2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
278 #include <net/xfrm.h>
280 #include <net/sock.h>
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
301 * Current number of TCP sockets.
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
324 void tcp_enter_memory_pressure(struct sock *sk)
328 if (tcp_memory_pressure)
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339 void tcp_leave_memory_pressure(struct sock *sk)
343 if (!tcp_memory_pressure)
345 val = xchg(&tcp_memory_pressure, 0);
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 int period = timeout;
361 while (seconds > period && res < 255) {
364 if (timeout > rto_max)
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
381 if (timeout > rto_max)
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
402 /* Address-family independent initialization for a tcp_sock.
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
407 void tcp_init_sock(struct sock *sk)
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
427 tp->snd_cwnd = TCP_INIT_CWND;
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
443 tp->rack.reo_wnd_steps = 1;
445 sk->sk_state = TCP_CLOSE;
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 icsk->icsk_sync_mss = tcp_sync_mss;
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
458 EXPORT_SYMBOL(tcp_init_sock);
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 struct inet_connection_sock *icsk = inet_csk(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
489 * Wait for a TCP event.
491 * Note that we don't need to lock the socket, as the upper poll layers
492 * take care of normal races (between the test and the event) and we don't
493 * go look at any of the socket buffers directly.
495 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 struct sock *sk = sock->sk;
499 const struct tcp_sock *tp = tcp_sk(sk);
502 sock_poll_wait(file, sk_sleep(sk), wait);
504 state = inet_sk_state_load(sk);
505 if (state == TCP_LISTEN)
506 return inet_csk_listen_poll(sk);
508 /* Socket is not locked. We are protected from async events
509 * by poll logic and correct handling of state changes
510 * made by other threads is impossible in any case.
516 * EPOLLHUP is certainly not done right. But poll() doesn't
517 * have a notion of HUP in just one direction, and for a
518 * socket the read side is more interesting.
520 * Some poll() documentation says that EPOLLHUP is incompatible
521 * with the EPOLLOUT/POLLWR flags, so somebody should check this
522 * all. But careful, it tends to be safer to return too many
523 * bits than too few, and you can easily break real applications
524 * if you don't tell them that something has hung up!
528 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
529 * our fs/select.c). It means that after we received EOF,
530 * poll always returns immediately, making impossible poll() on write()
531 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
532 * if and only if shutdown has been made in both directions.
533 * Actually, it is interesting to look how Solaris and DUX
534 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
535 * then we could set it on SND_SHUTDOWN. BTW examples given
536 * in Stevens' books assume exactly this behaviour, it explains
537 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
539 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
540 * blocking on fresh not-connected or disconnected socket. --ANK
542 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
544 if (sk->sk_shutdown & RCV_SHUTDOWN)
545 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
547 /* Connected or passive Fast Open socket? */
548 if (state != TCP_SYN_SENT &&
549 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
550 int target = sock_rcvlowat(sk, 0, INT_MAX);
552 if (tp->urg_seq == tp->copied_seq &&
553 !sock_flag(sk, SOCK_URGINLINE) &&
557 if (tp->rcv_nxt - tp->copied_seq >= target)
558 mask |= EPOLLIN | EPOLLRDNORM;
560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
561 if (sk_stream_is_writeable(sk)) {
562 mask |= EPOLLOUT | EPOLLWRNORM;
563 } else { /* send SIGIO later */
564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
567 /* Race breaker. If space is freed after
568 * wspace test but before the flags are set,
569 * IO signal will be lost. Memory barrier
570 * pairs with the input side.
572 smp_mb__after_atomic();
573 if (sk_stream_is_writeable(sk))
574 mask |= EPOLLOUT | EPOLLWRNORM;
577 mask |= EPOLLOUT | EPOLLWRNORM;
579 if (tp->urg_data & TCP_URG_VALID)
581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
582 /* Active TCP fastopen socket with defer_connect
583 * Return EPOLLOUT so application can call write()
584 * in order for kernel to generate SYN+data
586 mask |= EPOLLOUT | EPOLLWRNORM;
588 /* This barrier is coupled with smp_wmb() in tcp_reset() */
590 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
595 EXPORT_SYMBOL(tcp_poll);
597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
599 struct tcp_sock *tp = tcp_sk(sk);
605 if (sk->sk_state == TCP_LISTEN)
608 slow = lock_sock_fast(sk);
610 unlock_sock_fast(sk, slow);
613 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
616 if (sk->sk_state == TCP_LISTEN)
619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
622 answ = tp->write_seq - tp->snd_una;
625 if (sk->sk_state == TCP_LISTEN)
628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
631 answ = tp->write_seq - tp->snd_nxt;
637 return put_user(answ, (int __user *)arg);
639 EXPORT_SYMBOL(tcp_ioctl);
641 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 tp->pushed_seq = tp->write_seq;
647 static inline bool forced_push(const struct tcp_sock *tp)
649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
652 static void skb_entail(struct sock *sk, struct sk_buff *skb)
654 struct tcp_sock *tp = tcp_sk(sk);
655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
658 tcb->seq = tcb->end_seq = tp->write_seq;
659 tcb->tcp_flags = TCPHDR_ACK;
661 __skb_header_release(skb);
662 tcp_add_write_queue_tail(sk, skb);
663 sk->sk_wmem_queued += skb->truesize;
664 sk_mem_charge(sk, skb->truesize);
665 if (tp->nonagle & TCP_NAGLE_PUSH)
666 tp->nonagle &= ~TCP_NAGLE_PUSH;
668 tcp_slow_start_after_idle_check(sk);
671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
674 tp->snd_up = tp->write_seq;
677 /* If a not yet filled skb is pushed, do not send it if
678 * we have data packets in Qdisc or NIC queues :
679 * Because TX completion will happen shortly, it gives a chance
680 * to coalesce future sendmsg() payload into this skb, without
681 * need for a timer, and with no latency trade off.
682 * As packets containing data payload have a bigger truesize
683 * than pure acks (dataless) packets, the last checks prevent
684 * autocorking if we only have an ACK in Qdisc/NIC queues,
685 * or if TX completion was delayed after we processed ACK packet.
687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
690 return skb->len < size_goal &&
691 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
692 skb != tcp_write_queue_head(sk) &&
693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
696 static void tcp_push(struct sock *sk, int flags, int mss_now,
697 int nonagle, int size_goal)
699 struct tcp_sock *tp = tcp_sk(sk);
702 skb = tcp_write_queue_tail(sk);
705 if (!(flags & MSG_MORE) || forced_push(tp))
706 tcp_mark_push(tp, skb);
708 tcp_mark_urg(tp, flags);
710 if (tcp_should_autocork(sk, skb, size_goal)) {
712 /* avoid atomic op if TSQ_THROTTLED bit is already set */
713 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
715 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 /* It is possible TX completion already happened
718 * before we set TSQ_THROTTLED.
720 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 if (flags & MSG_MORE)
725 nonagle = TCP_NAGLE_CORK;
727 __tcp_push_pending_frames(sk, mss_now, nonagle);
730 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
731 unsigned int offset, size_t len)
733 struct tcp_splice_state *tss = rd_desc->arg.data;
736 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
737 min(rd_desc->count, len), tss->flags);
739 rd_desc->count -= ret;
743 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 /* Store TCP splice context information in read_descriptor_t. */
746 read_descriptor_t rd_desc = {
751 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 * tcp_splice_read - splice data from TCP socket to a pipe
756 * @sock: socket to splice from
757 * @ppos: position (not valid)
758 * @pipe: pipe to splice to
759 * @len: number of bytes to splice
760 * @flags: splice modifier flags
763 * Will read pages from given socket and fill them into a pipe.
766 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
767 struct pipe_inode_info *pipe, size_t len,
770 struct sock *sk = sock->sk;
771 struct tcp_splice_state tss = {
780 sock_rps_record_flow(sk);
782 * We can't seek on a socket input
791 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 ret = __tcp_splice_read(sk, &tss);
799 if (sock_flag(sk, SOCK_DONE))
802 ret = sock_error(sk);
805 if (sk->sk_shutdown & RCV_SHUTDOWN)
807 if (sk->sk_state == TCP_CLOSE) {
809 * This occurs when user tries to read
810 * from never connected socket.
812 if (!sock_flag(sk, SOCK_DONE))
820 /* if __tcp_splice_read() got nothing while we have
821 * an skb in receive queue, we do not want to loop.
822 * This might happen with URG data.
