]> Git Repo - linux.git/blob - net/core/dev.c
gpiolib: remove the GPIO device from the list when it's unregistered
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         kfree(name_node->name);
349         netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354         struct netdev_name_node *name_node;
355         struct net *net = dev_net(dev);
356
357         name_node = netdev_name_node_lookup(net, name);
358         if (!name_node)
359                 return -ENOENT;
360         /* lookup might have found our primary name or a name belonging
361          * to another device.
362          */
363         if (name_node == dev->name_node || name_node->dev != dev)
364                 return -EINVAL;
365
366         netdev_name_node_del(name_node);
367         synchronize_rcu();
368         __netdev_name_node_alt_destroy(name_node);
369
370         return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct netdev_name_node *name_node;
385         struct net *net = dev_net(dev);
386
387         ASSERT_RTNL();
388
389         write_lock(&dev_base_lock);
390         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391         netdev_name_node_add(net, dev->name_node);
392         hlist_add_head_rcu(&dev->index_hlist,
393                            dev_index_hash(net, dev->ifindex));
394         write_unlock(&dev_base_lock);
395
396         netdev_for_each_altname(dev, name_node)
397                 netdev_name_node_add(net, name_node);
398
399         /* We reserved the ifindex, this can't fail */
400         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402         dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410         struct netdev_name_node *name_node;
411         struct net *net = dev_net(dev);
412
413         ASSERT_RTNL();
414
415         xa_erase(&net->dev_by_index, dev->ifindex);
416
417         netdev_for_each_altname(dev, name_node)
418                 netdev_name_node_del(name_node);
419
420         /* Unlink dev from the device chain */
421         if (lock)
422                 write_lock(&dev_base_lock);
423         list_del_rcu(&dev->dev_list);
424         netdev_name_node_del(dev->name_node);
425         hlist_del_rcu(&dev->index_hlist);
426         if (lock)
427                 write_unlock(&dev_base_lock);
428
429         dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433  *      Our notifier list
434  */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439  *      Device drivers call our routines to queue packets here. We empty the
440  *      queue in the local softnet handler.
441  */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490         int i;
491
492         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493                 if (netdev_lock_type[i] == dev_type)
494                         return i;
495         /* the last key is used by default */
496         return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500                                                  unsigned short dev_type)
501 {
502         int i;
503
504         i = netdev_lock_pos(dev_type);
505         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511         int i;
512
513         i = netdev_lock_pos(dev->type);
514         lockdep_set_class_and_name(&dev->addr_list_lock,
515                                    &netdev_addr_lock_key[i],
516                                    netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520                                                  unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530  *
531  *              Protocol management and registration routines
532  *
533  *******************************************************************************/
534
535
536 /*
537  *      Add a protocol ID to the list. Now that the input handler is
538  *      smarter we can dispense with all the messy stuff that used to be
539  *      here.
540  *
541  *      BEWARE!!! Protocol handlers, mangling input packets,
542  *      MUST BE last in hash buckets and checking protocol handlers
543  *      MUST start from promiscuous ptype_all chain in net_bh.
544  *      It is true now, do not change it.
545  *      Explanation follows: if protocol handler, mangling packet, will
546  *      be the first on list, it is not able to sense, that packet
547  *      is cloned and should be copied-on-write, so that it will
548  *      change it and subsequent readers will get broken packet.
549  *                                                      --ANK (980803)
550  */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554         if (pt->type == htons(ETH_P_ALL))
555                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556         else
557                 return pt->dev ? &pt->dev->ptype_specific :
558                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562  *      dev_add_pack - add packet handler
563  *      @pt: packet type declaration
564  *
565  *      Add a protocol handler to the networking stack. The passed &packet_type
566  *      is linked into kernel lists and may not be freed until it has been
567  *      removed from the kernel lists.
568  *
569  *      This call does not sleep therefore it can not
570  *      guarantee all CPU's that are in middle of receiving packets
571  *      will see the new packet type (until the next received packet).
572  */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576         struct list_head *head = ptype_head(pt);
577
578         spin_lock(&ptype_lock);
579         list_add_rcu(&pt->list, head);
580         spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585  *      __dev_remove_pack        - remove packet handler
586  *      @pt: packet type declaration
587  *
588  *      Remove a protocol handler that was previously added to the kernel
589  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *      from the kernel lists and can be freed or reused once this function
591  *      returns.
592  *
593  *      The packet type might still be in use by receivers
594  *      and must not be freed until after all the CPU's have gone
595  *      through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599         struct list_head *head = ptype_head(pt);
600         struct packet_type *pt1;
601
602         spin_lock(&ptype_lock);
603
604         list_for_each_entry(pt1, head, list) {
605                 if (pt == pt1) {
606                         list_del_rcu(&pt->list);
607                         goto out;
608                 }
609         }
610
611         pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613         spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618  *      dev_remove_pack  - remove packet handler
619  *      @pt: packet type declaration
620  *
621  *      Remove a protocol handler that was previously added to the kernel
622  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *      from the kernel lists and can be freed or reused once this function
624  *      returns.
625  *
626  *      This call sleeps to guarantee that no CPU is looking at the packet
627  *      type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631         __dev_remove_pack(pt);
632
633         synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639  *
640  *                          Device Interface Subroutines
641  *
642  *******************************************************************************/
643
644 /**
645  *      dev_get_iflink  - get 'iflink' value of a interface
646  *      @dev: targeted interface
647  *
648  *      Indicates the ifindex the interface is linked to.
649  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655                 return dev->netdev_ops->ndo_get_iflink(dev);
656
657         return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *      @dev: targeted interface
664  *      @skb: The packet.
665  *
666  *      For better visibility of tunnel traffic OVS needs to retrieve
667  *      egress tunnel information for a packet. Following API allows
668  *      user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672         struct ip_tunnel_info *info;
673
674         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675                 return -EINVAL;
676
677         info = skb_tunnel_info_unclone(skb);
678         if (!info)
679                 return -ENOMEM;
680         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681                 return -EINVAL;
682
683         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689         int k = stack->num_paths++;
690
691         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692                 return NULL;
693
694         return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698                           struct net_device_path_stack *stack)
699 {
700         const struct net_device *last_dev;
701         struct net_device_path_ctx ctx = {
702                 .dev    = dev,
703         };
704         struct net_device_path *path;
705         int ret = 0;
706
707         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708         stack->num_paths = 0;
709         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710                 last_dev = ctx.dev;
711                 path = dev_fwd_path(stack);
712                 if (!path)
713                         return -1;
714
715                 memset(path, 0, sizeof(struct net_device_path));
716                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717                 if (ret < 0)
718                         return -1;
719
720                 if (WARN_ON_ONCE(last_dev == ctx.dev))
721                         return -1;
722         }
723
724         if (!ctx.dev)
725                 return ret;
726
727         path = dev_fwd_path(stack);
728         if (!path)
729                 return -1;
730         path->type = DEV_PATH_ETHERNET;
731         path->dev = ctx.dev;
732
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738  *      __dev_get_by_name       - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name. Must be called under RTNL semaphore
743  *      or @dev_base_lock. If the name is found a pointer to the device
744  *      is returned. If the name is not found then %NULL is returned. The
745  *      reference counters are not incremented so the caller must be
746  *      careful with locks.
747  */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759  * dev_get_by_name_rcu  - find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772         struct netdev_name_node *node_name;
773
774         node_name = netdev_name_node_lookup_rcu(net, name);
775         return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         dev_hold(dev);
787         rcu_read_unlock();
788         return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793  *      netdev_get_by_name() - find a device by its name
794  *      @net: the applicable net namespace
795  *      @name: name to find
796  *      @tracker: tracking object for the acquired reference
797  *      @gfp: allocation flags for the tracker
798  *
799  *      Find an interface by name. This can be called from any
800  *      context and does its own locking. The returned handle has
801  *      the usage count incremented and the caller must use netdev_put() to
802  *      release it when it is no longer needed. %NULL is returned if no
803  *      matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806                                       netdevice_tracker *tracker, gfp_t gfp)
807 {
808         struct net_device *dev;
809
810         dev = dev_get_by_name(net, name);
811         if (dev)
812                 netdev_tracker_alloc(dev, tracker, gfp);
813         return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818  *      __dev_get_by_index - find a device by its ifindex
819  *      @net: the applicable net namespace
820  *      @ifindex: index of device
821  *
822  *      Search for an interface by index. Returns %NULL if the device
823  *      is not found or a pointer to the device. The device has not
824  *      had its reference counter increased so the caller must be careful
825  *      about locking. The caller must hold either the RTNL semaphore
826  *      or @dev_base_lock.
827  */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843  *      dev_get_by_index_rcu - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold RCU lock.
851  */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855         struct net_device *dev;
856         struct hlist_head *head = dev_index_hash(net, ifindex);
857
858         hlist_for_each_entry_rcu(dev, head, index_hlist)
859                 if (dev->ifindex == ifindex)
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869         struct net_device *dev;
870
871         rcu_read_lock();
872         dev = dev_get_by_index_rcu(net, ifindex);
873         dev_hold(dev);
874         rcu_read_unlock();
875         return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880  *      netdev_get_by_index() - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *      @tracker: tracking object for the acquired reference
884  *      @gfp: allocation flags for the tracker
885  *
886  *      Search for an interface by index. Returns NULL if the device
887  *      is not found or a pointer to the device. The device returned has
888  *      had a reference added and the pointer is safe until the user calls
889  *      netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892                                        netdevice_tracker *tracker, gfp_t gfp)
893 {
894         struct net_device *dev;
895
896         dev = dev_get_by_index(net, ifindex);
897         if (dev)
898                 netdev_tracker_alloc(dev, tracker, gfp);
899         return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936         struct net_device *dev;
937         int ret;
938
939         down_read(&devnet_rename_sem);
940         rcu_read_lock();
941
942         dev = dev_get_by_index_rcu(net, ifindex);
943         if (!dev) {
944                 ret = -ENODEV;
945                 goto out;
946         }
947
948         strcpy(name, dev->name);
949
950         ret = 0;
951 out:
952         rcu_read_unlock();
953         up_read(&devnet_rename_sem);
954         return ret;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev, *ret = NULL;
988
989         rcu_read_lock();
990         for_each_netdev_rcu(net, dev)
991                 if (dev->type == type) {
992                         dev_hold(dev);
993                         ret = dev;
994                         break;
995                 }
996         rcu_read_unlock();
997         return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002  *      __dev_get_by_flags - find any device with given flags
1003  *      @net: the applicable net namespace
1004  *      @if_flags: IFF_* values
1005  *      @mask: bitmask of bits in if_flags to check
1006  *
1007  *      Search for any interface with the given flags. Returns NULL if a device
1008  *      is not found or a pointer to the device. Must be called inside
1009  *      rtnl_lock(), and result refcount is unchanged.
1010  */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013                                       unsigned short mask)
1014 {
1015         struct net_device *dev, *ret;
1016
1017         ASSERT_RTNL();
1018
1019         ret = NULL;
1020         for_each_netdev(net, dev) {
1021                 if (((dev->flags ^ if_flags) & mask) == 0) {
1022                         ret = dev;
1023                         break;
1024                 }
1025         }
1026         return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031  *      dev_valid_name - check if name is okay for network device
1032  *      @name: name string
1033  *
1034  *      Network device names need to be valid file names to
1035  *      allow sysfs to work.  We also disallow any kind of
1036  *      whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040         if (*name == '\0')
1041                 return false;
1042         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043                 return false;
1044         if (!strcmp(name, ".") || !strcmp(name, ".."))
1045                 return false;
1046
1047         while (*name) {
1048                 if (*name == '/' || *name == ':' || isspace(*name))
1049                         return false;
1050                 name++;
1051         }
1052         return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057  *      __dev_alloc_name - allocate a name for a device
1058  *      @net: network namespace to allocate the device name in
1059  *      @name: name format string
1060  *      @res: result name string
1061  *
1062  *      Passed a format string - eg "lt%d" it will try and find a suitable
1063  *      id. It scans list of devices to build up a free map, then chooses
1064  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *      while allocating the name and adding the device in order to avoid
1066  *      duplicates.
1067  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *      Returns the number of the unit assigned or a negative errno code.
1069  */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072 {
1073         int i = 0;
1074         const char *p;
1075         const int max_netdevices = 8*PAGE_SIZE;
1076         unsigned long *inuse;
1077         struct net_device *d;
1078         char buf[IFNAMSIZ];
1079
1080         /* Verify the string as this thing may have come from the user.
1081          * There must be one "%d" and no other "%" characters.
1082          */
1083         p = strchr(name, '%');
1084         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085                 return -EINVAL;
1086
1087         /* Use one page as a bit array of possible slots */
1088         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089         if (!inuse)
1090                 return -ENOMEM;
1091
1092         for_each_netdev(net, d) {
1093                 struct netdev_name_node *name_node;
1094
1095                 netdev_for_each_altname(d, name_node) {
1096                         if (!sscanf(name_node->name, name, &i))
1097                                 continue;
1098                         if (i < 0 || i >= max_netdevices)
1099                                 continue;
1100
1101                         /* avoid cases where sscanf is not exact inverse of printf */
1102                         snprintf(buf, IFNAMSIZ, name, i);
1103                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104                                 __set_bit(i, inuse);
1105                 }
1106                 if (!sscanf(d->name, name, &i))
1107                         continue;
1108                 if (i < 0 || i >= max_netdevices)
1109                         continue;
1110
1111                 /* avoid cases where sscanf is not exact inverse of printf */
1112                 snprintf(buf, IFNAMSIZ, name, i);
1113                 if (!strncmp(buf, d->name, IFNAMSIZ))
1114                         __set_bit(i, inuse);
1115         }
1116
1117         i = find_first_zero_bit(inuse, max_netdevices);
1118         bitmap_free(inuse);
1119         if (i == max_netdevices)
1120                 return -ENFILE;
1121
1122         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1123         strscpy(buf, name, IFNAMSIZ);
1124         snprintf(res, IFNAMSIZ, buf, i);
1125         return i;
1126 }
1127
1128 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1129 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1130                                const char *want_name, char *out_name,
1131                                int dup_errno)
1132 {
1133         if (!dev_valid_name(want_name))
1134                 return -EINVAL;
1135
1136         if (strchr(want_name, '%'))
1137                 return __dev_alloc_name(net, want_name, out_name);
1138
1139         if (netdev_name_in_use(net, want_name))
1140                 return -dup_errno;
1141         if (out_name != want_name)
1142                 strscpy(out_name, want_name, IFNAMSIZ);
1143         return 0;
1144 }
1145
1146 /**
1147  *      dev_alloc_name - allocate a name for a device
1148  *      @dev: device
1149  *      @name: name format string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 int dev_alloc_name(struct net_device *dev, const char *name)
1161 {
1162         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1163 }
1164 EXPORT_SYMBOL(dev_alloc_name);
1165
1166 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1167                               const char *name)
1168 {
1169         int ret;
1170
1171         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1172         return ret < 0 ? ret : 0;
1173 }
1174
1175 /**
1176  *      dev_change_name - change name of a device
1177  *      @dev: device
1178  *      @newname: name (or format string) must be at least IFNAMSIZ
1179  *
1180  *      Change name of a device, can pass format strings "eth%d".
1181  *      for wildcarding.
1182  */
1183 int dev_change_name(struct net_device *dev, const char *newname)
1184 {
1185         unsigned char old_assign_type;
1186         char oldname[IFNAMSIZ];
1187         int err = 0;
1188         int ret;
1189         struct net *net;
1190
1191         ASSERT_RTNL();
1192         BUG_ON(!dev_net(dev));
1193
1194         net = dev_net(dev);
1195
1196         down_write(&devnet_rename_sem);
1197
1198         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1199                 up_write(&devnet_rename_sem);
1200                 return 0;
1201         }
1202
1203         memcpy(oldname, dev->name, IFNAMSIZ);
1204
1205         err = dev_get_valid_name(net, dev, newname);
1206         if (err < 0) {
1207                 up_write(&devnet_rename_sem);
1208                 return err;
1209         }
1210
1211         if (oldname[0] && !strchr(oldname, '%'))
1212                 netdev_info(dev, "renamed from %s%s\n", oldname,
1213                             dev->flags & IFF_UP ? " (while UP)" : "");
1214
1215         old_assign_type = dev->name_assign_type;
1216         dev->name_assign_type = NET_NAME_RENAMED;
1217
1218 rollback:
1219         ret = device_rename(&dev->dev, dev->name);
1220         if (ret) {
1221                 memcpy(dev->name, oldname, IFNAMSIZ);
1222                 dev->name_assign_type = old_assign_type;
1223                 up_write(&devnet_rename_sem);
1224                 return ret;
1225         }
1226
1227         up_write(&devnet_rename_sem);
1228
1229         netdev_adjacent_rename_links(dev, oldname);
1230
1231         write_lock(&dev_base_lock);
1232         netdev_name_node_del(dev->name_node);
1233         write_unlock(&dev_base_lock);
1234
1235         synchronize_rcu();
1236
1237         write_lock(&dev_base_lock);
1238         netdev_name_node_add(net, dev->name_node);
1239         write_unlock(&dev_base_lock);
1240
1241         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242         ret = notifier_to_errno(ret);
1243
1244         if (ret) {
1245                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246                 if (err >= 0) {
1247                         err = ret;
1248                         down_write(&devnet_rename_sem);
1249                         memcpy(dev->name, oldname, IFNAMSIZ);
1250                         memcpy(oldname, newname, IFNAMSIZ);
1251                         dev->name_assign_type = old_assign_type;
1252                         old_assign_type = NET_NAME_RENAMED;
1253                         goto rollback;
1254                 } else {
1255                         netdev_err(dev, "name change rollback failed: %d\n",
1256                                    ret);
1257                 }
1258         }
1259
1260         return err;
1261 }
1262
1263 /**
1264  *      dev_set_alias - change ifalias of a device
1265  *      @dev: device
1266  *      @alias: name up to IFALIASZ
1267  *      @len: limit of bytes to copy from info
1268  *
1269  *      Set ifalias for a device,
1270  */
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273         struct dev_ifalias *new_alias = NULL;
1274
1275         if (len >= IFALIASZ)
1276                 return -EINVAL;
1277
1278         if (len) {
1279                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280                 if (!new_alias)
1281                         return -ENOMEM;
1282
1283                 memcpy(new_alias->ifalias, alias, len);
1284                 new_alias->ifalias[len] = 0;
1285         }
1286
1287         mutex_lock(&ifalias_mutex);
1288         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1289                                         mutex_is_locked(&ifalias_mutex));
1290         mutex_unlock(&ifalias_mutex);
1291
1292         if (new_alias)
1293                 kfree_rcu(new_alias, rcuhead);
1294
1295         return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298
1299 /**
1300  *      dev_get_alias - get ifalias of a device
1301  *      @dev: device
1302  *      @name: buffer to store name of ifalias
1303  *      @len: size of buffer
1304  *
1305  *      get ifalias for a device.  Caller must make sure dev cannot go
1306  *      away,  e.g. rcu read lock or own a reference count to device.
1307  */
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310         const struct dev_ifalias *alias;
1311         int ret = 0;
1312
1313         rcu_read_lock();
1314         alias = rcu_dereference(dev->ifalias);
1315         if (alias)
1316                 ret = snprintf(name, len, "%s", alias->ifalias);
1317         rcu_read_unlock();
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      netdev_features_change - device changes features
1324  *      @dev: device to cause notification
1325  *
1326  *      Called to indicate a device has changed features.
1327  */
1328 void netdev_features_change(struct net_device *dev)
1329 {
1330         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333
1334 /**
1335  *      netdev_state_change - device changes state
1336  *      @dev: device to cause notification
1337  *
1338  *      Called to indicate a device has changed state. This function calls
1339  *      the notifier chains for netdev_chain and sends a NEWLINK message
1340  *      to the routing socket.
1341  */
1342 void netdev_state_change(struct net_device *dev)
1343 {
1344         if (dev->flags & IFF_UP) {
1345                 struct netdev_notifier_change_info change_info = {
1346                         .info.dev = dev,
1347                 };
1348
1349                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350                                               &change_info.info);
1351                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1352         }
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355
1356 /**
1357  * __netdev_notify_peers - notify network peers about existence of @dev,
1358  * to be called when rtnl lock is already held.
1359  * @dev: network device
1360  *
1361  * Generate traffic such that interested network peers are aware of
1362  * @dev, such as by generating a gratuitous ARP. This may be used when
1363  * a device wants to inform the rest of the network about some sort of
1364  * reconfiguration such as a failover event or virtual machine
1365  * migration.
1366  */
1367 void __netdev_notify_peers(struct net_device *dev)
1368 {
1369         ASSERT_RTNL();
1370         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1371         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1372 }
1373 EXPORT_SYMBOL(__netdev_notify_peers);
1374
1375 /**
1376  * netdev_notify_peers - notify network peers about existence of @dev
1377  * @dev: network device
1378  *
1379  * Generate traffic such that interested network peers are aware of
1380  * @dev, such as by generating a gratuitous ARP. This may be used when
1381  * a device wants to inform the rest of the network about some sort of
1382  * reconfiguration such as a failover event or virtual machine
1383  * migration.
1384  */
1385 void netdev_notify_peers(struct net_device *dev)
1386 {
1387         rtnl_lock();
1388         __netdev_notify_peers(dev);
1389         rtnl_unlock();
1390 }
1391 EXPORT_SYMBOL(netdev_notify_peers);
1392
1393 static int napi_threaded_poll(void *data);
1394
1395 static int napi_kthread_create(struct napi_struct *n)
1396 {
1397         int err = 0;
1398
1399         /* Create and wake up the kthread once to put it in
1400          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1401          * warning and work with loadavg.
1402          */
1403         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1404                                 n->dev->name, n->napi_id);
1405         if (IS_ERR(n->thread)) {
1406                 err = PTR_ERR(n->thread);
1407                 pr_err("kthread_run failed with err %d\n", err);
1408                 n->thread = NULL;
1409         }
1410
1411         return err;
1412 }
1413
1414 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1415 {
1416         const struct net_device_ops *ops = dev->netdev_ops;
1417         int ret;
1418
1419         ASSERT_RTNL();
1420         dev_addr_check(dev);
1421
1422         if (!netif_device_present(dev)) {
1423                 /* may be detached because parent is runtime-suspended */
1424                 if (dev->dev.parent)
1425                         pm_runtime_resume(dev->dev.parent);
1426                 if (!netif_device_present(dev))
1427                         return -ENODEV;
1428         }
1429
1430         /* Block netpoll from trying to do any rx path servicing.
1431          * If we don't do this there is a chance ndo_poll_controller
1432          * or ndo_poll may be running while we open the device
1433          */
1434         netpoll_poll_disable(dev);
1435
1436         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1437         ret = notifier_to_errno(ret);
1438         if (ret)
1439                 return ret;
1440
1441         set_bit(__LINK_STATE_START, &dev->state);
1442
1443         if (ops->ndo_validate_addr)
1444                 ret = ops->ndo_validate_addr(dev);
1445
1446         if (!ret && ops->ndo_open)
1447                 ret = ops->ndo_open(dev);
1448
1449         netpoll_poll_enable(dev);
1450
1451         if (ret)
1452                 clear_bit(__LINK_STATE_START, &dev->state);
1453         else {
1454                 dev->flags |= IFF_UP;
1455                 dev_set_rx_mode(dev);
1456                 dev_activate(dev);
1457                 add_device_randomness(dev->dev_addr, dev->addr_len);
1458         }
1459
1460         return ret;
1461 }
1462
1463 /**
1464  *      dev_open        - prepare an interface for use.
1465  *      @dev: device to open
1466  *      @extack: netlink extended ack
1467  *
1468  *      Takes a device from down to up state. The device's private open
1469  *      function is invoked and then the multicast lists are loaded. Finally
1470  *      the device is moved into the up state and a %NETDEV_UP message is
1471  *      sent to the netdev notifier chain.
1472  *
1473  *      Calling this function on an active interface is a nop. On a failure
1474  *      a negative errno code is returned.
1475  */
1476 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1477 {
1478         int ret;
1479
1480         if (dev->flags & IFF_UP)
1481                 return 0;
1482
1483         ret = __dev_open(dev, extack);
1484         if (ret < 0)
1485                 return ret;
1486
1487         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1488         call_netdevice_notifiers(NETDEV_UP, dev);
1489
1490         return ret;
1491 }
1492 EXPORT_SYMBOL(dev_open);
1493
1494 static void __dev_close_many(struct list_head *head)
1495 {
1496         struct net_device *dev;
1497
1498         ASSERT_RTNL();
1499         might_sleep();
1500
1501         list_for_each_entry(dev, head, close_list) {
1502                 /* Temporarily disable netpoll until the interface is down */
1503                 netpoll_poll_disable(dev);
1504
1505                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1506
1507                 clear_bit(__LINK_STATE_START, &dev->state);
1508
1509                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1510                  * can be even on different cpu. So just clear netif_running().
1511                  *
1512                  * dev->stop() will invoke napi_disable() on all of it's
1513                  * napi_struct instances on this device.
1514                  */
1515                 smp_mb__after_atomic(); /* Commit netif_running(). */
1516         }
1517
1518         dev_deactivate_many(head);
1519
1520         list_for_each_entry(dev, head, close_list) {
1521                 const struct net_device_ops *ops = dev->netdev_ops;
1522
1523                 /*
1524                  *      Call the device specific close. This cannot fail.
1525                  *      Only if device is UP
1526                  *
1527                  *      We allow it to be called even after a DETACH hot-plug
1528                  *      event.
1529                  */
1530                 if (ops->ndo_stop)
1531                         ops->ndo_stop(dev);
1532
1533                 dev->flags &= ~IFF_UP;
1534                 netpoll_poll_enable(dev);
1535         }
1536 }
1537
1538 static void __dev_close(struct net_device *dev)
1539 {
1540         LIST_HEAD(single);
1541
1542         list_add(&dev->close_list, &single);
1543         __dev_close_many(&single);
1544         list_del(&single);
1545 }
1546
1547 void dev_close_many(struct list_head *head, bool unlink)
1548 {
1549         struct net_device *dev, *tmp;
1550
1551         /* Remove the devices that don't need to be closed */
1552         list_for_each_entry_safe(dev, tmp, head, close_list)
1553                 if (!(dev->flags & IFF_UP))
1554                         list_del_init(&dev->close_list);
1555
1556         __dev_close_many(head);
1557
1558         list_for_each_entry_safe(dev, tmp, head, close_list) {
1559                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1560                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1561                 if (unlink)
1562                         list_del_init(&dev->close_list);
1563         }
1564 }
1565 EXPORT_SYMBOL(dev_close_many);
1566
1567 /**
1568  *      dev_close - shutdown an interface.
1569  *      @dev: device to shutdown
1570  *
1571  *      This function moves an active device into down state. A
1572  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1573  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1574  *      chain.
1575  */
1576 void dev_close(struct net_device *dev)
1577 {
1578         if (dev->flags & IFF_UP) {
1579                 LIST_HEAD(single);
1580
1581                 list_add(&dev->close_list, &single);
1582                 dev_close_many(&single, true);
1583                 list_del(&single);
1584         }
1585 }
1586 EXPORT_SYMBOL(dev_close);
1587
1588
1589 /**
1590  *      dev_disable_lro - disable Large Receive Offload on a device
1591  *      @dev: device
1592  *
1593  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1594  *      called under RTNL.  This is needed if received packets may be
1595  *      forwarded to another interface.
1596  */
1597 void dev_disable_lro(struct net_device *dev)
1598 {
1599         struct net_device *lower_dev;
1600         struct list_head *iter;
1601
1602         dev->wanted_features &= ~NETIF_F_LRO;
1603         netdev_update_features(dev);
1604
1605         if (unlikely(dev->features & NETIF_F_LRO))
1606                 netdev_WARN(dev, "failed to disable LRO!\n");
1607
1608         netdev_for_each_lower_dev(dev, lower_dev, iter)
1609                 dev_disable_lro(lower_dev);
1610 }
1611 EXPORT_SYMBOL(dev_disable_lro);
1612
1613 /**
1614  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1615  *      @dev: device
1616  *
1617  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1618  *      called under RTNL.  This is needed if Generic XDP is installed on
1619  *      the device.
