]> Git Repo - linux.git/blob - tools/perf/util/intel-pt.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47
48 #define MAX_TIMESTAMP (~0ULL)
49
50 #define INTEL_PT_CFG_PASS_THRU  BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN  BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN     BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS    BIT_ULL(55)
55
56 struct range {
57         u64 start;
58         u64 end;
59 };
60
61 struct intel_pt {
62         struct auxtrace auxtrace;
63         struct auxtrace_queues queues;
64         struct auxtrace_heap heap;
65         u32 auxtrace_type;
66         struct perf_session *session;
67         struct machine *machine;
68         struct evsel *switch_evsel;
69         struct thread *unknown_thread;
70         bool timeless_decoding;
71         bool sampling_mode;
72         bool snapshot_mode;
73         bool per_cpu_mmaps;
74         bool have_tsc;
75         bool data_queued;
76         bool est_tsc;
77         bool sync_switch;
78         bool sync_switch_not_supported;
79         bool mispred_all;
80         bool use_thread_stack;
81         bool callstack;
82         bool cap_event_trace;
83         bool have_guest_sideband;
84         unsigned int br_stack_sz;
85         unsigned int br_stack_sz_plus;
86         int have_sched_switch;
87         u32 pmu_type;
88         u64 kernel_start;
89         u64 switch_ip;
90         u64 ptss_ip;
91         u64 first_timestamp;
92
93         struct perf_tsc_conversion tc;
94         bool cap_user_time_zero;
95
96         struct itrace_synth_opts synth_opts;
97
98         bool sample_instructions;
99         u64 instructions_sample_type;
100         u64 instructions_id;
101
102         bool sample_cycles;
103         u64 cycles_sample_type;
104         u64 cycles_id;
105
106         bool sample_branches;
107         u32 branches_filter;
108         u64 branches_sample_type;
109         u64 branches_id;
110
111         bool sample_transactions;
112         u64 transactions_sample_type;
113         u64 transactions_id;
114
115         bool sample_ptwrites;
116         u64 ptwrites_sample_type;
117         u64 ptwrites_id;
118
119         bool sample_pwr_events;
120         u64 pwr_events_sample_type;
121         u64 mwait_id;
122         u64 pwre_id;
123         u64 exstop_id;
124         u64 pwrx_id;
125         u64 cbr_id;
126         u64 psb_id;
127
128         bool single_pebs;
129         bool sample_pebs;
130         struct evsel *pebs_evsel;
131
132         u64 evt_sample_type;
133         u64 evt_id;
134
135         u64 iflag_chg_sample_type;
136         u64 iflag_chg_id;
137
138         u64 tsc_bit;
139         u64 mtc_bit;
140         u64 mtc_freq_bits;
141         u32 tsc_ctc_ratio_n;
142         u32 tsc_ctc_ratio_d;
143         u64 cyc_bit;
144         u64 noretcomp_bit;
145         unsigned max_non_turbo_ratio;
146         unsigned cbr2khz;
147         int max_loops;
148
149         unsigned long num_events;
150
151         char *filter;
152         struct addr_filters filts;
153
154         struct range *time_ranges;
155         unsigned int range_cnt;
156
157         struct ip_callchain *chain;
158         struct branch_stack *br_stack;
159
160         u64 dflt_tsc_offset;
161         struct rb_root vmcs_info;
162 };
163
164 enum switch_state {
165         INTEL_PT_SS_NOT_TRACING,
166         INTEL_PT_SS_UNKNOWN,
167         INTEL_PT_SS_TRACING,
168         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169         INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174
175 struct intel_pt_pebs_event {
176         struct evsel *evsel;
177         u64 id;
178 };
179
180 struct intel_pt_queue {
181         struct intel_pt *pt;
182         unsigned int queue_nr;
183         struct auxtrace_buffer *buffer;
184         struct auxtrace_buffer *old_buffer;
185         void *decoder;
186         const struct intel_pt_state *state;
187         struct ip_callchain *chain;
188         struct branch_stack *last_branch;
189         union perf_event *event_buf;
190         bool on_heap;
191         bool stop;
192         bool step_through_buffers;
193         bool use_buffer_pid_tid;
194         bool sync_switch;
195         bool sample_ipc;
196         pid_t pid, tid;
197         int cpu;
198         int switch_state;
199         pid_t next_tid;
200         struct thread *thread;
201         struct machine *guest_machine;
202         struct thread *guest_thread;
203         struct thread *unknown_guest_thread;
204         pid_t guest_machine_pid;
205         pid_t guest_pid;
206         pid_t guest_tid;
207         int vcpu;
208         bool exclude_kernel;
209         bool have_sample;
210         u64 time;
211         u64 timestamp;
212         u64 sel_timestamp;
213         bool sel_start;
214         unsigned int sel_idx;
215         u32 flags;
216         u16 insn_len;
217         u64 last_insn_cnt;
218         u64 ipc_insn_cnt;
219         u64 ipc_cyc_cnt;
220         u64 last_in_insn_cnt;
221         u64 last_in_cyc_cnt;
222         u64 last_cy_insn_cnt;
223         u64 last_cy_cyc_cnt;
224         u64 last_br_insn_cnt;
225         u64 last_br_cyc_cnt;
226         unsigned int cbr_seen;
227         char insn[INTEL_PT_INSN_BUF_SZ];
228         struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230
231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232                           unsigned char *buf, size_t len)
233 {
234         struct intel_pt_pkt packet;
235         size_t pos = 0;
236         int ret, pkt_len, i;
237         char desc[INTEL_PT_PKT_DESC_MAX];
238         const char *color = PERF_COLOR_BLUE;
239         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240
241         color_fprintf(stdout, color,
242                       ". ... Intel Processor Trace data: size %zu bytes\n",
243                       len);
244
245         while (len) {
246                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247                 if (ret > 0)
248                         pkt_len = ret;
249                 else
250                         pkt_len = 1;
251                 printf(".");
252                 color_fprintf(stdout, color, "  %08x: ", pos);
253                 for (i = 0; i < pkt_len; i++)
254                         color_fprintf(stdout, color, " %02x", buf[i]);
255                 for (; i < 16; i++)
256                         color_fprintf(stdout, color, "   ");
257                 if (ret > 0) {
258                         ret = intel_pt_pkt_desc(&packet, desc,
259                                                 INTEL_PT_PKT_DESC_MAX);
260                         if (ret > 0)
261                                 color_fprintf(stdout, color, " %s\n", desc);
262                 } else {
263                         color_fprintf(stdout, color, " Bad packet!\n");
264                 }
265                 pos += pkt_len;
266                 buf += pkt_len;
267                 len -= pkt_len;
268         }
269 }
270
271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272                                 size_t len)
273 {
274         printf(".\n");
275         intel_pt_dump(pt, buf, len);
276 }
277
278 static void intel_pt_log_event(union perf_event *event)
279 {
280         FILE *f = intel_pt_log_fp();
281
282         if (!intel_pt_enable_logging || !f)
283                 return;
284
285         perf_event__fprintf(event, NULL, f);
286 }
287
288 static void intel_pt_dump_sample(struct perf_session *session,
289                                  struct perf_sample *sample)
290 {
291         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292                                            auxtrace);
293
294         printf("\n");
295         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297
298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300         struct perf_time_interval *range = pt->synth_opts.ptime_range;
301         int n = pt->synth_opts.range_num;
302
303         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304                 return true;
305
306         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307                 return false;
308
309         /* perf_time__ranges_skip_sample does not work if time is zero */
310         if (!tm)
311                 tm = 1;
312
313         return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315
316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317                                                         u64 vmcs,
318                                                         u64 dflt_tsc_offset)
319 {
320         struct rb_node **p = &rb_root->rb_node;
321         struct rb_node *parent = NULL;
322         struct intel_pt_vmcs_info *v;
323
324         while (*p) {
325                 parent = *p;
326                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327
328                 if (v->vmcs == vmcs)
329                         return v;
330
331                 if (vmcs < v->vmcs)
332                         p = &(*p)->rb_left;
333                 else
334                         p = &(*p)->rb_right;
335         }
336
337         v = zalloc(sizeof(*v));
338         if (v) {
339                 v->vmcs = vmcs;
340                 v->tsc_offset = dflt_tsc_offset;
341                 v->reliable = dflt_tsc_offset;
342
343                 rb_link_node(&v->rb_node, parent, p);
344                 rb_insert_color(&v->rb_node, rb_root);
345         }
346
347         return v;
348 }
349
350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352         struct intel_pt_queue *ptq = data;
353         struct intel_pt *pt = ptq->pt;
354
355         if (!vmcs && !pt->dflt_tsc_offset)
356                 return NULL;
357
358         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360
361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363         struct intel_pt_vmcs_info *v;
364         struct rb_node *n;
365
366         n = rb_first(&pt->vmcs_info);
367         while (n) {
368                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369                 n = rb_next(n);
370                 rb_erase(&v->rb_node, &pt->vmcs_info);
371                 free(v);
372         }
373 }
374
375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376                                    struct auxtrace_buffer *b)
377 {
378         bool consecutive = false;
379         void *start;
380
381         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382                                       pt->have_tsc, &consecutive,
383                                       pt->synth_opts.vm_time_correlation);
384         if (!start)
385                 return -EINVAL;
386         /*
387          * In the case of vm_time_correlation, the overlap might contain TSC
388          * packets that will not be fixed, and that will then no longer work for
389          * overlap detection. Avoid that by zeroing out the overlap.
390          */
391         if (pt->synth_opts.vm_time_correlation)
392                 memset(b->data, 0, start - b->data);
393         b->use_size = b->data + b->size - start;
394         b->use_data = start;
395         if (b->use_size && consecutive)
396                 b->consecutive = true;
397         return 0;
398 }
399
400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401                                struct auxtrace_buffer *buffer,
402                                struct auxtrace_buffer *old_buffer,
403                                struct intel_pt_buffer *b)
404 {
405         bool might_overlap;
406
407         if (!buffer->data) {
408                 int fd = perf_data__fd(ptq->pt->session->data);
409
410                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
411                 if (!buffer->data)
412                         return -ENOMEM;
413         }
414
415         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416         if (might_overlap && !buffer->consecutive && old_buffer &&
417             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418                 return -ENOMEM;
419
420         if (buffer->use_data) {
421                 b->len = buffer->use_size;
422                 b->buf = buffer->use_data;
423         } else {
424                 b->len = buffer->size;
425                 b->buf = buffer->data;
426         }
427         b->ref_timestamp = buffer->reference;
428
429         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430                 b->consecutive = false;
431                 b->trace_nr = buffer->buffer_nr + 1;
432         } else {
433                 b->consecutive = true;
434         }
435
436         return 0;
437 }
438
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441                                            struct auxtrace_buffer *buffer)
442 {
443         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444                 return;
445
446         auxtrace_buffer__drop_data(buffer);
447 }
448
449 /* Must be serialized with respect to intel_pt_get_trace() */
450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451                               void *cb_data)
452 {
453         struct intel_pt_queue *ptq = data;
454         struct auxtrace_buffer *buffer = ptq->buffer;
455         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456         struct auxtrace_queue *queue;
457         int err = 0;
458
459         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460
461         while (1) {
462                 struct intel_pt_buffer b = { .len = 0 };
463
464                 buffer = auxtrace_buffer__next(queue, buffer);
465                 if (!buffer)
466                         break;
467
468                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469                 if (err)
470                         break;
471
472                 if (b.len) {
473                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474                         old_buffer = buffer;
475                 } else {
476                         intel_pt_lookahead_drop_buffer(ptq, buffer);
477                         continue;
478                 }
479
480                 err = cb(&b, cb_data);
481                 if (err)
482                         break;
483         }
484
485         if (buffer != old_buffer)
486                 intel_pt_lookahead_drop_buffer(ptq, buffer);
487         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488
489         return err;
490 }
491
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498         struct intel_pt_queue *ptq = data;
499         struct auxtrace_buffer *buffer = ptq->buffer;
500         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501         struct auxtrace_queue *queue;
502         int err;
503
504         if (ptq->stop) {
505                 b->len = 0;
506                 return 0;
507         }
508
509         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510
511         buffer = auxtrace_buffer__next(queue, buffer);
512         if (!buffer) {
513                 if (old_buffer)
514                         auxtrace_buffer__drop_data(old_buffer);
515                 b->len = 0;
516                 return 0;
517         }
518
519         ptq->buffer = buffer;
520
521         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522         if (err)
523                 return err;
524
525         if (ptq->step_through_buffers)
526                 ptq->stop = true;
527
528         if (b->len) {
529                 if (old_buffer)
530                         auxtrace_buffer__drop_data(old_buffer);
531                 ptq->old_buffer = buffer;
532         } else {
533                 auxtrace_buffer__drop_data(buffer);
534                 return intel_pt_get_trace(b, data);
535         }
536
537         return 0;
538 }
539
540 struct intel_pt_cache_entry {
541         struct auxtrace_cache_entry     entry;
542         u64                             insn_cnt;
543         u64                             byte_cnt;
544         enum intel_pt_insn_op           op;
545         enum intel_pt_insn_branch       branch;
546         bool                            emulated_ptwrite;
547         int                             length;
548         int32_t                         rel;
549         char                            insn[INTEL_PT_INSN_BUF_SZ];
550 };
551
552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554         int *d = data;
555         long val;
556
557         if (!strcmp(var, "intel-pt.cache-divisor")) {
558                 val = strtol(value, NULL, 0);
559                 if (val > 0 && val <= INT_MAX)
560                         *d = val;
561         }
562
563         return 0;
564 }
565
566 static int intel_pt_cache_divisor(void)
567 {
568         static int d;
569
570         if (d)
571                 return d;
572
573         perf_config(intel_pt_config_div, &d);
574
575         if (!d)
576                 d = 64;
577
578         return d;
579 }
580
581 static unsigned int intel_pt_cache_size(struct dso *dso,
582                                         struct machine *machine)
583 {
584         off_t size;
585
586         size = dso__data_size(dso, machine);
587         size /= intel_pt_cache_divisor();
588         if (size < 1000)
589                 return 10;
590         if (size > (1 << 21))
591                 return 21;
592         return 32 - __builtin_clz(size);
593 }
594
595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596                                              struct machine *machine)
597 {
598         struct auxtrace_cache *c;
599         unsigned int bits;
600
601         if (dso->auxtrace_cache)
602                 return dso->auxtrace_cache;
603
604         bits = intel_pt_cache_size(dso, machine);
605
606         /* Ignoring cache creation failure */
607         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608
609         dso->auxtrace_cache = c;
610
611         return c;
612 }
613
614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615                               u64 offset, u64 insn_cnt, u64 byte_cnt,
616                               struct intel_pt_insn *intel_pt_insn)
617 {
618         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619         struct intel_pt_cache_entry *e;
620         int err;
621
622         if (!c)
623                 return -ENOMEM;
624
625         e = auxtrace_cache__alloc_entry(c);
626         if (!e)
627                 return -ENOMEM;
628
629         e->insn_cnt = insn_cnt;
630         e->byte_cnt = byte_cnt;
631         e->op = intel_pt_insn->op;
632         e->branch = intel_pt_insn->branch;
633         e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634         e->length = intel_pt_insn->length;
635         e->rel = intel_pt_insn->rel;
636         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637
638         err = auxtrace_cache__add(c, offset, &e->entry);
639         if (err)
640                 auxtrace_cache__free_entry(c, e);
641
642         return err;
643 }
644
645 static struct intel_pt_cache_entry *
646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649
650         if (!c)
651                 return NULL;
652
653         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
654 }
655
656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657                                       u64 offset)
658 {
659         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660
661         if (!c)
662                 return;
663
664         auxtrace_cache__remove(dso->auxtrace_cache, offset);
665 }
666
667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669         /* Assumes 64-bit kernel */
670         return ip & (1ULL << 63);
671 }
672
673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675         if (nr) {
676                 return intel_pt_guest_kernel_ip(ip) ?
