1 // SPDX-License-Identifier: GPL-2.0+
3 * Procedures for creating, accessing and interpreting the device tree.
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
17 #define pr_fmt(fmt) "OF: " fmt
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
32 #include "of_private.h"
34 LIST_HEAD(aliases_lookup);
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
51 DEFINE_MUTEX(of_mutex);
53 /* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
56 DEFINE_RAW_SPINLOCK(devtree_lock);
58 bool of_node_name_eq(const struct device_node *np, const char *name)
60 const char *node_name;
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 EXPORT_SYMBOL(of_node_name_eq);
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 EXPORT_SYMBOL(of_node_name_prefix);
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 const char *match = __of_get_property(np, "device_type", NULL);
86 return np && match && type && !strcmp(match, type);
89 int of_bus_n_addr_cells(struct device_node *np)
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
101 int of_n_addr_cells(struct device_node *np)
106 return of_bus_n_addr_cells(np);
108 EXPORT_SYMBOL(of_n_addr_cells);
110 int of_bus_n_size_cells(struct device_node *np)
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
122 int of_n_size_cells(struct device_node *np)
127 return of_bus_n_size_cells(np);
129 EXPORT_SYMBOL(of_n_size_cells);
132 int __weak of_node_to_nid(struct device_node *np)
138 #define OF_PHANDLE_CACHE_BITS 7
139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143 static u32 of_phandle_cache_hash(phandle handle)
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
149 * Caller must hold devtree_lock.
151 void __of_phandle_cache_inv_entry(phandle handle)
154 struct device_node *np;
159 handle_hash = of_phandle_cache_hash(handle);
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
166 void __init of_core_init(void)
168 struct device_node *np;
171 /* Create the kset, and register existing nodes */
172 mutex_lock(&of_mutex);
173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 mutex_unlock(&of_mutex);
176 pr_err("failed to register existing nodes\n");
179 for_each_of_allnodes(np) {
180 __of_attach_node_sysfs(np);
181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 mutex_unlock(&of_mutex);
186 /* Symlink in /proc as required by userspace ABI */
188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
191 static struct property *__of_find_property(const struct device_node *np,
192 const char *name, int *lenp)
199 for (pp = np->properties; pp; pp = pp->next) {
200 if (of_prop_cmp(pp->name, name) == 0) {
210 struct property *of_find_property(const struct device_node *np,
217 raw_spin_lock_irqsave(&devtree_lock, flags);
218 pp = __of_find_property(np, name, lenp);
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
223 EXPORT_SYMBOL(of_find_property);
225 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 struct device_node *np;
230 } else if (prev->child) {
233 /* Walk back up looking for a sibling, or the end of the structure */
235 while (np->parent && !np->sibling)
237 np = np->sibling; /* Might be null at the end of the tree */
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
247 * Return: A node pointer with refcount incremented, use
248 * of_node_put() on it when done.
250 struct device_node *of_find_all_nodes(struct device_node *prev)
252 struct device_node *np;
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = __of_find_all_nodes(prev);
259 raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 EXPORT_SYMBOL(of_find_all_nodes);
265 * Find a property with a given name for a given node
266 * and return the value.
268 const void *__of_get_property(const struct device_node *np,
269 const char *name, int *lenp)
271 struct property *pp = __of_find_property(np, name, lenp);
273 return pp ? pp->value : NULL;
277 * Find a property with a given name for a given node
278 * and return the value.
280 const void *of_get_property(const struct device_node *np, const char *name,
283 struct property *pp = of_find_property(np, name, lenp);
285 return pp ? pp->value : NULL;
287 EXPORT_SYMBOL(of_get_property);
290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292 * @cpu: logical cpu index of a core/thread
293 * @phys_id: physical identifier of a core/thread
295 * CPU logical to physical index mapping is architecture specific.
296 * However this __weak function provides a default match of physical
297 * id to logical cpu index. phys_id provided here is usually values read
298 * from the device tree which must match the hardware internal registers.
300 * Returns true if the physical identifier and the logical cpu index
301 * correspond to the same core/thread, false otherwise.
303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305 return (u32)phys_id == cpu;
309 * Checks if the given "prop_name" property holds the physical id of the
310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311 * NULL, local thread number within the core is returned in it.
313 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 const char *prop_name, int cpu, unsigned int *thread)
317 int ac, prop_len, tid;
320 ac = of_n_addr_cells(cpun);
321 cell = of_get_property(cpun, prop_name, &prop_len);
322 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
326 prop_len /= sizeof(*cell) * ac;
327 for (tid = 0; tid < prop_len; tid++) {
328 hwid = of_read_number(cell, ac);
329 if (arch_match_cpu_phys_id(cpu, hwid)) {
340 * arch_find_n_match_cpu_physical_id - See if the given device node is
341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
342 * else false. If 'thread' is non-NULL, the local thread number within the
343 * core is returned in it.
345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 int cpu, unsigned int *thread)
348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 * for thread ids on PowerPC. If it doesn't exist fallback to
350 * standard "reg" property.
352 if (IS_ENABLED(CONFIG_PPC) &&
353 __of_find_n_match_cpu_property(cpun,
354 "ibm,ppc-interrupt-server#s",
358 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
362 * of_get_cpu_node - Get device node associated with the given logical CPU
364 * @cpu: CPU number(logical index) for which device node is required
365 * @thread: if not NULL, local thread number within the physical core is
368 * The main purpose of this function is to retrieve the device node for the
369 * given logical CPU index. It should be used to initialize the of_node in
370 * cpu device. Once of_node in cpu device is populated, all the further
371 * references can use that instead.
373 * CPU logical to physical index mapping is architecture specific and is built
374 * before booting secondary cores. This function uses arch_match_cpu_phys_id
375 * which can be overridden by architecture specific implementation.
377 * Return: A node pointer for the logical cpu with refcount incremented, use
378 * of_node_put() on it when done. Returns NULL if not found.
380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382 struct device_node *cpun;
384 for_each_of_cpu_node(cpun) {
385 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
390 EXPORT_SYMBOL(of_get_cpu_node);
393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395 * @cpu_node: Pointer to the device_node for CPU.
