 /*
1541                  * Get a page for the entry, using the existing swap
1542                  * cache page if there is one.  Otherwise, get a clean
1543                  * page and read the swap into it.
1544                  */
1545                 swap_map = &si->swap_map[i];
1546                 entry = swp_entry(type, i);
1547                 page = read_swap_cache_async(entry,
1548                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1549                 if (!page) {
1550                         /*
1551                          * Either swap_duplicate() failed because entry
1552                          * has been freed independently, and will not be
1553                          * reused since sys_swapoff() already disabled
1554                          * allocation from here, or alloc_page() failed.
1555                          */
1556                         swcount = *swap_map;
1557                         /*
1558                          * We don't hold lock here, so the swap entry could be
1559                          * SWAP_MAP_BAD (when the cluster is discarding).
1560                          * Instead of fail out, We can just skip the swap
1561                          * entry because swapoff will wait for discarding
1562                          * finish anyway.
1563                          */
1564                         if (!swcount || swcount == SWAP_MAP_BAD)
1565                                 continue;
1566                         retval = -ENOMEM;
1567                         break;
1568                 }
1569
1570                 /*
1571                  * Don't hold on to start_mm if it looks like exiting.
1572                  */
1573                 if (atomic_read(&start_mm->mm_users) == 1) {
1574                         mmput(start_mm);
1575                         start_mm = &init_mm;
1576                         atomic_inc(&init_mm.mm_users);
1577                 }
1578
1579                 /*
1580                  * Wait for and lock page.  When do_swap_page races with
1581                  * try_to_unuse, do_swap_page can handle the fault much
1582                  * faster than try_to_unuse can locate the entry.  This
1583                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1584                  * defer to do_swap_page in such a case - in some tests,
1585                  * do_swap_page and try_to_unuse repeatedly compete.
1586                  */
1587                 wait_on_page_locked(page);
1588                 wait_on_page_writeback(page);
1589                 lock_page(page);
1590                 wait_on_page_writeback(page);
1591
1592                 /*
1593                  * Remove all references to entry.
1594                  */
1595                 swcount = *swap_map;
1596                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1597                         retval = shmem_unuse(entry, page);
1598                         /* page has already been unlocked and released */
1599                         if (retval < 0)
1600                                 break;
1601                         continue;
1602                 }
1603                 if (swap_count(swcount) && start_mm != &init_mm)
1604                         retval = unuse_mm(start_mm, entry, page);
1605
1606                 if (swap_count(*swap_map)) {
1607                         int set_start_mm = (*swap_map >= swcount);
1608                         struct list_head *p = &start_mm->mmlist;
1609                         struct mm_struct *new_start_mm = start_mm;
1610                         struct mm_struct *prev_mm = start_mm;
1611                         struct mm_struct *mm;
1612
1613                         atomic_inc(&new_start_mm->mm_users);
1614                         atomic_inc(&prev_mm->mm_users);
1615                         spin_lock(&mmlist_lock);
1616                         while (swap_count(*swap_map) && !retval &&
1617                                         (p = p->next) != &start_mm->mmlist) {
1618                                 mm = list_entry(p, struct mm_struct, mmlist);
1619                                 if (!atomic_inc_not_zero(&mm->mm_users))
1620                                         continue;
1621                                 spin_unlock(&mmlist_lock);
1622                                 mmput(prev_mm);
1623                                 prev_mm = mm;
1624
1625                                 cond_resched();
1626
1627                                 swcount = *swap_map;
1628                                 if (!swap_count(swcount)) /* any usage ? */
1629                                         ;
1630                                 else if (mm == &init_mm)
1631                                         set_start_mm = 1;
1632                                 else
1633                                         retval = unuse_mm(mm, entry, page);
1634
1635                                 if (set_start_mm && *swap_map < swcount) {
1636                                         mmput(new_start_mm);
1637                                         atomic_inc(&mm->mm_users);
1638                                         new_start_mm = mm;
1639                                         set_start_mm = 0;
1640                                 }
1641                                 spin_lock(&mmlist_lock);
1642                         }
1643                         spin_unlock(&mmlist_lock);
1644                         mmput(prev_mm);
1645                         mmput(start_mm);
1646                         start_mm = new_start_mm;
1647                 }
1648                 if (retval) {
1649                         unlock_page(page);
1650                         put_page(page);
1651                         break;
1652                 }
1653
1654                 /*
1655                  * If a reference remains (rare), we would like to leave
1656                  * the page in the swap cache; but try_to_unmap could
1657                  * then re-duplicate the entry once we drop page lock,
1658                  * so we might loop indefinitely; also, that page could
1659                  * not be swapped out to other storage meanwhile.  So:
1660                  * delete from cache even if there's another reference,
1661                  * after ensuring that the data has been saved to disk -
1662                  * since if the reference remains (rarer), it will be
1663                  * read from disk into another page.  Splitting into two
1664                  * pages would be incorrect if swap supported "shared
1665                  * private" pages, but they are handled by tmpfs files.
1666                  *
1667                  * Given how unuse_vma() targets one particular offset
1668                  * in an anon_vma, once the anon_vma has been determined,
1669                  * this splitting happens to be just what is needed to
1670                  * handle where KSM pages have been swapped out: re-reading
1671                  * is unnecessarily slow, but we can fix that later on.
1672                  */
1673                 if (swap_count(*swap_map) &&
1674                      PageDirty(page) && PageSwapCache(page)) {
1675                         struct writeback_control wbc = {
1676                                 .sync_mode = WB_SYNC_NONE,
1677                         };
1678
1679                         swap_writepage(page, &wbc);
1680                         lock_page(page);
1681                         wait_on_page_writeback(page);
1682                 }
1683
1684                 /*
1685                  * It is conceivable that a racing task removed this page from
1686                  * swap cache just before we acquired the page lock at the top,
1687                  * or while we dropped it in unuse_mm().  The page might even
1688                  * be back in swap cache on another swap area: that we must not
1689                  * delete, since it may not have been written out to swap yet.
1690                  */
1691                 if (PageSwapCache(page) &&
1692                     likely(page_private(page) == entry.val))
1693                         delete_from_swap_cache(page);
1694
1695                 /*
1696                  * So we could skip searching mms once swap count went
1697                  * to 1, we did not mark any present ptes as dirty: must
1698                  * mark page dirty so shrink_page_list will preserve it.