677                        PERF_RECORD_MISC_GUEST_KERNEL :
678                        PERF_RECORD_MISC_GUEST_USER;
679         }
680
681         return ip >= ptq->pt->kernel_start ?
682                PERF_RECORD_MISC_KERNEL :
683                PERF_RECORD_MISC_USER;
684 }
685
686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688         /* No support for non-zero CS base */
689         if (from_ip)
690                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693
694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696         struct machines *machines = &ptq->pt->session->machines;
697         struct machine *machine;
698         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699
700         if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701                 return 0;
702
703         ptq->guest_machine = NULL;
704         thread__zput(ptq->unknown_guest_thread);
705
706         if (symbol_conf.guest_code) {
707                 thread__zput(ptq->guest_thread);
708                 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709         }
710
711         machine = machines__find_guest(machines, pid);
712         if (!machine)
713                 return -1;
714
715         ptq->unknown_guest_thread = machine__idle_thread(machine);
716         if (!ptq->unknown_guest_thread)
717                 return -1;
718
719         ptq->guest_machine = machine;
720
721         return 0;
722 }
723
724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726         return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728
729 #define PTWRITE_MAGIC           "\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN       16
731
732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734         unsigned char buf[PTWRITE_MAGIC_LEN];
735         ssize_t len;
736
737         len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738         if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739                 intel_pt_log("Emulated ptwrite signature found\n");
740                 return true;
741         }
742         intel_pt_log("Emulated ptwrite signature not found\n");
743         return false;
744 }
745
746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
748                                    uint64_t to_ip, uint64_t max_insn_cnt,
749                                    void *data)
750 {
751         struct intel_pt_queue *ptq = data;
752         struct machine *machine = ptq->pt->machine;
753         struct thread *thread;
754         struct addr_location al;
755         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756         ssize_t len;
757         int x86_64, ret = 0;
758         u8 cpumode;
759         u64 offset, start_offset, start_ip;
760         u64 insn_cnt = 0;
761         bool one_map = true;
762         bool nr;
763
764
765         addr_location__init(&al);
766         intel_pt_insn->length = 0;
767
768         if (to_ip && *ip == to_ip)
769                 goto out_no_cache;
770
771         nr = ptq->state->to_nr;
772         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
773
774         if (nr) {
775                 if (ptq->pt->have_guest_sideband) {
776                         if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
777                                 intel_pt_log("ERROR: guest sideband but no guest machine\n");
778                                 ret = -EINVAL;
779                                 goto out_ret;
780                         }
781                 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
782                            intel_pt_get_guest(ptq)) {
783                         intel_pt_log("ERROR: no guest machine\n");
784                         ret = -EINVAL;
785                         goto out_ret;
786                 }
787                 machine = ptq->guest_machine;
788                 thread = ptq->guest_thread;
789                 if (!thread) {
790                         if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
791                                 intel_pt_log("ERROR: no guest thread\n");
792                                 ret = -EINVAL;
793                                 goto out_ret;
794                         }
795                         thread = ptq->unknown_guest_thread;
796                 }
797         } else {
798                 thread = ptq->thread;
799                 if (!thread) {
800                         if (cpumode != PERF_RECORD_MISC_KERNEL) {
801                                 intel_pt_log("ERROR: no thread\n");
802                                 ret = -EINVAL;
803                                 goto out_ret;
804                         }
805                         thread = ptq->pt->unknown_thread;
806                 }
807         }
808
809         while (1) {
810                 struct dso *dso;
811
812                 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
813                         if (al.map)
814                                 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
815                         else
816                                 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
817                         addr_location__exit(&al);
818                         ret = -EINVAL;
819                         goto out_ret;
820                 }
821                 dso = map__dso(al.map);
822
823                 if (dso->data.status == DSO_DATA_STATUS_ERROR &&
824                         dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
825                         ret = -ENOENT;
826                         goto out_ret;
827                 }
828
829                 offset = map__map_ip(al.map, *ip);
830
831                 if (!to_ip && one_map) {
832                         struct intel_pt_cache_entry *e;
833
834                         e = intel_pt_cache_lookup(dso, machine, offset);
835                         if (e &&
836                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
837                                 *insn_cnt_ptr = e->insn_cnt;
838                                 *ip += e->byte_cnt;
839                                 intel_pt_insn->op = e->op;
840                                 intel_pt_insn->branch = e->branch;
841                                 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
842                                 intel_pt_insn->length = e->length;
843                                 intel_pt_insn->rel = e->rel;
844                                 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
845                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
846                                 ret = 0;
847                                 goto out_ret;
848                         }
849                 }
850
851                 start_offset = offset;
852                 start_ip = *ip;
853
854                 /* Load maps to ensure dso->is_64_bit has been updated */
855                 map__load(al.map);
856
857                 x86_64 = dso->is_64_bit;
858
859                 while (1) {
860                         len = dso__data_read_offset(dso, machine,
861                                                     offset, buf,
862                                                     INTEL_PT_INSN_BUF_SZ);
863                         if (len <= 0) {
864                                 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
865                                              offset);
866                                 if (intel_pt_enable_logging)
867                                         dso__fprintf(dso, intel_pt_log_fp());
868                                 ret = -EINVAL;
869                                 goto out_ret;
870                         }
871
872                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
873                                 ret = -EINVAL;
874                                 goto out_ret;
875                         }
876
877                         intel_pt_log_insn(intel_pt_insn, *ip);
878
879                         insn_cnt += 1;
880
881                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
882                                 bool eptw;
883                                 u64 offs;
884
885                                 if (!intel_pt_jmp_16(intel_pt_insn))
886                                         goto out;
887                                 /* Check for emulated ptwrite */
888                                 offs = offset + intel_pt_insn->length;
889                                 eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
890                                 intel_pt_insn->emulated_ptwrite = eptw;
891                                 goto out;
892                         }
893
894                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
895                                 goto out_no_cache;
896
897                         *ip += intel_pt_insn->length;
898
899                         if (to_ip && *ip == to_ip) {
900                                 intel_pt_insn->length = 0;
901                                 goto out_no_cache;
902                         }
903
904                         if (*ip >= map__end(al.map))
905                                 break;
906
907                         offset += intel_pt_insn->length;
908                 }
909                 one_map = false;
910         }
911 out:
912         *insn_cnt_ptr = insn_cnt;
913
914         if (!one_map)
915                 goto out_no_cache;
916
917         /*
918          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
919          * entries.
920          */
921         if (to_ip) {
922                 struct intel_pt_cache_entry *e;
923
924                 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
925                 if (e)
926                         goto out_ret;
927         }
928
929         /* Ignore cache errors */
930         intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
931                            *ip - start_ip, intel_pt_insn);
932
933 out_ret:
934         addr_location__exit(&al);
935         return ret;
936
937 out_no_cache:
938         *insn_cnt_ptr = insn_cnt;
939         addr_location__exit(&al);
940         return 0;
941 }
942
943 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
944                                   uint64_t offset, const char *filename)
945 {
946         struct addr_filter *filt;
947         bool have_filter   = false;
948         bool hit_tracestop = false;
949         bool hit_filter    = false;
950
951         list_for_each_entry(filt, &pt->filts.head, list) {
952                 if (filt->start)
953                         have_filter = true;
954
955                 if ((filename && !filt->filename) ||
956                     (!filename && filt->filename) ||
957                     (filename && strcmp(filename, filt->filename)))
958                         continue;
959
960                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
961                         continue;
962
963                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
964                              ip, offset, filename ? filename : "[kernel]",
965                              filt->start ? "filter" : "stop",
966                              filt->addr, filt->size);
967
968                 if (filt->start)
969                         hit_filter = true;
970                 else
971                         hit_tracestop = true;
972         }
973
974         if (!hit_tracestop && !hit_filter)
975                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
976                              ip, offset, filename ? filename : "[kernel]");
977
978         return hit_tracestop || (have_filter && !hit_filter);
979 }
980
981 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
982 {
983         struct intel_pt_queue *ptq = data;
984         struct thread *thread;
985         struct addr_location al;
986         u8 cpumode;
987         u64 offset;
988         int res;
989
990         if (ptq->state->to_nr) {
991                 if (intel_pt_guest_kernel_ip(ip))
992                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
993                 /* No support for decoding guest user space */
994                 return -EINVAL;
995         } else if (ip >= ptq->pt->kernel_start) {
996                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
997         }
998
999         cpumode = PERF_RECORD_MISC_USER;
1000
1001         thread = ptq->thread;
1002         if (!thread)
1003                 return -EINVAL;
1004
1005         addr_location__init(&al);
1006         if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1007                 return -EINVAL;
1008
1009         offset = map__map_ip(al.map, ip);
1010
1011         res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name);
1012         addr_location__exit(&al);
1013         return res;
1014 }
1015
1016 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1017 {
1018         return __intel_pt_pgd_ip(ip, data) > 0;
1019 }
1020
1021 static bool intel_pt_get_config(struct intel_pt *pt,
1022                                 struct perf_event_attr *attr, u64 *config)
1023 {
1024         if (attr->type == pt->pmu_type) {
1025                 if (config)
1026                         *config = attr->config;
1027                 return true;
1028         }
1029
1030         return false;
1031 }
1032
1033 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1034 {
1035         struct evsel *evsel;
1036
1037         evlist__for_each_entry(pt->session->evlist, evsel) {
1038                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1039                     !evsel->core.attr.exclude_kernel)
1040                         return false;
1041         }
1042         return true;
1043 }
1044
1045 static bool intel_pt_return_compression(struct intel_pt *pt)
1046 {
1047         struct evsel *evsel;
1048         u64 config;
1049
1050         if (!pt->noretcomp_bit)
1051                 return true;
1052
1053         evlist__for_each_entry(pt->session->evlist, evsel) {
1054                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1055                     (config & pt->noretcomp_bit))
1056                         return false;
1057         }
1058         return true;
1059 }
1060
1061 static bool intel_pt_branch_enable(struct intel_pt *pt)
1062 {
1063         struct evsel *evsel;
1064         u64 config;
1065
1066         evlist__for_each_entry(pt->session->evlist, evsel) {
1067                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1068                     (config & INTEL_PT_CFG_PASS_THRU) &&
1069                     !(config & INTEL_PT_CFG_BRANCH_EN))
1070                         return false;
1071         }
1072         return true;
1073 }
1074
1075 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1076 {
1077         struct evsel *evsel;
1078         u64 config;
1079
1080         evlist__for_each_entry(pt->session->evlist, evsel) {
1081                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1082                     config & INTEL_PT_CFG_TNT_DIS)
1083                         return true;
1084         }
1085         return false;
1086 }
1087
1088 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1089 {
1090         struct evsel *evsel;
1091         unsigned int shift;
1092         u64 config;
1093
1094         if (!pt->mtc_freq_bits)
1095                 return 0;
1096
1097         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1098                 config >>= 1;
1099
1100         evlist__for_each_entry(pt->session->evlist, evsel) {
1101                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1102                         return (config & pt->mtc_freq_bits) >> shift;
1103         }
1104         return 0;
1105 }
1106
1107 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1108 {
1109         struct evsel *evsel;
1110         bool timeless_decoding = true;
1111         u64 config;
1112
1113         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1114                 return true;
1115
1116         evlist__for_each_entry(pt->session->evlist, evsel) {
1117                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1118                         return true;
1119                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1120                         if (config & pt->tsc_bit)
1121                                 timeless_decoding = false;
1122                         else
1123                                 return true;
1124                 }
1125         }
1126         return timeless_decoding;
1127 }
1128
1129 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1130 {
1131         struct evsel *evsel;
1132
1133         evlist__for_each_entry(pt->session->evlist, evsel) {
1134                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1135                     !evsel->core.attr.exclude_kernel)
1136                         return true;
1137         }
1138         return false;
1139 }
1140
1141 static bool intel_pt_have_tsc(struct intel_pt *pt)
1142 {
1143         struct evsel *evsel;
1144         bool have_tsc = false;
1145         u64 config;
1146
1147         if (!pt->tsc_bit)
1148                 return false;
1149
1150         evlist__for_each_entry(pt->session->evlist, evsel) {
1151                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1152                         if (config & pt->tsc_bit)
1153                                 have_tsc = true;
1154                         else
1155                                 return false;
1156                 }
1157         }
1158         return have_tsc;
1159 }
1160
1161 static bool intel_pt_have_mtc(struct intel_pt *pt)
1162 {
1163         struct evsel *evsel;
1164         u64 config;
1165
1166         evlist__for_each_entry(pt->session->evlist, evsel) {
1167                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1168                     (config & pt->mtc_bit))
1169                         return true;
1170         }
1171         return false;
1172 }
1173
1174 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1175 {
1176         struct evsel *evsel;
1177
1178         evlist__for_each_entry(pt->session->evlist, evsel) {
1179                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1180                     evsel->core.attr.aux_sample_size)
1181                         return true;
1182         }
1183         return false;
1184 }
1185
1186 static u64 intel_pt_ctl(struct intel_pt *pt)
1187 {
1188         struct evsel *evsel;
1189         u64 config;
1190
1191         evlist__for_each_entry(pt->session->evlist, evsel) {
1192                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1193                         return config;
1194         }
1195         return 0;
1196 }
1197
1198 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1199 {
1200         u64 quot, rem;
1201
1202         quot = ns / pt->tc.time_mult;
1203         rem  = ns % pt->tc.time_mult;
1204         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1205                 pt->tc.time_mult;
1206 }
1207
1208 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1209 {
1210         size_t sz = sizeof(struct ip_callchain);
1211
1212         /* Add 1 to callchain_sz for callchain context */
1213         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1214         return zalloc(sz);
1215 }
1216
1217 static int intel_pt_callchain_init(struct intel_pt *pt)
1218 {
1219         struct evsel *evsel;
1220
1221         evlist__for_each_entry(pt->session->evlist, evsel) {
1222                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1223                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1224         }
1225
1226         pt->chain = intel_pt_alloc_chain(pt);
1227         if (!pt->chain)
1228                 return -ENOMEM;
1229
1230         return 0;
1231 }
1232
1233 static void intel_pt_add_callchain(struct intel_pt *pt,
1234                                    struct perf_sample *sample)
1235 {
1236         struct thread *thread = machine__findnew_thread(pt->machine,
1237                                                         sample->pid,
1238                                                         sample->tid);
1239
1240         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1241                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1242                                   pt->kernel_start);
1243
1244         sample->callchain = pt->chain;
1245 }
1246
1247 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1248 {
1249         size_t sz = sizeof(struct branch_stack);
1250
1251         sz += entry_cnt * sizeof(struct branch_entry);
1252         return zalloc(sz);
1253 }
1254
1255 static int intel_pt_br_stack_init(struct intel_pt *pt)
1256 {
1257         struct evsel *evsel;
1258
