1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
29 #include <linux/of_device.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/nand_ecc.h>
34 #include <linux/mtd/partitions.h>
36 #include <linux/platform_data/mtd-nand-s3c2410.h>
38 #define S3C2410_NFREG(x) (x)
40 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
41 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
42 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
43 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
44 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
45 #define S3C2410_NFECC S3C2410_NFREG(0x14)
46 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
47 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
48 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
49 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
50 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
51 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
52 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
53 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
54 #define S3C2410_NFCONF_EN (1<<15)
55 #define S3C2410_NFCONF_INITECC (1<<12)
56 #define S3C2410_NFCONF_nFCE (1<<11)
57 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
58 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
59 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
60 #define S3C2410_NFSTAT_BUSY (1<<0)
61 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
62 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
63 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
64 #define S3C2440_NFCONT_INITECC (1<<4)
65 #define S3C2440_NFCONT_nFCE (1<<1)
66 #define S3C2440_NFCONT_ENABLE (1<<0)
67 #define S3C2440_NFSTAT_READY (1<<0)
68 #define S3C2412_NFCONF_NANDBOOT (1<<31)
69 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
70 #define S3C2412_NFCONT_nFCE0 (1<<1)
71 #define S3C2412_NFSTAT_READY (1<<0)
73 /* new oob placement block for use with hardware ecc generation
75 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
76 struct mtd_oob_region *oobregion)
81 oobregion->offset = 0;
82 oobregion->length = 3;
87 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
88 struct mtd_oob_region *oobregion)
93 oobregion->offset = 8;
94 oobregion->length = 8;
99 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
100 .ecc = s3c2410_ooblayout_ecc,
101 .free = s3c2410_ooblayout_free,
104 /* controller and mtd information */
106 struct s3c2410_nand_info;
109 * struct s3c2410_nand_mtd - driver MTD structure
110 * @mtd: The MTD instance to pass to the MTD layer.
111 * @chip: The NAND chip information.
112 * @set: The platform information supplied for this set of NAND chips.
113 * @info: Link back to the hardware information.
115 struct s3c2410_nand_mtd {
116 struct nand_chip chip;
117 struct s3c2410_nand_set *set;
118 struct s3c2410_nand_info *info;
127 enum s3c_nand_clk_state {
133 /* overview of the s3c2410 nand state */
136 * struct s3c2410_nand_info - NAND controller state.
137 * @mtds: An array of MTD instances on this controoler.
138 * @platform: The platform data for this board.
139 * @device: The platform device we bound to.
140 * @clk: The clock resource for this controller.
141 * @regs: The area mapped for the hardware registers.
142 * @sel_reg: Pointer to the register controlling the NAND selection.
143 * @sel_bit: The bit in @sel_reg to select the NAND chip.
144 * @mtd_count: The number of MTDs created from this controller.
145 * @save_sel: The contents of @sel_reg to be saved over suspend.
146 * @clk_rate: The clock rate from @clk.
147 * @clk_state: The current clock state.
148 * @cpu_type: The exact type of this controller.
150 struct s3c2410_nand_info {
152 struct nand_controller controller;
153 struct s3c2410_nand_mtd *mtds;
154 struct s3c2410_platform_nand *platform;
157 struct device *device;
160 void __iomem *sel_reg;
163 unsigned long save_sel;
164 unsigned long clk_rate;
165 enum s3c_nand_clk_state clk_state;
167 enum s3c_cpu_type cpu_type;
169 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
170 struct notifier_block freq_transition;
174 struct s3c24XX_nand_devtype_data {
175 enum s3c_cpu_type type;
178 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
179 .type = TYPE_S3C2410,
182 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
183 .type = TYPE_S3C2412,
186 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
187 .type = TYPE_S3C2440,
190 /* conversion functions */
192 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
194 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
198 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
200 return s3c2410_nand_mtd_toours(mtd)->info;
203 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
205 return platform_get_drvdata(dev);
208 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
210 return dev_get_platdata(&dev->dev);
213 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
215 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
223 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
224 * @info: The controller instance.
225 * @new_state: State to which clock should be set.
