1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
6 * derived from arch/x86/kvm/x86.c
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
18 #include <asm/processor.h>
20 #include <asm/fpu/xstate.h>
28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39 xstate_bv &= XFEATURE_MASK_EXTEND;
41 if (xstate_bv & 0x1) {
42 u32 eax, ebx, ecx, edx, offset;
43 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 offset = compacted ? ret : ebx;
45 ret = max(ret, offset + eax);
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
60 struct kvm_cpuid_entry2 *e;
63 for (i = 0; i < nent; i++) {
66 if (e->function == function && (e->index == index ||
67 !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
76 struct kvm_cpuid_entry2 *best;
79 * The existing code assumes virtual address is 48-bit or 57-bit in the
80 * canonical address checks; exit if it is ever changed.
82 best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
84 int vaddr_bits = (best->eax & 0xff00) >> 8;
86 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
93 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
95 struct kvm_cpuid_entry2 *best;
97 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
100 * save the feature bitmap to avoid cpuid lookup for every PV
104 vcpu->arch.pv_cpuid.features = best->eax;
107 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
109 struct kvm_cpuid_entry2 *best;
111 best = kvm_find_cpuid_entry(vcpu, 1, 0);
113 /* Update OSXSAVE bit */
114 if (boot_cpu_has(X86_FEATURE_XSAVE))
115 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
116 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
118 cpuid_entry_change(best, X86_FEATURE_APIC,
119 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
122 best = kvm_find_cpuid_entry(vcpu, 7, 0);
123 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
124 cpuid_entry_change(best, X86_FEATURE_OSPKE,
125 kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
127 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
129 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
131 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
132 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
133 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
134 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
136 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
137 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
138 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
139 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
141 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
142 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
144 cpuid_entry_change(best, X86_FEATURE_MWAIT,
145 vcpu->arch.ia32_misc_enable_msr &
146 MSR_IA32_MISC_ENABLE_MWAIT);
149 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
151 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
153 struct kvm_lapic *apic = vcpu->arch.apic;
154 struct kvm_cpuid_entry2 *best;
156 best = kvm_find_cpuid_entry(vcpu, 1, 0);
158 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
159 apic->lapic_timer.timer_mode_mask = 3 << 17;
161 apic->lapic_timer.timer_mode_mask = 1 << 17;
163 kvm_apic_set_version(vcpu);
166 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
168 vcpu->arch.guest_supported_xcr0 = 0;
170 vcpu->arch.guest_supported_xcr0 =
171 (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
173 kvm_update_pv_runtime(vcpu);
175 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
176 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
178 kvm_pmu_refresh(vcpu);
179 vcpu->arch.cr4_guest_rsvd_bits =
180 __cr4_reserved_bits(guest_cpuid_has, vcpu);
182 kvm_hv_set_cpuid(vcpu);
184 /* Invoke the vendor callback only after the above state is updated. */
185 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
188 * Except for the MMU, which needs to be reset after any vendor
189 * specific adjustments to the reserved GPA bits.
191 kvm_mmu_reset_context(vcpu);
194 static int is_efer_nx(void)
196 return host_efer & EFER_NX;
199 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
202 struct kvm_cpuid_entry2 *e, *entry;
205 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
206 e = &vcpu->arch.cpuid_entries[i];
207 if (e->function == 0x80000001) {
212 if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
213 cpuid_entry_clear(entry, X86_FEATURE_NX);
214 printk(KERN_INFO "kvm: guest NX capability removed\n");
218 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
220 struct kvm_cpuid_entry2 *best;
222 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
223 if (!best || best->eax < 0x80000008)
225 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
227 return best->eax & 0xff;
233 * This "raw" version returns the reserved GPA bits without any adjustments for
234 * encryption technologies that usurp bits. The raw mask should be used if and
235 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
237 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
239 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
242 /* when an old userspace process fills a new kernel module */
243 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
244 struct kvm_cpuid *cpuid,
245 struct kvm_cpuid_entry __user *entries)
248 struct kvm_cpuid_entry *e = NULL;
249 struct kvm_cpuid_entry2 *e2 = NULL;
251 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
255 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
259 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
265 for (i = 0; i < cpuid->nent; i++) {
266 e2[i].function = e[i].function;
267 e2[i].eax = e[i].eax;
268 e2[i].ebx = e[i].ebx;
269 e2[i].ecx = e[i].ecx;
270 e2[i].edx = e[i].edx;
273 e2[i].padding[0] = 0;
274 e2[i].padding[1] = 0;
275 e2[i].padding[2] = 0;
278 r = kvm_check_cpuid(e2, cpuid->nent);
284 kvfree(vcpu->arch.cpuid_entries);
285 vcpu->arch.cpuid_entries = e2;
286 vcpu->arch.cpuid_nent = cpuid->nent;
