2 * Copyright (C) 2012 ARM Ltd.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
35 #include <kvm/iodev.h>
38 * How the whole thing works (courtesy of Christoffer Dall):
40 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
41 * something is pending on the CPU interface.
42 * - Interrupts that are pending on the distributor are stored on the
43 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
46 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
48 * - To calculate the oracle, we need info for each cpu from
49 * compute_pending_for_cpu, which considers:
50 * - PPI: dist->irq_pending & dist->irq_enable
51 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
52 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
53 * registers, stored on each vcpu. We only keep one bit of
54 * information per interrupt, making sure that only one vcpu can
55 * accept the interrupt.
56 * - If any of the above state changes, we must recalculate the oracle.
57 * - The same is true when injecting an interrupt, except that we only
58 * consider a single interrupt at a time. The irq_spi_cpu array
59 * contains the target CPU for each SPI.
61 * The handling of level interrupts adds some extra complexity. We
62 * need to track when the interrupt has been EOIed, so we can sample
63 * the 'line' again. This is achieved as such:
65 * - When a level interrupt is moved onto a vcpu, the corresponding
66 * bit in irq_queued is set. As long as this bit is set, the line
67 * will be ignored for further interrupts. The interrupt is injected
68 * into the vcpu with the GICH_LR_EOI bit set (generate a
69 * maintenance interrupt on EOI).
70 * - When the interrupt is EOIed, the maintenance interrupt fires,
71 * and clears the corresponding bit in irq_queued. This allows the
72 * interrupt line to be sampled again.
73 * - Note that level-triggered interrupts can also be set to pending from
74 * writes to GICD_ISPENDRn and lowering the external input line does not
75 * cause the interrupt to become inactive in such a situation.
76 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77 * inactive as long as the external input line is held high.
80 * Initialization rules: there are multiple stages to the vgic
81 * initialization, both for the distributor and the CPU interfaces.
85 * - kvm_vgic_early_init(): initialization of static data that doesn't
86 * depend on any sizing information or emulation type. No allocation
89 * - vgic_init(): allocation and initialization of the generic data
90 * structures that depend on sizing information (number of CPUs,
91 * number of interrupts). Also initializes the vcpu specific data
92 * structures. Can be executed lazily for GICv2.
93 * [to be renamed to kvm_vgic_init??]
97 * - kvm_vgic_cpu_early_init(): initialization of static data that
98 * doesn't depend on any sizing information or emulation type. No
99 * allocation is allowed there.
104 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
105 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
106 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
108 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
111 static const struct vgic_ops *vgic_ops;
112 static const struct vgic_params *vgic;
114 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
116 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
119 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
121 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
124 int kvm_vgic_map_resources(struct kvm *kvm)
126 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
130 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131 * extracts u32s out of them.
133 * This does not work on 64-bit BE systems, because the bitmap access
134 * will store two consecutive 32-bit words with the higher-addressed
135 * register's bits at the lower index and the lower-addressed register's
136 * bits at the higher index.
138 * Therefore, swizzle the register index when accessing the 32-bit word
139 * registers to access the right register's value.
141 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142 #define REG_OFFSET_SWIZZLE 1
144 #define REG_OFFSET_SWIZZLE 0
147 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
151 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
153 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
157 b->shared = b->private + nr_cpus;
162 static void vgic_free_bitmap(struct vgic_bitmap *b)
170 * Call this function to convert a u64 value to an unsigned long * bitmask
171 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
173 * Warning: Calling this function may modify *val.
175 static unsigned long *u64_to_bitmask(u64 *val)
177 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178 *val = (*val >> 32) | (*val << 32);
180 return (unsigned long *)val;
183 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
187 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
189 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
192 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
195 if (irq < VGIC_NR_PRIVATE_IRQS)
196 return test_bit(irq, x->private + cpuid);
198 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
201 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
206 if (irq < VGIC_NR_PRIVATE_IRQS) {
207 reg = x->private + cpuid;
210 irq -= VGIC_NR_PRIVATE_IRQS;
219 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
221 return x->private + cpuid;
224 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
229 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
233 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
236 x->private = kzalloc(size, GFP_KERNEL);
240 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
244 static void vgic_free_bytemap(struct vgic_bytemap *b)
251 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
255 if (offset < VGIC_NR_PRIVATE_IRQS) {
257 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
260 offset -= VGIC_NR_PRIVATE_IRQS;
263 return reg + (offset / sizeof(u32));
266 #define VGIC_CFG_LEVEL 0
267 #define VGIC_CFG_EDGE 1
269 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
271 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
274 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275 return irq_val == VGIC_CFG_EDGE;
278 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
280 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
282 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
285 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
287 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
289 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
292 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
294 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
296 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
299 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
301 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
303 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
306 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
308 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
313 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
315 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
317 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
320 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
322 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
324 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
327 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
329 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
331 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
334 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
336 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
338 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
341 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
343 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
345 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
348 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
350 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
352 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
355 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
