]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge tag 'drm-misc-next-fixes-2021-11-05' of git://anongit.freedesktop.org/drm/drm...
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <[email protected]>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49
50 #include <drm/amdgpu_drm.h>
51
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
63
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65                                    struct ttm_tt *ttm,
66                                    struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68                                       struct ttm_tt *ttm);
69
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71                                     unsigned int type,
72                                     uint64_t size_in_page)
73 {
74         return ttm_range_man_init(&adev->mman.bdev, type,
75                                   false, size_in_page);
76 }
77
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87                                 struct ttm_placement *placement)
88 {
89         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90         struct amdgpu_bo *abo;
91         static const struct ttm_place placements = {
92                 .fpfn = 0,
93                 .lpfn = 0,
94                 .mem_type = TTM_PL_SYSTEM,
95                 .flags = 0
96         };
97
98         /* Don't handle scatter gather BOs */
99         if (bo->type == ttm_bo_type_sg) {
100                 placement->num_placement = 0;
101                 placement->num_busy_placement = 0;
102                 return;
103         }
104
105         /* Object isn't an AMDGPU object so ignore */
106         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107                 placement->placement = &placements;
108                 placement->busy_placement = &placements;
109                 placement->num_placement = 1;
110                 placement->num_busy_placement = 1;
111                 return;
112         }
113
114         abo = ttm_to_amdgpu_bo(bo);
115         if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116                 struct dma_fence *fence;
117                 struct dma_resv *resv = &bo->base._resv;
118
119                 rcu_read_lock();
120                 fence = rcu_dereference(resv->fence_excl);
121                 if (fence && !fence->ops->signaled)
122                         dma_fence_enable_sw_signaling(fence);
123
124                 placement->num_placement = 0;
125                 placement->num_busy_placement = 0;
126                 rcu_read_unlock();
127                 return;
128         }
129
130         switch (bo->resource->mem_type) {
131         case AMDGPU_PL_GDS:
132         case AMDGPU_PL_GWS:
133         case AMDGPU_PL_OA:
134                 placement->num_placement = 0;
135                 placement->num_busy_placement = 0;
136                 return;
137
138         case TTM_PL_VRAM:
139                 if (!adev->mman.buffer_funcs_enabled) {
140                         /* Move to system memory */
141                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144                            amdgpu_bo_in_cpu_visible_vram(abo)) {
145
146                         /* Try evicting to the CPU inaccessible part of VRAM
147                          * first, but only set GTT as busy placement, so this
148                          * BO will be evicted to GTT rather than causing other
149                          * BOs to be evicted from VRAM
150                          */
151                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152                                                         AMDGPU_GEM_DOMAIN_GTT |
153                                                         AMDGPU_GEM_DOMAIN_CPU);
154                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
155                         abo->placements[0].lpfn = 0;
156                         abo->placement.busy_placement = &abo->placements[1];
157                         abo->placement.num_busy_placement = 1;
158                 } else {
159                         /* Move to GTT memory */
160                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
161                                                         AMDGPU_GEM_DOMAIN_CPU);
162                 }
163                 break;
164         case TTM_PL_TT:
165         case AMDGPU_PL_PREEMPT:
166         default:
167                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
168                 break;
169         }
170         *placement = abo->placement;
171 }
172
173 /**
174  * amdgpu_ttm_map_buffer - Map memory into the GART windows
175  * @bo: buffer object to map
176  * @mem: memory object to map
177  * @mm_cur: range to map
178  * @num_pages: number of pages to map
179  * @window: which GART window to use
180  * @ring: DMA ring to use for the copy
181  * @tmz: if we should setup a TMZ enabled mapping
182  * @addr: resulting address inside the MC address space
183  *
184  * Setup one of the GART windows to access a specific piece of memory or return
185  * the physical address for local memory.
186  */
187 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
188                                  struct ttm_resource *mem,
189                                  struct amdgpu_res_cursor *mm_cur,
190                                  unsigned num_pages, unsigned window,
191                                  struct amdgpu_ring *ring, bool tmz,
192                                  uint64_t *addr)
193 {
194         struct amdgpu_device *adev = ring->adev;
195         struct amdgpu_job *job;
196         unsigned num_dw, num_bytes;
197         struct dma_fence *fence;
198         uint64_t src_addr, dst_addr;
199         void *cpu_addr;
200         uint64_t flags;
201         unsigned int i;
202         int r;
203
204         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
205                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
206         BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
207
208         /* Map only what can't be accessed directly */
209         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
210                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
211                         mm_cur->start;
212                 return 0;
213         }
214
215         *addr = adev->gmc.gart_start;
216         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
217                 AMDGPU_GPU_PAGE_SIZE;
218         *addr += mm_cur->start & ~PAGE_MASK;
219
220         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
221         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
222
223         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
224                                      AMDGPU_IB_POOL_DELAYED, &job);
225         if (r)
226                 return r;
227
228         src_addr = num_dw * 4;
229         src_addr += job->ibs[0].gpu_addr;
230
231         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
232         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
233         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
234                                 dst_addr, num_bytes, false);
235
236         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
237         WARN_ON(job->ibs[0].length_dw > num_dw);
238
239         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
240         if (tmz)
241                 flags |= AMDGPU_PTE_TMZ;
242
243         cpu_addr = &job->ibs[0].ptr[num_dw];
244
245         if (mem->mem_type == TTM_PL_TT) {
246                 dma_addr_t *dma_addr;
247
248                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
249                 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
250                                     cpu_addr);
251                 if (r)
252                         goto error_free;
253         } else {
254                 dma_addr_t dma_address;
255
256                 dma_address = mm_cur->start;
257                 dma_address += adev->vm_manager.vram_base_offset;
258
259                 for (i = 0; i < num_pages; ++i) {
260                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
261                                             &dma_address, flags, cpu_addr);
262                         if (r)
263                                 goto error_free;
264
265                         dma_address += PAGE_SIZE;
266                 }
267         }
268
269         r = amdgpu_job_submit(job, &adev->mman.entity,
270                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
271         if (r)
272                 goto error_free;
273
274         dma_fence_put(fence);
275
276         return r;
277
278 error_free:
279         amdgpu_job_free(job);
280         return r;
281 }
282
283 /**
284  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
285  * @adev: amdgpu device
286  * @src: buffer/address where to read from
287  * @dst: buffer/address where to write to
288  * @size: number of bytes to copy
289  * @tmz: if a secure copy should be used
290  * @resv: resv object to sync to
291  * @f: Returns the last fence if multiple jobs are submitted.
292  *
293  * The function copies @size bytes from {src->mem + src->offset} to
294  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
295  * move and different for a BO to BO copy.
296  *
297  */
298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
299                                const struct amdgpu_copy_mem *src,
300                                const struct amdgpu_copy_mem *dst,
301                                uint64_t size, bool tmz,
302                                struct dma_resv *resv,
303                                struct dma_fence **f)
304 {
305         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
306                                         AMDGPU_GPU_PAGE_SIZE);
307
308         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309         struct amdgpu_res_cursor src_mm, dst_mm;
310         struct dma_fence *fence = NULL;
311         int r = 0;
312
313         if (!adev->mman.buffer_funcs_enabled) {
314                 DRM_ERROR("Trying to move memory with ring turned off.\n");
315                 return -EINVAL;
316         }
317
318         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320
321         mutex_lock(&adev->mman.gtt_window_lock);
322         while (src_mm.remaining) {
323                 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
324                 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
325                 struct dma_fence *next;
326                 uint32_t cur_size;
327                 uint64_t from, to;
328
329                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
330                  * begins at an offset, then adjust the size accordingly
331                  */
332                 cur_size = max(src_page_offset, dst_page_offset);
333                 cur_size = min(min3(src_mm.size, dst_mm.size, size),
334                                (uint64_t)(GTT_MAX_BYTES - cur_size));
335
336                 /* Map src to window 0 and dst to window 1. */
337                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
338                                           PFN_UP(cur_size + src_page_offset),
339                                           0, ring, tmz, &from);
340                 if (r)
341                         goto error;
342
343                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
344                                           PFN_UP(cur_size + dst_page_offset),
345                                           1, ring, tmz, &to);
346                 if (r)
347                         goto error;
348
349                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
350                                        resv, &next, false, true, tmz);
351                 if (r)
352                         goto error;
353
354                 dma_fence_put(fence);
355                 fence = next;
356
357                 amdgpu_res_next(&src_mm, cur_size);
358                 amdgpu_res_next(&dst_mm, cur_size);
359         }
360 error:
361         mutex_unlock(&adev->mman.gtt_window_lock);
362         if (f)
363                 *f = dma_fence_get(fence);
364         dma_fence_put(fence);
365         return r;
366 }
367
368 /*
369  * amdgpu_move_blit - Copy an entire buffer to another buffer
370  *
371  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
372  * help move buffers to and from VRAM.