824 if (!skb_queue_empty(&sk->sk_receive_queue))
826 sk_wait_data(sk, &timeo, NULL);
827 if (signal_pending(current)) {
828 ret = sock_intr_errno(timeo);
841 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
842 (sk->sk_shutdown & RCV_SHUTDOWN) ||
843 signal_pending(current))
854 EXPORT_SYMBOL(tcp_splice_read);
856 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
861 /* The TCP header must be at least 32-bit aligned. */
862 size = ALIGN(size, 4);
864 if (unlikely(tcp_under_memory_pressure(sk)))
865 sk_mem_reclaim_partial(sk);
867 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 if (force_schedule) {
872 mem_scheduled = true;
873 sk_forced_mem_schedule(sk, skb->truesize);
875 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
877 if (likely(mem_scheduled)) {
878 skb_reserve(skb, sk->sk_prot->max_header);
880 * Make sure that we have exactly size bytes
881 * available to the caller, no more, no less.
883 skb->reserved_tailroom = skb->end - skb->tail - size;
884 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
889 sk->sk_prot->enter_memory_pressure(sk);
890 sk_stream_moderate_sndbuf(sk);
895 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898 struct tcp_sock *tp = tcp_sk(sk);
899 u32 new_size_goal, size_goal;
904 /* Note : tcp_tso_autosize() will eventually split this later */
905 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
906 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
908 /* We try hard to avoid divides here */
909 size_goal = tp->gso_segs * mss_now;
910 if (unlikely(new_size_goal < size_goal ||
911 new_size_goal >= size_goal + mss_now)) {
912 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
913 sk->sk_gso_max_segs);
914 size_goal = tp->gso_segs * mss_now;
917 return max(size_goal, mss_now);
920 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 mss_now = tcp_current_mss(sk);
925 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
930 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
931 size_t size, int flags)
933 struct tcp_sock *tp = tcp_sk(sk);
934 int mss_now, size_goal;
937 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
939 /* Wait for a connection to finish. One exception is TCP Fast Open
940 * (passive side) where data is allowed to be sent before a connection
941 * is fully established.
943 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
944 !tcp_passive_fastopen(sk)) {
945 err = sk_stream_wait_connect(sk, &timeo);
950 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
952 mss_now = tcp_send_mss(sk, &size_goal, flags);
956 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
960 struct sk_buff *skb = tcp_write_queue_tail(sk);
964 if (!skb || (copy = size_goal - skb->len) <= 0 ||
965 !tcp_skb_can_collapse_to(skb)) {
967 if (!sk_stream_memory_free(sk))
968 goto wait_for_sndbuf;
970 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
971 tcp_rtx_and_write_queues_empty(sk));
973 goto wait_for_memory;
982 i = skb_shinfo(skb)->nr_frags;
983 can_coalesce = skb_can_coalesce(skb, i, page, offset);
984 if (!can_coalesce && i >= sysctl_max_skb_frags) {
985 tcp_mark_push(tp, skb);
988 if (!sk_wmem_schedule(sk, copy))
989 goto wait_for_memory;
992 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
995 skb_fill_page_desc(skb, i, page, offset, copy);
997 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1000 skb->data_len += copy;
1001 skb->truesize += copy;
1002 sk->sk_wmem_queued += copy;
1003 sk_mem_charge(sk, copy);
1004 skb->ip_summed = CHECKSUM_PARTIAL;
1005 tp->write_seq += copy;
1006 TCP_SKB_CB(skb)->end_seq += copy;
1007 tcp_skb_pcount_set(skb, 0);
1010 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1018 if (skb->len < size_goal || (flags & MSG_OOB))
1021 if (forced_push(tp)) {
1022 tcp_mark_push(tp, skb);
1023 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1024 } else if (skb == tcp_send_head(sk))
1025 tcp_push_one(sk, mss_now);
1029 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1031 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1032 TCP_NAGLE_PUSH, size_goal);
1034 err = sk_stream_wait_memory(sk, &timeo);
1038 mss_now = tcp_send_mss(sk, &size_goal, flags);
1043 tcp_tx_timestamp(sk, sk->sk_tsflags);
1044 if (!(flags & MSG_SENDPAGE_NOTLAST))
1045 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1053 /* make sure we wake any epoll edge trigger waiter */
1054 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1056 sk->sk_write_space(sk);
1057 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1059 return sk_stream_error(sk, flags, err);
1061 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1063 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1064 size_t size, int flags)
1066 if (!(sk->sk_route_caps & NETIF_F_SG))
1067 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1069 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1071 return do_tcp_sendpages(sk, page, offset, size, flags);
1073 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1075 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1076 size_t size, int flags)
1081 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1086 EXPORT_SYMBOL(tcp_sendpage);
1088 /* Do not bother using a page frag for very small frames.
1089 * But use this heuristic only for the first skb in write queue.
1091 * Having no payload in skb->head allows better SACK shifting
1092 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1093 * write queue has less skbs.
1094 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1095 * This also speeds up tso_fragment(), since it wont fallback
1096 * to tcp_fragment().
1098 static int linear_payload_sz(bool first_skb)
1101 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1105 static int select_size(bool first_skb, bool zc)
1109 return linear_payload_sz(first_skb);
1112 void tcp_free_fastopen_req(struct tcp_sock *tp)
1114 if (tp->fastopen_req) {
1115 kfree(tp->fastopen_req);
1116 tp->fastopen_req = NULL;
1120 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1121 int *copied, size_t size)
1123 struct tcp_sock *tp = tcp_sk(sk);
1124 struct inet_sock *inet = inet_sk(sk);
1125 struct sockaddr *uaddr = msg->msg_name;
1128 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1129 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1130 uaddr->sa_family == AF_UNSPEC))
1132 if (tp->fastopen_req)
1133 return -EALREADY; /* Another Fast Open is in progress */
1135 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1137 if (unlikely(!tp->fastopen_req))
1139 tp->fastopen_req->data = msg;
1140 tp->fastopen_req->size = size;
1142 if (inet->defer_connect) {
1143 err = tcp_connect(sk);
1144 /* Same failure procedure as in tcp_v4/6_connect */
1146 tcp_set_state(sk, TCP_CLOSE);
1147 inet->inet_dport = 0;
1148 sk->sk_route_caps = 0;
1151 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1152 err = __inet_stream_connect(sk->sk_socket, uaddr,
1153 msg->msg_namelen, flags, 1);
1154 /* fastopen_req could already be freed in __inet_stream_connect
1155 * if the connection times out or gets rst
1157 if (tp->fastopen_req) {
1158 *copied = tp->fastopen_req->copied;
1159 tcp_free_fastopen_req(tp);
1160 inet->defer_connect = 0;
1165 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1167 struct tcp_sock *tp = tcp_sk(sk);
1168 struct ubuf_info *uarg = NULL;
1169 struct sk_buff *skb;
1170 struct sockcm_cookie sockc;
1171 int flags, err, copied = 0;
1172 int mss_now = 0, size_goal, copied_syn = 0;
1173 bool process_backlog = false;
1177 flags = msg->msg_flags;
1179 if (flags & MSG_ZEROCOPY && size) {
1180 if (sk->sk_state != TCP_ESTABLISHED) {
1185 skb = tcp_write_queue_tail(sk);
1186 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1192 zc = sk->sk_route_caps & NETIF_F_SG;
1197 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1198 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1199 if (err == -EINPROGRESS && copied_syn > 0)
1205 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1207 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1209 /* Wait for a connection to finish. One exception is TCP Fast Open
1210 * (passive side) where data is allowed to be sent before a connection
1211 * is fully established.
1213 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1214 !tcp_passive_fastopen(sk)) {
1215 err = sk_stream_wait_connect(sk, &timeo);
1220 if (unlikely(tp->repair)) {
1221 if (tp->repair_queue == TCP_RECV_QUEUE) {
1222 copied = tcp_send_rcvq(sk, msg, size);
1227 if (tp->repair_queue == TCP_NO_QUEUE)
1230 /* 'common' sending to sendq */
1233 sockc.tsflags = sk->sk_tsflags;
1234 if (msg->msg_controllen) {
1235 err = sock_cmsg_send(sk, msg, &sockc);
1236 if (unlikely(err)) {
1242 /* This should be in poll */
1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1245 /* Ok commence sending. */
1249 mss_now = tcp_send_mss(sk, &size_goal, flags);
1252 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1255 while (msg_data_left(msg)) {
1258 skb = tcp_write_queue_tail(sk);
1260 copy = size_goal - skb->len;
1262 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1267 /* Allocate new segment. If the interface is SG,
1268 * allocate skb fitting to single page.