288 cpuid_fix_nx_cap(vcpu);
289 kvm_update_cpuid_runtime(vcpu);
290 kvm_vcpu_after_set_cpuid(vcpu);
298 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
299 struct kvm_cpuid2 *cpuid,
300 struct kvm_cpuid_entry2 __user *entries)
302 struct kvm_cpuid_entry2 *e2 = NULL;
305 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
309 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
314 r = kvm_check_cpuid(e2, cpuid->nent);
320 kvfree(vcpu->arch.cpuid_entries);
321 vcpu->arch.cpuid_entries = e2;
322 vcpu->arch.cpuid_nent = cpuid->nent;
324 kvm_update_cpuid_runtime(vcpu);
325 kvm_vcpu_after_set_cpuid(vcpu);
330 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
331 struct kvm_cpuid2 *cpuid,
332 struct kvm_cpuid_entry2 __user *entries)
337 if (cpuid->nent < vcpu->arch.cpuid_nent)
340 if (copy_to_user(entries, vcpu->arch.cpuid_entries,
341 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
346 cpuid->nent = vcpu->arch.cpuid_nent;
350 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
352 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
353 struct kvm_cpuid_entry2 entry;
355 reverse_cpuid_check(leaf);
356 kvm_cpu_caps[leaf] &= mask;
358 cpuid_count(cpuid.function, cpuid.index,
359 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
361 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
364 void kvm_set_cpu_caps(void)
366 unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
368 unsigned int f_gbpages = F(GBPAGES);
369 unsigned int f_lm = F(LM);
371 unsigned int f_gbpages = 0;
372 unsigned int f_lm = 0;
375 BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
376 sizeof(boot_cpu_data.x86_capability));
378 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
379 sizeof(kvm_cpu_caps));
381 kvm_cpu_cap_mask(CPUID_1_ECX,
383 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
384 * advertised to guests via CPUID!
386 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
387 0 /* DS-CPL, VMX, SMX, EST */ |
388 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
389 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
390 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
391 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
392 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
395 /* KVM emulates x2apic in software irrespective of host support. */
396 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
398 kvm_cpu_cap_mask(CPUID_1_EDX,
399 F(FPU) | F(VME) | F(DE) | F(PSE) |
400 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
401 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
402 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
403 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
404 0 /* Reserved, DS, ACPI */ | F(MMX) |
405 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
406 0 /* HTT, TM, Reserved, PBE */
409 kvm_cpu_cap_mask(CPUID_7_0_EBX,
410 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
411 F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
412 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
413 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
414 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
417 kvm_cpu_cap_mask(CPUID_7_ECX,
418 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
419 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
420 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
421 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
423 /* Set LA57 based on hardware capability. */
424 if (cpuid_ecx(7) & F(LA57))
425 kvm_cpu_cap_set(X86_FEATURE_LA57);
428 * PKU not yet implemented for shadow paging and requires OSPKE
429 * to be set on the host. Clear it if that is not the case
431 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
432 kvm_cpu_cap_clear(X86_FEATURE_PKU);
434 kvm_cpu_cap_mask(CPUID_7_EDX,
435 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
436 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
437 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
438 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
441 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
442 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
443 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
445 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
446 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
447 if (boot_cpu_has(X86_FEATURE_STIBP))
448 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
449 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
450 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
452 kvm_cpu_cap_mask(CPUID_7_1_EAX,
453 F(AVX_VNNI) | F(AVX512_BF16)
456 kvm_cpu_cap_mask(CPUID_D_1_EAX,
457 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
460 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
461 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
462 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
463 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
464 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
465 F(TOPOEXT) | F(PERFCTR_CORE)
468 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
469 F(FPU) | F(VME) | F(DE) | F(PSE) |
470 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
471 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
472 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
473 F(PAT) | F(PSE36) | 0 /* Reserved */ |
474 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
475 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
476 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
479 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
480 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
482 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
483 F(CLZERO) | F(XSAVEERPTR) |
484 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
485 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
489 * AMD has separate bits for each SPEC_CTRL bit.
