4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/file.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * ext4 fs regular file handling primitives
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 #include <linux/time.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
30 #include "ext4_jbd2.h"
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
37 struct inode *inode = file_inode(iocb->ki_filp);
40 if (!inode_trylock_shared(inode)) {
41 if (iocb->ki_flags & IOCB_NOWAIT)
43 inode_lock_shared(inode);
46 * Recheck under inode lock - at this point we are sure it cannot
50 inode_unlock_shared(inode);
51 /* Fallback to buffered IO in case we cannot support DAX */
52 return generic_file_read_iter(iocb, to);
54 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
55 inode_unlock_shared(inode);
57 file_accessed(iocb->ki_filp);
62 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
64 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
67 if (!iov_iter_count(to))
68 return 0; /* skip atime */
71 if (IS_DAX(file_inode(iocb->ki_filp)))
72 return ext4_dax_read_iter(iocb, to);
74 return generic_file_read_iter(iocb, to);
78 * Called when an inode is released. Note that this is different
79 * from ext4_file_open: open gets called at every open, but release
80 * gets called only when /all/ the files are closed.
82 static int ext4_release_file(struct inode *inode, struct file *filp)
84 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
85 ext4_alloc_da_blocks(inode);
86 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
88 /* if we are the last writer on the inode, drop the block reservation */
89 if ((filp->f_mode & FMODE_WRITE) &&
90 (atomic_read(&inode->i_writecount) == 1) &&
91 !EXT4_I(inode)->i_reserved_data_blocks)
93 down_write(&EXT4_I(inode)->i_data_sem);
94 ext4_discard_preallocations(inode);
95 up_write(&EXT4_I(inode)->i_data_sem);
97 if (is_dx(inode) && filp->private_data)
98 ext4_htree_free_dir_info(filp->private_data);
103 static void ext4_unwritten_wait(struct inode *inode)
105 wait_queue_head_t *wq = ext4_ioend_wq(inode);
107 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
111 * This tests whether the IO in question is block-aligned or not.
112 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
113 * are converted to written only after the IO is complete. Until they are
114 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
115 * it needs to zero out portions of the start and/or end block. If 2 AIO
116 * threads are at work on the same unwritten block, they must be synchronized
117 * or one thread will zero the other's data, causing corruption.
120 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
122 struct super_block *sb = inode->i_sb;
123 int blockmask = sb->s_blocksize - 1;
125 if (pos >= i_size_read(inode))
128 if ((pos | iov_iter_alignment(from)) & blockmask)
134 /* Is IO overwriting allocated and initialized blocks? */
135 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
137 struct ext4_map_blocks map;
138 unsigned int blkbits = inode->i_blkbits;
141 if (pos + len > i_size_read(inode))
144 map.m_lblk = pos >> blkbits;
145 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
148 err = ext4_map_blocks(NULL, inode, &map, 0);
150 * 'err==len' means that all of the blocks have been preallocated,
151 * regardless of whether they have been initialized or not. To exclude
152 * unwritten extents, we need to check m_flags.
154 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
157 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
159 struct inode *inode = file_inode(iocb->ki_filp);
162 ret = generic_write_checks(iocb, from);
166 * If we have encountered a bitmap-format file, the size limit
167 * is smaller than s_maxbytes, which is for extent-mapped files.
169 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
172 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
174 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
176 return iov_iter_count(from);
181 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
183 struct inode *inode = file_inode(iocb->ki_filp);
186 if (!inode_trylock(inode)) {
187 if (iocb->ki_flags & IOCB_NOWAIT)
191 ret = ext4_write_checks(iocb, from);
194 ret = file_remove_privs(iocb->ki_filp);
197 ret = file_update_time(iocb->ki_filp);
201 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
205 ret = generic_write_sync(iocb, ret);
211 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
213 struct inode *inode = file_inode(iocb->ki_filp);
214 int o_direct = iocb->ki_flags & IOCB_DIRECT;
215 int unaligned_aio = 0;
219 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
224 return ext4_dax_write_iter(iocb, from);
226 if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
229 if (!inode_trylock(inode)) {
230 if (iocb->ki_flags & IOCB_NOWAIT)
235 ret = ext4_write_checks(iocb, from);
240 * Unaligned direct AIO must be serialized among each other as zeroing
241 * of partial blocks of two competing unaligned AIOs can result in data
244 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
245 !is_sync_kiocb(iocb) &&
246 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
248 ext4_unwritten_wait(inode);
251 iocb->private = &overwrite;
252 /* Check whether we do a DIO overwrite or not */
253 if (o_direct && !unaligned_aio) {
254 if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
255 if (ext4_should_dioread_nolock(inode))
257 } else if (iocb->ki_flags & IOCB_NOWAIT) {
263 ret = __generic_file_write_iter(iocb, from);
267 ret = generic_write_sync(iocb, ret);
277 static int ext4_dax_huge_fault(struct vm_fault *vmf,
278 enum page_entry_size pe_size)
281 handle_t *handle = NULL;
282 struct inode *inode = file_inode(vmf->vma->vm_file);
283 struct super_block *sb = inode->i_sb;
286 * We have to distinguish real writes from writes which will result in a
287 * COW page; COW writes should *not* poke the journal (the file will not
288 * be changed). Doing so would cause unintended failures when mounted
291 * We check for VM_SHARED rather than vmf->cow_page since the latter is
292 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
293 * other sizes, dax_iomap_fault will handle splitting / fallback so that
294 * we eventually come back with a COW page.
