2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
140 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
148 static void sock_inuse_add(struct net *net, int val);
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
166 EXPORT_SYMBOL(sk_ns_capable);
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
177 bool sk_capable(const struct sock *sk, int cap)
179 return sk_ns_capable(sk, &init_user_ns, cap);
181 EXPORT_SYMBOL(sk_capable);
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
192 bool sk_net_capable(const struct sock *sk, int cap)
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
196 EXPORT_SYMBOL(sk_net_capable);
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
284 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
306 static struct lock_class_key af_callback_keys[AF_MAX];
307 static struct lock_class_key af_rlock_keys[AF_MAX];
308 static struct lock_class_key af_wlock_keys[AF_MAX];
309 static struct lock_class_key af_elock_keys[AF_MAX];
310 static struct lock_class_key af_kern_callback_keys[AF_MAX];
312 /* Run time adjustable parameters. */
313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314 EXPORT_SYMBOL(sysctl_wmem_max);
315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316 EXPORT_SYMBOL(sysctl_rmem_max);
317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
320 /* Maximal space eaten by iovec or ancillary data plus some space */
321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322 EXPORT_SYMBOL(sysctl_optmem_max);
324 int sysctl_tstamp_allow_data __read_mostly = 1;
326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327 EXPORT_SYMBOL_GPL(memalloc_socks);
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
337 void sk_set_memalloc(struct sock *sk)
339 sock_set_flag(sk, SOCK_MEMALLOC);
340 sk->sk_allocation |= __GFP_MEMALLOC;
341 static_key_slow_inc(&memalloc_socks);
343 EXPORT_SYMBOL_GPL(sk_set_memalloc);
345 void sk_clear_memalloc(struct sock *sk)
347 sock_reset_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation &= ~__GFP_MEMALLOC;
349 static_key_slow_dec(&memalloc_socks);
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
360 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
365 unsigned int noreclaim_flag;
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
370 noreclaim_flag = memalloc_noreclaim_save();
371 ret = sk->sk_backlog_rcv(sk, skb);
372 memalloc_noreclaim_restore(noreclaim_flag);
376 EXPORT_SYMBOL(__sk_backlog_rcv);
378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
382 if (optlen < sizeof(tv))
384 if (copy_from_user(&tv, optval, sizeof(tv)))
386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
390 static int warned __read_mostly;
393 if (warned < 10 && net_ratelimit()) {
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__, current->comm, task_pid_nr(current));
400 *timeo_p = MAX_SCHEDULE_TIMEOUT;
401 if (tv.tv_sec == 0 && tv.tv_usec == 0)
403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
408 static void sock_warn_obsolete_bsdism(const char *name)
411 static char warncomm[TASK_COMM_LEN];
412 if (strcmp(warncomm, current->comm) && warned < 5) {
413 strcpy(warncomm, current->comm);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 static bool sock_needs_netstamp(const struct sock *sk)
422 switch (sk->sk_family) {
431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
433 if (sk->sk_flags & flags) {
434 sk->sk_flags &= ~flags;
435 if (sock_needs_netstamp(sk) &&
436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437 net_disable_timestamp();
442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
445 struct sk_buff_head *list = &sk->sk_receive_queue;
447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448 atomic_inc(&sk->sk_drops);
449 trace_sock_rcvqueue_full(sk, skb);
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
459 skb_set_owner_r(skb, sk);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
475 EXPORT_SYMBOL(__sock_queue_rcv_skb);
477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
481 err = sk_filter(sk, skb);
485 return __sock_queue_rcv_skb(sk, skb);
487 EXPORT_SYMBOL(sock_queue_rcv_skb);
489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490 const int nested, unsigned int trim_cap, bool refcounted)
492 int rc = NET_RX_SUCCESS;
494 if (sk_filter_trim_cap(sk, skb, trim_cap))
495 goto discard_and_relse;
499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500 atomic_inc(&sk->sk_drops);
501 goto discard_and_relse;
504 bh_lock_sock_nested(sk);
507 if (!sock_owned_by_user(sk)) {
509 * trylock + unlock semantics:
511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
513 rc = sk_backlog_rcv(sk, skb);
515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
518 atomic_inc(&sk->sk_drops);
519 goto discard_and_relse;
531 EXPORT_SYMBOL(__sk_receive_skb);
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
535 struct dst_entry *dst = __sk_dst_get(sk);
537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538 sk_tx_queue_clear(sk);
539 sk->sk_dst_pending_confirm = 0;
540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
547 EXPORT_SYMBOL(__sk_dst_check);
549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
551 struct dst_entry *dst = sk_dst_get(sk);
553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
561 EXPORT_SYMBOL(sk_dst_check);
563 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
566 int ret = -ENOPROTOOPT;
567 #ifdef CONFIG_NETDEVICES
568 struct net *net = sock_net(sk);
569 char devname[IFNAMSIZ];
574 if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
591 if (copy_from_user(devname, optval, optlen))
595 if (devname[0] != '\0') {
596 struct net_device *dev;
599 dev = dev_get_by_name_rcu(net, devname);
601 index = dev->ifindex;
609 sk->sk_bound_dev_if = index;
621 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622 int __user *optlen, int len)
624 int ret = -ENOPROTOOPT;
625 #ifdef CONFIG_NETDEVICES
626 struct net *net = sock_net(sk);
627 char devname[IFNAMSIZ];
629 if (sk->sk_bound_dev_if == 0) {
638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
642 len = strlen(devname) + 1;
645 if (copy_to_user(optval, devname, len))
650 if (put_user(len, optlen))
661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
664 sock_set_flag(sk, bit);
666 sock_reset_flag(sk, bit);
669 bool sk_mc_loop(struct sock *sk)
671 if (dev_recursion_level())
675 switch (sk->sk_family) {
677 return inet_sk(sk)->mc_loop;
678 #if IS_ENABLED(CONFIG_IPV6)
680 return inet6_sk(sk)->mc_loop;
686 EXPORT_SYMBOL(sk_mc_loop);
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
693 int sock_setsockopt(struct socket *sock, int level, int optname,
694 char __user *optval, unsigned int optlen)
696 struct sock *sk = sock->sk;
703 * Options without arguments
706 if (optname == SO_BINDTODEVICE)
707 return sock_setbindtodevice(sk, optval, optlen);
709 if (optlen < sizeof(int))
712 if (get_user(val, (int __user *)optval))
715 valbool = val ? 1 : 0;
721 if (val && !capable(CAP_NET_ADMIN))
724 sock_valbool_flag(sk, SOCK_DBG, valbool);
727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
730 sk->sk_reuseport = valbool;
739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
750 val = min_t(u32, val, sysctl_wmem_max);
752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754 /* Wake up sending tasks if we upped the value. */
755 sk->sk_write_space(sk);
759 if (!capable(CAP_NET_ADMIN)) {
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
771 val = min_t(u32, val, sysctl_rmem_max);
773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
793 if (!capable(CAP_NET_ADMIN)) {
800 if (sk->sk_prot->keepalive)