373  */
374 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
375                             bool evict,
376                             struct ttm_resource *new_mem,
377                             struct ttm_resource *old_mem)
378 {
379         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
380         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
381         struct amdgpu_copy_mem src, dst;
382         struct dma_fence *fence = NULL;
383         int r;
384
385         src.bo = bo;
386         dst.bo = bo;
387         src.mem = old_mem;
388         dst.mem = new_mem;
389         src.offset = 0;
390         dst.offset = 0;
391
392         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
393                                        new_mem->num_pages << PAGE_SHIFT,
394                                        amdgpu_bo_encrypted(abo),
395                                        bo->base.resv, &fence);
396         if (r)
397                 goto error;
398
399         /* clear the space being freed */
400         if (old_mem->mem_type == TTM_PL_VRAM &&
401             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
402                 struct dma_fence *wipe_fence = NULL;
403
404                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
405                                        NULL, &wipe_fence);
406                 if (r) {
407                         goto error;
408                 } else if (wipe_fence) {
409                         dma_fence_put(fence);
410                         fence = wipe_fence;
411                 }
412         }
413
414         /* Always block for VM page tables before committing the new location */
415         if (bo->type == ttm_bo_type_kernel)
416                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417         else
418                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419         dma_fence_put(fence);
420         return r;
421
422 error:
423         if (fence)
424                 dma_fence_wait(fence, false);
425         dma_fence_put(fence);
426         return r;
427 }
428
429 /*
430  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
431  *
432  * Called by amdgpu_bo_move()
433  */
434 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
435                                struct ttm_resource *mem)
436 {
437         uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
438         struct amdgpu_res_cursor cursor;
439
440         if (mem->mem_type == TTM_PL_SYSTEM ||
441             mem->mem_type == TTM_PL_TT)
442                 return true;
443         if (mem->mem_type != TTM_PL_VRAM)
444                 return false;
445
446         amdgpu_res_first(mem, 0, mem_size, &cursor);
447
448         /* ttm_resource_ioremap only supports contiguous memory */
449         if (cursor.size != mem_size)
450                 return false;
451
452         return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
453 }
454
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461                           struct ttm_operation_ctx *ctx,
462                           struct ttm_resource *new_mem,
463                           struct ttm_place *hop)
464 {
465         struct amdgpu_device *adev;
466         struct amdgpu_bo *abo;
467         struct ttm_resource *old_mem = bo->resource;
468         int r;
469
470         if (new_mem->mem_type == TTM_PL_TT ||
471             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473                 if (r)
474                         return r;
475         }
476
477         /* Can't move a pinned BO */
478         abo = ttm_to_amdgpu_bo(bo);
479         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480                 return -EINVAL;
481
482         adev = amdgpu_ttm_adev(bo->bdev);
483
484         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
485                 ttm_bo_move_null(bo, new_mem);
486                 goto out;
487         }
488         if (old_mem->mem_type == TTM_PL_SYSTEM &&
489             (new_mem->mem_type == TTM_PL_TT ||
490              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491                 ttm_bo_move_null(bo, new_mem);
492                 goto out;
493         }
494         if ((old_mem->mem_type == TTM_PL_TT ||
495              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496             new_mem->mem_type == TTM_PL_SYSTEM) {
497                 r = ttm_bo_wait_ctx(bo, ctx);
498                 if (r)
499                         return r;
500
501                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502                 ttm_resource_free(bo, &bo->resource);
503                 ttm_bo_assign_mem(bo, new_mem);
504                 goto out;
505         }
506
507         if (old_mem->mem_type == AMDGPU_PL_GDS ||
508             old_mem->mem_type == AMDGPU_PL_GWS ||
509             old_mem->mem_type == AMDGPU_PL_OA ||
510             new_mem->mem_type == AMDGPU_PL_GDS ||
511             new_mem->mem_type == AMDGPU_PL_GWS ||
512             new_mem->mem_type == AMDGPU_PL_OA) {
513                 /* Nothing to save here */
514                 ttm_bo_move_null(bo, new_mem);
515                 goto out;
516         }
517
518         if (bo->type == ttm_bo_type_device &&
519             new_mem->mem_type == TTM_PL_VRAM &&
520             old_mem->mem_type != TTM_PL_VRAM) {
521                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
522                  * accesses the BO after it's moved.
523                  */
524                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
525         }
526
527         if (adev->mman.buffer_funcs_enabled) {
528                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
529                       new_mem->mem_type == TTM_PL_VRAM) ||
530                      (old_mem->mem_type == TTM_PL_VRAM &&
531                       new_mem->mem_type == TTM_PL_SYSTEM))) {
532                         hop->fpfn = 0;
533                         hop->lpfn = 0;
534                         hop->mem_type = TTM_PL_TT;
535                         hop->flags = TTM_PL_FLAG_TEMPORARY;
536                         return -EMULTIHOP;
537                 }
538
539                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
540         } else {
541                 r = -ENODEV;
542         }
543
544         if (r) {
545                 /* Check that all memory is CPU accessible */
546                 if (!amdgpu_mem_visible(adev, old_mem) ||
547                     !amdgpu_mem_visible(adev, new_mem)) {
548                         pr_err("Move buffer fallback to memcpy unavailable\n");
549                         return r;
550                 }
551
552                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
553                 if (r)
554                         return r;
555         }
556
557 out:
558         /* update statistics */
559         atomic64_add(bo->base.size, &adev->num_bytes_moved);
560         amdgpu_bo_move_notify(bo, evict, new_mem);
561         return 0;
562 }
563
564 /*
565  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
566  *
567  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
568  */
569 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
570                                      struct ttm_resource *mem)
571 {
572         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
573         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
574
575         switch (mem->mem_type) {
576         case TTM_PL_SYSTEM:
577                 /* system memory */
578                 return 0;
579         case TTM_PL_TT:
580         case AMDGPU_PL_PREEMPT:
581                 break;
582         case TTM_PL_VRAM:
583                 mem->bus.offset = mem->start << PAGE_SHIFT;
584                 /* check if it's visible */
585                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
586                         return -EINVAL;
587
588                 if (adev->mman.aper_base_kaddr &&
589                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
590                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
591                                         mem->bus.offset;
592
593                 mem->bus.offset += adev->gmc.aper_base;
594                 mem->bus.is_iomem = true;
595                 break;
596         default:
597                 return -EINVAL;
598         }
599         return 0;
600 }
601
602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603                                            unsigned long page_offset)
604 {
605         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606         struct amdgpu_res_cursor cursor;
607
608         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
609                          &cursor);
610         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
611 }
612
613 /**
614  * amdgpu_ttm_domain_start - Returns GPU start address
615  * @adev: amdgpu device object
616  * @type: type of the memory
617  *
618  * Returns:
619  * GPU start address of a memory domain
620  */
621
622 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
623 {
624         switch (type) {
625         case TTM_PL_TT:
626                 return adev->gmc.gart_start;
627         case TTM_PL_VRAM:
628                 return adev->gmc.vram_start;
629         }
630
631         return 0;
632 }
633
634 /*
635  * TTM backend functions.