1270 if (!sk_stream_memory_free(sk))
1271 goto wait_for_sndbuf;
1273 if (process_backlog && sk_flush_backlog(sk)) {
1274 process_backlog = false;
1277 first_skb = tcp_rtx_and_write_queues_empty(sk);
1278 linear = select_size(first_skb, zc);
1279 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1282 goto wait_for_memory;
1284 process_backlog = true;
1285 skb->ip_summed = CHECKSUM_PARTIAL;
1287 skb_entail(sk, skb);
1290 /* All packets are restored as if they have
1291 * already been sent. skb_mstamp isn't set to
1292 * avoid wrong rtt estimation.
1295 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1298 /* Try to append data to the end of skb. */
1299 if (copy > msg_data_left(msg))
1300 copy = msg_data_left(msg);
1302 /* Where to copy to? */
1303 if (skb_availroom(skb) > 0 && !zc) {
1304 /* We have some space in skb head. Superb! */
1305 copy = min_t(int, copy, skb_availroom(skb));
1306 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1311 int i = skb_shinfo(skb)->nr_frags;
1312 struct page_frag *pfrag = sk_page_frag(sk);
1314 if (!sk_page_frag_refill(sk, pfrag))
1315 goto wait_for_memory;
1317 if (!skb_can_coalesce(skb, i, pfrag->page,
1319 if (i >= sysctl_max_skb_frags) {
1320 tcp_mark_push(tp, skb);
1326 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1328 if (!sk_wmem_schedule(sk, copy))
1329 goto wait_for_memory;
1331 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1338 /* Update the skb. */
1340 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1342 skb_fill_page_desc(skb, i, pfrag->page,
1343 pfrag->offset, copy);
1344 page_ref_inc(pfrag->page);
1346 pfrag->offset += copy;
1348 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1349 if (err == -EMSGSIZE || err == -EEXIST) {
1350 tcp_mark_push(tp, skb);
1359 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1361 tp->write_seq += copy;
1362 TCP_SKB_CB(skb)->end_seq += copy;
1363 tcp_skb_pcount_set(skb, 0);
1366 if (!msg_data_left(msg)) {
1367 if (unlikely(flags & MSG_EOR))
1368 TCP_SKB_CB(skb)->eor = 1;
1372 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1375 if (forced_push(tp)) {
1376 tcp_mark_push(tp, skb);
1377 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1378 } else if (skb == tcp_send_head(sk))
1379 tcp_push_one(sk, mss_now);
1383 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1386 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1387 TCP_NAGLE_PUSH, size_goal);
1389 err = sk_stream_wait_memory(sk, &timeo);
1393 mss_now = tcp_send_mss(sk, &size_goal, flags);
1398 tcp_tx_timestamp(sk, sockc.tsflags);
1399 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1402 sock_zerocopy_put(uarg);
1403 return copied + copied_syn;
1407 tcp_unlink_write_queue(skb, sk);
1408 /* It is the one place in all of TCP, except connection
1409 * reset, where we can be unlinking the send_head.
1411 tcp_check_send_head(sk, skb);
1412 sk_wmem_free_skb(sk, skb);
1416 if (copied + copied_syn)
1419 sock_zerocopy_put_abort(uarg);
1420 err = sk_stream_error(sk, flags, err);
1421 /* make sure we wake any epoll edge trigger waiter */
1422 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1424 sk->sk_write_space(sk);
1425 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1429 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1431 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1436 ret = tcp_sendmsg_locked(sk, msg, size);
1441 EXPORT_SYMBOL(tcp_sendmsg);
1444 * Handle reading urgent data. BSD has very simple semantics for
1445 * this, no blocking and very strange errors 8)
1448 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1450 struct tcp_sock *tp = tcp_sk(sk);
1452 /* No URG data to read. */
1453 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1454 tp->urg_data == TCP_URG_READ)
1455 return -EINVAL; /* Yes this is right ! */
1457 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1460 if (tp->urg_data & TCP_URG_VALID) {
1462 char c = tp->urg_data;
1464 if (!(flags & MSG_PEEK))
1465 tp->urg_data = TCP_URG_READ;
1467 /* Read urgent data. */
1468 msg->msg_flags |= MSG_OOB;
1471 if (!(flags & MSG_TRUNC))
1472 err = memcpy_to_msg(msg, &c, 1);
1475 msg->msg_flags |= MSG_TRUNC;
1477 return err ? -EFAULT : len;
1480 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1483 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1484 * the available implementations agree in this case:
1485 * this call should never block, independent of the
1486 * blocking state of the socket.
1492 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1494 struct sk_buff *skb;
1495 int copied = 0, err = 0;
1497 /* XXX -- need to support SO_PEEK_OFF */
1499 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1500 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1506 skb_queue_walk(&sk->sk_write_queue, skb) {
1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1514 return err ?: copied;
1517 /* Clean up the receive buffer for full frames taken by the user,
1518 * then send an ACK if necessary. COPIED is the number of bytes
1519 * tcp_recvmsg has given to the user so far, it speeds up the
1520 * calculation of whether or not we must ACK for the sake of
1523 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 bool time_to_ack = false;
1528 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1530 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1531 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1532 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1534 if (inet_csk_ack_scheduled(sk)) {
1535 const struct inet_connection_sock *icsk = inet_csk(sk);
1536 /* Delayed ACKs frequently hit locked sockets during bulk
1538 if (icsk->icsk_ack.blocked ||
1539 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1540 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1542 * If this read emptied read buffer, we send ACK, if
1543 * connection is not bidirectional, user drained
1544 * receive buffer and there was a small segment
1548 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1549 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1550 !icsk->icsk_ack.pingpong)) &&
1551 !atomic_read(&sk->sk_rmem_alloc)))
1555 /* We send an ACK if we can now advertise a non-zero window
1556 * which has been raised "significantly".
1558 * Even if window raised up to infinity, do not send window open ACK
1559 * in states, where we will not receive more. It is useless.
1561 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1562 __u32 rcv_window_now = tcp_receive_window(tp);
1564 /* Optimize, __tcp_select_window() is not cheap. */
1565 if (2*rcv_window_now <= tp->window_clamp) {
1566 __u32 new_window = __tcp_select_window(sk);
1568 /* Send ACK now, if this read freed lots of space
1569 * in our buffer. Certainly, new_window is new window.
1570 * We can advertise it now, if it is not less than current one.
1571 * "Lots" means "at least twice" here.
1573 if (new_window && new_window >= 2 * rcv_window_now)
1581 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1583 struct sk_buff *skb;
1586 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1587 offset = seq - TCP_SKB_CB(skb)->seq;
1588 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1589 pr_err_once("%s: found a SYN, please report !\n", __func__);
1592 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1596 /* This looks weird, but this can happen if TCP collapsing
1597 * splitted a fat GRO packet, while we released socket lock
1598 * in skb_splice_bits()
1600 sk_eat_skb(sk, skb);
1606 * This routine provides an alternative to tcp_recvmsg() for routines
1607 * that would like to handle copying from skbuffs directly in 'sendfile'
1610 * - It is assumed that the socket was locked by the caller.
1611 * - The routine does not block.
1612 * - At present, there is no support for reading OOB data
1613 * or for 'peeking' the socket using this routine
1614 * (although both would be easy to implement).
1616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1617 sk_read_actor_t recv_actor)
1619 struct sk_buff *skb;
1620 struct tcp_sock *tp = tcp_sk(sk);
1621 u32 seq = tp->copied_seq;
1625 if (sk->sk_state == TCP_LISTEN)
1627 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1628 if (offset < skb->len) {
1632 len = skb->len - offset;
1633 /* Stop reading if we hit a patch of urgent data */
1635 u32 urg_offset = tp->urg_seq - seq;
1636 if (urg_offset < len)
1641 used = recv_actor(desc, skb, offset, len);
1646 } else if (used <= len) {
1651 /* If recv_actor drops the lock (e.g. TCP splice
1652 * receive) the skb pointer might be invalid when
1653 * getting here: tcp_collapse might have deleted it
1654 * while aggregating skbs from the socket queue.
1656 skb = tcp_recv_skb(sk, seq - 1, &offset);
1659 /* TCP coalescing might have appended data to the skb.