357 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
359 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
362 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
364 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
366 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
369 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
371 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
373 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
376 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
378 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
380 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
383 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
385 if (irq < VGIC_NR_PRIVATE_IRQS)
386 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
388 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389 vcpu->arch.vgic_cpu.pending_shared);
392 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
394 if (irq < VGIC_NR_PRIVATE_IRQS)
395 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
397 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398 vcpu->arch.vgic_cpu.pending_shared);
401 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
403 return !vgic_irq_is_queued(vcpu, irq);
407 * vgic_reg_access - access vgic register
408 * @mmio: pointer to the data describing the mmio access
409 * @reg: pointer to the virtual backing of vgic distributor data
410 * @offset: least significant 2 bits used for word offset
411 * @mode: ACCESS_ mode (see defines above)
413 * Helper to make vgic register access easier using one of the access
414 * modes defined for vgic register access
415 * (read,raz,write-ignored,setbit,clearbit,write)
417 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418 phys_addr_t offset, int mode)
420 int word_offset = (offset & 3) * 8;
421 u32 mask = (1UL << (mmio->len * 8)) - 1;
425 * Any alignment fault should have been delivered to the guest
426 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
432 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
436 if (mmio->is_write) {
437 u32 data = mmio_data_read(mmio, mask) << word_offset;
438 switch (ACCESS_WRITE_MASK(mode)) {
439 case ACCESS_WRITE_IGNORED:
442 case ACCESS_WRITE_SETBIT:
446 case ACCESS_WRITE_CLEARBIT:
450 case ACCESS_WRITE_VALUE:
451 regval = (regval & ~(mask << word_offset)) | data;
456 switch (ACCESS_READ_MASK(mode)) {
457 case ACCESS_READ_RAZ:
461 case ACCESS_READ_VALUE:
462 mmio_data_write(mmio, mask, regval >> word_offset);
467 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
470 vgic_reg_access(mmio, NULL, offset,
471 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
475 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476 phys_addr_t offset, int vcpu_id, int access)
479 int mode = ACCESS_READ_VALUE | access;
480 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
482 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483 vgic_reg_access(mmio, reg, offset, mode);
484 if (mmio->is_write) {
485 if (access & ACCESS_WRITE_CLEARBIT) {
486 if (offset < 4) /* Force SGI enabled */
488 vgic_retire_disabled_irqs(target_vcpu);
490 vgic_update_state(kvm);
497 bool vgic_handle_set_pending_reg(struct kvm *kvm,
498 struct kvm_exit_mmio *mmio,
499 phys_addr_t offset, int vcpu_id)
503 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504 struct vgic_dist *dist = &kvm->arch.vgic;
506 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
507 level_mask = (~(*reg));
509 /* Mark both level and edge triggered irqs as pending */
510 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
512 vgic_reg_access(mmio, reg, offset, mode);
514 if (mmio->is_write) {
515 /* Set the soft-pending flag only for level-triggered irqs */
516 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
518 vgic_reg_access(mmio, reg, offset, mode);
521 /* Ignore writes to SGIs */
524 *reg |= orig & 0xffff;
527 vgic_update_state(kvm);
535 * If a mapped interrupt's state has been modified by the guest such that it
536 * is no longer active or pending, without it have gone through the sync path,
537 * then the map->active field must be cleared so the interrupt can be taken
540 static void vgic_handle_clear_mapped_irq(struct kvm_vcpu *vcpu)
542 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
543 struct list_head *root;
544 struct irq_phys_map_entry *entry;
545 struct irq_phys_map *map;
550 root = &vgic_cpu->irq_phys_map_list;
551 list_for_each_entry_rcu(entry, root, entry) {
554 if (!vgic_dist_irq_is_pending(vcpu, map->virt_irq) &&
555 !vgic_irq_is_active(vcpu, map->virt_irq))
562 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
563 struct kvm_exit_mmio *mmio,
564 phys_addr_t offset, int vcpu_id)
568 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
569 struct vgic_dist *dist = &kvm->arch.vgic;
571 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
573 vgic_reg_access(mmio, reg, offset, mode);
574 if (mmio->is_write) {
575 /* Re-set level triggered level-active interrupts */
576 level_active = vgic_bitmap_get_reg(&dist->irq_level,
578 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
579 *reg |= *level_active;
581 /* Ignore writes to SGIs */
584 *reg |= orig & 0xffff;
587 /* Clear soft-pending flags */
588 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
590 vgic_reg_access(mmio, reg, offset, mode);
592 vgic_handle_clear_mapped_irq(kvm_get_vcpu(kvm, vcpu_id));
593 vgic_update_state(kvm);
599 bool vgic_handle_set_active_reg(struct kvm *kvm,
600 struct kvm_exit_mmio *mmio,
601 phys_addr_t offset, int vcpu_id)
604 struct vgic_dist *dist = &kvm->arch.vgic;
606 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607 vgic_reg_access(mmio, reg, offset,
608 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
610 if (mmio->is_write) {
611 vgic_update_state(kvm);
618 bool vgic_handle_clear_active_reg(struct kvm *kvm,
619 struct kvm_exit_mmio *mmio,
620 phys_addr_t offset, int vcpu_id)
623 struct vgic_dist *dist = &kvm->arch.vgic;
625 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
626 vgic_reg_access(mmio, reg, offset,
627 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
629 if (mmio->is_write) {
630 vgic_handle_clear_mapped_irq(kvm_get_vcpu(kvm, vcpu_id));
631 vgic_update_state(kvm);
638 static u32 vgic_cfg_expand(u16 val)
644 * Turn a 16bit value like abcd...mnop into a 32bit word
645 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
647 for (i = 0; i < 16; i++)
648 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
653 static u16 vgic_cfg_compress(u32 val)
659 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
660 * abcd...mnop which is what we really care about.
662 for (i = 0; i < 16; i++)
663 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
669 * The distributor uses 2 bits per IRQ for the CFG register, but the
670 * LSB is always 0. As such, we only keep the upper bit, and use the
671 * two above functions to compress/expand the bits
673 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
683 val = vgic_cfg_expand(val);
684 vgic_reg_access(mmio, &val, offset,
685 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
686 if (mmio->is_write) {
688 *reg = ~0U; /* Force PPIs/SGIs to 1 */
692 val = vgic_cfg_compress(val);
697 *reg &= 0xffff << 16;
706 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
707 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
709 * Move any IRQs that have already been assigned to LRs back to the
710 * emulated distributor state so that the complete emulated state can be read
711 * from the main emulation structures without investigating the LRs.
713 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
715 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
718 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
719 struct vgic_lr lr = vgic_get_lr(vcpu, i);
722 * There are three options for the state bits:
726 * 11: pending and active
728 BUG_ON(!(lr.state & LR_STATE_MASK));
730 /* Reestablish SGI source for pending and active IRQs */
731 if (lr.irq < VGIC_NR_SGIS)
732 add_sgi_source(vcpu, lr.irq, lr.source);
735 * If the LR holds an active (10) or a pending and active (11)
736 * interrupt then move the active state to the
737 * distributor tracking bit.