1699                  */
1700                 SetPageDirty(page);
1701                 unlock_page(page);
1702                 put_page(page);
1703
1704                 /*
1705                  * Make sure that we aren't completely killing
1706                  * interactive performance.
1707                  */
1708                 cond_resched();
1709                 if (frontswap && pages_to_unuse > 0) {
1710                         if (!--pages_to_unuse)
1711                                 break;
1712                 }
1713         }
1714
1715         mmput(start_mm);
1716         return retval;
1717 }
1718
1719 /*
1720  * After a successful try_to_unuse, if no swap is now in use, we know
1721  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1722  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1723  * added to the mmlist just after page_duplicate - before would be racy.
1724  */
1725 static void drain_mmlist(void)
1726 {
1727         struct list_head *p, *next;
1728         unsigned int type;
1729
1730         for (type = 0; type < nr_swapfiles; type++)
1731                 if (swap_info[type]->inuse_pages)
1732                         return;
1733         spin_lock(&mmlist_lock);
1734         list_for_each_safe(p, next, &init_mm.mmlist)
1735                 list_del_init(p);
1736         spin_unlock(&mmlist_lock);
1737 }
1738
1739 /*
1740  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1741  * corresponds to page offset for the specified swap entry.
1742  * Note that the type of this function is sector_t, but it returns page offset
1743  * into the bdev, not sector offset.
1744  */
1745 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1746 {
1747         struct swap_info_struct *sis;
1748         struct swap_extent *start_se;
1749         struct swap_extent *se;
1750         pgoff_t offset;
1751
1752         sis = swap_info[swp_type(entry)];
1753         *bdev = sis->bdev;
1754
1755         offset = swp_offset(entry);
1756         start_se = sis->curr_swap_extent;
1757         se = start_se;
1758
1759         for ( ; ; ) {
1760                 if (se->start_page <= offset &&
1761                                 offset < (se->start_page + se->nr_pages)) {
1762                         return se->start_block + (offset - se->start_page);
1763                 }
1764                 se = list_next_entry(se, list);
1765                 sis->curr_swap_extent = se;
1766                 BUG_ON(se == start_se);         /* It *must* be present */
1767         }
1768 }
1769
1770 /*
1771  * Returns the page offset into bdev for the specified page's swap entry.
1772  */
1773 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1774 {
1775         swp_entry_t entry;
1776         entry.val = page_private(page);
1777         return map_swap_entry(entry, bdev);
1778 }
1779
1780 /*
1781  * Free all of a swapdev's extent information
1782  */
1783 static void destroy_swap_extents(struct swap_info_struct *sis)
1784 {
1785         while (!list_empty(&sis->first_swap_extent.list)) {
1786                 struct swap_extent *se;
1787
1788                 se = list_first_entry(&sis->first_swap_extent.list,
1789                                 struct swap_extent, list);
1790                 list_del(&se->list);
1791                 kfree(se);
1792         }
1793
1794         if (sis->flags & SWP_FILE) {
1795                 struct file *swap_file = sis->swap_file;
1796                 struct address_space *mapping = swap_file->f_mapping;
1797
1798                 sis->flags &= ~SWP_FILE;
1799                 mapping->a_ops->swap_deactivate(swap_file);
1800         }
1801 }
1802
1803 /*
1804  * Add a block range (and the corresponding page range) into this swapdev's
1805  * extent list.  The extent list is kept sorted in page order.
1806  *
1807  * This function rather assumes that it is called in ascending page order.
1808  */
1809 int
1810 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1811                 unsigned long nr_pages, sector_t start_block)
1812 {
1813         struct swap_extent *se;
1814         struct swap_extent *new_se;
1815         struct list_head *lh;
1816
1817         if (start_page == 0) {
1818                 se = &sis->first_swap_extent;
1819                 sis->curr_swap_extent = se;
1820                 se->start_page = 0;
1821                 se->nr_pages = nr_pages;
1822                 se->start_block = start_block;
1823                 return 1;
1824         } else {
1825                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1826                 se = list_entry(lh, struct swap_extent, list);
1827                 BUG_ON(se->start_page + se->nr_pages != start_page);
1828                 if (se->start_block + se->nr_pages == start_block) {
1829                         /* Merge it */
1830                         se->nr_pages += nr_pages;
1831                         return 0;
1832                 }
1833         }
1834
1835         /*
1836          * No merge.  Insert a new extent, preserving ordering.
1837          */
1838         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1839         if (new_se == NULL)
1840                 return -ENOMEM;
1841         new_se->start_page = start_page;
1842         new_se->nr_pages = nr_pages;
1843         new_se->start_block = start_block;
1844
1845         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1846         return 1;
1847 }
1848
1849 /*
1850  * A `swap extent' is a simple thing which maps a contiguous range of pages
1851  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1852  * is built at swapon time and is then used at swap_writepage/swap_readpage
1853  * time for locating where on disk a page belongs.
1854  *
1855  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1856  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1857  * swap files identically.
1858  *
1859  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1860  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1861  * swapfiles are handled *identically* after swapon time.
1862  *
1863  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1864  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1865  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1866  * requirements, they are simply tossed out - we will never use those blocks
1867  * for swapping.
1868  *
1869  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1870  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1871  * which will scribble on the fs.
1872  *
1873  * The amount of disk space which a single swap extent represents varies.
1874  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1875  * extents in the list.  To avoid much list walking, we cache the previous
1876  * search location in `curr_swap_extent', and start new searches from there.
1877  * This is extremely effective.  The average number of iterations in
1878  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1879  */
1880 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1881 {
1882         struct file *swap_file = sis->swap_file;
1883         struct address_space *mapping = swap_file->f_mapping;
1884         struct inode *inode = mapping->host;
1885         int ret;
1886
1887         if (S_ISBLK(inode->i_mode)) {
1888                 ret = add_swap_extent(sis, 0, sis->max, 0);
1889                 *span = sis->pages;
1890                 return ret;
1891         }
1892
1893         if (mapping->a_ops->swap_activate) {
1894                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1895                 if (!ret) {
1896                         sis->flags |= SWP_FILE;
1897                         ret = add_swap_extent(sis, 0, sis->max, 0);
1898                         *span = sis->pages;
1899                 }
1900                 return ret;
1901         }
1902
1903         return generic_swapfile_activate(sis, swap_file, span);
1904 }
1905
1906 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1907                                 unsigned char *swap_map,
1908                                 struct swap_cluster_info *cluster_info)
1909 {
1910         if (prio >= 0)
1911                 p->prio = prio;
1912         else
1913                 p->prio = --least_priority;
1914         /*
1915          * the plist prio is negated because plist ordering is
1916          * low-to-high, while swap ordering is high-to-low
1917          */
1918         p->list.prio = -p->prio;
1919         p->avail_list.prio = -p->prio;
1920         p->swap_map = swap_map;
1921         p->cluster_info = cluster_info;
1922         p->flags |= SWP_WRITEOK;
1923         atomic_long_add(p->pages, &nr_swap_pages);
1924         total_swap_pages += p->pages;
1925
1926         assert_spin_locked(&swap_lock);
1927         /*
1928          * both lists are plists, and thus priority ordered.