227 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
228 enum s3c_nand_clk_state new_state)
230 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
233 if (info->clk_state == CLOCK_ENABLE) {
234 if (new_state != CLOCK_ENABLE)
235 clk_disable_unprepare(info->clk);
237 if (new_state == CLOCK_ENABLE)
238 clk_prepare_enable(info->clk);
241 info->clk_state = new_state;
244 /* timing calculations */
246 #define NS_IN_KHZ 1000000
249 * s3c_nand_calc_rate - calculate timing data.
250 * @wanted: The cycle time in nanoseconds.
251 * @clk: The clock rate in kHz.
252 * @max: The maximum divider value.
254 * Calculate the timing value from the given parameters.
256 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
260 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
262 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
265 pr_err("%d ns is too big for current clock rate %ld\n",
276 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
278 /* controller setup */
281 * s3c2410_nand_setrate - setup controller timing information.
282 * @info: The controller instance.
284 * Given the information supplied by the platform, calculate and set
285 * the necessary timing registers in the hardware to generate the
286 * necessary timing cycles to the hardware.
288 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
290 struct s3c2410_platform_nand *plat = info->platform;
291 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
292 int tacls, twrph0, twrph1;
293 unsigned long clkrate = clk_get_rate(info->clk);
294 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
297 /* calculate the timing information for the controller */
299 info->clk_rate = clkrate;
300 clkrate /= 1000; /* turn clock into kHz for ease of use */
303 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
304 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
305 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
307 /* default timings */
313 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
314 dev_err(info->device, "cannot get suitable timings\n");
318 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
319 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
320 twrph1, to_ns(twrph1, clkrate));
322 switch (info->cpu_type) {
324 mask = (S3C2410_NFCONF_TACLS(3) |
325 S3C2410_NFCONF_TWRPH0(7) |
326 S3C2410_NFCONF_TWRPH1(7));
327 set = S3C2410_NFCONF_EN;
328 set |= S3C2410_NFCONF_TACLS(tacls - 1);
329 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
330 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
335 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
336 S3C2440_NFCONF_TWRPH0(7) |
337 S3C2440_NFCONF_TWRPH1(7));
339 set = S3C2440_NFCONF_TACLS(tacls - 1);
340 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
341 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
348 local_irq_save(flags);
350 cfg = readl(info->regs + S3C2410_NFCONF);
353 writel(cfg, info->regs + S3C2410_NFCONF);
355 local_irq_restore(flags);
357 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
363 * s3c2410_nand_inithw - basic hardware initialisation
364 * @info: The hardware state.
366 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
367 * to setup the hardware access speeds and set the controller to be enabled.
369 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
373 ret = s3c2410_nand_setrate(info);
377 switch (info->cpu_type) {
384 /* enable the controller and de-assert nFCE */
386 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
393 * s3c2410_nand_select_chip - select the given nand chip
394 * @this: NAND chip object.
395 * @chip: The chip number.
397 * This is called by the MTD layer to either select a given chip for the
398 * @mtd instance, or to indicate that the access has finished and the
399 * chip can be de-selected.
