]> Git Repo - linux.git/blob - arch/x86/kvm/cpuid.c
taprio: Handle short intervals and large packets
[linux.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36         int feature_bit = 0;
37         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39         xstate_bv &= XFEATURE_MASK_EXTEND;
40         while (xstate_bv) {
41                 if (xstate_bv & 0x1) {
42                         u32 eax, ebx, ecx, edx, offset;
43                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44                         offset = compacted ? ret : ebx;
45                         ret = max(ret, offset + eax);
46                 }
47
48                 xstate_bv >>= 1;
49                 feature_bit++;
50         }
51
52         return ret;
53 }
54
55 #define F feature_bit
56
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
59 {
60         struct kvm_cpuid_entry2 *e;
61         int i;
62
63         for (i = 0; i < nent; i++) {
64                 e = &entries[i];
65
66                 if (e->function == function && (e->index == index ||
67                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
68                         return e;
69         }
70
71         return NULL;
72 }
73
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
75 {
76         struct kvm_cpuid_entry2 *best;
77
78         /*
79          * The existing code assumes virtual address is 48-bit or 57-bit in the
80          * canonical address checks; exit if it is ever changed.
81          */
82         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
83         if (best) {
84                 int vaddr_bits = (best->eax & 0xff00) >> 8;
85
86                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
87                         return -EINVAL;
88         }
89
90         return 0;
91 }
92
93 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
94 {
95         struct kvm_cpuid_entry2 *best;
96
97         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
98
99         /*
100          * save the feature bitmap to avoid cpuid lookup for every PV
101          * operation
102          */
103         if (best)
104                 vcpu->arch.pv_cpuid.features = best->eax;
105 }
106
107 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
108 {
109         struct kvm_cpuid_entry2 *best;
110
111         best = kvm_find_cpuid_entry(vcpu, 1, 0);
112         if (best) {
113                 /* Update OSXSAVE bit */
114                 if (boot_cpu_has(X86_FEATURE_XSAVE))
115                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
116                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
117
118                 cpuid_entry_change(best, X86_FEATURE_APIC,
119                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
120         }
121
122         best = kvm_find_cpuid_entry(vcpu, 7, 0);
123         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
124                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
125                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
126
127         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
128         if (best)
129                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
130
131         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
132         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
133                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
134                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
135
136         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
137         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
138                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
139                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
140
141         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
142                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
143                 if (best)
144                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
145                                            vcpu->arch.ia32_misc_enable_msr &
146                                            MSR_IA32_MISC_ENABLE_MWAIT);
147         }
148 }
149 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
150
151 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
152 {
153         struct kvm_lapic *apic = vcpu->arch.apic;
154         struct kvm_cpuid_entry2 *best;
155
156         best = kvm_find_cpuid_entry(vcpu, 1, 0);
157         if (best && apic) {
158                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
159                         apic->lapic_timer.timer_mode_mask = 3 << 17;
160                 else
161                         apic->lapic_timer.timer_mode_mask = 1 << 17;
162
163                 kvm_apic_set_version(vcpu);
164         }
165
166         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
167         if (!best)
168                 vcpu->arch.guest_supported_xcr0 = 0;
169         else
170                 vcpu->arch.guest_supported_xcr0 =
171                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
172
173         kvm_update_pv_runtime(vcpu);
174
175         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
176         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
177
178         kvm_pmu_refresh(vcpu);
179         vcpu->arch.cr4_guest_rsvd_bits =
180             __cr4_reserved_bits(guest_cpuid_has, vcpu);
181
182         kvm_hv_set_cpuid(vcpu);
183
184         /* Invoke the vendor callback only after the above state is updated. */
185         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
186
187         /*
188          * Except for the MMU, which needs to be reset after any vendor
189          * specific adjustments to the reserved GPA bits.