1929          * swap_active_head needs to be priority ordered for swapoff(),
1930          * which on removal of any swap_info_struct with an auto-assigned
1931          * (i.e. negative) priority increments the auto-assigned priority
1932          * of any lower-priority swap_info_structs.
1933          * swap_avail_head needs to be priority ordered for get_swap_page(),
1934          * which allocates swap pages from the highest available priority
1935          * swap_info_struct.
1936          */
1937         plist_add(&p->list, &swap_active_head);
1938         spin_lock(&swap_avail_lock);
1939         plist_add(&p->avail_list, &swap_avail_head);
1940         spin_unlock(&swap_avail_lock);
1941 }
1942
1943 static void enable_swap_info(struct swap_info_struct *p, int prio,
1944                                 unsigned char *swap_map,
1945                                 struct swap_cluster_info *cluster_info,
1946                                 unsigned long *frontswap_map)
1947 {
1948         frontswap_init(p->type, frontswap_map);
1949         spin_lock(&swap_lock);
1950         spin_lock(&p->lock);
1951          _enable_swap_info(p, prio, swap_map, cluster_info);
1952         spin_unlock(&p->lock);
1953         spin_unlock(&swap_lock);
1954 }
1955
1956 static void reinsert_swap_info(struct swap_info_struct *p)
1957 {
1958         spin_lock(&swap_lock);
1959         spin_lock(&p->lock);
1960         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1961         spin_unlock(&p->lock);
1962         spin_unlock(&swap_lock);
1963 }
1964
1965 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1966 {
1967         struct swap_info_struct *p = NULL;
1968         unsigned char *swap_map;
1969         struct swap_cluster_info *cluster_info;
1970         unsigned long *frontswap_map;
1971         struct file *swap_file, *victim;
1972         struct address_space *mapping;
1973         struct inode *inode;
1974         struct filename *pathname;
1975         int err, found = 0;
1976         unsigned int old_block_size;
1977
1978         if (!capable(CAP_SYS_ADMIN))
1979                 return -EPERM;
1980
1981         BUG_ON(!current->mm);
1982
1983         pathname = getname(specialfile);
1984         if (IS_ERR(pathname))
1985                 return PTR_ERR(pathname);
1986
1987         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1988         err = PTR_ERR(victim);
1989         if (IS_ERR(victim))
1990                 goto out;
1991
1992         mapping = victim->f_mapping;
1993         spin_lock(&swap_lock);
1994         plist_for_each_entry(p, &swap_active_head, list) {
1995                 if (p->flags & SWP_WRITEOK) {
1996                         if (p->swap_file->f_mapping == mapping) {
1997                                 found = 1;
1998                                 break;
1999                         }
2000                 }
2001         }
2002         if (!found) {
2003                 err = -EINVAL;
2004                 spin_unlock(&swap_lock);
2005                 goto out_dput;
2006         }
2007         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2008                 vm_unacct_memory(p->pages);
2009         else {
2010                 err = -ENOMEM;
2011                 spin_unlock(&swap_lock);
2012                 goto out_dput;
2013         }
2014         spin_lock(&swap_avail_lock);
2015         plist_del(&p->avail_list, &swap_avail_head);
2016         spin_unlock(&swap_avail_lock);
2017         spin_lock(&p->lock);
2018         if (p->prio < 0) {
2019                 struct swap_info_struct *si = p;
2020
2021                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2022                         si->prio++;
2023                         si->list.prio--;
2024                         si->avail_list.prio--;
2025                 }
2026                 least_priority++;
2027         }
2028         plist_del(&p->list, &swap_active_head);
2029         atomic_long_sub(p->pages, &nr_swap_pages);
2030         total_swap_pages -= p->pages;
2031         p->flags &= ~SWP_WRITEOK;
2032         spin_unlock(&p->lock);
2033         spin_unlock(&swap_lock);
2034
2035         set_current_oom_origin();
2036         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2037         clear_current_oom_origin();
2038
2039         if (err) {
2040                 /* re-insert swap space back into swap_list */
2041                 reinsert_swap_info(p);
2042                 goto out_dput;
2043         }
2044
2045         flush_work(&p->discard_work);
2046
2047         destroy_swap_extents(p);
2048         if (p->flags & SWP_CONTINUED)
2049                 free_swap_count_continuations(p);
2050
2051         mutex_lock(&swapon_mutex);
2052         spin_lock(&swap_lock);
2053         spin_lock(&p->lock);
2054         drain_mmlist();
2055
2056         /* wait for anyone still in scan_swap_map */
2057         p->highest_bit = 0;             /* cuts scans short */
2058         while (p->flags >= SWP_SCANNING) {
2059                 spin_unlock(&p->lock);
2060                 spin_unlock(&swap_lock);
2061                 schedule_timeout_uninterruptible(1);
2062                 spin_lock(&swap_lock);
2063                 spin_lock(&p->lock);
2064         }
2065
2066         swap_file = p->swap_file;
2067         old_block_size = p->old_block_size;
2068         p->swap_file = NULL;
2069         p->max = 0;
2070         swap_map = p->swap_map;
2071         p->swap_map = NULL;
2072         cluster_info = p->cluster_info;
2073         p->cluster_info = NULL;
2074         frontswap_map = frontswap_map_get(p);
2075         spin_unlock(&p->lock);
2076         spin_unlock(&swap_lock);
2077         frontswap_invalidate_area(p->type);
2078         frontswap_map_set(p, NULL);
2079         mutex_unlock(&swapon_mutex);
2080         free_percpu(p->percpu_cluster);
2081         p->percpu_cluster = NULL;
2082         vfree(swap_map);
2083         vfree(cluster_info);
2084         vfree(frontswap_map);
2085         /* Destroy swap account information */
2086         swap_cgroup_swapoff(p->type);
2087         exit_swap_address_space(p->type);
2088
2089         inode = mapping->host;
2090         if (S_ISBLK(inode->i_mode)) {
2091                 struct block_device *bdev = I_BDEV(inode);
2092                 set_blocksize(bdev, old_block_size);
2093                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2094         } else {
2095                 inode_lock(inode);
2096                 inode->i_flags &= ~S_SWAPFILE;
2097                 inode_unlock(inode);
2098         }
2099         filp_close(swap_file, NULL);
2100
2101         /*
2102          * Clear the SWP_USED flag after all resources are freed so that swapon
2103          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2104          * not hold p->lock after we cleared its SWP_WRITEOK.