397 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
400 int of_cpu_node_to_id(struct device_node *cpu_node)
404 struct device_node *np;
406 for_each_possible_cpu(cpu) {
407 np = of_cpu_device_node_get(cpu);
408 found = (cpu_node == np);
416 EXPORT_SYMBOL(of_cpu_node_to_id);
419 * of_get_cpu_state_node - Get CPU's idle state node at the given index
421 * @cpu_node: The device node for the CPU
422 * @index: The index in the list of the idle states
424 * Two generic methods can be used to describe a CPU's idle states, either via
425 * a flattened description through the "cpu-idle-states" binding or via the
426 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427 * bindings. This function check for both and returns the idle state node for
428 * the requested index.
430 * Return: An idle state node if found at @index. The refcount is incremented
431 * for it, so call of_node_put() on it when done. Returns NULL if not found.
433 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
436 struct of_phandle_args args;
439 err = of_parse_phandle_with_args(cpu_node, "power-domains",
440 "#power-domain-cells", 0, &args);
442 struct device_node *state_node =
443 of_parse_phandle(args.np, "domain-idle-states", index);
445 of_node_put(args.np);
450 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452 EXPORT_SYMBOL(of_get_cpu_state_node);
455 * __of_device_is_compatible() - Check if the node matches given constraints
456 * @device: pointer to node
457 * @compat: required compatible string, NULL or "" for any match
458 * @type: required device_type value, NULL or "" for any match
459 * @name: required node name, NULL or "" for any match
461 * Checks if the given @compat, @type and @name strings match the
462 * properties of the given @device. A constraints can be skipped by
463 * passing NULL or an empty string as the constraint.
465 * Returns 0 for no match, and a positive integer on match. The return
466 * value is a relative score with larger values indicating better
467 * matches. The score is weighted for the most specific compatible value
468 * to get the highest score. Matching type is next, followed by matching
469 * name. Practically speaking, this results in the following priority
472 * 1. specific compatible && type && name
473 * 2. specific compatible && type
474 * 3. specific compatible && name
475 * 4. specific compatible
476 * 5. general compatible && type && name
477 * 6. general compatible && type
478 * 7. general compatible && name
479 * 8. general compatible
484 static int __of_device_is_compatible(const struct device_node *device,
485 const char *compat, const char *type, const char *name)
487 struct property *prop;
489 int index = 0, score = 0;
491 /* Compatible match has highest priority */
492 if (compat && compat[0]) {
493 prop = __of_find_property(device, "compatible", NULL);
494 for (cp = of_prop_next_string(prop, NULL); cp;
495 cp = of_prop_next_string(prop, cp), index++) {
496 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497 score = INT_MAX/2 - (index << 2);
505 /* Matching type is better than matching name */
506 if (type && type[0]) {
507 if (!__of_node_is_type(device, type))
512 /* Matching name is a bit better than not */
513 if (name && name[0]) {
514 if (!of_node_name_eq(device, name))
522 /** Checks if the given "compat" string matches one of the strings in
523 * the device's "compatible" property
525 int of_device_is_compatible(const struct device_node *device,
531 raw_spin_lock_irqsave(&devtree_lock, flags);
532 res = __of_device_is_compatible(device, compat, NULL, NULL);
533 raw_spin_unlock_irqrestore(&devtree_lock, flags);
536 EXPORT_SYMBOL(of_device_is_compatible);
538 /** Checks if the device is compatible with any of the entries in
539 * a NULL terminated array of strings. Returns the best match
542 int of_device_compatible_match(struct device_node *device,
543 const char *const *compat)
545 unsigned int tmp, score = 0;
551 tmp = of_device_is_compatible(device, *compat);
561 * of_machine_is_compatible - Test root of device tree for a given compatible value
562 * @compat: compatible string to look for in root node's compatible property.
564 * Return: A positive integer if the root node has the given value in its
565 * compatible property.
567 int of_machine_is_compatible(const char *compat)
569 struct device_node *root;
572 root = of_find_node_by_path("/");
574 rc = of_device_is_compatible(root, compat);
579 EXPORT_SYMBOL(of_machine_is_compatible);
582 * __of_device_is_available - check if a device is available for use
584 * @device: Node to check for availability, with locks already held
586 * Return: True if the status property is absent or set to "okay" or "ok",
589 static bool __of_device_is_available(const struct device_node *device)
597 status = __of_get_property(device, "status", &statlen);
602 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
610 * of_device_is_available - check if a device is available for use
612 * @device: Node to check for availability
614 * Return: True if the status property is absent or set to "okay" or "ok",
617 bool of_device_is_available(const struct device_node *device)
622 raw_spin_lock_irqsave(&devtree_lock, flags);
623 res = __of_device_is_available(device);
624 raw_spin_unlock_irqrestore(&devtree_lock, flags);
628 EXPORT_SYMBOL(of_device_is_available);
631 * of_device_is_big_endian - check if a device has BE registers
633 * @device: Node to check for endianness
635 * Return: True if the device has a "big-endian" property, or if the kernel
636 * was compiled for BE *and* the device has a "native-endian" property.
637 * Returns false otherwise.
639 * Callers would nominally use ioread32be/iowrite32be if
640 * of_device_is_big_endian() == true, or readl/writel otherwise.
642 bool of_device_is_big_endian(const struct device_node *device)
644 if (of_property_read_bool(device, "big-endian"))
646 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
647 of_property_read_bool(device, "native-endian"))
651 EXPORT_SYMBOL(of_device_is_big_endian);
654 * of_get_parent - Get a node's parent if any
655 * @node: Node to get parent
657 * Return: A node pointer with refcount incremented, use
658 * of_node_put() on it when done.
660 struct device_node *of_get_parent(const struct device_node *node)
662 struct device_node *np;
668 raw_spin_lock_irqsave(&devtree_lock, flags);
669 np = of_node_get(node->parent);
670 raw_spin_unlock_irqrestore(&devtree_lock, flags);
673 EXPORT_SYMBOL(of_get_parent);
676 * of_get_next_parent - Iterate to a node's parent
677 * @node: Node to get parent of
679 * This is like of_get_parent() except that it drops the
680 * refcount on the passed node, making it suitable for iterating
681 * through a node's parents.