1660 * Try to splice more frags
1662 if (offset + 1 != skb->len)
1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1666 sk_eat_skb(sk, skb);
1670 sk_eat_skb(sk, skb);
1673 tp->copied_seq = seq;
1675 tp->copied_seq = seq;
1677 tcp_rcv_space_adjust(sk);
1679 /* Clean up data we have read: This will do ACK frames. */
1681 tcp_recv_skb(sk, seq, &offset);
1682 tcp_cleanup_rbuf(sk, copied);
1686 EXPORT_SYMBOL(tcp_read_sock);
1688 int tcp_peek_len(struct socket *sock)
1690 return tcp_inq(sock->sk);
1692 EXPORT_SYMBOL(tcp_peek_len);
1694 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1695 struct scm_timestamping *tss)
1698 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1700 tss->ts[0] = (struct timespec) {0};
1702 if (skb_hwtstamps(skb)->hwtstamp)
1703 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1705 tss->ts[2] = (struct timespec) {0};
1708 /* Similar to __sock_recv_timestamp, but does not require an skb */
1709 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1710 struct scm_timestamping *tss)
1713 bool has_timestamping = false;
1715 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1716 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1717 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1719 sizeof(tss->ts[0]), &tss->ts[0]);
1721 tv.tv_sec = tss->ts[0].tv_sec;
1722 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1729 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1730 has_timestamping = true;
1732 tss->ts[0] = (struct timespec) {0};
1735 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1736 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1737 has_timestamping = true;
1739 tss->ts[2] = (struct timespec) {0};
1742 if (has_timestamping) {
1743 tss->ts[1] = (struct timespec) {0};
1744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1750 * This routine copies from a sock struct into the user buffer.
1752 * Technical note: in 2.3 we work on _locked_ socket, so that
1753 * tricks with *seq access order and skb->users are not required.
1754 * Probably, code can be easily improved even more.
1757 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1758 int flags, int *addr_len)
1760 struct tcp_sock *tp = tcp_sk(sk);
1766 int target; /* Read at least this many bytes */
1768 struct sk_buff *skb, *last;
1770 struct scm_timestamping tss;
1771 bool has_tss = false;
1773 if (unlikely(flags & MSG_ERRQUEUE))
1774 return inet_recv_error(sk, msg, len, addr_len);
1776 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1777 (sk->sk_state == TCP_ESTABLISHED))
1778 sk_busy_loop(sk, nonblock);
1783 if (sk->sk_state == TCP_LISTEN)
1786 timeo = sock_rcvtimeo(sk, nonblock);
1788 /* Urgent data needs to be handled specially. */
1789 if (flags & MSG_OOB)
1792 if (unlikely(tp->repair)) {
1794 if (!(flags & MSG_PEEK))
1797 if (tp->repair_queue == TCP_SEND_QUEUE)
1801 if (tp->repair_queue == TCP_NO_QUEUE)
1804 /* 'common' recv queue MSG_PEEK-ing */
1807 seq = &tp->copied_seq;
1808 if (flags & MSG_PEEK) {
1809 peek_seq = tp->copied_seq;
1813 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1818 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1819 if (tp->urg_data && tp->urg_seq == *seq) {
1822 if (signal_pending(current)) {
1823 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1828 /* Next get a buffer. */
1830 last = skb_peek_tail(&sk->sk_receive_queue);
1831 skb_queue_walk(&sk->sk_receive_queue, skb) {
1833 /* Now that we have two receive queues this
1836 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1837 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1838 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1842 offset = *seq - TCP_SKB_CB(skb)->seq;
1843 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1844 pr_err_once("%s: found a SYN, please report !\n", __func__);
1847 if (offset < skb->len)
1849 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1851 WARN(!(flags & MSG_PEEK),
1852 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1853 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1856 /* Well, if we have backlog, try to process it now yet. */
1858 if (copied >= target && !sk->sk_backlog.tail)
1863 sk->sk_state == TCP_CLOSE ||
1864 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1866 signal_pending(current))
1869 if (sock_flag(sk, SOCK_DONE))
1873 copied = sock_error(sk);
1877 if (sk->sk_shutdown & RCV_SHUTDOWN)
1880 if (sk->sk_state == TCP_CLOSE) {
1881 if (!sock_flag(sk, SOCK_DONE)) {
1882 /* This occurs when user tries to read
1883 * from never connected socket.
1896 if (signal_pending(current)) {
1897 copied = sock_intr_errno(timeo);
1902 tcp_cleanup_rbuf(sk, copied);
1904 if (copied >= target) {
1905 /* Do not sleep, just process backlog. */
1909 sk_wait_data(sk, &timeo, last);
1912 if ((flags & MSG_PEEK) &&
1913 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1914 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1916 task_pid_nr(current));
1917 peek_seq = tp->copied_seq;
1922 /* Ok so how much can we use? */
1923 used = skb->len - offset;
1927 /* Do we have urgent data here? */
1929 u32 urg_offset = tp->urg_seq - *seq;
1930 if (urg_offset < used) {
1932 if (!sock_flag(sk, SOCK_URGINLINE)) {
1945 if (!(flags & MSG_TRUNC)) {
1946 err = skb_copy_datagram_msg(skb, offset, msg, used);
1948 /* Exception. Bailout! */
1959 tcp_rcv_space_adjust(sk);
1962 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1964 tcp_fast_path_check(sk);
1966 if (used + offset < skb->len)
1969 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1970 tcp_update_recv_tstamps(skb, &tss);
1973 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1975 if (!(flags & MSG_PEEK))
1976 sk_eat_skb(sk, skb);
1980 /* Process the FIN. */
1982 if (!(flags & MSG_PEEK))
1983 sk_eat_skb(sk, skb);
1987 /* According to UNIX98, msg_name/msg_namelen are ignored
1988 * on connected socket. I was just happy when found this 8) --ANK
1992 tcp_recv_timestamp(msg, sk, &tss);
1994 /* Clean up data we have read: This will do ACK frames. */
1995 tcp_cleanup_rbuf(sk, copied);
2005 err = tcp_recv_urg(sk, msg, len, flags);
2009 err = tcp_peek_sndq(sk, msg, len);
2012 EXPORT_SYMBOL(tcp_recvmsg);
2014 void tcp_set_state(struct sock *sk, int state)
2016 int oldstate = sk->sk_state;
2018 /* We defined a new enum for TCP states that are exported in BPF
2019 * so as not force the internal TCP states to be frozen. The
2020 * following checks will detect if an internal state value ever
2021 * differs from the BPF value. If this ever happens, then we will
2022 * need to remap the internal value to the BPF value before calling
2023 * tcp_call_bpf_2arg.
2025 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2026 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2027 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2028 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2029 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2030 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2031 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2032 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2033 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2034 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2035 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2036 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2037 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2039 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2040 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2043 case TCP_ESTABLISHED:
2044 if (oldstate != TCP_ESTABLISHED)
2045 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2049 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2050 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2052 sk->sk_prot->unhash(sk);
2053 if (inet_csk(sk)->icsk_bind_hash &&
2054 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2058 if (oldstate == TCP_ESTABLISHED)
2059 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2062 /* Change state AFTER socket is unhashed to avoid closed
2063 * socket sitting in hash tables.
2065 inet_sk_state_store(sk, state);
2068 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2071 EXPORT_SYMBOL_GPL(tcp_set_state);
2074 * State processing on a close. This implements the state shift for
2075 * sending our FIN frame. Note that we only send a FIN for some
2076 * states. A shutdown() may have already sent the FIN, or we may be
2080 static const unsigned char new_state[16] = {
2081 /* current state: new state: action: */
2082 [0 /* (Invalid) */] = TCP_CLOSE,
2083 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2084 [TCP_SYN_SENT] = TCP_CLOSE,
2085 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2086 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2087 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2088 [TCP_TIME_WAIT] = TCP_CLOSE,
2089 [TCP_CLOSE] = TCP_CLOSE,
2090 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2091 [TCP_LAST_ACK] = TCP_LAST_ACK,
2092 [TCP_LISTEN] = TCP_CLOSE,
2093 [TCP_CLOSING] = TCP_CLOSING,
2094 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2097 static int tcp_close_state(struct sock *sk)
2099 int next = (int)new_state[sk->sk_state];
2100 int ns = next & TCP_STATE_MASK;
2102 tcp_set_state(sk, ns);
2104 return next & TCP_ACTION_FIN;
2108 * Shutdown the sending side of a connection. Much like close except
2109 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2112 void tcp_shutdown(struct sock *sk, int how)
2114 /* We need to grab some memory, and put together a FIN,
2115 * and then put it into the queue to be sent.