739 if (lr.state & LR_STATE_ACTIVE) {
740 vgic_irq_set_active(vcpu, lr.irq);
741 lr.state &= ~LR_STATE_ACTIVE;
745 * Reestablish the pending state on the distributor and the
746 * CPU interface. It may have already been pending, but that
747 * is fine, then we are only setting a few bits that were
750 if (lr.state & LR_STATE_PENDING) {
751 vgic_dist_irq_set_pending(vcpu, lr.irq);
752 lr.state &= ~LR_STATE_PENDING;
755 vgic_set_lr(vcpu, i, lr);
758 * Mark the LR as free for other use.
760 BUG_ON(lr.state & LR_STATE_MASK);
761 vgic_retire_lr(i, lr.irq, vcpu);
762 vgic_irq_clear_queued(vcpu, lr.irq);
764 /* Finally update the VGIC state. */
765 vgic_update_state(vcpu->kvm);
770 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
771 int len, gpa_t offset)
773 while (ranges->len) {
774 if (offset >= ranges->base &&
775 (offset + len) <= (ranges->base + ranges->len))
783 static bool vgic_validate_access(const struct vgic_dist *dist,
784 const struct vgic_io_range *range,
785 unsigned long offset)
789 if (!range->bits_per_irq)
790 return true; /* Not an irq-based access */
792 irq = offset * 8 / range->bits_per_irq;
793 if (irq >= dist->nr_irqs)
800 * Call the respective handler function for the given range.
801 * We split up any 64 bit accesses into two consecutive 32 bit
802 * handler calls and merge the result afterwards.
803 * We do this in a little endian fashion regardless of the host's
804 * or guest's endianness, because the GIC is always LE and the rest of
805 * the code (vgic_reg_access) also puts it in a LE fashion already.
806 * At this point we have already identified the handle function, so
807 * range points to that one entry and offset is relative to this.
809 static bool call_range_handler(struct kvm_vcpu *vcpu,
810 struct kvm_exit_mmio *mmio,
811 unsigned long offset,
812 const struct vgic_io_range *range)
814 struct kvm_exit_mmio mmio32;
817 if (likely(mmio->len <= 4))
818 return range->handle_mmio(vcpu, mmio, offset);
821 * Any access bigger than 4 bytes (that we currently handle in KVM)
822 * is actually 8 bytes long, caused by a 64-bit access
826 mmio32.is_write = mmio->is_write;
827 mmio32.private = mmio->private;
829 mmio32.phys_addr = mmio->phys_addr + 4;
830 mmio32.data = &((u32 *)mmio->data)[1];
831 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
833 mmio32.phys_addr = mmio->phys_addr;
834 mmio32.data = &((u32 *)mmio->data)[0];
835 ret |= range->handle_mmio(vcpu, &mmio32, offset);
841 * vgic_handle_mmio_access - handle an in-kernel MMIO access
842 * This is called by the read/write KVM IO device wrappers below.
843 * @vcpu: pointer to the vcpu performing the access
844 * @this: pointer to the KVM IO device in charge
845 * @addr: guest physical address of the access
846 * @len: size of the access
847 * @val: pointer to the data region
848 * @is_write: read or write access
850 * returns true if the MMIO access could be performed
852 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
853 struct kvm_io_device *this, gpa_t addr,
854 int len, void *val, bool is_write)
856 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
857 struct vgic_io_device *iodev = container_of(this,
858 struct vgic_io_device, dev);
859 struct kvm_run *run = vcpu->run;
860 const struct vgic_io_range *range;
861 struct kvm_exit_mmio mmio;
865 offset = addr - iodev->addr;
866 range = vgic_find_range(iodev->reg_ranges, len, offset);
867 if (unlikely(!range || !range->handle_mmio)) {
868 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
872 mmio.phys_addr = addr;
874 mmio.is_write = is_write;
876 mmio.private = iodev->redist_vcpu;
878 spin_lock(&dist->lock);
879 offset -= range->base;
880 if (vgic_validate_access(dist, range, offset)) {
881 updated_state = call_range_handler(vcpu, &mmio, offset, range);
885 updated_state = false;
887 spin_unlock(&dist->lock);
888 run->mmio.is_write = is_write;
890 run->mmio.phys_addr = addr;
891 memcpy(run->mmio.data, val, len);
893 kvm_handle_mmio_return(vcpu, run);
896 vgic_kick_vcpus(vcpu->kvm);
901 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
902 struct kvm_io_device *this,
903 gpa_t addr, int len, void *val)
905 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
908 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
909 struct kvm_io_device *this,
910 gpa_t addr, int len, const void *val)
912 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
916 struct kvm_io_device_ops vgic_io_ops = {
917 .read = vgic_handle_mmio_read,
918 .write = vgic_handle_mmio_write,
922 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
923 * @kvm: The VM structure pointer
924 * @base: The (guest) base address for the register frame
925 * @len: Length of the register frame window
926 * @ranges: Describing the handler functions for each register
927 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
928 * @iodev: Points to memory to be passed on to the handler
930 * @iodev stores the parameters of this function to be usable by the handler
931 * respectively the dispatcher function (since the KVM I/O bus framework lacks
932 * an opaque parameter). Initialization is done in this function, but the
933 * reference should be valid and unique for the whole VGIC lifetime.
934 * If the register frame is not mapped for a specific VCPU, pass -1 to
937 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
938 const struct vgic_io_range *ranges,
940 struct vgic_io_device *iodev)
942 struct kvm_vcpu *vcpu = NULL;
945 if (redist_vcpu_id >= 0)
946 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
950 iodev->reg_ranges = ranges;
951 iodev->redist_vcpu = vcpu;
953 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
955 mutex_lock(&kvm->slots_lock);
957 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
959 mutex_unlock(&kvm->slots_lock);
961 /* Mark the iodev as invalid if registration fails. */
963 iodev->dev.ops = NULL;
968 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
970 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
973 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
975 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976 unsigned long *active, *enabled, *act_percpu, *act_shared;
977 unsigned long active_private, active_shared;
978 int nr_shared = vgic_nr_shared_irqs(dist);
981 vcpu_id = vcpu->vcpu_id;
982 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
983 act_shared = vcpu->arch.vgic_cpu.active_shared;
985 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
986 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
989 active = vgic_bitmap_get_shared_map(&dist->irq_active);
990 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
991 bitmap_and(act_shared, active, enabled, nr_shared);
992 bitmap_and(act_shared, act_shared,
993 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
996 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
997 active_shared = find_first_bit(act_shared, nr_shared);
999 return (active_private < VGIC_NR_PRIVATE_IRQS ||
1000 active_shared < nr_shared);
1003 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1005 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1006 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1007 unsigned long pending_private, pending_shared;
1008 int nr_shared = vgic_nr_shared_irqs(dist);
1011 vcpu_id = vcpu->vcpu_id;
1012 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1013 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1015 if (!dist->enabled) {
1016 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1017 bitmap_zero(pend_shared, nr_shared);
1021 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1022 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1023 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1025 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1026 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1027 bitmap_and(pend_shared, pending, enabled, nr_shared);
1028 bitmap_and(pend_shared, pend_shared,
1029 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1032 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1033 pending_shared = find_first_bit(pend_shared, nr_shared);
1034 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1035 pending_shared < vgic_nr_shared_irqs(dist));
1039 * Update the interrupt state and determine which CPUs have pending
1040 * or active interrupts. Must be called with distributor lock held.