801 sk->sk_prot->keepalive(sk, valbool);
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
810 sk->sk_no_check_tx = valbool;
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
831 sock_reset_flag(sk, SOCK_LINGER);
833 #if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
844 sock_warn_obsolete_bsdism("setsockopt");
849 set_bit(SOCK_PASSCRED, &sock->flags);
851 clear_bit(SOCK_PASSCRED, &sock->flags);
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN)) {
884 sk->sk_tskey = tcp_sk(sk)->snd_una;
890 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
896 sk->sk_tsflags = val;
897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898 sock_enable_timestamp(sk,
899 SOCK_TIMESTAMPING_RX_SOFTWARE);
901 sock_disable_timestamp(sk,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
908 sk->sk_rcvlowat = val ? : 1;
912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
919 case SO_ATTACH_FILTER:
921 if (optlen == sizeof(struct sock_fprog)) {
922 struct sock_fprog fprog;
925 if (copy_from_user(&fprog, optval, sizeof(fprog)))
928 ret = sk_attach_filter(&fprog, sk);
934 if (optlen == sizeof(u32)) {
938 if (copy_from_user(&ufd, optval, sizeof(ufd)))
941 ret = sk_attach_bpf(ufd, sk);
945 case SO_ATTACH_REUSEPORT_CBPF:
947 if (optlen == sizeof(struct sock_fprog)) {
948 struct sock_fprog fprog;
951 if (copy_from_user(&fprog, optval, sizeof(fprog)))
954 ret = sk_reuseport_attach_filter(&fprog, sk);
958 case SO_ATTACH_REUSEPORT_EBPF:
960 if (optlen == sizeof(u32)) {
964 if (copy_from_user(&ufd, optval, sizeof(ufd)))
967 ret = sk_reuseport_attach_bpf(ufd, sk);
971 case SO_DETACH_FILTER:
972 ret = sk_detach_filter(sk);
976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
984 set_bit(SOCK_PASSSEC, &sock->flags);
986 clear_bit(SOCK_PASSSEC, &sock->flags);
989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1004 if (sock->ops->set_peek_off)
1005 ret = sock->ops->set_peek_off(sk, val);
1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1014 case SO_SELECT_ERR_QUEUE:
1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1018 #ifdef CONFIG_NET_RX_BUSY_POLL
1020 /* allow unprivileged users to decrease the value */
1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1027 sk->sk_ll_usec = val;
1032 case SO_MAX_PACING_RATE:
1034 cmpxchg(&sk->sk_pacing_status,
1037 sk->sk_max_pacing_rate = val;
1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039 sk->sk_max_pacing_rate);
1042 case SO_INCOMING_CPU:
1043 sk->sk_incoming_cpu = val;
1048 dst_negative_advice(sk);
1052 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053 if (sk->sk_protocol != IPPROTO_TCP)
1055 else if (sk->sk_state != TCP_CLOSE)
1057 } else if (sk->sk_family != PF_RDS) {
1061 if (val < 0 || val > 1)
1064 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1074 EXPORT_SYMBOL(sock_setsockopt);
1077 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1078 struct ucred *ucred)
1080 ucred->pid = pid_vnr(pid);
1081 ucred->uid = ucred->gid = -1;
1083 struct user_namespace *current_ns = current_user_ns();
1085 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1086 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1090 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1092 struct user_namespace *user_ns = current_user_ns();
1095 for (i = 0; i < src->ngroups; i++)
1096 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1102 int sock_getsockopt(struct socket *sock, int level, int optname,
1103 char __user *optval, int __user *optlen)
1105 struct sock *sk = sock->sk;
1114 int lv = sizeof(int);
1117 if (get_user(len, optlen))
1122 memset(&v, 0, sizeof(v));
1126 v.val = sock_flag(sk, SOCK_DBG);
1130 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1134 v.val = sock_flag(sk, SOCK_BROADCAST);
1138 v.val = sk->sk_sndbuf;
1142 v.val = sk->sk_rcvbuf;
1146 v.val = sk->sk_reuse;
1150 v.val = sk->sk_reuseport;
1154 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1158 v.val = sk->sk_type;
1162 v.val = sk->sk_protocol;
1166 v.val = sk->sk_family;
1170 v.val = -sock_error(sk);
1172 v.val = xchg(&sk->sk_err_soft, 0);
1176 v.val = sock_flag(sk, SOCK_URGINLINE);
1180 v.val = sk->sk_no_check_tx;
1184 v.val = sk->sk_priority;
1188 lv = sizeof(v.ling);
1189 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1190 v.ling.l_linger = sk->sk_lingertime / HZ;
1194 sock_warn_obsolete_bsdism("getsockopt");
1198 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1199 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1202 case SO_TIMESTAMPNS:
1203 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1206 case SO_TIMESTAMPING:
1207 v.val = sk->sk_tsflags;
1211 lv = sizeof(struct timeval);
1212 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1216 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1217 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1222 lv = sizeof(struct timeval);
1223 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1227 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1228 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1233 v.val = sk->sk_rcvlowat;
1241 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1246 struct ucred peercred;
1247 if (len > sizeof(peercred))
1248 len = sizeof(peercred);
1249 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1250 if (copy_to_user(optval, &peercred, len))
1259 if (!sk->sk_peer_cred)
1262 n = sk->sk_peer_cred->group_info->ngroups;
1263 if (len < n * sizeof(gid_t)) {
1264 len = n * sizeof(gid_t);
1265 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1267 len = n * sizeof(gid_t);
1269 ret = groups_to_user((gid_t __user *)optval,
1270 sk->sk_peer_cred->group_info);
1280 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1285 if (copy_to_user(optval, address, len))
1290 /* Dubious BSD thing... Probably nobody even uses it, but
1291 * the UNIX standard wants it for whatever reason... -DaveM
1294 v.val = sk->sk_state == TCP_LISTEN;
1298 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1302 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1305 v.val = sk->sk_mark;
1309 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1312 case SO_WIFI_STATUS:
1313 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1317 if (!sock->ops->set_peek_off)
1320 v.val = sk->sk_peek_off;
1323 v.val = sock_flag(sk, SOCK_NOFCS);
1326 case SO_BINDTODEVICE:
1327 return sock_getbindtodevice(sk, optval, optlen, len);
1330 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1336 case SO_LOCK_FILTER:
1337 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1340 case SO_BPF_EXTENSIONS:
1341 v.val = bpf_tell_extensions();
1344 case SO_SELECT_ERR_QUEUE:
1345 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1348 #ifdef CONFIG_NET_RX_BUSY_POLL
1350 v.val = sk->sk_ll_usec;
1354 case SO_MAX_PACING_RATE:
1355 v.val = sk->sk_max_pacing_rate;
1358 case SO_INCOMING_CPU:
1359 v.val = sk->sk_incoming_cpu;
1364 u32 meminfo[SK_MEMINFO_VARS];
1366 if (get_user(len, optlen))
1369 sk_get_meminfo(sk, meminfo);
1371 len = min_t(unsigned int, len, sizeof(meminfo));
1372 if (copy_to_user(optval, &meminfo, len))
1378 #ifdef CONFIG_NET_RX_BUSY_POLL
1379 case SO_INCOMING_NAPI_ID:
1380 v.val = READ_ONCE(sk->sk_napi_id);
1382 /* aggregate non-NAPI IDs down to 0 */
1383 if (v.val < MIN_NAPI_ID)
1393 v.val64 = sock_gen_cookie(sk);
1397 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1401 /* We implement the SO_SNDLOWAT etc to not be settable
1404 return -ENOPROTOOPT;
1409 if (copy_to_user(optval, &v, len))
1412 if (put_user(len, optlen))
1418 * Initialize an sk_lock.
1420 * (We also register the sk_lock with the lock validator.)