1259         evlist__for_each_entry(pt->session->evlist, evsel) {
1260                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1261                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1262         }
1263
1264         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1265         if (!pt->br_stack)
1266                 return -ENOMEM;
1267
1268         return 0;
1269 }
1270
1271 static void intel_pt_add_br_stack(struct intel_pt *pt,
1272                                   struct perf_sample *sample)
1273 {
1274         struct thread *thread = machine__findnew_thread(pt->machine,
1275                                                         sample->pid,
1276                                                         sample->tid);
1277
1278         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1279                                      pt->br_stack_sz, sample->ip,
1280                                      pt->kernel_start);
1281
1282         sample->branch_stack = pt->br_stack;
1283         thread__put(thread);
1284 }
1285
1286 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1287 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1288
1289 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1290                                                    unsigned int queue_nr)
1291 {
1292         struct intel_pt_params params = { .get_trace = 0, };
1293         struct perf_env *env = pt->machine->env;
1294         struct intel_pt_queue *ptq;
1295
1296         ptq = zalloc(sizeof(struct intel_pt_queue));
1297         if (!ptq)
1298                 return NULL;
1299
1300         if (pt->synth_opts.callchain) {
1301                 ptq->chain = intel_pt_alloc_chain(pt);
1302                 if (!ptq->chain)
1303                         goto out_free;
1304         }
1305
1306         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1307                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1308
1309                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1310                 if (!ptq->last_branch)
1311                         goto out_free;
1312         }
1313
1314         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1315         if (!ptq->event_buf)
1316                 goto out_free;
1317
1318         ptq->pt = pt;
1319         ptq->queue_nr = queue_nr;
1320         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1321         ptq->pid = -1;
1322         ptq->tid = -1;
1323         ptq->cpu = -1;
1324         ptq->next_tid = -1;
1325
1326         params.get_trace = intel_pt_get_trace;
1327         params.walk_insn = intel_pt_walk_next_insn;
1328         params.lookahead = intel_pt_lookahead;
1329         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1330         params.data = ptq;
1331         params.return_compression = intel_pt_return_compression(pt);
1332         params.branch_enable = intel_pt_branch_enable(pt);
1333         params.ctl = intel_pt_ctl(pt);
1334         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1335         params.mtc_period = intel_pt_mtc_period(pt);
1336         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1337         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1338         params.quick = pt->synth_opts.quick;
1339         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1340         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1341         params.first_timestamp = pt->first_timestamp;
1342         params.max_loops = pt->max_loops;
1343
1344         /* Cannot walk code without TNT, so force 'quick' mode */
1345         if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1346                 params.quick = 1;
1347
1348         if (pt->filts.cnt > 0)
1349                 params.pgd_ip = intel_pt_pgd_ip;
1350
1351         if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1352                 if (pt->synth_opts.period) {
1353                         switch (pt->synth_opts.period_type) {
1354                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1355                                 params.period_type =
1356                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1357                                 params.period = pt->synth_opts.period;
1358                                 break;
1359                         case PERF_ITRACE_PERIOD_TICKS:
1360                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1361                                 params.period = pt->synth_opts.period;
1362                                 break;
1363                         case PERF_ITRACE_PERIOD_NANOSECS:
1364                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1365                                 params.period = intel_pt_ns_to_ticks(pt,
1366                                                         pt->synth_opts.period);
1367                                 break;
1368                         default:
1369                                 break;
1370                         }
1371                 }
1372
1373                 if (!params.period) {
1374                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1375                         params.period = 1;
1376                 }
1377         }
1378
1379         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1380                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1381
1382         ptq->decoder = intel_pt_decoder_new(&params);
1383         if (!ptq->decoder)
1384                 goto out_free;
1385
1386         return ptq;
1387
1388 out_free:
1389         zfree(&ptq->event_buf);
1390         zfree(&ptq->last_branch);
1391         zfree(&ptq->chain);
1392         free(ptq);
1393         return NULL;
1394 }
1395
1396 static void intel_pt_free_queue(void *priv)
1397 {
1398         struct intel_pt_queue *ptq = priv;
1399
1400         if (!ptq)
1401                 return;
1402         thread__zput(ptq->thread);
1403         thread__zput(ptq->guest_thread);
1404         thread__zput(ptq->unknown_guest_thread);
1405         intel_pt_decoder_free(ptq->decoder);
1406         zfree(&ptq->event_buf);
1407         zfree(&ptq->last_branch);
1408         zfree(&ptq->chain);
1409         free(ptq);
1410 }
1411
1412 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1413 {
1414         unsigned int i;
1415
1416         pt->first_timestamp = timestamp;
1417
1418         for (i = 0; i < pt->queues.nr_queues; i++) {
1419                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1420                 struct intel_pt_queue *ptq = queue->priv;
1421
1422                 if (ptq && ptq->decoder)
1423                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1424         }
1425 }
1426
1427 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1428 {
1429         struct machines *machines = &ptq->pt->session->machines;
1430         struct machine *machine;
1431         pid_t machine_pid = ptq->pid;
1432         pid_t tid;
1433         int vcpu;
1434
1435         if (machine_pid <= 0)
1436                 return 0; /* Not a guest machine */
1437
1438         machine = machines__find(machines, machine_pid);
1439         if (!machine)
1440                 return 0; /* Not a guest machine */
1441
1442         if (ptq->guest_machine != machine) {
1443                 ptq->guest_machine = NULL;
1444                 thread__zput(ptq->guest_thread);
1445                 thread__zput(ptq->unknown_guest_thread);
1446
1447                 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1448                 if (!ptq->unknown_guest_thread)
1449                         return -1;
1450                 ptq->guest_machine = machine;
1451         }
1452
1453         vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1454         if (vcpu < 0)
1455                 return -1;
1456
1457         tid = machine__get_current_tid(machine, vcpu);
1458
1459         if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1460                 thread__zput(ptq->guest_thread);
1461
1462         if (!ptq->guest_thread) {
1463                 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1464                 if (!ptq->guest_thread)
1465                         return -1;
1466         }
1467
1468         ptq->guest_machine_pid = machine_pid;
1469         ptq->guest_pid = thread__pid(ptq->guest_thread);
1470         ptq->guest_tid = tid;
1471         ptq->vcpu = vcpu;
1472
1473         return 0;
1474 }
1475
1476 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1477                                      struct auxtrace_queue *queue)
1478 {
1479         struct intel_pt_queue *ptq = queue->priv;
1480
1481         if (queue->tid == -1 || pt->have_sched_switch) {
1482                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1483                 if (ptq->tid == -1)
1484                         ptq->pid = -1;
1485                 thread__zput(ptq->thread);
1486         }
1487
1488         if (!ptq->thread && ptq->tid != -1)
1489                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1490
1491         if (ptq->thread) {
1492                 ptq->pid = thread__pid(ptq->thread);
1493                 if (queue->cpu == -1)
1494                         ptq->cpu = thread__cpu(ptq->thread);
1495         }
1496
1497         if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1498                 ptq->guest_machine_pid = 0;
1499                 ptq->guest_pid = -1;
1500                 ptq->guest_tid = -1;
1501                 ptq->vcpu = -1;
1502         }
1503 }
1504
1505 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1506 {
1507         struct intel_pt *pt = ptq->pt;
1508
1509         ptq->insn_len = 0;
1510         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1511                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1512         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1513                 if (!ptq->state->to_ip)
1514                         ptq->flags = PERF_IP_FLAG_BRANCH |
1515                                      PERF_IP_FLAG_ASYNC |
1516                                      PERF_IP_FLAG_TRACE_END;
1517                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1518                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1519                                      PERF_IP_FLAG_ASYNC |
1520                                      PERF_IP_FLAG_VMEXIT;
1521                 else
1522                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1523                                      PERF_IP_FLAG_ASYNC |
1524                                      PERF_IP_FLAG_INTERRUPT;
1525         } else {
1526                 if (ptq->state->from_ip)
1527                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1528                 else
1529                         ptq->flags = PERF_IP_FLAG_BRANCH |
1530                                      PERF_IP_FLAG_TRACE_BEGIN;
1531                 if (ptq->state->flags & INTEL_PT_IN_TX)
1532                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1533                 ptq->insn_len = ptq->state->insn_len;
1534                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1535         }
1536
1537         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1538                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1539         if (ptq->state->type & INTEL_PT_TRACE_END)
1540                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1541
1542         if (pt->cap_event_trace) {
1543                 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1544                         if (!ptq->state->from_iflag)
1545                                 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1546                         if (ptq->state->from_iflag != ptq->state->to_iflag)
1547                                 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1548                 } else if (!ptq->state->to_iflag) {
1549                         ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1550                 }
1551         }
1552 }
1553
1554 static void intel_pt_setup_time_range(struct intel_pt *pt,
1555                                       struct intel_pt_queue *ptq)
1556 {
1557         if (!pt->range_cnt)
1558                 return;
1559
1560         ptq->sel_timestamp = pt->time_ranges[0].start;
1561         ptq->sel_idx = 0;
1562
1563         if (ptq->sel_timestamp) {
1564                 ptq->sel_start = true;
1565         } else {
1566                 ptq->sel_timestamp = pt->time_ranges[0].end;
1567                 ptq->sel_start = false;
1568         }
1569 }
1570
1571 static int intel_pt_setup_queue(struct intel_pt *pt,
1572                                 struct auxtrace_queue *queue,
1573                                 unsigned int queue_nr)
1574 {
1575         struct intel_pt_queue *ptq = queue->priv;
1576
1577         if (list_empty(&queue->head))
1578                 return 0;
1579
1580         if (!ptq) {
1581                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1582                 if (!ptq)
1583                         return -ENOMEM;
1584                 queue->priv = ptq;
1585
1586                 if (queue->cpu != -1)
1587                         ptq->cpu = queue->cpu;
1588                 ptq->tid = queue->tid;
1589
1590                 ptq->cbr_seen = UINT_MAX;
1591
1592                 if (pt->sampling_mode && !pt->snapshot_mode &&
1593                     pt->timeless_decoding)
1594                         ptq->step_through_buffers = true;
1595
1596                 ptq->sync_switch = pt->sync_switch;
1597
1598                 intel_pt_setup_time_range(pt, ptq);
1599         }
1600
1601         if (!ptq->on_heap &&
1602             (!ptq->sync_switch ||
1603              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1604                 const struct intel_pt_state *state;
1605                 int ret;
1606
1607                 if (pt->timeless_decoding)
1608                         return 0;
1609
1610                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1611                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1612                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1613
1614                 if (ptq->sel_start && ptq->sel_timestamp) {
1615                         ret = intel_pt_fast_forward(ptq->decoder,
1616                                                     ptq->sel_timestamp);
1617                         if (ret)
1618                                 return ret;
1619                 }
1620
1621                 while (1) {
1622                         state = intel_pt_decode(ptq->decoder);
1623                         if (state->err) {
1624                                 if (state->err == INTEL_PT_ERR_NODATA) {
1625                                         intel_pt_log("queue %u has no timestamp\n",
1626                                                      queue_nr);
1627                                         return 0;
1628                                 }
1629                                 continue;
1630                         }
1631                         if (state->timestamp)
1632                                 break;
1633                 }
1634
1635                 ptq->timestamp = state->timestamp;
1636                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1637                              queue_nr, ptq->timestamp);
1638                 ptq->state = state;
1639                 ptq->have_sample = true;
1640                 if (ptq->sel_start && ptq->sel_timestamp &&
1641                     ptq->timestamp < ptq->sel_timestamp)
1642                         ptq->have_sample = false;
1643                 intel_pt_sample_flags(ptq);
1644                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1645                 if (ret)
1646                         return ret;
1647                 ptq->on_heap = true;
1648         }
1649
1650         return 0;
1651 }
1652
1653 static int intel_pt_setup_queues(struct intel_pt *pt)
1654 {
1655         unsigned int i;
1656         int ret;
1657
1658         for (i = 0; i < pt->queues.nr_queues; i++) {
1659                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1660                 if (ret)
1661                         return ret;
1662         }
1663         return 0;
1664 }
1665
1666 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1667 {
1668         return pt->synth_opts.initial_skip &&
1669                pt->num_events++ < pt->synth_opts.initial_skip;
1670 }
1671
1672 /*
1673  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1674  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1675  * from this decoder state.
1676  */
1677 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1678 {
1679         return pt->synth_opts.initial_skip &&
1680                pt->num_events + 4 < pt->synth_opts.initial_skip;
1681 }
1682
1683 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1684                                    union perf_event *event,
1685                                    struct perf_sample *sample)
1686 {
1687         event->sample.header.type = PERF_RECORD_SAMPLE;
1688         event->sample.header.size = sizeof(struct perf_event_header);
1689
1690         sample->pid = ptq->pid;
1691         sample->tid = ptq->tid;
1692
1693         if (ptq->pt->have_guest_sideband) {
1694                 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1695                     (ptq->state->to_ip && ptq->state->to_nr)) {
1696                         sample->pid = ptq->guest_pid;
1697                         sample->tid = ptq->guest_tid;
1698                         sample->machine_pid = ptq->guest_machine_pid;
1699                         sample->vcpu = ptq->vcpu;
1700                 }
1701         }
1702
1703         sample->cpu = ptq->cpu;
1704         sample->insn_len = ptq->insn_len;
1705         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1706 }
1707
1708 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1709                                    struct intel_pt_queue *ptq,
1710                                    union perf_event *event,
1711                                    struct perf_sample *sample)
1712 {
1713         intel_pt_prep_a_sample(ptq, event, sample);
1714
1715         if (!pt->timeless_decoding)
1716                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1717
1718         sample->ip = ptq->state->from_ip;
1719         sample->addr = ptq->state->to_ip;
1720         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1721         sample->period = 1;
1722         sample->flags = ptq->flags;
1723
1724         event->sample.header.misc = sample->cpumode;
1725 }
1726
1727 static int intel_pt_inject_event(union perf_event *event,
1728                                  struct perf_sample *sample, u64 type)
1729 {
1730         event->header.size = perf_event__sample_event_size(sample, type, 0);
1731         return perf_event__synthesize_sample(event, type, 0, sample);
1732 }
1733
1734 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1735                                       union perf_event *event,
1736                                       struct perf_sample *sample, u64 type)
1737 {
1738         if (!pt->synth_opts.inject)
1739                 return 0;
1740
1741         return intel_pt_inject_event(event, sample, type);
1742 }
1743
1744 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1745                                         union perf_event *event,
1746                                         struct perf_sample *sample, u64 type)
1747 {
1748         int ret;
1749
1750         ret = intel_pt_opt_inject(pt, event, sample, type);
1751         if (ret)
1752                 return ret;
1753
1754         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1755         if (ret)
1756                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1757
1758         return ret;
1759 }
1760
1761 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1762 {
1763         struct intel_pt *pt = ptq->pt;
1764         union perf_event *event = ptq->event_buf;
1765         struct perf_sample sample = { .ip = 0, };
1766         struct dummy_branch_stack {
1767                 u64                     nr;
1768                 u64                     hw_idx;
1769                 struct branch_entry     entries;
1770         } dummy_bs;
1771
1772         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1773                 return 0;
1774
1775         if (intel_pt_skip_event(pt))
1776                 return 0;
1777
1778         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1779
1780         sample.id = ptq->pt->branches_id;
1781         sample.stream_id = ptq->pt->branches_id;
1782
1783         /*
1784          * perf report cannot handle events without a branch stack when using
1785          * SORT_MODE__BRANCH so make a dummy one.