2118 if (!(how & SEND_SHUTDOWN))
2121 /* If we've already sent a FIN, or it's a closed state, skip this. */
2122 if ((1 << sk->sk_state) &
2123 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2124 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2125 /* Clear out any half completed packets. FIN if needed. */
2126 if (tcp_close_state(sk))
2130 EXPORT_SYMBOL(tcp_shutdown);
2132 bool tcp_check_oom(struct sock *sk, int shift)
2134 bool too_many_orphans, out_of_socket_memory;
2136 too_many_orphans = tcp_too_many_orphans(sk, shift);
2137 out_of_socket_memory = tcp_out_of_memory(sk);
2139 if (too_many_orphans)
2140 net_info_ratelimited("too many orphaned sockets\n");
2141 if (out_of_socket_memory)
2142 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2143 return too_many_orphans || out_of_socket_memory;
2146 void tcp_close(struct sock *sk, long timeout)
2148 struct sk_buff *skb;
2149 int data_was_unread = 0;
2153 sk->sk_shutdown = SHUTDOWN_MASK;
2155 if (sk->sk_state == TCP_LISTEN) {
2156 tcp_set_state(sk, TCP_CLOSE);
2159 inet_csk_listen_stop(sk);
2161 goto adjudge_to_death;
2164 /* We need to flush the recv. buffs. We do this only on the
2165 * descriptor close, not protocol-sourced closes, because the
2166 * reader process may not have drained the data yet!
2168 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2169 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2171 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2173 data_was_unread += len;
2179 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2180 if (sk->sk_state == TCP_CLOSE)
2181 goto adjudge_to_death;
2183 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2184 * data was lost. To witness the awful effects of the old behavior of
2185 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2186 * GET in an FTP client, suspend the process, wait for the client to
2187 * advertise a zero window, then kill -9 the FTP client, wheee...
2188 * Note: timeout is always zero in such a case.
2190 if (unlikely(tcp_sk(sk)->repair)) {
2191 sk->sk_prot->disconnect(sk, 0);
2192 } else if (data_was_unread) {
2193 /* Unread data was tossed, zap the connection. */
2194 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2195 tcp_set_state(sk, TCP_CLOSE);
2196 tcp_send_active_reset(sk, sk->sk_allocation);
2197 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2198 /* Check zero linger _after_ checking for unread data. */
2199 sk->sk_prot->disconnect(sk, 0);
2200 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2201 } else if (tcp_close_state(sk)) {
2202 /* We FIN if the application ate all the data before
2203 * zapping the connection.
2206 /* RED-PEN. Formally speaking, we have broken TCP state
2207 * machine. State transitions:
2209 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2210 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2211 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2213 * are legal only when FIN has been sent (i.e. in window),
2214 * rather than queued out of window. Purists blame.
2216 * F.e. "RFC state" is ESTABLISHED,
2217 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2219 * The visible declinations are that sometimes
2220 * we enter time-wait state, when it is not required really
2221 * (harmless), do not send active resets, when they are
2222 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2223 * they look as CLOSING or LAST_ACK for Linux)
2224 * Probably, I missed some more holelets.
2226 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2227 * in a single packet! (May consider it later but will
2228 * probably need API support or TCP_CORK SYN-ACK until
2229 * data is written and socket is closed.)
2234 sk_stream_wait_close(sk, timeout);
2237 state = sk->sk_state;
2241 /* It is the last release_sock in its life. It will remove backlog. */
2245 /* Now socket is owned by kernel and we acquire BH lock
2246 * to finish close. No need to check for user refs.
2250 WARN_ON(sock_owned_by_user(sk));
2252 percpu_counter_inc(sk->sk_prot->orphan_count);
2254 /* Have we already been destroyed by a softirq or backlog? */
2255 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2258 /* This is a (useful) BSD violating of the RFC. There is a
2259 * problem with TCP as specified in that the other end could
2260 * keep a socket open forever with no application left this end.
2261 * We use a 1 minute timeout (about the same as BSD) then kill
2262 * our end. If they send after that then tough - BUT: long enough
2263 * that we won't make the old 4*rto = almost no time - whoops
2266 * Nope, it was not mistake. It is really desired behaviour
2267 * f.e. on http servers, when such sockets are useless, but
2268 * consume significant resources. Let's do it with special
2269 * linger2 option. --ANK
2272 if (sk->sk_state == TCP_FIN_WAIT2) {
2273 struct tcp_sock *tp = tcp_sk(sk);
2274 if (tp->linger2 < 0) {
2275 tcp_set_state(sk, TCP_CLOSE);
2276 tcp_send_active_reset(sk, GFP_ATOMIC);
2277 __NET_INC_STATS(sock_net(sk),
2278 LINUX_MIB_TCPABORTONLINGER);
2280 const int tmo = tcp_fin_time(sk);
2282 if (tmo > TCP_TIMEWAIT_LEN) {
2283 inet_csk_reset_keepalive_timer(sk,
2284 tmo - TCP_TIMEWAIT_LEN);
2286 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2291 if (sk->sk_state != TCP_CLOSE) {
2293 if (tcp_check_oom(sk, 0)) {
2294 tcp_set_state(sk, TCP_CLOSE);
2295 tcp_send_active_reset(sk, GFP_ATOMIC);
2296 __NET_INC_STATS(sock_net(sk),
2297 LINUX_MIB_TCPABORTONMEMORY);
2298 } else if (!check_net(sock_net(sk))) {
2299 /* Not possible to send reset; just close */
2300 tcp_set_state(sk, TCP_CLOSE);
2304 if (sk->sk_state == TCP_CLOSE) {
2305 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2306 /* We could get here with a non-NULL req if the socket is
2307 * aborted (e.g., closed with unread data) before 3WHS
2311 reqsk_fastopen_remove(sk, req, false);
2312 inet_csk_destroy_sock(sk);
2314 /* Otherwise, socket is reprieved until protocol close. */
2321 EXPORT_SYMBOL(tcp_close);
2323 /* These states need RST on ABORT according to RFC793 */
2325 static inline bool tcp_need_reset(int state)
2327 return (1 << state) &
2328 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2329 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2332 static void tcp_rtx_queue_purge(struct sock *sk)
2334 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2337 struct sk_buff *skb = rb_to_skb(p);
2340 /* Since we are deleting whole queue, no need to
2341 * list_del(&skb->tcp_tsorted_anchor)
2343 tcp_rtx_queue_unlink(skb, sk);
2344 sk_wmem_free_skb(sk, skb);
2348 void tcp_write_queue_purge(struct sock *sk)
2350 struct sk_buff *skb;
2352 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2353 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2354 tcp_skb_tsorted_anchor_cleanup(skb);
2355 sk_wmem_free_skb(sk, skb);
2357 tcp_rtx_queue_purge(sk);
2358 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2360 tcp_clear_all_retrans_hints(tcp_sk(sk));
2363 int tcp_disconnect(struct sock *sk, int flags)
2365 struct inet_sock *inet = inet_sk(sk);
2366 struct inet_connection_sock *icsk = inet_csk(sk);
2367 struct tcp_sock *tp = tcp_sk(sk);
2369 int old_state = sk->sk_state;
2371 if (old_state != TCP_CLOSE)
2372 tcp_set_state(sk, TCP_CLOSE);
2374 /* ABORT function of RFC793 */
2375 if (old_state == TCP_LISTEN) {
2376 inet_csk_listen_stop(sk);
2377 } else if (unlikely(tp->repair)) {
2378 sk->sk_err = ECONNABORTED;
2379 } else if (tcp_need_reset(old_state) ||
2380 (tp->snd_nxt != tp->write_seq &&
2381 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2382 /* The last check adjusts for discrepancy of Linux wrt. RFC
2385 tcp_send_active_reset(sk, gfp_any());
2386 sk->sk_err = ECONNRESET;
2387 } else if (old_state == TCP_SYN_SENT)
2388 sk->sk_err = ECONNRESET;
2390 tcp_clear_xmit_timers(sk);
2391 __skb_queue_purge(&sk->sk_receive_queue);
2392 tcp_write_queue_purge(sk);
2393 tcp_fastopen_active_disable_ofo_check(sk);
2394 skb_rbtree_purge(&tp->out_of_order_queue);
2396 inet->inet_dport = 0;
2398 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2399 inet_reset_saddr(sk);
2401 sk->sk_shutdown = 0;
2402 sock_reset_flag(sk, SOCK_DONE);
2404 tp->write_seq += tp->max_window + 2;
2405 if (tp->write_seq == 0)
2407 icsk->icsk_backoff = 0;
2409 icsk->icsk_probes_out = 0;
2410 tp->packets_out = 0;
2411 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2412 tp->snd_cwnd_cnt = 0;
2413 tp->window_clamp = 0;
2414 tcp_set_ca_state(sk, TCP_CA_Open);
2415 tp->is_sack_reneg = 0;
2416 tcp_clear_retrans(tp);
2417 inet_csk_delack_init(sk);
2418 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2419 * issue in __tcp_select_window()
2421 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2422 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2424 dst_release(sk->sk_rx_dst);
2425 sk->sk_rx_dst = NULL;
2426 tcp_saved_syn_free(tp);
2428 /* Clean up fastopen related fields */
2429 tcp_free_fastopen_req(tp);
2430 inet->defer_connect = 0;
2432 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2434 if (sk->sk_frag.page) {
2435 put_page(sk->sk_frag.page);
2436 sk->sk_frag.page = NULL;
2437 sk->sk_frag.offset = 0;
2440 sk->sk_error_report(sk);
2443 EXPORT_SYMBOL(tcp_disconnect);
2445 static inline bool tcp_can_repair_sock(const struct sock *sk)
2447 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2448 (sk->sk_state != TCP_LISTEN);
2451 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2453 struct tcp_repair_window opt;
2458 if (len != sizeof(opt))
2461 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2464 if (opt.max_window < opt.snd_wnd)
2467 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2470 if (after(opt.rcv_wup, tp->rcv_nxt))
2473 tp->snd_wl1 = opt.snd_wl1;
2474 tp->snd_wnd = opt.snd_wnd;
2475 tp->max_window = opt.max_window;
2477 tp->rcv_wnd = opt.rcv_wnd;
2478 tp->rcv_wup = opt.rcv_wup;
2483 static int tcp_repair_options_est(struct sock *sk,
2484 struct tcp_repair_opt __user *optbuf, unsigned int len)
2486 struct tcp_sock *tp = tcp_sk(sk);
2487 struct tcp_repair_opt opt;
2489 while (len >= sizeof(opt)) {
2490 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2496 switch (opt.opt_code) {
2498 tp->rx_opt.mss_clamp = opt.opt_val;
2503 u16 snd_wscale = opt.opt_val & 0xFFFF;
2504 u16 rcv_wscale = opt.opt_val >> 16;
2506 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2509 tp->rx_opt.snd_wscale = snd_wscale;
2510 tp->rx_opt.rcv_wscale = rcv_wscale;
2511 tp->rx_opt.wscale_ok = 1;
2514 case TCPOPT_SACK_PERM:
2515 if (opt.opt_val != 0)
2518 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2520 case TCPOPT_TIMESTAMP:
2521 if (opt.opt_val != 0)
2524 tp->rx_opt.tstamp_ok = 1;
2533 * Socket option code for TCP.