190          */
191         kvm_mmu_reset_context(vcpu);
192 }
193
194 static int is_efer_nx(void)
195 {
196         return host_efer & EFER_NX;
197 }
198
199 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
200 {
201         int i;
202         struct kvm_cpuid_entry2 *e, *entry;
203
204         entry = NULL;
205         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
206                 e = &vcpu->arch.cpuid_entries[i];
207                 if (e->function == 0x80000001) {
208                         entry = e;
209                         break;
210                 }
211         }
212         if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
213                 cpuid_entry_clear(entry, X86_FEATURE_NX);
214                 printk(KERN_INFO "kvm: guest NX capability removed\n");
215         }
216 }
217
218 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
219 {
220         struct kvm_cpuid_entry2 *best;
221
222         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
223         if (!best || best->eax < 0x80000008)
224                 goto not_found;
225         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
226         if (best)
227                 return best->eax & 0xff;
228 not_found:
229         return 36;
230 }
231
232 /*
233  * This "raw" version returns the reserved GPA bits without any adjustments for
234  * encryption technologies that usurp bits.  The raw mask should be used if and
235  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
236  */
237 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
238 {
239         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
240 }
241
242 /* when an old userspace process fills a new kernel module */
243 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
244                              struct kvm_cpuid *cpuid,
245                              struct kvm_cpuid_entry __user *entries)
246 {
247         int r, i;
248         struct kvm_cpuid_entry *e = NULL;
249         struct kvm_cpuid_entry2 *e2 = NULL;
250
251         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
252                 return -E2BIG;
253
254         if (cpuid->nent) {
255                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
256                 if (IS_ERR(e))
257                         return PTR_ERR(e);
258
259                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
260                 if (!e2) {
261                         r = -ENOMEM;
262                         goto out_free_cpuid;
263                 }
264         }
265         for (i = 0; i < cpuid->nent; i++) {
266                 e2[i].function = e[i].function;
267                 e2[i].eax = e[i].eax;
268                 e2[i].ebx = e[i].ebx;
269                 e2[i].ecx = e[i].ecx;
270                 e2[i].edx = e[i].edx;
271                 e2[i].index = 0;
272                 e2[i].flags = 0;
273                 e2[i].padding[0] = 0;
274                 e2[i].padding[1] = 0;
275                 e2[i].padding[2] = 0;
276         }
277
278         r = kvm_check_cpuid(e2, cpuid->nent);
279         if (r) {
280                 kvfree(e2);
281                 goto out_free_cpuid;
282         }
283
284         kvfree(vcpu->arch.cpuid_entries);
285         vcpu->arch.cpuid_entries = e2;
286         vcpu->arch.cpuid_nent = cpuid->nent;
287
288         cpuid_fix_nx_cap(vcpu);
289         kvm_update_cpuid_runtime(vcpu);
290         kvm_vcpu_after_set_cpuid(vcpu);
291
292 out_free_cpuid:
293         kvfree(e);
294
295         return r;
296 }
297
298 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
299                               struct kvm_cpuid2 *cpuid,
300                               struct kvm_cpuid_entry2 __user *entries)
301 {
302         struct kvm_cpuid_entry2 *e2 = NULL;
303         int r;
304
305         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
306                 return -E2BIG;
307
308         if (cpuid->nent) {
309                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
310                 if (IS_ERR(e2))
311                         return PTR_ERR(e2);
312         }
313
314         r = kvm_check_cpuid(e2, cpuid->nent);
315         if (r) {
316                 kvfree(e2);
317                 return r;
318         }
319
320         kvfree(vcpu->arch.cpuid_entries);
321         vcpu->arch.cpuid_entries = e2;
322         vcpu->arch.cpuid_nent = cpuid->nent;
323
324         kvm_update_cpuid_runtime(vcpu);
325         kvm_vcpu_after_set_cpuid(vcpu);
326
327         return 0;
328 }
329
330 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
331                               struct kvm_cpuid2 *cpuid,
332                               struct kvm_cpuid_entry2 __user *entries)
333 {
334         int r;
335
336         r = -E2BIG;
337         if (cpuid->nent < vcpu->arch.cpuid_nent)
338                 goto out;
339         r = -EFAULT;
340         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
341                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
342                 goto out;
343         return 0;
344
345 out:
346         cpuid->nent = vcpu->arch.cpuid_nent;
347         return r;
348 }
349
350 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
351 {
352         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
353         struct kvm_cpuid_entry2 entry;
354
355         reverse_cpuid_check(leaf);
356         kvm_cpu_caps[leaf] &= mask;
357
358         cpuid_count(cpuid.function, cpuid.index,
359                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
360
361         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
362 }
363
364 void kvm_set_cpu_caps(void)
365 {
366         unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
367 #ifdef CONFIG_X86_64
368         unsigned int f_gbpages = F(GBPAGES);
369         unsigned int f_lm = F(LM);
370 #else
371         unsigned int f_gbpages = 0;
372         unsigned int f_lm = 0;
373 #endif
374
375         BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
376                      sizeof(boot_cpu_data.x86_capability));
377
378         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
379                sizeof(kvm_cpu_caps));
380
381         kvm_cpu_cap_mask(CPUID_1_ECX,
382                 /*
383                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
384                  * advertised to guests via CPUID!