636  */
637 struct amdgpu_ttm_tt {
638         struct ttm_tt   ttm;
639         struct drm_gem_object   *gobj;
640         u64                     offset;
641         uint64_t                userptr;
642         struct task_struct      *usertask;
643         uint32_t                userflags;
644         bool                    bound;
645 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
646         struct hmm_range        *range;
647 #endif
648 };
649
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653  * memory and start HMM tracking CPU page table update
654  *
655  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656  * once afterwards to stop HMM tracking
657  */
658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
659 {
660         struct ttm_tt *ttm = bo->tbo.ttm;
661         struct amdgpu_ttm_tt *gtt = (void *)ttm;
662         unsigned long start = gtt->userptr;
663         struct vm_area_struct *vma;
664         struct mm_struct *mm;
665         bool readonly;
666         int r = 0;
667
668         mm = bo->notifier.mm;
669         if (unlikely(!mm)) {
670                 DRM_DEBUG_DRIVER("BO is not registered?\n");
671                 return -EFAULT;
672         }
673
674         /* Another get_user_pages is running at the same time?? */
675         if (WARN_ON(gtt->range))
676                 return -EFAULT;
677
678         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679                 return -ESRCH;
680
681         mmap_read_lock(mm);
682         vma = vma_lookup(mm, start);
683         if (unlikely(!vma)) {
684                 r = -EFAULT;
685                 goto out_unlock;
686         }
687         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688                 vma->vm_file)) {
689                 r = -EPERM;
690                 goto out_unlock;
691         }
692
693         readonly = amdgpu_ttm_tt_is_readonly(ttm);
694         r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695                                        ttm->num_pages, &gtt->range, readonly,
696                                        true, NULL);
697 out_unlock:
698         mmap_read_unlock(mm);
699         if (r)
700                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701
702         mmput(mm);
703
704         return r;
705 }
706
707 /*
708  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
709  * Check if the pages backing this ttm range have been invalidated
710  *
711  * Returns: true if pages are still valid
712  */
713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
714 {
715         struct amdgpu_ttm_tt *gtt = (void *)ttm;
716         bool r = false;
717
718         if (!gtt || !gtt->userptr)
719                 return false;
720
721         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
722                 gtt->userptr, ttm->num_pages);
723
724         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
725                 "No user pages to check\n");
726
727         if (gtt->range) {
728                 /*
729                  * FIXME: Must always hold notifier_lock for this, and must
730                  * not ignore the return code.
731                  */
732                 r = amdgpu_hmm_range_get_pages_done(gtt->range);
733                 gtt->range = NULL;
734         }
735
736         return !r;
737 }
738 #endif
739
740 /*
741  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
742  *
743  * Called by amdgpu_cs_list_validate(). This creates the page list
744  * that backs user memory and will ultimately be mapped into the device
745  * address space.
746  */
747 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
748 {
749         unsigned long i;
750
751         for (i = 0; i < ttm->num_pages; ++i)
752                 ttm->pages[i] = pages ? pages[i] : NULL;
753 }
754
755 /*
756  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
757  *
758  * Called by amdgpu_ttm_backend_bind()
759  **/
760 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
761                                      struct ttm_tt *ttm)
762 {
763         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
764         struct amdgpu_ttm_tt *gtt = (void *)ttm;
765         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
766         enum dma_data_direction direction = write ?
767                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
768         int r;
769
770         /* Allocate an SG array and squash pages into it */
771         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
772                                       (u64)ttm->num_pages << PAGE_SHIFT,
773                                       GFP_KERNEL);
774         if (r)
775                 goto release_sg;
776
777         /* Map SG to device */
778         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
779         if (r)
780                 goto release_sg;
781
782         /* convert SG to linear array of pages and dma addresses */
783         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
784                                        ttm->num_pages);
785
786         return 0;
787
788 release_sg:
789         kfree(ttm->sg);
790         ttm->sg = NULL;
791         return r;
792 }
793
794 /*
795  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
796  */
797 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
798                                         struct ttm_tt *ttm)
799 {
800         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
801         struct amdgpu_ttm_tt *gtt = (void *)ttm;
802         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
803         enum dma_data_direction direction = write ?
804                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
805
806         /* double check that we don't free the table twice */
807         if (!ttm->sg || !ttm->sg->sgl)
808                 return;
809
810         /* unmap the pages mapped to the device */
811         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
812         sg_free_table(ttm->sg);
813
814 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
815         if (gtt->range) {
816                 unsigned long i;
817
818                 for (i = 0; i < ttm->num_pages; i++) {
819                         if (ttm->pages[i] !=
820                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
821                                 break;
822                 }
823
824                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
825         }
826 #endif
827 }
828
829 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
830                                 struct ttm_buffer_object *tbo,
831                                 uint64_t flags)
832 {
833         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
834         struct ttm_tt *ttm = tbo->ttm;
835         struct amdgpu_ttm_tt *gtt = (void *)ttm;
836         int r;
837
838         if (amdgpu_bo_encrypted(abo))
839                 flags |= AMDGPU_PTE_TMZ;
840
841         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
842                 uint64_t page_idx = 1;
843
844                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
845                                 gtt->ttm.dma_address, flags);
846                 if (r)
847                         goto gart_bind_fail;
848
849                 /* The memory type of the first page defaults to UC. Now
850                  * modify the memory type to NC from the second page of
851                  * the BO onward.
852                  */
853                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
854                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
855
856                 r = amdgpu_gart_bind(adev,
857                                 gtt->offset + (page_idx << PAGE_SHIFT),
858                                 ttm->num_pages - page_idx,
859                                 &(gtt->ttm.dma_address[page_idx]), flags);
860         } else {
861                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
862                                      gtt->ttm.dma_address, flags);
863         }
864
865 gart_bind_fail:
866         if (r)
867                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
868                           ttm->num_pages, gtt->offset);
869
870         return r;
871 }
872
873 /*
874  * amdgpu_ttm_backend_bind - Bind GTT memory
875  *
876  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
877  * This handles binding GTT memory to the device address space.
878  */
879 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880                                    struct ttm_tt *ttm,
881                                    struct ttm_resource *bo_mem)
882 {
883         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
884         struct amdgpu_ttm_tt *gtt = (void*)ttm;
885         uint64_t flags;
886         int r = 0;
887
888         if (!bo_mem)
889                 return -EINVAL;
890
891         if (gtt->bound)
892                 return 0;
893
894         if (gtt->userptr) {
895                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896                 if (r) {
897                         DRM_ERROR("failed to pin userptr\n");
898                         return r;
899                 }
900         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
901                 if (!ttm->sg) {
902                         struct dma_buf_attachment *attach;
903                         struct sg_table *sgt;
904
905                         attach = gtt->gobj->import_attach;
906                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907                         if (IS_ERR(sgt))
908                                 return PTR_ERR(sgt);
909
910                         ttm->sg = sgt;
911                 }
912
913                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
914                                                ttm->num_pages);
915         }
916
917         if (!ttm->num_pages) {
918                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
919                      ttm->num_pages, bo_mem, ttm);
920         }
921
922         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
923             bo_mem->mem_type == AMDGPU_PL_GWS ||
924             bo_mem->mem_type == AMDGPU_PL_OA)
925                 return -EINVAL;
926
927         if (bo_mem->mem_type != TTM_PL_TT ||
928             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
929                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
930                 return 0;
931         }
932
933         /* compute PTE flags relevant to this BO memory */
934         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
935
936         /* bind pages into GART page tables */
937         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
938         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
939                 gtt->ttm.dma_address, flags);
940
941         if (r)
942                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
943                           ttm->num_pages, gtt->offset);
944         gtt->bound = true;
945         return r;
946 }
947
948 /*
949  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
950  * through AGP or GART aperture.