1620  */
1621 static void dev_disable_gro_hw(struct net_device *dev)
1622 {
1623         dev->wanted_features &= ~NETIF_F_GRO_HW;
1624         netdev_update_features(dev);
1625
1626         if (unlikely(dev->features & NETIF_F_GRO_HW))
1627                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1628 }
1629
1630 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1631 {
1632 #define N(val)                                          \
1633         case NETDEV_##val:                              \
1634                 return "NETDEV_" __stringify(val);
1635         switch (cmd) {
1636         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1637         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1638         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1639         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1640         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1641         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1642         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1643         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1644         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1645         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1646         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1647         N(XDP_FEAT_CHANGE)
1648         }
1649 #undef N
1650         return "UNKNOWN_NETDEV_EVENT";
1651 }
1652 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1653
1654 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1655                                    struct net_device *dev)
1656 {
1657         struct netdev_notifier_info info = {
1658                 .dev = dev,
1659         };
1660
1661         return nb->notifier_call(nb, val, &info);
1662 }
1663
1664 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1665                                              struct net_device *dev)
1666 {
1667         int err;
1668
1669         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1670         err = notifier_to_errno(err);
1671         if (err)
1672                 return err;
1673
1674         if (!(dev->flags & IFF_UP))
1675                 return 0;
1676
1677         call_netdevice_notifier(nb, NETDEV_UP, dev);
1678         return 0;
1679 }
1680
1681 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1682                                                 struct net_device *dev)
1683 {
1684         if (dev->flags & IFF_UP) {
1685                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1686                                         dev);
1687                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1688         }
1689         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1690 }
1691
1692 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1693                                                  struct net *net)
1694 {
1695         struct net_device *dev;
1696         int err;
1697
1698         for_each_netdev(net, dev) {
1699                 err = call_netdevice_register_notifiers(nb, dev);
1700                 if (err)
1701                         goto rollback;
1702         }
1703         return 0;
1704
1705 rollback:
1706         for_each_netdev_continue_reverse(net, dev)
1707                 call_netdevice_unregister_notifiers(nb, dev);
1708         return err;
1709 }
1710
1711 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1712                                                     struct net *net)
1713 {
1714         struct net_device *dev;
1715
1716         for_each_netdev(net, dev)
1717                 call_netdevice_unregister_notifiers(nb, dev);
1718 }
1719
1720 static int dev_boot_phase = 1;
1721
1722 /**
1723  * register_netdevice_notifier - register a network notifier block
1724  * @nb: notifier
1725  *
1726  * Register a notifier to be called when network device events occur.
1727  * The notifier passed is linked into the kernel structures and must
1728  * not be reused until it has been unregistered. A negative errno code
1729  * is returned on a failure.
1730  *
1731  * When registered all registration and up events are replayed
1732  * to the new notifier to allow device to have a race free
1733  * view of the network device list.
1734  */
1735
1736 int register_netdevice_notifier(struct notifier_block *nb)
1737 {
1738         struct net *net;
1739         int err;
1740
1741         /* Close race with setup_net() and cleanup_net() */
1742         down_write(&pernet_ops_rwsem);
1743         rtnl_lock();
1744         err = raw_notifier_chain_register(&netdev_chain, nb);
1745         if (err)
1746                 goto unlock;
1747         if (dev_boot_phase)
1748                 goto unlock;
1749         for_each_net(net) {
1750                 err = call_netdevice_register_net_notifiers(nb, net);
1751                 if (err)
1752                         goto rollback;
1753         }
1754
1755 unlock:
1756         rtnl_unlock();
1757         up_write(&pernet_ops_rwsem);
1758         return err;
1759
1760 rollback:
1761         for_each_net_continue_reverse(net)
1762                 call_netdevice_unregister_net_notifiers(nb, net);
1763
1764         raw_notifier_chain_unregister(&netdev_chain, nb);
1765         goto unlock;
1766 }
1767 EXPORT_SYMBOL(register_netdevice_notifier);
1768
1769 /**
1770  * unregister_netdevice_notifier - unregister a network notifier block
1771  * @nb: notifier
1772  *
1773  * Unregister a notifier previously registered by
1774  * register_netdevice_notifier(). The notifier is unlinked into the
1775  * kernel structures and may then be reused. A negative errno code
1776  * is returned on a failure.
1777  *
1778  * After unregistering unregister and down device events are synthesized
1779  * for all devices on the device list to the removed notifier to remove
1780  * the need for special case cleanup code.
1781  */
1782
1783 int unregister_netdevice_notifier(struct notifier_block *nb)
1784 {
1785         struct net *net;
1786         int err;
1787
1788         /* Close race with setup_net() and cleanup_net() */
1789         down_write(&pernet_ops_rwsem);
1790         rtnl_lock();
1791         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1792         if (err)
1793                 goto unlock;
1794
1795         for_each_net(net)
1796                 call_netdevice_unregister_net_notifiers(nb, net);
1797
1798 unlock:
1799         rtnl_unlock();
1800         up_write(&pernet_ops_rwsem);
1801         return err;
1802 }
1803 EXPORT_SYMBOL(unregister_netdevice_notifier);
1804
1805 static int __register_netdevice_notifier_net(struct net *net,
1806                                              struct notifier_block *nb,
1807                                              bool ignore_call_fail)
1808 {
1809         int err;
1810
1811         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1812         if (err)
1813                 return err;
1814         if (dev_boot_phase)
1815                 return 0;
1816
1817         err = call_netdevice_register_net_notifiers(nb, net);
1818         if (err && !ignore_call_fail)
1819                 goto chain_unregister;
1820
1821         return 0;
1822
1823 chain_unregister:
1824         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1825         return err;
1826 }
1827
1828 static int __unregister_netdevice_notifier_net(struct net *net,
1829                                                struct notifier_block *nb)
1830 {
1831         int err;
1832
1833         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1834         if (err)
1835                 return err;
1836
1837         call_netdevice_unregister_net_notifiers(nb, net);
1838         return 0;
1839 }
1840
1841 /**
1842  * register_netdevice_notifier_net - register a per-netns network notifier block
1843  * @net: network namespace
1844  * @nb: notifier
1845  *
1846  * Register a notifier to be called when network device events occur.
1847  * The notifier passed is linked into the kernel structures and must
1848  * not be reused until it has been unregistered. A negative errno code
1849  * is returned on a failure.
1850  *
1851  * When registered all registration and up events are replayed
1852  * to the new notifier to allow device to have a race free
1853  * view of the network device list.
1854  */
1855
1856 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1857 {
1858         int err;
1859
1860         rtnl_lock();
1861         err = __register_netdevice_notifier_net(net, nb, false);
1862         rtnl_unlock();
1863         return err;
1864 }
1865 EXPORT_SYMBOL(register_netdevice_notifier_net);
1866
1867 /**
1868  * unregister_netdevice_notifier_net - unregister a per-netns
1869  *                                     network notifier block
1870  * @net: network namespace
1871  * @nb: notifier
1872  *
1873  * Unregister a notifier previously registered by
1874  * register_netdevice_notifier_net(). The notifier is unlinked from the
1875  * kernel structures and may then be reused. A negative errno code
1876  * is returned on a failure.
1877  *
1878  * After unregistering unregister and down device events are synthesized
1879  * for all devices on the device list to the removed notifier to remove
1880  * the need for special case cleanup code.
1881  */
1882
1883 int unregister_netdevice_notifier_net(struct net *net,
1884                                       struct notifier_block *nb)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __unregister_netdevice_notifier_net(net, nb);
1890         rtnl_unlock();
1891         return err;
1892 }
1893 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1894
1895 static void __move_netdevice_notifier_net(struct net *src_net,
1896                                           struct net *dst_net,
1897                                           struct notifier_block *nb)
1898 {
1899         __unregister_netdevice_notifier_net(src_net, nb);
1900         __register_netdevice_notifier_net(dst_net, nb, true);
1901 }
1902
1903 int register_netdevice_notifier_dev_net(struct net_device *dev,
1904                                         struct notifier_block *nb,
1905                                         struct netdev_net_notifier *nn)
1906 {
1907         int err;
1908
1909         rtnl_lock();
1910         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1911         if (!err) {
1912                 nn->nb = nb;
1913                 list_add(&nn->list, &dev->net_notifier_list);
1914         }
1915         rtnl_unlock();
1916         return err;
1917 }
1918 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1919
1920 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1921                                           struct notifier_block *nb,
1922                                           struct netdev_net_notifier *nn)
1923 {
1924         int err;
1925
1926         rtnl_lock();
1927         list_del(&nn->list);
1928         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1929         rtnl_unlock();
1930         return err;
1931 }
1932 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1933
1934 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1935                                              struct net *net)
1936 {
1937         struct netdev_net_notifier *nn;
1938
1939         list_for_each_entry(nn, &dev->net_notifier_list, list)
1940                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1941 }
1942
1943 /**
1944  *      call_netdevice_notifiers_info - call all network notifier blocks
1945  *      @val: value passed unmodified to notifier function
1946  *      @info: notifier information data
1947  *
1948  *      Call all network notifier blocks.  Parameters and return value
1949  *      are as for raw_notifier_call_chain().
1950  */
1951
1952 int call_netdevice_notifiers_info(unsigned long val,
1953                                   struct netdev_notifier_info *info)
1954 {
1955         struct net *net = dev_net(info->dev);
1956         int ret;
1957
1958         ASSERT_RTNL();
1959
1960         /* Run per-netns notifier block chain first, then run the global one.
1961          * Hopefully, one day, the global one is going to be removed after
1962          * all notifier block registrators get converted to be per-netns.
1963          */
1964         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1965         if (ret & NOTIFY_STOP_MASK)
1966                 return ret;
1967         return raw_notifier_call_chain(&netdev_chain, val, info);
1968 }
1969
1970 /**
1971  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1972  *                                             for and rollback on error
1973  *      @val_up: value passed unmodified to notifier function
1974  *      @val_down: value passed unmodified to the notifier function when
1975  *                 recovering from an error on @val_up
1976  *      @info: notifier information data
1977  *
1978  *      Call all per-netns network notifier blocks, but not notifier blocks on
1979  *      the global notifier chain. Parameters and return value are as for
1980  *      raw_notifier_call_chain_robust().
1981  */
1982
1983 static int
1984 call_netdevice_notifiers_info_robust(unsigned long val_up,
1985                                      unsigned long val_down,
1986                                      struct netdev_notifier_info *info)
1987 {
1988         struct net *net = dev_net(info->dev);
1989
1990         ASSERT_RTNL();
1991
1992         return raw_notifier_call_chain_robust(&net->netdev_chain,
1993                                               val_up, val_down, info);
1994 }
1995
1996 static int call_netdevice_notifiers_extack(unsigned long val,
1997                                            struct net_device *dev,
1998                                            struct netlink_ext_ack *extack)
1999 {
2000         struct netdev_notifier_info info = {
2001                 .dev = dev,
2002                 .extack = extack,
2003         };
2004
2005         return call_netdevice_notifiers_info(val, &info);
2006 }
2007
2008 /**
2009  *      call_netdevice_notifiers - call all network notifier blocks
2010  *      @val: value passed unmodified to notifier function
2011  *      @dev: net_device pointer passed unmodified to notifier function
2012  *
2013  *      Call all network notifier blocks.  Parameters and return value
2014  *      are as for raw_notifier_call_chain().
2015  */
2016
2017 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2018 {
2019         return call_netdevice_notifiers_extack(val, dev, NULL);
2020 }
2021 EXPORT_SYMBOL(call_netdevice_notifiers);
2022
2023 /**
2024  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2025  *      @val: value passed unmodified to notifier function
2026  *      @dev: net_device pointer passed unmodified to notifier function
2027  *      @arg: additional u32 argument passed to the notifier function
2028  *
2029  *      Call all network notifier blocks.  Parameters and return value
2030  *      are as for raw_notifier_call_chain().
2031  */
2032 static int call_netdevice_notifiers_mtu(unsigned long val,
2033                                         struct net_device *dev, u32 arg)
2034 {
2035         struct netdev_notifier_info_ext info = {
2036                 .info.dev = dev,
2037                 .ext.mtu = arg,
2038         };
2039
2040         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2041
2042         return call_netdevice_notifiers_info(val, &info.info);
2043 }
2044
2045 #ifdef CONFIG_NET_INGRESS
2046 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2047
2048 void net_inc_ingress_queue(void)
2049 {
2050         static_branch_inc(&ingress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2053
2054 void net_dec_ingress_queue(void)
2055 {
2056         static_branch_dec(&ingress_needed_key);
2057 }
2058 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2059 #endif
2060
2061 #ifdef CONFIG_NET_EGRESS
2062 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2063
2064 void net_inc_egress_queue(void)
2065 {
2066         static_branch_inc(&egress_needed_key);
2067 }
2068 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2069
2070 void net_dec_egress_queue(void)
2071 {
2072         static_branch_dec(&egress_needed_key);
2073 }
2074 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2075 #endif
2076
2077 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2078 EXPORT_SYMBOL(netstamp_needed_key);
2079 #ifdef CONFIG_JUMP_LABEL
2080 static atomic_t netstamp_needed_deferred;
2081 static atomic_t netstamp_wanted;
2082 static void netstamp_clear(struct work_struct *work)
2083 {
2084         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2085         int wanted;
2086
2087         wanted = atomic_add_return(deferred, &netstamp_wanted);
2088         if (wanted > 0)
2089                 static_branch_enable(&netstamp_needed_key);
2090         else
2091                 static_branch_disable(&netstamp_needed_key);
2092 }
2093 static DECLARE_WORK(netstamp_work, netstamp_clear);
2094 #endif
2095
2096 void net_enable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099         int wanted = atomic_read(&netstamp_wanted);
2100
2101         while (wanted > 0) {
2102                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2103                         return;
2104         }
2105         atomic_inc(&netstamp_needed_deferred);
2106         schedule_work(&netstamp_work);
2107 #else
2108         static_branch_inc(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_enable_timestamp);
2112
2113 void net_disable_timestamp(void)
2114 {
2115 #ifdef CONFIG_JUMP_LABEL
2116         int wanted = atomic_read(&netstamp_wanted);
2117
2118         while (wanted > 1) {
2119                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2120                         return;
2121         }
2122         atomic_dec(&netstamp_needed_deferred);
2123         schedule_work(&netstamp_work);
2124 #else
2125         static_branch_dec(&netstamp_needed_key);
2126 #endif
2127 }
2128 EXPORT_SYMBOL(net_disable_timestamp);
2129
2130 static inline void net_timestamp_set(struct sk_buff *skb)
2131 {
2132         skb->tstamp = 0;
2133         skb->mono_delivery_time = 0;
2134         if (static_branch_unlikely(&netstamp_needed_key))
2135                 skb->tstamp = ktime_get_real();
2136 }
2137
2138 #define net_timestamp_check(COND, SKB)                          \
2139         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2140                 if ((COND) && !(SKB)->tstamp)                   \
2141                         (SKB)->tstamp = ktime_get_real();       \
2142         }                                                       \
2143
2144 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2145 {
2146         return __is_skb_forwardable(dev, skb, true);
2147 }
2148 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2149
2150 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2151                               bool check_mtu)
2152 {
2153         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2154
2155         if (likely(!ret)) {
2156                 skb->protocol = eth_type_trans(skb, dev);
2157                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2158         }
2159
2160         return ret;
2161 }
2162
2163 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2164 {
2165         return __dev_forward_skb2(dev, skb, true);
2166 }
2167 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2168
2169 /**
2170  * dev_forward_skb - loopback an skb to another netif
2171  *
2172  * @dev: destination network device
2173  * @skb: buffer to forward
2174  *
2175  * return values:
2176  *      NET_RX_SUCCESS  (no congestion)
2177  *      NET_RX_DROP     (packet was dropped, but freed)
2178  *
2179  * dev_forward_skb can be used for injecting an skb from the
2180  * start_xmit function of one device into the receive queue
2181  * of another device.
2182  *
2183  * The receiving device may be in another namespace, so
2184  * we have to clear all information in the skb that could
2185  * impact namespace isolation.
2186  */
2187 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2188 {
2189         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2190 }
2191 EXPORT_SYMBOL_GPL(dev_forward_skb);
2192
2193 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2194 {
2195         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2196 }
2197
2198 static inline int deliver_skb(struct sk_buff *skb,
2199                               struct packet_type *pt_prev,
2200                               struct net_device *orig_dev)
2201 {
2202         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2203                 return -ENOMEM;
2204         refcount_inc(&skb->users);
2205         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2206 }
2207
2208 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2209                                           struct packet_type **pt,
2210                                           struct net_device *orig_dev,
2211                                           __be16 type,
2212                                           struct list_head *ptype_list)
2213 {
2214         struct packet_type *ptype, *pt_prev = *pt;
2215
2216         list_for_each_entry_rcu(ptype, ptype_list, list) {
2217                 if (ptype->type != type)
2218                         continue;
2219                 if (pt_prev)
2220                         deliver_skb(skb, pt_prev, orig_dev);
2221                 pt_prev = ptype;
2222         }
2223         *pt = pt_prev;
2224 }
2225
2226 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2227 {
2228         if (!ptype->af_packet_priv || !skb->sk)
2229                 return false;
2230
2231         if (ptype->id_match)
2232                 return ptype->id_match(ptype, skb->sk);
2233         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2234                 return true;
2235
2236         return false;
2237 }
2238
2239 /**
2240  * dev_nit_active - return true if any network interface taps are in use
2241  *
2242  * @dev: network device to check for the presence of taps
2243  */
2244 bool dev_nit_active(struct net_device *dev)
2245 {
2246         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2247 }
2248 EXPORT_SYMBOL_GPL(dev_nit_active);
2249
2250 /*
2251  *      Support routine. Sends outgoing frames to any network
2252  *      taps currently in use.
2253  */
2254
2255 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2256 {
2257         struct packet_type *ptype;
2258         struct sk_buff *skb2 = NULL;
2259         struct packet_type *pt_prev = NULL;
2260         struct list_head *ptype_list = &ptype_all;
2261
2262         rcu_read_lock();
2263 again:
2264         list_for_each_entry_rcu(ptype, ptype_list, list) {
2265                 if (ptype->ignore_outgoing)
2266                         continue;
2267
2268                 /* Never send packets back to the socket
2269                  * they originated from - MvS ([email protected])
2270                  */
2271                 if (skb_loop_sk(ptype, skb))
2272                         continue;
2273
2274                 if (pt_prev) {
2275                         deliver_skb(skb2, pt_prev, skb->dev);
2276                         pt_prev = ptype;
2277                         continue;
2278                 }
2279
2280                 /* need to clone skb, done only once */
2281                 skb2 = skb_clone(skb, GFP_ATOMIC);
2282                 if (!skb2)
2283                         goto out_unlock;
2284
2285                 net_timestamp_set(skb2);
2286
2287                 /* skb->nh should be correctly
2288                  * set by sender, so that the second statement is
2289                  * just protection against buggy protocols.
2290                  */
2291                 skb_reset_mac_header(skb2);
2292
2293                 if (skb_network_header(skb2) < skb2->data ||
2294                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2295                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2296                                              ntohs(skb2->protocol),
2297                                              dev->name);
2298                         skb_reset_network_header(skb2);
2299                 }
2300
2301                 skb2->transport_header = skb2->network_header;
2302                 skb2->pkt_type = PACKET_OUTGOING;
2303                 pt_prev = ptype;
2304         }
2305
2306         if (ptype_list == &ptype_all) {
2307                 ptype_list = &dev->ptype_all;
2308                 goto again;
2309         }
2310 out_unlock:
2311         if (pt_prev) {
2312                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2313                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2314                 else
2315                         kfree_skb(skb2);
2316         }
2317         rcu_read_unlock();
2318 }
2319 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2320
2321 /**
2322  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2323  * @dev: Network device
2324  * @txq: number of queues available
2325  *
2326  * If real_num_tx_queues is changed the tc mappings may no longer be
2327  * valid. To resolve this verify the tc mapping remains valid and if
2328  * not NULL the mapping. With no priorities mapping to this
2329  * offset/count pair it will no longer be used. In the worst case TC0
2330  * is invalid nothing can be done so disable priority mappings. If is
2331  * expected that drivers will fix this mapping if they can before
2332  * calling netif_set_real_num_tx_queues.
2333  */
2334 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2335 {
2336         int i;
2337         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2338
2339         /* If TC0 is invalidated disable TC mapping */
2340         if (tc->offset + tc->count > txq) {
2341                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2342                 dev->num_tc = 0;
2343                 return;
2344         }
2345
2346         /* Invalidated prio to tc mappings set to TC0 */
2347         for (i = 1; i < TC_BITMASK + 1; i++) {
2348                 int q = netdev_get_prio_tc_map(dev, i);
2349
2350                 tc = &dev->tc_to_txq[q];
2351                 if (tc->offset + tc->count > txq) {
2352                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2353                                     i, q);
2354                         netdev_set_prio_tc_map(dev, i, 0);
2355                 }
2356         }
2357 }
2358
2359 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2360 {
2361         if (dev->num_tc) {
2362                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2363                 int i;
2364
2365                 /* walk through the TCs and see if it falls into any of them */
2366                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2367                         if ((txq - tc->offset) < tc->count)
2368                                 return i;
2369                 }
2370
2371                 /* didn't find it, just return -1 to indicate no match */
2372                 return -1;
2373         }
2374
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_txq_to_tc);
2378
2379 #ifdef CONFIG_XPS
2380 static struct static_key xps_needed __read_mostly;
2381 static struct static_key xps_rxqs_needed __read_mostly;
2382 static DEFINE_MUTEX(xps_map_mutex);
2383 #define xmap_dereference(P)             \
2384         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2385
2386 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2387                              struct xps_dev_maps *old_maps, int tci, u16 index)
2388 {
2389         struct xps_map *map = NULL;
2390         int pos;
2391
2392         map = xmap_dereference(dev_maps->attr_map[tci]);
2393         if (!map)
2394                 return false;
2395
2396         for (pos = map->len; pos--;) {
2397                 if (map->queues[pos] != index)
2398                         continue;
2399
2400                 if (map->len > 1) {
2401                         map->queues[pos] = map->queues[--map->len];
2402                         break;
2403                 }
2404
2405                 if (old_maps)
2406                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2407                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2408                 kfree_rcu(map, rcu);
2409                 return false;
2410         }
2411
2412         return true;
2413 }
2414
2415 static bool remove_xps_queue_cpu(struct net_device *dev,
2416                                  struct xps_dev_maps *dev_maps,
2417                                  int cpu, u16 offset, u16 count)
2418 {
2419         int num_tc = dev_maps->num_tc;
2420         bool active = false;
2421         int tci;
2422
2423         for (tci = cpu * num_tc; num_tc--; tci++) {
2424                 int i, j;
2425
2426                 for (i = count, j = offset; i--; j++) {
2427                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2428                                 break;
2429                 }
2430
2431                 active |= i < 0;
2432         }
2433
2434         return active;
2435 }
2436
2437 static void reset_xps_maps(struct net_device *dev,
2438                            struct xps_dev_maps *dev_maps,
2439                            enum xps_map_type type)
2440 {
2441         static_key_slow_dec_cpuslocked(&xps_needed);
2442         if (type == XPS_RXQS)
2443                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2444
2445         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2446
2447         kfree_rcu(dev_maps, rcu);
2448 }
2449
2450 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2451                            u16 offset, u16 count)
2452 {
2453         struct xps_dev_maps *dev_maps;
2454         bool active = false;
2455         int i, j;
2456
2457         dev_maps = xmap_dereference(dev->xps_maps[type]);
2458         if (!dev_maps)
2459                 return;
2460
2461         for (j = 0; j < dev_maps->nr_ids; j++)
2462                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2463         if (!active)
2464                 reset_xps_maps(dev, dev_maps, type);
2465
2466         if (type == XPS_CPUS) {
2467                 for (i = offset + (count - 1); count--; i--)
2468                         netdev_queue_numa_node_write(
2469                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2470         }
2471 }
2472
2473 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2474                                    u16 count)
2475 {
2476         if (!static_key_false(&xps_needed))
2477                 return;
2478
2479         cpus_read_lock();
2480         mutex_lock(&xps_map_mutex);
2481
2482         if (static_key_false(&xps_rxqs_needed))
2483                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2484
2485         clean_xps_maps(dev, XPS_CPUS, offset, count);
2486
2487         mutex_unlock(&xps_map_mutex);
2488         cpus_read_unlock();
2489 }
2490
2491 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2492 {
2493         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2494 }
2495
2496 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2497                                       u16 index, bool is_rxqs_map)
2498 {
2499         struct xps_map *new_map;
2500         int alloc_len = XPS_MIN_MAP_ALLOC;
2501         int i, pos;
2502
2503         for (pos = 0; map && pos < map->len; pos++) {
2504                 if (map->queues[pos] != index)
2505                         continue;
2506                 return map;
2507         }
2508
2509         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2510         if (map) {
2511                 if (pos < map->alloc_len)
2512                         return map;
2513
2514                 alloc_len = map->alloc_len * 2;
2515         }
2516
2517         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2518          *  map
2519          */
2520         if (is_rxqs_map)
2521                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2522         else
2523                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2524                                        cpu_to_node(attr_index));
2525         if (!new_map)
2526                 return NULL;
2527
2528         for (i = 0; i < pos; i++)
2529                 new_map->queues[i] = map->queues[i];
2530         new_map->alloc_len = alloc_len;
2531         new_map->len = pos;
2532
2533         return new_map;
2534 }
2535
2536 /* Copy xps maps at a given index */
2537 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2538                               struct xps_dev_maps *new_dev_maps, int index,
2539                               int tc, bool skip_tc)
2540 {
2541         int i, tci = index * dev_maps->num_tc;
2542         struct xps_map *map;
2543
2544         /* copy maps belonging to foreign traffic classes */
2545         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2546                 if (i == tc && skip_tc)
2547                         continue;
2548
2549                 /* fill in the new device map from the old device map */
2550                 map = xmap_dereference(dev_maps->attr_map[tci]);
2551                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2552         }
2553 }
2554
2555 /* Must be called under cpus_read_lock */
2556 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2557                           u16 index, enum xps_map_type type)
2558 {
2559         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2560         const unsigned long *online_mask = NULL;
2561         bool active = false, copy = false;
2562         int i, j, tci, numa_node_id = -2;
2563         int maps_sz, num_tc = 1, tc = 0;
2564         struct xps_map *map, *new_map;
2565         unsigned int nr_ids;
2566
2567         WARN_ON_ONCE(index >= dev->num_tx_queues);
2568
2569         if (dev->num_tc) {
2570                 /* Do not allow XPS on subordinate device directly */
2571                 num_tc = dev->num_tc;
2572                 if (num_tc < 0)
2573                         return -EINVAL;
2574
2575                 /* If queue belongs to subordinate dev use its map */
2576                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2577
2578                 tc = netdev_txq_to_tc(dev, index);
2579                 if (tc < 0)
2580                         return -EINVAL;
2581         }
2582
2583         mutex_lock(&xps_map_mutex);
2584
2585         dev_maps = xmap_dereference(dev->xps_maps[type]);
2586         if (type == XPS_RXQS) {
2587                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2588                 nr_ids = dev->num_rx_queues;
2589         } else {
2590                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2591                 if (num_possible_cpus() > 1)
2592                         online_mask = cpumask_bits(cpu_online_mask);
2593                 nr_ids = nr_cpu_ids;
2594         }
2595
2596         if (maps_sz < L1_CACHE_BYTES)
2597                 maps_sz = L1_CACHE_BYTES;
2598
2599         /* The old dev_maps could be larger or smaller than the one we're
2600          * setting up now, as dev->num_tc or nr_ids could have been updated in
2601          * between. We could try to be smart, but let's be safe instead and only
2602          * copy foreign traffic classes if the two map sizes match.