385                  */
386                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
387                 0 /* DS-CPL, VMX, SMX, EST */ |
388                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
389                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
390                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
391                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
392                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
393                 F(F16C) | F(RDRAND)
394         );
395         /* KVM emulates x2apic in software irrespective of host support. */
396         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
397
398         kvm_cpu_cap_mask(CPUID_1_EDX,
399                 F(FPU) | F(VME) | F(DE) | F(PSE) |
400                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
401                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
402                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
403                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
404                 0 /* Reserved, DS, ACPI */ | F(MMX) |
405                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
406                 0 /* HTT, TM, Reserved, PBE */
407         );
408
409         kvm_cpu_cap_mask(CPUID_7_0_EBX,
410                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
411                 F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
412                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
413                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
414                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
415         );
416
417         kvm_cpu_cap_mask(CPUID_7_ECX,
418                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
419                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
420                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
421                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
422         );
423         /* Set LA57 based on hardware capability. */
424         if (cpuid_ecx(7) & F(LA57))
425                 kvm_cpu_cap_set(X86_FEATURE_LA57);
426
427         /*
428          * PKU not yet implemented for shadow paging and requires OSPKE
429          * to be set on the host. Clear it if that is not the case
430          */
431         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
432                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
433
434         kvm_cpu_cap_mask(CPUID_7_EDX,
435                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
436                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
437                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
438                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
439         );
440
441         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
442         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
443         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
444
445         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
446                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
447         if (boot_cpu_has(X86_FEATURE_STIBP))
448                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
449         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
450                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
451
452         kvm_cpu_cap_mask(CPUID_7_1_EAX,
453                 F(AVX_VNNI) | F(AVX512_BF16)
454         );
455
456         kvm_cpu_cap_mask(CPUID_D_1_EAX,
457                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
458         );
459
460         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
461                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
462                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
463                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
464                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
465                 F(TOPOEXT) | F(PERFCTR_CORE)
466         );
467
468         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
469                 F(FPU) | F(VME) | F(DE) | F(PSE) |
470                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
471                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
472                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
473                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
474                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
475                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
476                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
477         );
478
479         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
480                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
481
482         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
483                 F(CLZERO) | F(XSAVEERPTR) |
484                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
485                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
486         );
487
488         /*
489          * AMD has separate bits for each SPEC_CTRL bit.
490          * arch/x86/kernel/cpu/bugs.c is kind enough to
491          * record that in cpufeatures so use them.
492          */
493         if (boot_cpu_has(X86_FEATURE_IBPB))
494                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
495         if (boot_cpu_has(X86_FEATURE_IBRS))
496                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
497         if (boot_cpu_has(X86_FEATURE_STIBP))
498                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
499         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
500                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
501         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
502                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
503         /*
504          * The preference is to use SPEC CTRL MSR instead of the
505          * VIRT_SPEC MSR.
506          */
507         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
508             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
509                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
510
511         /*
512          * Hide all SVM features by default, SVM will set the cap bits for
513          * features it emulates and/or exposes for L1.