951  *
952  * If bo is accessible through AGP aperture, then use AGP aperture
953  * to access bo; otherwise allocate logical space in GART aperture
954  * and map bo to GART aperture.
955  */
956 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
957 {
958         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
959         struct ttm_operation_ctx ctx = { false, false };
960         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
961         struct ttm_placement placement;
962         struct ttm_place placements;
963         struct ttm_resource *tmp;
964         uint64_t addr, flags;
965         int r;
966
967         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
968                 return 0;
969
970         addr = amdgpu_gmc_agp_addr(bo);
971         if (addr != AMDGPU_BO_INVALID_OFFSET) {
972                 bo->resource->start = addr >> PAGE_SHIFT;
973                 return 0;
974         }
975
976         /* allocate GART space */
977         placement.num_placement = 1;
978         placement.placement = &placements;
979         placement.num_busy_placement = 1;
980         placement.busy_placement = &placements;
981         placements.fpfn = 0;
982         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
983         placements.mem_type = TTM_PL_TT;
984         placements.flags = bo->resource->placement;
985
986         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
987         if (unlikely(r))
988                 return r;
989
990         /* compute PTE flags for this buffer object */
991         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
992
993         /* Bind pages */
994         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
995         r = amdgpu_ttm_gart_bind(adev, bo, flags);
996         if (unlikely(r)) {
997                 ttm_resource_free(bo, &tmp);
998                 return r;
999         }
1000
1001         amdgpu_gart_invalidate_tlb(adev);
1002         ttm_resource_free(bo, &bo->resource);
1003         ttm_bo_assign_mem(bo, tmp);
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * amdgpu_ttm_recover_gart - Rebind GTT pages
1010  *
1011  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1012  * rebind GTT pages during a GPU reset.
1013  */
1014 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1015 {
1016         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1017         uint64_t flags;
1018         int r;
1019
1020         if (!tbo->ttm)
1021                 return 0;
1022
1023         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1024         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1025
1026         return r;
1027 }
1028
1029 /*
1030  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1031  *
1032  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1033  * ttm_tt_destroy().
1034  */
1035 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1036                                       struct ttm_tt *ttm)
1037 {
1038         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1039         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1040         int r;
1041
1042         /* if the pages have userptr pinning then clear that first */
1043         if (gtt->userptr) {
1044                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1045         } else if (ttm->sg && gtt->gobj->import_attach) {
1046                 struct dma_buf_attachment *attach;
1047
1048                 attach = gtt->gobj->import_attach;
1049                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1050                 ttm->sg = NULL;
1051         }
1052
1053         if (!gtt->bound)
1054                 return;
1055
1056         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1057                 return;
1058
1059         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1060         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1061         if (r)
1062                 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1063                           gtt->ttm.num_pages, gtt->offset);
1064         gtt->bound = false;
1065 }
1066
1067 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1068                                        struct ttm_tt *ttm)
1069 {
1070         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1071
1072         if (gtt->usertask)
1073                 put_task_struct(gtt->usertask);
1074
1075         ttm_tt_fini(&gtt->ttm);
1076         kfree(gtt);
1077 }
1078
1079 /**
1080  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1081  *
1082  * @bo: The buffer object to create a GTT ttm_tt object around
1083  * @page_flags: Page flags to be added to the ttm_tt object
1084  *
1085  * Called by ttm_tt_create().
1086  */
1087 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1088                                            uint32_t page_flags)
1089 {
1090         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1091         struct amdgpu_ttm_tt *gtt;
1092         enum ttm_caching caching;
1093
1094         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1095         if (gtt == NULL) {
1096                 return NULL;
1097         }
1098         gtt->gobj = &bo->base;
1099
1100         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1101                 caching = ttm_write_combined;
1102         else
1103                 caching = ttm_cached;
1104
1105         /* allocate space for the uninitialized page entries */
1106         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1107                 kfree(gtt);
1108                 return NULL;
1109         }
1110         return &gtt->ttm;
1111 }
1112
1113 /*
1114  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1115  *
1116  * Map the pages of a ttm_tt object to an address space visible
1117  * to the underlying device.
1118  */
1119 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1120                                   struct ttm_tt *ttm,
1121                                   struct ttm_operation_ctx *ctx)
1122 {
1123         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1124         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125         pgoff_t i;
1126         int ret;
1127
1128         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1129         if (gtt->userptr) {
1130                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1131                 if (!ttm->sg)
1132                         return -ENOMEM;
1133                 return 0;
1134         }
1135
1136         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1137                 return 0;
1138
1139         ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1140         if (ret)
1141                 return ret;
1142
1143         for (i = 0; i < ttm->num_pages; ++i)
1144                 ttm->pages[i]->mapping = bdev->dev_mapping;
1145
1146         return 0;
1147 }
1148
1149 /*
1150  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1151  *
1152  * Unmaps pages of a ttm_tt object from the device address space and
1153  * unpopulates the page array backing it.
1154  */
1155 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1156                                      struct ttm_tt *ttm)
1157 {
1158         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159         struct amdgpu_device *adev;
1160         pgoff_t i;
1161
1162         amdgpu_ttm_backend_unbind(bdev, ttm);
1163
1164         if (gtt->userptr) {
1165                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1166                 kfree(ttm->sg);
1167                 ttm->sg = NULL;
1168                 return;
1169         }
1170
1171         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1172                 return;
1173
1174         for (i = 0; i < ttm->num_pages; ++i)
1175                 ttm->pages[i]->mapping = NULL;
1176
1177         adev = amdgpu_ttm_adev(bdev);
1178         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1179 }
1180
1181 /**
1182  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1183  * task
1184  *
1185  * @bo: The ttm_buffer_object to bind this userptr to
1186  * @addr:  The address in the current tasks VM space to use
1187  * @flags: Requirements of userptr object.
1188  *
1189  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1190  * to current task
1191  */
1192 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1193                               uint64_t addr, uint32_t flags)
1194 {
1195         struct amdgpu_ttm_tt *gtt;
1196
1197         if (!bo->ttm) {
1198                 /* TODO: We want a separate TTM object type for userptrs */
1199                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1200                 if (bo->ttm == NULL)
1201                         return -ENOMEM;
1202         }
1203
1204         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1205         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1206
1207         gtt = (void *)bo->ttm;
1208         gtt->userptr = addr;
1209         gtt->userflags = flags;
1210
1211         if (gtt->usertask)
1212                 put_task_struct(gtt->usertask);
1213         gtt->usertask = current->group_leader;
1214         get_task_struct(gtt->usertask);
1215
1216         return 0;
1217 }
1218
1219 /*
1220  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1221  */
1222 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1223 {
1224         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1225
1226         if (gtt == NULL)
1227                 return NULL;
1228
1229         if (gtt->usertask == NULL)
1230                 return NULL;
1231
1232         return gtt->usertask->mm;
1233 }
1234
1235 /*
1236  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1237  * address range for the current task.