2603          */
2604         if (dev_maps &&
2605             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2606                 copy = true;
2607
2608         /* allocate memory for queue storage */
2609         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2610              j < nr_ids;) {
2611                 if (!new_dev_maps) {
2612                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2613                         if (!new_dev_maps) {
2614                                 mutex_unlock(&xps_map_mutex);
2615                                 return -ENOMEM;
2616                         }
2617
2618                         new_dev_maps->nr_ids = nr_ids;
2619                         new_dev_maps->num_tc = num_tc;
2620                 }
2621
2622                 tci = j * num_tc + tc;
2623                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2624
2625                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2626                 if (!map)
2627                         goto error;
2628
2629                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2630         }
2631
2632         if (!new_dev_maps)
2633                 goto out_no_new_maps;
2634
2635         if (!dev_maps) {
2636                 /* Increment static keys at most once per type */
2637                 static_key_slow_inc_cpuslocked(&xps_needed);
2638                 if (type == XPS_RXQS)
2639                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2640         }
2641
2642         for (j = 0; j < nr_ids; j++) {
2643                 bool skip_tc = false;
2644
2645                 tci = j * num_tc + tc;
2646                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2647                     netif_attr_test_online(j, online_mask, nr_ids)) {
2648                         /* add tx-queue to CPU/rx-queue maps */
2649                         int pos = 0;
2650
2651                         skip_tc = true;
2652
2653                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2654                         while ((pos < map->len) && (map->queues[pos] != index))
2655                                 pos++;
2656
2657                         if (pos == map->len)
2658                                 map->queues[map->len++] = index;
2659 #ifdef CONFIG_NUMA
2660                         if (type == XPS_CPUS) {
2661                                 if (numa_node_id == -2)
2662                                         numa_node_id = cpu_to_node(j);
2663                                 else if (numa_node_id != cpu_to_node(j))
2664                                         numa_node_id = -1;
2665                         }
2666 #endif
2667                 }
2668
2669                 if (copy)
2670                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2671                                           skip_tc);
2672         }
2673
2674         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2675
2676         /* Cleanup old maps */
2677         if (!dev_maps)
2678                 goto out_no_old_maps;
2679
2680         for (j = 0; j < dev_maps->nr_ids; j++) {
2681                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2682                         map = xmap_dereference(dev_maps->attr_map[tci]);
2683                         if (!map)
2684                                 continue;
2685
2686                         if (copy) {
2687                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688                                 if (map == new_map)
2689                                         continue;
2690                         }
2691
2692                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2693                         kfree_rcu(map, rcu);
2694                 }
2695         }
2696
2697         old_dev_maps = dev_maps;
2698
2699 out_no_old_maps:
2700         dev_maps = new_dev_maps;
2701         active = true;
2702
2703 out_no_new_maps:
2704         if (type == XPS_CPUS)
2705                 /* update Tx queue numa node */
2706                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2707                                              (numa_node_id >= 0) ?
2708                                              numa_node_id : NUMA_NO_NODE);
2709
2710         if (!dev_maps)
2711                 goto out_no_maps;
2712
2713         /* removes tx-queue from unused CPUs/rx-queues */
2714         for (j = 0; j < dev_maps->nr_ids; j++) {
2715                 tci = j * dev_maps->num_tc;
2716
2717                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2718                         if (i == tc &&
2719                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2720                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2721                                 continue;
2722
2723                         active |= remove_xps_queue(dev_maps,
2724                                                    copy ? old_dev_maps : NULL,
2725                                                    tci, index);
2726                 }
2727         }
2728
2729         if (old_dev_maps)
2730                 kfree_rcu(old_dev_maps, rcu);
2731
2732         /* free map if not active */
2733         if (!active)
2734                 reset_xps_maps(dev, dev_maps, type);
2735
2736 out_no_maps:
2737         mutex_unlock(&xps_map_mutex);
2738
2739         return 0;
2740 error:
2741         /* remove any maps that we added */
2742         for (j = 0; j < nr_ids; j++) {
2743                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2744                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2745                         map = copy ?
2746                               xmap_dereference(dev_maps->attr_map[tci]) :
2747                               NULL;
2748                         if (new_map && new_map != map)
2749                                 kfree(new_map);
2750                 }
2751         }
2752
2753         mutex_unlock(&xps_map_mutex);
2754
2755         kfree(new_dev_maps);
2756         return -ENOMEM;
2757 }
2758 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2759
2760 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2761                         u16 index)
2762 {
2763         int ret;
2764
2765         cpus_read_lock();
2766         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2767         cpus_read_unlock();
2768
2769         return ret;
2770 }
2771 EXPORT_SYMBOL(netif_set_xps_queue);
2772
2773 #endif
2774 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2775 {
2776         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2777
2778         /* Unbind any subordinate channels */
2779         while (txq-- != &dev->_tx[0]) {
2780                 if (txq->sb_dev)
2781                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2782         }
2783 }
2784
2785 void netdev_reset_tc(struct net_device *dev)
2786 {
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790         netdev_unbind_all_sb_channels(dev);
2791
2792         /* Reset TC configuration of device */
2793         dev->num_tc = 0;
2794         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2795         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2796 }
2797 EXPORT_SYMBOL(netdev_reset_tc);
2798
2799 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2800 {
2801         if (tc >= dev->num_tc)
2802                 return -EINVAL;
2803
2804 #ifdef CONFIG_XPS
2805         netif_reset_xps_queues(dev, offset, count);
2806 #endif
2807         dev->tc_to_txq[tc].count = count;
2808         dev->tc_to_txq[tc].offset = offset;
2809         return 0;
2810 }
2811 EXPORT_SYMBOL(netdev_set_tc_queue);
2812
2813 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2814 {
2815         if (num_tc > TC_MAX_QUEUE)
2816                 return -EINVAL;
2817
2818 #ifdef CONFIG_XPS
2819         netif_reset_xps_queues_gt(dev, 0);
2820 #endif
2821         netdev_unbind_all_sb_channels(dev);
2822
2823         dev->num_tc = num_tc;
2824         return 0;
2825 }
2826 EXPORT_SYMBOL(netdev_set_num_tc);
2827
2828 void netdev_unbind_sb_channel(struct net_device *dev,
2829                               struct net_device *sb_dev)
2830 {
2831         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2832
2833 #ifdef CONFIG_XPS
2834         netif_reset_xps_queues_gt(sb_dev, 0);
2835 #endif
2836         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2837         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2838
2839         while (txq-- != &dev->_tx[0]) {
2840                 if (txq->sb_dev == sb_dev)
2841                         txq->sb_dev = NULL;
2842         }
2843 }
2844 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2845
2846 int netdev_bind_sb_channel_queue(struct net_device *dev,
2847                                  struct net_device *sb_dev,
2848                                  u8 tc, u16 count, u16 offset)
2849 {
2850         /* Make certain the sb_dev and dev are already configured */
2851         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2852                 return -EINVAL;
2853
2854         /* We cannot hand out queues we don't have */
2855         if ((offset + count) > dev->real_num_tx_queues)
2856                 return -EINVAL;
2857
2858         /* Record the mapping */
2859         sb_dev->tc_to_txq[tc].count = count;
2860         sb_dev->tc_to_txq[tc].offset = offset;
2861
2862         /* Provide a way for Tx queue to find the tc_to_txq map or
2863          * XPS map for itself.
2864          */
2865         while (count--)
2866                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2867
2868         return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2871
2872 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2873 {
2874         /* Do not use a multiqueue device to represent a subordinate channel */
2875         if (netif_is_multiqueue(dev))
2876                 return -ENODEV;
2877
2878         /* We allow channels 1 - 32767 to be used for subordinate channels.
2879          * Channel 0 is meant to be "native" mode and used only to represent
2880          * the main root device. We allow writing 0 to reset the device back
2881          * to normal mode after being used as a subordinate channel.
2882          */
2883         if (channel > S16_MAX)
2884                 return -EINVAL;
2885
2886         dev->num_tc = -channel;
2887
2888         return 0;
2889 }
2890 EXPORT_SYMBOL(netdev_set_sb_channel);
2891
2892 /*
2893  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2894  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2895  */
2896 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2897 {
2898         bool disabling;
2899         int rc;
2900
2901         disabling = txq < dev->real_num_tx_queues;
2902
2903         if (txq < 1 || txq > dev->num_tx_queues)
2904                 return -EINVAL;
2905
2906         if (dev->reg_state == NETREG_REGISTERED ||
2907             dev->reg_state == NETREG_UNREGISTERING) {
2908                 ASSERT_RTNL();
2909
2910                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2911                                                   txq);
2912                 if (rc)
2913                         return rc;
2914
2915                 if (dev->num_tc)
2916                         netif_setup_tc(dev, txq);
2917
2918                 dev_qdisc_change_real_num_tx(dev, txq);
2919
2920                 dev->real_num_tx_queues = txq;
2921
2922                 if (disabling) {
2923                         synchronize_net();
2924                         qdisc_reset_all_tx_gt(dev, txq);
2925 #ifdef CONFIG_XPS
2926                         netif_reset_xps_queues_gt(dev, txq);
2927 #endif
2928                 }
2929         } else {
2930                 dev->real_num_tx_queues = txq;
2931         }
2932
2933         return 0;
2934 }
2935 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2936
2937 #ifdef CONFIG_SYSFS
2938 /**
2939  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2940  *      @dev: Network device
2941  *      @rxq: Actual number of RX queues
2942  *
2943  *      This must be called either with the rtnl_lock held or before
2944  *      registration of the net device.  Returns 0 on success, or a
2945  *      negative error code.  If called before registration, it always
2946  *      succeeds.
2947  */
2948 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2949 {
2950         int rc;
2951
2952         if (rxq < 1 || rxq > dev->num_rx_queues)
2953                 return -EINVAL;
2954
2955         if (dev->reg_state == NETREG_REGISTERED) {
2956                 ASSERT_RTNL();
2957
2958                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2959                                                   rxq);
2960                 if (rc)
2961                         return rc;
2962         }
2963
2964         dev->real_num_rx_queues = rxq;
2965         return 0;
2966 }
2967 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2968 #endif
2969
2970 /**
2971  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2972  *      @dev: Network device
2973  *      @txq: Actual number of TX queues
2974  *      @rxq: Actual number of RX queues
2975  *
2976  *      Set the real number of both TX and RX queues.
2977  *      Does nothing if the number of queues is already correct.
2978  */
2979 int netif_set_real_num_queues(struct net_device *dev,
2980                               unsigned int txq, unsigned int rxq)
2981 {
2982         unsigned int old_rxq = dev->real_num_rx_queues;
2983         int err;
2984
2985         if (txq < 1 || txq > dev->num_tx_queues ||
2986             rxq < 1 || rxq > dev->num_rx_queues)
2987                 return -EINVAL;
2988
2989         /* Start from increases, so the error path only does decreases -
2990          * decreases can't fail.
2991          */
2992         if (rxq > dev->real_num_rx_queues) {
2993                 err = netif_set_real_num_rx_queues(dev, rxq);
2994                 if (err)
2995                         return err;
2996         }
2997         if (txq > dev->real_num_tx_queues) {
2998                 err = netif_set_real_num_tx_queues(dev, txq);
2999                 if (err)
3000                         goto undo_rx;
3001         }
3002         if (rxq < dev->real_num_rx_queues)
3003                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3004         if (txq < dev->real_num_tx_queues)
3005                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3006
3007         return 0;
3008 undo_rx:
3009         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3010         return err;
3011 }
3012 EXPORT_SYMBOL(netif_set_real_num_queues);
3013
3014 /**
3015  * netif_set_tso_max_size() - set the max size of TSO frames supported
3016  * @dev:        netdev to update
3017  * @size:       max skb->len of a TSO frame
3018  *
3019  * Set the limit on the size of TSO super-frames the device can handle.
3020  * Unless explicitly set the stack will assume the value of
3021  * %GSO_LEGACY_MAX_SIZE.
3022  */
3023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3024 {
3025         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3026         if (size < READ_ONCE(dev->gso_max_size))
3027                 netif_set_gso_max_size(dev, size);
3028         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3029                 netif_set_gso_ipv4_max_size(dev, size);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_size);
3032
3033 /**
3034  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3035  * @dev:        netdev to update
3036  * @segs:       max number of TCP segments
3037  *
3038  * Set the limit on the number of TCP segments the device can generate from
3039  * a single TSO super-frame.
3040  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3041  */
3042 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3043 {
3044         dev->tso_max_segs = segs;
3045         if (segs < READ_ONCE(dev->gso_max_segs))
3046                 netif_set_gso_max_segs(dev, segs);
3047 }
3048 EXPORT_SYMBOL(netif_set_tso_max_segs);
3049
3050 /**
3051  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3052  * @to:         netdev to update
3053  * @from:       netdev from which to copy the limits
3054  */
3055 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3056 {
3057         netif_set_tso_max_size(to, from->tso_max_size);
3058         netif_set_tso_max_segs(to, from->tso_max_segs);
3059 }
3060 EXPORT_SYMBOL(netif_inherit_tso_max);
3061
3062 /**
3063  * netif_get_num_default_rss_queues - default number of RSS queues
3064  *
3065  * Default value is the number of physical cores if there are only 1 or 2, or
3066  * divided by 2 if there are more.
3067  */
3068 int netif_get_num_default_rss_queues(void)
3069 {
3070         cpumask_var_t cpus;
3071         int cpu, count = 0;
3072
3073         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3074                 return 1;
3075
3076         cpumask_copy(cpus, cpu_online_mask);
3077         for_each_cpu(cpu, cpus) {
3078                 ++count;
3079                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3080         }
3081         free_cpumask_var(cpus);
3082
3083         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3084 }
3085 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3086
3087 static void __netif_reschedule(struct Qdisc *q)
3088 {
3089         struct softnet_data *sd;
3090         unsigned long flags;
3091
3092         local_irq_save(flags);
3093         sd = this_cpu_ptr(&softnet_data);
3094         q->next_sched = NULL;
3095         *sd->output_queue_tailp = q;
3096         sd->output_queue_tailp = &q->next_sched;
3097         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098         local_irq_restore(flags);
3099 }
3100
3101 void __netif_schedule(struct Qdisc *q)
3102 {
3103         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3104                 __netif_reschedule(q);
3105 }
3106 EXPORT_SYMBOL(__netif_schedule);
3107
3108 struct dev_kfree_skb_cb {
3109         enum skb_drop_reason reason;
3110 };
3111
3112 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3113 {
3114         return (struct dev_kfree_skb_cb *)skb->cb;
3115 }
3116
3117 void netif_schedule_queue(struct netdev_queue *txq)
3118 {
3119         rcu_read_lock();
3120         if (!netif_xmit_stopped(txq)) {
3121                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3122
3123                 __netif_schedule(q);
3124         }
3125         rcu_read_unlock();
3126 }
3127 EXPORT_SYMBOL(netif_schedule_queue);
3128
3129 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3130 {
3131         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3132                 struct Qdisc *q;
3133
3134                 rcu_read_lock();
3135                 q = rcu_dereference(dev_queue->qdisc);
3136                 __netif_schedule(q);
3137                 rcu_read_unlock();
3138         }
3139 }
3140 EXPORT_SYMBOL(netif_tx_wake_queue);
3141
3142 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3143 {
3144         unsigned long flags;
3145
3146         if (unlikely(!skb))
3147                 return;
3148
3149         if (likely(refcount_read(&skb->users) == 1)) {
3150                 smp_rmb();
3151                 refcount_set(&skb->users, 0);
3152         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3153                 return;
3154         }
3155         get_kfree_skb_cb(skb)->reason = reason;
3156         local_irq_save(flags);
3157         skb->next = __this_cpu_read(softnet_data.completion_queue);
3158         __this_cpu_write(softnet_data.completion_queue, skb);
3159         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160         local_irq_restore(flags);
3161 }
3162 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3163
3164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3165 {
3166         if (in_hardirq() || irqs_disabled())
3167                 dev_kfree_skb_irq_reason(skb, reason);
3168         else
3169                 kfree_skb_reason(skb, reason);
3170 }
3171 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3172
3173
3174 /**
3175  * netif_device_detach - mark device as removed
3176  * @dev: network device
3177  *
3178  * Mark device as removed from system and therefore no longer available.
3179  */
3180 void netif_device_detach(struct net_device *dev)
3181 {
3182         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183             netif_running(dev)) {
3184                 netif_tx_stop_all_queues(dev);
3185         }
3186 }
3187 EXPORT_SYMBOL(netif_device_detach);
3188
3189 /**
3190  * netif_device_attach - mark device as attached
3191  * @dev: network device
3192  *
3193  * Mark device as attached from system and restart if needed.
3194  */
3195 void netif_device_attach(struct net_device *dev)
3196 {
3197         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198             netif_running(dev)) {
3199                 netif_tx_wake_all_queues(dev);
3200                 __netdev_watchdog_up(dev);
3201         }
3202 }
3203 EXPORT_SYMBOL(netif_device_attach);
3204
3205 /*
3206  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3207  * to be used as a distribution range.
3208  */
3209 static u16 skb_tx_hash(const struct net_device *dev,
3210                        const struct net_device *sb_dev,
3211                        struct sk_buff *skb)
3212 {
3213         u32 hash;
3214         u16 qoffset = 0;
3215         u16 qcount = dev->real_num_tx_queues;
3216
3217         if (dev->num_tc) {
3218                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3219
3220                 qoffset = sb_dev->tc_to_txq[tc].offset;
3221                 qcount = sb_dev->tc_to_txq[tc].count;
3222                 if (unlikely(!qcount)) {
3223                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3224                                              sb_dev->name, qoffset, tc);
3225                         qoffset = 0;
3226                         qcount = dev->real_num_tx_queues;
3227                 }
3228         }
3229
3230         if (skb_rx_queue_recorded(skb)) {
3231                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3232                 hash = skb_get_rx_queue(skb);
3233                 if (hash >= qoffset)
3234                         hash -= qoffset;
3235                 while (unlikely(hash >= qcount))
3236                         hash -= qcount;
3237                 return hash + qoffset;
3238         }
3239
3240         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3241 }
3242
3243 void skb_warn_bad_offload(const struct sk_buff *skb)
3244 {
3245         static const netdev_features_t null_features;
3246         struct net_device *dev = skb->dev;
3247         const char *name = "";
3248
3249         if (!net_ratelimit())
3250                 return;
3251
3252         if (dev) {
3253                 if (dev->dev.parent)
3254                         name = dev_driver_string(dev->dev.parent);
3255                 else
3256                         name = netdev_name(dev);
3257         }
3258         skb_dump(KERN_WARNING, skb, false);
3259         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3260              name, dev ? &dev->features : &null_features,
3261              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3262 }
3263
3264 /*
3265  * Invalidate hardware checksum when packet is to be mangled, and
3266  * complete checksum manually on outgoing path.
3267  */
3268 int skb_checksum_help(struct sk_buff *skb)
3269 {
3270         __wsum csum;
3271         int ret = 0, offset;
3272
3273         if (skb->ip_summed == CHECKSUM_COMPLETE)
3274                 goto out_set_summed;
3275
3276         if (unlikely(skb_is_gso(skb))) {
3277                 skb_warn_bad_offload(skb);
3278                 return -EINVAL;
3279         }
3280
3281         /* Before computing a checksum, we should make sure no frag could
3282          * be modified by an external entity : checksum could be wrong.
3283          */
3284         if (skb_has_shared_frag(skb)) {
3285                 ret = __skb_linearize(skb);
3286                 if (ret)
3287                         goto out;
3288         }
3289
3290         offset = skb_checksum_start_offset(skb);
3291         ret = -EINVAL;
3292         if (unlikely(offset >= skb_headlen(skb))) {
3293                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3294                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3295                           offset, skb_headlen(skb));
3296                 goto out;
3297         }
3298         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3299
3300         offset += skb->csum_offset;
3301         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3302                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3303                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3304                           offset + sizeof(__sum16), skb_headlen(skb));
3305                 goto out;
3306         }
3307         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3308         if (ret)
3309                 goto out;
3310
3311         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3312 out_set_summed:
3313         skb->ip_summed = CHECKSUM_NONE;
3314 out:
3315         return ret;
3316 }
3317 EXPORT_SYMBOL(skb_checksum_help);
3318
3319 int skb_crc32c_csum_help(struct sk_buff *skb)
3320 {
3321         __le32 crc32c_csum;
3322         int ret = 0, offset, start;
3323
3324         if (skb->ip_summed != CHECKSUM_PARTIAL)
3325                 goto out;
3326
3327         if (unlikely(skb_is_gso(skb)))
3328                 goto out;
3329
3330         /* Before computing a checksum, we should make sure no frag could
3331          * be modified by an external entity : checksum could be wrong.
3332          */
3333         if (unlikely(skb_has_shared_frag(skb))) {
3334                 ret = __skb_linearize(skb);
3335                 if (ret)
3336                         goto out;
3337         }
3338         start = skb_checksum_start_offset(skb);
3339         offset = start + offsetof(struct sctphdr, checksum);
3340         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3341                 ret = -EINVAL;
3342                 goto out;
3343         }
3344
3345         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3346         if (ret)
3347                 goto out;
3348
3349         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3350                                                   skb->len - start, ~(__u32)0,
3351                                                   crc32c_csum_stub));
3352         *(__le32 *)(skb->data + offset) = crc32c_csum;
3353         skb_reset_csum_not_inet(skb);
3354 out:
3355         return ret;
3356 }
3357
3358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3359 {
3360         __be16 type = skb->protocol;
3361
3362         /* Tunnel gso handlers can set protocol to ethernet. */
3363         if (type == htons(ETH_P_TEB)) {
3364                 struct ethhdr *eth;
3365
3366                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3367                         return 0;
3368
3369                 eth = (struct ethhdr *)skb->data;
3370                 type = eth->h_proto;
3371         }
3372
3373         return vlan_get_protocol_and_depth(skb, type, depth);
3374 }
3375
3376
3377 /* Take action when hardware reception checksum errors are detected. */
3378 #ifdef CONFIG_BUG
3379 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3380 {
3381         netdev_err(dev, "hw csum failure\n");
3382         skb_dump(KERN_ERR, skb, true);
3383         dump_stack();
3384 }
3385
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3389 }
3390 EXPORT_SYMBOL(netdev_rx_csum_fault);
3391 #endif
3392
3393 /* XXX: check that highmem exists at all on the given machine. */
3394 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 #ifdef CONFIG_HIGHMEM
3397         int i;
3398
3399         if (!(dev->features & NETIF_F_HIGHDMA)) {
3400                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402
3403                         if (PageHighMem(skb_frag_page(frag)))
3404                                 return 1;
3405                 }
3406         }
3407 #endif
3408         return 0;
3409 }
3410
3411 /* If MPLS offload request, verify we are testing hardware MPLS features
3412  * instead of standard features for the netdev.
3413  */
3414 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416                                            netdev_features_t features,
3417                                            __be16 type)
3418 {
3419         if (eth_p_mpls(type))
3420                 features &= skb->dev->mpls_features;
3421
3422         return features;
3423 }
3424 #else
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426                                            netdev_features_t features,
3427                                            __be16 type)
3428 {
3429         return features;
3430 }
3431 #endif
3432
3433 static netdev_features_t harmonize_features(struct sk_buff *skb,
3434         netdev_features_t features)
3435 {
3436         __be16 type;
3437
3438         type = skb_network_protocol(skb, NULL);
3439         features = net_mpls_features(skb, features, type);
3440
3441         if (skb->ip_summed != CHECKSUM_NONE &&
3442             !can_checksum_protocol(features, type)) {
3443                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3444         }
3445         if (illegal_highdma(skb->dev, skb))
3446                 features &= ~NETIF_F_SG;
3447
3448         return features;
3449 }
3450
3451 netdev_features_t passthru_features_check(struct sk_buff *skb,
3452                                           struct net_device *dev,
3453                                           netdev_features_t features)
3454 {
3455         return features;
3456 }
3457 EXPORT_SYMBOL(passthru_features_check);
3458
3459 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3460                                              struct net_device *dev,
3461                                              netdev_features_t features)
3462 {
3463         return vlan_features_check(skb, features);
3464 }
3465
3466 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3467                                             struct net_device *dev,
3468                                             netdev_features_t features)
3469 {
3470         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3471
3472         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3473                 return features & ~NETIF_F_GSO_MASK;
3474
3475         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3476                 return features & ~NETIF_F_GSO_MASK;
3477
3478         if (!skb_shinfo(skb)->gso_type) {
3479                 skb_warn_bad_offload(skb);
3480                 return features & ~NETIF_F_GSO_MASK;
3481         }
3482
3483         /* Support for GSO partial features requires software
3484          * intervention before we can actually process the packets
3485          * so we need to strip support for any partial features now
3486          * and we can pull them back in after we have partially
3487          * segmented the frame.
3488          */
3489         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490                 features &= ~dev->gso_partial_features;
3491
3492         /* Make sure to clear the IPv4 ID mangling feature if the
3493          * IPv4 header has the potential to be fragmented.
3494          */
3495         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496                 struct iphdr *iph = skb->encapsulation ?
3497                                     inner_ip_hdr(skb) : ip_hdr(skb);
3498
3499                 if (!(iph->frag_off & htons(IP_DF)))
3500                         features &= ~NETIF_F_TSO_MANGLEID;
3501         }
3502
3503         return features;
3504 }
3505
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508         struct net_device *dev = skb->dev;
3509         netdev_features_t features = dev->features;
3510
3511         if (skb_is_gso(skb))
3512                 features = gso_features_check(skb, dev, features);
3513
3514         /* If encapsulation offload request, verify we are testing
3515          * hardware encapsulation features instead of standard
3516          * features for the netdev
3517          */
3518         if (skb->encapsulation)
3519                 features &= dev->hw_enc_features;
3520
3521         if (skb_vlan_tagged(skb))
3522                 features = netdev_intersect_features(features,
3523                                                      dev->vlan_features |
3524                                                      NETIF_F_HW_VLAN_CTAG_TX |
3525                                                      NETIF_F_HW_VLAN_STAG_TX);
3526
3527         if (dev->netdev_ops->ndo_features_check)
3528                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529                                                                 features);
3530         else
3531                 features &= dflt_features_check(skb, dev, features);
3532
3533         return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538                     struct netdev_queue *txq, bool more)
3539 {
3540         unsigned int len;
3541         int rc;
3542
3543         if (dev_nit_active(dev))
3544                 dev_queue_xmit_nit(skb, dev);
3545
3546         len = skb->len;
3547         trace_net_dev_start_xmit(skb, dev);
3548         rc = netdev_start_xmit(skb, dev, txq, more);
3549         trace_net_dev_xmit(skb, rc, dev, len);
3550
3551         return rc;
3552 }
3553
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555                                     struct netdev_queue *txq, int *ret)
3556 {
3557         struct sk_buff *skb = first;
3558         int rc = NETDEV_TX_OK;
3559
3560         while (skb) {
3561                 struct sk_buff *next = skb->next;
3562
3563                 skb_mark_not_on_list(skb);
3564                 rc = xmit_one(skb, dev, txq, next != NULL);
3565                 if (unlikely(!dev_xmit_complete(rc))) {
3566                         skb->next = next;
3567                         goto out;
3568                 }
3569
3570                 skb = next;
3571                 if (netif_tx_queue_stopped(txq) && skb) {
3572                         rc = NETDEV_TX_BUSY;
3573                         break;
3574                 }
3575         }
3576
3577 out:
3578         *ret = rc;
3579         return skb;
3580 }
3581
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583                                           netdev_features_t features)
3584 {
3585         if (skb_vlan_tag_present(skb) &&
3586             !vlan_hw_offload_capable(features, skb->vlan_proto))
3587                 skb = __vlan_hwaccel_push_inside(skb);
3588         return skb;
3589 }
3590
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592                             const netdev_features_t features)
3593 {
3594         if (unlikely(skb_csum_is_sctp(skb)))
3595                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596                         skb_crc32c_csum_help(skb);
3597
3598         if (features & NETIF_F_HW_CSUM)
3599                 return 0;
3600
3601         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602                 switch (skb->csum_offset) {
3603                 case offsetof(struct tcphdr, check):
3604                 case offsetof(struct udphdr, check):
3605                         return 0;
3606                 }
3607         }
3608
3609         return skb_checksum_help(skb);
3610 }
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615         netdev_features_t features;
3616
3617         features = netif_skb_features(skb);
3618         skb = validate_xmit_vlan(skb, features);
3619         if (unlikely(!skb))
3620                 goto out_null;
3621
3622         skb = sk_validate_xmit_skb(skb, dev);
3623         if (unlikely(!skb))
3624                 goto out_null;
3625
3626         if (netif_needs_gso(skb, features)) {
3627                 struct sk_buff *segs;
3628
3629                 segs = skb_gso_segment(skb, features);
3630                 if (IS_ERR(segs)) {
3631                         goto out_kfree_skb;
3632                 } else if (segs) {
3633                         consume_skb(skb);
3634                         skb = segs;
3635                 }
3636         } else {
3637                 if (skb_needs_linearize(skb, features) &&
3638                     __skb_linearize(skb))
3639                         goto out_kfree_skb;
3640
3641                 /* If packet is not checksummed and device does not
3642                  * support checksumming for this protocol, complete
3643                  * checksumming here.
3644                  */
3645                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646                         if (skb->encapsulation)
3647                                 skb_set_inner_transport_header(skb,
3648                                                                skb_checksum_start_offset(skb));
3649                         else
3650                                 skb_set_transport_header(skb,
3651                                                          skb_checksum_start_offset(skb));
3652                         if (skb_csum_hwoffload_help(skb, features))
3653                                 goto out_kfree_skb;
3654                 }
3655         }
3656
3657         skb = validate_xmit_xfrm(skb, features, again);
3658
3659         return skb;
3660
3661 out_kfree_skb:
3662         kfree_skb(skb);
3663 out_null:
3664         dev_core_stats_tx_dropped_inc(dev);
3665         return NULL;
3666 }
3667
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669 {
3670         struct sk_buff *next, *head = NULL, *tail;
3671
3672         for (; skb != NULL; skb = next) {
3673                 next = skb->next;
3674                 skb_mark_not_on_list(skb);
3675
3676                 /* in case skb wont be segmented, point to itself */
3677                 skb->prev = skb;
3678
3679                 skb = validate_xmit_skb(skb, dev, again);
3680                 if (!skb)
3681                         continue;
3682
3683                 if (!head)
3684                         head = skb;
3685                 else
3686                         tail->next = skb;
3687                 /* If skb was segmented, skb->prev points to
3688                  * the last segment. If not, it still contains skb.