490 * arch/x86/kernel/cpu/bugs.c is kind enough to
491 * record that in cpufeatures so use them.
493 if (boot_cpu_has(X86_FEATURE_IBPB))
494 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
495 if (boot_cpu_has(X86_FEATURE_IBRS))
496 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
497 if (boot_cpu_has(X86_FEATURE_STIBP))
498 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
499 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
500 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
501 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
502 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
504 * The preference is to use SPEC CTRL MSR instead of the
507 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
508 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
509 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
512 * Hide all SVM features by default, SVM will set the cap bits for
513 * features it emulates and/or exposes for L1.
515 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
517 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
518 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
519 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
523 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
525 struct kvm_cpuid_array {
526 struct kvm_cpuid_entry2 *entries;
531 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
532 u32 function, u32 index)
534 struct kvm_cpuid_entry2 *entry;
536 if (array->nent >= array->maxnent)
539 entry = &array->entries[array->nent++];
541 entry->function = function;
542 entry->index = index;
545 cpuid_count(entry->function, entry->index,
546 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
561 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
568 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
570 struct kvm_cpuid_entry2 *entry;
572 if (array->nent >= array->maxnent)
575 entry = &array->entries[array->nent];
576 entry->function = func;
586 entry->ecx = F(MOVBE);
590 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
592 entry->ecx = F(RDPID);
601 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
603 struct kvm_cpuid_entry2 *entry;
606 /* all calls to cpuid_count() should be made on the same cpu */
611 entry = do_host_cpuid(array, function, 0);
617 /* Limited to the highest leaf implemented in KVM. */
618 entry->eax = min(entry->eax, 0x1fU);
621 cpuid_entry_override(entry, CPUID_1_EDX);
622 cpuid_entry_override(entry, CPUID_1_ECX);
626 * On ancient CPUs, function 2 entries are STATEFUL. That is,
627 * CPUID(function=2, index=0) may return different results each
628 * time, with the least-significant byte in EAX enumerating the
629 * number of times software should do CPUID(2, 0).
631 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
632 * idiotic. Intel's SDM states that EAX & 0xff "will always
633 * return 01H. Software should ignore this value and not
634 * interpret it as an informational descriptor", while AMD's
635 * APM states that CPUID(2) is reserved.
637 * WARN if a frankenstein CPU that supports virtualization and
638 * a stateful CPUID.0x2 is encountered.
640 WARN_ON_ONCE((entry->eax & 0xff) > 1);
642 /* functions 4 and 0x8000001d have additional index. */
646 * Read entries until the cache type in the previous entry is
647 * zero, i.e. indicates an invalid entry.
649 for (i = 1; entry->eax & 0x1f; ++i) {
650 entry = do_host_cpuid(array, function, i);
655 case 6: /* Thermal management */
656 entry->eax = 0x4; /* allow ARAT */
661 /* function 7 has additional index. */
663 entry->eax = min(entry->eax, 1u);
664 cpuid_entry_override(entry, CPUID_7_0_EBX);
665 cpuid_entry_override(entry, CPUID_7_ECX);
666 cpuid_entry_override(entry, CPUID_7_EDX);
668 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
669 if (entry->eax == 1) {
670 entry = do_host_cpuid(array, function, 1);
674 cpuid_entry_override(entry, CPUID_7_1_EAX);
682 case 0xa: { /* Architectural Performance Monitoring */
683 struct x86_pmu_capability cap;
684 union cpuid10_eax eax;
685 union cpuid10_edx edx;
687 perf_get_x86_pmu_capability(&cap);
690 * Only support guest architectural pmu on a host
691 * with architectural pmu.
694 memset(&cap, 0, sizeof(cap));
696 eax.split.version_id = min(cap.version, 2);
697 eax.split.num_counters = cap.num_counters_gp;
698 eax.split.bit_width = cap.bit_width_gp;
699 eax.split.mask_length = cap.events_mask_len;
701 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
702 edx.split.bit_width_fixed = cap.bit_width_fixed;
703 edx.split.anythread_deprecated = 1;
704 edx.split.reserved1 = 0;
705 edx.split.reserved2 = 0;
707 entry->eax = eax.full;
708 entry->ebx = cap.events_mask;
710 entry->edx = edx.full;
714 * Per Intel's SDM, the 0x1f is a superset of 0xb,
715 * thus they can be handled by common code.