1238  *
1239  */
1240 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1241                                   unsigned long end, unsigned long *userptr)
1242 {
1243         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1244         unsigned long size;
1245
1246         if (gtt == NULL || !gtt->userptr)
1247                 return false;
1248
1249         /* Return false if no part of the ttm_tt object lies within
1250          * the range
1251          */
1252         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1253         if (gtt->userptr > end || gtt->userptr + size <= start)
1254                 return false;
1255
1256         if (userptr)
1257                 *userptr = gtt->userptr;
1258         return true;
1259 }
1260
1261 /*
1262  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1263  */
1264 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1265 {
1266         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1267
1268         if (gtt == NULL || !gtt->userptr)
1269                 return false;
1270
1271         return true;
1272 }
1273
1274 /*
1275  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1276  */
1277 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1278 {
1279         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1280
1281         if (gtt == NULL)
1282                 return false;
1283
1284         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1285 }
1286
1287 /**
1288  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1289  *
1290  * @ttm: The ttm_tt object to compute the flags for
1291  * @mem: The memory registry backing this ttm_tt object
1292  *
1293  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1294  */
1295 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1296 {
1297         uint64_t flags = 0;
1298
1299         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1300                 flags |= AMDGPU_PTE_VALID;
1301
1302         if (mem && (mem->mem_type == TTM_PL_TT ||
1303                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1304                 flags |= AMDGPU_PTE_SYSTEM;
1305
1306                 if (ttm->caching == ttm_cached)
1307                         flags |= AMDGPU_PTE_SNOOPED;
1308         }
1309
1310         if (mem && mem->mem_type == TTM_PL_VRAM &&
1311                         mem->bus.caching == ttm_cached)
1312                 flags |= AMDGPU_PTE_SNOOPED;
1313
1314         return flags;
1315 }
1316
1317 /**
1318  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1319  *
1320  * @adev: amdgpu_device pointer
1321  * @ttm: The ttm_tt object to compute the flags for
1322  * @mem: The memory registry backing this ttm_tt object
1323  *
1324  * Figure out the flags to use for a VM PTE (Page Table Entry).
1325  */
1326 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1327                                  struct ttm_resource *mem)
1328 {
1329         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1330
1331         flags |= adev->gart.gart_pte_flags;
1332         flags |= AMDGPU_PTE_READABLE;
1333
1334         if (!amdgpu_ttm_tt_is_readonly(ttm))
1335                 flags |= AMDGPU_PTE_WRITEABLE;
1336
1337         return flags;
1338 }
1339
1340 /*
1341  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1342  * object.
1343  *
1344  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1345  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1346  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1347  * used to clean out a memory space.
1348  */
1349 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1350                                             const struct ttm_place *place)
1351 {
1352         unsigned long num_pages = bo->resource->num_pages;
1353         struct amdgpu_res_cursor cursor;
1354         struct dma_resv_list *flist;
1355         struct dma_fence *f;
1356         int i;
1357
1358         /* Swapout? */
1359         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1360                 return true;
1361
1362         if (bo->type == ttm_bo_type_kernel &&
1363             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1364                 return false;
1365
1366         /* If bo is a KFD BO, check if the bo belongs to the current process.
1367          * If true, then return false as any KFD process needs all its BOs to
1368          * be resident to run successfully
1369          */
1370         flist = dma_resv_shared_list(bo->base.resv);
1371         if (flist) {
1372                 for (i = 0; i < flist->shared_count; ++i) {
1373                         f = rcu_dereference_protected(flist->shared[i],
1374                                 dma_resv_held(bo->base.resv));
1375                         if (amdkfd_fence_check_mm(f, current->mm))
1376                                 return false;
1377                 }
1378         }
1379
1380         switch (bo->resource->mem_type) {
1381         case AMDGPU_PL_PREEMPT:
1382                 /* Preemptible BOs don't own system resources managed by the
1383                  * driver (pages, VRAM, GART space). They point to resources
1384                  * owned by someone else (e.g. pageable memory in user mode
1385                  * or a DMABuf). They are used in a preemptible context so we
1386                  * can guarantee no deadlocks and good QoS in case of MMU
1387                  * notifiers or DMABuf move notifiers from the resource owner.
1388                  */
1389                 return false;
1390         case TTM_PL_TT:
1391                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1392                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1393                         return false;
1394                 return true;
1395
1396         case TTM_PL_VRAM:
1397                 /* Check each drm MM node individually */
1398                 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1399                                  &cursor);
1400                 while (cursor.remaining) {
1401                         if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1402                             && !(place->lpfn &&
1403                                  place->lpfn <= PFN_DOWN(cursor.start)))
1404                                 return true;
1405
1406                         amdgpu_res_next(&cursor, cursor.size);
1407                 }
1408                 return false;
1409
1410         default:
1411                 break;
1412         }
1413
1414         return ttm_bo_eviction_valuable(bo, place);
1415 }
1416
1417 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1418                                       void *buf, size_t size, bool write)
1419 {
1420         while (size) {
1421                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1422                 uint64_t bytes = 4 - (pos & 0x3);
1423                 uint32_t shift = (pos & 0x3) * 8;
1424                 uint32_t mask = 0xffffffff << shift;
1425                 uint32_t value = 0;
1426
1427                 if (size < bytes) {
1428                         mask &= 0xffffffff >> (bytes - size) * 8;
1429                         bytes = size;
1430                 }
1431
1432                 if (mask != 0xffffffff) {
1433                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1434                         if (write) {
1435                                 value &= ~mask;
1436                                 value |= (*(uint32_t *)buf << shift) & mask;
1437                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1438                         } else {
1439                                 value = (value & mask) >> shift;
1440                                 memcpy(buf, &value, bytes);
1441                         }
1442                 } else {
1443                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1444                 }
1445
1446                 pos += bytes;
1447                 buf += bytes;
1448                 size -= bytes;
1449         }
1450 }
1451
1452 /**
1453  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1454  *
1455  * @bo:  The buffer object to read/write
1456  * @offset:  Offset into buffer object
1457  * @buf:  Secondary buffer to write/read from
1458  * @len: Length in bytes of access
1459  * @write:  true if writing
1460  *
1461  * This is used to access VRAM that backs a buffer object via MMIO
1462  * access for debugging purposes.
1463  */
1464 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1465                                     unsigned long offset, void *buf, int len,
1466                                     int write)
1467 {
1468         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1469         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1470         struct amdgpu_res_cursor cursor;
1471         int ret = 0;
1472
1473         if (bo->resource->mem_type != TTM_PL_VRAM)
1474                 return -EIO;
1475
1476         amdgpu_res_first(bo->resource, offset, len, &cursor);
1477         while (cursor.remaining) {
1478                 size_t count, size = cursor.size;
1479                 loff_t pos = cursor.start;
1480
1481                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1482                 size -= count;
1483                 if (size) {
1484                         /* using MM to access rest vram and handle un-aligned address */
1485                         pos += count;
1486                         buf += count;
1487                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1488                 }
1489
1490                 ret += cursor.size;
1491                 buf += cursor.size;
1492                 amdgpu_res_next(&cursor, cursor.size);
1493         }
1494
1495         return ret;
1496 }
1497
1498 static void
1499 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1500 {
1501         amdgpu_bo_move_notify(bo, false, NULL);
1502 }
1503
1504 static struct ttm_device_funcs amdgpu_bo_driver = {
1505         .ttm_tt_create = &amdgpu_ttm_tt_create,
1506         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1507         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1508         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1509         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1510         .evict_flags = &amdgpu_evict_flags,
1511         .move = &amdgpu_bo_move,
1512         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1513         .release_notify = &amdgpu_bo_release_notify,
1514         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1515         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1516         .access_memory = &amdgpu_ttm_access_memory,
1517         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1518 };
1519
1520 /*
1521  * Firmware Reservation functions
1522  */
1523 /**
1524  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1525  *
1526  * @adev: amdgpu_device pointer
1527  *
1528  * free fw reserved vram if it has been reserved.
1529  */
1530 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1531 {
1532         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1533                 NULL, &adev->mman.fw_vram_usage_va);
1534 }
1535
1536 /**
1537  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1538  *
1539  * @adev: amdgpu_device pointer
1540  *
1541  * create bo vram reservation from fw.