401 * The routine ensures that the nFCE line is correctly setup, and any
402 * platform specific selection code is called to route nFCE to the specific
405 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
407 struct s3c2410_nand_info *info;
408 struct s3c2410_nand_mtd *nmtd;
411 nmtd = nand_get_controller_data(this);
415 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
417 cur = readl(info->sel_reg);
420 cur |= info->sel_bit;
422 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
423 dev_err(info->device, "invalid chip %d\n", chip);
427 if (info->platform != NULL) {
428 if (info->platform->select_chip != NULL)
429 (info->platform->select_chip) (nmtd->set, chip);
432 cur &= ~info->sel_bit;
435 writel(cur, info->sel_reg);
438 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
441 /* s3c2410_nand_hwcontrol
443 * Issue command and address cycles to the chip
446 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
449 struct mtd_info *mtd = nand_to_mtd(chip);
450 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
452 if (cmd == NAND_CMD_NONE)
456 writeb(cmd, info->regs + S3C2410_NFCMD);
458 writeb(cmd, info->regs + S3C2410_NFADDR);
461 /* command and control functions */
463 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
466 struct mtd_info *mtd = nand_to_mtd(chip);
467 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
469 if (cmd == NAND_CMD_NONE)
473 writeb(cmd, info->regs + S3C2440_NFCMD);
475 writeb(cmd, info->regs + S3C2440_NFADDR);
478 /* s3c2410_nand_devready()
480 * returns 0 if the nand is busy, 1 if it is ready
483 static int s3c2410_nand_devready(struct nand_chip *chip)
485 struct mtd_info *mtd = nand_to_mtd(chip);
486 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
487 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
490 static int s3c2440_nand_devready(struct nand_chip *chip)
492 struct mtd_info *mtd = nand_to_mtd(chip);
493 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
494 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
497 static int s3c2412_nand_devready(struct nand_chip *chip)
499 struct mtd_info *mtd = nand_to_mtd(chip);
500 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
504 /* ECC handling functions */
506 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
507 u_char *read_ecc, u_char *calc_ecc)
509 struct mtd_info *mtd = nand_to_mtd(chip);
510 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
511 unsigned int diff0, diff1, diff2;
512 unsigned int bit, byte;
514 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
516 diff0 = read_ecc[0] ^ calc_ecc[0];
517 diff1 = read_ecc[1] ^ calc_ecc[1];
518 diff2 = read_ecc[2] ^ calc_ecc[2];
520 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
521 __func__, 3, read_ecc, 3, calc_ecc,
522 diff0, diff1, diff2);
524 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
525 return 0; /* ECC is ok */
527 /* sometimes people do not think about using the ECC, so check
528 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
529 * the error, on the assumption that this is an un-eccd page.
531 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
532 && info->platform->ignore_unset_ecc)
535 /* Can we correct this ECC (ie, one row and column change).
536 * Note, this is similar to the 256 error code on smartmedia */
538 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
539 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
540 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
541 /* calculate the bit position of the error */
543 bit = ((diff2 >> 3) & 1) |
547 /* calculate the byte position of the error */
549 byte = ((diff2 << 7) & 0x100) |
550 ((diff1 << 0) & 0x80) |
551 ((diff1 << 1) & 0x40) |
552 ((diff1 << 2) & 0x20) |
553 ((diff1 << 3) & 0x10) |
554 ((diff0 >> 4) & 0x08) |
555 ((diff0 >> 3) & 0x04) |
556 ((diff0 >> 2) & 0x02) |
557 ((diff0 >> 1) & 0x01);
559 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
562 dat[byte] ^= (1 << bit);
566 /* if there is only one bit difference in the ECC, then
567 * one of only a row or column parity has changed, which
568 * means the error is most probably in the ECC itself */
570 diff0 |= (diff1 << 8);
571 diff0 |= (diff2 << 16);
573 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
574 if ((diff0 & (diff0 - 1)) == 0)
582 * These allow the s3c2410 and s3c2440 to use the controller's ECC
583 * generator block to ECC the data as it passes through]
586 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
588 struct s3c2410_nand_info *info;
591 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
592 ctrl = readl(info->regs + S3C2410_NFCONF);
593 ctrl |= S3C2410_NFCONF_INITECC;
594 writel(ctrl, info->regs + S3C2410_NFCONF);
597 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
599 struct s3c2410_nand_info *info;
602 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
603 ctrl = readl(info->regs + S3C2440_NFCONT);
604 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
605 info->regs + S3C2440_NFCONT);
608 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
610 struct s3c2410_nand_info *info;
613 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
614 ctrl = readl(info->regs + S3C2440_NFCONT);
615 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
618 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
619 const u_char *dat, u_char *ecc_code)
621 struct mtd_info *mtd = nand_to_mtd(chip);
622 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
624 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
625 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