720 * Populate entries until the level type (ECX[15:8]) of the
721 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
722 * the starting entry, filled by the primary do_host_cpuid().
724 for (i = 1; entry->ecx & 0xff00; ++i) {
725 entry = do_host_cpuid(array, function, i);
731 entry->eax &= supported_xcr0;
732 entry->ebx = xstate_required_size(supported_xcr0, false);
733 entry->ecx = entry->ebx;
734 entry->edx &= supported_xcr0 >> 32;
738 entry = do_host_cpuid(array, function, 1);
742 cpuid_entry_override(entry, CPUID_D_1_EAX);
743 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
744 entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
747 WARN_ON_ONCE(supported_xss != 0);
750 entry->ecx &= supported_xss;
751 entry->edx &= supported_xss >> 32;
753 for (i = 2; i < 64; ++i) {
755 if (supported_xcr0 & BIT_ULL(i))
757 else if (supported_xss & BIT_ULL(i))
762 entry = do_host_cpuid(array, function, i);
767 * The supported check above should have filtered out
768 * invalid sub-leafs. Only valid sub-leafs should
769 * reach this point, and they should have a non-zero
770 * save state size. Furthermore, check whether the
771 * processor agrees with supported_xcr0/supported_xss
772 * on whether this is an XCR0- or IA32_XSS-managed area.
774 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
783 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
784 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
788 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
789 if (!do_host_cpuid(array, function, i))
793 case KVM_CPUID_SIGNATURE: {
794 static const char signature[12] = "KVMKVMKVM\0\0";
795 const u32 *sigptr = (const u32 *)signature;
796 entry->eax = KVM_CPUID_FEATURES;
797 entry->ebx = sigptr[0];
798 entry->ecx = sigptr[1];
799 entry->edx = sigptr[2];
802 case KVM_CPUID_FEATURES:
803 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
804 (1 << KVM_FEATURE_NOP_IO_DELAY) |
805 (1 << KVM_FEATURE_CLOCKSOURCE2) |
806 (1 << KVM_FEATURE_ASYNC_PF) |
807 (1 << KVM_FEATURE_PV_EOI) |
808 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
809 (1 << KVM_FEATURE_PV_UNHALT) |
810 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
811 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
812 (1 << KVM_FEATURE_PV_SEND_IPI) |
813 (1 << KVM_FEATURE_POLL_CONTROL) |
814 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
815 (1 << KVM_FEATURE_ASYNC_PF_INT);
818 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
825 entry->eax = min(entry->eax, 0x8000001f);
828 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
829 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
832 /* L2 cache and TLB: pass through host info. */
834 case 0x80000007: /* Advanced power management */
835 /* invariant TSC is CPUID.80000007H:EDX[8] */
836 entry->edx &= (1 << 8);
837 /* mask against host */
838 entry->edx &= boot_cpu_data.x86_power;
839 entry->eax = entry->ebx = entry->ecx = 0;
842 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
843 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
844 unsigned phys_as = entry->eax & 0xff;
848 entry->eax = g_phys_as | (virt_as << 8);
850 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
854 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
855 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
858 entry->eax = 1; /* SVM revision 1 */
859 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
860 ASID emulation to nested SVM */
861 entry->ecx = 0; /* Reserved */
862 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
865 entry->ecx = entry->edx = 0;
870 /* Support memory encryption cpuid if host supports it */
872 if (!boot_cpu_has(X86_FEATURE_SEV))
873 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
875 /*Add support for Centaur's CPUID instruction*/
877 /*Just support up to 0xC0000004 now*/
878 entry->eax = min(entry->eax, 0xC0000004);
881 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
883 case 3: /* Processor serial number */
884 case 5: /* MONITOR/MWAIT */
889 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
901 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
904 if (type == KVM_GET_EMULATED_CPUID)
905 return __do_cpuid_func_emulated(array, func);
907 return __do_cpuid_func(array, func);
910 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
912 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
918 if (func == CENTAUR_CPUID_SIGNATURE &&
919 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
922 r = do_cpuid_func(array, func, type);
926 limit = array->entries[array->nent - 1].eax;
927 for (func = func + 1; func <= limit; ++func) {
928 r = do_cpuid_func(array, func, type);
936 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
937 __u32 num_entries, unsigned int ioctl_type)
942 if (ioctl_type != KVM_GET_EMULATED_CPUID)
946 * We want to make sure that ->padding is being passed clean from
947 * userspace in case we want to use it for something in the future.