683 * Return: A node pointer with refcount incremented, use
684 * of_node_put() on it when done.
686 struct device_node *of_get_next_parent(struct device_node *node)
688 struct device_node *parent;
694 raw_spin_lock_irqsave(&devtree_lock, flags);
695 parent = of_node_get(node->parent);
697 raw_spin_unlock_irqrestore(&devtree_lock, flags);
700 EXPORT_SYMBOL(of_get_next_parent);
702 static struct device_node *__of_get_next_child(const struct device_node *node,
703 struct device_node *prev)
705 struct device_node *next;
710 next = prev ? prev->sibling : node->child;
715 #define __for_each_child_of_node(parent, child) \
716 for (child = __of_get_next_child(parent, NULL); child != NULL; \
717 child = __of_get_next_child(parent, child))
720 * of_get_next_child - Iterate a node childs
722 * @prev: previous child of the parent node, or NULL to get first
724 * Return: A node pointer with refcount incremented, use of_node_put() on
725 * it when done. Returns NULL when prev is the last child. Decrements the
728 struct device_node *of_get_next_child(const struct device_node *node,
729 struct device_node *prev)
731 struct device_node *next;
734 raw_spin_lock_irqsave(&devtree_lock, flags);
735 next = __of_get_next_child(node, prev);
736 raw_spin_unlock_irqrestore(&devtree_lock, flags);
739 EXPORT_SYMBOL(of_get_next_child);
742 * of_get_next_available_child - Find the next available child node
744 * @prev: previous child of the parent node, or NULL to get first
746 * This function is like of_get_next_child(), except that it
747 * automatically skips any disabled nodes (i.e. status = "disabled").
749 struct device_node *of_get_next_available_child(const struct device_node *node,
750 struct device_node *prev)
752 struct device_node *next;
758 raw_spin_lock_irqsave(&devtree_lock, flags);
759 next = prev ? prev->sibling : node->child;
760 for (; next; next = next->sibling) {
761 if (!__of_device_is_available(next))
763 if (of_node_get(next))
767 raw_spin_unlock_irqrestore(&devtree_lock, flags);
770 EXPORT_SYMBOL(of_get_next_available_child);
773 * of_get_next_cpu_node - Iterate on cpu nodes
774 * @prev: previous child of the /cpus node, or NULL to get first
776 * Return: A cpu node pointer with refcount incremented, use of_node_put()
777 * on it when done. Returns NULL when prev is the last child. Decrements
778 * the refcount of prev.
780 struct device_node *of_get_next_cpu_node(struct device_node *prev)
782 struct device_node *next = NULL;
784 struct device_node *node;
787 node = of_find_node_by_path("/cpus");
789 raw_spin_lock_irqsave(&devtree_lock, flags);
791 next = prev->sibling;
796 for (; next; next = next->sibling) {
797 if (!(of_node_name_eq(next, "cpu") ||
798 __of_node_is_type(next, "cpu")))
800 if (of_node_get(next))
804 raw_spin_unlock_irqrestore(&devtree_lock, flags);
807 EXPORT_SYMBOL(of_get_next_cpu_node);
810 * of_get_compatible_child - Find compatible child node
811 * @parent: parent node
812 * @compatible: compatible string
814 * Lookup child node whose compatible property contains the given compatible
817 * Return: a node pointer with refcount incremented, use of_node_put() on it
818 * when done; or NULL if not found.
820 struct device_node *of_get_compatible_child(const struct device_node *parent,
821 const char *compatible)
823 struct device_node *child;
825 for_each_child_of_node(parent, child) {
826 if (of_device_is_compatible(child, compatible))
832 EXPORT_SYMBOL(of_get_compatible_child);
835 * of_get_child_by_name - Find the child node by name for a given parent
837 * @name: child name to look for.
839 * This function looks for child node for given matching name
841 * Return: A node pointer if found, with refcount incremented, use
842 * of_node_put() on it when done.
843 * Returns NULL if node is not found.
845 struct device_node *of_get_child_by_name(const struct device_node *node,
848 struct device_node *child;
850 for_each_child_of_node(node, child)
851 if (of_node_name_eq(child, name))
855 EXPORT_SYMBOL(of_get_child_by_name);
857 struct device_node *__of_find_node_by_path(struct device_node *parent,
860 struct device_node *child;
863 len = strcspn(path, "/:");
867 __for_each_child_of_node(parent, child) {
868 const char *name = kbasename(child->full_name);
869 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
875 struct device_node *__of_find_node_by_full_path(struct device_node *node,
878 const char *separator = strchr(path, ':');
880 while (node && *path == '/') {
881 struct device_node *tmp = node;
883 path++; /* Increment past '/' delimiter */
884 node = __of_find_node_by_path(node, path);
886 path = strchrnul(path, '/');
887 if (separator && separator < path)
894 * of_find_node_opts_by_path - Find a node matching a full OF path
895 * @path: Either the full path to match, or if the path does not
896 * start with '/', the name of a property of the /aliases
897 * node (an alias). In the case of an alias, the node
898 * matching the alias' value will be returned.
899 * @opts: Address of a pointer into which to store the start of
900 * an options string appended to the end of the path with
904 * * /foo/bar Full path
906 * * foo/bar Valid alias + relative path
908 * Return: A node pointer with refcount incremented, use
909 * of_node_put() on it when done.