1786          */
1787         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1788                 dummy_bs = (struct dummy_branch_stack){
1789                         .nr = 1,
1790                         .hw_idx = -1ULL,
1791                         .entries = {
1792                                 .from = sample.ip,
1793                                 .to = sample.addr,
1794                         },
1795                 };
1796                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1797         }
1798
1799         if (ptq->sample_ipc)
1800                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1801         if (sample.cyc_cnt) {
1802                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1803                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1804                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1805         }
1806
1807         return intel_pt_deliver_synth_event(pt, event, &sample,
1808                                             pt->branches_sample_type);
1809 }
1810
1811 static void intel_pt_prep_sample(struct intel_pt *pt,
1812                                  struct intel_pt_queue *ptq,
1813                                  union perf_event *event,
1814                                  struct perf_sample *sample)
1815 {
1816         intel_pt_prep_b_sample(pt, ptq, event, sample);
1817
1818         if (pt->synth_opts.callchain) {
1819                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1820                                      pt->synth_opts.callchain_sz + 1,
1821                                      sample->ip, pt->kernel_start);
1822                 sample->callchain = ptq->chain;
1823         }
1824
1825         if (pt->synth_opts.last_branch) {
1826                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1827                                         pt->br_stack_sz);
1828                 sample->branch_stack = ptq->last_branch;
1829         }
1830 }
1831
1832 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1833 {
1834         struct intel_pt *pt = ptq->pt;
1835         union perf_event *event = ptq->event_buf;
1836         struct perf_sample sample = { .ip = 0, };
1837
1838         if (intel_pt_skip_event(pt))
1839                 return 0;
1840
1841         intel_pt_prep_sample(pt, ptq, event, &sample);
1842
1843         sample.id = ptq->pt->instructions_id;
1844         sample.stream_id = ptq->pt->instructions_id;
1845         if (pt->synth_opts.quick)
1846                 sample.period = 1;
1847         else
1848                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1849
1850         if (ptq->sample_ipc)
1851                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1852         if (sample.cyc_cnt) {
1853                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1854                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1855                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1856         }
1857
1858         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1859
1860         return intel_pt_deliver_synth_event(pt, event, &sample,
1861                                             pt->instructions_sample_type);
1862 }
1863
1864 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1865 {
1866         struct intel_pt *pt = ptq->pt;
1867         union perf_event *event = ptq->event_buf;
1868         struct perf_sample sample = { .ip = 0, };
1869         u64 period = 0;
1870
1871         if (ptq->sample_ipc)
1872                 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1873
1874         if (!period || intel_pt_skip_event(pt))
1875                 return 0;
1876
1877         intel_pt_prep_sample(pt, ptq, event, &sample);
1878
1879         sample.id = ptq->pt->cycles_id;
1880         sample.stream_id = ptq->pt->cycles_id;
1881         sample.period = period;
1882
1883         sample.cyc_cnt = period;
1884         sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1885         ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1886         ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1887
1888         return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1889 }
1890
1891 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1892 {
1893         struct intel_pt *pt = ptq->pt;
1894         union perf_event *event = ptq->event_buf;
1895         struct perf_sample sample = { .ip = 0, };
1896
1897         if (intel_pt_skip_event(pt))
1898                 return 0;
1899
1900         intel_pt_prep_sample(pt, ptq, event, &sample);
1901
1902         sample.id = ptq->pt->transactions_id;
1903         sample.stream_id = ptq->pt->transactions_id;
1904
1905         return intel_pt_deliver_synth_event(pt, event, &sample,
1906                                             pt->transactions_sample_type);
1907 }
1908
1909 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1910                                    struct intel_pt_queue *ptq,
1911                                    union perf_event *event,
1912                                    struct perf_sample *sample)
1913 {
1914         intel_pt_prep_sample(pt, ptq, event, sample);
1915
1916         /*
1917          * Zero IP is used to mean "trace start" but that is not the case for
1918          * power or PTWRITE events with no IP, so clear the flags.
1919          */
1920         if (!sample->ip)
1921                 sample->flags = 0;
1922 }
1923
1924 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1925 {
1926         struct intel_pt *pt = ptq->pt;
1927         union perf_event *event = ptq->event_buf;
1928         struct perf_sample sample = { .ip = 0, };
1929         struct perf_synth_intel_ptwrite raw;
1930
1931         if (intel_pt_skip_event(pt))
1932                 return 0;
1933
1934         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1935
1936         sample.id = ptq->pt->ptwrites_id;
1937         sample.stream_id = ptq->pt->ptwrites_id;
1938
1939         raw.flags = 0;
1940         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1941         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1942
1943         sample.raw_size = perf_synth__raw_size(raw);
1944         sample.raw_data = perf_synth__raw_data(&raw);
1945
1946         return intel_pt_deliver_synth_event(pt, event, &sample,
1947                                             pt->ptwrites_sample_type);
1948 }
1949
1950 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1951 {
1952         struct intel_pt *pt = ptq->pt;
1953         union perf_event *event = ptq->event_buf;
1954         struct perf_sample sample = { .ip = 0, };
1955         struct perf_synth_intel_cbr raw;
1956         u32 flags;
1957
1958         if (intel_pt_skip_cbr_event(pt))
1959                 return 0;
1960
1961         ptq->cbr_seen = ptq->state->cbr;
1962
1963         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1964
1965         sample.id = ptq->pt->cbr_id;
1966         sample.stream_id = ptq->pt->cbr_id;
1967
1968         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1969         raw.flags = cpu_to_le32(flags);
1970         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1971         raw.reserved3 = 0;
1972
1973         sample.raw_size = perf_synth__raw_size(raw);
1974         sample.raw_data = perf_synth__raw_data(&raw);
1975
1976         return intel_pt_deliver_synth_event(pt, event, &sample,
1977                                             pt->pwr_events_sample_type);
1978 }
1979
1980 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1981 {
1982         struct intel_pt *pt = ptq->pt;
1983         union perf_event *event = ptq->event_buf;
1984         struct perf_sample sample = { .ip = 0, };
1985         struct perf_synth_intel_psb raw;
1986
1987         if (intel_pt_skip_event(pt))
1988                 return 0;
1989
1990         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1991
1992         sample.id = ptq->pt->psb_id;
1993         sample.stream_id = ptq->pt->psb_id;
1994         sample.flags = 0;
1995
1996         raw.reserved = 0;
1997         raw.offset = ptq->state->psb_offset;
1998
1999         sample.raw_size = perf_synth__raw_size(raw);
2000         sample.raw_data = perf_synth__raw_data(&raw);
2001
2002         return intel_pt_deliver_synth_event(pt, event, &sample,
2003                                             pt->pwr_events_sample_type);
2004 }
2005
2006 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2007 {
2008         struct intel_pt *pt = ptq->pt;
2009         union perf_event *event = ptq->event_buf;
2010         struct perf_sample sample = { .ip = 0, };
2011         struct perf_synth_intel_mwait raw;
2012
2013         if (intel_pt_skip_event(pt))
2014                 return 0;
2015
2016         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2017
2018         sample.id = ptq->pt->mwait_id;
2019         sample.stream_id = ptq->pt->mwait_id;
2020
2021         raw.reserved = 0;
2022         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2023
2024         sample.raw_size = perf_synth__raw_size(raw);
2025         sample.raw_data = perf_synth__raw_data(&raw);
2026
2027         return intel_pt_deliver_synth_event(pt, event, &sample,
2028                                             pt->pwr_events_sample_type);
2029 }
2030
2031 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2032 {
2033         struct intel_pt *pt = ptq->pt;
2034         union perf_event *event = ptq->event_buf;
2035         struct perf_sample sample = { .ip = 0, };
2036         struct perf_synth_intel_pwre raw;
2037
2038         if (intel_pt_skip_event(pt))
2039                 return 0;
2040
2041         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2042
2043         sample.id = ptq->pt->pwre_id;
2044         sample.stream_id = ptq->pt->pwre_id;
2045
2046         raw.reserved = 0;
2047         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2048
2049         sample.raw_size = perf_synth__raw_size(raw);
2050         sample.raw_data = perf_synth__raw_data(&raw);
2051
2052         return intel_pt_deliver_synth_event(pt, event, &sample,
2053                                             pt->pwr_events_sample_type);
2054 }
2055
2056 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2057 {
2058         struct intel_pt *pt = ptq->pt;
2059         union perf_event *event = ptq->event_buf;
2060         struct perf_sample sample = { .ip = 0, };
2061         struct perf_synth_intel_exstop raw;
2062
2063         if (intel_pt_skip_event(pt))
2064                 return 0;
2065
2066         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2067
2068         sample.id = ptq->pt->exstop_id;
2069         sample.stream_id = ptq->pt->exstop_id;
2070
2071         raw.flags = 0;
2072         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2073
2074         sample.raw_size = perf_synth__raw_size(raw);
2075         sample.raw_data = perf_synth__raw_data(&raw);
2076
2077         return intel_pt_deliver_synth_event(pt, event, &sample,
2078                                             pt->pwr_events_sample_type);
2079 }
2080
2081 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2082 {
2083         struct intel_pt *pt = ptq->pt;
2084         union perf_event *event = ptq->event_buf;
2085         struct perf_sample sample = { .ip = 0, };
2086         struct perf_synth_intel_pwrx raw;
2087
2088         if (intel_pt_skip_event(pt))
2089                 return 0;
2090
2091         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2092
2093         sample.id = ptq->pt->pwrx_id;
2094         sample.stream_id = ptq->pt->pwrx_id;
2095
2096         raw.reserved = 0;
2097         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2098
2099         sample.raw_size = perf_synth__raw_size(raw);
2100         sample.raw_data = perf_synth__raw_data(&raw);
2101
2102         return intel_pt_deliver_synth_event(pt, event, &sample,
2103                                             pt->pwr_events_sample_type);
2104 }
2105
2106 /*
2107  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2108  * intel_pt_add_gp_regs().
2109  */
2110 static const int pebs_gp_regs[] = {
2111         [PERF_REG_X86_FLAGS]    = 1,
2112         [PERF_REG_X86_IP]       = 2,
2113         [PERF_REG_X86_AX]       = 3,
2114         [PERF_REG_X86_CX]       = 4,
2115         [PERF_REG_X86_DX]       = 5,
2116         [PERF_REG_X86_BX]       = 6,
2117         [PERF_REG_X86_SP]       = 7,
2118         [PERF_REG_X86_BP]       = 8,
2119         [PERF_REG_X86_SI]       = 9,
2120         [PERF_REG_X86_DI]       = 10,
2121         [PERF_REG_X86_R8]       = 11,
2122         [PERF_REG_X86_R9]       = 12,
2123         [PERF_REG_X86_R10]      = 13,
2124         [PERF_REG_X86_R11]      = 14,
2125         [PERF_REG_X86_R12]      = 15,
2126         [PERF_REG_X86_R13]      = 16,
2127         [PERF_REG_X86_R14]      = 17,
2128         [PERF_REG_X86_R15]      = 18,
2129 };
2130
2131 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2132                                  const struct intel_pt_blk_items *items,
2133                                  u64 regs_mask)
2134 {
2135         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2136         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2137         u32 bit;
2138         int i;
2139
2140         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2141                 /* Get the PEBS gp_regs array index */
2142                 int n = pebs_gp_regs[i] - 1;
2143
2144                 if (n < 0)
2145                         continue;
2146                 /*
2147                  * Add only registers that were requested (i.e. 'regs_mask') and
2148                  * that were provided (i.e. 'mask'), and update the resulting
2149                  * mask (i.e. 'intr_regs->mask') accordingly.
2150                  */
2151                 if (mask & 1 << n && regs_mask & bit) {
2152                         intr_regs->mask |= bit;
2153                         *pos++ = gp_regs[n];
2154                 }
2155         }
2156
2157         return pos;
2158 }
2159
2160 #ifndef PERF_REG_X86_XMM0
2161 #define PERF_REG_X86_XMM0 32
2162 #endif
2163
2164 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2165                              const struct intel_pt_blk_items *items,
2166                              u64 regs_mask)
2167 {
2168         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2169         const u64 *xmm = items->xmm;
2170
2171         /*
2172          * If there are any XMM registers, then there should be all of them.
2173          * Nevertheless, follow the logic to add only registers that were
2174          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2175          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2176          */
2177         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2178
2179         for (; mask; mask >>= 1, xmm++) {
2180                 if (mask & 1)
2181                         *pos++ = *xmm;
2182         }
2183 }
2184
2185 #define LBR_INFO_MISPRED        (1ULL << 63)
2186 #define LBR_INFO_IN_TX          (1ULL << 62)
2187 #define LBR_INFO_ABORT          (1ULL << 61)
2188 #define LBR_INFO_CYCLES         0xffff
2189
2190 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2191 static u64 intel_pt_lbr_flags(u64 info)
2192 {
2193         union {
2194                 struct branch_flags flags;
2195                 u64 result;
2196         } u;
2197
2198         u.result          = 0;
2199         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
2200         u.flags.predicted = !(info & LBR_INFO_MISPRED);
2201         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
2202         u.flags.abort     = !!(info & LBR_INFO_ABORT);
2203         u.flags.cycles    = info & LBR_INFO_CYCLES;
2204
2205         return u.result;
2206 }
2207
2208 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2209                               const struct intel_pt_blk_items *items)
2210 {
2211         u64 *to;
2212         int i;
2213
2214         br_stack->nr = 0;
2215
2216         to = &br_stack->entries[0].from;
2217
2218         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2219                 u32 mask = items->mask[i];
2220                 const u64 *from = items->val[i];
2221
2222                 for (; mask; mask >>= 3, from += 3) {
2223                         if ((mask & 7) == 7) {
2224                                 *to++ = from[0];
2225                                 *to++ = from[1];
2226                                 *to++ = intel_pt_lbr_flags(from[2]);
2227                                 br_stack->nr += 1;
2228                         }
2229                 }
2230         }
2231 }
2232
2233 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2234 {
2235         const struct intel_pt_blk_items *items = &ptq->state->items;
2236         struct perf_sample sample = { .ip = 0, };
2237         union perf_event *event = ptq->event_buf;
2238         struct intel_pt *pt = ptq->pt;
2239         u64 sample_type = evsel->core.attr.sample_type;
2240         u8 cpumode;
2241         u64 regs[8 * sizeof(sample.intr_regs.mask)];
2242
2243         if (intel_pt_skip_event(pt))
2244                 return 0;
2245
2246         intel_pt_prep_a_sample(ptq, event, &sample);
2247
2248         sample.id = id;
2249         sample.stream_id = id;
2250
2251         if (!evsel->core.attr.freq)
2252                 sample.period = evsel->core.attr.sample_period;
2253
2254         /* No support for non-zero CS base */
2255         if (items->has_ip)
2256                 sample.ip = items->ip;
2257         else if (items->has_rip)
2258                 sample.ip = items->rip;
2259         else
2260                 sample.ip = ptq->state->from_ip;
2261
2262         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2263
2264         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2265
2266         sample.cpumode = cpumode;
2267
2268         if (sample_type & PERF_SAMPLE_TIME) {
2269                 u64 timestamp = 0;
2270
2271                 if (items->has_timestamp)
2272                         timestamp = items->timestamp;
2273                 else if (!pt->timeless_decoding)
2274                         timestamp = ptq->timestamp;
2275                 if (timestamp)
2276                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2277         }
2278
2279         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2280             pt->synth_opts.callchain) {
2281                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2282                                      pt->synth_opts.callchain_sz, sample.ip,
2283                                      pt->kernel_start);
2284                 sample.callchain = ptq->chain;
2285         }
2286
2287         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2288             (items->mask[INTEL_PT_GP_REGS_POS] ||
2289              items->mask[INTEL_PT_XMM_POS])) {
2290                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2291                 u64 *pos;
2292
2293                 sample.intr_regs.abi = items->is_32_bit ?
2294                                        PERF_SAMPLE_REGS_ABI_32 :
2295                                        PERF_SAMPLE_REGS_ABI_64;
2296                 sample.intr_regs.regs = regs;
2297
2298                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2299
2300                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2301         }
2302
2303         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2304                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2305                     items->mask[INTEL_PT_LBR_1_POS] ||
2306                     items->mask[INTEL_PT_LBR_2_POS]) {
2307                         intel_pt_add_lbrs(ptq->last_branch, items);
2308                 } else if (pt->synth_opts.last_branch) {
2309                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2310                                                 ptq->last_branch,
2311                                                 pt->br_stack_sz);
2312                 } else {
2313                         ptq->last_branch->nr = 0;
2314                 }
2315                 sample.branch_stack = ptq->last_branch;
2316         }
2317
2318         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2319                 sample.addr = items->mem_access_address;
2320
2321         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2322                 /*
2323                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2324                  * intel_hsw_weight().
2325                  */
2326                 if (items->has_mem_access_latency) {
2327                         u64 weight = items->mem_access_latency >> 32;
2328
2329                         /*
2330                          * Starts from SPR, the mem access latency field
2331                          * contains both cache latency [47:32] and instruction
2332                          * latency [15:0]. The cache latency is the same as the
2333                          * mem access latency on previous platforms.
