1 // SPDX-License-Identifier: GPL-2.0-only
4 * Library for filesystems writers.
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
27 #include <linux/uaccess.h>
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
40 EXPORT_SYMBOL(simple_getattr);
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 buf->f_fsid = u64_to_fsid(id);
47 buf->f_type = dentry->d_sb->s_magic;
48 buf->f_bsize = PAGE_SIZE;
49 buf->f_namelen = NAME_MAX;
52 EXPORT_SYMBOL(simple_statfs);
55 * Retaining negative dentries for an in-memory filesystem just wastes
56 * memory and lookup time: arrange for them to be deleted immediately.
58 int always_delete_dentry(const struct dentry *dentry)
62 EXPORT_SYMBOL(always_delete_dentry);
64 const struct dentry_operations simple_dentry_operations = {
65 .d_delete = always_delete_dentry,
67 EXPORT_SYMBOL(simple_dentry_operations);
70 * Lookup the data. This is trivial - if the dentry didn't already
71 * exist, we know it is negative. Set d_op to delete negative dentries.
73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 if (dentry->d_name.len > NAME_MAX)
76 return ERR_PTR(-ENAMETOOLONG);
77 if (!dentry->d_sb->s_d_op)
78 d_set_d_op(dentry, &simple_dentry_operations);
82 EXPORT_SYMBOL(simple_lookup);
84 int dcache_dir_open(struct inode *inode, struct file *file)
86 file->private_data = d_alloc_cursor(file->f_path.dentry);
88 return file->private_data ? 0 : -ENOMEM;
90 EXPORT_SYMBOL(dcache_dir_open);
92 int dcache_dir_close(struct inode *inode, struct file *file)
94 dput(file->private_data);
97 EXPORT_SYMBOL(dcache_dir_close);
99 /* parent is locked at least shared */
101 * Returns an element of siblings' list.
102 * We are looking for <count>th positive after <p>; if
103 * found, dentry is grabbed and returned to caller.
104 * If no such element exists, NULL is returned.
106 static struct dentry *scan_positives(struct dentry *cursor,
111 struct dentry *dentry = cursor->d_parent, *found = NULL;
113 spin_lock(&dentry->d_lock);
114 while ((p = p->next) != &dentry->d_subdirs) {
115 struct dentry *d = list_entry(p, struct dentry, d_child);
116 // we must at least skip cursors, to avoid livelocks
117 if (d->d_flags & DCACHE_DENTRY_CURSOR)
119 if (simple_positive(d) && !--count) {
120 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
121 if (simple_positive(d))
122 found = dget_dlock(d);
123 spin_unlock(&d->d_lock);
128 if (need_resched()) {
129 list_move(&cursor->d_child, p);
130 p = &cursor->d_child;
131 spin_unlock(&dentry->d_lock);
133 spin_lock(&dentry->d_lock);
136 spin_unlock(&dentry->d_lock);
141 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143 struct dentry *dentry = file->f_path.dentry;
146 offset += file->f_pos;
155 if (offset != file->f_pos) {
156 struct dentry *cursor = file->private_data;
157 struct dentry *to = NULL;
159 inode_lock_shared(dentry->d_inode);
162 to = scan_positives(cursor, &dentry->d_subdirs,
164 spin_lock(&dentry->d_lock);
166 list_move(&cursor->d_child, &to->d_child);
168 list_del_init(&cursor->d_child);
169 spin_unlock(&dentry->d_lock);
172 file->f_pos = offset;
174 inode_unlock_shared(dentry->d_inode);
178 EXPORT_SYMBOL(dcache_dir_lseek);
181 * Directory is locked and all positive dentries in it are safe, since
182 * for ramfs-type trees they can't go away without unlink() or rmdir(),
183 * both impossible due to the lock on directory.
186 int dcache_readdir(struct file *file, struct dir_context *ctx)
188 struct dentry *dentry = file->f_path.dentry;
189 struct dentry *cursor = file->private_data;
190 struct list_head *anchor = &dentry->d_subdirs;
191 struct dentry *next = NULL;
194 if (!dir_emit_dots(file, ctx))
199 else if (!list_empty(&cursor->d_child))
200 p = &cursor->d_child;
204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206 d_inode(next)->i_ino,
207 fs_umode_to_dtype(d_inode(next)->i_mode)))
212 spin_lock(&dentry->d_lock);
214 list_move_tail(&cursor->d_child, &next->d_child);
216 list_del_init(&cursor->d_child);
217 spin_unlock(&dentry->d_lock);
222 EXPORT_SYMBOL(dcache_readdir);
224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 EXPORT_SYMBOL(generic_read_dir);
230 const struct file_operations simple_dir_operations = {
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
235 .iterate_shared = dcache_readdir,
238 EXPORT_SYMBOL(simple_dir_operations);
240 const struct inode_operations simple_dir_inode_operations = {
241 .lookup = simple_lookup,
243 EXPORT_SYMBOL(simple_dir_inode_operations);
245 static void offset_set(struct dentry *dentry, u32 offset)
247 dentry->d_fsdata = (void *)((uintptr_t)(offset));
250 static u32 dentry2offset(struct dentry *dentry)
252 return (u32)((uintptr_t)(dentry->d_fsdata));
255 static struct lock_class_key simple_offset_xa_lock;
258 * simple_offset_init - initialize an offset_ctx
259 * @octx: directory offset map to be initialized
262 void simple_offset_init(struct offset_ctx *octx)
264 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
265 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
267 /* 0 is '.', 1 is '..', so always start with offset 2 */
268 octx->next_offset = 2;
272 * simple_offset_add - Add an entry to a directory's offset map
273 * @octx: directory offset ctx to be updated
274 * @dentry: new dentry being added
276 * Returns zero on success. @so_ctx and the dentry offset are updated.