911 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
913 struct device_node *np = NULL;
916 const char *separator = strchr(path, ':');
919 *opts = separator ? separator + 1 : NULL;
921 if (strcmp(path, "/") == 0)
922 return of_node_get(of_root);
924 /* The path could begin with an alias */
927 const char *p = separator;
930 p = strchrnul(path, '/');
933 /* of_aliases must not be NULL */
937 for_each_property_of_node(of_aliases, pp) {
938 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
939 np = of_find_node_by_path(pp->value);
948 /* Step down the tree matching path components */
949 raw_spin_lock_irqsave(&devtree_lock, flags);
951 np = of_node_get(of_root);
952 np = __of_find_node_by_full_path(np, path);
953 raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 EXPORT_SYMBOL(of_find_node_opts_by_path);
959 * of_find_node_by_name - Find a node by its "name" property
960 * @from: The node to start searching from or NULL; the node
961 * you pass will not be searched, only the next one
962 * will. Typically, you pass what the previous call
963 * returned. of_node_put() will be called on @from.
964 * @name: The name string to match against
966 * Return: A node pointer with refcount incremented, use
967 * of_node_put() on it when done.
969 struct device_node *of_find_node_by_name(struct device_node *from,
972 struct device_node *np;
975 raw_spin_lock_irqsave(&devtree_lock, flags);
976 for_each_of_allnodes_from(from, np)
977 if (of_node_name_eq(np, name) && of_node_get(np))
980 raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 EXPORT_SYMBOL(of_find_node_by_name);
986 * of_find_node_by_type - Find a node by its "device_type" property
987 * @from: The node to start searching from, or NULL to start searching
988 * the entire device tree. The node you pass will not be
989 * searched, only the next one will; typically, you pass
990 * what the previous call returned. of_node_put() will be
991 * called on from for you.
992 * @type: The type string to match against
994 * Return: A node pointer with refcount incremented, use
995 * of_node_put() on it when done.
997 struct device_node *of_find_node_by_type(struct device_node *from,
1000 struct device_node *np;
1001 unsigned long flags;
1003 raw_spin_lock_irqsave(&devtree_lock, flags);
1004 for_each_of_allnodes_from(from, np)
1005 if (__of_node_is_type(np, type) && of_node_get(np))
1008 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011 EXPORT_SYMBOL(of_find_node_by_type);
1014 * of_find_compatible_node - Find a node based on type and one of the
1015 * tokens in its "compatible" property
1016 * @from: The node to start searching from or NULL, the node
1017 * you pass will not be searched, only the next one
1018 * will; typically, you pass what the previous call
1019 * returned. of_node_put() will be called on it
1020 * @type: The type string to match "device_type" or NULL to ignore
1021 * @compatible: The string to match to one of the tokens in the device
1022 * "compatible" list.
1024 * Return: A node pointer with refcount incremented, use
1025 * of_node_put() on it when done.
1027 struct device_node *of_find_compatible_node(struct device_node *from,
1028 const char *type, const char *compatible)
1030 struct device_node *np;
1031 unsigned long flags;
1033 raw_spin_lock_irqsave(&devtree_lock, flags);
1034 for_each_of_allnodes_from(from, np)
1035 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1039 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042 EXPORT_SYMBOL(of_find_compatible_node);
1045 * of_find_node_with_property - Find a node which has a property with
1047 * @from: The node to start searching from or NULL, the node
1048 * you pass will not be searched, only the next one
1049 * will; typically, you pass what the previous call
1050 * returned. of_node_put() will be called on it
1051 * @prop_name: The name of the property to look for.
1053 * Return: A node pointer with refcount incremented, use
1054 * of_node_put() on it when done.
1056 struct device_node *of_find_node_with_property(struct device_node *from,
1057 const char *prop_name)
1059 struct device_node *np;
1060 struct property *pp;
1061 unsigned long flags;
1063 raw_spin_lock_irqsave(&devtree_lock, flags);
1064 for_each_of_allnodes_from(from, np) {
1065 for (pp = np->properties; pp; pp = pp->next) {
1066 if (of_prop_cmp(pp->name, prop_name) == 0) {
1074 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 EXPORT_SYMBOL(of_find_node_with_property);
1080 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1081 const struct device_node *node)
1083 const struct of_device_id *best_match = NULL;
1084 int score, best_score = 0;
1089 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1090 score = __of_device_is_compatible(node, matches->compatible,
1091 matches->type, matches->name);
1092 if (score > best_score) {
1093 best_match = matches;
1102 * of_match_node - Tell if a device_node has a matching of_match structure
1103 * @matches: array of of device match structures to search in
1104 * @node: the of device structure to match against
1106 * Low level utility function used by device matching.
1108 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1109 const struct device_node *node)
1111 const struct of_device_id *match;
1112 unsigned long flags;
1114 raw_spin_lock_irqsave(&devtree_lock, flags);
1115 match = __of_match_node(matches, node);
1116 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119 EXPORT_SYMBOL(of_match_node);
1122 * of_find_matching_node_and_match - Find a node based on an of_device_id
1124 * @from: The node to start searching from or NULL, the node
1125 * you pass will not be searched, only the next one
1126 * will; typically, you pass what the previous call
1127 * returned. of_node_put() will be called on it
1128 * @matches: array of of device match structures to search in
1129 * @match: Updated to point at the matches entry which matched
1131 * Return: A node pointer with refcount incremented, use
1132 * of_node_put() on it when done.
1134 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1135 const struct of_device_id *matches,
1136 const struct of_device_id **match)
1138 struct device_node *np;
1139 const struct of_device_id *m;
1140 unsigned long flags;
1145 raw_spin_lock_irqsave(&devtree_lock, flags);
1146 for_each_of_allnodes_from(from, np) {
1147 m = __of_match_node(matches, np);
1148 if (m && of_node_get(np)) {
1155 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158 EXPORT_SYMBOL(of_find_matching_node_and_match);
1161 * of_modalias_node - Lookup appropriate modalias for a device node
1162 * @node: pointer to a device tree node
1163 * @modalias: Pointer to buffer that modalias value will be copied into
1164 * @len: Length of modalias value
1166 * Based on the value of the compatible property, this routine will attempt
1167 * to choose an appropriate modalias value for a particular device tree node.
1168 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1169 * from the first entry in the compatible list property.
1171 * Return: This routine returns 0 on success, <0 on failure.