626 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
628 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
633 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
634 const u_char *dat, u_char *ecc_code)
636 struct mtd_info *mtd = nand_to_mtd(chip);
637 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
638 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
641 ecc_code[1] = ecc >> 8;
642 ecc_code[2] = ecc >> 16;
644 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
649 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
650 const u_char *dat, u_char *ecc_code)
652 struct mtd_info *mtd = nand_to_mtd(chip);
653 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
654 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
657 ecc_code[1] = ecc >> 8;
658 ecc_code[2] = ecc >> 16;
660 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
665 /* over-ride the standard functions for a little more speed. We can
666 * use read/write block to move the data buffers to/from the controller
669 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
671 readsb(this->legacy.IO_ADDR_R, buf, len);
674 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
676 struct mtd_info *mtd = nand_to_mtd(this);
677 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
679 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
681 /* cleanup if we've got less than a word to do */
685 for (; len & 3; len--)
686 *buf++ = readb(info->regs + S3C2440_NFDATA);
690 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
693 writesb(this->legacy.IO_ADDR_W, buf, len);
696 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
699 struct mtd_info *mtd = nand_to_mtd(this);
700 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
702 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
704 /* cleanup any fractional write */
708 for (; len & 3; len--, buf++)
709 writeb(*buf, info->regs + S3C2440_NFDATA);
713 /* cpufreq driver support */
715 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
717 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
718 unsigned long val, void *data)
720 struct s3c2410_nand_info *info;
721 unsigned long newclk;
723 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
724 newclk = clk_get_rate(info->clk);
726 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
727 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
728 s3c2410_nand_setrate(info);
734 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
736 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
738 return cpufreq_register_notifier(&info->freq_transition,
739 CPUFREQ_TRANSITION_NOTIFIER);
743 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
745 cpufreq_unregister_notifier(&info->freq_transition,
746 CPUFREQ_TRANSITION_NOTIFIER);
750 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
761 /* device management functions */
763 static int s3c24xx_nand_remove(struct platform_device *pdev)
765 struct s3c2410_nand_info *info = to_nand_info(pdev);
770 s3c2410_nand_cpufreq_deregister(info);
772 /* Release all our mtds and their partitions, then go through
773 * freeing the resources used
776 if (info->mtds != NULL) {
777 struct s3c2410_nand_mtd *ptr = info->mtds;
780 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
781 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
782 WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
783 nand_cleanup(&ptr->chip);
787 /* free the common resources */
789 if (!IS_ERR(info->clk))
790 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
795 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
796 struct s3c2410_nand_mtd *mtd,
797 struct s3c2410_nand_set *set)
800 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
802 mtdinfo->name = set->name;
804 return mtd_device_register(mtdinfo, set->partitions,
811 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
812 const struct nand_data_interface *conf)
814 struct mtd_info *mtd = nand_to_mtd(chip);
815 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816 struct s3c2410_platform_nand *pdata = info->platform;
817 const struct nand_sdr_timings *timings;
820 timings = nand_get_sdr_timings(conf);
824 tacls = timings->tCLS_min - timings->tWP_min;
828 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
829 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
832 return s3c2410_nand_setrate(info);
836 * s3c2410_nand_init_chip - initialise a single instance of an chip
837 * @info: The base NAND controller the chip is on.
838 * @nmtd: The new controller MTD instance to fill in.
839 * @set: The information passed from the board specific platform data.
841 * Initialise the given @nmtd from the information in @info and @set. This
842 * readies the structure for use with the MTD layer functions by ensuring
843 * all pointers are setup and the necessary control routines selected.
845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846 struct s3c2410_nand_mtd *nmtd,
847 struct s3c2410_nand_set *set)
849 struct device_node *np = info->device->of_node;
850 struct nand_chip *chip = &nmtd->chip;
851 void __iomem *regs = info->regs;
853 nand_set_flash_node(chip, set->of_node);
855 chip->legacy.write_buf = s3c2410_nand_write_buf;
856 chip->legacy.read_buf = s3c2410_nand_read_buf;
857 chip->legacy.select_chip = s3c2410_nand_select_chip;
858 chip->legacy.chip_delay = 50;
859 nand_set_controller_data(chip, nmtd);
860 chip->options = set->options;
861 chip->controller = &info->controller;
864 * let's keep behavior unchanged for legacy boards booting via pdata and
865 * auto-detect timings only when booting with a device tree.