277 * Otherwise, a negative errno value is returned.
279 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
281 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
285 if (dentry2offset(dentry) != 0)
288 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
289 &octx->next_offset, GFP_KERNEL);
293 offset_set(dentry, offset);
298 * simple_offset_remove - Remove an entry to a directory's offset map
299 * @octx: directory offset ctx to be updated
300 * @dentry: dentry being removed
303 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
307 offset = dentry2offset(dentry);
311 xa_erase(&octx->xa, offset);
312 offset_set(dentry, 0);
316 * simple_offset_rename_exchange - exchange rename with directory offsets
317 * @old_dir: parent of dentry being moved
318 * @old_dentry: dentry being moved
319 * @new_dir: destination parent
320 * @new_dentry: destination dentry
322 * Returns zero on success. Otherwise a negative errno is returned and the
323 * rename is rolled back.
325 int simple_offset_rename_exchange(struct inode *old_dir,
326 struct dentry *old_dentry,
327 struct inode *new_dir,
328 struct dentry *new_dentry)
330 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
331 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
332 u32 old_index = dentry2offset(old_dentry);
333 u32 new_index = dentry2offset(new_dentry);
336 simple_offset_remove(old_ctx, old_dentry);
337 simple_offset_remove(new_ctx, new_dentry);
339 ret = simple_offset_add(new_ctx, old_dentry);
343 ret = simple_offset_add(old_ctx, new_dentry);
345 simple_offset_remove(new_ctx, old_dentry);
349 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
351 simple_offset_remove(new_ctx, old_dentry);
352 simple_offset_remove(old_ctx, new_dentry);
358 offset_set(old_dentry, old_index);
359 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
360 offset_set(new_dentry, new_index);
361 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
366 * simple_offset_destroy - Release offset map
367 * @octx: directory offset ctx that is about to be destroyed
369 * During fs teardown (eg. umount), a directory's offset map might still
370 * contain entries. xa_destroy() cleans out anything that remains.
372 void simple_offset_destroy(struct offset_ctx *octx)
374 xa_destroy(&octx->xa);
378 * offset_dir_llseek - Advance the read position of a directory descriptor
379 * @file: an open directory whose position is to be updated
380 * @offset: a byte offset
381 * @whence: enumerator describing the starting position for this update
383 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
385 * Returns the updated read position if successful; otherwise a
386 * negative errno is returned and the read position remains unchanged.
388 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
392 offset += file->f_pos;
402 return vfs_setpos(file, offset, U32_MAX);
405 static struct dentry *offset_find_next(struct xa_state *xas)
407 struct dentry *child, *found = NULL;
410 child = xas_next_entry(xas, U32_MAX);
413 spin_lock(&child->d_lock);
414 if (simple_positive(child))
415 found = dget_dlock(child);
416 spin_unlock(&child->d_lock);
422 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
424 u32 offset = dentry2offset(dentry);
425 struct inode *inode = d_inode(dentry);
427 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
428 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
431 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
433 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
434 XA_STATE(xas, &so_ctx->xa, ctx->pos);
435 struct dentry *dentry;
438 dentry = offset_find_next(&xas);
442 if (!offset_dir_emit(ctx, dentry)) {
448 ctx->pos = xas.xa_index + 1;
453 * offset_readdir - Emit entries starting at offset @ctx->pos
454 * @file: an open directory to iterate over
455 * @ctx: directory iteration context
457 * Caller must hold @file's i_rwsem to prevent insertion or removal of
458 * entries during this call.
460 * On entry, @ctx->pos contains an offset that represents the first entry
461 * to be read from the directory.
463 * The operation continues until there are no more entries to read, or
464 * until the ctx->actor indicates there is no more space in the caller's
467 * On return, @ctx->pos contains an offset that will read the next entry
468 * in this directory when offset_readdir() is called again with @ctx.
473 static int offset_readdir(struct file *file, struct dir_context *ctx)
475 struct dentry *dir = file->f_path.dentry;
477 lockdep_assert_held(&d_inode(dir)->i_rwsem);
479 if (!dir_emit_dots(file, ctx))
482 offset_iterate_dir(d_inode(dir), ctx);
486 const struct file_operations simple_offset_dir_operations = {
487 .llseek = offset_dir_llseek,
488 .iterate_shared = offset_readdir,
489 .read = generic_read_dir,
493 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
495 struct dentry *child = NULL;
496 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
498 spin_lock(&parent->d_lock);
499 while ((p = p->next) != &parent->d_subdirs) {
500 struct dentry *d = container_of(p, struct dentry, d_child);
501 if (simple_positive(d)) {
502 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
503 if (simple_positive(d))
504 child = dget_dlock(d);
505 spin_unlock(&d->d_lock);
510 spin_unlock(&parent->d_lock);
515 void simple_recursive_removal(struct dentry *dentry,
516 void (*callback)(struct dentry *))
518 struct dentry *this = dget(dentry);
520 struct dentry *victim = NULL, *child;
521 struct inode *inode = this->d_inode;
525 inode->i_flags |= S_DEAD;
526 while ((child = find_next_child(this, victim)) == NULL) {
528 // update metadata while it's still locked
529 inode_set_ctime_current(inode);
533 this = this->d_parent;
534 inode = this->d_inode;
536 if (simple_positive(victim)) {
537 d_invalidate(victim); // avoid lost mounts
538 if (d_is_dir(victim))
539 fsnotify_rmdir(inode, victim);
541 fsnotify_unlink(inode, victim);
544 dput(victim); // unpin it
546 if (victim == dentry) {
547 inode->i_mtime = inode_set_ctime_current(inode);
548 if (d_is_dir(dentry))
559 EXPORT_SYMBOL(simple_recursive_removal);
561 static const struct super_operations simple_super_operations = {
562 .statfs = simple_statfs,
565 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
567 struct pseudo_fs_context *ctx = fc->fs_private;
570 s->s_maxbytes = MAX_LFS_FILESIZE;
571 s->s_blocksize = PAGE_SIZE;
572 s->s_blocksize_bits = PAGE_SHIFT;
573 s->s_magic = ctx->magic;
574 s->s_op = ctx->ops ?: &simple_super_operations;
575 s->s_xattr = ctx->xattr;
582 * since this is the first inode, make it number 1. New inodes created
583 * after this must take care not to collide with it (by passing
584 * max_reserved of 1 to iunique).