1042 void vgic_update_state(struct kvm *kvm)
1044 struct vgic_dist *dist = &kvm->arch.vgic;
1045 struct kvm_vcpu *vcpu;
1048 kvm_for_each_vcpu(c, vcpu, kvm) {
1049 if (compute_pending_for_cpu(vcpu))
1050 set_bit(c, dist->irq_pending_on_cpu);
1052 if (compute_active_for_cpu(vcpu))
1053 set_bit(c, dist->irq_active_on_cpu);
1055 clear_bit(c, dist->irq_active_on_cpu);
1059 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1061 return vgic_ops->get_lr(vcpu, lr);
1064 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1067 vgic_ops->set_lr(vcpu, lr, vlr);
1070 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1073 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1076 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1078 return vgic_ops->get_elrsr(vcpu);
1081 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1083 return vgic_ops->get_eisr(vcpu);
1086 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1088 vgic_ops->clear_eisr(vcpu);
1091 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1093 return vgic_ops->get_interrupt_status(vcpu);
1096 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1098 vgic_ops->enable_underflow(vcpu);
1101 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1103 vgic_ops->disable_underflow(vcpu);
1106 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1108 vgic_ops->get_vmcr(vcpu, vmcr);
1111 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1113 vgic_ops->set_vmcr(vcpu, vmcr);
1116 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1118 vgic_ops->enable(vcpu);
1121 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1123 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1124 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1127 * We must transfer the pending state back to the distributor before
1128 * retiring the LR, otherwise we may loose edge-triggered interrupts.
1130 if (vlr.state & LR_STATE_PENDING) {
1131 vgic_dist_irq_set_pending(vcpu, irq);
1136 vgic_set_lr(vcpu, lr_nr, vlr);
1137 clear_bit(lr_nr, vgic_cpu->lr_used);
1138 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1139 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1143 * An interrupt may have been disabled after being made pending on the
1144 * CPU interface (the classic case is a timer running while we're
1145 * rebooting the guest - the interrupt would kick as soon as the CPU
1146 * interface gets enabled, with deadly consequences).
1148 * The solution is to examine already active LRs, and check the
1149 * interrupt is still enabled. If not, just retire it.
1151 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1153 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1156 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1157 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1159 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1160 vgic_retire_lr(lr, vlr.irq, vcpu);
1161 if (vgic_irq_is_queued(vcpu, vlr.irq))
1162 vgic_irq_clear_queued(vcpu, vlr.irq);
1167 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1168 int lr_nr, struct vgic_lr vlr)
1170 if (vgic_irq_is_active(vcpu, irq)) {
1171 vlr.state |= LR_STATE_ACTIVE;
1172 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1173 vgic_irq_clear_active(vcpu, irq);
1174 vgic_update_state(vcpu->kvm);
1176 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1177 vlr.state |= LR_STATE_PENDING;
1178 kvm_debug("Set pending: 0x%x\n", vlr.state);
1181 if (!vgic_irq_is_edge(vcpu, irq))
1182 vlr.state |= LR_EOI_INT;
1184 if (vlr.irq >= VGIC_NR_SGIS) {
1185 struct irq_phys_map *map;
1186 map = vgic_irq_map_search(vcpu, irq);
1189 vlr.hwirq = map->phys_irq;
1191 vlr.state &= ~LR_EOI_INT;
1194 * Make sure we're not going to sample this
1195 * again, as a HW-backed interrupt cannot be
1196 * in the PENDING_ACTIVE stage.
1198 vgic_irq_set_queued(vcpu, irq);
1202 vgic_set_lr(vcpu, lr_nr, vlr);
1203 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1207 * Queue an interrupt to a CPU virtual interface. Return true on success,
1208 * or false if it wasn't possible to queue it.
1209 * sgi_source must be zero for any non-SGI interrupts.
1211 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1213 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1218 /* Sanitize the input... */
1219 BUG_ON(sgi_source_id & ~7);
1220 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1221 BUG_ON(irq >= dist->nr_irqs);
1223 kvm_debug("Queue IRQ%d\n", irq);
1225 lr = vgic_cpu->vgic_irq_lr_map[irq];
1227 /* Do we have an active interrupt for the same CPUID? */
1228 if (lr != LR_EMPTY) {
1229 vlr = vgic_get_lr(vcpu, lr);
1230 if (vlr.source == sgi_source_id) {
1231 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1232 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1233 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1238 /* Try to use another LR for this interrupt */
1239 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1241 if (lr >= vgic->nr_lr)
1244 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1245 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1246 set_bit(lr, vgic_cpu->lr_used);
1249 vlr.source = sgi_source_id;
1251 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1256 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1258 if (!vgic_can_sample_irq(vcpu, irq))
1259 return true; /* level interrupt, already queued */
1261 if (vgic_queue_irq(vcpu, 0, irq)) {
1262 if (vgic_irq_is_edge(vcpu, irq)) {
1263 vgic_dist_irq_clear_pending(vcpu, irq);
1264 vgic_cpu_irq_clear(vcpu, irq);
1266 vgic_irq_set_queued(vcpu, irq);
1276 * Fill the list registers with pending interrupts before running the
1279 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1281 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1282 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1283 unsigned long *pa_percpu, *pa_shared;
1286 int nr_shared = vgic_nr_shared_irqs(dist);
1288 vcpu_id = vcpu->vcpu_id;
1290 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1291 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1293 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1294 VGIC_NR_PRIVATE_IRQS);
1295 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1298 * We may not have any pending interrupt, or the interrupts
1299 * may have been serviced from another vcpu. In all cases,
1302 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1306 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1307 if (!queue_sgi(vcpu, i))
1312 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1313 if (!vgic_queue_hwirq(vcpu, i))
1318 for_each_set_bit(i, pa_shared, nr_shared) {
1319 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1328 vgic_enable_underflow(vcpu);
1330 vgic_disable_underflow(vcpu);
1332 * We're about to run this VCPU, and we've consumed
1333 * everything the distributor had in store for
1334 * us. Claim we don't have anything pending. We'll
1335 * adjust that if needed while exiting.