1542  */
1543 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1544 {
1545         uint64_t vram_size = adev->gmc.visible_vram_size;
1546
1547         adev->mman.fw_vram_usage_va = NULL;
1548         adev->mman.fw_vram_usage_reserved_bo = NULL;
1549
1550         if (adev->mman.fw_vram_usage_size == 0 ||
1551             adev->mman.fw_vram_usage_size > vram_size)
1552                 return 0;
1553
1554         return amdgpu_bo_create_kernel_at(adev,
1555                                           adev->mman.fw_vram_usage_start_offset,
1556                                           adev->mman.fw_vram_usage_size,
1557                                           AMDGPU_GEM_DOMAIN_VRAM,
1558                                           &adev->mman.fw_vram_usage_reserved_bo,
1559                                           &adev->mman.fw_vram_usage_va);
1560 }
1561
1562 /*
1563  * Memoy training reservation functions
1564  */
1565
1566 /**
1567  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1568  *
1569  * @adev: amdgpu_device pointer
1570  *
1571  * free memory training reserved vram if it has been reserved.
1572  */
1573 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1574 {
1575         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1576
1577         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1578         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1579         ctx->c2p_bo = NULL;
1580
1581         return 0;
1582 }
1583
1584 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1585 {
1586         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1587
1588         memset(ctx, 0, sizeof(*ctx));
1589
1590         ctx->c2p_train_data_offset =
1591                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1592         ctx->p2c_train_data_offset =
1593                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1594         ctx->train_data_size =
1595                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1596
1597         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1598                         ctx->train_data_size,
1599                         ctx->p2c_train_data_offset,
1600                         ctx->c2p_train_data_offset);
1601 }
1602
1603 /*
1604  * reserve TMR memory at the top of VRAM which holds
1605  * IP Discovery data and is protected by PSP.
1606  */
1607 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1608 {
1609         int ret;
1610         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1611         bool mem_train_support = false;
1612
1613         if (!amdgpu_sriov_vf(adev)) {
1614                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1615                         mem_train_support = true;
1616                 else
1617                         DRM_DEBUG("memory training does not support!\n");
1618         }
1619
1620         /*
1621          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1622          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1623          *
1624          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1625          * discovery data and G6 memory training data respectively
1626          */
1627         adev->mman.discovery_tmr_size =
1628                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1629         if (!adev->mman.discovery_tmr_size)
1630                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1631
1632         if (mem_train_support) {
1633                 /* reserve vram for mem train according to TMR location */
1634                 amdgpu_ttm_training_data_block_init(adev);
1635                 ret = amdgpu_bo_create_kernel_at(adev,
1636                                          ctx->c2p_train_data_offset,
1637                                          ctx->train_data_size,
1638                                          AMDGPU_GEM_DOMAIN_VRAM,
1639                                          &ctx->c2p_bo,
1640                                          NULL);
1641                 if (ret) {
1642                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1643                         amdgpu_ttm_training_reserve_vram_fini(adev);
1644                         return ret;
1645                 }
1646                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1647         }
1648
1649         ret = amdgpu_bo_create_kernel_at(adev,
1650                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1651                                 adev->mman.discovery_tmr_size,
1652                                 AMDGPU_GEM_DOMAIN_VRAM,
1653                                 &adev->mman.discovery_memory,
1654                                 NULL);
1655         if (ret) {
1656                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1657                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1658                 return ret;
1659         }
1660
1661         return 0;
1662 }
1663
1664 /*
1665  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1666  * gtt/vram related fields.
1667  *
1668  * This initializes all of the memory space pools that the TTM layer
1669  * will need such as the GTT space (system memory mapped to the device),
1670  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1671  * can be mapped per VMID.
1672  */
1673 int amdgpu_ttm_init(struct amdgpu_device *adev)
1674 {
1675         uint64_t gtt_size;
1676         int r;
1677         u64 vis_vram_limit;
1678
1679         mutex_init(&adev->mman.gtt_window_lock);
1680
1681         /* No others user of address space so set it to 0 */
1682         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1683                                adev_to_drm(adev)->anon_inode->i_mapping,
1684                                adev_to_drm(adev)->vma_offset_manager,
1685                                adev->need_swiotlb,
1686                                dma_addressing_limited(adev->dev));
1687         if (r) {
1688                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1689                 return r;
1690         }
1691         adev->mman.initialized = true;
1692
1693         /* Initialize VRAM pool with all of VRAM divided into pages */
1694         r = amdgpu_vram_mgr_init(adev);
1695         if (r) {
1696                 DRM_ERROR("Failed initializing VRAM heap.\n");
1697                 return r;
1698         }
1699
1700         /* Reduce size of CPU-visible VRAM if requested */
1701         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1702         if (amdgpu_vis_vram_limit > 0 &&
1703             vis_vram_limit <= adev->gmc.visible_vram_size)
1704                 adev->gmc.visible_vram_size = vis_vram_limit;
1705
1706         /* Change the size here instead of the init above so only lpfn is affected */
1707         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1708 #ifdef CONFIG_64BIT
1709 #ifdef CONFIG_X86
1710         if (adev->gmc.xgmi.connected_to_cpu)
1711                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1712                                 adev->gmc.visible_vram_size);
1713
1714         else
1715 #endif
1716                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1717                                 adev->gmc.visible_vram_size);
1718 #endif
1719
1720         /*
1721          *The reserved vram for firmware must be pinned to the specified
1722          *place on the VRAM, so reserve it early.
1723          */
1724         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1725         if (r) {
1726                 return r;
1727         }
1728
1729         /*
1730          * only NAVI10 and onwards ASIC support for IP discovery.
1731          * If IP discovery enabled, a block of memory should be
1732          * reserved for IP discovey.
1733          */
1734         if (adev->mman.discovery_bin) {
1735                 r = amdgpu_ttm_reserve_tmr(adev);
1736                 if (r)
1737                         return r;
1738         }
1739
1740         /* allocate memory as required for VGA
1741          * This is used for VGA emulation and pre-OS scanout buffers to
1742          * avoid display artifacts while transitioning between pre-OS
1743          * and driver.  */
1744         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1745                                        AMDGPU_GEM_DOMAIN_VRAM,
1746                                        &adev->mman.stolen_vga_memory,
1747                                        NULL);
1748         if (r)
1749                 return r;
1750         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1751                                        adev->mman.stolen_extended_size,
1752                                        AMDGPU_GEM_DOMAIN_VRAM,
1753                                        &adev->mman.stolen_extended_memory,
1754                                        NULL);
1755         if (r)
1756                 return r;
1757         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1758                                        adev->mman.stolen_reserved_size,
1759                                        AMDGPU_GEM_DOMAIN_VRAM,
1760                                        &adev->mman.stolen_reserved_memory,
1761                                        NULL);
1762         if (r)
1763                 return r;
1764
1765         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1766                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1767
1768         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1769          * or whatever the user passed on module init */
1770         if (amdgpu_gtt_size == -1) {
1771                 struct sysinfo si;
1772
1773                 si_meminfo(&si);
1774                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1775                                adev->gmc.mc_vram_size),
1776                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1777         }
1778         else
1779                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1780
1781         /* Initialize GTT memory pool */
1782         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1783         if (r) {
1784                 DRM_ERROR("Failed initializing GTT heap.\n");
1785                 return r;
1786         }
1787         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1788                  (unsigned)(gtt_size / (1024 * 1024)));
1789
1790         /* Initialize preemptible memory pool */
1791         r = amdgpu_preempt_mgr_init(adev);
1792         if (r) {
1793                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1794                 return r;
1795         }
1796
1797         /* Initialize various on-chip memory pools */
1798         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1799         if (r) {
1800                 DRM_ERROR("Failed initializing GDS heap.\n");
1801                 return r;
1802         }
1803
1804         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1805         if (r) {
1806                 DRM_ERROR("Failed initializing gws heap.\n");
1807                 return r;
1808         }
1809
1810         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1811         if (r) {
1812                 DRM_ERROR("Failed initializing oa heap.\n");
1813                 return r;
1814         }
1815
1816         return 0;
1817 }
1818
1819 /*
1820  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1821  */
1822 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1823 {
1824         if (!adev->mman.initialized)
1825                 return;
1826
1827         amdgpu_ttm_training_reserve_vram_fini(adev);
1828         /* return the stolen vga memory back to VRAM */
1829         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1830         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1831         /* return the IP Discovery TMR memory back to VRAM */
1832         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1833         if (adev->mman.stolen_reserved_size)
1834                 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1835                                       NULL, NULL);
1836         amdgpu_ttm_fw_reserve_vram_fini(adev);
1837
1838         amdgpu_vram_mgr_fini(adev);
1839         amdgpu_gtt_mgr_fini(adev);
1840         amdgpu_preempt_mgr_fini(adev);
1841         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1842         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1843         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1844         ttm_device_fini(&adev->mman.bdev);
1845         adev->mman.initialized = false;
1846         DRM_INFO("amdgpu: ttm finalized\n");
1847 }
1848
1849 /**
1850  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1851  *
1852  * @adev: amdgpu_device pointer
1853  * @enable: true when we can use buffer functions.