3689                  */
3690                 tail = skb->prev;
3691         }
3692         return head;
3693 }
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3697 {
3698         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699
3700         qdisc_skb_cb(skb)->pkt_len = skb->len;
3701
3702         /* To get more precise estimation of bytes sent on wire,
3703          * we add to pkt_len the headers size of all segments
3704          */
3705         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706                 u16 gso_segs = shinfo->gso_segs;
3707                 unsigned int hdr_len;
3708
3709                 /* mac layer + network layer */
3710                 hdr_len = skb_transport_offset(skb);
3711
3712                 /* + transport layer */
3713                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714                         const struct tcphdr *th;
3715                         struct tcphdr _tcphdr;
3716
3717                         th = skb_header_pointer(skb, hdr_len,
3718                                                 sizeof(_tcphdr), &_tcphdr);
3719                         if (likely(th))
3720                                 hdr_len += __tcp_hdrlen(th);
3721                 } else {
3722                         struct udphdr _udphdr;
3723
3724                         if (skb_header_pointer(skb, hdr_len,
3725                                                sizeof(_udphdr), &_udphdr))
3726                                 hdr_len += sizeof(struct udphdr);
3727                 }
3728
3729                 if (shinfo->gso_type & SKB_GSO_DODGY)
3730                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731                                                 shinfo->gso_size);
3732
3733                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734         }
3735 }
3736
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738                              struct sk_buff **to_free,
3739                              struct netdev_queue *txq)
3740 {
3741         int rc;
3742
3743         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744         if (rc == NET_XMIT_SUCCESS)
3745                 trace_qdisc_enqueue(q, txq, skb);
3746         return rc;
3747 }
3748
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750                                  struct net_device *dev,
3751                                  struct netdev_queue *txq)
3752 {
3753         spinlock_t *root_lock = qdisc_lock(q);
3754         struct sk_buff *to_free = NULL;
3755         bool contended;
3756         int rc;
3757
3758         qdisc_calculate_pkt_len(skb, q);
3759
3760         if (q->flags & TCQ_F_NOLOCK) {
3761                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762                     qdisc_run_begin(q)) {
3763                         /* Retest nolock_qdisc_is_empty() within the protection
3764                          * of q->seqlock to protect from racing with requeuing.
3765                          */
3766                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3767                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768                                 __qdisc_run(q);
3769                                 qdisc_run_end(q);
3770
3771                                 goto no_lock_out;
3772                         }
3773
3774                         qdisc_bstats_cpu_update(q, skb);
3775                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776                             !nolock_qdisc_is_empty(q))
3777                                 __qdisc_run(q);
3778
3779                         qdisc_run_end(q);
3780                         return NET_XMIT_SUCCESS;
3781                 }
3782
3783                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784                 qdisc_run(q);
3785
3786 no_lock_out:
3787                 if (unlikely(to_free))
3788                         kfree_skb_list_reason(to_free,
3789                                               SKB_DROP_REASON_QDISC_DROP);
3790                 return rc;
3791         }
3792
3793         /*
3794          * Heuristic to force contended enqueues to serialize on a
3795          * separate lock before trying to get qdisc main lock.
3796          * This permits qdisc->running owner to get the lock more
3797          * often and dequeue packets faster.
3798          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799          * and then other tasks will only enqueue packets. The packets will be
3800          * sent after the qdisc owner is scheduled again. To prevent this
3801          * scenario the task always serialize on the lock.
3802          */
3803         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804         if (unlikely(contended))
3805                 spin_lock(&q->busylock);
3806
3807         spin_lock(root_lock);
3808         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809                 __qdisc_drop(skb, &to_free);
3810                 rc = NET_XMIT_DROP;
3811         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812                    qdisc_run_begin(q)) {
3813                 /*
3814                  * This is a work-conserving queue; there are no old skbs
3815                  * waiting to be sent out; and the qdisc is not running -
3816                  * xmit the skb directly.
3817                  */
3818
3819                 qdisc_bstats_update(q, skb);
3820
3821                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822                         if (unlikely(contended)) {
3823                                 spin_unlock(&q->busylock);
3824                                 contended = false;
3825                         }
3826                         __qdisc_run(q);
3827                 }
3828
3829                 qdisc_run_end(q);
3830                 rc = NET_XMIT_SUCCESS;
3831         } else {
3832                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833                 if (qdisc_run_begin(q)) {
3834                         if (unlikely(contended)) {
3835                                 spin_unlock(&q->busylock);
3836                                 contended = false;
3837                         }
3838                         __qdisc_run(q);
3839                         qdisc_run_end(q);
3840                 }
3841         }
3842         spin_unlock(root_lock);
3843         if (unlikely(to_free))
3844                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845         if (unlikely(contended))
3846                 spin_unlock(&q->busylock);
3847         return rc;
3848 }
3849
3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851 static void skb_update_prio(struct sk_buff *skb)
3852 {
3853         const struct netprio_map *map;
3854         const struct sock *sk;
3855         unsigned int prioidx;
3856
3857         if (skb->priority)
3858                 return;
3859         map = rcu_dereference_bh(skb->dev->priomap);
3860         if (!map)
3861                 return;
3862         sk = skb_to_full_sk(skb);
3863         if (!sk)
3864                 return;
3865
3866         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3867
3868         if (prioidx < map->priomap_len)
3869                 skb->priority = map->priomap[prioidx];
3870 }
3871 #else
3872 #define skb_update_prio(skb)
3873 #endif
3874
3875 /**
3876  *      dev_loopback_xmit - loop back @skb
3877  *      @net: network namespace this loopback is happening in
3878  *      @sk:  sk needed to be a netfilter okfn
3879  *      @skb: buffer to transmit
3880  */
3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3882 {
3883         skb_reset_mac_header(skb);
3884         __skb_pull(skb, skb_network_offset(skb));
3885         skb->pkt_type = PACKET_LOOPBACK;
3886         if (skb->ip_summed == CHECKSUM_NONE)
3887                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3888         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3889         skb_dst_force(skb);
3890         netif_rx(skb);
3891         return 0;
3892 }
3893 EXPORT_SYMBOL(dev_loopback_xmit);
3894
3895 #ifdef CONFIG_NET_EGRESS
3896 static struct netdev_queue *
3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3898 {
3899         int qm = skb_get_queue_mapping(skb);
3900
3901         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3902 }
3903
3904 static bool netdev_xmit_txqueue_skipped(void)
3905 {
3906         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3907 }
3908
3909 void netdev_xmit_skip_txqueue(bool skip)
3910 {
3911         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3912 }
3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914 #endif /* CONFIG_NET_EGRESS */
3915
3916 #ifdef CONFIG_NET_XGRESS
3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3918                   enum skb_drop_reason *drop_reason)
3919 {
3920         int ret = TC_ACT_UNSPEC;
3921 #ifdef CONFIG_NET_CLS_ACT
3922         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3923         struct tcf_result res;
3924
3925         if (!miniq)
3926                 return ret;
3927
3928         tc_skb_cb(skb)->mru = 0;
3929         tc_skb_cb(skb)->post_ct = false;
3930         res.drop_reason = *drop_reason;
3931
3932         mini_qdisc_bstats_cpu_update(miniq, skb);
3933         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3934         /* Only tcf related quirks below. */
3935         switch (ret) {
3936         case TC_ACT_SHOT:
3937                 *drop_reason = res.drop_reason;
3938                 mini_qdisc_qstats_cpu_drop(miniq);
3939                 break;
3940         case TC_ACT_OK:
3941         case TC_ACT_RECLASSIFY:
3942                 skb->tc_index = TC_H_MIN(res.classid);
3943                 break;
3944         }
3945 #endif /* CONFIG_NET_CLS_ACT */
3946         return ret;
3947 }
3948
3949 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3950
3951 void tcx_inc(void)
3952 {
3953         static_branch_inc(&tcx_needed_key);
3954 }
3955
3956 void tcx_dec(void)
3957 {
3958         static_branch_dec(&tcx_needed_key);
3959 }
3960
3961 static __always_inline enum tcx_action_base
3962 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3963         const bool needs_mac)
3964 {
3965         const struct bpf_mprog_fp *fp;
3966         const struct bpf_prog *prog;
3967         int ret = TCX_NEXT;
3968
3969         if (needs_mac)
3970                 __skb_push(skb, skb->mac_len);
3971         bpf_mprog_foreach_prog(entry, fp, prog) {
3972                 bpf_compute_data_pointers(skb);
3973                 ret = bpf_prog_run(prog, skb);
3974                 if (ret != TCX_NEXT)
3975                         break;
3976         }
3977         if (needs_mac)
3978                 __skb_pull(skb, skb->mac_len);
3979         return tcx_action_code(skb, ret);
3980 }
3981
3982 static __always_inline struct sk_buff *
3983 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3984                    struct net_device *orig_dev, bool *another)
3985 {
3986         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3987         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3988         int sch_ret;
3989
3990         if (!entry)
3991                 return skb;
3992         if (*pt_prev) {
3993                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3994                 *pt_prev = NULL;
3995         }
3996
3997         qdisc_skb_cb(skb)->pkt_len = skb->len;
3998         tcx_set_ingress(skb, true);
3999
4000         if (static_branch_unlikely(&tcx_needed_key)) {
4001                 sch_ret = tcx_run(entry, skb, true);
4002                 if (sch_ret != TC_ACT_UNSPEC)
4003                         goto ingress_verdict;
4004         }
4005         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4006 ingress_verdict:
4007         switch (sch_ret) {
4008         case TC_ACT_REDIRECT:
4009                 /* skb_mac_header check was done by BPF, so we can safely
4010                  * push the L2 header back before redirecting to another
4011                  * netdev.
4012                  */
4013                 __skb_push(skb, skb->mac_len);
4014                 if (skb_do_redirect(skb) == -EAGAIN) {
4015                         __skb_pull(skb, skb->mac_len);
4016                         *another = true;
4017                         break;
4018                 }
4019                 *ret = NET_RX_SUCCESS;
4020                 return NULL;
4021         case TC_ACT_SHOT:
4022                 kfree_skb_reason(skb, drop_reason);
4023                 *ret = NET_RX_DROP;
4024                 return NULL;
4025         /* used by tc_run */
4026         case TC_ACT_STOLEN:
4027         case TC_ACT_QUEUED:
4028         case TC_ACT_TRAP:
4029                 consume_skb(skb);
4030                 fallthrough;
4031         case TC_ACT_CONSUMED:
4032                 *ret = NET_RX_SUCCESS;
4033                 return NULL;
4034         }
4035
4036         return skb;
4037 }
4038
4039 static __always_inline struct sk_buff *
4040 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4041 {
4042         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4043         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4044         int sch_ret;
4045
4046         if (!entry)
4047                 return skb;
4048
4049         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4050          * already set by the caller.
4051          */
4052         if (static_branch_unlikely(&tcx_needed_key)) {
4053                 sch_ret = tcx_run(entry, skb, false);
4054                 if (sch_ret != TC_ACT_UNSPEC)
4055                         goto egress_verdict;
4056         }
4057         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4058 egress_verdict:
4059         switch (sch_ret) {
4060         case TC_ACT_REDIRECT:
4061                 /* No need to push/pop skb's mac_header here on egress! */
4062                 skb_do_redirect(skb);
4063                 *ret = NET_XMIT_SUCCESS;
4064                 return NULL;
4065         case TC_ACT_SHOT:
4066                 kfree_skb_reason(skb, drop_reason);
4067                 *ret = NET_XMIT_DROP;
4068                 return NULL;
4069         /* used by tc_run */
4070         case TC_ACT_STOLEN:
4071         case TC_ACT_QUEUED:
4072         case TC_ACT_TRAP:
4073                 consume_skb(skb);
4074                 fallthrough;
4075         case TC_ACT_CONSUMED:
4076                 *ret = NET_XMIT_SUCCESS;
4077                 return NULL;
4078         }
4079
4080         return skb;
4081 }
4082 #else
4083 static __always_inline struct sk_buff *
4084 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4085                    struct net_device *orig_dev, bool *another)
4086 {
4087         return skb;
4088 }
4089
4090 static __always_inline struct sk_buff *
4091 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4092 {
4093         return skb;
4094 }
4095 #endif /* CONFIG_NET_XGRESS */
4096
4097 #ifdef CONFIG_XPS
4098 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4099                                struct xps_dev_maps *dev_maps, unsigned int tci)
4100 {
4101         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4102         struct xps_map *map;
4103         int queue_index = -1;
4104
4105         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4106                 return queue_index;
4107
4108         tci *= dev_maps->num_tc;
4109         tci += tc;
4110
4111         map = rcu_dereference(dev_maps->attr_map[tci]);
4112         if (map) {
4113                 if (map->len == 1)
4114                         queue_index = map->queues[0];
4115                 else
4116                         queue_index = map->queues[reciprocal_scale(
4117                                                 skb_get_hash(skb), map->len)];
4118                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4119                         queue_index = -1;
4120         }
4121         return queue_index;
4122 }
4123 #endif
4124
4125 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4126                          struct sk_buff *skb)
4127 {
4128 #ifdef CONFIG_XPS
4129         struct xps_dev_maps *dev_maps;
4130         struct sock *sk = skb->sk;
4131         int queue_index = -1;
4132
4133         if (!static_key_false(&xps_needed))
4134                 return -1;
4135
4136         rcu_read_lock();
4137         if (!static_key_false(&xps_rxqs_needed))
4138                 goto get_cpus_map;
4139
4140         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4141         if (dev_maps) {
4142                 int tci = sk_rx_queue_get(sk);
4143
4144                 if (tci >= 0)
4145                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4146                                                           tci);
4147         }
4148
4149 get_cpus_map:
4150         if (queue_index < 0) {
4151                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4152                 if (dev_maps) {
4153                         unsigned int tci = skb->sender_cpu - 1;
4154
4155                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4156                                                           tci);
4157                 }
4158         }
4159         rcu_read_unlock();
4160
4161         return queue_index;
4162 #else
4163         return -1;
4164 #endif
4165 }
4166
4167 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4168                      struct net_device *sb_dev)
4169 {
4170         return 0;
4171 }
4172 EXPORT_SYMBOL(dev_pick_tx_zero);
4173
4174 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4175                        struct net_device *sb_dev)
4176 {
4177         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4178 }
4179 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4180
4181 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4182                      struct net_device *sb_dev)
4183 {
4184         struct sock *sk = skb->sk;
4185         int queue_index = sk_tx_queue_get(sk);
4186
4187         sb_dev = sb_dev ? : dev;
4188
4189         if (queue_index < 0 || skb->ooo_okay ||
4190             queue_index >= dev->real_num_tx_queues) {
4191                 int new_index = get_xps_queue(dev, sb_dev, skb);
4192
4193                 if (new_index < 0)
4194                         new_index = skb_tx_hash(dev, sb_dev, skb);
4195
4196                 if (queue_index != new_index && sk &&
4197                     sk_fullsock(sk) &&
4198                     rcu_access_pointer(sk->sk_dst_cache))
4199                         sk_tx_queue_set(sk, new_index);
4200
4201                 queue_index = new_index;
4202         }
4203
4204         return queue_index;
4205 }
4206 EXPORT_SYMBOL(netdev_pick_tx);
4207
4208 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4209                                          struct sk_buff *skb,
4210                                          struct net_device *sb_dev)
4211 {
4212         int queue_index = 0;
4213
4214 #ifdef CONFIG_XPS
4215         u32 sender_cpu = skb->sender_cpu - 1;
4216
4217         if (sender_cpu >= (u32)NR_CPUS)
4218                 skb->sender_cpu = raw_smp_processor_id() + 1;
4219 #endif
4220
4221         if (dev->real_num_tx_queues != 1) {
4222                 const struct net_device_ops *ops = dev->netdev_ops;
4223
4224                 if (ops->ndo_select_queue)
4225                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4226                 else
4227                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4228
4229                 queue_index = netdev_cap_txqueue(dev, queue_index);
4230         }
4231
4232         skb_set_queue_mapping(skb, queue_index);
4233         return netdev_get_tx_queue(dev, queue_index);
4234 }
4235
4236 /**
4237  * __dev_queue_xmit() - transmit a buffer
4238  * @skb:        buffer to transmit
4239  * @sb_dev:     suboordinate device used for L2 forwarding offload
4240  *
4241  * Queue a buffer for transmission to a network device. The caller must
4242  * have set the device and priority and built the buffer before calling
4243  * this function. The function can be called from an interrupt.
4244  *
4245  * When calling this method, interrupts MUST be enabled. This is because
4246  * the BH enable code must have IRQs enabled so that it will not deadlock.
4247  *
4248  * Regardless of the return value, the skb is consumed, so it is currently
4249  * difficult to retry a send to this method. (You can bump the ref count
4250  * before sending to hold a reference for retry if you are careful.)
4251  *
4252  * Return:
4253  * * 0                          - buffer successfully transmitted
4254  * * positive qdisc return code - NET_XMIT_DROP etc.
4255  * * negative errno             - other errors
4256  */
4257 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4258 {
4259         struct net_device *dev = skb->dev;
4260         struct netdev_queue *txq = NULL;
4261         struct Qdisc *q;
4262         int rc = -ENOMEM;
4263         bool again = false;
4264
4265         skb_reset_mac_header(skb);
4266         skb_assert_len(skb);
4267
4268         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4269                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4270
4271         /* Disable soft irqs for various locks below. Also
4272          * stops preemption for RCU.
4273          */
4274         rcu_read_lock_bh();
4275
4276         skb_update_prio(skb);
4277
4278         qdisc_pkt_len_init(skb);
4279         tcx_set_ingress(skb, false);
4280 #ifdef CONFIG_NET_EGRESS
4281         if (static_branch_unlikely(&egress_needed_key)) {
4282                 if (nf_hook_egress_active()) {
4283                         skb = nf_hook_egress(skb, &rc, dev);
4284                         if (!skb)
4285                                 goto out;
4286                 }
4287
4288                 netdev_xmit_skip_txqueue(false);
4289
4290                 nf_skip_egress(skb, true);
4291                 skb = sch_handle_egress(skb, &rc, dev);
4292                 if (!skb)
4293                         goto out;
4294                 nf_skip_egress(skb, false);
4295
4296                 if (netdev_xmit_txqueue_skipped())
4297                         txq = netdev_tx_queue_mapping(dev, skb);
4298         }
4299 #endif
4300         /* If device/qdisc don't need skb->dst, release it right now while
4301          * its hot in this cpu cache.
4302          */
4303         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4304                 skb_dst_drop(skb);
4305         else
4306                 skb_dst_force(skb);
4307
4308         if (!txq)
4309                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4310
4311         q = rcu_dereference_bh(txq->qdisc);
4312
4313         trace_net_dev_queue(skb);
4314         if (q->enqueue) {
4315                 rc = __dev_xmit_skb(skb, q, dev, txq);
4316                 goto out;
4317         }
4318
4319         /* The device has no queue. Common case for software devices:
4320          * loopback, all the sorts of tunnels...
4321
4322          * Really, it is unlikely that netif_tx_lock protection is necessary
4323          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4324          * counters.)
4325          * However, it is possible, that they rely on protection
4326          * made by us here.
4327
4328          * Check this and shot the lock. It is not prone from deadlocks.
4329          *Either shot noqueue qdisc, it is even simpler 8)
4330          */
4331         if (dev->flags & IFF_UP) {
4332                 int cpu = smp_processor_id(); /* ok because BHs are off */
4333
4334                 /* Other cpus might concurrently change txq->xmit_lock_owner
4335                  * to -1 or to their cpu id, but not to our id.
4336                  */
4337                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4338                         if (dev_xmit_recursion())
4339                                 goto recursion_alert;
4340
4341                         skb = validate_xmit_skb(skb, dev, &again);
4342                         if (!skb)
4343                                 goto out;
4344
4345                         HARD_TX_LOCK(dev, txq, cpu);
4346
4347                         if (!netif_xmit_stopped(txq)) {
4348                                 dev_xmit_recursion_inc();
4349                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4350                                 dev_xmit_recursion_dec();
4351                                 if (dev_xmit_complete(rc)) {
4352                                         HARD_TX_UNLOCK(dev, txq);
4353                                         goto out;
4354                                 }
4355                         }
4356                         HARD_TX_UNLOCK(dev, txq);
4357                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4358                                              dev->name);
4359                 } else {
4360                         /* Recursion is detected! It is possible,
4361                          * unfortunately
4362                          */
4363 recursion_alert:
4364                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4365                                              dev->name);
4366                 }
4367         }
4368
4369         rc = -ENETDOWN;
4370         rcu_read_unlock_bh();
4371
4372         dev_core_stats_tx_dropped_inc(dev);
4373         kfree_skb_list(skb);
4374         return rc;
4375 out:
4376         rcu_read_unlock_bh();
4377         return rc;
4378 }
4379 EXPORT_SYMBOL(__dev_queue_xmit);
4380
4381 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4382 {
4383         struct net_device *dev = skb->dev;
4384         struct sk_buff *orig_skb = skb;
4385         struct netdev_queue *txq;
4386         int ret = NETDEV_TX_BUSY;
4387         bool again = false;
4388
4389         if (unlikely(!netif_running(dev) ||
4390                      !netif_carrier_ok(dev)))
4391                 goto drop;
4392
4393         skb = validate_xmit_skb_list(skb, dev, &again);
4394         if (skb != orig_skb)
4395                 goto drop;
4396
4397         skb_set_queue_mapping(skb, queue_id);
4398         txq = skb_get_tx_queue(dev, skb);
4399
4400         local_bh_disable();
4401
4402         dev_xmit_recursion_inc();
4403         HARD_TX_LOCK(dev, txq, smp_processor_id());
4404         if (!netif_xmit_frozen_or_drv_stopped(txq))
4405                 ret = netdev_start_xmit(skb, dev, txq, false);
4406         HARD_TX_UNLOCK(dev, txq);
4407         dev_xmit_recursion_dec();
4408
4409         local_bh_enable();
4410         return ret;
4411 drop:
4412         dev_core_stats_tx_dropped_inc(dev);
4413         kfree_skb_list(skb);
4414         return NET_XMIT_DROP;
4415 }
4416 EXPORT_SYMBOL(__dev_direct_xmit);
4417
4418 /*************************************************************************
4419  *                      Receiver routines
4420  *************************************************************************/
4421
4422 int netdev_max_backlog __read_mostly = 1000;
4423 EXPORT_SYMBOL(netdev_max_backlog);
4424
4425 int netdev_tstamp_prequeue __read_mostly = 1;
4426 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4427 int netdev_budget __read_mostly = 300;
4428 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4429 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4430 int weight_p __read_mostly = 64;           /* old backlog weight */
4431 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4432 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4433 int dev_rx_weight __read_mostly = 64;
4434 int dev_tx_weight __read_mostly = 64;
4435
4436 /* Called with irq disabled */
4437 static inline void ____napi_schedule(struct softnet_data *sd,
4438                                      struct napi_struct *napi)
4439 {
4440         struct task_struct *thread;
4441
4442         lockdep_assert_irqs_disabled();
4443
4444         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4445                 /* Paired with smp_mb__before_atomic() in
4446                  * napi_enable()/dev_set_threaded().
4447                  * Use READ_ONCE() to guarantee a complete
4448                  * read on napi->thread. Only call
4449                  * wake_up_process() when it's not NULL.
4450                  */
4451                 thread = READ_ONCE(napi->thread);
4452                 if (thread) {
4453                         /* Avoid doing set_bit() if the thread is in
4454                          * INTERRUPTIBLE state, cause napi_thread_wait()
4455                          * makes sure to proceed with napi polling
4456                          * if the thread is explicitly woken from here.
4457                          */
4458                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4459                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4460                         wake_up_process(thread);
4461                         return;
4462                 }
4463         }
4464
4465         list_add_tail(&napi->poll_list, &sd->poll_list);
4466         WRITE_ONCE(napi->list_owner, smp_processor_id());
4467         /* If not called from net_rx_action()
4468          * we have to raise NET_RX_SOFTIRQ.
4469          */
4470         if (!sd->in_net_rx_action)
4471                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 }
4473
4474 #ifdef CONFIG_RPS
4475
4476 /* One global table that all flow-based protocols share. */
4477 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4478 EXPORT_SYMBOL(rps_sock_flow_table);
4479 u32 rps_cpu_mask __read_mostly;
4480 EXPORT_SYMBOL(rps_cpu_mask);
4481
4482 struct static_key_false rps_needed __read_mostly;
4483 EXPORT_SYMBOL(rps_needed);
4484 struct static_key_false rfs_needed __read_mostly;
4485 EXPORT_SYMBOL(rfs_needed);
4486
4487 static struct rps_dev_flow *
4488 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4489             struct rps_dev_flow *rflow, u16 next_cpu)
4490 {
4491         if (next_cpu < nr_cpu_ids) {
4492 #ifdef CONFIG_RFS_ACCEL
4493                 struct netdev_rx_queue *rxqueue;
4494                 struct rps_dev_flow_table *flow_table;
4495                 struct rps_dev_flow *old_rflow;
4496                 u32 flow_id;
4497                 u16 rxq_index;
4498                 int rc;
4499
4500                 /* Should we steer this flow to a different hardware queue? */
4501                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4502                     !(dev->features & NETIF_F_NTUPLE))
4503                         goto out;
4504                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4505                 if (rxq_index == skb_get_rx_queue(skb))
4506                         goto out;
4507
4508                 rxqueue = dev->_rx + rxq_index;
4509                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4510                 if (!flow_table)
4511                         goto out;
4512                 flow_id = skb_get_hash(skb) & flow_table->mask;
4513                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4514                                                         rxq_index, flow_id);
4515                 if (rc < 0)
4516                         goto out;
4517                 old_rflow = rflow;
4518                 rflow = &flow_table->flows[flow_id];
4519                 rflow->filter = rc;
4520                 if (old_rflow->filter == rflow->filter)
4521                         old_rflow->filter = RPS_NO_FILTER;
4522         out:
4523 #endif
4524                 rflow->last_qtail =
4525                         per_cpu(softnet_data, next_cpu).input_queue_head;
4526         }
4527
4528         rflow->cpu = next_cpu;
4529         return rflow;
4530 }
4531
4532 /*
4533  * get_rps_cpu is called from netif_receive_skb and returns the target
4534  * CPU from the RPS map of the receiving queue for a given skb.
4535  * rcu_read_lock must be held on entry.
4536  */
4537 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4538                        struct rps_dev_flow **rflowp)
4539 {
4540         const struct rps_sock_flow_table *sock_flow_table;
4541         struct netdev_rx_queue *rxqueue = dev->_rx;
4542         struct rps_dev_flow_table *flow_table;
4543         struct rps_map *map;
4544         int cpu = -1;
4545         u32 tcpu;
4546         u32 hash;
4547
4548         if (skb_rx_queue_recorded(skb)) {
4549                 u16 index = skb_get_rx_queue(skb);
4550
4551                 if (unlikely(index >= dev->real_num_rx_queues)) {
4552                         WARN_ONCE(dev->real_num_rx_queues > 1,
4553                                   "%s received packet on queue %u, but number "
4554                                   "of RX queues is %u\n",
4555                                   dev->name, index, dev->real_num_rx_queues);
4556                         goto done;
4557                 }
4558                 rxqueue += index;
4559         }
4560
4561         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4562
4563         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4564         map = rcu_dereference(rxqueue->rps_map);
4565         if (!flow_table && !map)
4566                 goto done;
4567
4568         skb_reset_network_header(skb);
4569         hash = skb_get_hash(skb);
4570         if (!hash)
4571                 goto done;
4572
4573         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4574         if (flow_table && sock_flow_table) {
4575                 struct rps_dev_flow *rflow;
4576                 u32 next_cpu;
4577                 u32 ident;
4578
4579                 /* First check into global flow table if there is a match.
4580                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4581                  */
4582                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4583                 if ((ident ^ hash) & ~rps_cpu_mask)
4584                         goto try_rps;
4585
4586                 next_cpu = ident & rps_cpu_mask;
4587
4588                 /* OK, now we know there is a match,
4589                  * we can look at the local (per receive queue) flow table
4590                  */
4591                 rflow = &flow_table->flows[hash & flow_table->mask];
4592                 tcpu = rflow->cpu;
4593
4594                 /*
4595                  * If the desired CPU (where last recvmsg was done) is
4596                  * different from current CPU (one in the rx-queue flow
4597                  * table entry), switch if one of the following holds:
4598                  *   - Current CPU is unset (>= nr_cpu_ids).