587 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
588 root->i_atime = root->i_mtime = inode_set_ctime_current(root);
589 s->s_root = d_make_root(root);
592 s->s_d_op = ctx->dops;
596 static int pseudo_fs_get_tree(struct fs_context *fc)
598 return get_tree_nodev(fc, pseudo_fs_fill_super);
601 static void pseudo_fs_free(struct fs_context *fc)
603 kfree(fc->fs_private);
606 static const struct fs_context_operations pseudo_fs_context_ops = {
607 .free = pseudo_fs_free,
608 .get_tree = pseudo_fs_get_tree,
612 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
613 * will never be mountable)
615 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
618 struct pseudo_fs_context *ctx;
620 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
623 fc->fs_private = ctx;
624 fc->ops = &pseudo_fs_context_ops;
625 fc->sb_flags |= SB_NOUSER;
630 EXPORT_SYMBOL(init_pseudo);
632 int simple_open(struct inode *inode, struct file *file)
634 if (inode->i_private)
635 file->private_data = inode->i_private;
638 EXPORT_SYMBOL(simple_open);
640 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
642 struct inode *inode = d_inode(old_dentry);
644 dir->i_mtime = inode_set_ctime_to_ts(dir,
645 inode_set_ctime_current(inode));
649 d_instantiate(dentry, inode);
652 EXPORT_SYMBOL(simple_link);
654 int simple_empty(struct dentry *dentry)
656 struct dentry *child;
659 spin_lock(&dentry->d_lock);
660 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
661 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
662 if (simple_positive(child)) {
663 spin_unlock(&child->d_lock);
666 spin_unlock(&child->d_lock);
670 spin_unlock(&dentry->d_lock);
673 EXPORT_SYMBOL(simple_empty);
675 int simple_unlink(struct inode *dir, struct dentry *dentry)
677 struct inode *inode = d_inode(dentry);
679 dir->i_mtime = inode_set_ctime_to_ts(dir,
680 inode_set_ctime_current(inode));
685 EXPORT_SYMBOL(simple_unlink);
687 int simple_rmdir(struct inode *dir, struct dentry *dentry)
689 if (!simple_empty(dentry))
692 drop_nlink(d_inode(dentry));
693 simple_unlink(dir, dentry);
697 EXPORT_SYMBOL(simple_rmdir);
700 * simple_rename_timestamp - update the various inode timestamps for rename
701 * @old_dir: old parent directory
702 * @old_dentry: dentry that is being renamed
703 * @new_dir: new parent directory
704 * @new_dentry: target for rename
706 * POSIX mandates that the old and new parent directories have their ctime and
707 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
708 * their ctime updated.
710 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
711 struct inode *new_dir, struct dentry *new_dentry)
713 struct inode *newino = d_inode(new_dentry);
715 old_dir->i_mtime = inode_set_ctime_current(old_dir);
716 if (new_dir != old_dir)
717 new_dir->i_mtime = inode_set_ctime_current(new_dir);
718 inode_set_ctime_current(d_inode(old_dentry));
720 inode_set_ctime_current(newino);
722 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
724 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
725 struct inode *new_dir, struct dentry *new_dentry)
727 bool old_is_dir = d_is_dir(old_dentry);
728 bool new_is_dir = d_is_dir(new_dentry);
730 if (old_dir != new_dir && old_is_dir != new_is_dir) {
739 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
742 EXPORT_SYMBOL_GPL(simple_rename_exchange);
744 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
745 struct dentry *old_dentry, struct inode *new_dir,
746 struct dentry *new_dentry, unsigned int flags)
748 int they_are_dirs = d_is_dir(old_dentry);
750 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
753 if (flags & RENAME_EXCHANGE)
754 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
756 if (!simple_empty(new_dentry))
759 if (d_really_is_positive(new_dentry)) {
760 simple_unlink(new_dir, new_dentry);
762 drop_nlink(d_inode(new_dentry));
765 } else if (they_are_dirs) {
770 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
773 EXPORT_SYMBOL(simple_rename);
776 * simple_setattr - setattr for simple filesystem
777 * @idmap: idmap of the target mount
779 * @iattr: iattr structure
781 * Returns 0 on success, -error on failure.
783 * simple_setattr is a simple ->setattr implementation without a proper
784 * implementation of size changes.
786 * It can either be used for in-memory filesystems or special files
787 * on simple regular filesystems. Anything that needs to change on-disk
788 * or wire state on size changes needs its own setattr method.