296 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
297 (vmf->vma->vm_flags & VM_SHARED);
300 sb_start_pagefault(sb);
301 file_update_time(vmf->vma->vm_file);
302 down_read(&EXT4_I(inode)->i_mmap_sem);
303 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
304 EXT4_DATA_TRANS_BLOCKS(sb));
306 down_read(&EXT4_I(inode)->i_mmap_sem);
309 result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
311 result = VM_FAULT_SIGBUS;
314 ext4_journal_stop(handle);
315 up_read(&EXT4_I(inode)->i_mmap_sem);
316 sb_end_pagefault(sb);
318 up_read(&EXT4_I(inode)->i_mmap_sem);
324 static int ext4_dax_fault(struct vm_fault *vmf)
326 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
329 static const struct vm_operations_struct ext4_dax_vm_ops = {
330 .fault = ext4_dax_fault,
331 .huge_fault = ext4_dax_huge_fault,
332 .page_mkwrite = ext4_dax_fault,
333 .pfn_mkwrite = ext4_dax_fault,
336 #define ext4_dax_vm_ops ext4_file_vm_ops
339 static const struct vm_operations_struct ext4_file_vm_ops = {
340 .fault = ext4_filemap_fault,
341 .map_pages = filemap_map_pages,
342 .page_mkwrite = ext4_page_mkwrite,
345 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
347 struct inode *inode = file->f_mapping->host;
349 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
353 if (IS_DAX(file_inode(file))) {
354 vma->vm_ops = &ext4_dax_vm_ops;
355 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
357 vma->vm_ops = &ext4_file_vm_ops;
362 static int ext4_file_open(struct inode * inode, struct file * filp)
364 struct super_block *sb = inode->i_sb;
365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
366 struct vfsmount *mnt = filp->f_path.mnt;
372 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
375 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
377 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
379 * Sample where the filesystem has been mounted and
380 * store it in the superblock for sysadmin convenience
381 * when trying to sort through large numbers of block
382 * devices or filesystem images.
384 memset(buf, 0, sizeof(buf));
386 path.dentry = mnt->mnt_root;
387 cp = d_path(&path, buf, sizeof(buf));
392 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
394 return PTR_ERR(handle);
395 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
396 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
398 ext4_journal_stop(handle);
401 strlcpy(sbi->s_es->s_last_mounted, cp,
402 sizeof(sbi->s_es->s_last_mounted));
403 ext4_handle_dirty_super(handle, sb);
404 ext4_journal_stop(handle);
407 if (ext4_encrypted_inode(inode)) {
408 ret = fscrypt_get_encryption_info(inode);
411 if (!fscrypt_has_encryption_key(inode))
415 dir = dget_parent(file_dentry(filp));
416 if (ext4_encrypted_inode(d_inode(dir)) &&
417 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
418 ext4_warning(inode->i_sb,
419 "Inconsistent encryption contexts: %lu/%lu",
420 (unsigned long) d_inode(dir)->i_ino,
421 (unsigned long) inode->i_ino);
427 * Set up the jbd2_inode if we are opening the inode for
428 * writing and the journal is present
430 if (filp->f_mode & FMODE_WRITE) {
431 ret = ext4_inode_attach_jinode(inode);
436 filp->f_mode |= FMODE_NOWAIT;
437 return dquot_file_open(inode, filp);
441 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
442 * file rather than ext4_ext_walk_space() because we can introduce
443 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
444 * function. When extent status tree has been fully implemented, it will
445 * track all extent status for a file and we can directly use it to
446 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
450 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
451 * lookup page cache to check whether or not there has some data between
452 * [startoff, endoff] because, if this range contains an unwritten extent,
453 * we determine this extent as a data or a hole according to whether the
454 * page cache has data or not.