2105          */
2106         spin_lock(&swap_lock);
2107         p->flags = 0;
2108         spin_unlock(&swap_lock);
2109
2110         err = 0;
2111         atomic_inc(&proc_poll_event);
2112         wake_up_interruptible(&proc_poll_wait);
2113
2114 out_dput:
2115         filp_close(victim, NULL);
2116 out:
2117         putname(pathname);
2118         return err;
2119 }
2120
2121 #ifdef CONFIG_PROC_FS
2122 static unsigned swaps_poll(struct file *file, poll_table *wait)
2123 {
2124         struct seq_file *seq = file->private_data;
2125
2126         poll_wait(file, &proc_poll_wait, wait);
2127
2128         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2129                 seq->poll_event = atomic_read(&proc_poll_event);
2130                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2131         }
2132
2133         return POLLIN | POLLRDNORM;
2134 }
2135
2136 /* iterator */
2137 static void *swap_start(struct seq_file *swap, loff_t *pos)
2138 {
2139         struct swap_info_struct *si;
2140         int type;
2141         loff_t l = *pos;
2142
2143         mutex_lock(&swapon_mutex);
2144
2145         if (!l)
2146                 return SEQ_START_TOKEN;
2147
2148         for (type = 0; type < nr_swapfiles; type++) {
2149                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2150                 si = swap_info[type];
2151                 if (!(si->flags & SWP_USED) || !si->swap_map)
2152                         continue;
2153                 if (!--l)
2154                         return si;
2155         }
2156
2157         return NULL;
2158 }
2159
2160 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2161 {
2162         struct swap_info_struct *si = v;
2163         int type;
2164
2165         if (v == SEQ_START_TOKEN)
2166                 type = 0;
2167         else
2168                 type = si->type + 1;
2169
2170         for (; type < nr_swapfiles; type++) {
2171                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2172                 si = swap_info[type];
2173                 if (!(si->flags & SWP_USED) || !si->swap_map)
2174                         continue;
2175                 ++*pos;
2176                 return si;
2177         }
2178
2179         return NULL;
2180 }
2181
2182 static void swap_stop(struct seq_file *swap, void *v)
2183 {
2184         mutex_unlock(&swapon_mutex);
2185 }
2186
2187 static int swap_show(struct seq_file *swap, void *v)
2188 {
2189         struct swap_info_struct *si = v;
2190         struct file *file;
2191         int len;
2192
2193         if (si == SEQ_START_TOKEN) {
2194                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2195                 return 0;
2196         }
2197
2198         file = si->swap_file;
2199         len = seq_file_path(swap, file, " \t\n\\");
2200         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2201                         len < 40 ? 40 - len : 1, " ",
2202                         S_ISBLK(file_inode(file)->i_mode) ?
2203                                 "partition" : "file\t",
2204                         si->pages << (PAGE_SHIFT - 10),
2205                         si->inuse_pages << (PAGE_SHIFT - 10),
2206                         si->prio);
2207         return 0;
2208 }
2209
2210 static const struct seq_operations swaps_op = {
2211         .start =        swap_start,
2212         .next =         swap_next,
2213         .stop =         swap_stop,
2214         .show =         swap_show
2215 };
2216
2217 static int swaps_open(struct inode *inode, struct file *file)
2218 {
2219         struct seq_file *seq;
2220         int ret;
2221
2222         ret = seq_open(file, &swaps_op);
2223         if (ret)
2224                 return ret;
2225
2226         seq = file->private_data;
2227         seq->poll_event = atomic_read(&proc_poll_event);
2228         return 0;
2229 }
2230
2231 static const struct file_operations proc_swaps_operations = {
2232         .open           = swaps_open,
2233         .read           = seq_read,
2234         .llseek         = seq_lseek,
2235         .release        = seq_release,
2236         .poll           = swaps_poll,
2237 };
2238
2239 static int __init procswaps_init(void)
2240 {
2241         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2242         return 0;
2243 }
2244 __initcall(procswaps_init);
2245 #endif /* CONFIG_PROC_FS */
2246
2247 #ifdef MAX_SWAPFILES_CHECK
2248 static int __init max_swapfiles_check(void)
2249 {
2250         MAX_SWAPFILES_CHECK();
2251         return 0;
2252 }
2253 late_initcall(max_swapfiles_check);
2254 #endif
2255
2256 static struct swap_info_struct *alloc_swap_info(void)
2257 {
2258         struct swap_info_struct *p;
2259         unsigned int type;
2260
2261         p = kzalloc(sizeof(*p), GFP_KERNEL);
2262         if (!p)
2263                 return ERR_PTR(-ENOMEM);
2264
2265         spin_lock(&swap_lock);
2266         for (type = 0; type < nr_swapfiles; type++) {
2267                 if (!(swap_info[type]->flags & SWP_USED))
2268                         break;
2269         }
2270         if (type >= MAX_SWAPFILES) {
2271                 spin_unlock(&swap_lock);
2272                 kfree(p);
2273                 return ERR_PTR(-EPERM);
2274         }
2275         if (type >= nr_swapfiles) {
2276                 p->type = type;
2277                 swap_info[type] = p;
2278                 /*
2279                  * Write swap_info[type] before nr_swapfiles, in case a
2280                  * racing procfs swap_start() or swap_next() is reading them.
2281                  * (We never shrink nr_swapfiles, we never free this entry.)
2282                  */
2283                 smp_wmb();
2284                 nr_swapfiles++;
2285         } else {
2286                 kfree(p);
2287                 p = swap_info[type];
2288                 /*
2289                  * Do not memset this entry: a racing procfs swap_next()
2290                  * would be relying on p->type to remain valid.