790 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
793 struct inode *inode = d_inode(dentry);
796 error = setattr_prepare(idmap, dentry, iattr);
800 if (iattr->ia_valid & ATTR_SIZE)
801 truncate_setsize(inode, iattr->ia_size);
802 setattr_copy(idmap, inode, iattr);
803 mark_inode_dirty(inode);
806 EXPORT_SYMBOL(simple_setattr);
808 static int simple_read_folio(struct file *file, struct folio *folio)
810 folio_zero_range(folio, 0, folio_size(folio));
811 flush_dcache_folio(folio);
812 folio_mark_uptodate(folio);
817 int simple_write_begin(struct file *file, struct address_space *mapping,
818 loff_t pos, unsigned len,
819 struct page **pagep, void **fsdata)
823 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
824 mapping_gfp_mask(mapping));
826 return PTR_ERR(folio);
828 *pagep = &folio->page;
830 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
831 size_t from = offset_in_folio(folio, pos);
833 folio_zero_segments(folio, 0, from,
834 from + len, folio_size(folio));
838 EXPORT_SYMBOL(simple_write_begin);
841 * simple_write_end - .write_end helper for non-block-device FSes
842 * @file: See .write_end of address_space_operations
850 * simple_write_end does the minimum needed for updating a page after writing is
851 * done. It has the same API signature as the .write_end of
852 * address_space_operations vector. So it can just be set onto .write_end for
853 * FSes that don't need any other processing. i_mutex is assumed to be held.
854 * Block based filesystems should use generic_write_end().
855 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
856 * is not called, so a filesystem that actually does store data in .write_inode
857 * should extend on what's done here with a call to mark_inode_dirty() in the
858 * case that i_size has changed.
860 * Use *ONLY* with simple_read_folio()
862 static int simple_write_end(struct file *file, struct address_space *mapping,
863 loff_t pos, unsigned len, unsigned copied,
864 struct page *page, void *fsdata)
866 struct folio *folio = page_folio(page);
867 struct inode *inode = folio->mapping->host;
868 loff_t last_pos = pos + copied;
870 /* zero the stale part of the folio if we did a short copy */
871 if (!folio_test_uptodate(folio)) {
873 size_t from = offset_in_folio(folio, pos);
875 folio_zero_range(folio, from + copied, len - copied);
877 folio_mark_uptodate(folio);
880 * No need to use i_size_read() here, the i_size
881 * cannot change under us because we hold the i_mutex.
883 if (last_pos > inode->i_size)
884 i_size_write(inode, last_pos);
886 folio_mark_dirty(folio);
894 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
896 const struct address_space_operations ram_aops = {
897 .read_folio = simple_read_folio,
898 .write_begin = simple_write_begin,
899 .write_end = simple_write_end,
900 .dirty_folio = noop_dirty_folio,
902 EXPORT_SYMBOL(ram_aops);
905 * the inodes created here are not hashed. If you use iunique to generate
906 * unique inode values later for this filesystem, then you must take care
907 * to pass it an appropriate max_reserved value to avoid collisions.
909 int simple_fill_super(struct super_block *s, unsigned long magic,
910 const struct tree_descr *files)
914 struct dentry *dentry;
917 s->s_blocksize = PAGE_SIZE;
918 s->s_blocksize_bits = PAGE_SHIFT;
920 s->s_op = &simple_super_operations;
923 inode = new_inode(s);
927 * because the root inode is 1, the files array must not contain an
931 inode->i_mode = S_IFDIR | 0755;
932 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
933 inode->i_op = &simple_dir_inode_operations;
934 inode->i_fop = &simple_dir_operations;
936 root = d_make_root(inode);
939 for (i = 0; !files->name || files->name[0]; i++, files++) {
943 /* warn if it tries to conflict with the root inode */
944 if (unlikely(i == 1))
945 printk(KERN_WARNING "%s: %s passed in a files array"
946 "with an index of 1!\n", __func__,
949 dentry = d_alloc_name(root, files->name);
952 inode = new_inode(s);
957 inode->i_mode = S_IFREG | files->mode;
958 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
959 inode->i_fop = files->ops;
961 d_add(dentry, inode);
967 shrink_dcache_parent(root);
971 EXPORT_SYMBOL(simple_fill_super);
973 static DEFINE_SPINLOCK(pin_fs_lock);
975 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
977 struct vfsmount *mnt = NULL;
978 spin_lock(&pin_fs_lock);
979 if (unlikely(!*mount)) {
980 spin_unlock(&pin_fs_lock);
981 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
984 spin_lock(&pin_fs_lock);
990 spin_unlock(&pin_fs_lock);
994 EXPORT_SYMBOL(simple_pin_fs);
996 void simple_release_fs(struct vfsmount **mount, int *count)
998 struct vfsmount *mnt;
999 spin_lock(&pin_fs_lock);
1003 spin_unlock(&pin_fs_lock);
1006 EXPORT_SYMBOL(simple_release_fs);
1009 * simple_read_from_buffer - copy data from the buffer to user space
1010 * @to: the user space buffer to read to
1011 * @count: the maximum number of bytes to read
1012 * @ppos: the current position in the buffer
1013 * @from: the buffer to read from
1014 * @available: the size of the buffer
1016 * The simple_read_from_buffer() function reads up to @count bytes from the
1017 * buffer @from at offset @ppos into the user space address starting at @to.
1019 * On success, the number of bytes read is returned and the offset @ppos is
1020 * advanced by this number, or negative value is returned on error.
1022 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1023 const void *from, size_t available)
1030 if (pos >= available || !count)
1032 if (count > available - pos)
1033 count = available - pos;
1034 ret = copy_to_user(to, from + pos, count);
1038 *ppos = pos + count;
1041 EXPORT_SYMBOL(simple_read_from_buffer);
1044 * simple_write_to_buffer - copy data from user space to the buffer
1045 * @to: the buffer to write to
1046 * @available: the size of the buffer
1047 * @ppos: the current position in the buffer
1048 * @from: the user space buffer to read from
1049 * @count: the maximum number of bytes to read
1051 * The simple_write_to_buffer() function reads up to @count bytes from the user
1052 * space address starting at @from into the buffer @to at offset @ppos.