1337 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1341 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1343 u32 status = vgic_get_interrupt_status(vcpu);
1344 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1345 bool level_pending = false;
1346 struct kvm *kvm = vcpu->kvm;
1348 kvm_debug("STATUS = %08x\n", status);
1350 if (status & INT_STATUS_EOI) {
1352 * Some level interrupts have been EOIed. Clear their
1355 u64 eisr = vgic_get_eisr(vcpu);
1356 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1359 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1360 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1361 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1363 spin_lock(&dist->lock);
1364 vgic_irq_clear_queued(vcpu, vlr.irq);
1365 WARN_ON(vlr.state & LR_STATE_MASK);
1367 vgic_set_lr(vcpu, lr, vlr);
1370 * If the IRQ was EOIed it was also ACKed and we we
1371 * therefore assume we can clear the soft pending
1372 * state (should it had been set) for this interrupt.
1374 * Note: if the IRQ soft pending state was set after
1375 * the IRQ was acked, it actually shouldn't be
1376 * cleared, but we have no way of knowing that unless
1377 * we start trapping ACKs when the soft-pending state
1380 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1383 * kvm_notify_acked_irq calls kvm_set_irq()
1384 * to reset the IRQ level. Need to release the
1385 * lock for kvm_set_irq to grab it.
1387 spin_unlock(&dist->lock);
1389 kvm_notify_acked_irq(kvm, 0,
1390 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1391 spin_lock(&dist->lock);
1393 /* Any additional pending interrupt? */
1394 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1395 vgic_cpu_irq_set(vcpu, vlr.irq);
1396 level_pending = true;
1398 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1399 vgic_cpu_irq_clear(vcpu, vlr.irq);
1402 spin_unlock(&dist->lock);
1405 * Despite being EOIed, the LR may not have
1406 * been marked as empty.
1408 vgic_sync_lr_elrsr(vcpu, lr, vlr);
1412 if (status & INT_STATUS_UNDERFLOW)
1413 vgic_disable_underflow(vcpu);
1416 * In the next iterations of the vcpu loop, if we sync the vgic state
1417 * after flushing it, but before entering the guest (this happens for
1418 * pending signals and vmid rollovers), then make sure we don't pick
1419 * up any old maintenance interrupts here.
1421 vgic_clear_eisr(vcpu);
1423 return level_pending;
1427 * Save the physical active state, and reset it to inactive.
1429 * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1431 static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1433 struct irq_phys_map *map;
1436 if (!(vlr.state & LR_HW))
1439 map = vgic_irq_map_search(vcpu, vlr.irq);
1442 ret = irq_get_irqchip_state(map->irq,
1443 IRQCHIP_STATE_ACTIVE,
1454 /* Sync back the VGIC state after a guest run */
1455 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1457 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1458 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1460 unsigned long *elrsr_ptr;
1464 level_pending = vgic_process_maintenance(vcpu);
1465 elrsr = vgic_get_elrsr(vcpu);
1466 elrsr_ptr = u64_to_bitmask(&elrsr);
1468 /* Deal with HW interrupts, and clear mappings for empty LRs */
1469 for (lr = 0; lr < vgic->nr_lr; lr++) {
1472 if (!test_bit(lr, vgic_cpu->lr_used))
1475 vlr = vgic_get_lr(vcpu, lr);
1476 if (vgic_sync_hwirq(vcpu, vlr)) {
1478 * So this is a HW interrupt that the guest
1479 * EOI-ed. Clean the LR state and allow the
1480 * interrupt to be sampled again.