2535 static int do_tcp_setsockopt(struct sock *sk, int level,
2536 int optname, char __user *optval, unsigned int optlen)
2538 struct tcp_sock *tp = tcp_sk(sk);
2539 struct inet_connection_sock *icsk = inet_csk(sk);
2540 struct net *net = sock_net(sk);
2544 /* These are data/string values, all the others are ints */
2546 case TCP_CONGESTION: {
2547 char name[TCP_CA_NAME_MAX];
2552 val = strncpy_from_user(name, optval,
2553 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2559 err = tcp_set_congestion_control(sk, name, true, true);
2564 char name[TCP_ULP_NAME_MAX];
2569 val = strncpy_from_user(name, optval,
2570 min_t(long, TCP_ULP_NAME_MAX - 1,
2577 err = tcp_set_ulp(sk, name);
2581 case TCP_FASTOPEN_KEY: {
2582 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2584 if (optlen != sizeof(key))
2587 if (copy_from_user(key, optval, optlen))
2590 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2597 if (optlen < sizeof(int))
2600 if (get_user(val, (int __user *)optval))
2607 /* Values greater than interface MTU won't take effect. However
2608 * at the point when this call is done we typically don't yet
2609 * know which interface is going to be used
2611 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2615 tp->rx_opt.user_mss = val;
2620 /* TCP_NODELAY is weaker than TCP_CORK, so that
2621 * this option on corked socket is remembered, but
2622 * it is not activated until cork is cleared.
2624 * However, when TCP_NODELAY is set we make
2625 * an explicit push, which overrides even TCP_CORK
2626 * for currently queued segments.
2628 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2629 tcp_push_pending_frames(sk);
2631 tp->nonagle &= ~TCP_NAGLE_OFF;
2635 case TCP_THIN_LINEAR_TIMEOUTS:
2636 if (val < 0 || val > 1)
2642 case TCP_THIN_DUPACK:
2643 if (val < 0 || val > 1)
2648 if (!tcp_can_repair_sock(sk))
2650 else if (val == 1) {
2652 sk->sk_reuse = SK_FORCE_REUSE;
2653 tp->repair_queue = TCP_NO_QUEUE;
2654 } else if (val == 0) {
2656 sk->sk_reuse = SK_NO_REUSE;
2657 tcp_send_window_probe(sk);
2663 case TCP_REPAIR_QUEUE:
2666 else if (val < TCP_QUEUES_NR)
2667 tp->repair_queue = val;
2673 if (sk->sk_state != TCP_CLOSE)
2675 else if (tp->repair_queue == TCP_SEND_QUEUE)
2676 tp->write_seq = val;
2677 else if (tp->repair_queue == TCP_RECV_QUEUE)
2683 case TCP_REPAIR_OPTIONS:
2686 else if (sk->sk_state == TCP_ESTABLISHED)
2687 err = tcp_repair_options_est(sk,
2688 (struct tcp_repair_opt __user *)optval,
2695 /* When set indicates to always queue non-full frames.
2696 * Later the user clears this option and we transmit
2697 * any pending partial frames in the queue. This is
2698 * meant to be used alongside sendfile() to get properly
2699 * filled frames when the user (for example) must write
2700 * out headers with a write() call first and then use
2701 * sendfile to send out the data parts.
2703 * TCP_CORK can be set together with TCP_NODELAY and it is
2704 * stronger than TCP_NODELAY.
2707 tp->nonagle |= TCP_NAGLE_CORK;
2709 tp->nonagle &= ~TCP_NAGLE_CORK;
2710 if (tp->nonagle&TCP_NAGLE_OFF)
2711 tp->nonagle |= TCP_NAGLE_PUSH;
2712 tcp_push_pending_frames(sk);
2717 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2720 tp->keepalive_time = val * HZ;
2721 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2722 !((1 << sk->sk_state) &
2723 (TCPF_CLOSE | TCPF_LISTEN))) {
2724 u32 elapsed = keepalive_time_elapsed(tp);
2725 if (tp->keepalive_time > elapsed)
2726 elapsed = tp->keepalive_time - elapsed;
2729 inet_csk_reset_keepalive_timer(sk, elapsed);
2734 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2737 tp->keepalive_intvl = val * HZ;
2740 if (val < 1 || val > MAX_TCP_KEEPCNT)
2743 tp->keepalive_probes = val;
2746 if (val < 1 || val > MAX_TCP_SYNCNT)
2749 icsk->icsk_syn_retries = val;
2753 if (val < 0 || val > 1)
2762 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2765 tp->linger2 = val * HZ;
2768 case TCP_DEFER_ACCEPT:
2769 /* Translate value in seconds to number of retransmits */
2770 icsk->icsk_accept_queue.rskq_defer_accept =
2771 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2775 case TCP_WINDOW_CLAMP:
2777 if (sk->sk_state != TCP_CLOSE) {
2781 tp->window_clamp = 0;
2783 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2784 SOCK_MIN_RCVBUF / 2 : val;
2789 icsk->icsk_ack.pingpong = 1;
2791 icsk->icsk_ack.pingpong = 0;
2792 if ((1 << sk->sk_state) &
2793 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2794 inet_csk_ack_scheduled(sk)) {
2795 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2796 tcp_cleanup_rbuf(sk, 1);
2798 icsk->icsk_ack.pingpong = 1;
2803 #ifdef CONFIG_TCP_MD5SIG
2805 case TCP_MD5SIG_EXT:
2806 /* Read the IP->Key mappings from userspace */
2807 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2810 case TCP_USER_TIMEOUT:
2811 /* Cap the max time in ms TCP will retry or probe the window
2812 * before giving up and aborting (ETIMEDOUT) a connection.