1422 static inline void sock_lock_init(struct sock *sk)
1424 if (sk->sk_kern_sock)
1425 sock_lock_init_class_and_name(
1427 af_family_kern_slock_key_strings[sk->sk_family],
1428 af_family_kern_slock_keys + sk->sk_family,
1429 af_family_kern_key_strings[sk->sk_family],
1430 af_family_kern_keys + sk->sk_family);
1432 sock_lock_init_class_and_name(
1434 af_family_slock_key_strings[sk->sk_family],
1435 af_family_slock_keys + sk->sk_family,
1436 af_family_key_strings[sk->sk_family],
1437 af_family_keys + sk->sk_family);
1441 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1442 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1443 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1445 static void sock_copy(struct sock *nsk, const struct sock *osk)
1447 #ifdef CONFIG_SECURITY_NETWORK
1448 void *sptr = nsk->sk_security;
1450 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1452 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1453 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1455 #ifdef CONFIG_SECURITY_NETWORK
1456 nsk->sk_security = sptr;
1457 security_sk_clone(osk, nsk);
1461 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1465 struct kmem_cache *slab;
1469 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1472 if (priority & __GFP_ZERO)
1473 sk_prot_clear_nulls(sk, prot->obj_size);
1475 sk = kmalloc(prot->obj_size, priority);
1478 if (security_sk_alloc(sk, family, priority))
1481 if (!try_module_get(prot->owner))
1483 sk_tx_queue_clear(sk);
1489 security_sk_free(sk);
1492 kmem_cache_free(slab, sk);
1498 static void sk_prot_free(struct proto *prot, struct sock *sk)
1500 struct kmem_cache *slab;
1501 struct module *owner;
1503 owner = prot->owner;
1506 cgroup_sk_free(&sk->sk_cgrp_data);
1507 mem_cgroup_sk_free(sk);
1508 security_sk_free(sk);
1510 kmem_cache_free(slab, sk);
1517 * sk_alloc - All socket objects are allocated here
1518 * @net: the applicable net namespace
1519 * @family: protocol family
1520 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1521 * @prot: struct proto associated with this new sock instance
1522 * @kern: is this to be a kernel socket?
1524 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1525 struct proto *prot, int kern)
1529 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1531 sk->sk_family = family;
1533 * See comment in struct sock definition to understand
1534 * why we need sk_prot_creator -acme
1536 sk->sk_prot = sk->sk_prot_creator = prot;
1537 sk->sk_kern_sock = kern;
1539 sk->sk_net_refcnt = kern ? 0 : 1;
1540 if (likely(sk->sk_net_refcnt)) {
1542 sock_inuse_add(net, 1);
1545 sock_net_set(sk, net);
1546 refcount_set(&sk->sk_wmem_alloc, 1);
1548 mem_cgroup_sk_alloc(sk);
1549 cgroup_sk_alloc(&sk->sk_cgrp_data);
1550 sock_update_classid(&sk->sk_cgrp_data);
1551 sock_update_netprioidx(&sk->sk_cgrp_data);
1556 EXPORT_SYMBOL(sk_alloc);
1558 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1559 * grace period. This is the case for UDP sockets and TCP listeners.
1561 static void __sk_destruct(struct rcu_head *head)
1563 struct sock *sk = container_of(head, struct sock, sk_rcu);
1564 struct sk_filter *filter;
1566 if (sk->sk_destruct)
1567 sk->sk_destruct(sk);
1569 filter = rcu_dereference_check(sk->sk_filter,
1570 refcount_read(&sk->sk_wmem_alloc) == 0);
1572 sk_filter_uncharge(sk, filter);
1573 RCU_INIT_POINTER(sk->sk_filter, NULL);
1575 if (rcu_access_pointer(sk->sk_reuseport_cb))
1576 reuseport_detach_sock(sk);
1578 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1580 if (atomic_read(&sk->sk_omem_alloc))
1581 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1582 __func__, atomic_read(&sk->sk_omem_alloc));
1584 if (sk->sk_frag.page) {
1585 put_page(sk->sk_frag.page);
1586 sk->sk_frag.page = NULL;
1589 if (sk->sk_peer_cred)
1590 put_cred(sk->sk_peer_cred);
1591 put_pid(sk->sk_peer_pid);
1592 if (likely(sk->sk_net_refcnt))
1593 put_net(sock_net(sk));
1594 sk_prot_free(sk->sk_prot_creator, sk);
1597 void sk_destruct(struct sock *sk)
1599 if (sock_flag(sk, SOCK_RCU_FREE))
1600 call_rcu(&sk->sk_rcu, __sk_destruct);
1602 __sk_destruct(&sk->sk_rcu);
1605 static void __sk_free(struct sock *sk)
1607 if (likely(sk->sk_net_refcnt))
1608 sock_inuse_add(sock_net(sk), -1);
1610 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1611 sock_diag_broadcast_destroy(sk);
1616 void sk_free(struct sock *sk)
1619 * We subtract one from sk_wmem_alloc and can know if
1620 * some packets are still in some tx queue.
1621 * If not null, sock_wfree() will call __sk_free(sk) later
1623 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1626 EXPORT_SYMBOL(sk_free);
1628 static void sk_init_common(struct sock *sk)
1630 skb_queue_head_init(&sk->sk_receive_queue);
1631 skb_queue_head_init(&sk->sk_write_queue);
1632 skb_queue_head_init(&sk->sk_error_queue);
1634 rwlock_init(&sk->sk_callback_lock);
1635 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1636 af_rlock_keys + sk->sk_family,
1637 af_family_rlock_key_strings[sk->sk_family]);
1638 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1639 af_wlock_keys + sk->sk_family,
1640 af_family_wlock_key_strings[sk->sk_family]);
1641 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1642 af_elock_keys + sk->sk_family,
1643 af_family_elock_key_strings[sk->sk_family]);
1644 lockdep_set_class_and_name(&sk->sk_callback_lock,
1645 af_callback_keys + sk->sk_family,
1646 af_family_clock_key_strings[sk->sk_family]);
1650 * sk_clone_lock - clone a socket, and lock its clone
1651 * @sk: the socket to clone
1652 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1654 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1656 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1659 bool is_charged = true;
1661 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1662 if (newsk != NULL) {
1663 struct sk_filter *filter;
1665 sock_copy(newsk, sk);
1667 newsk->sk_prot_creator = sk->sk_prot;
1670 if (likely(newsk->sk_net_refcnt))
1671 get_net(sock_net(newsk));
1672 sk_node_init(&newsk->sk_node);
1673 sock_lock_init(newsk);
1674 bh_lock_sock(newsk);
1675 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1676 newsk->sk_backlog.len = 0;
1678 atomic_set(&newsk->sk_rmem_alloc, 0);
1680 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1682 refcount_set(&newsk->sk_wmem_alloc, 1);
1683 atomic_set(&newsk->sk_omem_alloc, 0);
1684 sk_init_common(newsk);
1686 newsk->sk_dst_cache = NULL;
1687 newsk->sk_dst_pending_confirm = 0;
1688 newsk->sk_wmem_queued = 0;
1689 newsk->sk_forward_alloc = 0;
1690 atomic_set(&newsk->sk_drops, 0);
1691 newsk->sk_send_head = NULL;
1692 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1693 atomic_set(&newsk->sk_zckey, 0);
1695 sock_reset_flag(newsk, SOCK_DONE);
1696 mem_cgroup_sk_alloc(newsk);
1697 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1700 filter = rcu_dereference(sk->sk_filter);
1702 /* though it's an empty new sock, the charging may fail
1703 * if sysctl_optmem_max was changed between creation of
1704 * original socket and cloning
1706 is_charged = sk_filter_charge(newsk, filter);
1707 RCU_INIT_POINTER(newsk->sk_filter, filter);
1710 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1711 /* We need to make sure that we don't uncharge the new
1712 * socket if we couldn't charge it in the first place
1713 * as otherwise we uncharge the parent's filter.