514          */
515         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
516
517         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
518                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
519                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
520                 F(PMM) | F(PMM_EN)
521         );
522 }
523 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
524
525 struct kvm_cpuid_array {
526         struct kvm_cpuid_entry2 *entries;
527         int maxnent;
528         int nent;
529 };
530
531 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
532                                               u32 function, u32 index)
533 {
534         struct kvm_cpuid_entry2 *entry;
535
536         if (array->nent >= array->maxnent)
537                 return NULL;
538
539         entry = &array->entries[array->nent++];
540
541         entry->function = function;
542         entry->index = index;
543         entry->flags = 0;
544
545         cpuid_count(entry->function, entry->index,
546                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
547
548         switch (function) {
549         case 4:
550         case 7:
551         case 0xb:
552         case 0xd:
553         case 0xf:
554         case 0x10:
555         case 0x12:
556         case 0x14:
557         case 0x17:
558         case 0x18:
559         case 0x1f:
560         case 0x8000001d:
561                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
562                 break;
563         }
564
565         return entry;
566 }
567
568 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
569 {
570         struct kvm_cpuid_entry2 *entry;
571
572         if (array->nent >= array->maxnent)
573                 return -E2BIG;
574
575         entry = &array->entries[array->nent];
576         entry->function = func;
577         entry->index = 0;
578         entry->flags = 0;
579
580         switch (func) {
581         case 0:
582                 entry->eax = 7;
583                 ++array->nent;
584                 break;
585         case 1:
586                 entry->ecx = F(MOVBE);
587                 ++array->nent;
588                 break;
589         case 7:
590                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
591                 entry->eax = 0;
592                 entry->ecx = F(RDPID);
593                 ++array->nent;
594         default:
595                 break;
596         }
597
598         return 0;
599 }
600
601 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
602 {
603         struct kvm_cpuid_entry2 *entry;
604         int r, i, max_idx;
605
606         /* all calls to cpuid_count() should be made on the same cpu */
607         get_cpu();
608
609         r = -E2BIG;
610
611         entry = do_host_cpuid(array, function, 0);
612         if (!entry)
613                 goto out;
614
615         switch (function) {
616         case 0:
617                 /* Limited to the highest leaf implemented in KVM. */
618                 entry->eax = min(entry->eax, 0x1fU);
619                 break;
620         case 1:
621                 cpuid_entry_override(entry, CPUID_1_EDX);
622                 cpuid_entry_override(entry, CPUID_1_ECX);
623                 break;
624         case 2:
625                 /*
626                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
627                  * CPUID(function=2, index=0) may return different results each
628                  * time, with the least-significant byte in EAX enumerating the
629                  * number of times software should do CPUID(2, 0).
630                  *
631                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
632                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
633                  * return 01H. Software should ignore this value and not
634                  * interpret it as an informational descriptor", while AMD's
635                  * APM states that CPUID(2) is reserved.
636                  *
637                  * WARN if a frankenstein CPU that supports virtualization and
638                  * a stateful CPUID.0x2 is encountered.
639                  */
640                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
641                 break;
642         /* functions 4 and 0x8000001d have additional index. */
643         case 4:
644         case 0x8000001d:
645                 /*
646                  * Read entries until the cache type in the previous entry is
647                  * zero, i.e. indicates an invalid entry.
648                  */
649                 for (i = 1; entry->eax & 0x1f; ++i) {
650                         entry = do_host_cpuid(array, function, i);
651                         if (!entry)
652                                 goto out;
653                 }
654                 break;
655         case 6: /* Thermal management */
656                 entry->eax = 0x4; /* allow ARAT */
657                 entry->ebx = 0;
658                 entry->ecx = 0;
659                 entry->edx = 0;
660                 break;
661         /* function 7 has additional index. */
662         case 7:
663                 entry->eax = min(entry->eax, 1u);
664                 cpuid_entry_override(entry, CPUID_7_0_EBX);
665                 cpuid_entry_override(entry, CPUID_7_ECX);
666                 cpuid_entry_override(entry, CPUID_7_EDX);
667
668                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
669                 if (entry->eax == 1) {
670                         entry = do_host_cpuid(array, function, 1);
671                         if (!entry)
672                                 goto out;
673
674                         cpuid_entry_override(entry, CPUID_7_1_EAX);
675                         entry->ebx = 0;
676                         entry->ecx = 0;
677                         entry->edx = 0;
678                 }
679                 break;
680         case 9:
681                 break;
682         case 0xa: { /* Architectural Performance Monitoring */
683                 struct x86_pmu_capability cap;
684                 union cpuid10_eax eax;
685                 union cpuid10_edx edx;
686
687                 perf_get_x86_pmu_capability(&cap);
688
689                 /*
690                  * Only support guest architectural pmu on a host
691                  * with architectural pmu.