1054 * On success, the number of bytes written is returned and the offset @ppos is
1055 * advanced by this number, or negative value is returned on error.
1057 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1058 const void __user *from, size_t count)
1065 if (pos >= available || !count)
1067 if (count > available - pos)
1068 count = available - pos;
1069 res = copy_from_user(to + pos, from, count);
1073 *ppos = pos + count;
1076 EXPORT_SYMBOL(simple_write_to_buffer);
1079 * memory_read_from_buffer - copy data from the buffer
1080 * @to: the kernel space buffer to read to
1081 * @count: the maximum number of bytes to read
1082 * @ppos: the current position in the buffer
1083 * @from: the buffer to read from
1084 * @available: the size of the buffer
1086 * The memory_read_from_buffer() function reads up to @count bytes from the
1087 * buffer @from at offset @ppos into the kernel space address starting at @to.
1089 * On success, the number of bytes read is returned and the offset @ppos is
1090 * advanced by this number, or negative value is returned on error.
1092 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1093 const void *from, size_t available)
1099 if (pos >= available)
1101 if (count > available - pos)
1102 count = available - pos;
1103 memcpy(to, from + pos, count);
1104 *ppos = pos + count;
1108 EXPORT_SYMBOL(memory_read_from_buffer);
1111 * Transaction based IO.
1112 * The file expects a single write which triggers the transaction, and then
1113 * possibly a read which collects the result - which is stored in a
1114 * file-local buffer.
1117 void simple_transaction_set(struct file *file, size_t n)
1119 struct simple_transaction_argresp *ar = file->private_data;
1121 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1124 * The barrier ensures that ar->size will really remain zero until
1125 * ar->data is ready for reading.
1130 EXPORT_SYMBOL(simple_transaction_set);
1132 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1134 struct simple_transaction_argresp *ar;
1135 static DEFINE_SPINLOCK(simple_transaction_lock);
1137 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1138 return ERR_PTR(-EFBIG);
1140 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1142 return ERR_PTR(-ENOMEM);
1144 spin_lock(&simple_transaction_lock);
1146 /* only one write allowed per open */
1147 if (file->private_data) {
1148 spin_unlock(&simple_transaction_lock);
1149 free_page((unsigned long)ar);
1150 return ERR_PTR(-EBUSY);
1153 file->private_data = ar;
1155 spin_unlock(&simple_transaction_lock);
1157 if (copy_from_user(ar->data, buf, size))
1158 return ERR_PTR(-EFAULT);
1162 EXPORT_SYMBOL(simple_transaction_get);
1164 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1166 struct simple_transaction_argresp *ar = file->private_data;
1170 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1172 EXPORT_SYMBOL(simple_transaction_read);
1174 int simple_transaction_release(struct inode *inode, struct file *file)
1176 free_page((unsigned long)file->private_data);
1179 EXPORT_SYMBOL(simple_transaction_release);
1181 /* Simple attribute files */
1183 struct simple_attr {
1184 int (*get)(void *, u64 *);
1185 int (*set)(void *, u64);
1186 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1189 const char *fmt; /* format for read operation */
1190 struct mutex mutex; /* protects access to these buffers */
1193 /* simple_attr_open is called by an actual attribute open file operation
1194 * to set the attribute specific access operations. */
1195 int simple_attr_open(struct inode *inode, struct file *file,
1196 int (*get)(void *, u64 *), int (*set)(void *, u64),
1199 struct simple_attr *attr;
1201 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1207 attr->data = inode->i_private;
1209 mutex_init(&attr->mutex);
1211 file->private_data = attr;
1213 return nonseekable_open(inode, file);
1215 EXPORT_SYMBOL_GPL(simple_attr_open);
1217 int simple_attr_release(struct inode *inode, struct file *file)
1219 kfree(file->private_data);
1222 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1224 /* read from the buffer that is filled with the get function */
1225 ssize_t simple_attr_read(struct file *file, char __user *buf,
1226 size_t len, loff_t *ppos)
1228 struct simple_attr *attr;
1232 attr = file->private_data;
1237 ret = mutex_lock_interruptible(&attr->mutex);
1241 if (*ppos && attr->get_buf[0]) {
1242 /* continued read */
1243 size = strlen(attr->get_buf);
1247 ret = attr->get(attr->data, &val);
1251 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1252 attr->fmt, (unsigned long long)val);
1255 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1257 mutex_unlock(&attr->mutex);
1260 EXPORT_SYMBOL_GPL(simple_attr_read);
1262 /* interpret the buffer as a number to call the set function with */
1263 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1264 size_t len, loff_t *ppos, bool is_signed)
1266 struct simple_attr *attr;
1267 unsigned long long val;
1271 attr = file->private_data;
1275 ret = mutex_lock_interruptible(&attr->mutex);
1280 size = min(sizeof(attr->set_buf) - 1, len);
1281 if (copy_from_user(attr->set_buf, buf, size))
1284 attr->set_buf[size] = '\0';
1286 ret = kstrtoll(attr->set_buf, 0, &val);
1288 ret = kstrtoull(attr->set_buf, 0, &val);
1291 ret = attr->set(attr->data, val);
1293 ret = len; /* on success, claim we got the whole input */
1295 mutex_unlock(&attr->mutex);
1299 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1300 size_t len, loff_t *ppos)
1302 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1304 EXPORT_SYMBOL_GPL(simple_attr_write);
1306 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1307 size_t len, loff_t *ppos)
1309 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1311 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1314 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1315 * @inode: the object to encode
1316 * @fh: where to store the file handle fragment
1317 * @max_len: maximum length to store there (in 4 byte units)
1318 * @parent: parent directory inode, if wanted
1320 * This generic encode_fh function assumes that the 32 inode number
1321 * is suitable for locating an inode, and that the generation number
1322 * can be used to check that it is still valid. It places them in the
1323 * filehandle fragment where export_decode_fh expects to find them.