1484 vgic_set_lr(vcpu, lr, vlr);
1485 vgic_irq_clear_queued(vcpu, vlr.irq);
1486 set_bit(lr, elrsr_ptr);
1489 if (!test_bit(lr, elrsr_ptr))
1492 clear_bit(lr, vgic_cpu->lr_used);
1494 BUG_ON(vlr.irq >= dist->nr_irqs);
1495 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1498 /* Check if we still have something up our sleeve... */
1499 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1500 if (level_pending || pending < vgic->nr_lr)
1501 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1504 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1506 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1508 if (!irqchip_in_kernel(vcpu->kvm))
1511 spin_lock(&dist->lock);
1512 __kvm_vgic_flush_hwstate(vcpu);
1513 spin_unlock(&dist->lock);
1516 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1518 if (!irqchip_in_kernel(vcpu->kvm))
1521 __kvm_vgic_sync_hwstate(vcpu);
1524 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1526 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1528 if (!irqchip_in_kernel(vcpu->kvm))
1531 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1534 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1536 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1538 if (!irqchip_in_kernel(vcpu->kvm))
1541 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1545 void vgic_kick_vcpus(struct kvm *kvm)
1547 struct kvm_vcpu *vcpu;
1551 * We've injected an interrupt, time to find out who deserves
1554 kvm_for_each_vcpu(c, vcpu, kvm) {
1555 if (kvm_vgic_vcpu_pending_irq(vcpu))
1556 kvm_vcpu_kick(vcpu);
1560 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1562 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1565 * Only inject an interrupt if:
1566 * - edge triggered and we have a rising edge
1567 * - level triggered and we change level
1569 if (edge_triggered) {
1570 int state = vgic_dist_irq_is_pending(vcpu, irq);
1571 return level > state;
1573 int state = vgic_dist_irq_get_level(vcpu, irq);
1574 return level != state;
1578 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1579 struct irq_phys_map *map,
1580 unsigned int irq_num, bool level)
1582 struct vgic_dist *dist = &kvm->arch.vgic;
1583 struct kvm_vcpu *vcpu;
1584 int edge_triggered, level_triggered;
1586 bool ret = true, can_inject = true;
1588 if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1591 spin_lock(&dist->lock);
1593 vcpu = kvm_get_vcpu(kvm, cpuid);
1594 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1595 level_triggered = !edge_triggered;
1597 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1602 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1603 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1604 if (cpuid == VCPU_NOT_ALLOCATED) {
1605 /* Pretend we use CPU0, and prevent injection */
1609 vcpu = kvm_get_vcpu(kvm, cpuid);
1612 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1615 if (level_triggered)
1616 vgic_dist_irq_set_level(vcpu, irq_num);
1617 vgic_dist_irq_set_pending(vcpu, irq_num);
1619 if (level_triggered) {
1620 vgic_dist_irq_clear_level(vcpu, irq_num);
1621 if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1622 vgic_dist_irq_clear_pending(vcpu, irq_num);
1623 vgic_cpu_irq_clear(vcpu, irq_num);
1624 if (!compute_pending_for_cpu(vcpu))
1625 clear_bit(cpuid, dist->irq_pending_on_cpu);
1633 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1635 if (!enabled || !can_inject) {
1640 if (!vgic_can_sample_irq(vcpu, irq_num)) {
1642 * Level interrupt in progress, will be picked up
1650 vgic_cpu_irq_set(vcpu, irq_num);
1651 set_bit(cpuid, dist->irq_pending_on_cpu);
1655 spin_unlock(&dist->lock);
1658 /* kick the specified vcpu */
1659 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1665 static int vgic_lazy_init(struct kvm *kvm)
1669 if (unlikely(!vgic_initialized(kvm))) {
1671 * We only provide the automatic initialization of the VGIC
1672 * for the legacy case of a GICv2. Any other type must
1673 * be explicitly initialized once setup with the respective
1676 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1679 mutex_lock(&kvm->lock);
1680 ret = vgic_init(kvm);
1681 mutex_unlock(&kvm->lock);
1688 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1689 * @kvm: The VM structure pointer
1690 * @cpuid: The CPU for PPIs
1691 * @irq_num: The IRQ number that is assigned to the device. This IRQ
1692 * must not be mapped to a HW interrupt.
1693 * @level: Edge-triggered: true: to trigger the interrupt
1694 * false: to ignore the call
1695 * Level-sensitive true: raise the input signal
1696 * false: lower the input signal
1698 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1699 * level-sensitive interrupts. You can think of the level parameter as 1
1700 * being HIGH and 0 being LOW and all devices being active-HIGH.
1702 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1705 struct irq_phys_map *map;
1708 ret = vgic_lazy_init(kvm);
1712 map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1716 return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1720 * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1721 * @kvm: The VM structure pointer
1722 * @cpuid: The CPU for PPIs
1723 * @map: Pointer to a irq_phys_map structure describing the mapping
1724 * @level: Edge-triggered: true: to trigger the interrupt
1725 * false: to ignore the call
1726 * Level-sensitive true: raise the input signal
1727 * false: lower the input signal
1729 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1730 * level-sensitive interrupts. You can think of the level parameter as 1
1731 * being HIGH and 0 being LOW and all devices being active-HIGH.
1733 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1734 struct irq_phys_map *map, bool level)
1738 ret = vgic_lazy_init(kvm);
1742 return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1745 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1748 * We cannot rely on the vgic maintenance interrupt to be
1749 * delivered synchronously. This means we can only use it to
1750 * exit the VM, and we perform the handling of EOIed
1751 * interrupts on the exit path (see vgic_process_maintenance).
1756 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1759 if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1760 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1762 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1766 * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1767 * @vcpu: The VCPU pointer
1768 * @virt_irq: The virtual irq number
1769 * @irq: The Linux IRQ number
1771 * Establish a mapping between a guest visible irq (@virt_irq) and a
1772 * Linux irq (@irq). On injection, @virt_irq will be associated with
1773 * the physical interrupt represented by @irq. This mapping can be
1774 * established multiple times as long as the parameters are the same.
1776 * Returns a valid pointer on success, and an error pointer otherwise
1778 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1779 int virt_irq, int irq)
1781 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1782 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1783 struct irq_phys_map *map;
1784 struct irq_phys_map_entry *entry;
1785 struct irq_desc *desc;
1786 struct irq_data *data;
1789 desc = irq_to_desc(irq);
1791 kvm_err("%s: no interrupt descriptor\n", __func__);
1792 return ERR_PTR(-EINVAL);
1795 data = irq_desc_get_irq_data(desc);
1796 while (data->parent_data)
1797 data = data->parent_data;
1799 phys_irq = data->hwirq;
1801 /* Create a new mapping */
1802 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1804 return ERR_PTR(-ENOMEM);
1806 spin_lock(&dist->irq_phys_map_lock);
1808 /* Try to match an existing mapping */
1809 map = vgic_irq_map_search(vcpu, virt_irq);
1811 /* Make sure this mapping matches */
1812 if (map->phys_irq != phys_irq ||
1814 map = ERR_PTR(-EINVAL);
1816 /* Found an existing, valid mapping */
1821 map->virt_irq = virt_irq;
1822 map->phys_irq = phys_irq;
1825 list_add_tail_rcu(&entry->entry, root);
1828 spin_unlock(&dist->irq_phys_map_lock);
1829 /* If we've found a hit in the existing list, free the useless
1831 if (IS_ERR(map) || map != &entry->map)
1836 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1839 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1840 struct irq_phys_map_entry *entry;
1841 struct irq_phys_map *map;
1845 list_for_each_entry_rcu(entry, root, entry) {
1847 if (map->virt_irq == virt_irq) {
1858 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1860 struct irq_phys_map_entry *entry;
1862 entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1867 * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1869 * Return the logical active state of a mapped interrupt. This doesn't
1870 * necessarily reflects the current HW state.