692                  */
693                 if (!cap.version)
694                         memset(&cap, 0, sizeof(cap));
695
696                 eax.split.version_id = min(cap.version, 2);
697                 eax.split.num_counters = cap.num_counters_gp;
698                 eax.split.bit_width = cap.bit_width_gp;
699                 eax.split.mask_length = cap.events_mask_len;
700
701                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
702                 edx.split.bit_width_fixed = cap.bit_width_fixed;
703                 edx.split.anythread_deprecated = 1;
704                 edx.split.reserved1 = 0;
705                 edx.split.reserved2 = 0;
706
707                 entry->eax = eax.full;
708                 entry->ebx = cap.events_mask;
709                 entry->ecx = 0;
710                 entry->edx = edx.full;
711                 break;
712         }
713         /*
714          * Per Intel's SDM, the 0x1f is a superset of 0xb,
715          * thus they can be handled by common code.
716          */
717         case 0x1f:
718         case 0xb:
719                 /*
720                  * Populate entries until the level type (ECX[15:8]) of the
721                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
722                  * the starting entry, filled by the primary do_host_cpuid().
723                  */
724                 for (i = 1; entry->ecx & 0xff00; ++i) {
725                         entry = do_host_cpuid(array, function, i);
726                         if (!entry)
727                                 goto out;
728                 }
729                 break;
730         case 0xd:
731                 entry->eax &= supported_xcr0;
732                 entry->ebx = xstate_required_size(supported_xcr0, false);
733                 entry->ecx = entry->ebx;
734                 entry->edx &= supported_xcr0 >> 32;
735                 if (!supported_xcr0)
736                         break;
737
738                 entry = do_host_cpuid(array, function, 1);
739                 if (!entry)
740                         goto out;
741
742                 cpuid_entry_override(entry, CPUID_D_1_EAX);
743                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
744                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
745                                                           true);
746                 else {
747                         WARN_ON_ONCE(supported_xss != 0);
748                         entry->ebx = 0;
749                 }
750                 entry->ecx &= supported_xss;
751                 entry->edx &= supported_xss >> 32;
752
753                 for (i = 2; i < 64; ++i) {
754                         bool s_state;
755                         if (supported_xcr0 & BIT_ULL(i))
756                                 s_state = false;
757                         else if (supported_xss & BIT_ULL(i))
758                                 s_state = true;
759                         else
760                                 continue;
761
762                         entry = do_host_cpuid(array, function, i);
763                         if (!entry)
764                                 goto out;
765
766                         /*
767                          * The supported check above should have filtered out
768                          * invalid sub-leafs.  Only valid sub-leafs should
769                          * reach this point, and they should have a non-zero
770                          * save state size.  Furthermore, check whether the
771                          * processor agrees with supported_xcr0/supported_xss
772                          * on whether this is an XCR0- or IA32_XSS-managed area.
773                          */
774                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
775                                 --array->nent;
776                                 continue;
777                         }
778                         entry->edx = 0;
779                 }
780                 break;
781         /* Intel PT */
782         case 0x14:
783                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
784                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
785                         break;
786                 }
787
788                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
789                         if (!do_host_cpuid(array, function, i))
790                                 goto out;
791                 }
792                 break;
793         case KVM_CPUID_SIGNATURE: {
794                 static const char signature[12] = "KVMKVMKVM\0\0";
795                 const u32 *sigptr = (const u32 *)signature;
796                 entry->eax = KVM_CPUID_FEATURES;
797                 entry->ebx = sigptr[0];
798                 entry->ecx = sigptr[1];
799                 entry->edx = sigptr[2];
800                 break;
801         }
802         case KVM_CPUID_FEATURES:
803                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
804                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
805                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
806                              (1 << KVM_FEATURE_ASYNC_PF) |
807                              (1 << KVM_FEATURE_PV_EOI) |
808                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
809                              (1 << KVM_FEATURE_PV_UNHALT) |
810                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
811                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
812                              (1 << KVM_FEATURE_PV_SEND_IPI) |
813                              (1 << KVM_FEATURE_POLL_CONTROL) |
814                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
815                              (1 << KVM_FEATURE_ASYNC_PF_INT);
816
817                 if (sched_info_on())
818                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
819
820                 entry->ebx = 0;
821                 entry->ecx = 0;
822                 entry->edx = 0;
823                 break;
824         case 0x80000000:
825                 entry->eax = min(entry->eax, 0x8000001f);
826                 break;
827         case 0x80000001:
828                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
829                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
830                 break;
831         case 0x80000006:
832                 /* L2 cache and TLB: pass through host info. */
833                 break;
834         case 0x80000007: /* Advanced power management */
835                 /* invariant TSC is CPUID.80000007H:EDX[8] */