2291                  */
2292         }
2293         INIT_LIST_HEAD(&p->first_swap_extent.list);
2294         plist_node_init(&p->list, 0);
2295         plist_node_init(&p->avail_list, 0);
2296         p->flags = SWP_USED;
2297         spin_unlock(&swap_lock);
2298         spin_lock_init(&p->lock);
2299
2300         return p;
2301 }
2302
2303 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2304 {
2305         int error;
2306
2307         if (S_ISBLK(inode->i_mode)) {
2308                 p->bdev = bdgrab(I_BDEV(inode));
2309                 error = blkdev_get(p->bdev,
2310                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2311                 if (error < 0) {
2312                         p->bdev = NULL;
2313                         return error;
2314                 }
2315                 p->old_block_size = block_size(p->bdev);
2316                 error = set_blocksize(p->bdev, PAGE_SIZE);
2317                 if (error < 0)
2318                         return error;
2319                 p->flags |= SWP_BLKDEV;
2320         } else if (S_ISREG(inode->i_mode)) {
2321                 p->bdev = inode->i_sb->s_bdev;
2322                 inode_lock(inode);
2323                 if (IS_SWAPFILE(inode))
2324                         return -EBUSY;
2325         } else
2326                 return -EINVAL;
2327
2328         return 0;
2329 }
2330
2331 static unsigned long read_swap_header(struct swap_info_struct *p,
2332                                         union swap_header *swap_header,
2333                                         struct inode *inode)
2334 {
2335         int i;
2336         unsigned long maxpages;
2337         unsigned long swapfilepages;
2338         unsigned long last_page;
2339
2340         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2341                 pr_err("Unable to find swap-space signature\n");
2342                 return 0;
2343         }
2344
2345         /* swap partition endianess hack... */
2346         if (swab32(swap_header->info.version) == 1) {
2347                 swab32s(&swap_header->info.version);
2348                 swab32s(&swap_header->info.last_page);
2349                 swab32s(&swap_header->info.nr_badpages);
2350                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2351                         return 0;
2352                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2353                         swab32s(&swap_header->info.badpages[i]);
2354         }
2355         /* Check the swap header's sub-version */
2356         if (swap_header->info.version != 1) {
2357                 pr_warn("Unable to handle swap header version %d\n",
2358                         swap_header->info.version);
2359                 return 0;
2360         }
2361
2362         p->lowest_bit  = 1;
2363         p->cluster_next = 1;
2364         p->cluster_nr = 0;
2365
2366         /*
2367          * Find out how many pages are allowed for a single swap
2368          * device. There are two limiting factors: 1) the number
2369          * of bits for the swap offset in the swp_entry_t type, and
2370          * 2) the number of bits in the swap pte as defined by the
2371          * different architectures. In order to find the
2372          * largest possible bit mask, a swap entry with swap type 0
2373          * and swap offset ~0UL is created, encoded to a swap pte,
2374          * decoded to a swp_entry_t again, and finally the swap
2375          * offset is extracted. This will mask all the bits from
2376          * the initial ~0UL mask that can't be encoded in either
2377          * the swp_entry_t or the architecture definition of a
2378          * swap pte.
2379          */
2380         maxpages = swp_offset(pte_to_swp_entry(
2381                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2382         last_page = swap_header->info.last_page;
2383         if (last_page > maxpages) {
2384                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2385                         maxpages << (PAGE_SHIFT - 10),
2386                         last_page << (PAGE_SHIFT - 10));
2387         }
2388         if (maxpages > last_page) {
2389                 maxpages = last_page + 1;
2390                 /* p->max is an unsigned int: don't overflow it */
2391                 if ((unsigned int)maxpages == 0)
2392                         maxpages = UINT_MAX;
2393         }
2394         p->highest_bit = maxpages - 1;
2395
2396         if (!maxpages)
2397                 return 0;
2398         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2399         if (swapfilepages && maxpages > swapfilepages) {
2400                 pr_warn("Swap area shorter than signature indicates\n");
2401                 return 0;
2402         }
2403         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2404                 return 0;
2405         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2406                 return 0;
2407
2408         return maxpages;
2409 }
2410
2411 #define SWAP_CLUSTER_INFO_COLS                                          \
2412         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2413 #define SWAP_CLUSTER_SPACE_COLS                                         \
2414         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2415 #define SWAP_CLUSTER_COLS                                               \
2416         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2417
2418 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2419                                         union swap_header *swap_header,
2420                                         unsigned char *swap_map,
2421                                         struct swap_cluster_info *cluster_info,
2422                                         unsigned long maxpages,
2423                                         sector_t *span)
2424 {
2425         unsigned int j, k;
2426         unsigned int nr_good_pages;
2427         int nr_extents;
2428         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2429         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2430         unsigned long i, idx;
2431
2432         nr_good_pages = maxpages - 1;   /* omit header page */
2433
2434         cluster_list_init(&p->free_clusters);
2435         cluster_list_init(&p->discard_clusters);
2436
2437         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2438                 unsigned int page_nr = swap_header->info.badpages[i];
2439                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2440                         return -EINVAL;
2441                 if (page_nr < maxpages) {
2442                         swap_map[page_nr] = SWAP_MAP_BAD;
2443                         nr_good_pages--;
2444                         /*
2445                          * Haven't marked the cluster free yet, no list
2446                          * operation involved
2447                          */
2448                         inc_cluster_info_page(p, cluster_info, page_nr);
2449                 }
2450         }
2451
2452         /* Haven't marked the cluster free yet, no list operation involved */
2453         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2454                 inc_cluster_info_page(p, cluster_info, i);
2455
2456         if (nr_good_pages) {
2457                 swap_map[0] = SWAP_MAP_BAD;
2458                 /*
2459                  * Not mark the cluster free yet, no list
2460                  * operation involved
2461                  */
2462                 inc_cluster_info_page(p, cluster_info, 0);
2463                 p->max = maxpages;
2464                 p->pages = nr_good_pages;
2465                 nr_extents = setup_swap_extents(p, span);
2466                 if (nr_extents < 0)
2467                         return nr_extents;
2468                 nr_good_pages = p->pages;
2469         }
2470         if (!nr_good_pages) {
2471                 pr_warn("Empty swap-file\n");
2472                 return -EINVAL;
2473         }
2474
2475         if (!cluster_info)
2476                 return nr_extents;
2477
2478
2479         /*
2480          * Reduce false cache line sharing between cluster_info and
2481          * sharing same address space.