868 chip->options |= NAND_KEEP_TIMINGS;
870 switch (info->cpu_type) {
872 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
873 info->sel_reg = regs + S3C2410_NFCONF;
874 info->sel_bit = S3C2410_NFCONF_nFCE;
875 chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol;
876 chip->legacy.dev_ready = s3c2410_nand_devready;
880 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
881 info->sel_reg = regs + S3C2440_NFCONT;
882 info->sel_bit = S3C2440_NFCONT_nFCE;
883 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
884 chip->legacy.dev_ready = s3c2440_nand_devready;
885 chip->legacy.read_buf = s3c2440_nand_read_buf;
886 chip->legacy.write_buf = s3c2440_nand_write_buf;
890 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
891 info->sel_reg = regs + S3C2440_NFCONT;
892 info->sel_bit = S3C2412_NFCONT_nFCE0;
893 chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
894 chip->legacy.dev_ready = s3c2412_nand_devready;
896 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897 dev_info(info->device, "System booted from NAND\n");
902 chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
907 chip->ecc.mode = info->platform->ecc_mode;
910 * If you use u-boot BBT creation code, specifying this flag will
911 * let the kernel fish out the BBT from the NAND.
914 chip->bbt_options |= NAND_BBT_USE_FLASH;
918 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
919 * @chip: The NAND chip
921 * This hook is called by the core after the identification of the NAND chip,
922 * once the relevant per-chip information is up to date.. This call ensure that
923 * we update the internal state accordingly.
925 * The internal state is currently limited to the ECC state information.
927 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
929 struct mtd_info *mtd = nand_to_mtd(chip);
930 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
932 switch (chip->ecc.mode) {
935 dev_info(info->device, "ECC disabled\n");
940 * This driver expects Hamming based ECC when ecc_mode is set
941 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
942 * avoid adding an extra ecc_algo field to
943 * s3c2410_platform_nand.
945 chip->ecc.algo = NAND_ECC_HAMMING;
946 dev_info(info->device, "soft ECC\n");
950 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
951 chip->ecc.correct = s3c2410_nand_correct_data;
952 chip->ecc.strength = 1;
954 switch (info->cpu_type) {
956 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
957 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
961 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
962 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
966 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
967 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
971 dev_dbg(info->device, "chip %p => page shift %d\n",
972 chip, chip->page_shift);
974 /* change the behaviour depending on whether we are using
975 * the large or small page nand device */
976 if (chip->page_shift > 10) {
977 chip->ecc.size = 256;
980 chip->ecc.size = 512;
982 mtd_set_ooblayout(nand_to_mtd(chip),
983 &s3c2410_ooblayout_ops);
986 dev_info(info->device, "hardware ECC\n");
990 dev_err(info->device, "invalid ECC mode!\n");
994 if (chip->bbt_options & NAND_BBT_USE_FLASH)
995 chip->options |= NAND_SKIP_BBTSCAN;
1000 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1001 .attach_chip = s3c2410_nand_attach_chip,
1002 .setup_data_interface = s3c2410_nand_setup_data_interface,
1005 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1007 .compatible = "samsung,s3c2410-nand",
1008 .data = &s3c2410_nand_devtype_data,
1010 /* also compatible with s3c6400 */
1011 .compatible = "samsung,s3c2412-nand",
1012 .data = &s3c2412_nand_devtype_data,
1014 .compatible = "samsung,s3c2440-nand",
1015 .data = &s3c2440_nand_devtype_data,
1019 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1021 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1023 const struct s3c24XX_nand_devtype_data *devtype_data;
1024 struct s3c2410_platform_nand *pdata;
1025 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1026 struct device_node *np = pdev->dev.of_node, *child;
1027 struct s3c2410_nand_set *sets;
1029 devtype_data = of_device_get_match_data(&pdev->dev);
1033 info->cpu_type = devtype_data->type;
1035 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1039 pdev->dev.platform_data = pdata;
1041 pdata->nr_sets = of_get_child_count(np);
1042 if (!pdata->nr_sets)
1045 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1052 for_each_available_child_of_node(np, child) {
1053 sets->name = (char *)child->name;