1325 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1326 struct inode *parent)
1328 struct fid *fid = (void *)fh;
1330 int type = FILEID_INO32_GEN;
1332 if (parent && (len < 4)) {
1334 return FILEID_INVALID;
1335 } else if (len < 2) {
1337 return FILEID_INVALID;
1341 fid->i32.ino = inode->i_ino;
1342 fid->i32.gen = inode->i_generation;
1344 fid->i32.parent_ino = parent->i_ino;
1345 fid->i32.parent_gen = parent->i_generation;
1347 type = FILEID_INO32_GEN_PARENT;
1352 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1355 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1356 * @sb: filesystem to do the file handle conversion on
1357 * @fid: file handle to convert
1358 * @fh_len: length of the file handle in bytes
1359 * @fh_type: type of file handle
1360 * @get_inode: filesystem callback to retrieve inode
1362 * This function decodes @fid as long as it has one of the well-known
1363 * Linux filehandle types and calls @get_inode on it to retrieve the
1364 * inode for the object specified in the file handle.
1366 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1367 int fh_len, int fh_type, struct inode *(*get_inode)
1368 (struct super_block *sb, u64 ino, u32 gen))
1370 struct inode *inode = NULL;
1376 case FILEID_INO32_GEN:
1377 case FILEID_INO32_GEN_PARENT:
1378 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1382 return d_obtain_alias(inode);
1384 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1387 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1388 * @sb: filesystem to do the file handle conversion on
1389 * @fid: file handle to convert
1390 * @fh_len: length of the file handle in bytes
1391 * @fh_type: type of file handle
1392 * @get_inode: filesystem callback to retrieve inode
1394 * This function decodes @fid as long as it has one of the well-known
1395 * Linux filehandle types and calls @get_inode on it to retrieve the
1396 * inode for the _parent_ object specified in the file handle if it
1397 * is specified in the file handle, or NULL otherwise.
1399 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1400 int fh_len, int fh_type, struct inode *(*get_inode)
1401 (struct super_block *sb, u64 ino, u32 gen))
1403 struct inode *inode = NULL;
1409 case FILEID_INO32_GEN_PARENT:
1410 inode = get_inode(sb, fid->i32.parent_ino,
1411 (fh_len > 3 ? fid->i32.parent_gen : 0));
1415 return d_obtain_alias(inode);
1417 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1420 * __generic_file_fsync - generic fsync implementation for simple filesystems
1422 * @file: file to synchronize
1423 * @start: start offset in bytes
1424 * @end: end offset in bytes (inclusive)
1425 * @datasync: only synchronize essential metadata if true
1427 * This is a generic implementation of the fsync method for simple
1428 * filesystems which track all non-inode metadata in the buffers list
1429 * hanging off the address_space structure.
1431 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1434 struct inode *inode = file->f_mapping->host;
1438 err = file_write_and_wait_range(file, start, end);
1443 ret = sync_mapping_buffers(inode->i_mapping);
1444 if (!(inode->i_state & I_DIRTY_ALL))
1446 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1449 err = sync_inode_metadata(inode, 1);
1454 inode_unlock(inode);
1455 /* check and advance again to catch errors after syncing out buffers */
1456 err = file_check_and_advance_wb_err(file);
1461 EXPORT_SYMBOL(__generic_file_fsync);
1464 * generic_file_fsync - generic fsync implementation for simple filesystems
1466 * @file: file to synchronize
1467 * @start: start offset in bytes
1468 * @end: end offset in bytes (inclusive)
1469 * @datasync: only synchronize essential metadata if true
1473 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1476 struct inode *inode = file->f_mapping->host;
1479 err = __generic_file_fsync(file, start, end, datasync);
1482 return blkdev_issue_flush(inode->i_sb->s_bdev);
1484 EXPORT_SYMBOL(generic_file_fsync);
1487 * generic_check_addressable - Check addressability of file system
1488 * @blocksize_bits: log of file system block size
1489 * @num_blocks: number of blocks in file system
1491 * Determine whether a file system with @num_blocks blocks (and a
1492 * block size of 2**@blocksize_bits) is addressable by the sector_t
1493 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1495 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1497 u64 last_fs_block = num_blocks - 1;
1499 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1501 if (unlikely(num_blocks == 0))
1504 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1507 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1508 (last_fs_page > (pgoff_t)(~0ULL))) {
1513 EXPORT_SYMBOL(generic_check_addressable);
1516 * No-op implementation of ->fsync for in-memory filesystems.
1518 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1522 EXPORT_SYMBOL(noop_fsync);
1524 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1527 * iomap based filesystems support direct I/O without need for
1528 * this callback. However, it still needs to be set in
1529 * inode->a_ops so that open/fcntl know that direct I/O is
1530 * generally supported.