2482          */
2483         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2484                 j = (k + col) % SWAP_CLUSTER_COLS;
2485                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2486                         idx = i * SWAP_CLUSTER_COLS + j;
2487                         if (idx >= nr_clusters)
2488                                 continue;
2489                         if (cluster_count(&cluster_info[idx]))
2490                                 continue;
2491                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2492                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2493                                               idx);
2494                 }
2495         }
2496         return nr_extents;
2497 }
2498
2499 /*
2500  * Helper to sys_swapon determining if a given swap
2501  * backing device queue supports DISCARD operations.
2502  */
2503 static bool swap_discardable(struct swap_info_struct *si)
2504 {
2505         struct request_queue *q = bdev_get_queue(si->bdev);
2506
2507         if (!q || !blk_queue_discard(q))
2508                 return false;
2509
2510         return true;
2511 }
2512
2513 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2514 {
2515         struct swap_info_struct *p;
2516         struct filename *name;
2517         struct file *swap_file = NULL;
2518         struct address_space *mapping;
2519         int prio;
2520         int error;
2521         union swap_header *swap_header;
2522         int nr_extents;
2523         sector_t span;
2524         unsigned long maxpages;
2525         unsigned char *swap_map = NULL;
2526         struct swap_cluster_info *cluster_info = NULL;
2527         unsigned long *frontswap_map = NULL;
2528         struct page *page = NULL;
2529         struct inode *inode = NULL;
2530
2531         if (swap_flags & ~SWAP_FLAGS_VALID)
2532                 return -EINVAL;
2533
2534         if (!capable(CAP_SYS_ADMIN))
2535                 return -EPERM;
2536
2537         p = alloc_swap_info();
2538         if (IS_ERR(p))
2539                 return PTR_ERR(p);
2540
2541         INIT_WORK(&p->discard_work, swap_discard_work);
2542
2543         name = getname(specialfile);
2544         if (IS_ERR(name)) {
2545                 error = PTR_ERR(name);
2546                 name = NULL;
2547                 goto bad_swap;
2548         }
2549         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2550         if (IS_ERR(swap_file)) {
2551                 error = PTR_ERR(swap_file);
2552                 swap_file = NULL;
2553                 goto bad_swap;
2554         }
2555
2556         p->swap_file = swap_file;
2557         mapping = swap_file->f_mapping;
2558         inode = mapping->host;
2559
2560         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2561         error = claim_swapfile(p, inode);
2562         if (unlikely(error))
2563                 goto bad_swap;
2564
2565         /*
2566          * Read the swap header.
2567          */
2568         if (!mapping->a_ops->readpage) {
2569                 error = -EINVAL;
2570                 goto bad_swap;
2571         }
2572         page = read_mapping_page(mapping, 0, swap_file);
2573         if (IS_ERR(page)) {
2574                 error = PTR_ERR(page);
2575                 goto bad_swap;
2576         }
2577         swap_header = kmap(page);
2578
2579         maxpages = read_swap_header(p, swap_header, inode);
2580         if (unlikely(!maxpages)) {
2581                 error = -EINVAL;
2582                 goto bad_swap;
2583         }
2584
2585         /* OK, set up the swap map and apply the bad block list */
2586         swap_map = vzalloc(maxpages);
2587         if (!swap_map) {
2588                 error = -ENOMEM;
2589                 goto bad_swap;
2590         }
2591
2592         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2593                 p->flags |= SWP_STABLE_WRITES;
2594
2595         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2596                 int cpu;
2597                 unsigned long ci, nr_cluster;
2598
2599                 p->flags |= SWP_SOLIDSTATE;
2600                 /*
2601                  * select a random position to start with to help wear leveling
2602                  * SSD
2603                  */
2604                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2605                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2606
2607                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2608                 if (!cluster_info) {
2609                         error = -ENOMEM;
2610                         goto bad_swap;
2611                 }
2612
2613                 for (ci = 0; ci < nr_cluster; ci++)
2614                         spin_lock_init(&((cluster_info + ci)->lock));
2615
2616                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2617                 if (!p->percpu_cluster) {
2618                         error = -ENOMEM;
2619                         goto bad_swap;
2620                 }
2621                 for_each_possible_cpu(cpu) {
2622                         struct percpu_cluster *cluster;
2623                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2624                         cluster_set_null(&cluster->index);
2625                 }
2626         }
2627
2628         error = swap_cgroup_swapon(p->type, maxpages);
2629         if (error)
2630                 goto bad_swap;
2631
2632         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2633                 cluster_info, maxpages, &span);
2634         if (unlikely(nr_extents < 0)) {
2635                 error = nr_extents;
2636                 goto bad_swap;
2637         }
2638         /* frontswap enabled? set up bit-per-page map for frontswap */
2639         if (IS_ENABLED(CONFIG_FRONTSWAP))
2640                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2641
2642         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2643                 /*
2644                  * When discard is enabled for swap with no particular
2645                  * policy flagged, we set all swap discard flags here in
2646                  * order to sustain backward compatibility with older
2647                  * swapon(8) releases.
2648                  */
2649                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2650                              SWP_PAGE_DISCARD);
2651
2652                 /*
2653                  * By flagging sys_swapon, a sysadmin can tell us to
2654                  * either do single-time area discards only, or to just
2655                  * perform discards for released swap page-clusters.
2656                  * Now it's time to adjust the p->flags accordingly.