1716 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1717 sk_free_unlock_clone(newsk);
1721 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1724 newsk->sk_err_soft = 0;
1725 newsk->sk_priority = 0;
1726 newsk->sk_incoming_cpu = raw_smp_processor_id();
1727 atomic64_set(&newsk->sk_cookie, 0);
1728 if (likely(newsk->sk_net_refcnt))
1729 sock_inuse_add(sock_net(newsk), 1);
1732 * Before updating sk_refcnt, we must commit prior changes to memory
1733 * (Documentation/RCU/rculist_nulls.txt for details)
1736 refcount_set(&newsk->sk_refcnt, 2);
1739 * Increment the counter in the same struct proto as the master
1740 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1741 * is the same as sk->sk_prot->socks, as this field was copied
1744 * This _changes_ the previous behaviour, where
1745 * tcp_create_openreq_child always was incrementing the
1746 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1747 * to be taken into account in all callers. -acme
1749 sk_refcnt_debug_inc(newsk);
1750 sk_set_socket(newsk, NULL);
1751 newsk->sk_wq = NULL;
1753 if (newsk->sk_prot->sockets_allocated)
1754 sk_sockets_allocated_inc(newsk);
1756 if (sock_needs_netstamp(sk) &&
1757 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1758 net_enable_timestamp();
1763 EXPORT_SYMBOL_GPL(sk_clone_lock);
1765 void sk_free_unlock_clone(struct sock *sk)
1767 /* It is still raw copy of parent, so invalidate
1768 * destructor and make plain sk_free() */
1769 sk->sk_destruct = NULL;
1773 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1775 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1779 sk_dst_set(sk, dst);
1780 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1781 if (sk->sk_route_caps & NETIF_F_GSO)
1782 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1783 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1784 if (sk_can_gso(sk)) {
1785 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1786 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1788 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1789 sk->sk_gso_max_size = dst->dev->gso_max_size;
1790 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1793 sk->sk_gso_max_segs = max_segs;
1795 EXPORT_SYMBOL_GPL(sk_setup_caps);
1798 * Simple resource managers for sockets.
1803 * Write buffer destructor automatically called from kfree_skb.
1805 void sock_wfree(struct sk_buff *skb)
1807 struct sock *sk = skb->sk;
1808 unsigned int len = skb->truesize;
1810 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1812 * Keep a reference on sk_wmem_alloc, this will be released
1813 * after sk_write_space() call
1815 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1816 sk->sk_write_space(sk);
1820 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1821 * could not do because of in-flight packets
1823 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1826 EXPORT_SYMBOL(sock_wfree);
1828 /* This variant of sock_wfree() is used by TCP,
1829 * since it sets SOCK_USE_WRITE_QUEUE.
1831 void __sock_wfree(struct sk_buff *skb)
1833 struct sock *sk = skb->sk;
1835 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1839 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1844 if (unlikely(!sk_fullsock(sk))) {
1845 skb->destructor = sock_edemux;
1850 skb->destructor = sock_wfree;
1851 skb_set_hash_from_sk(skb, sk);
1853 * We used to take a refcount on sk, but following operation
1854 * is enough to guarantee sk_free() wont free this sock until
1855 * all in-flight packets are completed
1857 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1859 EXPORT_SYMBOL(skb_set_owner_w);
1861 /* This helper is used by netem, as it can hold packets in its
1862 * delay queue. We want to allow the owner socket to send more
1863 * packets, as if they were already TX completed by a typical driver.
1864 * But we also want to keep skb->sk set because some packet schedulers
1865 * rely on it (sch_fq for example).
1867 void skb_orphan_partial(struct sk_buff *skb)
1869 if (skb_is_tcp_pure_ack(skb))
1872 if (skb->destructor == sock_wfree
1874 || skb->destructor == tcp_wfree
1877 struct sock *sk = skb->sk;
1879 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1880 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1881 skb->destructor = sock_efree;
1887 EXPORT_SYMBOL(skb_orphan_partial);
1890 * Read buffer destructor automatically called from kfree_skb.
1892 void sock_rfree(struct sk_buff *skb)
1894 struct sock *sk = skb->sk;
1895 unsigned int len = skb->truesize;
1897 atomic_sub(len, &sk->sk_rmem_alloc);
1898 sk_mem_uncharge(sk, len);
1900 EXPORT_SYMBOL(sock_rfree);
1903 * Buffer destructor for skbs that are not used directly in read or write
1904 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1906 void sock_efree(struct sk_buff *skb)
1910 EXPORT_SYMBOL(sock_efree);
1912 kuid_t sock_i_uid(struct sock *sk)
1916 read_lock_bh(&sk->sk_callback_lock);
1917 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1918 read_unlock_bh(&sk->sk_callback_lock);
1921 EXPORT_SYMBOL(sock_i_uid);
1923 unsigned long sock_i_ino(struct sock *sk)
1927 read_lock_bh(&sk->sk_callback_lock);
1928 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1929 read_unlock_bh(&sk->sk_callback_lock);
1932 EXPORT_SYMBOL(sock_i_ino);
1935 * Allocate a skb from the socket's send buffer.
1937 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1940 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1941 struct sk_buff *skb = alloc_skb(size, priority);
1943 skb_set_owner_w(skb, sk);
1949 EXPORT_SYMBOL(sock_wmalloc);
1951 static void sock_ofree(struct sk_buff *skb)
1953 struct sock *sk = skb->sk;
1955 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1958 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1961 struct sk_buff *skb;
1963 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1964 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1968 skb = alloc_skb(size, priority);
1972 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1974 skb->destructor = sock_ofree;
1979 * Allocate a memory block from the socket's option memory buffer.
1981 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1983 if ((unsigned int)size <= sysctl_optmem_max &&
1984 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1986 /* First do the add, to avoid the race if kmalloc
1989 atomic_add(size, &sk->sk_omem_alloc);
1990 mem = kmalloc(size, priority);
1993 atomic_sub(size, &sk->sk_omem_alloc);
1997 EXPORT_SYMBOL(sock_kmalloc);
1999 /* Free an option memory block. Note, we actually want the inline
2000 * here as this allows gcc to detect the nullify and fold away the
2001 * condition entirely.
2003 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2006 if (WARN_ON_ONCE(!mem))
2012 atomic_sub(size, &sk->sk_omem_alloc);
2015 void sock_kfree_s(struct sock *sk, void *mem, int size)
2017 __sock_kfree_s(sk, mem, size, false);
2019 EXPORT_SYMBOL(sock_kfree_s);
2021 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2023 __sock_kfree_s(sk, mem, size, true);
2025 EXPORT_SYMBOL(sock_kzfree_s);
2027 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2028 I think, these locks should be removed for datagram sockets.