1173 int of_modalias_node(struct device_node *node, char *modalias, int len)
1175 const char *compatible, *p;
1178 compatible = of_get_property(node, "compatible", &cplen);
1179 if (!compatible || strlen(compatible) > cplen)
1181 p = strchr(compatible, ',');
1182 strlcpy(modalias, p ? p + 1 : compatible, len);
1185 EXPORT_SYMBOL_GPL(of_modalias_node);
1188 * of_find_node_by_phandle - Find a node given a phandle
1189 * @handle: phandle of the node to find
1191 * Return: A node pointer with refcount incremented, use
1192 * of_node_put() on it when done.
1194 struct device_node *of_find_node_by_phandle(phandle handle)
1196 struct device_node *np = NULL;
1197 unsigned long flags;
1203 handle_hash = of_phandle_cache_hash(handle);
1205 raw_spin_lock_irqsave(&devtree_lock, flags);
1207 if (phandle_cache[handle_hash] &&
1208 handle == phandle_cache[handle_hash]->phandle)
1209 np = phandle_cache[handle_hash];
1212 for_each_of_allnodes(np)
1213 if (np->phandle == handle &&
1214 !of_node_check_flag(np, OF_DETACHED)) {
1215 phandle_cache[handle_hash] = np;
1221 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1224 EXPORT_SYMBOL(of_find_node_by_phandle);
1226 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1229 printk("%s %pOF", msg, args->np);
1230 for (i = 0; i < args->args_count; i++) {
1231 const char delim = i ? ',' : ':';
1233 pr_cont("%c%08x", delim, args->args[i]);
1238 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1239 const struct device_node *np,
1240 const char *list_name,
1241 const char *cells_name,
1247 memset(it, 0, sizeof(*it));
1250 * one of cell_count or cells_name must be provided to determine the
1253 if (cell_count < 0 && !cells_name)
1256 list = of_get_property(np, list_name, &size);
1260 it->cells_name = cells_name;
1261 it->cell_count = cell_count;
1263 it->list_end = list + size / sizeof(*list);
1264 it->phandle_end = list;
1269 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1271 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1276 of_node_put(it->node);
1280 if (!it->cur || it->phandle_end >= it->list_end)
1283 it->cur = it->phandle_end;
1285 /* If phandle is 0, then it is an empty entry with no arguments. */
1286 it->phandle = be32_to_cpup(it->cur++);
1291 * Find the provider node and parse the #*-cells property to
1292 * determine the argument length.
1294 it->node = of_find_node_by_phandle(it->phandle);
1296 if (it->cells_name) {
1298 pr_err("%pOF: could not find phandle %d\n",
1299 it->parent, it->phandle);
1303 if (of_property_read_u32(it->node, it->cells_name,
1306 * If both cell_count and cells_name is given,
1307 * fall back to cell_count in absence
1308 * of the cells_name property
1310 if (it->cell_count >= 0) {
1311 count = it->cell_count;
1313 pr_err("%pOF: could not get %s for %pOF\n",
1321 count = it->cell_count;
1325 * Make sure that the arguments actually fit in the remaining
1326 * property data length
1328 if (it->cur + count > it->list_end) {
1329 pr_err("%pOF: %s = %d found %d\n",
1330 it->parent, it->cells_name,
1331 count, it->cell_count);
1336 it->phandle_end = it->cur + count;
1337 it->cur_count = count;
1343 of_node_put(it->node);
1349 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1351 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1357 count = it->cur_count;
1359 if (WARN_ON(size < count))
1362 for (i = 0; i < count; i++)
1363 args[i] = be32_to_cpup(it->cur++);
1368 static int __of_parse_phandle_with_args(const struct device_node *np,
1369 const char *list_name,
1370 const char *cells_name,
1371 int cell_count, int index,
1372 struct of_phandle_args *out_args)
1374 struct of_phandle_iterator it;
1375 int rc, cur_index = 0;
1377 /* Loop over the phandles until all the requested entry is found */
1378 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1380 * All of the error cases bail out of the loop, so at
1381 * this point, the parsing is successful. If the requested
1382 * index matches, then fill the out_args structure and return,
1383 * or return -ENOENT for an empty entry.
1386 if (cur_index == index) {
1393 c = of_phandle_iterator_args(&it,
1396 out_args->np = it.node;
1397 out_args->args_count = c;
1399 of_node_put(it.node);
1402 /* Found it! return success */
1410 * Unlock node before returning result; will be one of:
1411 * -ENOENT : index is for empty phandle
1412 * -EINVAL : parsing error on data
1416 of_node_put(it.node);
1421 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1422 * @np: Pointer to device node holding phandle property
1423 * @phandle_name: Name of property holding a phandle value
1424 * @index: For properties holding a table of phandles, this is the index into
1427 * Return: The device_node pointer with refcount incremented. Use
1428 * of_node_put() on it when done.
1430 struct device_node *of_parse_phandle(const struct device_node *np,
1431 const char *phandle_name, int index)
1433 struct of_phandle_args args;
1438 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1444 EXPORT_SYMBOL(of_parse_phandle);
1447 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1448 * @np: pointer to a device tree node containing a list
1449 * @list_name: property name that contains a list
1450 * @cells_name: property name that specifies phandles' arguments count
1451 * @index: index of a phandle to parse out
1452 * @out_args: optional pointer to output arguments structure (will be filled)
1454 * This function is useful to parse lists of phandles and their arguments.
1455 * Returns 0 on success and fills out_args, on error returns appropriate
1458 * Caller is responsible to call of_node_put() on the returned out_args->np
1464 * #list-cells = <2>;
1468 * #list-cells = <1>;
1472 * list = <&phandle1 1 2 &phandle2 3>;
1475 * To get a device_node of the ``node2`` node you may call this:
1476 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1478 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1479 const char *cells_name, int index,
1480 struct of_phandle_args *out_args)
1482 int cell_count = -1;
1487 /* If cells_name is NULL we assume a cell count of 0 */
1491 return __of_parse_phandle_with_args(np, list_name, cells_name,
1492 cell_count, index, out_args);
1494 EXPORT_SYMBOL(of_parse_phandle_with_args);
1497 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1498 * @np: pointer to a device tree node containing a list
1499 * @list_name: property name that contains a list
1500 * @stem_name: stem of property names that specify phandles' arguments count
1501 * @index: index of a phandle to parse out
1502 * @out_args: optional pointer to output arguments structure (will be filled)
1504 * This function is useful to parse lists of phandles and their arguments.