1854  *
1855  * Enable/disable use of buffer functions during suspend/resume. This should
1856  * only be called at bootup or when userspace isn't running.
1857  */
1858 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1859 {
1860         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1861         uint64_t size;
1862         int r;
1863
1864         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1865             adev->mman.buffer_funcs_enabled == enable)
1866                 return;
1867
1868         if (enable) {
1869                 struct amdgpu_ring *ring;
1870                 struct drm_gpu_scheduler *sched;
1871
1872                 ring = adev->mman.buffer_funcs_ring;
1873                 sched = &ring->sched;
1874                 r = drm_sched_entity_init(&adev->mman.entity,
1875                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1876                                           1, NULL);
1877                 if (r) {
1878                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1879                                   r);
1880                         return;
1881                 }
1882         } else {
1883                 drm_sched_entity_destroy(&adev->mman.entity);
1884                 dma_fence_put(man->move);
1885                 man->move = NULL;
1886         }
1887
1888         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1889         if (enable)
1890                 size = adev->gmc.real_vram_size;
1891         else
1892                 size = adev->gmc.visible_vram_size;
1893         man->size = size >> PAGE_SHIFT;
1894         adev->mman.buffer_funcs_enabled = enable;
1895 }
1896
1897 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1898                        uint64_t dst_offset, uint32_t byte_count,
1899                        struct dma_resv *resv,
1900                        struct dma_fence **fence, bool direct_submit,
1901                        bool vm_needs_flush, bool tmz)
1902 {
1903         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1904                 AMDGPU_IB_POOL_DELAYED;
1905         struct amdgpu_device *adev = ring->adev;
1906         struct amdgpu_job *job;
1907
1908         uint32_t max_bytes;
1909         unsigned num_loops, num_dw;
1910         unsigned i;
1911         int r;
1912
1913         if (direct_submit && !ring->sched.ready) {
1914                 DRM_ERROR("Trying to move memory with ring turned off.\n");
1915                 return -EINVAL;
1916         }
1917
1918         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1919         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1920         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1921
1922         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1923         if (r)
1924                 return r;
1925
1926         if (vm_needs_flush) {
1927                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1928                                         adev->gmc.pdb0_bo : adev->gart.bo);
1929                 job->vm_needs_flush = true;
1930         }
1931         if (resv) {
1932                 r = amdgpu_sync_resv(adev, &job->sync, resv,
1933                                      AMDGPU_SYNC_ALWAYS,
1934                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1935                 if (r) {
1936                         DRM_ERROR("sync failed (%d).\n", r);
1937                         goto error_free;
1938                 }
1939         }
1940
1941         for (i = 0; i < num_loops; i++) {
1942                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1943
1944                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1945                                         dst_offset, cur_size_in_bytes, tmz);
1946
1947                 src_offset += cur_size_in_bytes;
1948                 dst_offset += cur_size_in_bytes;
1949                 byte_count -= cur_size_in_bytes;
1950         }
1951
1952         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1953         WARN_ON(job->ibs[0].length_dw > num_dw);
1954         if (direct_submit)
1955                 r = amdgpu_job_submit_direct(job, ring, fence);
1956         else
1957                 r = amdgpu_job_submit(job, &adev->mman.entity,
1958                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1959         if (r)
1960                 goto error_free;
1961
1962         return r;
1963
1964 error_free:
1965         amdgpu_job_free(job);
1966         DRM_ERROR("Error scheduling IBs (%d)\n", r);
1967         return r;
1968 }
1969
1970 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1971                        uint32_t src_data,
1972                        struct dma_resv *resv,
1973                        struct dma_fence **fence)
1974 {
1975         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1976         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1977         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1978
1979         struct amdgpu_res_cursor cursor;
1980         unsigned int num_loops, num_dw;
1981         uint64_t num_bytes;
1982
1983         struct amdgpu_job *job;
1984         int r;
1985
1986         if (!adev->mman.buffer_funcs_enabled) {
1987                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1988                 return -EINVAL;
1989         }
1990
1991         if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1992                 DRM_ERROR("Trying to clear preemptible memory.\n");
1993                 return -EINVAL;
1994         }
1995
1996         if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1997                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
1998                 if (r)
1999                         return r;
2000         }
2001
2002         num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
2003         num_loops = 0;
2004
2005         amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2006         while (cursor.remaining) {
2007                 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2008                 amdgpu_res_next(&cursor, cursor.size);
2009         }
2010         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2011
2012         /* for IB padding */
2013         num_dw += 64;
2014
2015         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2016                                      &job);
2017         if (r)
2018                 return r;
2019
2020         if (resv) {
2021                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2022                                      AMDGPU_SYNC_ALWAYS,
2023                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2024                 if (r) {
2025                         DRM_ERROR("sync failed (%d).\n", r);
2026                         goto error_free;
2027                 }
2028         }
2029
2030         amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2031         while (cursor.remaining) {
2032                 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2033                 uint64_t dst_addr = cursor.start;
2034
2035                 dst_addr += amdgpu_ttm_domain_start(adev,
2036                                                     bo->tbo.resource->mem_type);
2037                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2038                                         cur_size);
2039
2040                 amdgpu_res_next(&cursor, cur_size);
2041         }
2042
2043         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2044         WARN_ON(job->ibs[0].length_dw > num_dw);
2045         r = amdgpu_job_submit(job, &adev->mman.entity,
2046                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2047         if (r)
2048                 goto error_free;
2049
2050         return 0;
2051
2052 error_free:
2053         amdgpu_job_free(job);
2054         return r;
2055 }
2056
2057 /**
2058  * amdgpu_ttm_evict_resources - evict memory buffers
2059  * @adev: amdgpu device object
2060  * @mem_type: evicted BO's memory type
2061  *
2062  * Evicts all @mem_type buffers on the lru list of the memory type.
2063  *
2064  * Returns:
2065  * 0 for success or a negative error code on failure.