2030 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2034 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2038 if (signal_pending(current))
2040 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2041 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2042 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2044 if (sk->sk_shutdown & SEND_SHUTDOWN)
2048 timeo = schedule_timeout(timeo);
2050 finish_wait(sk_sleep(sk), &wait);
2056 * Generic send/receive buffer handlers
2059 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2060 unsigned long data_len, int noblock,
2061 int *errcode, int max_page_order)
2063 struct sk_buff *skb;
2067 timeo = sock_sndtimeo(sk, noblock);
2069 err = sock_error(sk);
2074 if (sk->sk_shutdown & SEND_SHUTDOWN)
2077 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2080 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2081 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2085 if (signal_pending(current))
2087 timeo = sock_wait_for_wmem(sk, timeo);
2089 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2090 errcode, sk->sk_allocation);
2092 skb_set_owner_w(skb, sk);
2096 err = sock_intr_errno(timeo);
2101 EXPORT_SYMBOL(sock_alloc_send_pskb);
2103 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2104 int noblock, int *errcode)
2106 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2108 EXPORT_SYMBOL(sock_alloc_send_skb);
2110 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2111 struct sockcm_cookie *sockc)
2115 switch (cmsg->cmsg_type) {
2117 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2119 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2121 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2123 case SO_TIMESTAMPING:
2124 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2127 tsflags = *(u32 *)CMSG_DATA(cmsg);
2128 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2131 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2132 sockc->tsflags |= tsflags;
2134 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2136 case SCM_CREDENTIALS:
2143 EXPORT_SYMBOL(__sock_cmsg_send);
2145 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2146 struct sockcm_cookie *sockc)
2148 struct cmsghdr *cmsg;
2151 for_each_cmsghdr(cmsg, msg) {
2152 if (!CMSG_OK(msg, cmsg))
2154 if (cmsg->cmsg_level != SOL_SOCKET)
2156 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2162 EXPORT_SYMBOL(sock_cmsg_send);
2164 static void sk_enter_memory_pressure(struct sock *sk)
2166 if (!sk->sk_prot->enter_memory_pressure)
2169 sk->sk_prot->enter_memory_pressure(sk);
2172 static void sk_leave_memory_pressure(struct sock *sk)
2174 if (sk->sk_prot->leave_memory_pressure) {
2175 sk->sk_prot->leave_memory_pressure(sk);
2177 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2179 if (memory_pressure && *memory_pressure)
2180 *memory_pressure = 0;
2184 /* On 32bit arches, an skb frag is limited to 2^15 */
2185 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2188 * skb_page_frag_refill - check that a page_frag contains enough room
2189 * @sz: minimum size of the fragment we want to get
2190 * @pfrag: pointer to page_frag
2191 * @gfp: priority for memory allocation
2193 * Note: While this allocator tries to use high order pages, there is
2194 * no guarantee that allocations succeed. Therefore, @sz MUST be
2195 * less or equal than PAGE_SIZE.
2197 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2200 if (page_ref_count(pfrag->page) == 1) {
2204 if (pfrag->offset + sz <= pfrag->size)
2206 put_page(pfrag->page);
2210 if (SKB_FRAG_PAGE_ORDER) {
2211 /* Avoid direct reclaim but allow kswapd to wake */
2212 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2213 __GFP_COMP | __GFP_NOWARN |
2215 SKB_FRAG_PAGE_ORDER);
2216 if (likely(pfrag->page)) {
2217 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2221 pfrag->page = alloc_page(gfp);
2222 if (likely(pfrag->page)) {
2223 pfrag->size = PAGE_SIZE;
2228 EXPORT_SYMBOL(skb_page_frag_refill);
2230 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2232 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2235 sk_enter_memory_pressure(sk);
2236 sk_stream_moderate_sndbuf(sk);
2239 EXPORT_SYMBOL(sk_page_frag_refill);
2241 static void __lock_sock(struct sock *sk)
2242 __releases(&sk->sk_lock.slock)
2243 __acquires(&sk->sk_lock.slock)
2248 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2249 TASK_UNINTERRUPTIBLE);
2250 spin_unlock_bh(&sk->sk_lock.slock);
2252 spin_lock_bh(&sk->sk_lock.slock);
2253 if (!sock_owned_by_user(sk))
2256 finish_wait(&sk->sk_lock.wq, &wait);
2259 static void __release_sock(struct sock *sk)
2260 __releases(&sk->sk_lock.slock)
2261 __acquires(&sk->sk_lock.slock)
2263 struct sk_buff *skb, *next;
2265 while ((skb = sk->sk_backlog.head) != NULL) {
2266 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2268 spin_unlock_bh(&sk->sk_lock.slock);
2273 WARN_ON_ONCE(skb_dst_is_noref(skb));
2275 sk_backlog_rcv(sk, skb);
2280 } while (skb != NULL);
2282 spin_lock_bh(&sk->sk_lock.slock);
2286 * Doing the zeroing here guarantee we can not loop forever
2287 * while a wild producer attempts to flood us.
2289 sk->sk_backlog.len = 0;
2292 void __sk_flush_backlog(struct sock *sk)
2294 spin_lock_bh(&sk->sk_lock.slock);
2296 spin_unlock_bh(&sk->sk_lock.slock);
2300 * sk_wait_data - wait for data to arrive at sk_receive_queue
2301 * @sk: sock to wait on
2302 * @timeo: for how long
2303 * @skb: last skb seen on sk_receive_queue
2305 * Now socket state including sk->sk_err is changed only under lock,
2306 * hence we may omit checks after joining wait queue.
2307 * We check receive queue before schedule() only as optimization;
2308 * it is very likely that release_sock() added new data.
2310 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2312 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2315 add_wait_queue(sk_sleep(sk), &wait);
2316 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2317 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2318 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2319 remove_wait_queue(sk_sleep(sk), &wait);
2322 EXPORT_SYMBOL(sk_wait_data);
2325 * __sk_mem_raise_allocated - increase memory_allocated
2327 * @size: memory size to allocate
2328 * @amt: pages to allocate
2329 * @kind: allocation type
2331 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2333 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2335 struct proto *prot = sk->sk_prot;
2336 long allocated = sk_memory_allocated_add(sk, amt);
2338 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2339 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2340 goto suppress_allocation;
2343 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2344 sk_leave_memory_pressure(sk);
2348 /* Under pressure. */
2349 if (allocated > sk_prot_mem_limits(sk, 1))
2350 sk_enter_memory_pressure(sk);
2352 /* Over hard limit. */
2353 if (allocated > sk_prot_mem_limits(sk, 2))
2354 goto suppress_allocation;
2356 /* guarantee minimum buffer size under pressure */
2357 if (kind == SK_MEM_RECV) {
2358 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2361 } else { /* SK_MEM_SEND */
2362 int wmem0 = sk_get_wmem0(sk, prot);
2364 if (sk->sk_type == SOCK_STREAM) {
2365 if (sk->sk_wmem_queued < wmem0)
2367 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2372 if (sk_has_memory_pressure(sk)) {
2375 if (!sk_under_memory_pressure(sk))
2377 alloc = sk_sockets_allocated_read_positive(sk);
2378 if (sk_prot_mem_limits(sk, 2) > alloc *
2379 sk_mem_pages(sk->sk_wmem_queued +
2380 atomic_read(&sk->sk_rmem_alloc) +
2381 sk->sk_forward_alloc))
2385 suppress_allocation:
2387 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2388 sk_stream_moderate_sndbuf(sk);
2390 /* Fail only if socket is _under_ its sndbuf.
2391 * In this case we cannot block, so that we have to fail.