1505 * Returns 0 on success and fills out_args, on error returns appropriate errno
1506 * value. The difference between this function and of_parse_phandle_with_args()
1507 * is that this API remaps a phandle if the node the phandle points to has
1508 * a <@stem_name>-map property.
1510 * Caller is responsible to call of_node_put() on the returned out_args->np
1516 * #list-cells = <2>;
1520 * #list-cells = <1>;
1524 * #list-cells = <1>;
1525 * list-map = <0 &phandle2 3>,
1527 * <2 &phandle1 5 1>;
1528 * list-map-mask = <0x3>;
1532 * list = <&phandle1 1 2 &phandle3 0>;
1535 * To get a device_node of the ``node2`` node you may call this:
1536 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1538 int of_parse_phandle_with_args_map(const struct device_node *np,
1539 const char *list_name,
1540 const char *stem_name,
1541 int index, struct of_phandle_args *out_args)
1543 char *cells_name, *map_name = NULL, *mask_name = NULL;
1544 char *pass_name = NULL;
1545 struct device_node *cur, *new = NULL;
1546 const __be32 *map, *mask, *pass;
1547 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1548 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1549 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1550 const __be32 *match_array = initial_match_array;
1551 int i, ret, map_len, match;
1552 u32 list_size, new_size;
1557 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1562 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1566 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1570 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1574 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1579 /* Get the #<list>-cells property */
1581 ret = of_property_read_u32(cur, cells_name, &list_size);
1585 /* Precalculate the match array - this simplifies match loop */
1586 for (i = 0; i < list_size; i++)
1587 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1591 /* Get the <list>-map property */
1592 map = of_get_property(cur, map_name, &map_len);
1597 map_len /= sizeof(u32);
1599 /* Get the <list>-map-mask property (optional) */
1600 mask = of_get_property(cur, mask_name, NULL);
1603 /* Iterate through <list>-map property */
1605 while (map_len > (list_size + 1) && !match) {
1606 /* Compare specifiers */
1608 for (i = 0; i < list_size; i++, map_len--)
1609 match &= !((match_array[i] ^ *map++) & mask[i]);
1612 new = of_find_node_by_phandle(be32_to_cpup(map));
1616 /* Check if not found */
1620 if (!of_device_is_available(new))
1623 ret = of_property_read_u32(new, cells_name, &new_size);
1627 /* Check for malformed properties */
1628 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1630 if (map_len < new_size)
1633 /* Move forward by new node's #<list>-cells amount */
1635 map_len -= new_size;
1640 /* Get the <list>-map-pass-thru property (optional) */
1641 pass = of_get_property(cur, pass_name, NULL);
1646 * Successfully parsed a <list>-map translation; copy new
1647 * specifier into the out_args structure, keeping the
1648 * bits specified in <list>-map-pass-thru.
1650 match_array = map - new_size;
1651 for (i = 0; i < new_size; i++) {
1652 __be32 val = *(map - new_size + i);
1654 if (i < list_size) {
1656 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1659 out_args->args[i] = be32_to_cpu(val);
1661 out_args->args_count = list_size = new_size;
1662 /* Iterate again with new provider */
1678 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1681 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1682 * @np: pointer to a device tree node containing a list
1683 * @list_name: property name that contains a list
1684 * @cell_count: number of argument cells following the phandle
1685 * @index: index of a phandle to parse out
1686 * @out_args: optional pointer to output arguments structure (will be filled)
1688 * This function is useful to parse lists of phandles and their arguments.
1689 * Returns 0 on success and fills out_args, on error returns appropriate
1692 * Caller is responsible to call of_node_put() on the returned out_args->np
1704 * list = <&phandle1 0 2 &phandle2 2 3>;
1707 * To get a device_node of the ``node2`` node you may call this:
1708 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1710 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1711 const char *list_name, int cell_count,
1712 int index, struct of_phandle_args *out_args)
1716 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1719 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1722 * of_count_phandle_with_args() - Find the number of phandles references in a property
1723 * @np: pointer to a device tree node containing a list
1724 * @list_name: property name that contains a list
1725 * @cells_name: property name that specifies phandles' arguments count
1727 * Return: The number of phandle + argument tuples within a property. It
1728 * is a typical pattern to encode a list of phandle and variable
1729 * arguments into a single property. The number of arguments is encoded
1730 * by a property in the phandle-target node. For example, a gpios
1731 * property would contain a list of GPIO specifies consisting of a
1732 * phandle and 1 or more arguments. The number of arguments are
1733 * determined by the #gpio-cells property in the node pointed to by the
1736 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1737 const char *cells_name)
1739 struct of_phandle_iterator it;
1740 int rc, cur_index = 0;
1743 * If cells_name is NULL we assume a cell count of 0. This makes
1744 * counting the phandles trivial as each 32bit word in the list is a
1745 * phandle and no arguments are to consider. So we don't iterate through
1746 * the list but just use the length to determine the phandle count.
1752 list = of_get_property(np, list_name, &size);
1756 return size / sizeof(*list);
1759 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1763 while ((rc = of_phandle_iterator_next(&it)) == 0)
1771 EXPORT_SYMBOL(of_count_phandle_with_args);
1774 * __of_add_property - Add a property to a node without lock operations
1775 * @np: Caller's Device Node
1776 * @prop: Property to add
1778 int __of_add_property(struct device_node *np, struct property *prop)
1780 struct property **next;
1783 next = &np->properties;
1785 if (strcmp(prop->name, (*next)->name) == 0)
1786 /* duplicate ! don't insert it */
1789 next = &(*next)->next;
1797 * of_add_property - Add a property to a node
1798 * @np: Caller's Device Node
1799 * @prop: Property to add
1801 int of_add_property(struct device_node *np, struct property *prop)
1803 unsigned long flags;
1806 mutex_lock(&of_mutex);
1808 raw_spin_lock_irqsave(&devtree_lock, flags);
1809 rc = __of_add_property(np, prop);
1810 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1813 __of_add_property_sysfs(np, prop);
1815 mutex_unlock(&of_mutex);
1818 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1822 EXPORT_SYMBOL_GPL(of_add_property);
1824 int __of_remove_property(struct device_node *np, struct property *prop)
1826 struct property **next;
1828 for (next = &np->properties; *next; next = &(*next)->next) {
1835 /* found the node */
1837 prop->next = np->deadprops;
1838 np->deadprops = prop;
1844 * of_remove_property - Remove a property from a node.