1872 bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1879 * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1881 * Set the logical active state of a mapped interrupt. This doesn't
1882 * immediately affects the HW state.
1884 void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1887 map->active = active;
1891 * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1892 * @vcpu: The VCPU pointer
1893 * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1895 * Remove an existing mapping between virtual and physical interrupts.
1897 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1899 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1900 struct irq_phys_map_entry *entry;
1901 struct list_head *root;
1906 root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1908 spin_lock(&dist->irq_phys_map_lock);
1910 list_for_each_entry(entry, root, entry) {
1911 if (&entry->map == map) {
1912 list_del_rcu(&entry->entry);
1913 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1918 spin_unlock(&dist->irq_phys_map_lock);
1923 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1925 struct vgic_dist *dist = &kvm->arch.vgic;
1926 struct irq_phys_map_entry *entry;
1928 spin_lock(&dist->irq_phys_map_lock);
1930 list_for_each_entry(entry, root, entry) {
1931 list_del_rcu(&entry->entry);
1932 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1935 spin_unlock(&dist->irq_phys_map_lock);
1938 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1940 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1942 kfree(vgic_cpu->pending_shared);
1943 kfree(vgic_cpu->active_shared);
1944 kfree(vgic_cpu->pend_act_shared);
1945 kfree(vgic_cpu->vgic_irq_lr_map);
1946 vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1947 vgic_cpu->pending_shared = NULL;
1948 vgic_cpu->active_shared = NULL;
1949 vgic_cpu->pend_act_shared = NULL;
1950 vgic_cpu->vgic_irq_lr_map = NULL;
1953 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1955 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1957 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1958 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1959 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1960 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1961 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1963 if (!vgic_cpu->pending_shared
1964 || !vgic_cpu->active_shared
1965 || !vgic_cpu->pend_act_shared
1966 || !vgic_cpu->vgic_irq_lr_map) {
1967 kvm_vgic_vcpu_destroy(vcpu);
1971 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1974 * Store the number of LRs per vcpu, so we don't have to go
1975 * all the way to the distributor structure to find out. Only
1976 * assembly code should use this one.
1978 vgic_cpu->nr_lr = vgic->nr_lr;
1984 * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1986 * No memory allocation should be performed here, only static init.
1988 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1990 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1991 INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1995 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1997 * The host's GIC naturally limits the maximum amount of VCPUs a guest
2000 int kvm_vgic_get_max_vcpus(void)
2002 return vgic->max_gic_vcpus;
2005 void kvm_vgic_destroy(struct kvm *kvm)
2007 struct vgic_dist *dist = &kvm->arch.vgic;
2008 struct kvm_vcpu *vcpu;
2011 kvm_for_each_vcpu(i, vcpu, kvm)
2012 kvm_vgic_vcpu_destroy(vcpu);
2014 vgic_free_bitmap(&dist->irq_enabled);
2015 vgic_free_bitmap(&dist->irq_level);
2016 vgic_free_bitmap(&dist->irq_pending);
2017 vgic_free_bitmap(&dist->irq_soft_pend);
2018 vgic_free_bitmap(&dist->irq_queued);
2019 vgic_free_bitmap(&dist->irq_cfg);
2020 vgic_free_bytemap(&dist->irq_priority);
2021 if (dist->irq_spi_target) {
2022 for (i = 0; i < dist->nr_cpus; i++)
2023 vgic_free_bitmap(&dist->irq_spi_target[i]);
2025 kfree(dist->irq_sgi_sources);
2026 kfree(dist->irq_spi_cpu);
2027 kfree(dist->irq_spi_mpidr);
2028 kfree(dist->irq_spi_target);
2029 kfree(dist->irq_pending_on_cpu);
2030 kfree(dist->irq_active_on_cpu);
2031 vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
2032 dist->irq_sgi_sources = NULL;
2033 dist->irq_spi_cpu = NULL;
2034 dist->irq_spi_target = NULL;
2035 dist->irq_pending_on_cpu = NULL;
2036 dist->irq_active_on_cpu = NULL;
2041 * Allocate and initialize the various data structures. Must be called
2042 * with kvm->lock held!
2044 int vgic_init(struct kvm *kvm)
2046 struct vgic_dist *dist = &kvm->arch.vgic;
2047 struct kvm_vcpu *vcpu;
2048 int nr_cpus, nr_irqs;
2049 int ret, i, vcpu_id;
2051 if (vgic_initialized(kvm))
2054 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2055 if (!nr_cpus) /* No vcpus? Can't be good... */
2059 * If nobody configured the number of interrupts, use the
2063 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2065 nr_irqs = dist->nr_irqs;
2067 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2068 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2069 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2070 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2071 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
2072 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
2073 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2074 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2079 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2080 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2081 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2083 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2085 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2087 if (!dist->irq_sgi_sources ||
2088 !dist->irq_spi_cpu ||
2089 !dist->irq_spi_target ||
2090 !dist->irq_pending_on_cpu ||
2091 !dist->irq_active_on_cpu) {
2096 for (i = 0; i < nr_cpus; i++)
2097 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2103 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2107 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2108 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2110 kvm_err("VGIC: Failed to allocate vcpu memory\n");
2114 for (i = 0; i < dist->nr_irqs; i++) {
2115 if (i < VGIC_NR_PPIS)
2116 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2117 vcpu->vcpu_id, i, 1);
2118 if (i < VGIC_NR_PRIVATE_IRQS)
2119 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2129 kvm_vgic_destroy(kvm);
2134 static int init_vgic_model(struct kvm *kvm, int type)
2137 case KVM_DEV_TYPE_ARM_VGIC_V2:
2138 vgic_v2_init_emulation(kvm);
2140 #ifdef CONFIG_ARM_GIC_V3
2141 case KVM_DEV_TYPE_ARM_VGIC_V3:
2142 vgic_v3_init_emulation(kvm);
2149 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2156 * kvm_vgic_early_init - Earliest possible vgic initialization stage
2158 * No memory allocation should be performed here, only static init.