836                 entry->edx &= (1 << 8);
837                 /* mask against host */
838                 entry->edx &= boot_cpu_data.x86_power;
839                 entry->eax = entry->ebx = entry->ecx = 0;
840                 break;
841         case 0x80000008: {
842                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
843                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
844                 unsigned phys_as = entry->eax & 0xff;
845
846                 if (!g_phys_as)
847                         g_phys_as = phys_as;
848                 entry->eax = g_phys_as | (virt_as << 8);
849                 entry->edx = 0;
850                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
851                 break;
852         }
853         case 0x8000000A:
854                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
855                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
856                         break;
857                 }
858                 entry->eax = 1; /* SVM revision 1 */
859                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
860                                    ASID emulation to nested SVM */
861                 entry->ecx = 0; /* Reserved */
862                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
863                 break;
864         case 0x80000019:
865                 entry->ecx = entry->edx = 0;
866                 break;
867         case 0x8000001a:
868         case 0x8000001e:
869                 break;
870         /* Support memory encryption cpuid if host supports it */
871         case 0x8000001F:
872                 if (!boot_cpu_has(X86_FEATURE_SEV))
873                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
874                 break;
875         /*Add support for Centaur's CPUID instruction*/
876         case 0xC0000000:
877                 /*Just support up to 0xC0000004 now*/
878                 entry->eax = min(entry->eax, 0xC0000004);
879                 break;
880         case 0xC0000001:
881                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
882                 break;
883         case 3: /* Processor serial number */
884         case 5: /* MONITOR/MWAIT */
885         case 0xC0000002:
886         case 0xC0000003:
887         case 0xC0000004:
888         default:
889                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
890                 break;
891         }
892
893         r = 0;
894
895 out:
896         put_cpu();
897
898         return r;
899 }
900
901 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
902                          unsigned int type)
903 {
904         if (type == KVM_GET_EMULATED_CPUID)
905                 return __do_cpuid_func_emulated(array, func);
906
907         return __do_cpuid_func(array, func);
908 }
909
910 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
911
912 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
913                           unsigned int type)
914 {
915         u32 limit;
916         int r;
917
918         if (func == CENTAUR_CPUID_SIGNATURE &&
919             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
920                 return 0;
921
922         r = do_cpuid_func(array, func, type);
923         if (r)
924                 return r;
925
926         limit = array->entries[array->nent - 1].eax;
927         for (func = func + 1; func <= limit; ++func) {
928                 r = do_cpuid_func(array, func, type);
929                 if (r)
930                         break;
931         }
932
933         return r;
934 }
935
936 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
937                                  __u32 num_entries, unsigned int ioctl_type)
938 {
939         int i;
940         __u32 pad[3];
941
942         if (ioctl_type != KVM_GET_EMULATED_CPUID)
943                 return false;
944
945         /*
946          * We want to make sure that ->padding is being passed clean from
947          * userspace in case we want to use it for something in the future.
948          *
949          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
950          * have to give ourselves satisfied only with the emulated side. /me
951          * sheds a tear.
952          */
953         for (i = 0; i < num_entries; i++) {
954                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
955                         return true;
956
957                 if (pad[0] || pad[1] || pad[2])
958                         return true;
959         }
960         return false;
961 }
962
963 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
964                             struct kvm_cpuid_entry2 __user *entries,
965                             unsigned int type)
966 {
967         static const u32 funcs[] = {
968                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
969         };
970
971         struct kvm_cpuid_array array = {
972                 .nent = 0,
973         };
974         int r, i;
975
976         if (cpuid->nent < 1)
977                 return -E2BIG;
978         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
979                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
980
981         if (sanity_check_entries(entries, cpuid->nent, type))
982                 return -EINVAL;
983
984         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
985                                            cpuid->nent));
986         if (!array.entries)
987                 return -ENOMEM;
988
989         array.maxnent = cpuid->nent;
990
991         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
992                 r = get_cpuid_func(&array, funcs[i], type);
993                 if (r)
994                         goto out_free;
995         }
996         cpuid->nent = array.nent;
997
998         if (copy_to_user(entries, array.entries,
999                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1000                 r = -EFAULT;
1001
1002 out_free:
1003         vfree(array.entries);
1004         return r;
1005 }
1006
1007 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1008                                               u32 function, u32 index)
1009 {
1010         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1011                                  function, index);
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1014
1015 /*
1016  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1017  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1018  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1019  * range.  Centaur/VIA follows Intel semantics.