1845 * @np: Caller's Device Node
1846 * @prop: Property to remove
1848 * Note that we don't actually remove it, since we have given out
1849 * who-knows-how-many pointers to the data using get-property.
1850 * Instead we just move the property to the "dead properties"
1851 * list, so it won't be found any more.
1853 int of_remove_property(struct device_node *np, struct property *prop)
1855 unsigned long flags;
1861 mutex_lock(&of_mutex);
1863 raw_spin_lock_irqsave(&devtree_lock, flags);
1864 rc = __of_remove_property(np, prop);
1865 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1868 __of_remove_property_sysfs(np, prop);
1870 mutex_unlock(&of_mutex);
1873 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1877 EXPORT_SYMBOL_GPL(of_remove_property);
1879 int __of_update_property(struct device_node *np, struct property *newprop,
1880 struct property **oldpropp)
1882 struct property **next, *oldprop;
1884 for (next = &np->properties; *next; next = &(*next)->next) {
1885 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1888 *oldpropp = oldprop = *next;
1891 /* replace the node */
1892 newprop->next = oldprop->next;
1894 oldprop->next = np->deadprops;
1895 np->deadprops = oldprop;
1898 newprop->next = NULL;
1906 * of_update_property - Update a property in a node, if the property does
1907 * not exist, add it.
1909 * Note that we don't actually remove it, since we have given out
1910 * who-knows-how-many pointers to the data using get-property.
1911 * Instead we just move the property to the "dead properties" list,
1912 * and add the new property to the property list
1914 int of_update_property(struct device_node *np, struct property *newprop)
1916 struct property *oldprop;
1917 unsigned long flags;
1923 mutex_lock(&of_mutex);
1925 raw_spin_lock_irqsave(&devtree_lock, flags);
1926 rc = __of_update_property(np, newprop, &oldprop);
1927 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1930 __of_update_property_sysfs(np, newprop, oldprop);
1932 mutex_unlock(&of_mutex);
1935 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1940 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1941 int id, const char *stem, int stem_len)
1945 strncpy(ap->stem, stem, stem_len);
1946 ap->stem[stem_len] = 0;
1947 list_add_tail(&ap->link, &aliases_lookup);
1948 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1949 ap->alias, ap->stem, ap->id, np);
1953 * of_alias_scan - Scan all properties of the 'aliases' node
1954 * @dt_alloc: An allocator that provides a virtual address to memory
1955 * for storing the resulting tree
1957 * The function scans all the properties of the 'aliases' node and populates
1958 * the global lookup table with the properties. It returns the
1959 * number of alias properties found, or an error code in case of failure.
1961 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1963 struct property *pp;
1965 of_aliases = of_find_node_by_path("/aliases");
1966 of_chosen = of_find_node_by_path("/chosen");
1967 if (of_chosen == NULL)
1968 of_chosen = of_find_node_by_path("/chosen@0");
1971 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1972 const char *name = NULL;
1974 if (of_property_read_string(of_chosen, "stdout-path", &name))
1975 of_property_read_string(of_chosen, "linux,stdout-path",
1977 if (IS_ENABLED(CONFIG_PPC) && !name)
1978 of_property_read_string(of_aliases, "stdout", &name);
1980 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1986 for_each_property_of_node(of_aliases, pp) {
1987 const char *start = pp->name;
1988 const char *end = start + strlen(start);
1989 struct device_node *np;
1990 struct alias_prop *ap;
1993 /* Skip those we do not want to proceed */
1994 if (!strcmp(pp->name, "name") ||
1995 !strcmp(pp->name, "phandle") ||
1996 !strcmp(pp->name, "linux,phandle"))
1999 np = of_find_node_by_path(pp->value);
2003 /* walk the alias backwards to extract the id and work out
2004 * the 'stem' string */
2005 while (isdigit(*(end-1)) && end > start)
2009 if (kstrtoint(end, 10, &id) < 0)
2012 /* Allocate an alias_prop with enough space for the stem */
2013 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2016 memset(ap, 0, sizeof(*ap) + len + 1);
2018 of_alias_add(ap, np, id, start, len);
2023 * of_alias_get_id - Get alias id for the given device_node
2024 * @np: Pointer to the given device_node
2025 * @stem: Alias stem of the given device_node
2027 * The function travels the lookup table to get the alias id for the given
2028 * device_node and alias stem.
2030 * Return: The alias id if found.
2032 int of_alias_get_id(struct device_node *np, const char *stem)
2034 struct alias_prop *app;
2037 mutex_lock(&of_mutex);
2038 list_for_each_entry(app, &aliases_lookup, link) {
2039 if (strcmp(app->stem, stem) != 0)
2042 if (np == app->np) {
2047 mutex_unlock(&of_mutex);
2051 EXPORT_SYMBOL_GPL(of_alias_get_id);
2054 * of_alias_get_alias_list - Get alias list for the given device driver
2055 * @matches: Array of OF device match structures to search in
2056 * @stem: Alias stem of the given device_node
2057 * @bitmap: Bitmap field pointer
2058 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2060 * The function travels the lookup table to record alias ids for the given
2061 * device match structures and alias stem.