2334                          *
2335                          * In practice, no memory access could last than 4G
2336                          * cycles. Use latency >> 32 to distinguish the
2337                          * different format of the mem access latency field.
2338                          */
2339                         if (weight > 0) {
2340                                 sample.weight = weight & 0xffff;
2341                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2342                         } else
2343                                 sample.weight = items->mem_access_latency;
2344                 }
2345                 if (!sample.weight && items->has_tsx_aux_info) {
2346                         /* Cycles last block */
2347                         sample.weight = (u32)items->tsx_aux_info;
2348                 }
2349         }
2350
2351         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2352                 u64 ax = items->has_rax ? items->rax : 0;
2353                 /* Refer kernel's intel_hsw_transaction() */
2354                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2355
2356                 /* For RTM XABORTs also log the abort code from AX */
2357                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2358                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2359                 sample.transaction = txn;
2360         }
2361
2362         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2363 }
2364
2365 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2366 {
2367         struct intel_pt *pt = ptq->pt;
2368         struct evsel *evsel = pt->pebs_evsel;
2369         u64 id = evsel->core.id[0];
2370
2371         return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2372 }
2373
2374 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2375 {
2376         const struct intel_pt_blk_items *items = &ptq->state->items;
2377         struct intel_pt_pebs_event *pe;
2378         struct intel_pt *pt = ptq->pt;
2379         int err = -EINVAL;
2380         int hw_id;
2381
2382         if (!items->has_applicable_counters || !items->applicable_counters) {
2383                 if (!pt->single_pebs)
2384                         pr_err("PEBS-via-PT record with no applicable_counters\n");
2385                 return intel_pt_synth_single_pebs_sample(ptq);
2386         }
2387
2388         for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2389                 pe = &ptq->pebs[hw_id];
2390                 if (!pe->evsel) {
2391                         if (!pt->single_pebs)
2392                                 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2393                                        hw_id);
2394                         return intel_pt_synth_single_pebs_sample(ptq);
2395                 }
2396                 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2397                 if (err)
2398                         return err;
2399         }
2400
2401         return err;
2402 }
2403
2404 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2405 {
2406         struct intel_pt *pt = ptq->pt;
2407         union perf_event *event = ptq->event_buf;
2408         struct perf_sample sample = { .ip = 0, };
2409         struct {
2410                 struct perf_synth_intel_evt cfe;
2411                 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2412         } raw;
2413         int i;
2414
2415         if (intel_pt_skip_event(pt))
2416                 return 0;
2417
2418         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2419
2420         sample.id        = ptq->pt->evt_id;
2421         sample.stream_id = ptq->pt->evt_id;
2422
2423         raw.cfe.type     = ptq->state->cfe_type;
2424         raw.cfe.reserved = 0;
2425         raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2426         raw.cfe.vector   = ptq->state->cfe_vector;
2427         raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2428
2429         for (i = 0; i < ptq->state->evd_cnt; i++) {
2430                 raw.evd[i].et       = 0;
2431                 raw.evd[i].evd_type = ptq->state->evd[i].type;
2432                 raw.evd[i].payload  = ptq->state->evd[i].payload;
2433         }
2434
2435         sample.raw_size = perf_synth__raw_size(raw) +
2436                           ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2437         sample.raw_data = perf_synth__raw_data(&raw);
2438
2439         return intel_pt_deliver_synth_event(pt, event, &sample,
2440                                             pt->evt_sample_type);
2441 }
2442
2443 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2444 {
2445         struct intel_pt *pt = ptq->pt;
2446         union perf_event *event = ptq->event_buf;
2447         struct perf_sample sample = { .ip = 0, };
2448         struct perf_synth_intel_iflag_chg raw;
2449
2450         if (intel_pt_skip_event(pt))
2451                 return 0;
2452
2453         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2454
2455         sample.id = ptq->pt->iflag_chg_id;
2456         sample.stream_id = ptq->pt->iflag_chg_id;
2457
2458         raw.flags = 0;
2459         raw.iflag = ptq->state->to_iflag;
2460
2461         if (ptq->state->type & INTEL_PT_BRANCH) {
2462                 raw.via_branch = 1;
2463                 raw.branch_ip = ptq->state->to_ip;
2464         } else {
2465                 sample.addr = 0;
2466         }
2467         sample.flags = ptq->flags;
2468
2469         sample.raw_size = perf_synth__raw_size(raw);
2470         sample.raw_data = perf_synth__raw_data(&raw);
2471
2472         return intel_pt_deliver_synth_event(pt, event, &sample,
2473                                             pt->iflag_chg_sample_type);
2474 }
2475
2476 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2477                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2478                                 pid_t machine_pid, int vcpu)
2479 {
2480         bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2481         bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2482         union perf_event event;
2483         char msg[MAX_AUXTRACE_ERROR_MSG];
2484         int err;
2485
2486         if (pt->synth_opts.error_minus_flags) {
2487                 if (code == INTEL_PT_ERR_OVR &&
2488                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2489                         return 0;
2490                 if (code == INTEL_PT_ERR_LOST &&
2491                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2492                         return 0;
2493         }
2494
2495         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2496
2497         auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2498                                    code, cpu, pid, tid, ip, msg, timestamp,
2499                                    machine_pid, vcpu);
2500
2501         if (intel_pt_enable_logging && !log_on_stdout) {
2502                 FILE *fp = intel_pt_log_fp();
2503
2504                 if (fp)
2505                         perf_event__fprintf_auxtrace_error(&event, fp);
2506         }
2507
2508         if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2509                 intel_pt_log_dump_buf();
2510
2511         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2512         if (err)
2513                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2514                        err);
2515
2516         return err;
2517 }
2518
2519 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2520                                  const struct intel_pt_state *state)
2521 {
2522         struct intel_pt *pt = ptq->pt;
2523         u64 tm = ptq->timestamp;
2524         pid_t machine_pid = 0;
2525         pid_t pid = ptq->pid;
2526         pid_t tid = ptq->tid;
2527         int vcpu = -1;
2528
2529         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2530
2531         if (pt->have_guest_sideband && state->from_nr) {
2532                 machine_pid = ptq->guest_machine_pid;
2533                 vcpu = ptq->vcpu;
2534                 pid = ptq->guest_pid;
2535                 tid = ptq->guest_tid;
2536         }
2537
2538         return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2539                                     state->from_ip, tm, machine_pid, vcpu);
2540 }
2541
2542 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2543 {
2544         struct auxtrace_queue *queue;
2545         pid_t tid = ptq->next_tid;
2546         int err;
2547
2548         if (tid == -1)
2549                 return 0;
2550
2551         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2552
2553         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2554
2555         queue = &pt->queues.queue_array[ptq->queue_nr];
2556         intel_pt_set_pid_tid_cpu(pt, queue);
2557
2558         ptq->next_tid = -1;
2559
2560         return err;
2561 }
2562
2563 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2564 {
2565         struct intel_pt *pt = ptq->pt;
2566
2567         return ip == pt->switch_ip &&
2568                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2569                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2570                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2571 }
2572
2573 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2574                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2575
2576 static int intel_pt_sample(struct intel_pt_queue *ptq)
2577 {
2578         const struct intel_pt_state *state = ptq->state;
2579         struct intel_pt *pt = ptq->pt;
2580         int err;
2581
2582         if (!ptq->have_sample)
2583                 return 0;
2584
2585         ptq->have_sample = false;
2586
2587         if (pt->synth_opts.approx_ipc) {
2588                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2589                 ptq->ipc_cyc_cnt = ptq->state->cycles;
2590                 ptq->sample_ipc = true;
2591         } else {
2592                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2593                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2594                 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2595         }
2596
2597         /* Ensure guest code maps are set up */
2598         if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2599                 intel_pt_get_guest(ptq);
2600
2601         /*
2602          * Do PEBS first to allow for the possibility that the PEBS timestamp
2603          * precedes the current timestamp.
2604          */
2605         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2606                 err = intel_pt_synth_pebs_sample(ptq);
2607                 if (err)
2608                         return err;
2609         }
2610
2611         if (pt->synth_opts.intr_events) {
2612                 if (state->type & INTEL_PT_EVT) {
2613                         err = intel_pt_synth_events_sample(ptq);
2614                         if (err)
2615                                 return err;
2616                 }
2617                 if (state->type & INTEL_PT_IFLAG_CHG) {
2618                         err = intel_pt_synth_iflag_chg_sample(ptq);
2619                         if (err)
2620                                 return err;
2621                 }
2622         }
2623
2624         if (pt->sample_pwr_events) {
2625                 if (state->type & INTEL_PT_PSB_EVT) {
2626                         err = intel_pt_synth_psb_sample(ptq);
2627                         if (err)
2628                                 return err;
2629                 }
2630                 if (ptq->state->cbr != ptq->cbr_seen) {
2631                         err = intel_pt_synth_cbr_sample(ptq);
2632                         if (err)
2633                                 return err;
2634                 }
2635                 if (state->type & INTEL_PT_PWR_EVT) {
2636                         if (state->type & INTEL_PT_MWAIT_OP) {
2637                                 err = intel_pt_synth_mwait_sample(ptq);
2638                                 if (err)
2639                                         return err;
2640                         }
2641                         if (state->type & INTEL_PT_PWR_ENTRY) {
2642                                 err = intel_pt_synth_pwre_sample(ptq);
2643                                 if (err)
2644                                         return err;
2645                         }
2646                         if (state->type & INTEL_PT_EX_STOP) {
2647                                 err = intel_pt_synth_exstop_sample(ptq);
2648                                 if (err)
2649                                         return err;
2650                         }
2651                         if (state->type & INTEL_PT_PWR_EXIT) {
2652                                 err = intel_pt_synth_pwrx_sample(ptq);
2653                                 if (err)
2654                                         return err;
2655                         }
2656                 }
2657         }
2658
2659         if (state->type & INTEL_PT_INSTRUCTION) {
2660                 if (pt->sample_instructions) {
2661                         err = intel_pt_synth_instruction_sample(ptq);
2662                         if (err)
2663                                 return err;
2664                 }
2665                 if (pt->sample_cycles) {
2666                         err = intel_pt_synth_cycle_sample(ptq);
2667                         if (err)
2668                                 return err;
2669                 }
2670         }
2671
2672         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2673                 err = intel_pt_synth_transaction_sample(ptq);
2674                 if (err)
2675                         return err;
2676         }
2677
2678         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2679                 err = intel_pt_synth_ptwrite_sample(ptq);
2680                 if (err)
2681                         return err;
2682         }
2683
2684         if (!(state->type & INTEL_PT_BRANCH))
2685                 return 0;
2686
2687         if (pt->use_thread_stack) {
2688                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2689                                     state->from_ip, state->to_ip, ptq->insn_len,
2690                                     state->trace_nr, pt->callstack,
2691                                     pt->br_stack_sz_plus,
2692                                     pt->mispred_all);
2693         } else {
2694                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2695         }
2696
2697         if (pt->sample_branches) {
2698                 if (state->from_nr != state->to_nr &&
2699                     state->from_ip && state->to_ip) {
2700                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2701                         u64 to_ip = st->to_ip;
2702                         u64 from_ip = st->from_ip;
2703
2704                         /*
2705                          * perf cannot handle having different machines for ip
2706                          * and addr, so create 2 branches.
2707                          */
2708                         st->to_ip = 0;
2709                         err = intel_pt_synth_branch_sample(ptq);
2710                         if (err)
2711                                 return err;
2712                         st->from_ip = 0;
2713                         st->to_ip = to_ip;
2714                         err = intel_pt_synth_branch_sample(ptq);
2715                         st->from_ip = from_ip;
2716                 } else {
2717                         err = intel_pt_synth_branch_sample(ptq);
2718                 }
2719                 if (err)
2720                         return err;
2721         }
2722
2723         if (!ptq->sync_switch)
2724                 return 0;
2725
2726         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2727                 switch (ptq->switch_state) {
2728                 case INTEL_PT_SS_NOT_TRACING:
2729                 case INTEL_PT_SS_UNKNOWN:
2730                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2731                         err = intel_pt_next_tid(pt, ptq);
2732                         if (err)
2733                                 return err;
2734                         ptq->switch_state = INTEL_PT_SS_TRACING;
2735                         break;
2736                 default:
2737                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2738                         return 1;
2739                 }
2740         } else if (!state->to_ip) {
2741                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2742         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2743                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2744         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2745                    state->to_ip == pt->ptss_ip &&
2746                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2747                 ptq->switch_state = INTEL_PT_SS_TRACING;
2748         }
2749
2750         return 0;
2751 }
2752
2753 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2754 {
2755         struct machine *machine = pt->machine;
2756         struct map *map;
2757         struct symbol *sym, *start;
2758         u64 ip, switch_ip = 0;
2759         const char *ptss;
2760
2761         if (ptss_ip)
2762                 *ptss_ip = 0;
2763
2764         map = machine__kernel_map(machine);
2765         if (!map)
2766                 return 0;
2767
2768         if (map__load(map))
2769                 return 0;
2770
2771         start = dso__first_symbol(map__dso(map));
2772
2773         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2774                 if (sym->binding == STB_GLOBAL &&
2775                     !strcmp(sym->name, "__switch_to")) {
2776                         ip = map__unmap_ip(map, sym->start);
2777                         if (ip >= map__start(map) && ip < map__end(map)) {
2778                                 switch_ip = ip;
2779                                 break;
2780                         }
2781                 }
2782         }
2783
2784         if (!switch_ip || !ptss_ip)
2785                 return 0;
2786
2787         if (pt->have_sched_switch == 1)
2788                 ptss = "perf_trace_sched_switch";
2789         else
2790                 ptss = "__perf_event_task_sched_out";
2791
2792         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2793                 if (!strcmp(sym->name, ptss)) {
2794                         ip = map__unmap_ip(map, sym->start);
2795                         if (ip >= map__start(map) && ip < map__end(map)) {
2796                                 *ptss_ip = ip;
2797                                 break;
2798                         }
2799                 }
2800         }
2801
2802         return switch_ip;
2803 }
2804
2805 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2806 {
2807         unsigned int i;
2808
2809         if (pt->sync_switch_not_supported)
2810                 return;
2811
2812         pt->sync_switch = true;
2813
2814         for (i = 0; i < pt->queues.nr_queues; i++) {
2815                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2816                 struct intel_pt_queue *ptq = queue->priv;
2817
2818                 if (ptq)
2819                         ptq->sync_switch = true;
2820         }
2821 }
2822
2823 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2824 {
2825         unsigned int i;
2826
2827         pt->sync_switch = false;
2828
2829         for (i = 0; i < pt->queues.nr_queues; i++) {
2830                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2831                 struct intel_pt_queue *ptq = queue->priv;
2832
2833                 if (ptq) {
2834                         ptq->sync_switch = false;
2835                         intel_pt_next_tid(pt, ptq);
2836                 }
2837         }
2838 }
2839
2840 /*
2841  * To filter against time ranges, it is only necessary to look at the next start
2842  * or end time.