1054 sets->of_node = child;
1065 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1067 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1069 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1074 /* s3c24xx_nand_probe
1076 * called by device layer when it finds a device matching
1077 * one our driver can handled. This code checks to see if
1078 * it can allocate all necessary resources then calls the
1079 * nand layer to look for devices
1081 static int s3c24xx_nand_probe(struct platform_device *pdev)
1083 struct s3c2410_platform_nand *plat;
1084 struct s3c2410_nand_info *info;
1085 struct s3c2410_nand_mtd *nmtd;
1086 struct s3c2410_nand_set *sets;
1087 struct resource *res;
1093 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1099 platform_set_drvdata(pdev, info);
1101 nand_controller_init(&info->controller);
1102 info->controller.ops = &s3c24xx_nand_controller_ops;
1104 /* get the clock source and enable it */
1106 info->clk = devm_clk_get(&pdev->dev, "nand");
1107 if (IS_ERR(info->clk)) {
1108 dev_err(&pdev->dev, "failed to get clock\n");
1113 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1115 if (pdev->dev.of_node)
1116 err = s3c24xx_nand_probe_dt(pdev);
1118 err = s3c24xx_nand_probe_pdata(pdev);
1123 plat = to_nand_plat(pdev);
1125 /* allocate and map the resource */
1127 /* currently we assume we have the one resource */
1128 res = pdev->resource;
1129 size = resource_size(res);
1131 info->device = &pdev->dev;
1132 info->platform = plat;
1134 info->regs = devm_ioremap_resource(&pdev->dev, res);
1135 if (IS_ERR(info->regs)) {
1136 err = PTR_ERR(info->regs);
1140 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1142 if (!plat->sets || plat->nr_sets < 1) {
1148 nr_sets = plat->nr_sets;
1150 info->mtd_count = nr_sets;
1152 /* allocate our information */
1154 size = nr_sets * sizeof(*info->mtds);
1155 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1156 if (info->mtds == NULL) {
1161 /* initialise all possible chips */
1165 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1166 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1168 pr_debug("initialising set %d (%p, info %p)\n",
1171 mtd->dev.parent = &pdev->dev;
1172 s3c2410_nand_init_chip(info, nmtd, sets);
1174 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1178 s3c2410_nand_add_partition(info, nmtd, sets);
1181 /* initialise the hardware */
1182 err = s3c2410_nand_inithw(info);
1186 err = s3c2410_nand_cpufreq_register(info);
1188 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1192 if (allow_clk_suspend(info)) {
1193 dev_info(&pdev->dev, "clock idle support enabled\n");
1194 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1200 s3c24xx_nand_remove(pdev);
1210 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1215 info->save_sel = readl(info->sel_reg);
1217 /* For the moment, we must ensure nFCE is high during
1218 * the time we are suspended. This really should be
1219 * handled by suspending the MTDs we are using, but
1220 * that is currently not the case. */
1222 writel(info->save_sel | info->sel_bit, info->sel_reg);
1224 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1230 static int s3c24xx_nand_resume(struct platform_device *dev)
1232 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1236 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1237 s3c2410_nand_inithw(info);
1239 /* Restore the state of the nFCE line. */
1241 sel = readl(info->sel_reg);
1242 sel &= ~info->sel_bit;
1243 sel |= info->save_sel & info->sel_bit;
1244 writel(sel, info->sel_reg);
1246 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1253 #define s3c24xx_nand_suspend NULL
1254 #define s3c24xx_nand_resume NULL
1257 /* driver device registration */
1259 static const struct platform_device_id s3c24xx_driver_ids[] = {
1261 .name = "s3c2410-nand",
1262 .driver_data = TYPE_S3C2410,
1264 .name = "s3c2440-nand",
1265 .driver_data = TYPE_S3C2440,
1267 .name = "s3c2412-nand",
1268 .driver_data = TYPE_S3C2412,
1270 .name = "s3c6400-nand",
1271 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1276 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1278 static struct platform_driver s3c24xx_nand_driver = {
1279 .probe = s3c24xx_nand_probe,
1280 .remove = s3c24xx_nand_remove,
1281 .suspend = s3c24xx_nand_suspend,
1282 .resume = s3c24xx_nand_resume,
1283 .id_table = s3c24xx_driver_ids,
1285 .name = "s3c24xx-nand",
1286 .of_match_table = s3c24xx_nand_dt_ids,
1290 module_platform_driver(s3c24xx_nand_driver);
1292 MODULE_LICENSE("GPL");
1294 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");