2393 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2397 trace_sock_exceed_buf_limit(sk, prot, allocated);
2399 sk_memory_allocated_sub(sk, amt);
2401 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2402 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2406 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2409 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2411 * @size: memory size to allocate
2412 * @kind: allocation type
2414 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2415 * rmem allocation. This function assumes that protocols which have
2416 * memory_pressure use sk_wmem_queued as write buffer accounting.
2418 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2420 int ret, amt = sk_mem_pages(size);
2422 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2423 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2425 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2428 EXPORT_SYMBOL(__sk_mem_schedule);
2431 * __sk_mem_reduce_allocated - reclaim memory_allocated
2433 * @amount: number of quanta
2435 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2437 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2439 sk_memory_allocated_sub(sk, amount);
2441 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2442 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2444 if (sk_under_memory_pressure(sk) &&
2445 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2446 sk_leave_memory_pressure(sk);
2448 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2451 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2453 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2455 void __sk_mem_reclaim(struct sock *sk, int amount)
2457 amount >>= SK_MEM_QUANTUM_SHIFT;
2458 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2459 __sk_mem_reduce_allocated(sk, amount);
2461 EXPORT_SYMBOL(__sk_mem_reclaim);
2463 int sk_set_peek_off(struct sock *sk, int val)
2465 sk->sk_peek_off = val;
2468 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2471 * Set of default routines for initialising struct proto_ops when
2472 * the protocol does not support a particular function. In certain
2473 * cases where it makes no sense for a protocol to have a "do nothing"
2474 * function, some default processing is provided.
2477 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2481 EXPORT_SYMBOL(sock_no_bind);
2483 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2488 EXPORT_SYMBOL(sock_no_connect);
2490 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2494 EXPORT_SYMBOL(sock_no_socketpair);
2496 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2501 EXPORT_SYMBOL(sock_no_accept);
2503 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2508 EXPORT_SYMBOL(sock_no_getname);
2510 __poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2514 EXPORT_SYMBOL(sock_no_poll);
2516 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2520 EXPORT_SYMBOL(sock_no_ioctl);
2522 int sock_no_listen(struct socket *sock, int backlog)
2526 EXPORT_SYMBOL(sock_no_listen);
2528 int sock_no_shutdown(struct socket *sock, int how)
2532 EXPORT_SYMBOL(sock_no_shutdown);
2534 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2535 char __user *optval, unsigned int optlen)
2539 EXPORT_SYMBOL(sock_no_setsockopt);
2541 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2542 char __user *optval, int __user *optlen)
2546 EXPORT_SYMBOL(sock_no_getsockopt);
2548 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2552 EXPORT_SYMBOL(sock_no_sendmsg);
2554 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2558 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2560 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2565 EXPORT_SYMBOL(sock_no_recvmsg);
2567 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2569 /* Mirror missing mmap method error code */
2572 EXPORT_SYMBOL(sock_no_mmap);
2574 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2577 struct msghdr msg = {.msg_flags = flags};
2579 char *kaddr = kmap(page);
2580 iov.iov_base = kaddr + offset;
2582 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2586 EXPORT_SYMBOL(sock_no_sendpage);
2588 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2589 int offset, size_t size, int flags)
2592 struct msghdr msg = {.msg_flags = flags};
2594 char *kaddr = kmap(page);
2596 iov.iov_base = kaddr + offset;
2598 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2602 EXPORT_SYMBOL(sock_no_sendpage_locked);
2605 * Default Socket Callbacks
2608 static void sock_def_wakeup(struct sock *sk)
2610 struct socket_wq *wq;
2613 wq = rcu_dereference(sk->sk_wq);
2614 if (skwq_has_sleeper(wq))
2615 wake_up_interruptible_all(&wq->wait);
2619 static void sock_def_error_report(struct sock *sk)
2621 struct socket_wq *wq;
2624 wq = rcu_dereference(sk->sk_wq);
2625 if (skwq_has_sleeper(wq))
2626 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2627 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2631 static void sock_def_readable(struct sock *sk)
2633 struct socket_wq *wq;
2636 wq = rcu_dereference(sk->sk_wq);
2637 if (skwq_has_sleeper(wq))
2638 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2639 EPOLLRDNORM | EPOLLRDBAND);
2640 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2644 static void sock_def_write_space(struct sock *sk)
2646 struct socket_wq *wq;
2650 /* Do not wake up a writer until he can make "significant"
2653 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2654 wq = rcu_dereference(sk->sk_wq);
2655 if (skwq_has_sleeper(wq))
2656 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2657 EPOLLWRNORM | EPOLLWRBAND);
2659 /* Should agree with poll, otherwise some programs break */
2660 if (sock_writeable(sk))
2661 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2667 static void sock_def_destruct(struct sock *sk)
2671 void sk_send_sigurg(struct sock *sk)
2673 if (sk->sk_socket && sk->sk_socket->file)
2674 if (send_sigurg(&sk->sk_socket->file->f_owner))
2675 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2677 EXPORT_SYMBOL(sk_send_sigurg);
2679 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2680 unsigned long expires)
2682 if (!mod_timer(timer, expires))
2685 EXPORT_SYMBOL(sk_reset_timer);
2687 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2689 if (del_timer(timer))
2692 EXPORT_SYMBOL(sk_stop_timer);
2694 void sock_init_data(struct socket *sock, struct sock *sk)
2697 sk->sk_send_head = NULL;
2699 timer_setup(&sk->sk_timer, NULL, 0);
2701 sk->sk_allocation = GFP_KERNEL;
2702 sk->sk_rcvbuf = sysctl_rmem_default;
2703 sk->sk_sndbuf = sysctl_wmem_default;
2704 sk->sk_state = TCP_CLOSE;
2705 sk_set_socket(sk, sock);
2707 sock_set_flag(sk, SOCK_ZAPPED);
2710 sk->sk_type = sock->type;
2711 sk->sk_wq = sock->wq;
2713 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2716 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2719 rwlock_init(&sk->sk_callback_lock);
2720 if (sk->sk_kern_sock)
2721 lockdep_set_class_and_name(
2722 &sk->sk_callback_lock,
2723 af_kern_callback_keys + sk->sk_family,
2724 af_family_kern_clock_key_strings[sk->sk_family]);
2726 lockdep_set_class_and_name(
2727 &sk->sk_callback_lock,
2728 af_callback_keys + sk->sk_family,
2729 af_family_clock_key_strings[sk->sk_family]);
2731 sk->sk_state_change = sock_def_wakeup;
2732 sk->sk_data_ready = sock_def_readable;
2733 sk->sk_write_space = sock_def_write_space;
2734 sk->sk_error_report = sock_def_error_report;
2735 sk->sk_destruct = sock_def_destruct;
2737 sk->sk_frag.page = NULL;
2738 sk->sk_frag.offset = 0;
2739 sk->sk_peek_off = -1;
2741 sk->sk_peer_pid = NULL;
2742 sk->sk_peer_cred = NULL;
2743 sk->sk_write_pending = 0;
2744 sk->sk_rcvlowat = 1;
2745 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2746 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2748 sk->sk_stamp = SK_DEFAULT_STAMP;
2749 atomic_set(&sk->sk_zckey, 0);
2751 #ifdef CONFIG_NET_RX_BUSY_POLL
2753 sk->sk_ll_usec = sysctl_net_busy_read;
2756 sk->sk_max_pacing_rate = ~0U;
2757 sk->sk_pacing_rate = ~0U;
2758 sk->sk_pacing_shift = 10;
2759 sk->sk_incoming_cpu = -1;
2761 * Before updating sk_refcnt, we must commit prior changes to memory
2762 * (Documentation/RCU/rculist_nulls.txt for details)
2765 refcount_set(&sk->sk_refcnt, 1);
2766 atomic_set(&sk->sk_drops, 0);
2768 EXPORT_SYMBOL(sock_init_data);
2770 void lock_sock_nested(struct sock *sk, int subclass)
2773 spin_lock_bh(&sk->sk_lock.slock);
2774 if (sk->sk_lock.owned)
2776 sk->sk_lock.owned = 1;
2777 spin_unlock(&sk->sk_lock.slock);
2779 * The sk_lock has mutex_lock() semantics here:
2781 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2784 EXPORT_SYMBOL(lock_sock_nested);
2786 void release_sock(struct sock *sk)
2788 spin_lock_bh(&sk->sk_lock.slock);
2789 if (sk->sk_backlog.tail)
2792 /* Warning : release_cb() might need to release sk ownership,
2793 * ie call sock_release_ownership(sk) before us.