1534 EXPORT_SYMBOL_GPL(noop_direct_IO);
1536 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1537 void kfree_link(void *p)
1541 EXPORT_SYMBOL(kfree_link);
1543 struct inode *alloc_anon_inode(struct super_block *s)
1545 static const struct address_space_operations anon_aops = {
1546 .dirty_folio = noop_dirty_folio,
1548 struct inode *inode = new_inode_pseudo(s);
1551 return ERR_PTR(-ENOMEM);
1553 inode->i_ino = get_next_ino();
1554 inode->i_mapping->a_ops = &anon_aops;
1557 * Mark the inode dirty from the very beginning,
1558 * that way it will never be moved to the dirty
1559 * list because mark_inode_dirty() will think
1560 * that it already _is_ on the dirty list.
1562 inode->i_state = I_DIRTY;
1563 inode->i_mode = S_IRUSR | S_IWUSR;
1564 inode->i_uid = current_fsuid();
1565 inode->i_gid = current_fsgid();
1566 inode->i_flags |= S_PRIVATE;
1567 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1570 EXPORT_SYMBOL(alloc_anon_inode);
1573 * simple_nosetlease - generic helper for prohibiting leases
1574 * @filp: file pointer
1575 * @arg: type of lease to obtain
1576 * @flp: new lease supplied for insertion
1577 * @priv: private data for lm_setup operation
1579 * Generic helper for filesystems that do not wish to allow leases to be set.
1580 * All arguments are ignored and it just returns -EINVAL.
1583 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1588 EXPORT_SYMBOL(simple_nosetlease);
1591 * simple_get_link - generic helper to get the target of "fast" symlinks
1592 * @dentry: not used here
1593 * @inode: the symlink inode
1594 * @done: not used here
1596 * Generic helper for filesystems to use for symlink inodes where a pointer to
1597 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1598 * since as an optimization the path lookup code uses any non-NULL ->i_link
1599 * directly, without calling ->get_link(). But ->get_link() still must be set,
1600 * to mark the inode_operations as being for a symlink.
1602 * Return: the symlink target
1604 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1605 struct delayed_call *done)
1607 return inode->i_link;
1609 EXPORT_SYMBOL(simple_get_link);
1611 const struct inode_operations simple_symlink_inode_operations = {
1612 .get_link = simple_get_link,
1614 EXPORT_SYMBOL(simple_symlink_inode_operations);
1617 * Operations for a permanently empty directory.
1619 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1621 return ERR_PTR(-ENOENT);
1624 static int empty_dir_getattr(struct mnt_idmap *idmap,
1625 const struct path *path, struct kstat *stat,
1626 u32 request_mask, unsigned int query_flags)
1628 struct inode *inode = d_inode(path->dentry);
1629 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1633 static int empty_dir_setattr(struct mnt_idmap *idmap,
1634 struct dentry *dentry, struct iattr *attr)
1639 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1644 static const struct inode_operations empty_dir_inode_operations = {
1645 .lookup = empty_dir_lookup,
1646 .permission = generic_permission,
1647 .setattr = empty_dir_setattr,
1648 .getattr = empty_dir_getattr,
1649 .listxattr = empty_dir_listxattr,
1652 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1654 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1655 return generic_file_llseek_size(file, offset, whence, 2, 2);
1658 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1660 dir_emit_dots(file, ctx);
1664 static const struct file_operations empty_dir_operations = {
1665 .llseek = empty_dir_llseek,
1666 .read = generic_read_dir,
1667 .iterate_shared = empty_dir_readdir,
1668 .fsync = noop_fsync,
1672 void make_empty_dir_inode(struct inode *inode)
1674 set_nlink(inode, 2);
1675 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1676 inode->i_uid = GLOBAL_ROOT_UID;
1677 inode->i_gid = GLOBAL_ROOT_GID;
1680 inode->i_blkbits = PAGE_SHIFT;
1681 inode->i_blocks = 0;
1683 inode->i_op = &empty_dir_inode_operations;
1684 inode->i_opflags &= ~IOP_XATTR;
1685 inode->i_fop = &empty_dir_operations;
1688 bool is_empty_dir_inode(struct inode *inode)
1690 return (inode->i_fop == &empty_dir_operations) &&
1691 (inode->i_op == &empty_dir_inode_operations);
1694 #if IS_ENABLED(CONFIG_UNICODE)
1696 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1697 * @dentry: dentry whose name we are checking against
1698 * @len: len of name of dentry
1699 * @str: str pointer to name of dentry
1700 * @name: Name to compare against
1702 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1704 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1705 const char *str, const struct qstr *name)
1707 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1708 const struct inode *dir = READ_ONCE(parent->d_inode);
1709 const struct super_block *sb = dentry->d_sb;
1710 const struct unicode_map *um = sb->s_encoding;
1711 struct qstr qstr = QSTR_INIT(str, len);
1712 char strbuf[DNAME_INLINE_LEN];
1715 if (!dir || !IS_CASEFOLDED(dir))
1718 * If the dentry name is stored in-line, then it may be concurrently
1719 * modified by a rename. If this happens, the VFS will eventually retry
1720 * the lookup, so it doesn't matter what ->d_compare() returns.
1721 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1722 * string. Therefore, we have to copy the name into a temporary buffer.