4599                  *   - Current CPU is offline.
4600                  *   - The current CPU's queue tail has advanced beyond the
4601                  *     last packet that was enqueued using this table entry.
4602                  *     This guarantees that all previous packets for the flow
4603                  *     have been dequeued, thus preserving in order delivery.
4604                  */
4605                 if (unlikely(tcpu != next_cpu) &&
4606                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4607                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4608                       rflow->last_qtail)) >= 0)) {
4609                         tcpu = next_cpu;
4610                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4611                 }
4612
4613                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4614                         *rflowp = rflow;
4615                         cpu = tcpu;
4616                         goto done;
4617                 }
4618         }
4619
4620 try_rps:
4621
4622         if (map) {
4623                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4624                 if (cpu_online(tcpu)) {
4625                         cpu = tcpu;
4626                         goto done;
4627                 }
4628         }
4629
4630 done:
4631         return cpu;
4632 }
4633
4634 #ifdef CONFIG_RFS_ACCEL
4635
4636 /**
4637  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4638  * @dev: Device on which the filter was set
4639  * @rxq_index: RX queue index
4640  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4641  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4642  *
4643  * Drivers that implement ndo_rx_flow_steer() should periodically call
4644  * this function for each installed filter and remove the filters for
4645  * which it returns %true.
4646  */
4647 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4648                          u32 flow_id, u16 filter_id)
4649 {
4650         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4651         struct rps_dev_flow_table *flow_table;
4652         struct rps_dev_flow *rflow;
4653         bool expire = true;
4654         unsigned int cpu;
4655
4656         rcu_read_lock();
4657         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4658         if (flow_table && flow_id <= flow_table->mask) {
4659                 rflow = &flow_table->flows[flow_id];
4660                 cpu = READ_ONCE(rflow->cpu);
4661                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4662                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4663                            rflow->last_qtail) <
4664                      (int)(10 * flow_table->mask)))
4665                         expire = false;
4666         }
4667         rcu_read_unlock();
4668         return expire;
4669 }
4670 EXPORT_SYMBOL(rps_may_expire_flow);
4671
4672 #endif /* CONFIG_RFS_ACCEL */
4673
4674 /* Called from hardirq (IPI) context */
4675 static void rps_trigger_softirq(void *data)
4676 {
4677         struct softnet_data *sd = data;
4678
4679         ____napi_schedule(sd, &sd->backlog);
4680         sd->received_rps++;
4681 }
4682
4683 #endif /* CONFIG_RPS */
4684
4685 /* Called from hardirq (IPI) context */
4686 static void trigger_rx_softirq(void *data)
4687 {
4688         struct softnet_data *sd = data;
4689
4690         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4691         smp_store_release(&sd->defer_ipi_scheduled, 0);
4692 }
4693
4694 /*
4695  * After we queued a packet into sd->input_pkt_queue,
4696  * we need to make sure this queue is serviced soon.
4697  *
4698  * - If this is another cpu queue, link it to our rps_ipi_list,
4699  *   and make sure we will process rps_ipi_list from net_rx_action().
4700  *
4701  * - If this is our own queue, NAPI schedule our backlog.
4702  *   Note that this also raises NET_RX_SOFTIRQ.
4703  */
4704 static void napi_schedule_rps(struct softnet_data *sd)
4705 {
4706         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4707
4708 #ifdef CONFIG_RPS
4709         if (sd != mysd) {
4710                 sd->rps_ipi_next = mysd->rps_ipi_list;
4711                 mysd->rps_ipi_list = sd;
4712
4713                 /* If not called from net_rx_action() or napi_threaded_poll()
4714                  * we have to raise NET_RX_SOFTIRQ.
4715                  */
4716                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4717                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4718                 return;
4719         }
4720 #endif /* CONFIG_RPS */
4721         __napi_schedule_irqoff(&mysd->backlog);
4722 }
4723
4724 #ifdef CONFIG_NET_FLOW_LIMIT
4725 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4726 #endif
4727
4728 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4729 {
4730 #ifdef CONFIG_NET_FLOW_LIMIT
4731         struct sd_flow_limit *fl;
4732         struct softnet_data *sd;
4733         unsigned int old_flow, new_flow;
4734
4735         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4736                 return false;
4737
4738         sd = this_cpu_ptr(&softnet_data);
4739
4740         rcu_read_lock();
4741         fl = rcu_dereference(sd->flow_limit);
4742         if (fl) {
4743                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4744                 old_flow = fl->history[fl->history_head];
4745                 fl->history[fl->history_head] = new_flow;
4746
4747                 fl->history_head++;
4748                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4749
4750                 if (likely(fl->buckets[old_flow]))
4751                         fl->buckets[old_flow]--;
4752
4753                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4754                         fl->count++;
4755                         rcu_read_unlock();
4756                         return true;
4757                 }
4758         }
4759         rcu_read_unlock();
4760 #endif
4761         return false;
4762 }
4763
4764 /*
4765  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4766  * queue (may be a remote CPU queue).
4767  */
4768 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4769                               unsigned int *qtail)
4770 {
4771         enum skb_drop_reason reason;
4772         struct softnet_data *sd;
4773         unsigned long flags;
4774         unsigned int qlen;
4775
4776         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4777         sd = &per_cpu(softnet_data, cpu);
4778
4779         rps_lock_irqsave(sd, &flags);
4780         if (!netif_running(skb->dev))
4781                 goto drop;
4782         qlen = skb_queue_len(&sd->input_pkt_queue);
4783         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4784                 if (qlen) {
4785 enqueue:
4786                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4787                         input_queue_tail_incr_save(sd, qtail);
4788                         rps_unlock_irq_restore(sd, &flags);
4789                         return NET_RX_SUCCESS;
4790                 }
4791
4792                 /* Schedule NAPI for backlog device
4793                  * We can use non atomic operation since we own the queue lock
4794                  */
4795                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4796                         napi_schedule_rps(sd);
4797                 goto enqueue;
4798         }
4799         reason = SKB_DROP_REASON_CPU_BACKLOG;
4800
4801 drop:
4802         sd->dropped++;
4803         rps_unlock_irq_restore(sd, &flags);
4804
4805         dev_core_stats_rx_dropped_inc(skb->dev);
4806         kfree_skb_reason(skb, reason);
4807         return NET_RX_DROP;
4808 }
4809
4810 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4811 {
4812         struct net_device *dev = skb->dev;
4813         struct netdev_rx_queue *rxqueue;
4814
4815         rxqueue = dev->_rx;
4816
4817         if (skb_rx_queue_recorded(skb)) {
4818                 u16 index = skb_get_rx_queue(skb);
4819
4820                 if (unlikely(index >= dev->real_num_rx_queues)) {
4821                         WARN_ONCE(dev->real_num_rx_queues > 1,
4822                                   "%s received packet on queue %u, but number "
4823                                   "of RX queues is %u\n",
4824                                   dev->name, index, dev->real_num_rx_queues);
4825
4826                         return rxqueue; /* Return first rxqueue */
4827                 }
4828                 rxqueue += index;
4829         }
4830         return rxqueue;
4831 }
4832
4833 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4834                              struct bpf_prog *xdp_prog)
4835 {
4836         void *orig_data, *orig_data_end, *hard_start;
4837         struct netdev_rx_queue *rxqueue;
4838         bool orig_bcast, orig_host;
4839         u32 mac_len, frame_sz;
4840         __be16 orig_eth_type;
4841         struct ethhdr *eth;
4842         u32 metalen, act;
4843         int off;
4844
4845         /* The XDP program wants to see the packet starting at the MAC
4846          * header.
4847          */
4848         mac_len = skb->data - skb_mac_header(skb);
4849         hard_start = skb->data - skb_headroom(skb);
4850
4851         /* SKB "head" area always have tailroom for skb_shared_info */
4852         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4853         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4854
4855         rxqueue = netif_get_rxqueue(skb);
4856         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4857         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4858                          skb_headlen(skb) + mac_len, true);
4859
4860         orig_data_end = xdp->data_end;
4861         orig_data = xdp->data;
4862         eth = (struct ethhdr *)xdp->data;
4863         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4864         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4865         orig_eth_type = eth->h_proto;
4866
4867         act = bpf_prog_run_xdp(xdp_prog, xdp);
4868
4869         /* check if bpf_xdp_adjust_head was used */
4870         off = xdp->data - orig_data;
4871         if (off) {
4872                 if (off > 0)
4873                         __skb_pull(skb, off);
4874                 else if (off < 0)
4875                         __skb_push(skb, -off);
4876
4877                 skb->mac_header += off;
4878                 skb_reset_network_header(skb);
4879         }
4880
4881         /* check if bpf_xdp_adjust_tail was used */
4882         off = xdp->data_end - orig_data_end;
4883         if (off != 0) {
4884                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4885                 skb->len += off; /* positive on grow, negative on shrink */
4886         }
4887
4888         /* check if XDP changed eth hdr such SKB needs update */
4889         eth = (struct ethhdr *)xdp->data;
4890         if ((orig_eth_type != eth->h_proto) ||
4891             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4892                                                   skb->dev->dev_addr)) ||
4893             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4894                 __skb_push(skb, ETH_HLEN);
4895                 skb->pkt_type = PACKET_HOST;
4896                 skb->protocol = eth_type_trans(skb, skb->dev);
4897         }
4898
4899         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4900          * before calling us again on redirect path. We do not call do_redirect
4901          * as we leave that up to the caller.
4902          *
4903          * Caller is responsible for managing lifetime of skb (i.e. calling
4904          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4905          */
4906         switch (act) {
4907         case XDP_REDIRECT:
4908         case XDP_TX:
4909                 __skb_push(skb, mac_len);
4910                 break;
4911         case XDP_PASS:
4912                 metalen = xdp->data - xdp->data_meta;
4913                 if (metalen)
4914                         skb_metadata_set(skb, metalen);
4915                 break;
4916         }
4917
4918         return act;
4919 }
4920
4921 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4922                                      struct xdp_buff *xdp,
4923                                      struct bpf_prog *xdp_prog)
4924 {
4925         u32 act = XDP_DROP;
4926
4927         /* Reinjected packets coming from act_mirred or similar should
4928          * not get XDP generic processing.
4929          */
4930         if (skb_is_redirected(skb))
4931                 return XDP_PASS;
4932
4933         /* XDP packets must be linear and must have sufficient headroom
4934          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4935          * native XDP provides, thus we need to do it here as well.
4936          */
4937         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4938             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4939                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4940                 int troom = skb->tail + skb->data_len - skb->end;
4941
4942                 /* In case we have to go down the path and also linearize,
4943                  * then lets do the pskb_expand_head() work just once here.
4944                  */
4945                 if (pskb_expand_head(skb,
4946                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4947                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4948                         goto do_drop;
4949                 if (skb_linearize(skb))
4950                         goto do_drop;
4951         }
4952
4953         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4954         switch (act) {
4955         case XDP_REDIRECT:
4956         case XDP_TX:
4957         case XDP_PASS:
4958                 break;
4959         default:
4960                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4961                 fallthrough;
4962         case XDP_ABORTED:
4963                 trace_xdp_exception(skb->dev, xdp_prog, act);
4964                 fallthrough;
4965         case XDP_DROP:
4966         do_drop:
4967                 kfree_skb(skb);
4968                 break;
4969         }
4970
4971         return act;
4972 }
4973
4974 /* When doing generic XDP we have to bypass the qdisc layer and the
4975  * network taps in order to match in-driver-XDP behavior. This also means
4976  * that XDP packets are able to starve other packets going through a qdisc,
4977  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4978  * queues, so they do not have this starvation issue.
4979  */
4980 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4981 {
4982         struct net_device *dev = skb->dev;
4983         struct netdev_queue *txq;
4984         bool free_skb = true;
4985         int cpu, rc;
4986
4987         txq = netdev_core_pick_tx(dev, skb, NULL);
4988         cpu = smp_processor_id();
4989         HARD_TX_LOCK(dev, txq, cpu);
4990         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4991                 rc = netdev_start_xmit(skb, dev, txq, 0);
4992                 if (dev_xmit_complete(rc))
4993                         free_skb = false;
4994         }
4995         HARD_TX_UNLOCK(dev, txq);
4996         if (free_skb) {
4997                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4998                 dev_core_stats_tx_dropped_inc(dev);
4999                 kfree_skb(skb);
5000         }
5001 }
5002
5003 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5004
5005 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5006 {
5007         if (xdp_prog) {
5008                 struct xdp_buff xdp;
5009                 u32 act;
5010                 int err;
5011
5012                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5013                 if (act != XDP_PASS) {
5014                         switch (act) {
5015                         case XDP_REDIRECT:
5016                                 err = xdp_do_generic_redirect(skb->dev, skb,
5017                                                               &xdp, xdp_prog);
5018                                 if (err)
5019                                         goto out_redir;
5020                                 break;
5021                         case XDP_TX:
5022                                 generic_xdp_tx(skb, xdp_prog);
5023                                 break;
5024                         }
5025                         return XDP_DROP;
5026                 }
5027         }
5028         return XDP_PASS;
5029 out_redir:
5030         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5031         return XDP_DROP;
5032 }
5033 EXPORT_SYMBOL_GPL(do_xdp_generic);
5034
5035 static int netif_rx_internal(struct sk_buff *skb)
5036 {
5037         int ret;
5038
5039         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5040
5041         trace_netif_rx(skb);
5042
5043 #ifdef CONFIG_RPS
5044         if (static_branch_unlikely(&rps_needed)) {
5045                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5046                 int cpu;
5047
5048                 rcu_read_lock();
5049
5050                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5051                 if (cpu < 0)
5052                         cpu = smp_processor_id();
5053
5054                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5055
5056                 rcu_read_unlock();
5057         } else
5058 #endif
5059         {
5060                 unsigned int qtail;
5061
5062                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5063         }
5064         return ret;
5065 }
5066
5067 /**
5068  *      __netif_rx      -       Slightly optimized version of netif_rx
5069  *      @skb: buffer to post
5070  *
5071  *      This behaves as netif_rx except that it does not disable bottom halves.
5072  *      As a result this function may only be invoked from the interrupt context
5073  *      (either hard or soft interrupt).
5074  */
5075 int __netif_rx(struct sk_buff *skb)
5076 {
5077         int ret;
5078
5079         lockdep_assert_once(hardirq_count() | softirq_count());
5080
5081         trace_netif_rx_entry(skb);
5082         ret = netif_rx_internal(skb);
5083         trace_netif_rx_exit(ret);
5084         return ret;
5085 }
5086 EXPORT_SYMBOL(__netif_rx);
5087
5088 /**
5089  *      netif_rx        -       post buffer to the network code
5090  *      @skb: buffer to post
5091  *
5092  *      This function receives a packet from a device driver and queues it for
5093  *      the upper (protocol) levels to process via the backlog NAPI device. It
5094  *      always succeeds. The buffer may be dropped during processing for
5095  *      congestion control or by the protocol layers.
5096  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5097  *      driver should use NAPI and GRO.
5098  *      This function can used from interrupt and from process context. The
5099  *      caller from process context must not disable interrupts before invoking
5100  *      this function.
5101  *
5102  *      return values:
5103  *      NET_RX_SUCCESS  (no congestion)
5104  *      NET_RX_DROP     (packet was dropped)
5105  *
5106  */
5107 int netif_rx(struct sk_buff *skb)
5108 {
5109         bool need_bh_off = !(hardirq_count() | softirq_count());
5110         int ret;
5111
5112         if (need_bh_off)
5113                 local_bh_disable();
5114         trace_netif_rx_entry(skb);
5115         ret = netif_rx_internal(skb);
5116         trace_netif_rx_exit(ret);
5117         if (need_bh_off)
5118                 local_bh_enable();
5119         return ret;
5120 }
5121 EXPORT_SYMBOL(netif_rx);
5122
5123 static __latent_entropy void net_tx_action(struct softirq_action *h)
5124 {
5125         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5126
5127         if (sd->completion_queue) {
5128                 struct sk_buff *clist;
5129
5130                 local_irq_disable();
5131                 clist = sd->completion_queue;
5132                 sd->completion_queue = NULL;
5133                 local_irq_enable();
5134
5135                 while (clist) {
5136                         struct sk_buff *skb = clist;
5137
5138                         clist = clist->next;
5139
5140                         WARN_ON(refcount_read(&skb->users));
5141                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5142                                 trace_consume_skb(skb, net_tx_action);
5143                         else
5144                                 trace_kfree_skb(skb, net_tx_action,
5145                                                 get_kfree_skb_cb(skb)->reason);
5146
5147                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5148                                 __kfree_skb(skb);
5149                         else
5150                                 __napi_kfree_skb(skb,
5151                                                  get_kfree_skb_cb(skb)->reason);
5152                 }
5153         }
5154
5155         if (sd->output_queue) {
5156                 struct Qdisc *head;
5157
5158                 local_irq_disable();
5159                 head = sd->output_queue;
5160                 sd->output_queue = NULL;
5161                 sd->output_queue_tailp = &sd->output_queue;
5162                 local_irq_enable();
5163
5164                 rcu_read_lock();
5165
5166                 while (head) {
5167                         struct Qdisc *q = head;
5168                         spinlock_t *root_lock = NULL;
5169
5170                         head = head->next_sched;
5171
5172                         /* We need to make sure head->next_sched is read
5173                          * before clearing __QDISC_STATE_SCHED
5174                          */
5175                         smp_mb__before_atomic();
5176
5177                         if (!(q->flags & TCQ_F_NOLOCK)) {
5178                                 root_lock = qdisc_lock(q);
5179                                 spin_lock(root_lock);
5180                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5181                                                      &q->state))) {
5182                                 /* There is a synchronize_net() between
5183                                  * STATE_DEACTIVATED flag being set and
5184                                  * qdisc_reset()/some_qdisc_is_busy() in
5185                                  * dev_deactivate(), so we can safely bail out
5186                                  * early here to avoid data race between
5187                                  * qdisc_deactivate() and some_qdisc_is_busy()
5188                                  * for lockless qdisc.
5189                                  */
5190                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5191                                 continue;
5192                         }
5193
5194                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5195                         qdisc_run(q);
5196                         if (root_lock)
5197                                 spin_unlock(root_lock);
5198                 }
5199
5200                 rcu_read_unlock();
5201         }
5202
5203         xfrm_dev_backlog(sd);
5204 }
5205
5206 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5207 /* This hook is defined here for ATM LANE */
5208 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5209                              unsigned char *addr) __read_mostly;
5210 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5211 #endif
5212
5213 /**
5214  *      netdev_is_rx_handler_busy - check if receive handler is registered
5215  *      @dev: device to check
5216  *
5217  *      Check if a receive handler is already registered for a given device.
5218  *      Return true if there one.
5219  *
5220  *      The caller must hold the rtnl_mutex.
5221  */
5222 bool netdev_is_rx_handler_busy(struct net_device *dev)
5223 {
5224         ASSERT_RTNL();
5225         return dev && rtnl_dereference(dev->rx_handler);
5226 }
5227 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5228
5229 /**
5230  *      netdev_rx_handler_register - register receive handler
5231  *      @dev: device to register a handler for
5232  *      @rx_handler: receive handler to register
5233  *      @rx_handler_data: data pointer that is used by rx handler
5234  *
5235  *      Register a receive handler for a device. This handler will then be
5236  *      called from __netif_receive_skb. A negative errno code is returned
5237  *      on a failure.
5238  *
5239  *      The caller must hold the rtnl_mutex.
5240  *
5241  *      For a general description of rx_handler, see enum rx_handler_result.
5242  */
5243 int netdev_rx_handler_register(struct net_device *dev,
5244                                rx_handler_func_t *rx_handler,
5245                                void *rx_handler_data)
5246 {
5247         if (netdev_is_rx_handler_busy(dev))
5248                 return -EBUSY;
5249
5250         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5251                 return -EINVAL;
5252
5253         /* Note: rx_handler_data must be set before rx_handler */
5254         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5255         rcu_assign_pointer(dev->rx_handler, rx_handler);
5256
5257         return 0;
5258 }
5259 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5260
5261 /**
5262  *      netdev_rx_handler_unregister - unregister receive handler
5263  *      @dev: device to unregister a handler from
5264  *
5265  *      Unregister a receive handler from a device.
5266  *
5267  *      The caller must hold the rtnl_mutex.
5268  */
5269 void netdev_rx_handler_unregister(struct net_device *dev)
5270 {
5271
5272         ASSERT_RTNL();
5273         RCU_INIT_POINTER(dev->rx_handler, NULL);
5274         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5275          * section has a guarantee to see a non NULL rx_handler_data
5276          * as well.
5277          */
5278         synchronize_net();
5279         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5280 }
5281 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5282
5283 /*
5284  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5285  * the special handling of PFMEMALLOC skbs.
5286  */
5287 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5288 {
5289         switch (skb->protocol) {
5290         case htons(ETH_P_ARP):
5291         case htons(ETH_P_IP):
5292         case htons(ETH_P_IPV6):
5293         case htons(ETH_P_8021Q):
5294         case htons(ETH_P_8021AD):
5295                 return true;
5296         default:
5297                 return false;
5298         }
5299 }
5300
5301 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5302                              int *ret, struct net_device *orig_dev)
5303 {
5304         if (nf_hook_ingress_active(skb)) {
5305                 int ingress_retval;
5306
5307                 if (*pt_prev) {
5308                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5309                         *pt_prev = NULL;
5310                 }
5311
5312                 rcu_read_lock();
5313                 ingress_retval = nf_hook_ingress(skb);
5314                 rcu_read_unlock();
5315                 return ingress_retval;
5316         }
5317         return 0;
5318 }
5319
5320 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5321                                     struct packet_type **ppt_prev)
5322 {
5323         struct packet_type *ptype, *pt_prev;
5324         rx_handler_func_t *rx_handler;
5325         struct sk_buff *skb = *pskb;
5326         struct net_device *orig_dev;
5327         bool deliver_exact = false;
5328         int ret = NET_RX_DROP;
5329         __be16 type;
5330
5331         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5332
5333         trace_netif_receive_skb(skb);
5334
5335         orig_dev = skb->dev;
5336
5337         skb_reset_network_header(skb);
5338         if (!skb_transport_header_was_set(skb))
5339                 skb_reset_transport_header(skb);
5340         skb_reset_mac_len(skb);
5341
5342         pt_prev = NULL;
5343
5344 another_round:
5345         skb->skb_iif = skb->dev->ifindex;
5346
5347         __this_cpu_inc(softnet_data.processed);
5348
5349         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5350                 int ret2;
5351
5352                 migrate_disable();
5353                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5354                 migrate_enable();
5355
5356                 if (ret2 != XDP_PASS) {
5357                         ret = NET_RX_DROP;
5358                         goto out;
5359                 }
5360         }
5361
5362         if (eth_type_vlan(skb->protocol)) {
5363                 skb = skb_vlan_untag(skb);
5364                 if (unlikely(!skb))
5365                         goto out;
5366         }
5367
5368         if (skb_skip_tc_classify(skb))
5369                 goto skip_classify;
5370
5371         if (pfmemalloc)
5372                 goto skip_taps;
5373
5374         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5375                 if (pt_prev)
5376                         ret = deliver_skb(skb, pt_prev, orig_dev);
5377                 pt_prev = ptype;
5378         }
5379
5380         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5381                 if (pt_prev)
5382                         ret = deliver_skb(skb, pt_prev, orig_dev);
5383                 pt_prev = ptype;
5384         }
5385
5386 skip_taps:
5387 #ifdef CONFIG_NET_INGRESS
5388         if (static_branch_unlikely(&ingress_needed_key)) {
5389                 bool another = false;
5390
5391                 nf_skip_egress(skb, true);
5392                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5393                                          &another);
5394                 if (another)
5395                         goto another_round;
5396                 if (!skb)
5397                         goto out;
5398
5399                 nf_skip_egress(skb, false);
5400                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5401                         goto out;
5402         }
5403 #endif
5404         skb_reset_redirect(skb);
5405 skip_classify:
5406         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5407                 goto drop;
5408
5409         if (skb_vlan_tag_present(skb)) {
5410                 if (pt_prev) {
5411                         ret = deliver_skb(skb, pt_prev, orig_dev);
5412                         pt_prev = NULL;
5413                 }
5414                 if (vlan_do_receive(&skb))
5415                         goto another_round;
5416                 else if (unlikely(!skb))
5417                         goto out;
5418         }
5419
5420         rx_handler = rcu_dereference(skb->dev->rx_handler);
5421         if (rx_handler) {
5422                 if (pt_prev) {
5423                         ret = deliver_skb(skb, pt_prev, orig_dev);
5424                         pt_prev = NULL;
5425                 }
5426                 switch (rx_handler(&skb)) {
5427                 case RX_HANDLER_CONSUMED:
5428                         ret = NET_RX_SUCCESS;
5429                         goto out;
5430                 case RX_HANDLER_ANOTHER:
5431                         goto another_round;
5432                 case RX_HANDLER_EXACT:
5433                         deliver_exact = true;
5434                         break;
5435                 case RX_HANDLER_PASS:
5436                         break;
5437                 default:
5438                         BUG();
5439                 }
5440         }
5441
5442         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5443 check_vlan_id:
5444                 if (skb_vlan_tag_get_id(skb)) {
5445                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5446                          * find vlan device.
5447                          */
5448                         skb->pkt_type = PACKET_OTHERHOST;
5449                 } else if (eth_type_vlan(skb->protocol)) {
5450                         /* Outer header is 802.1P with vlan 0, inner header is
5451                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5452                          * not find vlan dev for vlan id 0.
5453                          */
5454                         __vlan_hwaccel_clear_tag(skb);
5455                         skb = skb_vlan_untag(skb);
5456                         if (unlikely(!skb))
5457                                 goto out;
5458                         if (vlan_do_receive(&skb))
5459                                 /* After stripping off 802.1P header with vlan 0
5460                                  * vlan dev is found for inner header.
5461                                  */
5462                                 goto another_round;
5463                         else if (unlikely(!skb))
5464                                 goto out;
5465                         else
5466                                 /* We have stripped outer 802.1P vlan 0 header.
5467                                  * But could not find vlan dev.
5468                                  * check again for vlan id to set OTHERHOST.
5469                                  */
5470                                 goto check_vlan_id;
5471                 }
5472                 /* Note: we might in the future use prio bits
5473                  * and set skb->priority like in vlan_do_receive()
5474                  * For the time being, just ignore Priority Code Point
5475                  */
5476                 __vlan_hwaccel_clear_tag(skb);
5477         }
5478
5479         type = skb->protocol;
5480
5481         /* deliver only exact match when indicated */
5482         if (likely(!deliver_exact)) {
5483                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484                                        &ptype_base[ntohs(type) &
5485                                                    PTYPE_HASH_MASK]);
5486         }
5487
5488         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5489                                &orig_dev->ptype_specific);
5490
5491         if (unlikely(skb->dev != orig_dev)) {
5492                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5493                                        &skb->dev->ptype_specific);
5494         }
5495
5496         if (pt_prev) {
5497                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5498                         goto drop;
5499                 *ppt_prev = pt_prev;
5500         } else {
5501 drop:
5502                 if (!deliver_exact)
5503                         dev_core_stats_rx_dropped_inc(skb->dev);
5504                 else
5505                         dev_core_stats_rx_nohandler_inc(skb->dev);
5506                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5507                 /* Jamal, now you will not able to escape explaining
5508                  * me how you were going to use this. :-)
5509                  */
5510                 ret = NET_RX_DROP;
5511         }
5512
5513 out:
5514         /* The invariant here is that if *ppt_prev is not NULL
5515          * then skb should also be non-NULL.
5516          *
5517          * Apparently *ppt_prev assignment above holds this invariant due to
5518          * skb dereferencing near it.
5519          */
5520         *pskb = skb;
5521         return ret;
5522 }
5523
5524 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5525 {
5526         struct net_device *orig_dev = skb->dev;
5527         struct packet_type *pt_prev = NULL;
5528         int ret;
5529
5530         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5531         if (pt_prev)
5532                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5533                                          skb->dev, pt_prev, orig_dev);
5534         return ret;
5535 }
5536
5537 /**
5538  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5539  *      @skb: buffer to process
5540  *
5541  *      More direct receive version of netif_receive_skb().  It should
5542  *      only be used by callers that have a need to skip RPS and Generic XDP.
5543  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5544  *
5545  *      This function may only be called from softirq context and interrupts
5546  *      should be enabled.