2657                  */
2658                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2659                         p->flags &= ~SWP_PAGE_DISCARD;
2660                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2661                         p->flags &= ~SWP_AREA_DISCARD;
2662
2663                 /* issue a swapon-time discard if it's still required */
2664                 if (p->flags & SWP_AREA_DISCARD) {
2665                         int err = discard_swap(p);
2666                         if (unlikely(err))
2667                                 pr_err("swapon: discard_swap(%p): %d\n",
2668                                         p, err);
2669                 }
2670         }
2671
2672         error = init_swap_address_space(p->type, maxpages);
2673         if (error)
2674                 goto bad_swap;
2675
2676         mutex_lock(&swapon_mutex);
2677         prio = -1;
2678         if (swap_flags & SWAP_FLAG_PREFER)
2679                 prio =
2680                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2681         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2682
2683         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2684                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2685                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2686                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2687                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2688                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2689                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2690                 (frontswap_map) ? "FS" : "");
2691
2692         mutex_unlock(&swapon_mutex);
2693         atomic_inc(&proc_poll_event);
2694         wake_up_interruptible(&proc_poll_wait);
2695
2696         if (S_ISREG(inode->i_mode))
2697                 inode->i_flags |= S_SWAPFILE;
2698         error = 0;
2699         goto out;
2700 bad_swap:
2701         free_percpu(p->percpu_cluster);
2702         p->percpu_cluster = NULL;
2703         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2704                 set_blocksize(p->bdev, p->old_block_size);
2705                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2706         }
2707         destroy_swap_extents(p);
2708         swap_cgroup_swapoff(p->type);
2709         spin_lock(&swap_lock);
2710         p->swap_file = NULL;
2711         p->flags = 0;
2712         spin_unlock(&swap_lock);
2713         vfree(swap_map);
2714         vfree(cluster_info);
2715         if (swap_file) {
2716                 if (inode && S_ISREG(inode->i_mode)) {
2717                         inode_unlock(inode);
2718                         inode = NULL;
2719                 }
2720                 filp_close(swap_file, NULL);
2721         }
2722 out:
2723         if (page && !IS_ERR(page)) {
2724                 kunmap(page);
2725                 put_page(page);
2726         }
2727         if (name)
2728                 putname(name);
2729         if (inode && S_ISREG(inode->i_mode))
2730                 inode_unlock(inode);
2731         return error;
2732 }
2733
2734 void si_swapinfo(struct sysinfo *val)
2735 {
2736         unsigned int type;
2737         unsigned long nr_to_be_unused = 0;
2738
2739         spin_lock(&swap_lock);
2740         for (type = 0; type < nr_swapfiles; type++) {
2741                 struct swap_info_struct *si = swap_info[type];
2742
2743                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2744                         nr_to_be_unused += si->inuse_pages;
2745         }
2746         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2747         val->totalswap = total_swap_pages + nr_to_be_unused;
2748         spin_unlock(&swap_lock);
2749 }
2750
2751 /*
2752  * Verify that a swap entry is valid and increment its swap map count.
2753  *
2754  * Returns error code in following case.
2755  * - success -> 0
2756  * - swp_entry is invalid -> EINVAL
2757  * - swp_entry is migration entry -> EINVAL
2758  * - swap-cache reference is requested but there is already one. -> EEXIST
2759  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2760  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2761  */
2762 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2763 {
2764         struct swap_info_struct *p;
2765         struct swap_cluster_info *ci;
2766         unsigned long offset, type;
2767         unsigned char count;
2768         unsigned char has_cache;
2769         int err = -EINVAL;
2770
2771         if (non_swap_entry(entry))
2772                 goto out;
2773
2774         type = swp_type(entry);
2775         if (type >= nr_swapfiles)
2776                 goto bad_file;
2777         p = swap_info[type];
2778         offset = swp_offset(entry);
2779         if (unlikely(offset >= p->max))
2780                 goto out;
2781
2782         ci = lock_cluster_or_swap_info(p, offset);
2783
2784         count = p->swap_map[offset];
2785
2786         /*
2787          * swapin_readahead() doesn't check if a swap entry is valid, so the
2788          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2789          */
2790         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2791                 err = -ENOENT;
2792                 goto unlock_out;
2793         }
2794
2795         has_cache = count & SWAP_HAS_CACHE;
2796         count &= ~SWAP_HAS_CACHE;
2797         err = 0;
2798
2799         if (usage == SWAP_HAS_CACHE) {
2800
2801                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2802                 if (!has_cache && count)
2803                         has_cache = SWAP_HAS_CACHE;
2804                 else if (has_cache)             /* someone else added cache */
2805                         err = -EEXIST;
2806                 else                            /* no users remaining */
2807                         err = -ENOENT;
2808
2809         } else if (count || has_cache) {
2810
2811                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2812                         count += usage;
2813                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2814                         err = -EINVAL;
2815                 else if (swap_count_continued(p, offset, count))
2816                         count = COUNT_CONTINUED;
2817                 else
2818                         err = -ENOMEM;
2819         } else
2820                 err = -ENOENT;                  /* unused swap entry */
2821
2822         p->swap_map[offset] = count | has_cache;
2823
2824 unlock_out:
2825         unlock_cluster_or_swap_info(p, ci);
2826 out:
2827         return err;
2828
2829 bad_file:
2830         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2831         goto out;
2832 }
2833
2834 /*
2835  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2836  * (in which case its reference count is never incremented).
2837  */
2838 void swap_shmem_alloc(swp_entry_t entry)
2839 {
2840         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2841 }
2842
2843 /*
2844  * Increase reference count of swap entry by 1.
2845  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2846  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2847  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2848  * might occur if a page table entry has got corrupted.
2849  */
2850 int swap_duplicate(swp_entry_t entry)
2851 {
2852         int err = 0;
2853
2854         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2855                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2856         return err;
2857 }
2858
2859 /*
2860  * @entry: swap entry for which we allocate swap cache.
2861  *
2862  * Called when allocating swap cache for existing swap entry,
2863  * This can return error codes. Returns 0 at success.
2864  * -EBUSY means there is a swap cache.
2865  * Note: return code is different from swap_duplicate().
2866  */
2867 int swapcache_prepare(swp_entry_t entry)
2868 {
2869         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2870 }
2871
2872 struct swap_info_struct *page_swap_info(struct page *page)
2873 {
2874         swp_entry_t swap = { .val = page_private(page) };
2875         return swap_info[swp_type(swap)];
2876 }
2877
2878 /*
2879  * out-of-line __page_file_ methods to avoid include hell.
2880  */
2881 struct address_space *__page_file_mapping(struct page *page)
2882 {
2883         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2884         return page_swap_info(page)->swap_file->f_mapping;
2885 }
2886 EXPORT_SYMBOL_GPL(__page_file_mapping);
2887
2888 pgoff_t __page_file_index(struct page *page)
2889 {
2890         swp_entry_t swap = { .val = page_private(page) };
2891         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2892         return swp_offset(swap);
2893 }
2894 EXPORT_SYMBOL_GPL(__page_file_index);
2895
2896 /*
2897  * add_swap_count_continuation - called when a swap count is duplicated
2898  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2899  * page of the original vmalloc'ed swap_map, to hold the continuation count
2900  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2901  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2902  *
2903  * These continuation pages are seldom referenced: the common paths all work
2904  * on the original swap_map, only referring to a continuation page when the
2905  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2906  *
2907  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2908  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2909  * can be called after dropping locks.