2066  */
2067 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2068 {
2069         struct ttm_resource_manager *man;
2070
2071         switch (mem_type) {
2072         case TTM_PL_VRAM:
2073         case TTM_PL_TT:
2074         case AMDGPU_PL_GWS:
2075         case AMDGPU_PL_GDS:
2076         case AMDGPU_PL_OA:
2077                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2078                 break;
2079         default:
2080                 DRM_ERROR("Trying to evict invalid memory type\n");
2081                 return -EINVAL;
2082         }
2083
2084         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2085 }
2086
2087 #if defined(CONFIG_DEBUG_FS)
2088
2089 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2090 {
2091         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2092         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2093                                                             TTM_PL_VRAM);
2094         struct drm_printer p = drm_seq_file_printer(m);
2095
2096         man->func->debug(man, &p);
2097         return 0;
2098 }
2099
2100 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2101 {
2102         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2103
2104         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2105 }
2106
2107 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2108 {
2109         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2110         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2111                                                             TTM_PL_TT);
2112         struct drm_printer p = drm_seq_file_printer(m);
2113
2114         man->func->debug(man, &p);
2115         return 0;
2116 }
2117
2118 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2119 {
2120         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2121         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2122                                                             AMDGPU_PL_GDS);
2123         struct drm_printer p = drm_seq_file_printer(m);
2124
2125         man->func->debug(man, &p);
2126         return 0;
2127 }
2128
2129 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2130 {
2131         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2132         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2133                                                             AMDGPU_PL_GWS);
2134         struct drm_printer p = drm_seq_file_printer(m);
2135
2136         man->func->debug(man, &p);
2137         return 0;
2138 }
2139
2140 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2141 {
2142         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2143         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2144                                                             AMDGPU_PL_OA);
2145         struct drm_printer p = drm_seq_file_printer(m);
2146
2147         man->func->debug(man, &p);
2148         return 0;
2149 }
2150
2151 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2152 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2153 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2154 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2155 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2156 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2157
2158 /*
2159  * amdgpu_ttm_vram_read - Linear read access to VRAM
2160  *
2161  * Accesses VRAM via MMIO for debugging purposes.
2162  */
2163 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2164                                     size_t size, loff_t *pos)
2165 {
2166         struct amdgpu_device *adev = file_inode(f)->i_private;
2167         ssize_t result = 0;
2168
2169         if (size & 0x3 || *pos & 0x3)
2170                 return -EINVAL;
2171
2172         if (*pos >= adev->gmc.mc_vram_size)
2173                 return -ENXIO;
2174
2175         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2176         while (size) {
2177                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2178                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2179
2180                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2181                 if (copy_to_user(buf, value, bytes))
2182                         return -EFAULT;
2183
2184                 result += bytes;
2185                 buf += bytes;
2186                 *pos += bytes;
2187                 size -= bytes;
2188         }
2189
2190         return result;
2191 }
2192
2193 /*
2194  * amdgpu_ttm_vram_write - Linear write access to VRAM
2195  *
2196  * Accesses VRAM via MMIO for debugging purposes.
2197  */
2198 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2199                                     size_t size, loff_t *pos)
2200 {
2201         struct amdgpu_device *adev = file_inode(f)->i_private;
2202         ssize_t result = 0;
2203         int r;
2204
2205         if (size & 0x3 || *pos & 0x3)
2206                 return -EINVAL;
2207
2208         if (*pos >= adev->gmc.mc_vram_size)
2209                 return -ENXIO;
2210
2211         while (size) {
2212                 uint32_t value;
2213
2214                 if (*pos >= adev->gmc.mc_vram_size)
2215                         return result;
2216
2217                 r = get_user(value, (uint32_t *)buf);
2218                 if (r)
2219                         return r;
2220
2221                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2222
2223                 result += 4;
2224                 buf += 4;
2225                 *pos += 4;
2226                 size -= 4;
2227         }
2228
2229         return result;
2230 }
2231
2232 static const struct file_operations amdgpu_ttm_vram_fops = {
2233         .owner = THIS_MODULE,
2234         .read = amdgpu_ttm_vram_read,
2235         .write = amdgpu_ttm_vram_write,
2236         .llseek = default_llseek,
2237 };
2238
2239 /*
2240  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2241  *
2242  * This function is used to read memory that has been mapped to the
2243  * GPU and the known addresses are not physical addresses but instead
2244  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2245  */
2246 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2247                                  size_t size, loff_t *pos)
2248 {
2249         struct amdgpu_device *adev = file_inode(f)->i_private;
2250         struct iommu_domain *dom;
2251         ssize_t result = 0;
2252         int r;
2253
2254         /* retrieve the IOMMU domain if any for this device */
2255         dom = iommu_get_domain_for_dev(adev->dev);
2256
2257         while (size) {
2258                 phys_addr_t addr = *pos & PAGE_MASK;
2259                 loff_t off = *pos & ~PAGE_MASK;
2260                 size_t bytes = PAGE_SIZE - off;
2261                 unsigned long pfn;
2262                 struct page *p;
2263                 void *ptr;
2264
2265                 bytes = bytes < size ? bytes : size;
2266
2267                 /* Translate the bus address to a physical address.  If
2268                  * the domain is NULL it means there is no IOMMU active
2269                  * and the address translation is the identity
2270                  */
2271                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2272
2273                 pfn = addr >> PAGE_SHIFT;
2274                 if (!pfn_valid(pfn))
2275                         return -EPERM;
2276
2277                 p = pfn_to_page(pfn);
2278                 if (p->mapping != adev->mman.bdev.dev_mapping)
2279                         return -EPERM;
2280
2281                 ptr = kmap(p);
2282                 r = copy_to_user(buf, ptr + off, bytes);
2283                 kunmap(p);
2284                 if (r)
2285                         return -EFAULT;
2286
2287                 size -= bytes;
2288                 *pos += bytes;
2289                 result += bytes;
2290         }
2291
2292         return result;
2293 }
2294
2295 /*
2296  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2297  *
2298  * This function is used to write memory that has been mapped to the
2299  * GPU and the known addresses are not physical addresses but instead
2300  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2301  */
2302 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2303                                  size_t size, loff_t *pos)
2304 {
2305         struct amdgpu_device *adev = file_inode(f)->i_private;
2306         struct iommu_domain *dom;
2307         ssize_t result = 0;
2308         int r;
2309
2310         dom = iommu_get_domain_for_dev(adev->dev);
2311
2312         while (size) {
2313                 phys_addr_t addr = *pos & PAGE_MASK;
2314                 loff_t off = *pos & ~PAGE_MASK;
2315                 size_t bytes = PAGE_SIZE - off;
2316                 unsigned long pfn;
2317                 struct page *p;
2318                 void *ptr;
2319
2320                 bytes = bytes < size ? bytes : size;
2321
2322                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2323
2324                 pfn = addr >> PAGE_SHIFT;
2325                 if (!pfn_valid(pfn))
2326                         return -EPERM;
2327
2328                 p = pfn_to_page(pfn);
2329                 if (p->mapping != adev->mman.bdev.dev_mapping)
2330                         return -EPERM;
2331
2332                 ptr = kmap(p);
2333                 r = copy_from_user(ptr + off, buf, bytes);
2334                 kunmap(p);
2335                 if (r)
2336                         return -EFAULT;
2337
2338                 size -= bytes;
2339                 *pos += bytes;
2340                 result += bytes;
2341         }
2342
2343         return result;
2344 }
2345
2346 static const struct file_operations amdgpu_ttm_iomem_fops = {
2347         .owner = THIS_MODULE,
2348         .read = amdgpu_iomem_read,
2349         .write = amdgpu_iomem_write,
2350         .llseek = default_llseek
2351 };
2352
2353 #endif
2354
2355 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2356 {
2357 #if defined(CONFIG_DEBUG_FS)
2358         struct drm_minor *minor = adev_to_drm(adev)->primary;
2359         struct dentry *root = minor->debugfs_root;
2360
2361         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2362                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2363         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2364                             &amdgpu_ttm_iomem_fops);
2365         debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2366                             &amdgpu_mm_vram_table_fops);
2367         debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2368                             &amdgpu_mm_tt_table_fops);
2369         debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2370                             &amdgpu_mm_gds_table_fops);
2371         debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2372                             &amdgpu_mm_gws_table_fops);
2373         debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2374                             &amdgpu_mm_oa_table_fops);
2375         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2376                             &amdgpu_ttm_page_pool_fops);
2377 #endif
2378 }
This page took 0.174027 seconds and 4 git commands to generate.