5547  *
5548  *      Return values (usually ignored):
5549  *      NET_RX_SUCCESS: no congestion
5550  *      NET_RX_DROP: packet was dropped
5551  */
5552 int netif_receive_skb_core(struct sk_buff *skb)
5553 {
5554         int ret;
5555
5556         rcu_read_lock();
5557         ret = __netif_receive_skb_one_core(skb, false);
5558         rcu_read_unlock();
5559
5560         return ret;
5561 }
5562 EXPORT_SYMBOL(netif_receive_skb_core);
5563
5564 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5565                                                   struct packet_type *pt_prev,
5566                                                   struct net_device *orig_dev)
5567 {
5568         struct sk_buff *skb, *next;
5569
5570         if (!pt_prev)
5571                 return;
5572         if (list_empty(head))
5573                 return;
5574         if (pt_prev->list_func != NULL)
5575                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5576                                    ip_list_rcv, head, pt_prev, orig_dev);
5577         else
5578                 list_for_each_entry_safe(skb, next, head, list) {
5579                         skb_list_del_init(skb);
5580                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5581                 }
5582 }
5583
5584 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5585 {
5586         /* Fast-path assumptions:
5587          * - There is no RX handler.
5588          * - Only one packet_type matches.
5589          * If either of these fails, we will end up doing some per-packet
5590          * processing in-line, then handling the 'last ptype' for the whole
5591          * sublist.  This can't cause out-of-order delivery to any single ptype,
5592          * because the 'last ptype' must be constant across the sublist, and all
5593          * other ptypes are handled per-packet.
5594          */
5595         /* Current (common) ptype of sublist */
5596         struct packet_type *pt_curr = NULL;
5597         /* Current (common) orig_dev of sublist */
5598         struct net_device *od_curr = NULL;
5599         struct list_head sublist;
5600         struct sk_buff *skb, *next;
5601
5602         INIT_LIST_HEAD(&sublist);
5603         list_for_each_entry_safe(skb, next, head, list) {
5604                 struct net_device *orig_dev = skb->dev;
5605                 struct packet_type *pt_prev = NULL;
5606
5607                 skb_list_del_init(skb);
5608                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5609                 if (!pt_prev)
5610                         continue;
5611                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5612                         /* dispatch old sublist */
5613                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5614                         /* start new sublist */
5615                         INIT_LIST_HEAD(&sublist);
5616                         pt_curr = pt_prev;
5617                         od_curr = orig_dev;
5618                 }
5619                 list_add_tail(&skb->list, &sublist);
5620         }
5621
5622         /* dispatch final sublist */
5623         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5624 }
5625
5626 static int __netif_receive_skb(struct sk_buff *skb)
5627 {
5628         int ret;
5629
5630         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5631                 unsigned int noreclaim_flag;
5632
5633                 /*
5634                  * PFMEMALLOC skbs are special, they should
5635                  * - be delivered to SOCK_MEMALLOC sockets only
5636                  * - stay away from userspace
5637                  * - have bounded memory usage
5638                  *
5639                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5640                  * context down to all allocation sites.
5641                  */
5642                 noreclaim_flag = memalloc_noreclaim_save();
5643                 ret = __netif_receive_skb_one_core(skb, true);
5644                 memalloc_noreclaim_restore(noreclaim_flag);
5645         } else
5646                 ret = __netif_receive_skb_one_core(skb, false);
5647
5648         return ret;
5649 }
5650
5651 static void __netif_receive_skb_list(struct list_head *head)
5652 {
5653         unsigned long noreclaim_flag = 0;
5654         struct sk_buff *skb, *next;
5655         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5656
5657         list_for_each_entry_safe(skb, next, head, list) {
5658                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5659                         struct list_head sublist;
5660
5661                         /* Handle the previous sublist */
5662                         list_cut_before(&sublist, head, &skb->list);
5663                         if (!list_empty(&sublist))
5664                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5665                         pfmemalloc = !pfmemalloc;
5666                         /* See comments in __netif_receive_skb */
5667                         if (pfmemalloc)
5668                                 noreclaim_flag = memalloc_noreclaim_save();
5669                         else
5670                                 memalloc_noreclaim_restore(noreclaim_flag);
5671                 }
5672         }
5673         /* Handle the remaining sublist */
5674         if (!list_empty(head))
5675                 __netif_receive_skb_list_core(head, pfmemalloc);
5676         /* Restore pflags */
5677         if (pfmemalloc)
5678                 memalloc_noreclaim_restore(noreclaim_flag);
5679 }
5680
5681 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5682 {
5683         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5684         struct bpf_prog *new = xdp->prog;
5685         int ret = 0;
5686
5687         switch (xdp->command) {
5688         case XDP_SETUP_PROG:
5689                 rcu_assign_pointer(dev->xdp_prog, new);
5690                 if (old)
5691                         bpf_prog_put(old);
5692
5693                 if (old && !new) {
5694                         static_branch_dec(&generic_xdp_needed_key);
5695                 } else if (new && !old) {
5696                         static_branch_inc(&generic_xdp_needed_key);
5697                         dev_disable_lro(dev);
5698                         dev_disable_gro_hw(dev);
5699                 }
5700                 break;
5701
5702         default:
5703                 ret = -EINVAL;
5704                 break;
5705         }
5706
5707         return ret;
5708 }
5709
5710 static int netif_receive_skb_internal(struct sk_buff *skb)
5711 {
5712         int ret;
5713
5714         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5715
5716         if (skb_defer_rx_timestamp(skb))
5717                 return NET_RX_SUCCESS;
5718
5719         rcu_read_lock();
5720 #ifdef CONFIG_RPS
5721         if (static_branch_unlikely(&rps_needed)) {
5722                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5723                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5724
5725                 if (cpu >= 0) {
5726                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5727                         rcu_read_unlock();
5728                         return ret;
5729                 }
5730         }
5731 #endif
5732         ret = __netif_receive_skb(skb);
5733         rcu_read_unlock();
5734         return ret;
5735 }
5736
5737 void netif_receive_skb_list_internal(struct list_head *head)
5738 {
5739         struct sk_buff *skb, *next;
5740         struct list_head sublist;
5741
5742         INIT_LIST_HEAD(&sublist);
5743         list_for_each_entry_safe(skb, next, head, list) {
5744                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5745                 skb_list_del_init(skb);
5746                 if (!skb_defer_rx_timestamp(skb))
5747                         list_add_tail(&skb->list, &sublist);
5748         }
5749         list_splice_init(&sublist, head);
5750
5751         rcu_read_lock();
5752 #ifdef CONFIG_RPS
5753         if (static_branch_unlikely(&rps_needed)) {
5754                 list_for_each_entry_safe(skb, next, head, list) {
5755                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5756                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5757
5758                         if (cpu >= 0) {
5759                                 /* Will be handled, remove from list */
5760                                 skb_list_del_init(skb);
5761                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5762                         }
5763                 }
5764         }
5765 #endif
5766         __netif_receive_skb_list(head);
5767         rcu_read_unlock();
5768 }
5769
5770 /**
5771  *      netif_receive_skb - process receive buffer from network
5772  *      @skb: buffer to process
5773  *
5774  *      netif_receive_skb() is the main receive data processing function.
5775  *      It always succeeds. The buffer may be dropped during processing
5776  *      for congestion control or by the protocol layers.
5777  *
5778  *      This function may only be called from softirq context and interrupts
5779  *      should be enabled.
5780  *
5781  *      Return values (usually ignored):
5782  *      NET_RX_SUCCESS: no congestion
5783  *      NET_RX_DROP: packet was dropped
5784  */
5785 int netif_receive_skb(struct sk_buff *skb)
5786 {
5787         int ret;
5788
5789         trace_netif_receive_skb_entry(skb);
5790
5791         ret = netif_receive_skb_internal(skb);
5792         trace_netif_receive_skb_exit(ret);
5793
5794         return ret;
5795 }
5796 EXPORT_SYMBOL(netif_receive_skb);
5797
5798 /**
5799  *      netif_receive_skb_list - process many receive buffers from network
5800  *      @head: list of skbs to process.
5801  *
5802  *      Since return value of netif_receive_skb() is normally ignored, and
5803  *      wouldn't be meaningful for a list, this function returns void.
5804  *
5805  *      This function may only be called from softirq context and interrupts
5806  *      should be enabled.
5807  */
5808 void netif_receive_skb_list(struct list_head *head)
5809 {
5810         struct sk_buff *skb;
5811
5812         if (list_empty(head))
5813                 return;
5814         if (trace_netif_receive_skb_list_entry_enabled()) {
5815                 list_for_each_entry(skb, head, list)
5816                         trace_netif_receive_skb_list_entry(skb);
5817         }
5818         netif_receive_skb_list_internal(head);
5819         trace_netif_receive_skb_list_exit(0);
5820 }
5821 EXPORT_SYMBOL(netif_receive_skb_list);
5822
5823 static DEFINE_PER_CPU(struct work_struct, flush_works);
5824
5825 /* Network device is going away, flush any packets still pending */
5826 static void flush_backlog(struct work_struct *work)
5827 {
5828         struct sk_buff *skb, *tmp;
5829         struct softnet_data *sd;
5830
5831         local_bh_disable();
5832         sd = this_cpu_ptr(&softnet_data);
5833
5834         rps_lock_irq_disable(sd);
5835         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5836                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5837                         __skb_unlink(skb, &sd->input_pkt_queue);
5838                         dev_kfree_skb_irq(skb);
5839                         input_queue_head_incr(sd);
5840                 }
5841         }
5842         rps_unlock_irq_enable(sd);
5843
5844         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5845                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5846                         __skb_unlink(skb, &sd->process_queue);
5847                         kfree_skb(skb);
5848                         input_queue_head_incr(sd);
5849                 }
5850         }
5851         local_bh_enable();
5852 }
5853
5854 static bool flush_required(int cpu)
5855 {
5856 #if IS_ENABLED(CONFIG_RPS)
5857         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5858         bool do_flush;
5859
5860         rps_lock_irq_disable(sd);
5861
5862         /* as insertion into process_queue happens with the rps lock held,
5863          * process_queue access may race only with dequeue
5864          */
5865         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5866                    !skb_queue_empty_lockless(&sd->process_queue);
5867         rps_unlock_irq_enable(sd);
5868
5869         return do_flush;
5870 #endif
5871         /* without RPS we can't safely check input_pkt_queue: during a
5872          * concurrent remote skb_queue_splice() we can detect as empty both
5873          * input_pkt_queue and process_queue even if the latter could end-up
5874          * containing a lot of packets.
5875          */
5876         return true;
5877 }
5878
5879 static void flush_all_backlogs(void)
5880 {
5881         static cpumask_t flush_cpus;
5882         unsigned int cpu;
5883
5884         /* since we are under rtnl lock protection we can use static data
5885          * for the cpumask and avoid allocating on stack the possibly
5886          * large mask
5887          */
5888         ASSERT_RTNL();
5889
5890         cpus_read_lock();
5891
5892         cpumask_clear(&flush_cpus);
5893         for_each_online_cpu(cpu) {
5894                 if (flush_required(cpu)) {
5895                         queue_work_on(cpu, system_highpri_wq,
5896                                       per_cpu_ptr(&flush_works, cpu));
5897                         cpumask_set_cpu(cpu, &flush_cpus);
5898                 }
5899         }
5900
5901         /* we can have in flight packet[s] on the cpus we are not flushing,
5902          * synchronize_net() in unregister_netdevice_many() will take care of
5903          * them
5904          */
5905         for_each_cpu(cpu, &flush_cpus)
5906                 flush_work(per_cpu_ptr(&flush_works, cpu));
5907
5908         cpus_read_unlock();
5909 }
5910
5911 static void net_rps_send_ipi(struct softnet_data *remsd)
5912 {
5913 #ifdef CONFIG_RPS
5914         while (remsd) {
5915                 struct softnet_data *next = remsd->rps_ipi_next;
5916
5917                 if (cpu_online(remsd->cpu))
5918                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5919                 remsd = next;
5920         }
5921 #endif
5922 }
5923
5924 /*
5925  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5926  * Note: called with local irq disabled, but exits with local irq enabled.
5927  */
5928 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5929 {
5930 #ifdef CONFIG_RPS
5931         struct softnet_data *remsd = sd->rps_ipi_list;
5932
5933         if (remsd) {
5934                 sd->rps_ipi_list = NULL;
5935
5936                 local_irq_enable();
5937
5938                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5939                 net_rps_send_ipi(remsd);
5940         } else
5941 #endif
5942                 local_irq_enable();
5943 }
5944
5945 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5946 {
5947 #ifdef CONFIG_RPS
5948         return sd->rps_ipi_list != NULL;
5949 #else
5950         return false;
5951 #endif
5952 }
5953
5954 static int process_backlog(struct napi_struct *napi, int quota)
5955 {
5956         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5957         bool again = true;
5958         int work = 0;
5959
5960         /* Check if we have pending ipi, its better to send them now,
5961          * not waiting net_rx_action() end.
5962          */
5963         if (sd_has_rps_ipi_waiting(sd)) {
5964                 local_irq_disable();
5965                 net_rps_action_and_irq_enable(sd);
5966         }
5967
5968         napi->weight = READ_ONCE(dev_rx_weight);
5969         while (again) {
5970                 struct sk_buff *skb;
5971
5972                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5973                         rcu_read_lock();
5974                         __netif_receive_skb(skb);
5975                         rcu_read_unlock();
5976                         input_queue_head_incr(sd);
5977                         if (++work >= quota)
5978                                 return work;
5979
5980                 }
5981
5982                 rps_lock_irq_disable(sd);
5983                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5984                         /*
5985                          * Inline a custom version of __napi_complete().
5986                          * only current cpu owns and manipulates this napi,
5987                          * and NAPI_STATE_SCHED is the only possible flag set
5988                          * on backlog.
5989                          * We can use a plain write instead of clear_bit(),
5990                          * and we dont need an smp_mb() memory barrier.
5991                          */
5992                         napi->state = 0;
5993                         again = false;
5994                 } else {
5995                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5996                                                    &sd->process_queue);
5997                 }
5998                 rps_unlock_irq_enable(sd);
5999         }
6000
6001         return work;
6002 }
6003
6004 /**
6005  * __napi_schedule - schedule for receive
6006  * @n: entry to schedule
6007  *
6008  * The entry's receive function will be scheduled to run.
6009  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6010  */
6011 void __napi_schedule(struct napi_struct *n)
6012 {
6013         unsigned long flags;
6014
6015         local_irq_save(flags);
6016         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017         local_irq_restore(flags);
6018 }
6019 EXPORT_SYMBOL(__napi_schedule);
6020
6021 /**
6022  *      napi_schedule_prep - check if napi can be scheduled
6023  *      @n: napi context
6024  *
6025  * Test if NAPI routine is already running, and if not mark
6026  * it as running.  This is used as a condition variable to
6027  * insure only one NAPI poll instance runs.  We also make
6028  * sure there is no pending NAPI disable.
6029  */
6030 bool napi_schedule_prep(struct napi_struct *n)
6031 {
6032         unsigned long new, val = READ_ONCE(n->state);
6033
6034         do {
6035                 if (unlikely(val & NAPIF_STATE_DISABLE))
6036                         return false;
6037                 new = val | NAPIF_STATE_SCHED;
6038
6039                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6040                  * This was suggested by Alexander Duyck, as compiler
6041                  * emits better code than :
6042                  * if (val & NAPIF_STATE_SCHED)
6043                  *     new |= NAPIF_STATE_MISSED;
6044                  */
6045                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6046                                                    NAPIF_STATE_MISSED;
6047         } while (!try_cmpxchg(&n->state, &val, new));
6048
6049         return !(val & NAPIF_STATE_SCHED);
6050 }
6051 EXPORT_SYMBOL(napi_schedule_prep);
6052
6053 /**
6054  * __napi_schedule_irqoff - schedule for receive
6055  * @n: entry to schedule
6056  *
6057  * Variant of __napi_schedule() assuming hard irqs are masked.
6058  *
6059  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6060  * because the interrupt disabled assumption might not be true
6061  * due to force-threaded interrupts and spinlock substitution.
6062  */
6063 void __napi_schedule_irqoff(struct napi_struct *n)
6064 {
6065         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6066                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6067         else
6068                 __napi_schedule(n);
6069 }
6070 EXPORT_SYMBOL(__napi_schedule_irqoff);
6071
6072 bool napi_complete_done(struct napi_struct *n, int work_done)
6073 {
6074         unsigned long flags, val, new, timeout = 0;
6075         bool ret = true;
6076
6077         /*
6078          * 1) Don't let napi dequeue from the cpu poll list
6079          *    just in case its running on a different cpu.
6080          * 2) If we are busy polling, do nothing here, we have
6081          *    the guarantee we will be called later.
6082          */
6083         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6084                                  NAPIF_STATE_IN_BUSY_POLL)))
6085                 return false;
6086
6087         if (work_done) {
6088                 if (n->gro_bitmask)
6089                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6091         }
6092         if (n->defer_hard_irqs_count > 0) {
6093                 n->defer_hard_irqs_count--;
6094                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6095                 if (timeout)
6096                         ret = false;
6097         }
6098         if (n->gro_bitmask) {
6099                 /* When the NAPI instance uses a timeout and keeps postponing
6100                  * it, we need to bound somehow the time packets are kept in
6101                  * the GRO layer
6102                  */
6103                 napi_gro_flush(n, !!timeout);
6104         }
6105
6106         gro_normal_list(n);
6107
6108         if (unlikely(!list_empty(&n->poll_list))) {
6109                 /* If n->poll_list is not empty, we need to mask irqs */
6110                 local_irq_save(flags);
6111                 list_del_init(&n->poll_list);
6112                 local_irq_restore(flags);
6113         }
6114         WRITE_ONCE(n->list_owner, -1);
6115
6116         val = READ_ONCE(n->state);
6117         do {
6118                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6119
6120                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6121                               NAPIF_STATE_SCHED_THREADED |
6122                               NAPIF_STATE_PREFER_BUSY_POLL);
6123
6124                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6125                  * because we will call napi->poll() one more time.
6126                  * This C code was suggested by Alexander Duyck to help gcc.
6127                  */
6128                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6129                                                     NAPIF_STATE_SCHED;
6130         } while (!try_cmpxchg(&n->state, &val, new));
6131
6132         if (unlikely(val & NAPIF_STATE_MISSED)) {
6133                 __napi_schedule(n);
6134                 return false;
6135         }
6136
6137         if (timeout)
6138                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6139                               HRTIMER_MODE_REL_PINNED);
6140         return ret;
6141 }
6142 EXPORT_SYMBOL(napi_complete_done);
6143
6144 /* must be called under rcu_read_lock(), as we dont take a reference */
6145 static struct napi_struct *napi_by_id(unsigned int napi_id)
6146 {
6147         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6148         struct napi_struct *napi;
6149
6150         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6151                 if (napi->napi_id == napi_id)
6152                         return napi;
6153
6154         return NULL;
6155 }
6156
6157 #if defined(CONFIG_NET_RX_BUSY_POLL)
6158
6159 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6160 {
6161         if (!skip_schedule) {
6162                 gro_normal_list(napi);
6163                 __napi_schedule(napi);
6164                 return;
6165         }
6166
6167         if (napi->gro_bitmask) {
6168                 /* flush too old packets
6169                  * If HZ < 1000, flush all packets.
6170                  */
6171                 napi_gro_flush(napi, HZ >= 1000);
6172         }
6173
6174         gro_normal_list(napi);
6175         clear_bit(NAPI_STATE_SCHED, &napi->state);
6176 }
6177
6178 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6179                            u16 budget)
6180 {
6181         bool skip_schedule = false;
6182         unsigned long timeout;
6183         int rc;
6184
6185         /* Busy polling means there is a high chance device driver hard irq
6186          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6187          * set in napi_schedule_prep().
6188          * Since we are about to call napi->poll() once more, we can safely
6189          * clear NAPI_STATE_MISSED.
6190          *
6191          * Note: x86 could use a single "lock and ..." instruction
6192          * to perform these two clear_bit()
6193          */
6194         clear_bit(NAPI_STATE_MISSED, &napi->state);
6195         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6196
6197         local_bh_disable();
6198
6199         if (prefer_busy_poll) {
6200                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6201                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6202                 if (napi->defer_hard_irqs_count && timeout) {
6203                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6204                         skip_schedule = true;
6205                 }
6206         }
6207
6208         /* All we really want here is to re-enable device interrupts.
6209          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6210          */
6211         rc = napi->poll(napi, budget);
6212         /* We can't gro_normal_list() here, because napi->poll() might have
6213          * rearmed the napi (napi_complete_done()) in which case it could
6214          * already be running on another CPU.
6215          */
6216         trace_napi_poll(napi, rc, budget);
6217         netpoll_poll_unlock(have_poll_lock);
6218         if (rc == budget)
6219                 __busy_poll_stop(napi, skip_schedule);
6220         local_bh_enable();
6221 }
6222
6223 void napi_busy_loop(unsigned int napi_id,
6224                     bool (*loop_end)(void *, unsigned long),
6225                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6226 {
6227         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6228         int (*napi_poll)(struct napi_struct *napi, int budget);
6229         void *have_poll_lock = NULL;
6230         struct napi_struct *napi;
6231
6232 restart:
6233         napi_poll = NULL;
6234
6235         rcu_read_lock();
6236
6237         napi = napi_by_id(napi_id);
6238         if (!napi)
6239                 goto out;
6240
6241         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6242                 preempt_disable();
6243         for (;;) {
6244                 int work = 0;
6245
6246                 local_bh_disable();
6247                 if (!napi_poll) {
6248                         unsigned long val = READ_ONCE(napi->state);
6249
6250                         /* If multiple threads are competing for this napi,
6251                          * we avoid dirtying napi->state as much as we can.
6252                          */
6253                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6254                                    NAPIF_STATE_IN_BUSY_POLL)) {
6255                                 if (prefer_busy_poll)
6256                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6257                                 goto count;
6258                         }
6259                         if (cmpxchg(&napi->state, val,
6260                                     val | NAPIF_STATE_IN_BUSY_POLL |
6261                                           NAPIF_STATE_SCHED) != val) {
6262                                 if (prefer_busy_poll)
6263                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6264                                 goto count;
6265                         }
6266                         have_poll_lock = netpoll_poll_lock(napi);
6267                         napi_poll = napi->poll;
6268                 }
6269                 work = napi_poll(napi, budget);
6270                 trace_napi_poll(napi, work, budget);
6271                 gro_normal_list(napi);
6272 count:
6273                 if (work > 0)
6274                         __NET_ADD_STATS(dev_net(napi->dev),
6275                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6276                 local_bh_enable();
6277
6278                 if (!loop_end || loop_end(loop_end_arg, start_time))
6279                         break;
6280
6281                 if (unlikely(need_resched())) {
6282                         if (napi_poll)
6283                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6284                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6285                                 preempt_enable();
6286                         rcu_read_unlock();
6287                         cond_resched();
6288                         if (loop_end(loop_end_arg, start_time))
6289                                 return;
6290                         goto restart;
6291                 }
6292                 cpu_relax();
6293         }
6294         if (napi_poll)
6295                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6296         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6297                 preempt_enable();
6298 out:
6299         rcu_read_unlock();
6300 }
6301 EXPORT_SYMBOL(napi_busy_loop);
6302
6303 #endif /* CONFIG_NET_RX_BUSY_POLL */
6304
6305 static void napi_hash_add(struct napi_struct *napi)
6306 {
6307         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6308                 return;
6309
6310         spin_lock(&napi_hash_lock);
6311
6312         /* 0..NR_CPUS range is reserved for sender_cpu use */
6313         do {
6314                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6315                         napi_gen_id = MIN_NAPI_ID;
6316         } while (napi_by_id(napi_gen_id));
6317         napi->napi_id = napi_gen_id;
6318
6319         hlist_add_head_rcu(&napi->napi_hash_node,
6320                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6321
6322         spin_unlock(&napi_hash_lock);
6323 }
6324
6325 /* Warning : caller is responsible to make sure rcu grace period
6326  * is respected before freeing memory containing @napi
6327  */
6328 static void napi_hash_del(struct napi_struct *napi)
6329 {
6330         spin_lock(&napi_hash_lock);
6331
6332         hlist_del_init_rcu(&napi->napi_hash_node);
6333
6334         spin_unlock(&napi_hash_lock);
6335 }
6336
6337 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6338 {
6339         struct napi_struct *napi;
6340
6341         napi = container_of(timer, struct napi_struct, timer);
6342
6343         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6344          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6345          */
6346         if (!napi_disable_pending(napi) &&
6347             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6348                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6349                 __napi_schedule_irqoff(napi);
6350         }
6351
6352         return HRTIMER_NORESTART;
6353 }
6354
6355 static void init_gro_hash(struct napi_struct *napi)
6356 {
6357         int i;
6358
6359         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6360                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6361                 napi->gro_hash[i].count = 0;
6362         }
6363         napi->gro_bitmask = 0;
6364 }
6365
6366 int dev_set_threaded(struct net_device *dev, bool threaded)
6367 {
6368         struct napi_struct *napi;
6369         int err = 0;
6370
6371         if (dev->threaded == threaded)
6372                 return 0;
6373
6374         if (threaded) {
6375                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6376                         if (!napi->thread) {
6377                                 err = napi_kthread_create(napi);
6378                                 if (err) {
6379                                         threaded = false;
6380                                         break;
6381                                 }
6382                         }
6383                 }
6384         }
6385
6386         dev->threaded = threaded;
6387
6388         /* Make sure kthread is created before THREADED bit
6389          * is set.
6390          */
6391         smp_mb__before_atomic();
6392
6393         /* Setting/unsetting threaded mode on a napi might not immediately
6394          * take effect, if the current napi instance is actively being
6395          * polled. In this case, the switch between threaded mode and
6396          * softirq mode will happen in the next round of napi_schedule().
6397          * This should not cause hiccups/stalls to the live traffic.
6398          */
6399         list_for_each_entry(napi, &dev->napi_list, dev_list)
6400                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6401
6402         return err;
6403 }
6404 EXPORT_SYMBOL(dev_set_threaded);
6405
6406 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6407                            int (*poll)(struct napi_struct *, int), int weight)
6408 {
6409         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6410                 return;
6411
6412         INIT_LIST_HEAD(&napi->poll_list);
6413         INIT_HLIST_NODE(&napi->napi_hash_node);
6414         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6415         napi->timer.function = napi_watchdog;
6416         init_gro_hash(napi);
6417         napi->skb = NULL;
6418         INIT_LIST_HEAD(&napi->rx_list);
6419         napi->rx_count = 0;
6420         napi->poll = poll;
6421         if (weight > NAPI_POLL_WEIGHT)
6422                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6423                                 weight);
6424         napi->weight = weight;
6425         napi->dev = dev;
6426 #ifdef CONFIG_NETPOLL
6427         napi->poll_owner = -1;
6428 #endif
6429         napi->list_owner = -1;
6430         set_bit(NAPI_STATE_SCHED, &napi->state);
6431         set_bit(NAPI_STATE_NPSVC, &napi->state);
6432         list_add_rcu(&napi->dev_list, &dev->napi_list);
6433         napi_hash_add(napi);
6434         napi_get_frags_check(napi);
6435         /* Create kthread for this napi if dev->threaded is set.
6436          * Clear dev->threaded if kthread creation failed so that
6437          * threaded mode will not be enabled in napi_enable().
6438          */
6439         if (dev->threaded && napi_kthread_create(napi))
6440                 dev->threaded = 0;
6441 }
6442 EXPORT_SYMBOL(netif_napi_add_weight);
6443
6444 void napi_disable(struct napi_struct *n)
6445 {
6446         unsigned long val, new;
6447
6448         might_sleep();
6449         set_bit(NAPI_STATE_DISABLE, &n->state);
6450
6451         val = READ_ONCE(n->state);
6452         do {
6453                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6454                         usleep_range(20, 200);
6455                         val = READ_ONCE(n->state);
6456                 }
6457
6458                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6459                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6460         } while (!try_cmpxchg(&n->state, &val, new));
6461
6462         hrtimer_cancel(&n->timer);
6463
6464         clear_bit(NAPI_STATE_DISABLE, &n->state);
6465 }
6466 EXPORT_SYMBOL(napi_disable);
6467
6468 /**
6469  *      napi_enable - enable NAPI scheduling
6470  *      @n: NAPI context
6471  *
6472  * Resume NAPI from being scheduled on this context.
6473  * Must be paired with napi_disable.