2160 void kvm_vgic_early_init(struct kvm *kvm)
2162 spin_lock_init(&kvm->arch.vgic.lock);
2163 spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2164 INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2167 int kvm_vgic_create(struct kvm *kvm, u32 type)
2169 int i, vcpu_lock_idx = -1, ret;
2170 struct kvm_vcpu *vcpu;
2172 mutex_lock(&kvm->lock);
2174 if (irqchip_in_kernel(kvm)) {
2180 * This function is also called by the KVM_CREATE_IRQCHIP handler,
2181 * which had no chance yet to check the availability of the GICv2
2182 * emulation. So check this here again. KVM_CREATE_DEVICE does
2183 * the proper checks already.
2185 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2191 * Any time a vcpu is run, vcpu_load is called which tries to grab the
2192 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
2193 * that no other VCPUs are run while we create the vgic.
2196 kvm_for_each_vcpu(i, vcpu, kvm) {
2197 if (!mutex_trylock(&vcpu->mutex))
2202 kvm_for_each_vcpu(i, vcpu, kvm) {
2203 if (vcpu->arch.has_run_once)
2208 ret = init_vgic_model(kvm, type);
2212 kvm->arch.vgic.in_kernel = true;
2213 kvm->arch.vgic.vgic_model = type;
2214 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2215 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2216 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2217 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2220 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2221 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2222 mutex_unlock(&vcpu->mutex);
2226 mutex_unlock(&kvm->lock);
2230 static int vgic_ioaddr_overlap(struct kvm *kvm)
2232 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2233 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2235 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2237 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2238 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2243 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2244 phys_addr_t addr, phys_addr_t size)
2248 if (addr & ~KVM_PHYS_MASK)
2251 if (addr & (SZ_4K - 1))
2254 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2256 if (addr + size < addr)
2260 ret = vgic_ioaddr_overlap(kvm);
2262 *ioaddr = VGIC_ADDR_UNDEF;
2268 * kvm_vgic_addr - set or get vgic VM base addresses
2269 * @kvm: pointer to the vm struct
2270 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2271 * @addr: pointer to address value
2272 * @write: if true set the address in the VM address space, if false read the
2275 * Set or get the vgic base addresses for the distributor and the virtual CPU
2276 * interface in the VM physical address space. These addresses are properties
2277 * of the emulated core/SoC and therefore user space initially knows this
2280 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2283 struct vgic_dist *vgic = &kvm->arch.vgic;
2285 phys_addr_t *addr_ptr, block_size;
2286 phys_addr_t alignment;
2288 mutex_lock(&kvm->lock);
2290 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2291 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2292 addr_ptr = &vgic->vgic_dist_base;
2293 block_size = KVM_VGIC_V2_DIST_SIZE;
2296 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2297 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2298 addr_ptr = &vgic->vgic_cpu_base;
2299 block_size = KVM_VGIC_V2_CPU_SIZE;
2302 #ifdef CONFIG_ARM_GIC_V3
2303 case KVM_VGIC_V3_ADDR_TYPE_DIST:
2304 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2305 addr_ptr = &vgic->vgic_dist_base;
2306 block_size = KVM_VGIC_V3_DIST_SIZE;
2309 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2310 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2311 addr_ptr = &vgic->vgic_redist_base;
2312 block_size = KVM_VGIC_V3_REDIST_SIZE;
2321 if (vgic->vgic_model != type_needed) {
2327 if (!IS_ALIGNED(*addr, alignment))
2330 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2337 mutex_unlock(&kvm->lock);
2341 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2345 switch (attr->group) {
2346 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2347 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2349 unsigned long type = (unsigned long)attr->attr;
2351 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2354 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2355 return (r == -ENODEV) ? -ENXIO : r;
2357 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2358 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2362 if (get_user(val, uaddr))
2367 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2368 * - at most 1024 interrupts
2369 * - a multiple of 32 interrupts
2371 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2372 val > VGIC_MAX_IRQS ||
2376 mutex_lock(&dev->kvm->lock);
2378 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2381 dev->kvm->arch.vgic.nr_irqs = val;
2383 mutex_unlock(&dev->kvm->lock);
2387 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2388 switch (attr->attr) {
2389 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2390 r = vgic_init(dev->kvm);
2400 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2404 switch (attr->group) {
2405 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2406 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2408 unsigned long type = (unsigned long)attr->attr;
2410 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2412 return (r == -ENODEV) ? -ENXIO : r;
2414 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2418 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2419 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2421 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2430 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2432 if (vgic_find_range(ranges, 4, offset))
2438 static void vgic_init_maintenance_interrupt(void *info)
2440 enable_percpu_irq(vgic->maint_irq, 0);
2443 static int vgic_cpu_notify(struct notifier_block *self,
2444 unsigned long action, void *cpu)
2448 case CPU_STARTING_FROZEN:
2449 vgic_init_maintenance_interrupt(NULL);
2452 case CPU_DYING_FROZEN:
2453 disable_percpu_irq(vgic->maint_irq);
2460 static struct notifier_block vgic_cpu_nb = {
2461 .notifier_call = vgic_cpu_notify,
2464 static const struct of_device_id vgic_ids[] = {
2465 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2466 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2467 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2468 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2472 int kvm_vgic_hyp_init(void)
2474 const struct of_device_id *matched_id;
2475 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2476 const struct vgic_params **);
2477 struct device_node *vgic_node;
2480 vgic_node = of_find_matching_node_and_match(NULL,
2481 vgic_ids, &matched_id);
2483 kvm_err("error: no compatible GIC node found\n");
2487 vgic_probe = matched_id->data;
2488 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2492 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2493 "vgic", kvm_get_running_vcpus());
2495 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2499 ret = __register_cpu_notifier(&vgic_cpu_nb);
2501 kvm_err("Cannot register vgic CPU notifier\n");
2505 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2510 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2514 int kvm_irq_map_gsi(struct kvm *kvm,
2515 struct kvm_kernel_irq_routing_entry *entries,
2521 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2526 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2527 u32 irq, int level, bool line_status)
2529 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2531 trace_kvm_set_irq(irq, level, irq_source_id);
2533 BUG_ON(!vgic_initialized(kvm));
2535 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2538 /* MSI not implemented yet */
2539 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2540 struct kvm *kvm, int irq_source_id,
2541 int level, bool line_status)