949 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
950 * have to give ourselves satisfied only with the emulated side. /me
953 for (i = 0; i < num_entries; i++) {
954 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
957 if (pad[0] || pad[1] || pad[2])
963 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
964 struct kvm_cpuid_entry2 __user *entries,
967 static const u32 funcs[] = {
968 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
971 struct kvm_cpuid_array array = {
978 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
979 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
981 if (sanity_check_entries(entries, cpuid->nent, type))
984 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
989 array.maxnent = cpuid->nent;
991 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
992 r = get_cpuid_func(&array, funcs[i], type);
996 cpuid->nent = array.nent;
998 if (copy_to_user(entries, array.entries,
999 array.nent * sizeof(struct kvm_cpuid_entry2)))
1003 vfree(array.entries);
1007 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1008 u32 function, u32 index)
1010 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1013 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1016 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1017 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1018 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1019 * range. Centaur/VIA follows Intel semantics.
1021 * A leaf is considered out-of-range if its function is higher than the maximum
1022 * supported leaf of its associated class or if its associated class does not
1025 * There are three primary classes to be considered, with their respective
1026 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1027 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
1028 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1030 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1031 * - Hypervisor: 0x40000000 - 0x4fffffff
1032 * - Extended: 0x80000000 - 0xbfffffff
1033 * - Centaur: 0xc0000000 - 0xcfffffff
1035 * The Hypervisor class is further subdivided into sub-classes that each act as
1036 * their own indepdent class associated with a 0x100 byte range. E.g. if Qemu
1037 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1038 * CPUID sub-classes are:
1040 * - HyperV: 0x40000000 - 0x400000ff
1041 * - KVM: 0x40000100 - 0x400001ff
1043 static struct kvm_cpuid_entry2 *
1044 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1046 struct kvm_cpuid_entry2 *basic, *class;
1047 u32 function = *fn_ptr;
1049 basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1053 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1054 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1057 if (function >= 0x40000000 && function <= 0x4fffffff)
1058 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1059 else if (function >= 0xc0000000)
1060 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1062 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1064 if (class && function <= class->eax)
1068 * Leaf specific adjustments are also applied when redirecting to the
1069 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1070 * entry for CPUID.0xb.index (see below), then the output value for EDX
1071 * needs to be pulled from CPUID.0xb.1.
1073 *fn_ptr = basic->eax;
1076 * The class does not exist or the requested function is out of range;
1077 * the effective CPUID entry is the max basic leaf. Note, the index of
1078 * the original requested leaf is observed!
1080 return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1083 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1084 u32 *ecx, u32 *edx, bool exact_only)
1086 u32 orig_function = *eax, function = *eax, index = *ecx;
1087 struct kvm_cpuid_entry2 *entry;
1088 bool exact, used_max_basic = false;
1090 entry = kvm_find_cpuid_entry(vcpu, function, index);
1093 if (!entry && !exact_only) {
1094 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1095 used_max_basic = !!entry;
1103 if (function == 7 && index == 0) {
1105 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1106 (data & TSX_CTRL_CPUID_CLEAR))
1107 *ebx &= ~(F(RTM) | F(HLE));
1110 *eax = *ebx = *ecx = *edx = 0;
1112 * When leaf 0BH or 1FH is defined, CL is pass-through
1113 * and EDX is always the x2APIC ID, even for undefined
1114 * subleaves. Index 1 will exist iff the leaf is
1115 * implemented, so we pass through CL iff leaf 1
1116 * exists. EDX can be copied from any existing index.
1118 if (function == 0xb || function == 0x1f) {
1119 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1121 *ecx = index & 0xff;
1126 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1130 EXPORT_SYMBOL_GPL(kvm_cpuid);
1132 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1134 u32 eax, ebx, ecx, edx;
1136 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1139 eax = kvm_rax_read(vcpu);
1140 ecx = kvm_rcx_read(vcpu);
1141 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1142 kvm_rax_write(vcpu, eax);
1143 kvm_rbx_write(vcpu, ebx);
1144 kvm_rcx_write(vcpu, ecx);
1145 kvm_rdx_write(vcpu, edx);
1146 return kvm_skip_emulated_instruction(vcpu);
1148 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);