6474  */
6475 void napi_enable(struct napi_struct *n)
6476 {
6477         unsigned long new, val = READ_ONCE(n->state);
6478
6479         do {
6480                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6481
6482                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6483                 if (n->dev->threaded && n->thread)
6484                         new |= NAPIF_STATE_THREADED;
6485         } while (!try_cmpxchg(&n->state, &val, new));
6486 }
6487 EXPORT_SYMBOL(napi_enable);
6488
6489 static void flush_gro_hash(struct napi_struct *napi)
6490 {
6491         int i;
6492
6493         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6494                 struct sk_buff *skb, *n;
6495
6496                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6497                         kfree_skb(skb);
6498                 napi->gro_hash[i].count = 0;
6499         }
6500 }
6501
6502 /* Must be called in process context */
6503 void __netif_napi_del(struct napi_struct *napi)
6504 {
6505         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6506                 return;
6507
6508         napi_hash_del(napi);
6509         list_del_rcu(&napi->dev_list);
6510         napi_free_frags(napi);
6511
6512         flush_gro_hash(napi);
6513         napi->gro_bitmask = 0;
6514
6515         if (napi->thread) {
6516                 kthread_stop(napi->thread);
6517                 napi->thread = NULL;
6518         }
6519 }
6520 EXPORT_SYMBOL(__netif_napi_del);
6521
6522 static int __napi_poll(struct napi_struct *n, bool *repoll)
6523 {
6524         int work, weight;
6525
6526         weight = n->weight;
6527
6528         /* This NAPI_STATE_SCHED test is for avoiding a race
6529          * with netpoll's poll_napi().  Only the entity which
6530          * obtains the lock and sees NAPI_STATE_SCHED set will
6531          * actually make the ->poll() call.  Therefore we avoid
6532          * accidentally calling ->poll() when NAPI is not scheduled.
6533          */
6534         work = 0;
6535         if (napi_is_scheduled(n)) {
6536                 work = n->poll(n, weight);
6537                 trace_napi_poll(n, work, weight);
6538
6539                 xdp_do_check_flushed(n);
6540         }
6541
6542         if (unlikely(work > weight))
6543                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6544                                 n->poll, work, weight);
6545
6546         if (likely(work < weight))
6547                 return work;
6548
6549         /* Drivers must not modify the NAPI state if they
6550          * consume the entire weight.  In such cases this code
6551          * still "owns" the NAPI instance and therefore can
6552          * move the instance around on the list at-will.
6553          */
6554         if (unlikely(napi_disable_pending(n))) {
6555                 napi_complete(n);
6556                 return work;
6557         }
6558
6559         /* The NAPI context has more processing work, but busy-polling
6560          * is preferred. Exit early.
6561          */
6562         if (napi_prefer_busy_poll(n)) {
6563                 if (napi_complete_done(n, work)) {
6564                         /* If timeout is not set, we need to make sure
6565                          * that the NAPI is re-scheduled.
6566                          */
6567                         napi_schedule(n);
6568                 }
6569                 return work;
6570         }
6571
6572         if (n->gro_bitmask) {
6573                 /* flush too old packets
6574                  * If HZ < 1000, flush all packets.
6575                  */
6576                 napi_gro_flush(n, HZ >= 1000);
6577         }
6578
6579         gro_normal_list(n);
6580
6581         /* Some drivers may have called napi_schedule
6582          * prior to exhausting their budget.
6583          */
6584         if (unlikely(!list_empty(&n->poll_list))) {
6585                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6586                              n->dev ? n->dev->name : "backlog");
6587                 return work;
6588         }
6589
6590         *repoll = true;
6591
6592         return work;
6593 }
6594
6595 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6596 {
6597         bool do_repoll = false;
6598         void *have;
6599         int work;
6600
6601         list_del_init(&n->poll_list);
6602
6603         have = netpoll_poll_lock(n);
6604
6605         work = __napi_poll(n, &do_repoll);
6606
6607         if (do_repoll)
6608                 list_add_tail(&n->poll_list, repoll);
6609
6610         netpoll_poll_unlock(have);
6611
6612         return work;
6613 }
6614
6615 static int napi_thread_wait(struct napi_struct *napi)
6616 {
6617         bool woken = false;
6618
6619         set_current_state(TASK_INTERRUPTIBLE);
6620
6621         while (!kthread_should_stop()) {
6622                 /* Testing SCHED_THREADED bit here to make sure the current
6623                  * kthread owns this napi and could poll on this napi.
6624                  * Testing SCHED bit is not enough because SCHED bit might be
6625                  * set by some other busy poll thread or by napi_disable().
6626                  */
6627                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6628                         WARN_ON(!list_empty(&napi->poll_list));
6629                         __set_current_state(TASK_RUNNING);
6630                         return 0;
6631                 }
6632
6633                 schedule();
6634                 /* woken being true indicates this thread owns this napi. */
6635                 woken = true;
6636                 set_current_state(TASK_INTERRUPTIBLE);
6637         }
6638         __set_current_state(TASK_RUNNING);
6639
6640         return -1;
6641 }
6642
6643 static void skb_defer_free_flush(struct softnet_data *sd)
6644 {
6645         struct sk_buff *skb, *next;
6646
6647         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6648         if (!READ_ONCE(sd->defer_list))
6649                 return;
6650
6651         spin_lock(&sd->defer_lock);
6652         skb = sd->defer_list;
6653         sd->defer_list = NULL;
6654         sd->defer_count = 0;
6655         spin_unlock(&sd->defer_lock);
6656
6657         while (skb != NULL) {
6658                 next = skb->next;
6659                 napi_consume_skb(skb, 1);
6660                 skb = next;
6661         }
6662 }
6663
6664 static int napi_threaded_poll(void *data)
6665 {
6666         struct napi_struct *napi = data;
6667         struct softnet_data *sd;
6668         void *have;
6669
6670         while (!napi_thread_wait(napi)) {
6671                 for (;;) {
6672                         bool repoll = false;
6673
6674                         local_bh_disable();
6675                         sd = this_cpu_ptr(&softnet_data);
6676                         sd->in_napi_threaded_poll = true;
6677
6678                         have = netpoll_poll_lock(napi);
6679                         __napi_poll(napi, &repoll);
6680                         netpoll_poll_unlock(have);
6681
6682                         sd->in_napi_threaded_poll = false;
6683                         barrier();
6684
6685                         if (sd_has_rps_ipi_waiting(sd)) {
6686                                 local_irq_disable();
6687                                 net_rps_action_and_irq_enable(sd);
6688                         }
6689                         skb_defer_free_flush(sd);
6690                         local_bh_enable();
6691
6692                         if (!repoll)
6693                                 break;
6694
6695                         cond_resched();
6696                 }
6697         }
6698         return 0;
6699 }
6700
6701 static __latent_entropy void net_rx_action(struct softirq_action *h)
6702 {
6703         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6704         unsigned long time_limit = jiffies +
6705                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6706         int budget = READ_ONCE(netdev_budget);
6707         LIST_HEAD(list);
6708         LIST_HEAD(repoll);
6709
6710 start:
6711         sd->in_net_rx_action = true;
6712         local_irq_disable();
6713         list_splice_init(&sd->poll_list, &list);
6714         local_irq_enable();
6715
6716         for (;;) {
6717                 struct napi_struct *n;
6718
6719                 skb_defer_free_flush(sd);
6720
6721                 if (list_empty(&list)) {
6722                         if (list_empty(&repoll)) {
6723                                 sd->in_net_rx_action = false;
6724                                 barrier();
6725                                 /* We need to check if ____napi_schedule()
6726                                  * had refilled poll_list while
6727                                  * sd->in_net_rx_action was true.
6728                                  */
6729                                 if (!list_empty(&sd->poll_list))
6730                                         goto start;
6731                                 if (!sd_has_rps_ipi_waiting(sd))
6732                                         goto end;
6733                         }
6734                         break;
6735                 }
6736
6737                 n = list_first_entry(&list, struct napi_struct, poll_list);
6738                 budget -= napi_poll(n, &repoll);
6739
6740                 /* If softirq window is exhausted then punt.
6741                  * Allow this to run for 2 jiffies since which will allow
6742                  * an average latency of 1.5/HZ.
6743                  */
6744                 if (unlikely(budget <= 0 ||
6745                              time_after_eq(jiffies, time_limit))) {
6746                         sd->time_squeeze++;
6747                         break;
6748                 }
6749         }
6750
6751         local_irq_disable();
6752
6753         list_splice_tail_init(&sd->poll_list, &list);
6754         list_splice_tail(&repoll, &list);
6755         list_splice(&list, &sd->poll_list);
6756         if (!list_empty(&sd->poll_list))
6757                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6758         else
6759                 sd->in_net_rx_action = false;
6760
6761         net_rps_action_and_irq_enable(sd);
6762 end:;
6763 }
6764
6765 struct netdev_adjacent {
6766         struct net_device *dev;
6767         netdevice_tracker dev_tracker;
6768
6769         /* upper master flag, there can only be one master device per list */
6770         bool master;
6771
6772         /* lookup ignore flag */
6773         bool ignore;
6774
6775         /* counter for the number of times this device was added to us */
6776         u16 ref_nr;
6777
6778         /* private field for the users */
6779         void *private;
6780
6781         struct list_head list;
6782         struct rcu_head rcu;
6783 };
6784
6785 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6786                                                  struct list_head *adj_list)
6787 {
6788         struct netdev_adjacent *adj;
6789
6790         list_for_each_entry(adj, adj_list, list) {
6791                 if (adj->dev == adj_dev)
6792                         return adj;
6793         }
6794         return NULL;
6795 }
6796
6797 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6798                                     struct netdev_nested_priv *priv)
6799 {
6800         struct net_device *dev = (struct net_device *)priv->data;
6801
6802         return upper_dev == dev;
6803 }
6804
6805 /**
6806  * netdev_has_upper_dev - Check if device is linked to an upper device
6807  * @dev: device
6808  * @upper_dev: upper device to check
6809  *
6810  * Find out if a device is linked to specified upper device and return true
6811  * in case it is. Note that this checks only immediate upper device,
6812  * not through a complete stack of devices. The caller must hold the RTNL lock.
6813  */
6814 bool netdev_has_upper_dev(struct net_device *dev,
6815                           struct net_device *upper_dev)
6816 {
6817         struct netdev_nested_priv priv = {
6818                 .data = (void *)upper_dev,
6819         };
6820
6821         ASSERT_RTNL();
6822
6823         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6824                                              &priv);
6825 }
6826 EXPORT_SYMBOL(netdev_has_upper_dev);
6827
6828 /**
6829  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6830  * @dev: device
6831  * @upper_dev: upper device to check
6832  *
6833  * Find out if a device is linked to specified upper device and return true
6834  * in case it is. Note that this checks the entire upper device chain.
6835  * The caller must hold rcu lock.
6836  */
6837
6838 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6839                                   struct net_device *upper_dev)
6840 {
6841         struct netdev_nested_priv priv = {
6842                 .data = (void *)upper_dev,
6843         };
6844
6845         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6846                                                &priv);
6847 }
6848 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6849
6850 /**
6851  * netdev_has_any_upper_dev - Check if device is linked to some device
6852  * @dev: device
6853  *
6854  * Find out if a device is linked to an upper device and return true in case
6855  * it is. The caller must hold the RTNL lock.
6856  */
6857 bool netdev_has_any_upper_dev(struct net_device *dev)
6858 {
6859         ASSERT_RTNL();
6860
6861         return !list_empty(&dev->adj_list.upper);
6862 }
6863 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6864
6865 /**
6866  * netdev_master_upper_dev_get - Get master upper device
6867  * @dev: device
6868  *
6869  * Find a master upper device and return pointer to it or NULL in case
6870  * it's not there. The caller must hold the RTNL lock.
6871  */
6872 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6873 {
6874         struct netdev_adjacent *upper;
6875
6876         ASSERT_RTNL();
6877
6878         if (list_empty(&dev->adj_list.upper))
6879                 return NULL;
6880
6881         upper = list_first_entry(&dev->adj_list.upper,
6882                                  struct netdev_adjacent, list);
6883         if (likely(upper->master))
6884                 return upper->dev;
6885         return NULL;
6886 }
6887 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6888
6889 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6890 {
6891         struct netdev_adjacent *upper;
6892
6893         ASSERT_RTNL();
6894
6895         if (list_empty(&dev->adj_list.upper))
6896                 return NULL;
6897
6898         upper = list_first_entry(&dev->adj_list.upper,
6899                                  struct netdev_adjacent, list);
6900         if (likely(upper->master) && !upper->ignore)
6901                 return upper->dev;
6902         return NULL;
6903 }
6904
6905 /**
6906  * netdev_has_any_lower_dev - Check if device is linked to some device
6907  * @dev: device
6908  *
6909  * Find out if a device is linked to a lower device and return true in case
6910  * it is. The caller must hold the RTNL lock.
6911  */
6912 static bool netdev_has_any_lower_dev(struct net_device *dev)
6913 {
6914         ASSERT_RTNL();
6915
6916         return !list_empty(&dev->adj_list.lower);
6917 }
6918
6919 void *netdev_adjacent_get_private(struct list_head *adj_list)
6920 {
6921         struct netdev_adjacent *adj;
6922
6923         adj = list_entry(adj_list, struct netdev_adjacent, list);
6924
6925         return adj->private;
6926 }
6927 EXPORT_SYMBOL(netdev_adjacent_get_private);
6928
6929 /**
6930  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6931  * @dev: device
6932  * @iter: list_head ** of the current position
6933  *
6934  * Gets the next device from the dev's upper list, starting from iter
6935  * position. The caller must hold RCU read lock.
6936  */
6937 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6938                                                  struct list_head **iter)
6939 {
6940         struct netdev_adjacent *upper;
6941
6942         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6943
6944         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6945
6946         if (&upper->list == &dev->adj_list.upper)
6947                 return NULL;
6948
6949         *iter = &upper->list;
6950
6951         return upper->dev;
6952 }
6953 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6954
6955 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6956                                                   struct list_head **iter,
6957                                                   bool *ignore)
6958 {
6959         struct netdev_adjacent *upper;
6960
6961         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6962
6963         if (&upper->list == &dev->adj_list.upper)
6964                 return NULL;
6965
6966         *iter = &upper->list;
6967         *ignore = upper->ignore;
6968
6969         return upper->dev;
6970 }
6971
6972 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6973                                                     struct list_head **iter)
6974 {
6975         struct netdev_adjacent *upper;
6976
6977         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6978
6979         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6980
6981         if (&upper->list == &dev->adj_list.upper)
6982                 return NULL;
6983
6984         *iter = &upper->list;
6985
6986         return upper->dev;
6987 }
6988
6989 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6990                                        int (*fn)(struct net_device *dev,
6991                                          struct netdev_nested_priv *priv),
6992                                        struct netdev_nested_priv *priv)
6993 {
6994         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6995         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6996         int ret, cur = 0;
6997         bool ignore;
6998
6999         now = dev;
7000         iter = &dev->adj_list.upper;
7001
7002         while (1) {
7003                 if (now != dev) {
7004                         ret = fn(now, priv);
7005                         if (ret)
7006                                 return ret;
7007                 }
7008
7009                 next = NULL;
7010                 while (1) {
7011                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7012                         if (!udev)
7013                                 break;
7014                         if (ignore)
7015                                 continue;
7016
7017                         next = udev;
7018                         niter = &udev->adj_list.upper;
7019                         dev_stack[cur] = now;
7020                         iter_stack[cur++] = iter;
7021                         break;
7022                 }
7023
7024                 if (!next) {
7025                         if (!cur)
7026                                 return 0;
7027                         next = dev_stack[--cur];
7028                         niter = iter_stack[cur];
7029                 }
7030
7031                 now = next;
7032                 iter = niter;
7033         }
7034
7035         return 0;
7036 }
7037
7038 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7039                                   int (*fn)(struct net_device *dev,
7040                                             struct netdev_nested_priv *priv),
7041                                   struct netdev_nested_priv *priv)
7042 {
7043         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045         int ret, cur = 0;
7046
7047         now = dev;
7048         iter = &dev->adj_list.upper;
7049
7050         while (1) {
7051                 if (now != dev) {
7052                         ret = fn(now, priv);
7053                         if (ret)
7054                                 return ret;
7055                 }
7056
7057                 next = NULL;
7058                 while (1) {
7059                         udev = netdev_next_upper_dev_rcu(now, &iter);
7060                         if (!udev)
7061                                 break;
7062
7063                         next = udev;
7064                         niter = &udev->adj_list.upper;
7065                         dev_stack[cur] = now;
7066                         iter_stack[cur++] = iter;
7067                         break;
7068                 }
7069
7070                 if (!next) {
7071                         if (!cur)
7072                                 return 0;
7073                         next = dev_stack[--cur];
7074                         niter = iter_stack[cur];
7075                 }
7076
7077                 now = next;
7078                 iter = niter;
7079         }
7080
7081         return 0;
7082 }
7083 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7084
7085 static bool __netdev_has_upper_dev(struct net_device *dev,
7086                                    struct net_device *upper_dev)
7087 {
7088         struct netdev_nested_priv priv = {
7089                 .flags = 0,
7090                 .data = (void *)upper_dev,
7091         };
7092
7093         ASSERT_RTNL();
7094
7095         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7096                                            &priv);
7097 }
7098
7099 /**
7100  * netdev_lower_get_next_private - Get the next ->private from the
7101  *                                 lower neighbour list
7102  * @dev: device
7103  * @iter: list_head ** of the current position
7104  *
7105  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7106  * list, starting from iter position. The caller must hold either hold the
7107  * RTNL lock or its own locking that guarantees that the neighbour lower
7108  * list will remain unchanged.
7109  */
7110 void *netdev_lower_get_next_private(struct net_device *dev,
7111                                     struct list_head **iter)
7112 {
7113         struct netdev_adjacent *lower;
7114
7115         lower = list_entry(*iter, struct netdev_adjacent, list);
7116
7117         if (&lower->list == &dev->adj_list.lower)
7118                 return NULL;
7119
7120         *iter = lower->list.next;
7121
7122         return lower->private;
7123 }
7124 EXPORT_SYMBOL(netdev_lower_get_next_private);
7125
7126 /**
7127  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7128  *                                     lower neighbour list, RCU
7129  *                                     variant
7130  * @dev: device
7131  * @iter: list_head ** of the current position
7132  *
7133  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7134  * list, starting from iter position. The caller must hold RCU read lock.
7135  */
7136 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7137                                         struct list_head **iter)
7138 {
7139         struct netdev_adjacent *lower;
7140
7141         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7142
7143         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7144
7145         if (&lower->list == &dev->adj_list.lower)
7146                 return NULL;
7147
7148         *iter = &lower->list;
7149
7150         return lower->private;
7151 }
7152 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7153
7154 /**
7155  * netdev_lower_get_next - Get the next device from the lower neighbour
7156  *                         list
7157  * @dev: device
7158  * @iter: list_head ** of the current position
7159  *
7160  * Gets the next netdev_adjacent from the dev's lower neighbour
7161  * list, starting from iter position. The caller must hold RTNL lock or
7162  * its own locking that guarantees that the neighbour lower
7163  * list will remain unchanged.
7164  */
7165 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7166 {
7167         struct netdev_adjacent *lower;
7168
7169         lower = list_entry(*iter, struct netdev_adjacent, list);
7170
7171         if (&lower->list == &dev->adj_list.lower)
7172                 return NULL;
7173
7174         *iter = lower->list.next;
7175
7176         return lower->dev;
7177 }
7178 EXPORT_SYMBOL(netdev_lower_get_next);
7179
7180 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7181                                                 struct list_head **iter)
7182 {
7183         struct netdev_adjacent *lower;
7184
7185         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7186
7187         if (&lower->list == &dev->adj_list.lower)
7188                 return NULL;
7189
7190         *iter = &lower->list;
7191
7192         return lower->dev;
7193 }
7194
7195 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7196                                                   struct list_head **iter,
7197                                                   bool *ignore)
7198 {
7199         struct netdev_adjacent *lower;
7200
7201         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7202
7203         if (&lower->list == &dev->adj_list.lower)
7204                 return NULL;
7205
7206         *iter = &lower->list;
7207         *ignore = lower->ignore;
7208
7209         return lower->dev;
7210 }
7211
7212 int netdev_walk_all_lower_dev(struct net_device *dev,
7213                               int (*fn)(struct net_device *dev,
7214                                         struct netdev_nested_priv *priv),
7215                               struct netdev_nested_priv *priv)
7216 {
7217         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7218         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7219         int ret, cur = 0;
7220
7221         now = dev;
7222         iter = &dev->adj_list.lower;
7223
7224         while (1) {
7225                 if (now != dev) {
7226                         ret = fn(now, priv);
7227                         if (ret)
7228                                 return ret;
7229                 }
7230
7231                 next = NULL;
7232                 while (1) {
7233                         ldev = netdev_next_lower_dev(now, &iter);
7234                         if (!ldev)
7235                                 break;
7236
7237                         next = ldev;
7238                         niter = &ldev->adj_list.lower;
7239                         dev_stack[cur] = now;
7240                         iter_stack[cur++] = iter;
7241                         break;
7242                 }
7243
7244                 if (!next) {
7245                         if (!cur)
7246                                 return 0;
7247                         next = dev_stack[--cur];
7248                         niter = iter_stack[cur];
7249                 }
7250
7251                 now = next;
7252                 iter = niter;
7253         }
7254
7255         return 0;
7256 }
7257 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7258
7259 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7260                                        int (*fn)(struct net_device *dev,
7261                                          struct netdev_nested_priv *priv),
7262                                        struct netdev_nested_priv *priv)
7263 {
7264         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7265         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7266         int ret, cur = 0;
7267         bool ignore;
7268
7269         now = dev;
7270         iter = &dev->adj_list.lower;
7271
7272         while (1) {
7273                 if (now != dev) {
7274                         ret = fn(now, priv);
7275                         if (ret)
7276                                 return ret;
7277                 }
7278
7279                 next = NULL;
7280                 while (1) {
7281                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7282                         if (!ldev)
7283                                 break;
7284                         if (ignore)
7285                                 continue;
7286
7287                         next = ldev;
7288                         niter = &ldev->adj_list.lower;
7289                         dev_stack[cur] = now;
7290                         iter_stack[cur++] = iter;
7291                         break;
7292                 }
7293
7294                 if (!next) {
7295                         if (!cur)
7296                                 return 0;
7297                         next = dev_stack[--cur];
7298                         niter = iter_stack[cur];
7299                 }
7300
7301                 now = next;
7302                 iter = niter;
7303         }
7304
7305         return 0;
7306 }
7307
7308 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7309                                              struct list_head **iter)
7310 {
7311         struct netdev_adjacent *lower;
7312
7313         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7314         if (&lower->list == &dev->adj_list.lower)
7315                 return NULL;
7316
7317         *iter = &lower->list;
7318
7319         return lower->dev;
7320 }
7321 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7322
7323 static u8 __netdev_upper_depth(struct net_device *dev)
7324 {
7325         struct net_device *udev;
7326         struct list_head *iter;
7327         u8 max_depth = 0;
7328         bool ignore;
7329
7330         for (iter = &dev->adj_list.upper,
7331              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7332              udev;
7333              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7334                 if (ignore)
7335                         continue;
7336                 if (max_depth < udev->upper_level)
7337                         max_depth = udev->upper_level;
7338         }
7339
7340         return max_depth;
7341 }
7342
7343 static u8 __netdev_lower_depth(struct net_device *dev)
7344 {
7345         struct net_device *ldev;
7346         struct list_head *iter;
7347         u8 max_depth = 0;
7348         bool ignore;
7349
7350         for (iter = &dev->adj_list.lower,
7351              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7352              ldev;
7353              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7354                 if (ignore)
7355                         continue;
7356                 if (max_depth < ldev->lower_level)
7357                         max_depth = ldev->lower_level;
7358         }
7359
7360         return max_depth;
7361 }
7362
7363 static int __netdev_update_upper_level(struct net_device *dev,
7364                                        struct netdev_nested_priv *__unused)
7365 {
7366         dev->upper_level = __netdev_upper_depth(dev) + 1;
7367         return 0;
7368 }
7369
7370 #ifdef CONFIG_LOCKDEP
7371 static LIST_HEAD(net_unlink_list);
7372
7373 static void net_unlink_todo(struct net_device *dev)
7374 {
7375         if (list_empty(&dev->unlink_list))
7376                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7377 }
7378 #endif
7379
7380 static int __netdev_update_lower_level(struct net_device *dev,
7381                                        struct netdev_nested_priv *priv)
7382 {
7383         dev->lower_level = __netdev_lower_depth(dev) + 1;
7384
7385 #ifdef CONFIG_LOCKDEP
7386         if (!priv)
7387                 return 0;
7388
7389         if (priv->flags & NESTED_SYNC_IMM)
7390                 dev->nested_level = dev->lower_level - 1;
7391         if (priv->flags & NESTED_SYNC_TODO)
7392                 net_unlink_todo(dev);
7393 #endif
7394         return 0;
7395 }
7396
7397 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7398                                   int (*fn)(struct net_device *dev,
7399                                             struct netdev_nested_priv *priv),
7400                                   struct netdev_nested_priv *priv)
7401 {
7402         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7403         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7404         int ret, cur = 0;
7405
7406         now = dev;
7407         iter = &dev->adj_list.lower;
7408
7409         while (1) {
7410                 if (now != dev) {
7411                         ret = fn(now, priv);
7412                         if (ret)
7413                                 return ret;
7414                 }
7415
7416                 next = NULL;
7417                 while (1) {
7418                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7419                         if (!ldev)
7420                                 break;
7421
7422                         next = ldev;
7423                         niter = &ldev->adj_list.lower;
7424                         dev_stack[cur] = now;
7425                         iter_stack[cur++] = iter;
7426                         break;
7427                 }
7428
7429                 if (!next) {
7430                         if (!cur)
7431                                 return 0;
7432                         next = dev_stack[--cur];
7433                         niter = iter_stack[cur];
7434                 }
7435
7436                 now = next;
7437                 iter = niter;
7438         }
7439
7440         return 0;
7441 }
7442 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7443
7444 /**
7445  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7446  *                                     lower neighbour list, RCU
7447  *                                     variant
7448  * @dev: device
7449  *
7450  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7451  * list. The caller must hold RCU read lock.
7452  */
7453 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7454 {
7455         struct netdev_adjacent *lower;
7456
7457         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7458                         struct netdev_adjacent, list);
7459         if (lower)
7460                 return lower->private;
7461         return NULL;
7462 }
7463 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7464
7465 /**
7466  * netdev_master_upper_dev_get_rcu - Get master upper device
7467  * @dev: device
7468  *
7469  * Find a master upper device and return pointer to it or NULL in case
7470  * it's not there. The caller must hold the RCU read lock.