2795 if (sk->sk_prot->release_cb)
2796 sk->sk_prot->release_cb(sk);
2798 sock_release_ownership(sk);
2799 if (waitqueue_active(&sk->sk_lock.wq))
2800 wake_up(&sk->sk_lock.wq);
2801 spin_unlock_bh(&sk->sk_lock.slock);
2803 EXPORT_SYMBOL(release_sock);
2806 * lock_sock_fast - fast version of lock_sock
2809 * This version should be used for very small section, where process wont block
2810 * return false if fast path is taken:
2812 * sk_lock.slock locked, owned = 0, BH disabled
2814 * return true if slow path is taken:
2816 * sk_lock.slock unlocked, owned = 1, BH enabled
2818 bool lock_sock_fast(struct sock *sk)
2821 spin_lock_bh(&sk->sk_lock.slock);
2823 if (!sk->sk_lock.owned)
2825 * Note : We must disable BH
2830 sk->sk_lock.owned = 1;
2831 spin_unlock(&sk->sk_lock.slock);
2833 * The sk_lock has mutex_lock() semantics here:
2835 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2839 EXPORT_SYMBOL(lock_sock_fast);
2841 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2844 if (!sock_flag(sk, SOCK_TIMESTAMP))
2845 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2846 tv = ktime_to_timeval(sk->sk_stamp);
2847 if (tv.tv_sec == -1)
2849 if (tv.tv_sec == 0) {
2850 sk->sk_stamp = ktime_get_real();
2851 tv = ktime_to_timeval(sk->sk_stamp);
2853 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2855 EXPORT_SYMBOL(sock_get_timestamp);
2857 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2860 if (!sock_flag(sk, SOCK_TIMESTAMP))
2861 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2862 ts = ktime_to_timespec(sk->sk_stamp);
2863 if (ts.tv_sec == -1)
2865 if (ts.tv_sec == 0) {
2866 sk->sk_stamp = ktime_get_real();
2867 ts = ktime_to_timespec(sk->sk_stamp);
2869 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2871 EXPORT_SYMBOL(sock_get_timestampns);
2873 void sock_enable_timestamp(struct sock *sk, int flag)
2875 if (!sock_flag(sk, flag)) {
2876 unsigned long previous_flags = sk->sk_flags;
2878 sock_set_flag(sk, flag);
2880 * we just set one of the two flags which require net
2881 * time stamping, but time stamping might have been on
2882 * already because of the other one
2884 if (sock_needs_netstamp(sk) &&
2885 !(previous_flags & SK_FLAGS_TIMESTAMP))
2886 net_enable_timestamp();
2890 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2891 int level, int type)
2893 struct sock_exterr_skb *serr;
2894 struct sk_buff *skb;
2898 skb = sock_dequeue_err_skb(sk);
2904 msg->msg_flags |= MSG_TRUNC;
2907 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2911 sock_recv_timestamp(msg, sk, skb);
2913 serr = SKB_EXT_ERR(skb);
2914 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2916 msg->msg_flags |= MSG_ERRQUEUE;
2924 EXPORT_SYMBOL(sock_recv_errqueue);
2927 * Get a socket option on an socket.
2929 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2930 * asynchronous errors should be reported by getsockopt. We assume
2931 * this means if you specify SO_ERROR (otherwise whats the point of it).
2933 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2934 char __user *optval, int __user *optlen)
2936 struct sock *sk = sock->sk;
2938 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2940 EXPORT_SYMBOL(sock_common_getsockopt);
2942 #ifdef CONFIG_COMPAT
2943 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2944 char __user *optval, int __user *optlen)
2946 struct sock *sk = sock->sk;
2948 if (sk->sk_prot->compat_getsockopt != NULL)
2949 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2951 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2953 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2956 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2959 struct sock *sk = sock->sk;
2963 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2964 flags & ~MSG_DONTWAIT, &addr_len);
2966 msg->msg_namelen = addr_len;
2969 EXPORT_SYMBOL(sock_common_recvmsg);
2972 * Set socket options on an inet socket.
2974 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2975 char __user *optval, unsigned int optlen)
2977 struct sock *sk = sock->sk;
2979 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2981 EXPORT_SYMBOL(sock_common_setsockopt);
2983 #ifdef CONFIG_COMPAT
2984 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2985 char __user *optval, unsigned int optlen)
2987 struct sock *sk = sock->sk;
2989 if (sk->sk_prot->compat_setsockopt != NULL)
2990 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2992 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2994 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2997 void sk_common_release(struct sock *sk)
2999 if (sk->sk_prot->destroy)
3000 sk->sk_prot->destroy(sk);
3003 * Observation: when sock_common_release is called, processes have
3004 * no access to socket. But net still has.
3005 * Step one, detach it from networking:
3007 * A. Remove from hash tables.
3010 sk->sk_prot->unhash(sk);
3013 * In this point socket cannot receive new packets, but it is possible
3014 * that some packets are in flight because some CPU runs receiver and
3015 * did hash table lookup before we unhashed socket. They will achieve
3016 * receive queue and will be purged by socket destructor.
3018 * Also we still have packets pending on receive queue and probably,
3019 * our own packets waiting in device queues. sock_destroy will drain
3020 * receive queue, but transmitted packets will delay socket destruction
3021 * until the last reference will be released.