2063 * Return: 0 or -ENOSYS when !CONFIG_OF or
2064 * -EOVERFLOW if alias ID is greater then allocated nbits
2066 int of_alias_get_alias_list(const struct of_device_id *matches,
2067 const char *stem, unsigned long *bitmap,
2070 struct alias_prop *app;
2073 /* Zero bitmap field to make sure that all the time it is clean */
2074 bitmap_zero(bitmap, nbits);
2076 mutex_lock(&of_mutex);
2077 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2078 list_for_each_entry(app, &aliases_lookup, link) {
2079 pr_debug("%s: stem: %s, id: %d\n",
2080 __func__, app->stem, app->id);
2082 if (strcmp(app->stem, stem) != 0) {
2083 pr_debug("%s: stem comparison didn't pass %s\n",
2084 __func__, app->stem);
2088 if (of_match_node(matches, app->np)) {
2089 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2091 if (app->id >= nbits) {
2092 pr_warn("%s: ID %d >= than bitmap field %d\n",
2093 __func__, app->id, nbits);
2096 set_bit(app->id, bitmap);
2100 mutex_unlock(&of_mutex);
2104 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2107 * of_alias_get_highest_id - Get highest alias id for the given stem
2108 * @stem: Alias stem to be examined
2110 * The function travels the lookup table to get the highest alias id for the
2111 * given alias stem. It returns the alias id if found.
2113 int of_alias_get_highest_id(const char *stem)
2115 struct alias_prop *app;
2118 mutex_lock(&of_mutex);
2119 list_for_each_entry(app, &aliases_lookup, link) {
2120 if (strcmp(app->stem, stem) != 0)
2126 mutex_unlock(&of_mutex);
2130 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2133 * of_console_check() - Test and setup console for DT setup
2134 * @dn: Pointer to device node
2135 * @name: Name to use for preferred console without index. ex. "ttyS"
2136 * @index: Index to use for preferred console.
2138 * Check if the given device node matches the stdout-path property in the
2139 * /chosen node. If it does then register it as the preferred console.
2141 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2143 bool of_console_check(struct device_node *dn, char *name, int index)
2145 if (!dn || dn != of_stdout || console_set_on_cmdline)
2149 * XXX: cast `options' to char pointer to suppress complication
2150 * warnings: printk, UART and console drivers expect char pointer.
2152 return !add_preferred_console(name, index, (char *)of_stdout_options);
2154 EXPORT_SYMBOL_GPL(of_console_check);
2157 * of_find_next_cache_node - Find a node's subsidiary cache
2158 * @np: node of type "cpu" or "cache"
2160 * Return: A node pointer with refcount incremented, use
2161 * of_node_put() on it when done. Caller should hold a reference
2164 struct device_node *of_find_next_cache_node(const struct device_node *np)
2166 struct device_node *child, *cache_node;
2168 cache_node = of_parse_phandle(np, "l2-cache", 0);
2170 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2175 /* OF on pmac has nodes instead of properties named "l2-cache"
2176 * beneath CPU nodes.
2178 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2179 for_each_child_of_node(np, child)
2180 if (of_node_is_type(child, "cache"))
2187 * of_find_last_cache_level - Find the level at which the last cache is
2188 * present for the given logical cpu
2190 * @cpu: cpu number(logical index) for which the last cache level is needed
2192 * Return: The the level at which the last cache is present. It is exactly
2193 * same as the total number of cache levels for the given logical cpu.
2195 int of_find_last_cache_level(unsigned int cpu)
2197 u32 cache_level = 0;
2198 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2203 np = of_find_next_cache_node(np);
2206 of_property_read_u32(prev, "cache-level", &cache_level);
2212 * of_map_id - Translate an ID through a downstream mapping.
2213 * @np: root complex device node.
2214 * @id: device ID to map.
2215 * @map_name: property name of the map to use.
2216 * @map_mask_name: optional property name of the mask to use.
2217 * @target: optional pointer to a target device node.
2218 * @id_out: optional pointer to receive the translated ID.
2220 * Given a device ID, look up the appropriate implementation-defined
2221 * platform ID and/or the target device which receives transactions on that
2222 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2223 * @id_out may be NULL if only the other is required. If @target points to
2224 * a non-NULL device node pointer, only entries targeting that node will be
2225 * matched; if it points to a NULL value, it will receive the device node of
2226 * the first matching target phandle, with a reference held.
2228 * Return: 0 on success or a standard error code on failure.
2230 int of_map_id(struct device_node *np, u32 id,
2231 const char *map_name, const char *map_mask_name,
2232 struct device_node **target, u32 *id_out)
2234 u32 map_mask, masked_id;
2236 const __be32 *map = NULL;
2238 if (!np || !map_name || (!target && !id_out))
2241 map = of_get_property(np, map_name, &map_len);
2245 /* Otherwise, no map implies no translation */
2250 if (!map_len || map_len % (4 * sizeof(*map))) {
2251 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2256 /* The default is to select all bits. */
2257 map_mask = 0xffffffff;
2260 * Can be overridden by "{iommu,msi}-map-mask" property.
2261 * If of_property_read_u32() fails, the default is used.
2264 of_property_read_u32(np, map_mask_name, &map_mask);
2266 masked_id = map_mask & id;
2267 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2268 struct device_node *phandle_node;
2269 u32 id_base = be32_to_cpup(map + 0);
2270 u32 phandle = be32_to_cpup(map + 1);
2271 u32 out_base = be32_to_cpup(map + 2);
2272 u32 id_len = be32_to_cpup(map + 3);
2274 if (id_base & ~map_mask) {
2275 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2276 np, map_name, map_name,
2281 if (masked_id < id_base || masked_id >= id_base + id_len)
2284 phandle_node = of_find_node_by_phandle(phandle);
2290 of_node_put(phandle_node);
2292 *target = phandle_node;
2294 if (*target != phandle_node)
2299 *id_out = masked_id - id_base + out_base;
2301 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2302 np, map_name, map_mask, id_base, out_base,
2303 id_len, id, masked_id - id_base + out_base);
2307 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2308 id, target && *target ? *target : NULL);
2310 /* Bypasses translation */
2315 EXPORT_SYMBOL_GPL(of_map_id);