2843  */
2844 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2845 {
2846         struct intel_pt *pt = ptq->pt;
2847
2848         if (ptq->sel_start) {
2849                 /* Next time is an end time */
2850                 ptq->sel_start = false;
2851                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2852                 return true;
2853         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2854                 /* Next time is a start time */
2855                 ptq->sel_start = true;
2856                 ptq->sel_idx += 1;
2857                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2858                 return true;
2859         }
2860
2861         /* No next time */
2862         return false;
2863 }
2864
2865 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2866 {
2867         int err;
2868
2869         while (1) {
2870                 if (ptq->sel_start) {
2871                         if (ptq->timestamp >= ptq->sel_timestamp) {
2872                                 /* After start time, so consider next time */
2873                                 intel_pt_next_time(ptq);
2874                                 if (!ptq->sel_timestamp) {
2875                                         /* No end time */
2876                                         return 0;
2877                                 }
2878                                 /* Check against end time */
2879                                 continue;
2880                         }
2881                         /* Before start time, so fast forward */
2882                         ptq->have_sample = false;
2883                         if (ptq->sel_timestamp > *ff_timestamp) {
2884                                 if (ptq->sync_switch) {
2885                                         intel_pt_next_tid(ptq->pt, ptq);
2886                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2887                                 }
2888                                 *ff_timestamp = ptq->sel_timestamp;
2889                                 err = intel_pt_fast_forward(ptq->decoder,
2890                                                             ptq->sel_timestamp);
2891                                 if (err)
2892                                         return err;
2893                         }
2894                         return 0;
2895                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2896                         /* After end time, so consider next time */
2897                         if (!intel_pt_next_time(ptq)) {
2898                                 /* No next time range, so stop decoding */
2899                                 ptq->have_sample = false;
2900                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2901                                 return 1;
2902                         }
2903                         /* Check against next start time */
2904                         continue;
2905                 } else {
2906                         /* Before end time */
2907                         return 0;
2908                 }
2909         }
2910 }
2911
2912 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2913 {
2914         const struct intel_pt_state *state = ptq->state;
2915         struct intel_pt *pt = ptq->pt;
2916         u64 ff_timestamp = 0;
2917         int err;
2918
2919         if (!pt->kernel_start) {
2920                 pt->kernel_start = machine__kernel_start(pt->machine);
2921                 if (pt->per_cpu_mmaps &&
2922                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2923                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2924                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2925                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2926                         if (pt->switch_ip) {
2927                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2928                                              pt->switch_ip, pt->ptss_ip);
2929                                 intel_pt_enable_sync_switch(pt);
2930                         }
2931                 }
2932         }
2933
2934         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2935                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2936         while (1) {
2937                 err = intel_pt_sample(ptq);
2938                 if (err)
2939                         return err;
2940
2941                 state = intel_pt_decode(ptq->decoder);
2942                 if (state->err) {
2943                         if (state->err == INTEL_PT_ERR_NODATA)
2944                                 return 1;
2945                         if (ptq->sync_switch &&
2946                             state->from_ip >= pt->kernel_start) {
2947                                 ptq->sync_switch = false;
2948                                 intel_pt_next_tid(pt, ptq);
2949                         }
2950                         ptq->timestamp = state->est_timestamp;
2951                         if (pt->synth_opts.errors) {
2952                                 err = intel_ptq_synth_error(ptq, state);
2953                                 if (err)
2954                                         return err;
2955                         }
2956                         continue;
2957                 }
2958
2959                 ptq->state = state;
2960                 ptq->have_sample = true;
2961                 intel_pt_sample_flags(ptq);
2962
2963                 /* Use estimated TSC upon return to user space */
2964                 if (pt->est_tsc &&
2965                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2966                     state->to_ip && state->to_ip < pt->kernel_start) {
2967                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2968                                      state->timestamp, state->est_timestamp);
2969                         ptq->timestamp = state->est_timestamp;
2970                 /* Use estimated TSC in unknown switch state */
2971                 } else if (ptq->sync_switch &&
2972                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2973                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2974                            ptq->next_tid == -1) {
2975                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2976                                      state->timestamp, state->est_timestamp);
2977                         ptq->timestamp = state->est_timestamp;
2978                 } else if (state->timestamp > ptq->timestamp) {
2979                         ptq->timestamp = state->timestamp;
2980                 }
2981
2982                 if (ptq->sel_timestamp) {
2983                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2984                         if (err)
2985                                 return err;
2986                 }
2987
2988                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2989                         *timestamp = ptq->timestamp;
2990                         return 0;
2991                 }
2992         }
2993         return 0;
2994 }
2995
2996 static inline int intel_pt_update_queues(struct intel_pt *pt)
2997 {
2998         if (pt->queues.new_data) {
2999                 pt->queues.new_data = false;
3000                 return intel_pt_setup_queues(pt);
3001         }
3002         return 0;
3003 }
3004
3005 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3006 {
3007         unsigned int queue_nr;
3008         u64 ts;
3009         int ret;
3010
3011         while (1) {
3012                 struct auxtrace_queue *queue;
3013                 struct intel_pt_queue *ptq;
3014
3015                 if (!pt->heap.heap_cnt)
3016                         return 0;
3017
3018                 if (pt->heap.heap_array[0].ordinal >= timestamp)
3019                         return 0;
3020
3021                 queue_nr = pt->heap.heap_array[0].queue_nr;
3022                 queue = &pt->queues.queue_array[queue_nr];
3023                 ptq = queue->priv;
3024
3025                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3026                              queue_nr, pt->heap.heap_array[0].ordinal,
3027                              timestamp);
3028
3029                 auxtrace_heap__pop(&pt->heap);
3030
3031                 if (pt->heap.heap_cnt) {
3032                         ts = pt->heap.heap_array[0].ordinal + 1;
3033                         if (ts > timestamp)
3034                                 ts = timestamp;
3035                 } else {
3036                         ts = timestamp;
3037                 }
3038
3039                 intel_pt_set_pid_tid_cpu(pt, queue);
3040
3041                 ret = intel_pt_run_decoder(ptq, &ts);
3042
3043                 if (ret < 0) {
3044                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
3045                         return ret;
3046                 }
3047
3048                 if (!ret) {
3049                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3050                         if (ret < 0)
3051                                 return ret;
3052                 } else {
3053                         ptq->on_heap = false;
3054                 }
3055         }
3056
3057         return 0;
3058 }
3059
3060 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3061                                             u64 time_)
3062 {
3063         struct auxtrace_queues *queues = &pt->queues;
3064         unsigned int i;
3065         u64 ts = 0;
3066
3067         for (i = 0; i < queues->nr_queues; i++) {
3068                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3069                 struct intel_pt_queue *ptq = queue->priv;
3070
3071                 if (ptq && (tid == -1 || ptq->tid == tid)) {
3072                         ptq->time = time_;
3073                         intel_pt_set_pid_tid_cpu(pt, queue);
3074                         intel_pt_run_decoder(ptq, &ts);
3075                 }
3076         }
3077         return 0;
3078 }
3079
3080 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3081                                             struct auxtrace_queue *queue,
3082                                             struct perf_sample *sample)
3083 {
3084         struct machine *m = ptq->pt->machine;
3085
3086         ptq->pid = sample->pid;
3087         ptq->tid = sample->tid;
3088         ptq->cpu = queue->cpu;
3089
3090         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3091                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3092
3093         thread__zput(ptq->thread);
3094
3095         if (ptq->tid == -1)
3096                 return;
3097
3098         if (ptq->pid == -1) {
3099                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3100                 if (ptq->thread)
3101                         ptq->pid = thread__pid(ptq->thread);
3102                 return;
3103         }
3104
3105         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3106 }
3107
3108 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3109                                             struct perf_sample *sample)
3110 {
3111         struct auxtrace_queue *queue;
3112         struct intel_pt_queue *ptq;
3113         u64 ts = 0;
3114
3115         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3116         if (!queue)
3117                 return -EINVAL;
3118
3119         ptq = queue->priv;
3120         if (!ptq)
3121                 return 0;
3122
3123         ptq->stop = false;
3124         ptq->time = sample->time;
3125         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3126         intel_pt_run_decoder(ptq, &ts);
3127         return 0;
3128 }
3129
3130 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3131 {
3132         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3133                                     sample->pid, sample->tid, 0, sample->time,
3134                                     sample->machine_pid, sample->vcpu);
3135 }
3136
3137 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3138 {
3139         unsigned i, j;
3140
3141         if (cpu < 0 || !pt->queues.nr_queues)
3142                 return NULL;
3143
3144         if ((unsigned)cpu >= pt->queues.nr_queues)
3145                 i = pt->queues.nr_queues - 1;
3146         else
3147                 i = cpu;
3148
3149         if (pt->queues.queue_array[i].cpu == cpu)
3150                 return pt->queues.queue_array[i].priv;
3151
3152         for (j = 0; i > 0; j++) {
3153                 if (pt->queues.queue_array[--i].cpu == cpu)
3154                         return pt->queues.queue_array[i].priv;
3155         }
3156
3157         for (; j < pt->queues.nr_queues; j++) {
3158                 if (pt->queues.queue_array[j].cpu == cpu)
3159                         return pt->queues.queue_array[j].priv;
3160         }
3161
3162         return NULL;
3163 }
3164
3165 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3166                                 u64 timestamp)
3167 {
3168         struct intel_pt_queue *ptq;
3169         int err;
3170
3171         if (!pt->sync_switch)
3172                 return 1;
3173
3174         ptq = intel_pt_cpu_to_ptq(pt, cpu);
3175         if (!ptq || !ptq->sync_switch)
3176                 return 1;
3177
3178         switch (ptq->switch_state) {
3179         case INTEL_PT_SS_NOT_TRACING:
3180                 break;
3181         case INTEL_PT_SS_UNKNOWN:
3182         case INTEL_PT_SS_TRACING:
3183                 ptq->next_tid = tid;
3184                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3185                 return 0;
3186         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3187                 if (!ptq->on_heap) {
3188                         ptq->timestamp = perf_time_to_tsc(timestamp,
3189                                                           &pt->tc);
3190                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3191                                                  ptq->timestamp);
3192                         if (err)
3193                                 return err;
3194                         ptq->on_heap = true;
3195                 }
3196                 ptq->switch_state = INTEL_PT_SS_TRACING;
3197                 break;
3198         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3199                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3200                 break;
3201         default:
3202                 break;
3203         }
3204
3205         ptq->next_tid = -1;
3206
3207         return 1;
3208 }
3209
3210 #ifdef HAVE_LIBTRACEEVENT
3211 static int intel_pt_process_switch(struct intel_pt *pt,
3212                                    struct perf_sample *sample)
3213 {
3214         pid_t tid;
3215         int cpu, ret;
3216         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3217
3218         if (evsel != pt->switch_evsel)
3219                 return 0;
3220
3221         tid = evsel__intval(evsel, sample, "next_pid");
3222         cpu = sample->cpu;
3223
3224         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3225                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3226                      &pt->tc));
3227
3228         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3229         if (ret <= 0)
3230                 return ret;
3231
3232         return machine__set_current_tid(pt->machine, cpu, -1, tid);
3233 }
3234 #endif /* HAVE_LIBTRACEEVENT */
3235
3236 static int intel_pt_context_switch_in(struct intel_pt *pt,
3237                                       struct perf_sample *sample)
3238 {
3239         pid_t pid = sample->pid;
3240         pid_t tid = sample->tid;
3241         int cpu = sample->cpu;
3242
3243         if (pt->sync_switch) {
3244                 struct intel_pt_queue *ptq;
3245
3246                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3247                 if (ptq && ptq->sync_switch) {
3248                         ptq->next_tid = -1;
3249                         switch (ptq->switch_state) {
3250                         case INTEL_PT_SS_NOT_TRACING:
3251                         case INTEL_PT_SS_UNKNOWN:
3252                         case INTEL_PT_SS_TRACING:
3253                                 break;
3254                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3255                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3256                                 ptq->switch_state = INTEL_PT_SS_TRACING;
3257                                 break;
3258                         default:
3259                                 break;
3260                         }
3261                 }
3262         }
3263
3264         /*
3265          * If the current tid has not been updated yet, ensure it is now that
3266          * a "switch in" event has occurred.
3267          */
3268         if (machine__get_current_tid(pt->machine, cpu) == tid)
3269                 return 0;
3270
3271         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3272 }
3273
3274 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3275                                          union perf_event *event,
3276                                          struct perf_sample *sample)
3277 {
3278         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3279         struct machines *machines = &pt->session->machines;
3280         struct machine *machine = machines__find(machines, sample->machine_pid);
3281
3282         pt->have_guest_sideband = true;
3283
3284         /*
3285          * sync_switch cannot handle guest machines at present, so just disable
3286          * it.
3287          */
3288         pt->sync_switch_not_supported = true;
3289         if (pt->sync_switch)
3290                 intel_pt_disable_sync_switch(pt);
3291
3292         if (out)
3293                 return 0;
3294
3295         if (!machine)
3296                 return -EINVAL;
3297
3298         return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3299 }
3300
3301 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3302                                    struct perf_sample *sample)
3303 {
3304         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3305         pid_t pid, tid;
3306         int cpu, ret;
3307
3308         if (perf_event__is_guest(event))
3309                 return intel_pt_guest_context_switch(pt, event, sample);
3310
3311         cpu = sample->cpu;
3312
3313         if (pt->have_sched_switch == 3) {
3314                 if (!out)
3315                         return intel_pt_context_switch_in(pt, sample);
3316                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3317                         pr_err("Expecting CPU-wide context switch event\n");
3318                         return -EINVAL;
3319                 }
3320                 pid = event->context_switch.next_prev_pid;
3321                 tid = event->context_switch.next_prev_tid;
3322         } else {
3323                 if (out)
3324                         return 0;
3325                 pid = sample->pid;
3326                 tid = sample->tid;
3327         }
3328
3329         if (tid == -1)
3330                 intel_pt_log("context_switch event has no tid\n");
3331
3332         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3333         if (ret <= 0)
3334                 return ret;
3335
3336         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3337 }
3338
3339 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3340                                          union perf_event *event,
3341                                          struct perf_sample *sample)
3342 {
3343         if (!pt->per_cpu_mmaps)
3344                 return 0;
3345
3346         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3347                      sample->cpu, event->itrace_start.pid,
3348                      event->itrace_start.tid, sample->time,
3349                      perf_time_to_tsc(sample->time, &pt->tc));
3350
3351         return machine__set_current_tid(pt->machine, sample->cpu,
3352                                         event->itrace_start.pid,
3353                                         event->itrace_start.tid);
3354 }
3355
3356 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3357                                              union perf_event *event,
3358                                              struct perf_sample *sample)
3359 {
3360         u64 hw_id = event->aux_output_hw_id.hw_id;
3361         struct auxtrace_queue *queue;
3362         struct intel_pt_queue *ptq;
3363         struct evsel *evsel;
3364
3365         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3366         evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3367         if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3368                 pr_err("Bad AUX output hardware ID\n");
3369                 return -EINVAL;
3370         }
3371
3372         ptq = queue->priv;
3373
3374         ptq->pebs[hw_id].evsel = evsel;
3375         ptq->pebs[hw_id].id = sample->id;
3376
3377         return 0;
3378 }
3379
3380 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3381                              struct addr_location *al)
3382 {
3383         if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3384                 if (!thread__find_map(thread, cpumode, addr, al))
3385                         return -1;
3386         }
3387
3388         return 0;
3389 }
3390
3391 /* Invalidate all instruction cache entries that overlap the text poke */
3392 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3393 {
3394         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3395         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3396         /* Assume text poke begins in a basic block no more than 4096 bytes */
3397         int cnt = 4096 + event->text_poke.new_len;
3398         struct thread *thread = pt->unknown_thread;
3399         struct addr_location al;
3400         struct machine *machine = pt->machine;
3401         struct intel_pt_cache_entry *e;
3402         u64 offset;
3403         int ret = 0;
3404
3405         addr_location__init(&al);
3406         if (!event->text_poke.new_len)
3407                 goto out;
3408
3409         for (; cnt; cnt--, addr--) {
3410                 struct dso *dso;
3411
3412                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3413                         if (addr < event->text_poke.addr)
3414                                 goto out;
3415                         continue;
3416                 }
3417
3418                 dso = map__dso(al.map);
3419                 if (!dso || !dso->auxtrace_cache)
3420                         continue;
3421
3422                 offset = map__map_ip(al.map, addr);
3423
3424                 e = intel_pt_cache_lookup(dso, machine, offset);
3425                 if (!e)
3426                         continue;
3427
3428                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3429                         /*
3430                          * No overlap. Working backwards there cannot be another
3431                          * basic block that overlaps the text poke if there is a
3432                          * branch instruction before the text poke address.