3026 xfrm_sk_free_policy(sk);
3028 sk_refcnt_debug_release(sk);
3032 EXPORT_SYMBOL(sk_common_release);
3034 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3036 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3038 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3039 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3040 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3041 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3042 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3043 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3044 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3045 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3046 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3049 #ifdef CONFIG_PROC_FS
3050 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3052 int val[PROTO_INUSE_NR];
3055 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3057 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3059 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3061 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3063 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3065 int cpu, idx = prot->inuse_idx;
3068 for_each_possible_cpu(cpu)
3069 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3071 return res >= 0 ? res : 0;
3073 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3075 static void sock_inuse_add(struct net *net, int val)
3077 this_cpu_add(*net->core.sock_inuse, val);
3080 int sock_inuse_get(struct net *net)
3084 for_each_possible_cpu(cpu)
3085 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3090 EXPORT_SYMBOL_GPL(sock_inuse_get);
3092 static int __net_init sock_inuse_init_net(struct net *net)
3094 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3095 if (net->core.prot_inuse == NULL)
3098 net->core.sock_inuse = alloc_percpu(int);
3099 if (net->core.sock_inuse == NULL)
3105 free_percpu(net->core.prot_inuse);
3109 static void __net_exit sock_inuse_exit_net(struct net *net)
3111 free_percpu(net->core.prot_inuse);
3112 free_percpu(net->core.sock_inuse);
3115 static struct pernet_operations net_inuse_ops = {
3116 .init = sock_inuse_init_net,
3117 .exit = sock_inuse_exit_net,
3121 static __init int net_inuse_init(void)
3123 if (register_pernet_subsys(&net_inuse_ops))
3124 panic("Cannot initialize net inuse counters");
3129 core_initcall(net_inuse_init);
3131 static void assign_proto_idx(struct proto *prot)
3133 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3135 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3136 pr_err("PROTO_INUSE_NR exhausted\n");
3140 set_bit(prot->inuse_idx, proto_inuse_idx);
3143 static void release_proto_idx(struct proto *prot)
3145 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3146 clear_bit(prot->inuse_idx, proto_inuse_idx);
3149 static inline void assign_proto_idx(struct proto *prot)
3153 static inline void release_proto_idx(struct proto *prot)
3157 static void sock_inuse_add(struct net *net, int val)
3162 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3166 kfree(rsk_prot->slab_name);
3167 rsk_prot->slab_name = NULL;
3168 kmem_cache_destroy(rsk_prot->slab);
3169 rsk_prot->slab = NULL;
3172 static int req_prot_init(const struct proto *prot)
3174 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3179 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3181 if (!rsk_prot->slab_name)
3184 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3185 rsk_prot->obj_size, 0,
3186 prot->slab_flags, NULL);
3188 if (!rsk_prot->slab) {
3189 pr_crit("%s: Can't create request sock SLAB cache!\n",
3196 int proto_register(struct proto *prot, int alloc_slab)
3199 prot->slab = kmem_cache_create_usercopy(prot->name,
3201 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3202 prot->useroffset, prot->usersize,
3205 if (prot->slab == NULL) {
3206 pr_crit("%s: Can't create sock SLAB cache!\n",
3211 if (req_prot_init(prot))
3212 goto out_free_request_sock_slab;
3214 if (prot->twsk_prot != NULL) {
3215 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3217 if (prot->twsk_prot->twsk_slab_name == NULL)
3218 goto out_free_request_sock_slab;
3220 prot->twsk_prot->twsk_slab =
3221 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3222 prot->twsk_prot->twsk_obj_size,
3226 if (prot->twsk_prot->twsk_slab == NULL)
3227 goto out_free_timewait_sock_slab_name;
3231 mutex_lock(&proto_list_mutex);
3232 list_add(&prot->node, &proto_list);
3233 assign_proto_idx(prot);
3234 mutex_unlock(&proto_list_mutex);
3237 out_free_timewait_sock_slab_name:
3238 kfree(prot->twsk_prot->twsk_slab_name);
3239 out_free_request_sock_slab:
3240 req_prot_cleanup(prot->rsk_prot);
3242 kmem_cache_destroy(prot->slab);
3247 EXPORT_SYMBOL(proto_register);
3249 void proto_unregister(struct proto *prot)
3251 mutex_lock(&proto_list_mutex);
3252 release_proto_idx(prot);
3253 list_del(&prot->node);
3254 mutex_unlock(&proto_list_mutex);
3256 kmem_cache_destroy(prot->slab);
3259 req_prot_cleanup(prot->rsk_prot);
3261 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3262 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3263 kfree(prot->twsk_prot->twsk_slab_name);
3264 prot->twsk_prot->twsk_slab = NULL;
3267 EXPORT_SYMBOL(proto_unregister);
3269 #ifdef CONFIG_PROC_FS
3270 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3271 __acquires(proto_list_mutex)
3273 mutex_lock(&proto_list_mutex);
3274 return seq_list_start_head(&proto_list, *pos);
3277 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3279 return seq_list_next(v, &proto_list, pos);
3282 static void proto_seq_stop(struct seq_file *seq, void *v)
3283 __releases(proto_list_mutex)
3285 mutex_unlock(&proto_list_mutex);
3288 static char proto_method_implemented(const void *method)
3290 return method == NULL ? 'n' : 'y';
3292 static long sock_prot_memory_allocated(struct proto *proto)
3294 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3297 static char *sock_prot_memory_pressure(struct proto *proto)
3299 return proto->memory_pressure != NULL ?
3300 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3303 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3306 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3307 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3310 sock_prot_inuse_get(seq_file_net(seq), proto),
3311 sock_prot_memory_allocated(proto),
3312 sock_prot_memory_pressure(proto),
3314 proto->slab == NULL ? "no" : "yes",
3315 module_name(proto->owner),
3316 proto_method_implemented(proto->close),
3317 proto_method_implemented(proto->connect),
3318 proto_method_implemented(proto->disconnect),
3319 proto_method_implemented(proto->accept),
3320 proto_method_implemented(proto->ioctl),
3321 proto_method_implemented(proto->init),
3322 proto_method_implemented(proto->destroy),
3323 proto_method_implemented(proto->shutdown),
3324 proto_method_implemented(proto->setsockopt),
3325 proto_method_implemented(proto->getsockopt),
3326 proto_method_implemented(proto->sendmsg),
3327 proto_method_implemented(proto->recvmsg),
3328 proto_method_implemented(proto->sendpage),
3329 proto_method_implemented(proto->bind),
3330 proto_method_implemented(proto->backlog_rcv),
3331 proto_method_implemented(proto->hash),
3332 proto_method_implemented(proto->unhash),
3333 proto_method_implemented(proto->get_port),
3334 proto_method_implemented(proto->enter_memory_pressure));
3337 static int proto_seq_show(struct seq_file *seq, void *v)
3339 if (v == &proto_list)
3340 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3349 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3351 proto_seq_printf(seq, list_entry(v, struct proto, node));
3355 static const struct seq_operations proto_seq_ops = {
3356 .start = proto_seq_start,
3357 .next = proto_seq_next,
3358 .stop = proto_seq_stop,
3359 .show = proto_seq_show,
3362 static int proto_seq_open(struct inode *inode, struct file *file)
3364 return seq_open_net(inode, file, &proto_seq_ops,
3365 sizeof(struct seq_net_private));
3368 static const struct file_operations proto_seq_fops = {
3369 .open = proto_seq_open,
3371 .llseek = seq_lseek,
3372 .release = seq_release_net,
3375 static __net_init int proto_init_net(struct net *net)
3377 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3383 static __net_exit void proto_exit_net(struct net *net)
3385 remove_proc_entry("protocols", net->proc_net);
3389 static __net_initdata struct pernet_operations proto_net_ops = {
3390 .init = proto_init_net,
3391 .exit = proto_exit_net,
3395 static int __init proto_init(void)
3397 return register_pernet_subsys(&proto_net_ops);
3400 subsys_initcall(proto_init);
3402 #endif /* PROC_FS */
3404 #ifdef CONFIG_NET_RX_BUSY_POLL
3405 bool sk_busy_loop_end(void *p, unsigned long start_time)
3407 struct sock *sk = p;
3409 return !skb_queue_empty(&sk->sk_receive_queue) ||
3410 sk_busy_loop_timeout(sk, start_time);
3412 EXPORT_SYMBOL(sk_busy_loop_end);
3413 #endif /* CONFIG_NET_RX_BUSY_POLL */