2910  */
2911 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2912 {
2913         struct swap_info_struct *si;
2914         struct swap_cluster_info *ci;
2915         struct page *head;
2916         struct page *page;
2917         struct page *list_page;
2918         pgoff_t offset;
2919         unsigned char count;
2920
2921         /*
2922          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2923          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2924          */
2925         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2926
2927         si = swap_info_get(entry);
2928         if (!si) {
2929                 /*
2930                  * An acceptable race has occurred since the failing
2931                  * __swap_duplicate(): the swap entry has been freed,
2932                  * perhaps even the whole swap_map cleared for swapoff.
2933                  */
2934                 goto outer;
2935         }
2936
2937         offset = swp_offset(entry);
2938
2939         ci = lock_cluster(si, offset);
2940
2941         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2942
2943         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2944                 /*
2945                  * The higher the swap count, the more likely it is that tasks
2946                  * will race to add swap count continuation: we need to avoid
2947                  * over-provisioning.
2948                  */
2949                 goto out;
2950         }
2951
2952         if (!page) {
2953                 unlock_cluster(ci);
2954                 spin_unlock(&si->lock);
2955                 return -ENOMEM;
2956         }
2957
2958         /*
2959          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2960          * no architecture is using highmem pages for kernel page tables: so it
2961          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2962          */
2963         head = vmalloc_to_page(si->swap_map + offset);
2964         offset &= ~PAGE_MASK;
2965
2966         /*
2967          * Page allocation does not initialize the page's lru field,
2968          * but it does always reset its private field.
2969          */
2970         if (!page_private(head)) {
2971                 BUG_ON(count & COUNT_CONTINUED);
2972                 INIT_LIST_HEAD(&head->lru);
2973                 set_page_private(head, SWP_CONTINUED);
2974                 si->flags |= SWP_CONTINUED;
2975         }
2976
2977         list_for_each_entry(list_page, &head->lru, lru) {
2978                 unsigned char *map;
2979
2980                 /*
2981                  * If the previous map said no continuation, but we've found
2982                  * a continuation page, free our allocation and use this one.
2983                  */
2984                 if (!(count & COUNT_CONTINUED))
2985                         goto out;
2986
2987                 map = kmap_atomic(list_page) + offset;
2988                 count = *map;
2989                 kunmap_atomic(map);
2990
2991                 /*
2992                  * If this continuation count now has some space in it,
2993                  * free our allocation and use this one.
2994                  */
2995                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2996                         goto out;
2997         }
2998
2999         list_add_tail(&page->lru, &head->lru);
3000         page = NULL;                    /* now it's attached, don't free it */
3001 out:
3002         unlock_cluster(ci);
3003         spin_unlock(&si->lock);
3004 outer:
3005         if (page)
3006                 __free_page(page);
3007         return 0;
3008 }
3009
3010 /*
3011  * swap_count_continued - when the original swap_map count is incremented
3012  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3013  * into, carry if so, or else fail until a new continuation page is allocated;
3014  * when the original swap_map count is decremented from 0 with continuation,
3015  * borrow from the continuation and report whether it still holds more.
3016  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3017  * lock.
3018  */
3019 static bool swap_count_continued(struct swap_info_struct *si,
3020                                  pgoff_t offset, unsigned char count)
3021 {
3022         struct page *head;
3023         struct page *page;
3024         unsigned char *map;
3025
3026         head = vmalloc_to_page(si->swap_map + offset);
3027         if (page_private(head) != SWP_CONTINUED) {
3028                 BUG_ON(count & COUNT_CONTINUED);
3029                 return false;           /* need to add count continuation */
3030         }
3031
3032         offset &= ~PAGE_MASK;
3033         page = list_entry(head->lru.next, struct page, lru);
3034         map = kmap_atomic(page) + offset;
3035
3036         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3037                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3038
3039         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3040                 /*
3041                  * Think of how you add 1 to 999
3042                  */
3043                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3044                         kunmap_atomic(map);
3045                         page = list_entry(page->lru.next, struct page, lru);
3046                         BUG_ON(page == head);
3047                         map = kmap_atomic(page) + offset;
3048                 }
3049                 if (*map == SWAP_CONT_MAX) {
3050                         kunmap_atomic(map);
3051                         page = list_entry(page->lru.next, struct page, lru);
3052                         if (page == head)
3053                                 return false;   /* add count continuation */
3054                         map = kmap_atomic(page) + offset;
3055 init_map:               *map = 0;               /* we didn't zero the page */
3056                 }
3057                 *map += 1;
3058                 kunmap_atomic(map);
3059                 page = list_entry(page->lru.prev, struct page, lru);
3060                 while (page != head) {
3061                         map = kmap_atomic(page) + offset;
3062                         *map = COUNT_CONTINUED;
3063                         kunmap_atomic(map);
3064                         page = list_entry(page->lru.prev, struct page, lru);
3065                 }
3066                 return true;                    /* incremented */
3067
3068         } else {                                /* decrementing */
3069                 /*
3070                  * Think of how you subtract 1 from 1000
3071                  */
3072                 BUG_ON(count != COUNT_CONTINUED);
3073                 while (*map == COUNT_CONTINUED) {
3074                         kunmap_atomic(map);
3075                         page = list_entry(page->lru.next, struct page, lru);
3076                         BUG_ON(page == head);
3077                         map = kmap_atomic(page) + offset;
3078                 }
3079                 BUG_ON(*map == 0);
3080                 *map -= 1;
3081                 if (*map == 0)
3082                         count = 0;
3083                 kunmap_atomic(map);
3084                 page = list_entry(page->lru.prev, struct page, lru);
3085                 while (page != head) {
3086                         map = kmap_atomic(page) + offset;
3087                         *map = SWAP_CONT_MAX | count;
3088                         count = COUNT_CONTINUED;
3089                         kunmap_atomic(map);
3090                         page = list_entry(page->lru.prev, struct page, lru);
3091                 }
3092                 return count == COUNT_CONTINUED;
3093         }
3094 }
3095
3096 /*
3097  * free_swap_count_continuations - swapoff free all the continuation pages
3098  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3099  */
3100 static void free_swap_count_continuations(struct swap_info_struct *si)
3101 {
3102         pgoff_t offset;
3103
3104         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3105                 struct page *head;
3106                 head = vmalloc_to_page(si->swap_map + offset);
3107                 if (page_private(head)) {
3108                         struct page *page, *next;
3109
3110                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3111                                 list_del(&page->lru);
3112                                 __free_page(page);
3113                         }
3114                 }
3115         }
3116 }
This page took 0.212777 seconds and 4 git commands to generate.