3433                          */
3434                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
3435                                 goto out;
3436                 } else {
3437                         intel_pt_cache_invalidate(dso, machine, offset);
3438                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3439                                      dso->long_name, addr);
3440                 }
3441         }
3442 out:
3443         addr_location__exit(&al);
3444         return ret;
3445 }
3446
3447 static int intel_pt_process_event(struct perf_session *session,
3448                                   union perf_event *event,
3449                                   struct perf_sample *sample,
3450                                   struct perf_tool *tool)
3451 {
3452         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3453                                            auxtrace);
3454         u64 timestamp;
3455         int err = 0;
3456
3457         if (dump_trace)
3458                 return 0;
3459
3460         if (!tool->ordered_events) {
3461                 pr_err("Intel Processor Trace requires ordered events\n");
3462                 return -EINVAL;
3463         }
3464
3465         if (sample->time && sample->time != (u64)-1)
3466                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3467         else
3468                 timestamp = 0;
3469
3470         if (timestamp || pt->timeless_decoding) {
3471                 err = intel_pt_update_queues(pt);
3472                 if (err)
3473                         return err;
3474         }
3475
3476         if (pt->timeless_decoding) {
3477                 if (pt->sampling_mode) {
3478                         if (sample->aux_sample.size)
3479                                 err = intel_pt_process_timeless_sample(pt,
3480                                                                        sample);
3481                 } else if (event->header.type == PERF_RECORD_EXIT) {
3482                         err = intel_pt_process_timeless_queues(pt,
3483                                                                event->fork.tid,
3484                                                                sample->time);
3485                 }
3486         } else if (timestamp) {
3487                 if (!pt->first_timestamp)
3488                         intel_pt_first_timestamp(pt, timestamp);
3489                 err = intel_pt_process_queues(pt, timestamp);
3490         }
3491         if (err)
3492                 return err;
3493
3494         if (event->header.type == PERF_RECORD_SAMPLE) {
3495                 if (pt->synth_opts.add_callchain && !sample->callchain)
3496                         intel_pt_add_callchain(pt, sample);
3497                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3498                         intel_pt_add_br_stack(pt, sample);
3499         }
3500
3501         if (event->header.type == PERF_RECORD_AUX &&
3502             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3503             pt->synth_opts.errors) {
3504                 err = intel_pt_lost(pt, sample);
3505                 if (err)
3506                         return err;
3507         }
3508
3509 #ifdef HAVE_LIBTRACEEVENT
3510         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3511                 err = intel_pt_process_switch(pt, sample);
3512         else
3513 #endif
3514         if (event->header.type == PERF_RECORD_ITRACE_START)
3515                 err = intel_pt_process_itrace_start(pt, event, sample);
3516         else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3517                 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3518         else if (event->header.type == PERF_RECORD_SWITCH ||
3519                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3520                 err = intel_pt_context_switch(pt, event, sample);
3521
3522         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3523                 err = intel_pt_text_poke(pt, event);
3524
3525         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3526                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3527                              event->header.type, sample->cpu, sample->time, timestamp);
3528                 intel_pt_log_event(event);
3529         }
3530
3531         return err;
3532 }
3533
3534 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3535 {
3536         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3537                                            auxtrace);
3538         int ret;
3539
3540         if (dump_trace)
3541                 return 0;
3542
3543         if (!tool->ordered_events)
3544                 return -EINVAL;
3545
3546         ret = intel_pt_update_queues(pt);
3547         if (ret < 0)
3548                 return ret;
3549
3550         if (pt->timeless_decoding)
3551                 return intel_pt_process_timeless_queues(pt, -1,
3552                                                         MAX_TIMESTAMP - 1);
3553
3554         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3555 }
3556
3557 static void intel_pt_free_events(struct perf_session *session)
3558 {
3559         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3560                                            auxtrace);
3561         struct auxtrace_queues *queues = &pt->queues;
3562         unsigned int i;
3563
3564         for (i = 0; i < queues->nr_queues; i++) {
3565                 intel_pt_free_queue(queues->queue_array[i].priv);
3566                 queues->queue_array[i].priv = NULL;
3567         }
3568         intel_pt_log_disable();
3569         auxtrace_queues__free(queues);
3570 }
3571
3572 static void intel_pt_free(struct perf_session *session)
3573 {
3574         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3575                                            auxtrace);
3576
3577         auxtrace_heap__free(&pt->heap);
3578         intel_pt_free_events(session);
3579         session->auxtrace = NULL;
3580         intel_pt_free_vmcs_info(pt);
3581         thread__put(pt->unknown_thread);
3582         addr_filters__exit(&pt->filts);
3583         zfree(&pt->chain);
3584         zfree(&pt->filter);
3585         zfree(&pt->time_ranges);
3586         zfree(&pt->br_stack);
3587         free(pt);
3588 }
3589
3590 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3591                                        struct evsel *evsel)
3592 {
3593         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3594                                            auxtrace);
3595
3596         return evsel->core.attr.type == pt->pmu_type;
3597 }
3598
3599 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3600                                            union perf_event *event,
3601                                            struct perf_tool *tool __maybe_unused)
3602 {
3603         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3604                                            auxtrace);
3605
3606         if (!pt->data_queued) {
3607                 struct auxtrace_buffer *buffer;
3608                 off_t data_offset;
3609                 int fd = perf_data__fd(session->data);
3610                 int err;
3611
3612                 if (perf_data__is_pipe(session->data)) {
3613                         data_offset = 0;
3614                 } else {
3615                         data_offset = lseek(fd, 0, SEEK_CUR);
3616                         if (data_offset == -1)
3617                                 return -errno;
3618                 }
3619
3620                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3621                                                  data_offset, &buffer);
3622                 if (err)
3623                         return err;
3624
3625                 /* Dump here now we have copied a piped trace out of the pipe */
3626                 if (dump_trace) {
3627                         if (auxtrace_buffer__get_data(buffer, fd)) {
3628                                 intel_pt_dump_event(pt, buffer->data,
3629                                                     buffer->size);
3630                                 auxtrace_buffer__put_data(buffer);
3631                         }
3632                 }
3633         }
3634
3635         return 0;
3636 }
3637
3638 static int intel_pt_queue_data(struct perf_session *session,
3639                                struct perf_sample *sample,
3640                                union perf_event *event, u64 data_offset)
3641 {
3642         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3643                                            auxtrace);
3644         u64 timestamp;
3645
3646         if (event) {
3647                 return auxtrace_queues__add_event(&pt->queues, session, event,
3648                                                   data_offset, NULL);
3649         }
3650
3651         if (sample->time && sample->time != (u64)-1)
3652                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3653         else
3654                 timestamp = 0;
3655
3656         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3657                                            data_offset, timestamp);
3658 }
3659
3660 struct intel_pt_synth {
3661         struct perf_tool dummy_tool;
3662         struct perf_session *session;
3663 };
3664
3665 static int intel_pt_event_synth(struct perf_tool *tool,
3666                                 union perf_event *event,
3667                                 struct perf_sample *sample __maybe_unused,
3668                                 struct machine *machine __maybe_unused)
3669 {
3670         struct intel_pt_synth *intel_pt_synth =
3671                         container_of(tool, struct intel_pt_synth, dummy_tool);
3672
3673         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3674                                                  NULL);
3675 }
3676
3677 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3678                                 struct perf_event_attr *attr, u64 id)
3679 {
3680         struct intel_pt_synth intel_pt_synth;
3681         int err;
3682
3683         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3684                  name, id, (u64)attr->sample_type);
3685
3686         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3687         intel_pt_synth.session = session;
3688
3689         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3690                                           &id, intel_pt_event_synth);
3691         if (err)
3692                 pr_err("%s: failed to synthesize '%s' event type\n",
3693                        __func__, name);
3694
3695         return err;
3696 }
3697
3698 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3699                                     const char *name)
3700 {
3701         struct evsel *evsel;
3702
3703         evlist__for_each_entry(evlist, evsel) {
3704                 if (evsel->core.id && evsel->core.id[0] == id) {
3705                         if (evsel->name)
3706                                 zfree(&evsel->name);
3707                         evsel->name = strdup(name);
3708                         break;
3709                 }
3710         }
3711 }
3712
3713 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3714                                          struct evlist *evlist)
3715 {
3716         struct evsel *evsel;
3717
3718         evlist__for_each_entry(evlist, evsel) {
3719                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3720                         return evsel;
3721         }
3722
3723         return NULL;
3724 }
3725
3726 static int intel_pt_synth_events(struct intel_pt *pt,
3727                                  struct perf_session *session)
3728 {
3729         struct evlist *evlist = session->evlist;
3730         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3731         struct perf_event_attr attr;
3732         u64 id;
3733         int err;
3734
3735         if (!evsel) {
3736                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3737                 return 0;
3738         }
3739
3740         memset(&attr, 0, sizeof(struct perf_event_attr));
3741         attr.size = sizeof(struct perf_event_attr);
3742         attr.type = PERF_TYPE_HARDWARE;
3743         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3744         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3745                             PERF_SAMPLE_PERIOD;
3746         if (pt->timeless_decoding)
3747                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3748         else
3749                 attr.sample_type |= PERF_SAMPLE_TIME;
3750         if (!pt->per_cpu_mmaps)
3751                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3752         attr.exclude_user = evsel->core.attr.exclude_user;
3753         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3754         attr.exclude_hv = evsel->core.attr.exclude_hv;
3755         attr.exclude_host = evsel->core.attr.exclude_host;
3756         attr.exclude_guest = evsel->core.attr.exclude_guest;
3757         attr.sample_id_all = evsel->core.attr.sample_id_all;
3758         attr.read_format = evsel->core.attr.read_format;
3759
3760         id = evsel->core.id[0] + 1000000000;
3761         if (!id)
3762                 id = 1;
3763
3764         if (pt->synth_opts.branches) {
3765                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3766                 attr.sample_period = 1;
3767                 attr.sample_type |= PERF_SAMPLE_ADDR;
3768                 err = intel_pt_synth_event(session, "branches", &attr, id);
3769                 if (err)
3770                         return err;
3771                 pt->sample_branches = true;
3772                 pt->branches_sample_type = attr.sample_type;
3773                 pt->branches_id = id;
3774                 id += 1;
3775                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3776         }
3777
3778         if (pt->synth_opts.callchain)
3779                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3780         if (pt->synth_opts.last_branch) {
3781                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3782                 /*
3783                  * We don't use the hardware index, but the sample generation
3784                  * code uses the new format branch_stack with this field,
3785                  * so the event attributes must indicate that it's present.
3786                  */
3787                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3788         }
3789
3790         if (pt->synth_opts.instructions) {
3791                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3792                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3793                         attr.sample_period =
3794                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3795                 else
3796                         attr.sample_period = pt->synth_opts.period;
3797                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3798                 if (err)
3799                         return err;
3800                 pt->sample_instructions = true;
3801                 pt->instructions_sample_type = attr.sample_type;
3802                 pt->instructions_id = id;
3803                 id += 1;
3804         }
3805
3806         if (pt->synth_opts.cycles) {
3807                 attr.config = PERF_COUNT_HW_CPU_CYCLES;
3808                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3809                         attr.sample_period =
3810                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3811                 else
3812                         attr.sample_period = pt->synth_opts.period;
3813                 err = intel_pt_synth_event(session, "cycles", &attr, id);
3814                 if (err)
3815                         return err;
3816                 pt->sample_cycles = true;
3817                 pt->cycles_sample_type = attr.sample_type;
3818                 pt->cycles_id = id;
3819                 id += 1;
3820         }
3821
3822         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3823         attr.sample_period = 1;
3824
3825         if (pt->synth_opts.transactions) {
3826                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3827                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3828                 if (err)
3829                         return err;
3830                 pt->sample_transactions = true;
3831                 pt->transactions_sample_type = attr.sample_type;
3832                 pt->transactions_id = id;
3833                 intel_pt_set_event_name(evlist, id, "transactions");
3834                 id += 1;
3835         }
3836
3837         attr.type = PERF_TYPE_SYNTH;
3838         attr.sample_type |= PERF_SAMPLE_RAW;
3839
3840         if (pt->synth_opts.ptwrites) {
3841                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3842                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3843                 if (err)
3844                         return err;
3845                 pt->sample_ptwrites = true;
3846                 pt->ptwrites_sample_type = attr.sample_type;
3847                 pt->ptwrites_id = id;
3848                 intel_pt_set_event_name(evlist, id, "ptwrite");
3849                 id += 1;
3850         }
3851
3852         if (pt->synth_opts.pwr_events) {
3853                 pt->sample_pwr_events = true;
3854                 pt->pwr_events_sample_type = attr.sample_type;
3855
3856                 attr.config = PERF_SYNTH_INTEL_CBR;
3857                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3858                 if (err)
3859                         return err;
3860                 pt->cbr_id = id;
3861                 intel_pt_set_event_name(evlist, id, "cbr");
3862                 id += 1;
3863
3864                 attr.config = PERF_SYNTH_INTEL_PSB;
3865                 err = intel_pt_synth_event(session, "psb", &attr, id);
3866                 if (err)
3867                         return err;
3868                 pt->psb_id = id;
3869                 intel_pt_set_event_name(evlist, id, "psb");
3870                 id += 1;
3871         }
3872
3873         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3874                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3875                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3876                 if (err)
3877                         return err;
3878                 pt->mwait_id = id;
3879                 intel_pt_set_event_name(evlist, id, "mwait");
3880                 id += 1;
3881
3882                 attr.config = PERF_SYNTH_INTEL_PWRE;
3883                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3884                 if (err)
3885                         return err;
3886                 pt->pwre_id = id;
3887                 intel_pt_set_event_name(evlist, id, "pwre");
3888                 id += 1;
3889
3890                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3891                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3892                 if (err)
3893                         return err;
3894                 pt->exstop_id = id;
3895                 intel_pt_set_event_name(evlist, id, "exstop");
3896                 id += 1;
3897
3898                 attr.config = PERF_SYNTH_INTEL_PWRX;
3899                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3900                 if (err)
3901                         return err;
3902                 pt->pwrx_id = id;
3903                 intel_pt_set_event_name(evlist, id, "pwrx");
3904                 id += 1;
3905         }
3906
3907         if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3908                 attr.config = PERF_SYNTH_INTEL_EVT;
3909                 err = intel_pt_synth_event(session, "evt", &attr, id);
3910                 if (err)
3911                         return err;
3912                 pt->evt_sample_type = attr.sample_type;
3913                 pt->evt_id = id;
3914                 intel_pt_set_event_name(evlist, id, "evt");
3915                 id += 1;
3916         }
3917
3918         if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3919                 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3920                 err = intel_pt_synth_event(session, "iflag", &attr, id);
3921                 if (err)
3922                         return err;
3923                 pt->iflag_chg_sample_type = attr.sample_type;
3924                 pt->iflag_chg_id = id;
3925                 intel_pt_set_event_name(evlist, id, "iflag");
3926                 id += 1;
3927         }
3928
3929         return 0;
3930 }
3931
3932 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3933 {
3934         struct evsel *evsel;
3935
3936         if (!pt->synth_opts.other_events)
3937                 return;
3938
3939         evlist__for_each_entry(pt->session->evlist, evsel) {
3940                 if (evsel->core.attr.aux_output && evsel->core.id) {
3941                         if (pt->single_pebs) {
3942                                 pt->single_pebs = false;
3943                                 return;
3944                         }
3945                         pt->single_pebs = true;
3946                         pt->sample_pebs = true;
3947                         pt->pebs_evsel = evsel;
3948                 }
3949         }
3950 }
3951
3952 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3953 {
3954         struct evsel *evsel;
3955
3956         evlist__for_each_entry_reverse(evlist, evsel) {
3957                 const char *name = evsel__name(evsel);
3958
3959                 if (!strcmp(name, "sched:sched_switch"))
3960                         return evsel;
3961         }
3962
3963         return NULL;
3964 }
3965
3966 static bool intel_pt_find_switch(struct evlist *evlist)
3967 {
3968         struct evsel *evsel;
3969
3970         evlist__for_each_entry(evlist, evsel) {
3971                 if (evsel->core.attr.context_switch)
3972                         return true;
3973         }
3974
3975         return false;
3976 }
3977
3978 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3979 {
3980         struct intel_pt *pt = data;
3981
3982         if (!strcmp(var, "intel-pt.mispred-all"))
3983                 pt->mispred_all = perf_config_bool(var, value);
3984
3985         if (!strcmp(var, "intel-pt.max-loops"))
3986                 perf_config_int(&pt->max_loops, var, value);
3987
3988         return 0;
3989 }
3990
3991 /* Find least TSC which converts to ns or later */
3992 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3993 {
3994         u64 tsc, tm;
3995
3996         tsc = perf_time_to_tsc(ns, &pt->tc);
3997
3998         while (1) {
3999                 tm = tsc_to_perf_time(tsc, &pt->tc);
4000                 if (tm < ns)
4001                         break;
4002                 tsc -= 1;
4003         }
4004
4005         while (tm < ns)
4006                 tm = tsc_to_perf_time(++tsc, &pt->tc);
4007
4008         return tsc;
4009 }
4010
4011 /* Find greatest TSC which converts to ns or earlier */
4012 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4013 {
4014         u64 tsc, tm;
4015
4016         tsc = perf_time_to_tsc(ns, &pt->tc);
4017
4018         while (1) {
4019                 tm = tsc_to_perf_time(tsc, &pt->tc);
4020                 if (tm > ns)
4021                         break;
4022                 tsc += 1;
4023         }
4024
4025         while (tm > ns)
4026                 tm = tsc_to_perf_time(--tsc, &pt->tc);
4027
4028         return tsc;
4029 }
4030
4031 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4032                                       struct itrace_synth_opts *opts)
4033 {
4034         struct perf_time_interval *p = opts->ptime_range;
4035         int n = opts->range_num;
4036         int i;
4037
4038         if (!n || !p || pt->timeless_decoding)
4039                 return 0;
4040
4041         pt->time_ranges = calloc(n, sizeof(struct range));
4042         if (!pt->time_ranges)
4043                 return -ENOMEM;
4044
4045         pt->range_cnt = n;
4046
4047         intel_pt_log("%s: %u range(s)\n", __func__, n);
4048
4049         for (i = 0; i < n; i++) {
4050                 struct range *r = &pt->time_ranges[i];
4051                 u64 ts = p[i].start;
4052                 u64 te = p[i].end;
4053
4054                 /*
4055                  * Take care to ensure the TSC range matches the perf-time range
4056                  * when converted back to perf-time.