456 static int ext4_find_unwritten_pgoff(struct inode *inode,
462 unsigned int blkbits;
470 blkbits = inode->i_sb->s_blocksize_bits;
473 endoff = (loff_t)end_blk << blkbits;
475 index = startoff >> PAGE_SHIFT;
476 end = (endoff - 1) >> PAGE_SHIFT;
478 pagevec_init(&pvec, 0);
481 unsigned long nr_pages;
483 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
488 for (i = 0; i < nr_pages; i++) {
489 struct page *page = pvec.pages[i];
490 struct buffer_head *bh, *head;
493 * If current offset is smaller than the page offset,
494 * there is a hole at this offset.
496 if (whence == SEEK_HOLE && lastoff < endoff &&
497 lastoff < page_offset(pvec.pages[i])) {
505 if (unlikely(page->mapping != inode->i_mapping)) {
510 if (!page_has_buffers(page)) {
515 if (page_has_buffers(page)) {
516 lastoff = page_offset(page);
517 bh = head = page_buffers(page);
519 if (lastoff + bh->b_size <= startoff)
521 if (buffer_uptodate(bh) ||
522 buffer_unwritten(bh)) {
523 if (whence == SEEK_DATA)
526 if (whence == SEEK_HOLE)
530 *offset = max_t(loff_t,
536 lastoff += bh->b_size;
537 bh = bh->b_this_page;
538 } while (bh != head);
541 lastoff = page_offset(page) + PAGE_SIZE;
545 pagevec_release(&pvec);
546 } while (index <= end);
548 /* There are no pages upto endoff - that would be a hole in there. */
549 if (whence == SEEK_HOLE && lastoff < endoff) {
554 pagevec_release(&pvec);
559 * ext4_seek_data() retrieves the offset for SEEK_DATA.
561 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
563 struct inode *inode = file->f_mapping->host;
564 struct extent_status es;
565 ext4_lblk_t start, last, end;
566 loff_t dataoff, isize;
572 isize = i_size_read(inode);
573 if (offset < 0 || offset >= isize) {
578 blkbits = inode->i_sb->s_blocksize_bits;
579 start = offset >> blkbits;
581 end = isize >> blkbits;
585 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
587 /* No extent found -> no data */
596 dataoff = (loff_t)last << blkbits;
597 if (!ext4_es_is_unwritten(&es))
601 * If there is a unwritten extent at this offset,
602 * it will be as a data or a hole according to page
603 * cache that has data or not.
605 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
606 es.es_lblk + es.es_len, &dataoff))
609 dataoff = (loff_t)last << blkbits;
611 } while (last <= end);
618 return vfs_setpos(file, dataoff, maxsize);
622 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
624 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
626 struct inode *inode = file->f_mapping->host;
627 struct extent_status es;
628 ext4_lblk_t start, last, end;
629 loff_t holeoff, isize;
635 isize = i_size_read(inode);
636 if (offset < 0 || offset >= isize) {
641 blkbits = inode->i_sb->s_blocksize_bits;
642 start = offset >> blkbits;
644 end = isize >> blkbits;
648 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
654 if (ret == 0 || es.es_lblk > last) {
656 holeoff = (loff_t)last << blkbits;
660 * If there is a unwritten extent at this offset,
661 * it will be as a data or a hole according to page
662 * cache that has data or not.
664 if (ext4_es_is_unwritten(&es) &&
665 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
666 last + es.es_len, &holeoff))
670 holeoff = (loff_t)last << blkbits;
672 } while (last <= end);
679 return vfs_setpos(file, holeoff, maxsize);
683 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
684 * by calling generic_file_llseek_size() with the appropriate maxbytes
687 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
689 struct inode *inode = file->f_mapping->host;
692 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
693 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
695 maxbytes = inode->i_sb->s_maxbytes;
701 return generic_file_llseek_size(file, offset, whence,
702 maxbytes, i_size_read(inode));
704 return ext4_seek_data(file, offset, maxbytes);
706 return ext4_seek_hole(file, offset, maxbytes);
712 const struct file_operations ext4_file_operations = {
713 .llseek = ext4_llseek,
714 .read_iter = ext4_file_read_iter,
715 .write_iter = ext4_file_write_iter,
716 .unlocked_ioctl = ext4_ioctl,
718 .compat_ioctl = ext4_compat_ioctl,
720 .mmap = ext4_file_mmap,
721 .open = ext4_file_open,
722 .release = ext4_release_file,
723 .fsync = ext4_sync_file,
724 .get_unmapped_area = thp_get_unmapped_area,
725 .splice_read = generic_file_splice_read,
726 .splice_write = iter_file_splice_write,
727 .fallocate = ext4_fallocate,
730 const struct inode_operations ext4_file_inode_operations = {
731 .setattr = ext4_setattr,
732 .getattr = ext4_file_getattr,
733 .listxattr = ext4_listxattr,
734 .get_acl = ext4_get_acl,
735 .set_acl = ext4_set_acl,
736 .fiemap = ext4_fiemap,