1724 if (len <= DNAME_INLINE_LEN - 1) {
1725 memcpy(strbuf, str, len);
1728 /* prevent compiler from optimizing out the temporary buffer */
1731 ret = utf8_strncasecmp(um, name, &qstr);
1735 if (sb_has_strict_encoding(sb))
1738 if (len != name->len)
1740 return !!memcmp(str, name->name, len);
1744 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1745 * @dentry: dentry of the parent directory
1746 * @str: qstr of name whose hash we should fill in
1748 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1750 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1752 const struct inode *dir = READ_ONCE(dentry->d_inode);
1753 struct super_block *sb = dentry->d_sb;
1754 const struct unicode_map *um = sb->s_encoding;
1757 if (!dir || !IS_CASEFOLDED(dir))
1760 ret = utf8_casefold_hash(um, dentry, str);
1761 if (ret < 0 && sb_has_strict_encoding(sb))
1766 static const struct dentry_operations generic_ci_dentry_ops = {
1767 .d_hash = generic_ci_d_hash,
1768 .d_compare = generic_ci_d_compare,
1772 #ifdef CONFIG_FS_ENCRYPTION
1773 static const struct dentry_operations generic_encrypted_dentry_ops = {
1774 .d_revalidate = fscrypt_d_revalidate,
1778 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1779 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1780 .d_hash = generic_ci_d_hash,
1781 .d_compare = generic_ci_d_compare,
1782 .d_revalidate = fscrypt_d_revalidate,
1787 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1788 * @dentry: dentry to set ops on
1790 * Casefolded directories need d_hash and d_compare set, so that the dentries
1791 * contained in them are handled case-insensitively. Note that these operations
1792 * are needed on the parent directory rather than on the dentries in it, and
1793 * while the casefolding flag can be toggled on and off on an empty directory,
1794 * dentry_operations can't be changed later. As a result, if the filesystem has
1795 * casefolding support enabled at all, we have to give all dentries the
1796 * casefolding operations even if their inode doesn't have the casefolding flag
1797 * currently (and thus the casefolding ops would be no-ops for now).
1799 * Encryption works differently in that the only dentry operation it needs is
1800 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1801 * The no-key flag can't be set "later", so we don't have to worry about that.
1803 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1804 * with certain dentry operations) and to avoid taking an unnecessary
1805 * performance hit, we use custom dentry_operations for each possible
1806 * combination rather than always installing all operations.
1808 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1810 #ifdef CONFIG_FS_ENCRYPTION
1811 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1813 #if IS_ENABLED(CONFIG_UNICODE)
1814 bool needs_ci_ops = dentry->d_sb->s_encoding;
1816 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1817 if (needs_encrypt_ops && needs_ci_ops) {
1818 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1822 #ifdef CONFIG_FS_ENCRYPTION
1823 if (needs_encrypt_ops) {
1824 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1828 #if IS_ENABLED(CONFIG_UNICODE)
1830 d_set_d_op(dentry, &generic_ci_dentry_ops);
1835 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1838 * inode_maybe_inc_iversion - increments i_version
1839 * @inode: inode with the i_version that should be updated
1840 * @force: increment the counter even if it's not necessary?
1842 * Every time the inode is modified, the i_version field must be seen to have
1843 * changed by any observer.
1845 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1846 * the value, and clear the queried flag.
1848 * In the common case where neither is set, then we can return "false" without
1849 * updating i_version.
1851 * If this function returns false, and no other metadata has changed, then we
1852 * can avoid logging the metadata.
1854 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1859 * The i_version field is not strictly ordered with any other inode
1860 * information, but the legacy inode_inc_iversion code used a spinlock
1861 * to serialize increments.
1863 * Here, we add full memory barriers to ensure that any de-facto
1864 * ordering with other info is preserved.
1866 * This barrier pairs with the barrier in inode_query_iversion()
1869 cur = inode_peek_iversion_raw(inode);
1871 /* If flag is clear then we needn't do anything */
1872 if (!force && !(cur & I_VERSION_QUERIED))
1875 /* Since lowest bit is flag, add 2 to avoid it */
1876 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1877 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1880 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1883 * inode_query_iversion - read i_version for later use
1884 * @inode: inode from which i_version should be read
1886 * Read the inode i_version counter. This should be used by callers that wish
1887 * to store the returned i_version for later comparison. This will guarantee
1888 * that a later query of the i_version will result in a different value if
1889 * anything has changed.
1891 * In this implementation, we fetch the current value, set the QUERIED flag and
1892 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1893 * that fails, we try again with the newly fetched value from the cmpxchg.
1895 u64 inode_query_iversion(struct inode *inode)
1899 cur = inode_peek_iversion_raw(inode);
1901 /* If flag is already set, then no need to swap */
1902 if (cur & I_VERSION_QUERIED) {
1904 * This barrier (and the implicit barrier in the
1905 * cmpxchg below) pairs with the barrier in
1906 * inode_maybe_inc_iversion().
1912 new = cur | I_VERSION_QUERIED;
1913 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1914 return cur >> I_VERSION_QUERIED_SHIFT;
1916 EXPORT_SYMBOL(inode_query_iversion);
1918 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1919 ssize_t direct_written, ssize_t buffered_written)
1921 struct address_space *mapping = iocb->ki_filp->f_mapping;
1922 loff_t pos = iocb->ki_pos - buffered_written;
1923 loff_t end = iocb->ki_pos - 1;
1927 * If the buffered write fallback returned an error, we want to return
1928 * the number of bytes which were written by direct I/O, or the error
1929 * code if that was zero.
1931 * Note that this differs from normal direct-io semantics, which will
1932 * return -EFOO even if some bytes were written.
1934 if (unlikely(buffered_written < 0)) {
1936 return direct_written;
1937 return buffered_written;
1941 * We need to ensure that the page cache pages are written to disk and
1942 * invalidated to preserve the expected O_DIRECT semantics.
1944 err = filemap_write_and_wait_range(mapping, pos, end);
1947 * We don't know how much we wrote, so just return the number of
1948 * bytes which were direct-written
1950 iocb->ki_pos -= buffered_written;
1952 return direct_written;
1955 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1956 return direct_written + buffered_written;
1958 EXPORT_SYMBOL_GPL(direct_write_fallback);