4057                  */
4058                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4059                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4060
4061                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4062                              i, ts, te);
4063                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4064                              i, r->start, r->end);
4065         }
4066
4067         return 0;
4068 }
4069
4070 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4071 {
4072         struct intel_pt_vmcs_info *vmcs_info;
4073         u64 tsc_offset, vmcs;
4074         char *p = *args;
4075
4076         errno = 0;
4077
4078         p = skip_spaces(p);
4079         if (!*p)
4080                 return 1;
4081
4082         tsc_offset = strtoull(p, &p, 0);
4083         if (errno)
4084                 return -errno;
4085         p = skip_spaces(p);
4086         if (*p != ':') {
4087                 pt->dflt_tsc_offset = tsc_offset;
4088                 *args = p;
4089                 return 0;
4090         }
4091         p += 1;
4092         while (1) {
4093                 vmcs = strtoull(p, &p, 0);
4094                 if (errno)
4095                         return -errno;
4096                 if (!vmcs)
4097                         return -EINVAL;
4098                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4099                 if (!vmcs_info)
4100                         return -ENOMEM;
4101                 p = skip_spaces(p);
4102                 if (*p != ',')
4103                         break;
4104                 p += 1;
4105         }
4106         *args = p;
4107         return 0;
4108 }
4109
4110 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4111 {
4112         char *args = pt->synth_opts.vm_tm_corr_args;
4113         int ret;
4114
4115         if (!args)
4116                 return 0;
4117
4118         do {
4119                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4120         } while (!ret);
4121
4122         if (ret < 0) {
4123                 pr_err("Failed to parse VM Time Correlation options\n");
4124                 return ret;
4125         }
4126
4127         return 0;
4128 }
4129
4130 static const char * const intel_pt_info_fmts[] = {
4131         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
4132         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
4133         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
4134         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
4135         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
4136         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
4137         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
4138         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
4139         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
4140         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
4141         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
4142         [INTEL_PT_MTC_FREQ_BITS]        = "  MTC freq bits       %#"PRIx64"\n",
4143         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
4144         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
4145         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
4146         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
4147         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
4148 };
4149
4150 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4151 {
4152         int i;
4153
4154         if (!dump_trace)
4155                 return;
4156
4157         for (i = start; i <= finish; i++) {
4158                 const char *fmt = intel_pt_info_fmts[i];
4159
4160                 if (fmt)
4161                         fprintf(stdout, fmt, arr[i]);
4162         }
4163 }
4164
4165 static void intel_pt_print_info_str(const char *name, const char *str)
4166 {
4167         if (!dump_trace)
4168                 return;
4169
4170         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4171 }
4172
4173 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4174 {
4175         return auxtrace_info->header.size >=
4176                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4177 }
4178
4179 int intel_pt_process_auxtrace_info(union perf_event *event,
4180                                    struct perf_session *session)
4181 {
4182         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4183         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4184         struct intel_pt *pt;
4185         void *info_end;
4186         __u64 *info;
4187         int err;
4188
4189         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4190                                         min_sz)
4191                 return -EINVAL;
4192
4193         pt = zalloc(sizeof(struct intel_pt));
4194         if (!pt)
4195                 return -ENOMEM;
4196
4197         pt->vmcs_info = RB_ROOT;
4198
4199         addr_filters__init(&pt->filts);
4200
4201         err = perf_config(intel_pt_perf_config, pt);
4202         if (err)
4203                 goto err_free;
4204
4205         err = auxtrace_queues__init(&pt->queues);
4206         if (err)
4207                 goto err_free;
4208
4209         if (session->itrace_synth_opts->set) {
4210                 pt->synth_opts = *session->itrace_synth_opts;
4211         } else {
4212                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4213
4214                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4215                 if (!opts->default_no_sample && !opts->inject) {
4216                         pt->synth_opts.branches = false;
4217                         pt->synth_opts.callchain = true;
4218                         pt->synth_opts.add_callchain = true;
4219                 }
4220                 pt->synth_opts.thread_stack = opts->thread_stack;
4221         }
4222
4223         if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4224                 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4225
4226         pt->session = session;
4227         pt->machine = &session->machines.host; /* No kvm support */
4228         pt->auxtrace_type = auxtrace_info->type;
4229         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4230         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4231         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4232         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4233         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4234         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4235         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4236         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4237         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4238         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4239         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4240                             INTEL_PT_PER_CPU_MMAPS);
4241
4242         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4243                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4244                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4245                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4246                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4247                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4248                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4249                                     INTEL_PT_CYC_BIT);
4250         }
4251
4252         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4253                 pt->max_non_turbo_ratio =
4254                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4255                 intel_pt_print_info(&auxtrace_info->priv[0],
4256                                     INTEL_PT_MAX_NONTURBO_RATIO,
4257                                     INTEL_PT_MAX_NONTURBO_RATIO);
4258         }
4259
4260         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4261         info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4262
4263         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4264                 size_t len;
4265
4266                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4267                 intel_pt_print_info(&auxtrace_info->priv[0],
4268                                     INTEL_PT_FILTER_STR_LEN,
4269                                     INTEL_PT_FILTER_STR_LEN);
4270                 if (len) {
4271                         const char *filter = (const char *)info;
4272
4273                         len = roundup(len + 1, 8);
4274                         info += len >> 3;
4275                         if ((void *)info > info_end) {
4276                                 pr_err("%s: bad filter string length\n", __func__);
4277                                 err = -EINVAL;
4278                                 goto err_free_queues;
4279                         }
4280                         pt->filter = memdup(filter, len);
4281                         if (!pt->filter) {
4282                                 err = -ENOMEM;
4283                                 goto err_free_queues;
4284                         }
4285                         if (session->header.needs_swap)
4286                                 mem_bswap_64(pt->filter, len);
4287                         if (pt->filter[len - 1]) {
4288                                 pr_err("%s: filter string not null terminated\n", __func__);
4289                                 err = -EINVAL;
4290                                 goto err_free_queues;
4291                         }
4292                         err = addr_filters__parse_bare_filter(&pt->filts,
4293                                                               filter);
4294                         if (err)
4295                                 goto err_free_queues;
4296                 }
4297                 intel_pt_print_info_str("Filter string", pt->filter);
4298         }
4299
4300         if ((void *)info < info_end) {
4301                 pt->cap_event_trace = *info++;
4302                 if (dump_trace)
4303                         fprintf(stdout, "  Cap Event Trace     %d\n",
4304                                 pt->cap_event_trace);
4305         }
4306
4307         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4308         if (pt->timeless_decoding && !pt->tc.time_mult)
4309                 pt->tc.time_mult = 1;
4310         pt->have_tsc = intel_pt_have_tsc(pt);
4311         pt->sampling_mode = intel_pt_sampling_mode(pt);
4312         pt->est_tsc = !pt->timeless_decoding;
4313
4314         if (pt->synth_opts.vm_time_correlation) {
4315                 if (pt->timeless_decoding) {
4316                         pr_err("Intel PT has no time information for VM Time Correlation\n");
4317                         err = -EINVAL;
4318                         goto err_free_queues;
4319                 }
4320                 if (session->itrace_synth_opts->ptime_range) {
4321                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4322                         err = -EINVAL;
4323                         goto err_free_queues;
4324                 }
4325                 /* Currently TSC Offset is calculated using MTC packets */
4326                 if (!intel_pt_have_mtc(pt)) {
4327                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4328                         err = -EINVAL;
4329                         goto err_free_queues;
4330                 }
4331                 err = intel_pt_parse_vm_tm_corr_args(pt);
4332                 if (err)
4333                         goto err_free_queues;
4334         }
4335
4336         pt->unknown_thread = thread__new(999999999, 999999999);
4337         if (!pt->unknown_thread) {
4338                 err = -ENOMEM;
4339                 goto err_free_queues;
4340         }
4341
4342         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4343         if (err)
4344                 goto err_delete_thread;
4345         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4346                 err = -ENOMEM;
4347                 goto err_delete_thread;
4348         }
4349
4350         pt->auxtrace.process_event = intel_pt_process_event;
4351         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4352         pt->auxtrace.queue_data = intel_pt_queue_data;
4353         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4354         pt->auxtrace.flush_events = intel_pt_flush;
4355         pt->auxtrace.free_events = intel_pt_free_events;
4356         pt->auxtrace.free = intel_pt_free;
4357         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4358         session->auxtrace = &pt->auxtrace;
4359
4360         if (dump_trace)
4361                 return 0;
4362
4363         if (pt->have_sched_switch == 1) {
4364                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4365                 if (!pt->switch_evsel) {
4366                         pr_err("%s: missing sched_switch event\n", __func__);
4367                         err = -EINVAL;
4368                         goto err_delete_thread;
4369                 }
4370         } else if (pt->have_sched_switch == 2 &&
4371                    !intel_pt_find_switch(session->evlist)) {
4372                 pr_err("%s: missing context_switch attribute flag\n", __func__);
4373                 err = -EINVAL;
4374                 goto err_delete_thread;
4375         }
4376
4377         if (pt->synth_opts.log) {
4378                 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4379                 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4380
4381                 intel_pt_log_enable(log_on_error, log_on_error_size);
4382         }
4383
4384         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4385         if (pt->tc.time_mult) {
4386                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4387
4388                 if (!pt->max_non_turbo_ratio)
4389                         pt->max_non_turbo_ratio =
4390                                         (tsc_freq + 50000000) / 100000000;
4391                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4392                 intel_pt_log("Maximum non-turbo ratio %u\n",
4393                              pt->max_non_turbo_ratio);
4394                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4395         }
4396
4397         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4398         if (err)
4399                 goto err_delete_thread;
4400
4401         if (pt->synth_opts.calls)
4402                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4403                                        PERF_IP_FLAG_TRACE_END;
4404         if (pt->synth_opts.returns)
4405                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4406                                        PERF_IP_FLAG_TRACE_BEGIN;
4407
4408         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4409             !symbol_conf.use_callchain) {
4410                 symbol_conf.use_callchain = true;
4411                 if (callchain_register_param(&callchain_param) < 0) {
4412                         symbol_conf.use_callchain = false;
4413                         pt->synth_opts.callchain = false;
4414                         pt->synth_opts.add_callchain = false;
4415                 }
4416         }
4417
4418         if (pt->synth_opts.add_callchain) {
4419                 err = intel_pt_callchain_init(pt);
4420                 if (err)
4421                         goto err_delete_thread;
4422         }
4423
4424         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4425                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4426                 pt->br_stack_sz_plus = pt->br_stack_sz;
4427         }
4428
4429         if (pt->synth_opts.add_last_branch) {
4430                 err = intel_pt_br_stack_init(pt);
4431                 if (err)
4432                         goto err_delete_thread;
4433                 /*
4434                  * Additional branch stack size to cater for tracing from the
4435                  * actual sample ip to where the sample time is recorded.
4436                  * Measured at about 200 branches, but generously set to 1024.
4437                  * If kernel space is not being traced, then add just 1 for the
4438                  * branch to kernel space.
4439                  */
4440                 if (intel_pt_tracing_kernel(pt))
4441                         pt->br_stack_sz_plus += 1024;
4442                 else
4443                         pt->br_stack_sz_plus += 1;
4444         }
4445
4446         pt->use_thread_stack = pt->synth_opts.callchain ||
4447                                pt->synth_opts.add_callchain ||
4448                                pt->synth_opts.thread_stack ||
4449                                pt->synth_opts.last_branch ||
4450                                pt->synth_opts.add_last_branch;
4451
4452         pt->callstack = pt->synth_opts.callchain ||
4453                         pt->synth_opts.add_callchain ||
4454                         pt->synth_opts.thread_stack;
4455
4456         err = intel_pt_synth_events(pt, session);
4457         if (err)
4458                 goto err_delete_thread;
4459
4460         intel_pt_setup_pebs_events(pt);
4461
4462         if (perf_data__is_pipe(session->data)) {
4463                 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4464                            "         The output cannot relied upon.  In particular,\n"
4465                            "         timestamps and the order of events may be incorrect.\n");
4466         }
4467
4468         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4469                 err = auxtrace_queue_data(session, true, true);
4470         else
4471                 err = auxtrace_queues__process_index(&pt->queues, session);
4472         if (err)
4473                 goto err_delete_thread;
4474
4475         if (pt->queues.populated)
4476                 pt->data_queued = true;
4477
4478         if (pt->timeless_decoding)
4479                 pr_debug2("Intel PT decoding without timestamps\n");
4480
4481         return 0;
4482
4483 err_delete_thread:
4484         zfree(&pt->chain);
4485         thread__zput(pt->unknown_thread);
4486 err_free_queues:
4487         intel_pt_log_disable();
4488         auxtrace_queues__free(&pt->queues);
4489         session->auxtrace = NULL;
4490 err_free:
4491         addr_filters__exit(&pt->filts);
4492         zfree(&pt->filter);
4493         zfree(&pt->time_ranges);
4494         free(pt);
4495         return err;
4496 }
This page took 0.299645 seconds and 4 git commands to generate.