2817 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2821 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2823 tcp_fastopen_init_key_once(net);
2825 fastopen_queue_tune(sk, val);
2830 case TCP_FASTOPEN_CONNECT:
2831 if (val > 1 || val < 0) {
2833 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2834 if (sk->sk_state == TCP_CLOSE)
2835 tp->fastopen_connect = val;
2842 case TCP_FASTOPEN_NO_COOKIE:
2843 if (val > 1 || val < 0)
2845 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2848 tp->fastopen_no_cookie = val;
2854 tp->tsoffset = val - tcp_time_stamp_raw();
2856 case TCP_REPAIR_WINDOW:
2857 err = tcp_repair_set_window(tp, optval, optlen);
2859 case TCP_NOTSENT_LOWAT:
2860 tp->notsent_lowat = val;
2861 sk->sk_write_space(sk);
2872 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2873 unsigned int optlen)
2875 const struct inet_connection_sock *icsk = inet_csk(sk);
2877 if (level != SOL_TCP)
2878 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2880 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2882 EXPORT_SYMBOL(tcp_setsockopt);
2884 #ifdef CONFIG_COMPAT
2885 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2886 char __user *optval, unsigned int optlen)
2888 if (level != SOL_TCP)
2889 return inet_csk_compat_setsockopt(sk, level, optname,
2891 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2893 EXPORT_SYMBOL(compat_tcp_setsockopt);
2896 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2897 struct tcp_info *info)
2899 u64 stats[__TCP_CHRONO_MAX], total = 0;
2902 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2903 stats[i] = tp->chrono_stat[i - 1];
2904 if (i == tp->chrono_type)
2905 stats[i] += tcp_jiffies32 - tp->chrono_start;
2906 stats[i] *= USEC_PER_SEC / HZ;
2910 info->tcpi_busy_time = total;
2911 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2912 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2915 /* Return information about state of tcp endpoint in API format. */
2916 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2918 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2919 const struct inet_connection_sock *icsk = inet_csk(sk);
2925 memset(info, 0, sizeof(*info));
2926 if (sk->sk_type != SOCK_STREAM)
2929 info->tcpi_state = inet_sk_state_load(sk);
2931 /* Report meaningful fields for all TCP states, including listeners */
2932 rate = READ_ONCE(sk->sk_pacing_rate);
2933 rate64 = rate != ~0U ? rate : ~0ULL;
2934 info->tcpi_pacing_rate = rate64;
2936 rate = READ_ONCE(sk->sk_max_pacing_rate);
2937 rate64 = rate != ~0U ? rate : ~0ULL;
2938 info->tcpi_max_pacing_rate = rate64;
2940 info->tcpi_reordering = tp->reordering;
2941 info->tcpi_snd_cwnd = tp->snd_cwnd;
2943 if (info->tcpi_state == TCP_LISTEN) {
2944 /* listeners aliased fields :
2945 * tcpi_unacked -> Number of children ready for accept()
2946 * tcpi_sacked -> max backlog
2948 info->tcpi_unacked = sk->sk_ack_backlog;
2949 info->tcpi_sacked = sk->sk_max_ack_backlog;
2953 slow = lock_sock_fast(sk);
2955 info->tcpi_ca_state = icsk->icsk_ca_state;
2956 info->tcpi_retransmits = icsk->icsk_retransmits;
2957 info->tcpi_probes = icsk->icsk_probes_out;
2958 info->tcpi_backoff = icsk->icsk_backoff;
2960 if (tp->rx_opt.tstamp_ok)
2961 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2962 if (tcp_is_sack(tp))
2963 info->tcpi_options |= TCPI_OPT_SACK;
2964 if (tp->rx_opt.wscale_ok) {
2965 info->tcpi_options |= TCPI_OPT_WSCALE;
2966 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2967 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2970 if (tp->ecn_flags & TCP_ECN_OK)
2971 info->tcpi_options |= TCPI_OPT_ECN;
2972 if (tp->ecn_flags & TCP_ECN_SEEN)
2973 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2974 if (tp->syn_data_acked)
2975 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2977 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2978 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2979 info->tcpi_snd_mss = tp->mss_cache;
2980 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2982 info->tcpi_unacked = tp->packets_out;
2983 info->tcpi_sacked = tp->sacked_out;
2985 info->tcpi_lost = tp->lost_out;
2986 info->tcpi_retrans = tp->retrans_out;
2988 now = tcp_jiffies32;
2989 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2990 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2991 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2993 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2994 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2995 info->tcpi_rtt = tp->srtt_us >> 3;
2996 info->tcpi_rttvar = tp->mdev_us >> 2;
2997 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2998 info->tcpi_advmss = tp->advmss;
3000 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3001 info->tcpi_rcv_space = tp->rcvq_space.space;
3003 info->tcpi_total_retrans = tp->total_retrans;
3005 info->tcpi_bytes_acked = tp->bytes_acked;
3006 info->tcpi_bytes_received = tp->bytes_received;
3007 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3008 tcp_get_info_chrono_stats(tp, info);
3010 info->tcpi_segs_out = tp->segs_out;
3011 info->tcpi_segs_in = tp->segs_in;
3013 info->tcpi_min_rtt = tcp_min_rtt(tp);
3014 info->tcpi_data_segs_in = tp->data_segs_in;
3015 info->tcpi_data_segs_out = tp->data_segs_out;
3017 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3018 rate64 = tcp_compute_delivery_rate(tp);
3020 info->tcpi_delivery_rate = rate64;
3021 unlock_sock_fast(sk, slow);
3023 EXPORT_SYMBOL_GPL(tcp_get_info);
3025 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3027 const struct tcp_sock *tp = tcp_sk(sk);
3028 struct sk_buff *stats;
3029 struct tcp_info info;
3033 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3034 3 * nla_total_size(sizeof(u32)) +
3035 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3039 tcp_get_info_chrono_stats(tp, &info);
3040 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3041 info.tcpi_busy_time, TCP_NLA_PAD);
3042 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3043 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3044 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3045 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3046 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3047 tp->data_segs_out, TCP_NLA_PAD);
3048 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3049 tp->total_retrans, TCP_NLA_PAD);
3051 rate = READ_ONCE(sk->sk_pacing_rate);
3052 rate64 = rate != ~0U ? rate : ~0ULL;
3053 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3055 rate64 = tcp_compute_delivery_rate(tp);
3056 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3058 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3059 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3060 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3062 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3063 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3067 static int do_tcp_getsockopt(struct sock *sk, int level,
3068 int optname, char __user *optval, int __user *optlen)
3070 struct inet_connection_sock *icsk = inet_csk(sk);
3071 struct tcp_sock *tp = tcp_sk(sk);
3072 struct net *net = sock_net(sk);
3075 if (get_user(len, optlen))
3078 len = min_t(unsigned int, len, sizeof(int));
3085 val = tp->mss_cache;
3086 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3087 val = tp->rx_opt.user_mss;
3089 val = tp->rx_opt.mss_clamp;
3092 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3095 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3098 val = keepalive_time_when(tp) / HZ;
3101 val = keepalive_intvl_when(tp) / HZ;
3104 val = keepalive_probes(tp);
3107 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3112 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3114 case TCP_DEFER_ACCEPT:
3115 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3116 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3118 case TCP_WINDOW_CLAMP:
3119 val = tp->window_clamp;
3122 struct tcp_info info;
3124 if (get_user(len, optlen))
3127 tcp_get_info(sk, &info);
3129 len = min_t(unsigned int, len, sizeof(info));
3130 if (put_user(len, optlen))
3132 if (copy_to_user(optval, &info, len))
3137 const struct tcp_congestion_ops *ca_ops;
3138 union tcp_cc_info info;
3142 if (get_user(len, optlen))
3145 ca_ops = icsk->icsk_ca_ops;
3146 if (ca_ops && ca_ops->get_info)
3147 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3149 len = min_t(unsigned int, len, sz);
3150 if (put_user(len, optlen))
3152 if (copy_to_user(optval, &info, len))
3157 val = !icsk->icsk_ack.pingpong;
3160 case TCP_CONGESTION:
3161 if (get_user(len, optlen))
3163 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3164 if (put_user(len, optlen))
3166 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3171 if (get_user(len, optlen))
3173 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3174 if (!icsk->icsk_ulp_ops) {
3175 if (put_user(0, optlen))
3179 if (put_user(len, optlen))
3181 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3185 case TCP_FASTOPEN_KEY: {
3186 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3187 struct tcp_fastopen_context *ctx;
3189 if (get_user(len, optlen))
3193 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3195 memcpy(key, ctx->key, sizeof(key));
3200 len = min_t(unsigned int, len, sizeof(key));
3201 if (put_user(len, optlen))
3203 if (copy_to_user(optval, key, len))
3207 case TCP_THIN_LINEAR_TIMEOUTS:
3211 case TCP_THIN_DUPACK:
3219 case TCP_REPAIR_QUEUE:
3221 val = tp->repair_queue;
3226 case TCP_REPAIR_WINDOW: {
3227 struct tcp_repair_window opt;
3229 if (get_user(len, optlen))
3232 if (len != sizeof(opt))
3238 opt.snd_wl1 = tp->snd_wl1;
3239 opt.snd_wnd = tp->snd_wnd;
3240 opt.max_window = tp->max_window;
3241 opt.rcv_wnd = tp->rcv_wnd;
3242 opt.rcv_wup = tp->rcv_wup;
3244 if (copy_to_user(optval, &opt, len))
3249 if (tp->repair_queue == TCP_SEND_QUEUE)
3250 val = tp->write_seq;
3251 else if (tp->repair_queue == TCP_RECV_QUEUE)
3257 case TCP_USER_TIMEOUT:
3258 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3262 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3265 case TCP_FASTOPEN_CONNECT:
3266 val = tp->fastopen_connect;
3269 case TCP_FASTOPEN_NO_COOKIE:
3270 val = tp->fastopen_no_cookie;
3274 val = tcp_time_stamp_raw() + tp->tsoffset;
3276 case TCP_NOTSENT_LOWAT:
3277 val = tp->notsent_lowat;
3282 case TCP_SAVED_SYN: {
3283 if (get_user(len, optlen))
3287 if (tp->saved_syn) {
3288 if (len < tp->saved_syn[0]) {
3289 if (put_user(tp->saved_syn[0], optlen)) {
3296 len = tp->saved_syn[0];
3297 if (put_user(len, optlen)) {
3301 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3305 tcp_saved_syn_free(tp);
3310 if (put_user(len, optlen))
3316 return -ENOPROTOOPT;
3319 if (put_user(len, optlen))
3321 if (copy_to_user(optval, &val, len))
3326 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3329 struct inet_connection_sock *icsk = inet_csk(sk);
3331 if (level != SOL_TCP)
3332 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3334 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3336 EXPORT_SYMBOL(tcp_getsockopt);
3338 #ifdef CONFIG_COMPAT
3339 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3340 char __user *optval, int __user *optlen)
3342 if (level != SOL_TCP)
3343 return inet_csk_compat_getsockopt(sk, level, optname,
3345 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3347 EXPORT_SYMBOL(compat_tcp_getsockopt);
3350 #ifdef CONFIG_TCP_MD5SIG
3351 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3352 static DEFINE_MUTEX(tcp_md5sig_mutex);
3353 static bool tcp_md5sig_pool_populated = false;
3355 static void __tcp_alloc_md5sig_pool(void)
3357 struct crypto_ahash *hash;
3360 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3364 for_each_possible_cpu(cpu) {
3365 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3366 struct ahash_request *req;
3369 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3370 sizeof(struct tcphdr),
3375 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3377 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3380 req = ahash_request_alloc(hash, GFP_KERNEL);
3384 ahash_request_set_callback(req, 0, NULL, NULL);
3386 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3388 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3389 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3392 tcp_md5sig_pool_populated = true;
3395 bool tcp_alloc_md5sig_pool(void)
3397 if (unlikely(!tcp_md5sig_pool_populated)) {
3398 mutex_lock(&tcp_md5sig_mutex);
3400 if (!tcp_md5sig_pool_populated)
3401 __tcp_alloc_md5sig_pool();
3403 mutex_unlock(&tcp_md5sig_mutex);
3405 return tcp_md5sig_pool_populated;
3407 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3411 * tcp_get_md5sig_pool - get md5sig_pool for this user
3413 * We use percpu structure, so if we succeed, we exit with preemption
3414 * and BH disabled, to make sure another thread or softirq handling
3415 * wont try to get same context.
3417 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3421 if (tcp_md5sig_pool_populated) {
3422 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3424 return this_cpu_ptr(&tcp_md5sig_pool);
3429 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3431 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3432 const struct sk_buff *skb, unsigned int header_len)
3434 struct scatterlist sg;
3435 const struct tcphdr *tp = tcp_hdr(skb);
3436 struct ahash_request *req = hp->md5_req;
3438 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3439 skb_headlen(skb) - header_len : 0;
3440 const struct skb_shared_info *shi = skb_shinfo(skb);
3441 struct sk_buff *frag_iter;
3443 sg_init_table(&sg, 1);
3445 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3446 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3447 if (crypto_ahash_update(req))
3450 for (i = 0; i < shi->nr_frags; ++i) {
3451 const struct skb_frag_struct *f = &shi->frags[i];
3452 unsigned int offset = f->page_offset;
3453 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3455 sg_set_page(&sg, page, skb_frag_size(f),
3456 offset_in_page(offset));
3457 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3458 if (crypto_ahash_update(req))
3462 skb_walk_frags(skb, frag_iter)
3463 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3468 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3470 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3472 struct scatterlist sg;
3474 sg_init_one(&sg, key->key, key->keylen);
3475 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3476 return crypto_ahash_update(hp->md5_req);
3478 EXPORT_SYMBOL(tcp_md5_hash_key);
3482 void tcp_done(struct sock *sk)
3484 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3486 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3487 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3489 tcp_set_state(sk, TCP_CLOSE);
3490 tcp_clear_xmit_timers(sk);
3492 reqsk_fastopen_remove(sk, req, false);
3494 sk->sk_shutdown = SHUTDOWN_MASK;
3496 if (!sock_flag(sk, SOCK_DEAD))
3497 sk->sk_state_change(sk);
3499 inet_csk_destroy_sock(sk);
3501 EXPORT_SYMBOL_GPL(tcp_done);
3503 int tcp_abort(struct sock *sk, int err)
3505 if (!sk_fullsock(sk)) {
3506 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3507 struct request_sock *req = inet_reqsk(sk);
3510 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3518 /* Don't race with userspace socket closes such as tcp_close. */
3521 if (sk->sk_state == TCP_LISTEN) {
3522 tcp_set_state(sk, TCP_CLOSE);
3523 inet_csk_listen_stop(sk);
3526 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3530 if (!sock_flag(sk, SOCK_DEAD)) {
3532 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3534 sk->sk_error_report(sk);
3535 if (tcp_need_reset(sk->sk_state))
3536 tcp_send_active_reset(sk, GFP_ATOMIC);
3545 EXPORT_SYMBOL_GPL(tcp_abort);
3547 extern struct tcp_congestion_ops tcp_reno;
3549 static __initdata unsigned long thash_entries;
3550 static int __init set_thash_entries(char *str)
3557 ret = kstrtoul(str, 0, &thash_entries);
3563 __setup("thash_entries=", set_thash_entries);
3565 static void __init tcp_init_mem(void)
3567 unsigned long limit = nr_free_buffer_pages() / 16;
3569 limit = max(limit, 128UL);
3570 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3571 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3572 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3575 void __init tcp_init(void)
3577 int max_rshare, max_wshare, cnt;
3578 unsigned long limit;
3581 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3582 FIELD_SIZEOF(struct sk_buff, cb));
3584 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3585 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3586 inet_hashinfo_init(&tcp_hashinfo);
3587 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3588 thash_entries, 21, /* one slot per 2 MB*/
3590 tcp_hashinfo.bind_bucket_cachep =
3591 kmem_cache_create("tcp_bind_bucket",
3592 sizeof(struct inet_bind_bucket), 0,
3593 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3595 /* Size and allocate the main established and bind bucket
3598 * The methodology is similar to that of the buffer cache.
3600 tcp_hashinfo.ehash =
3601 alloc_large_system_hash("TCP established",
3602 sizeof(struct inet_ehash_bucket),
3604 17, /* one slot per 128 KB of memory */
3607 &tcp_hashinfo.ehash_mask,
3609 thash_entries ? 0 : 512 * 1024);
3610 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3611 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3613 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3614 panic("TCP: failed to alloc ehash_locks");
3615 tcp_hashinfo.bhash =
3616 alloc_large_system_hash("TCP bind",
3617 sizeof(struct inet_bind_hashbucket),
3618 tcp_hashinfo.ehash_mask + 1,
3619 17, /* one slot per 128 KB of memory */
3621 &tcp_hashinfo.bhash_size,
3625 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3626 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3627 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3628 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3632 cnt = tcp_hashinfo.ehash_mask + 1;
3633 sysctl_tcp_max_orphans = cnt / 2;
3636 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3637 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3638 max_wshare = min(4UL*1024*1024, limit);
3639 max_rshare = min(6UL*1024*1024, limit);
3641 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3642 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3643 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3645 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3646 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3647 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3649 pr_info("Hash tables configured (established %u bind %u)\n",
3650 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3654 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);