1020  *
1021  * A leaf is considered out-of-range if its function is higher than the maximum
1022  * supported leaf of its associated class or if its associated class does not
1023  * exist.
1024  *
1025  * There are three primary classes to be considered, with their respective
1026  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1027  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1028  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1029  *
1030  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1031  *  - Hypervisor: 0x40000000 - 0x4fffffff
1032  *  - Extended:   0x80000000 - 0xbfffffff
1033  *  - Centaur:    0xc0000000 - 0xcfffffff
1034  *
1035  * The Hypervisor class is further subdivided into sub-classes that each act as
1036  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1037  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1038  * CPUID sub-classes are:
1039  *
1040  *  - HyperV:     0x40000000 - 0x400000ff
1041  *  - KVM:        0x40000100 - 0x400001ff
1042  */
1043 static struct kvm_cpuid_entry2 *
1044 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1045 {
1046         struct kvm_cpuid_entry2 *basic, *class;
1047         u32 function = *fn_ptr;
1048
1049         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1050         if (!basic)
1051                 return NULL;
1052
1053         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1054             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1055                 return NULL;
1056
1057         if (function >= 0x40000000 && function <= 0x4fffffff)
1058                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1059         else if (function >= 0xc0000000)
1060                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1061         else
1062                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1063
1064         if (class && function <= class->eax)
1065                 return NULL;
1066
1067         /*
1068          * Leaf specific adjustments are also applied when redirecting to the
1069          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1070          * entry for CPUID.0xb.index (see below), then the output value for EDX
1071          * needs to be pulled from CPUID.0xb.1.
1072          */
1073         *fn_ptr = basic->eax;
1074
1075         /*
1076          * The class does not exist or the requested function is out of range;
1077          * the effective CPUID entry is the max basic leaf.  Note, the index of
1078          * the original requested leaf is observed!
1079          */
1080         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1081 }
1082
1083 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1084                u32 *ecx, u32 *edx, bool exact_only)
1085 {
1086         u32 orig_function = *eax, function = *eax, index = *ecx;
1087         struct kvm_cpuid_entry2 *entry;
1088         bool exact, used_max_basic = false;
1089
1090         entry = kvm_find_cpuid_entry(vcpu, function, index);
1091         exact = !!entry;
1092
1093         if (!entry && !exact_only) {
1094                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1095                 used_max_basic = !!entry;
1096         }
1097
1098         if (entry) {
1099                 *eax = entry->eax;
1100                 *ebx = entry->ebx;
1101                 *ecx = entry->ecx;
1102                 *edx = entry->edx;
1103                 if (function == 7 && index == 0) {
1104                         u64 data;
1105                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1106                             (data & TSX_CTRL_CPUID_CLEAR))
1107                                 *ebx &= ~(F(RTM) | F(HLE));
1108                 }
1109         } else {
1110                 *eax = *ebx = *ecx = *edx = 0;
1111                 /*
1112                  * When leaf 0BH or 1FH is defined, CL is pass-through
1113                  * and EDX is always the x2APIC ID, even for undefined
1114                  * subleaves. Index 1 will exist iff the leaf is
1115                  * implemented, so we pass through CL iff leaf 1
1116                  * exists. EDX can be copied from any existing index.
1117                  */
1118                 if (function == 0xb || function == 0x1f) {
1119                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1120                         if (entry) {
1121                                 *ecx = index & 0xff;
1122                                 *edx = entry->edx;
1123                         }
1124                 }
1125         }
1126         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1127                         used_max_basic);
1128         return exact;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_cpuid);
1131
1132 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1133 {
1134         u32 eax, ebx, ecx, edx;
1135
1136         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1137                 return 1;
1138
1139         eax = kvm_rax_read(vcpu);
1140         ecx = kvm_rcx_read(vcpu);
1141         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1142         kvm_rax_write(vcpu, eax);
1143         kvm_rbx_write(vcpu, ebx);
1144         kvm_rcx_write(vcpu, ecx);
1145         kvm_rdx_write(vcpu, edx);
1146         return kvm_skip_emulated_instruction(vcpu);
1147 }
1148 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
This page took 0.101116 seconds and 4 git commands to generate.