7471  */
7472 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7473 {
7474         struct netdev_adjacent *upper;
7475
7476         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7477                                        struct netdev_adjacent, list);
7478         if (upper && likely(upper->master))
7479                 return upper->dev;
7480         return NULL;
7481 }
7482 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7483
7484 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7485                               struct net_device *adj_dev,
7486                               struct list_head *dev_list)
7487 {
7488         char linkname[IFNAMSIZ+7];
7489
7490         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7491                 "upper_%s" : "lower_%s", adj_dev->name);
7492         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7493                                  linkname);
7494 }
7495 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7496                                char *name,
7497                                struct list_head *dev_list)
7498 {
7499         char linkname[IFNAMSIZ+7];
7500
7501         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7502                 "upper_%s" : "lower_%s", name);
7503         sysfs_remove_link(&(dev->dev.kobj), linkname);
7504 }
7505
7506 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7507                                                  struct net_device *adj_dev,
7508                                                  struct list_head *dev_list)
7509 {
7510         return (dev_list == &dev->adj_list.upper ||
7511                 dev_list == &dev->adj_list.lower) &&
7512                 net_eq(dev_net(dev), dev_net(adj_dev));
7513 }
7514
7515 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7516                                         struct net_device *adj_dev,
7517                                         struct list_head *dev_list,
7518                                         void *private, bool master)
7519 {
7520         struct netdev_adjacent *adj;
7521         int ret;
7522
7523         adj = __netdev_find_adj(adj_dev, dev_list);
7524
7525         if (adj) {
7526                 adj->ref_nr += 1;
7527                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7528                          dev->name, adj_dev->name, adj->ref_nr);
7529
7530                 return 0;
7531         }
7532
7533         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7534         if (!adj)
7535                 return -ENOMEM;
7536
7537         adj->dev = adj_dev;
7538         adj->master = master;
7539         adj->ref_nr = 1;
7540         adj->private = private;
7541         adj->ignore = false;
7542         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7543
7544         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7545                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7546
7547         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7548                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7549                 if (ret)
7550                         goto free_adj;
7551         }
7552
7553         /* Ensure that master link is always the first item in list. */
7554         if (master) {
7555                 ret = sysfs_create_link(&(dev->dev.kobj),
7556                                         &(adj_dev->dev.kobj), "master");
7557                 if (ret)
7558                         goto remove_symlinks;
7559
7560                 list_add_rcu(&adj->list, dev_list);
7561         } else {
7562                 list_add_tail_rcu(&adj->list, dev_list);
7563         }
7564
7565         return 0;
7566
7567 remove_symlinks:
7568         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7569                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7570 free_adj:
7571         netdev_put(adj_dev, &adj->dev_tracker);
7572         kfree(adj);
7573
7574         return ret;
7575 }
7576
7577 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7578                                          struct net_device *adj_dev,
7579                                          u16 ref_nr,
7580                                          struct list_head *dev_list)
7581 {
7582         struct netdev_adjacent *adj;
7583
7584         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7585                  dev->name, adj_dev->name, ref_nr);
7586
7587         adj = __netdev_find_adj(adj_dev, dev_list);
7588
7589         if (!adj) {
7590                 pr_err("Adjacency does not exist for device %s from %s\n",
7591                        dev->name, adj_dev->name);
7592                 WARN_ON(1);
7593                 return;
7594         }
7595
7596         if (adj->ref_nr > ref_nr) {
7597                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7598                          dev->name, adj_dev->name, ref_nr,
7599                          adj->ref_nr - ref_nr);
7600                 adj->ref_nr -= ref_nr;
7601                 return;
7602         }
7603
7604         if (adj->master)
7605                 sysfs_remove_link(&(dev->dev.kobj), "master");
7606
7607         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7608                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7609
7610         list_del_rcu(&adj->list);
7611         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7612                  adj_dev->name, dev->name, adj_dev->name);
7613         netdev_put(adj_dev, &adj->dev_tracker);
7614         kfree_rcu(adj, rcu);
7615 }
7616
7617 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7618                                             struct net_device *upper_dev,
7619                                             struct list_head *up_list,
7620                                             struct list_head *down_list,
7621                                             void *private, bool master)
7622 {
7623         int ret;
7624
7625         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7626                                            private, master);
7627         if (ret)
7628                 return ret;
7629
7630         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7631                                            private, false);
7632         if (ret) {
7633                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7634                 return ret;
7635         }
7636
7637         return 0;
7638 }
7639
7640 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7641                                                struct net_device *upper_dev,
7642                                                u16 ref_nr,
7643                                                struct list_head *up_list,
7644                                                struct list_head *down_list)
7645 {
7646         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7647         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7648 }
7649
7650 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7651                                                 struct net_device *upper_dev,
7652                                                 void *private, bool master)
7653 {
7654         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7655                                                 &dev->adj_list.upper,
7656                                                 &upper_dev->adj_list.lower,
7657                                                 private, master);
7658 }
7659
7660 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7661                                                    struct net_device *upper_dev)
7662 {
7663         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7664                                            &dev->adj_list.upper,
7665                                            &upper_dev->adj_list.lower);
7666 }
7667
7668 static int __netdev_upper_dev_link(struct net_device *dev,
7669                                    struct net_device *upper_dev, bool master,
7670                                    void *upper_priv, void *upper_info,
7671                                    struct netdev_nested_priv *priv,
7672                                    struct netlink_ext_ack *extack)
7673 {
7674         struct netdev_notifier_changeupper_info changeupper_info = {
7675                 .info = {
7676                         .dev = dev,
7677                         .extack = extack,
7678                 },
7679                 .upper_dev = upper_dev,
7680                 .master = master,
7681                 .linking = true,
7682                 .upper_info = upper_info,
7683         };
7684         struct net_device *master_dev;
7685         int ret = 0;
7686
7687         ASSERT_RTNL();
7688
7689         if (dev == upper_dev)
7690                 return -EBUSY;
7691
7692         /* To prevent loops, check if dev is not upper device to upper_dev. */
7693         if (__netdev_has_upper_dev(upper_dev, dev))
7694                 return -EBUSY;
7695
7696         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7697                 return -EMLINK;
7698
7699         if (!master) {
7700                 if (__netdev_has_upper_dev(dev, upper_dev))
7701                         return -EEXIST;
7702         } else {
7703                 master_dev = __netdev_master_upper_dev_get(dev);
7704                 if (master_dev)
7705                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7706         }
7707
7708         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7709                                             &changeupper_info.info);
7710         ret = notifier_to_errno(ret);
7711         if (ret)
7712                 return ret;
7713
7714         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7715                                                    master);
7716         if (ret)
7717                 return ret;
7718
7719         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7720                                             &changeupper_info.info);
7721         ret = notifier_to_errno(ret);
7722         if (ret)
7723                 goto rollback;
7724
7725         __netdev_update_upper_level(dev, NULL);
7726         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7727
7728         __netdev_update_lower_level(upper_dev, priv);
7729         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7730                                     priv);
7731
7732         return 0;
7733
7734 rollback:
7735         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7736
7737         return ret;
7738 }
7739
7740 /**
7741  * netdev_upper_dev_link - Add a link to the upper device
7742  * @dev: device
7743  * @upper_dev: new upper device
7744  * @extack: netlink extended ack
7745  *
7746  * Adds a link to device which is upper to this one. The caller must hold
7747  * the RTNL lock. On a failure a negative errno code is returned.
7748  * On success the reference counts are adjusted and the function
7749  * returns zero.
7750  */
7751 int netdev_upper_dev_link(struct net_device *dev,
7752                           struct net_device *upper_dev,
7753                           struct netlink_ext_ack *extack)
7754 {
7755         struct netdev_nested_priv priv = {
7756                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7757                 .data = NULL,
7758         };
7759
7760         return __netdev_upper_dev_link(dev, upper_dev, false,
7761                                        NULL, NULL, &priv, extack);
7762 }
7763 EXPORT_SYMBOL(netdev_upper_dev_link);
7764
7765 /**
7766  * netdev_master_upper_dev_link - Add a master link to the upper device
7767  * @dev: device
7768  * @upper_dev: new upper device
7769  * @upper_priv: upper device private
7770  * @upper_info: upper info to be passed down via notifier
7771  * @extack: netlink extended ack
7772  *
7773  * Adds a link to device which is upper to this one. In this case, only
7774  * one master upper device can be linked, although other non-master devices
7775  * might be linked as well. The caller must hold the RTNL lock.
7776  * On a failure a negative errno code is returned. On success the reference
7777  * counts are adjusted and the function returns zero.
7778  */
7779 int netdev_master_upper_dev_link(struct net_device *dev,
7780                                  struct net_device *upper_dev,
7781                                  void *upper_priv, void *upper_info,
7782                                  struct netlink_ext_ack *extack)
7783 {
7784         struct netdev_nested_priv priv = {
7785                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7786                 .data = NULL,
7787         };
7788
7789         return __netdev_upper_dev_link(dev, upper_dev, true,
7790                                        upper_priv, upper_info, &priv, extack);
7791 }
7792 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7793
7794 static void __netdev_upper_dev_unlink(struct net_device *dev,
7795                                       struct net_device *upper_dev,
7796                                       struct netdev_nested_priv *priv)
7797 {
7798         struct netdev_notifier_changeupper_info changeupper_info = {
7799                 .info = {
7800                         .dev = dev,
7801                 },
7802                 .upper_dev = upper_dev,
7803                 .linking = false,
7804         };
7805
7806         ASSERT_RTNL();
7807
7808         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7809
7810         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7811                                       &changeupper_info.info);
7812
7813         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7814
7815         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7816                                       &changeupper_info.info);
7817
7818         __netdev_update_upper_level(dev, NULL);
7819         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7820
7821         __netdev_update_lower_level(upper_dev, priv);
7822         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7823                                     priv);
7824 }
7825
7826 /**
7827  * netdev_upper_dev_unlink - Removes a link to upper device
7828  * @dev: device
7829  * @upper_dev: new upper device
7830  *
7831  * Removes a link to device which is upper to this one. The caller must hold
7832  * the RTNL lock.
7833  */
7834 void netdev_upper_dev_unlink(struct net_device *dev,
7835                              struct net_device *upper_dev)
7836 {
7837         struct netdev_nested_priv priv = {
7838                 .flags = NESTED_SYNC_TODO,
7839                 .data = NULL,
7840         };
7841
7842         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7843 }
7844 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7845
7846 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7847                                       struct net_device *lower_dev,
7848                                       bool val)
7849 {
7850         struct netdev_adjacent *adj;
7851
7852         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7853         if (adj)
7854                 adj->ignore = val;
7855
7856         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7857         if (adj)
7858                 adj->ignore = val;
7859 }
7860
7861 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7862                                         struct net_device *lower_dev)
7863 {
7864         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7865 }
7866
7867 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7868                                        struct net_device *lower_dev)
7869 {
7870         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7871 }
7872
7873 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7874                                    struct net_device *new_dev,
7875                                    struct net_device *dev,
7876                                    struct netlink_ext_ack *extack)
7877 {
7878         struct netdev_nested_priv priv = {
7879                 .flags = 0,
7880                 .data = NULL,
7881         };
7882         int err;
7883
7884         if (!new_dev)
7885                 return 0;
7886
7887         if (old_dev && new_dev != old_dev)
7888                 netdev_adjacent_dev_disable(dev, old_dev);
7889         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7890                                       extack);
7891         if (err) {
7892                 if (old_dev && new_dev != old_dev)
7893                         netdev_adjacent_dev_enable(dev, old_dev);
7894                 return err;
7895         }
7896
7897         return 0;
7898 }
7899 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7900
7901 void netdev_adjacent_change_commit(struct net_device *old_dev,
7902                                    struct net_device *new_dev,
7903                                    struct net_device *dev)
7904 {
7905         struct netdev_nested_priv priv = {
7906                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7907                 .data = NULL,
7908         };
7909
7910         if (!new_dev || !old_dev)
7911                 return;
7912
7913         if (new_dev == old_dev)
7914                 return;
7915
7916         netdev_adjacent_dev_enable(dev, old_dev);
7917         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7918 }
7919 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7920
7921 void netdev_adjacent_change_abort(struct net_device *old_dev,
7922                                   struct net_device *new_dev,
7923                                   struct net_device *dev)
7924 {
7925         struct netdev_nested_priv priv = {
7926                 .flags = 0,
7927                 .data = NULL,
7928         };
7929
7930         if (!new_dev)
7931                 return;
7932
7933         if (old_dev && new_dev != old_dev)
7934                 netdev_adjacent_dev_enable(dev, old_dev);
7935
7936         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7937 }
7938 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7939
7940 /**
7941  * netdev_bonding_info_change - Dispatch event about slave change
7942  * @dev: device
7943  * @bonding_info: info to dispatch
7944  *
7945  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7946  * The caller must hold the RTNL lock.
7947  */
7948 void netdev_bonding_info_change(struct net_device *dev,
7949                                 struct netdev_bonding_info *bonding_info)
7950 {
7951         struct netdev_notifier_bonding_info info = {
7952                 .info.dev = dev,
7953         };
7954
7955         memcpy(&info.bonding_info, bonding_info,
7956                sizeof(struct netdev_bonding_info));
7957         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7958                                       &info.info);
7959 }
7960 EXPORT_SYMBOL(netdev_bonding_info_change);
7961
7962 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7963                                            struct netlink_ext_ack *extack)
7964 {
7965         struct netdev_notifier_offload_xstats_info info = {
7966                 .info.dev = dev,
7967                 .info.extack = extack,
7968                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7969         };
7970         int err;
7971         int rc;
7972
7973         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7974                                          GFP_KERNEL);
7975         if (!dev->offload_xstats_l3)
7976                 return -ENOMEM;
7977
7978         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7979                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7980                                                   &info.info);
7981         err = notifier_to_errno(rc);
7982         if (err)
7983                 goto free_stats;
7984
7985         return 0;
7986
7987 free_stats:
7988         kfree(dev->offload_xstats_l3);
7989         dev->offload_xstats_l3 = NULL;
7990         return err;
7991 }
7992
7993 int netdev_offload_xstats_enable(struct net_device *dev,
7994                                  enum netdev_offload_xstats_type type,
7995                                  struct netlink_ext_ack *extack)
7996 {
7997         ASSERT_RTNL();
7998
7999         if (netdev_offload_xstats_enabled(dev, type))
8000                 return -EALREADY;
8001
8002         switch (type) {
8003         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8004                 return netdev_offload_xstats_enable_l3(dev, extack);
8005         }
8006
8007         WARN_ON(1);
8008         return -EINVAL;
8009 }
8010 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8011
8012 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8013 {
8014         struct netdev_notifier_offload_xstats_info info = {
8015                 .info.dev = dev,
8016                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8017         };
8018
8019         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8020                                       &info.info);
8021         kfree(dev->offload_xstats_l3);
8022         dev->offload_xstats_l3 = NULL;
8023 }
8024
8025 int netdev_offload_xstats_disable(struct net_device *dev,
8026                                   enum netdev_offload_xstats_type type)
8027 {
8028         ASSERT_RTNL();
8029
8030         if (!netdev_offload_xstats_enabled(dev, type))
8031                 return -EALREADY;
8032
8033         switch (type) {
8034         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8035                 netdev_offload_xstats_disable_l3(dev);
8036                 return 0;
8037         }
8038
8039         WARN_ON(1);
8040         return -EINVAL;
8041 }
8042 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8043
8044 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8045 {
8046         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8047 }
8048
8049 static struct rtnl_hw_stats64 *
8050 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8051                               enum netdev_offload_xstats_type type)
8052 {
8053         switch (type) {
8054         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8055                 return dev->offload_xstats_l3;
8056         }
8057
8058         WARN_ON(1);
8059         return NULL;
8060 }
8061
8062 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8063                                    enum netdev_offload_xstats_type type)
8064 {
8065         ASSERT_RTNL();
8066
8067         return netdev_offload_xstats_get_ptr(dev, type);
8068 }
8069 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8070
8071 struct netdev_notifier_offload_xstats_ru {
8072         bool used;
8073 };
8074
8075 struct netdev_notifier_offload_xstats_rd {
8076         struct rtnl_hw_stats64 stats;
8077         bool used;
8078 };
8079
8080 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8081                                   const struct rtnl_hw_stats64 *src)
8082 {
8083         dest->rx_packets          += src->rx_packets;
8084         dest->tx_packets          += src->tx_packets;
8085         dest->rx_bytes            += src->rx_bytes;
8086         dest->tx_bytes            += src->tx_bytes;
8087         dest->rx_errors           += src->rx_errors;
8088         dest->tx_errors           += src->tx_errors;
8089         dest->rx_dropped          += src->rx_dropped;
8090         dest->tx_dropped          += src->tx_dropped;
8091         dest->multicast           += src->multicast;
8092 }
8093
8094 static int netdev_offload_xstats_get_used(struct net_device *dev,
8095                                           enum netdev_offload_xstats_type type,
8096                                           bool *p_used,
8097                                           struct netlink_ext_ack *extack)
8098 {
8099         struct netdev_notifier_offload_xstats_ru report_used = {};
8100         struct netdev_notifier_offload_xstats_info info = {
8101                 .info.dev = dev,
8102                 .info.extack = extack,
8103                 .type = type,
8104                 .report_used = &report_used,
8105         };
8106         int rc;
8107
8108         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8109         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8110                                            &info.info);
8111         *p_used = report_used.used;
8112         return notifier_to_errno(rc);
8113 }
8114
8115 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8116                                            enum netdev_offload_xstats_type type,
8117                                            struct rtnl_hw_stats64 *p_stats,
8118                                            bool *p_used,
8119                                            struct netlink_ext_ack *extack)
8120 {
8121         struct netdev_notifier_offload_xstats_rd report_delta = {};
8122         struct netdev_notifier_offload_xstats_info info = {
8123                 .info.dev = dev,
8124                 .info.extack = extack,
8125                 .type = type,
8126                 .report_delta = &report_delta,
8127         };
8128         struct rtnl_hw_stats64 *stats;
8129         int rc;
8130
8131         stats = netdev_offload_xstats_get_ptr(dev, type);
8132         if (WARN_ON(!stats))
8133                 return -EINVAL;
8134
8135         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8136                                            &info.info);
8137
8138         /* Cache whatever we got, even if there was an error, otherwise the
8139          * successful stats retrievals would get lost.
8140          */
8141         netdev_hw_stats64_add(stats, &report_delta.stats);
8142
8143         if (p_stats)
8144                 *p_stats = *stats;
8145         *p_used = report_delta.used;
8146
8147         return notifier_to_errno(rc);
8148 }
8149
8150 int netdev_offload_xstats_get(struct net_device *dev,
8151                               enum netdev_offload_xstats_type type,
8152                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8153                               struct netlink_ext_ack *extack)
8154 {
8155         ASSERT_RTNL();
8156
8157         if (p_stats)
8158                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8159                                                        p_used, extack);
8160         else
8161                 return netdev_offload_xstats_get_used(dev, type, p_used,
8162                                                       extack);
8163 }
8164 EXPORT_SYMBOL(netdev_offload_xstats_get);
8165
8166 void
8167 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8168                                    const struct rtnl_hw_stats64 *stats)
8169 {
8170         report_delta->used = true;
8171         netdev_hw_stats64_add(&report_delta->stats, stats);
8172 }
8173 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8174
8175 void
8176 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8177 {
8178         report_used->used = true;
8179 }
8180 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8181
8182 void netdev_offload_xstats_push_delta(struct net_device *dev,
8183                                       enum netdev_offload_xstats_type type,
8184                                       const struct rtnl_hw_stats64 *p_stats)
8185 {
8186         struct rtnl_hw_stats64 *stats;
8187
8188         ASSERT_RTNL();
8189
8190         stats = netdev_offload_xstats_get_ptr(dev, type);
8191         if (WARN_ON(!stats))
8192                 return;
8193
8194         netdev_hw_stats64_add(stats, p_stats);
8195 }
8196 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8197
8198 /**
8199  * netdev_get_xmit_slave - Get the xmit slave of master device
8200  * @dev: device
8201  * @skb: The packet
8202  * @all_slaves: assume all the slaves are active
8203  *
8204  * The reference counters are not incremented so the caller must be
8205  * careful with locks. The caller must hold RCU lock.
8206  * %NULL is returned if no slave is found.
8207  */
8208
8209 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8210                                          struct sk_buff *skb,
8211                                          bool all_slaves)
8212 {
8213         const struct net_device_ops *ops = dev->netdev_ops;
8214
8215         if (!ops->ndo_get_xmit_slave)
8216                 return NULL;
8217         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8218 }
8219 EXPORT_SYMBOL(netdev_get_xmit_slave);
8220
8221 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8222                                                   struct sock *sk)
8223 {
8224         const struct net_device_ops *ops = dev->netdev_ops;
8225
8226         if (!ops->ndo_sk_get_lower_dev)
8227                 return NULL;
8228         return ops->ndo_sk_get_lower_dev(dev, sk);
8229 }
8230
8231 /**
8232  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8233  * @dev: device
8234  * @sk: the socket
8235  *
8236  * %NULL is returned if no lower device is found.
8237  */
8238
8239 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8240                                             struct sock *sk)
8241 {
8242         struct net_device *lower;
8243
8244         lower = netdev_sk_get_lower_dev(dev, sk);
8245         while (lower) {
8246                 dev = lower;
8247                 lower = netdev_sk_get_lower_dev(dev, sk);
8248         }
8249
8250         return dev;
8251 }
8252 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8253
8254 static void netdev_adjacent_add_links(struct net_device *dev)
8255 {
8256         struct netdev_adjacent *iter;
8257
8258         struct net *net = dev_net(dev);
8259
8260         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8261                 if (!net_eq(net, dev_net(iter->dev)))
8262                         continue;
8263                 netdev_adjacent_sysfs_add(iter->dev, dev,
8264                                           &iter->dev->adj_list.lower);
8265                 netdev_adjacent_sysfs_add(dev, iter->dev,
8266                                           &dev->adj_list.upper);
8267         }
8268
8269         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8270                 if (!net_eq(net, dev_net(iter->dev)))
8271                         continue;
8272                 netdev_adjacent_sysfs_add(iter->dev, dev,
8273                                           &iter->dev->adj_list.upper);
8274                 netdev_adjacent_sysfs_add(dev, iter->dev,
8275                                           &dev->adj_list.lower);
8276         }
8277 }
8278
8279 static void netdev_adjacent_del_links(struct net_device *dev)
8280 {
8281         struct netdev_adjacent *iter;
8282
8283         struct net *net = dev_net(dev);
8284
8285         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8286                 if (!net_eq(net, dev_net(iter->dev)))
8287                         continue;
8288                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8289                                           &iter->dev->adj_list.lower);
8290                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8291                                           &dev->adj_list.upper);
8292         }
8293
8294         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8295                 if (!net_eq(net, dev_net(iter->dev)))
8296                         continue;
8297                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8298                                           &iter->dev->adj_list.upper);
8299                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8300                                           &dev->adj_list.lower);
8301         }
8302 }
8303
8304 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8305 {
8306         struct netdev_adjacent *iter;
8307
8308         struct net *net = dev_net(dev);
8309
8310         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8311                 if (!net_eq(net, dev_net(iter->dev)))
8312                         continue;
8313                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8314                                           &iter->dev->adj_list.lower);
8315                 netdev_adjacent_sysfs_add(iter->dev, dev,
8316                                           &iter->dev->adj_list.lower);
8317         }
8318
8319         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8320                 if (!net_eq(net, dev_net(iter->dev)))
8321                         continue;
8322                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8323                                           &iter->dev->adj_list.upper);
8324                 netdev_adjacent_sysfs_add(iter->dev, dev,
8325                                           &iter->dev->adj_list.upper);
8326         }
8327 }
8328
8329 void *netdev_lower_dev_get_private(struct net_device *dev,
8330                                    struct net_device *lower_dev)
8331 {
8332         struct netdev_adjacent *lower;
8333
8334         if (!lower_dev)
8335                 return NULL;
8336         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8337         if (!lower)
8338                 return NULL;
8339
8340         return lower->private;
8341 }
8342 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8343
8344
8345 /**
8346  * netdev_lower_state_changed - Dispatch event about lower device state change
8347  * @lower_dev: device
8348  * @lower_state_info: state to dispatch
8349  *
8350  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8351  * The caller must hold the RTNL lock.
8352  */
8353 void netdev_lower_state_changed(struct net_device *lower_dev,
8354                                 void *lower_state_info)
8355 {
8356         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8357                 .info.dev = lower_dev,
8358         };
8359
8360         ASSERT_RTNL();
8361         changelowerstate_info.lower_state_info = lower_state_info;
8362         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8363                                       &changelowerstate_info.info);
8364 }
8365 EXPORT_SYMBOL(netdev_lower_state_changed);
8366
8367 static void dev_change_rx_flags(struct net_device *dev, int flags)
8368 {
8369         const struct net_device_ops *ops = dev->netdev_ops;
8370
8371         if (ops->ndo_change_rx_flags)
8372                 ops->ndo_change_rx_flags(dev, flags);
8373 }
8374
8375 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8376 {
8377         unsigned int old_flags = dev->flags;
8378         kuid_t uid;
8379         kgid_t gid;
8380
8381         ASSERT_RTNL();
8382
8383         dev->flags |= IFF_PROMISC;
8384         dev->promiscuity += inc;
8385         if (dev->promiscuity == 0) {
8386                 /*
8387                  * Avoid overflow.
8388                  * If inc causes overflow, untouch promisc and return error.
8389                  */
8390                 if (inc < 0)
8391                         dev->flags &= ~IFF_PROMISC;
8392                 else {
8393                         dev->promiscuity -= inc;
8394                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8395                         return -EOVERFLOW;
8396                 }
8397         }
8398         if (dev->flags != old_flags) {
8399                 netdev_info(dev, "%s promiscuous mode\n",
8400                             dev->flags & IFF_PROMISC ? "entered" : "left");
8401                 if (audit_enabled) {
8402                         current_uid_gid(&uid, &gid);
8403                         audit_log(audit_context(), GFP_ATOMIC,
8404                                   AUDIT_ANOM_PROMISCUOUS,
8405                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8406                                   dev->name, (dev->flags & IFF_PROMISC),
8407                                   (old_flags & IFF_PROMISC),
8408                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8409                                   from_kuid(&init_user_ns, uid),
8410                                   from_kgid(&init_user_ns, gid),
8411                                   audit_get_sessionid(current));
8412                 }
8413
8414                 dev_change_rx_flags(dev, IFF_PROMISC);
8415         }
8416         if (notify)
8417                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8418         return 0;
8419 }
8420
8421 /**
8422  *      dev_set_promiscuity     - update promiscuity count on a device
8423  *      @dev: device
8424  *      @inc: modifier
8425  *
8426  *      Add or remove promiscuity from a device. While the count in the device
8427  *      remains above zero the interface remains promiscuous. Once it hits zero
8428  *      the device reverts back to normal filtering operation. A negative inc
8429  *      value is used to drop promiscuity on the device.
8430  *      Return 0 if successful or a negative errno code on error.
8431  */
8432 int dev_set_promiscuity(struct net_device *dev, int inc)
8433 {
8434         unsigned int old_flags = dev->flags;
8435         int err;
8436
8437         err = __dev_set_promiscuity(dev, inc, true);
8438         if (err < 0)
8439                 return err;
8440         if (dev->flags != old_flags)
8441                 dev_set_rx_mode(dev);
8442         return err;
8443 }
8444 EXPORT_SYMBOL(dev_set_promiscuity);
8445
8446 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8447 {
8448         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8449
8450         ASSERT_RTNL();
8451
8452         dev->flags |= IFF_ALLMULTI;
8453         dev->allmulti += inc;
8454         if (dev->allmulti == 0) {
8455                 /*
8456                  * Avoid overflow.
8457                  * If inc causes overflow, untouch allmulti and return error.
8458                  */
8459                 if (inc < 0)
8460                         dev->flags &= ~IFF_ALLMULTI;
8461                 else {
8462                         dev->allmulti -= inc;
8463                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8464                         return -EOVERFLOW;
8465                 }
8466         }
8467         if (dev->flags ^ old_flags) {
8468                 netdev_info(dev, "%s allmulticast mode\n",
8469                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8470                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8471                 dev_set_rx_mode(dev);
8472                 if (notify)
8473                         __dev_notify_flags(dev, old_flags,
8474                                            dev->gflags ^ old_gflags, 0, NULL);
8475         }
8476         return 0;
8477 }
8478
8479 /**
8480  *      dev_set_allmulti        - update allmulti count on a device
8481  *      @dev: device
8482  *      @inc: modifier
8483  *
8484  *      Add or remove reception of all multicast frames to a device. While the
8485  *      count in the device remains above zero the interface remains listening
8486  *      to all interfaces. Once it hits zero the device reverts back to normal
8487  *      filtering operation. A negative @inc value is used to drop the counter
8488  *      when releasing a resource needing all multicasts.
8489  *      Return 0 if successful or a negative errno code on error.
8490  */
8491
8492 int dev_set_allmulti(struct net_device *dev, int inc)
8493 {
8494         return __dev_set_allmulti(dev, inc, true);
8495 }
8496 EXPORT_SYMBOL(dev_set_allmulti);
8497
8498 /*
8499  *      Upload unicast and multicast address lists to device and
8500  *      configure RX filtering. When the device doesn't support unicast
8501  *      filtering it is put in promiscuous mode while unicast addresses
8502  *      are present.
8503  */
8504 void __dev_set_rx_mode(struct net_device *dev)
8505 {
8506         const struct net_device_ops *ops = dev->netdev_ops;
8507
8508         /* dev_open will call this function so the list will stay sane. */
8509         if (!(dev->flags&IFF_UP))
8510                 return;
8511
8512         if (!netif_device_present(dev))
8513                 return;
8514
8515         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8516                 /* Unicast addresses changes may only happen under the rtnl,
8517                  * therefore calling __dev_set_promiscuity here is safe.
8518                  */
8519                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8520                         __dev_set_promiscuity(dev, 1, false);
8521                         dev->uc_promisc = true;
8522                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8523                         __dev_set_promiscuity(dev, -1, false);
8524                         dev->uc_promisc = false;
8525                 }
8526         }
8527
8528         if (ops->ndo_set_rx_mode)
8529                 ops->ndo_set_rx_mode(dev);
8530 }
8531
8532 void dev_set_rx_mode(struct net_device *dev)
8533 {
8534         netif_addr_lock_bh(dev);
8535         __dev_set_rx_mode(dev);
8536         netif_addr_unlock_bh(dev);
8537 }
8538
8539 /**
8540  *      dev_get_flags - get flags reported to userspace
8541  *      @dev: device
8542  *
8543  *      Get the combination of flag bits exported through APIs to userspace.
8544  */
8545 unsigned int dev_get_flags(const struct net_device *dev)
8546 {
8547         unsigned int flags;
8548
8549         flags = (dev->flags & ~(IFF_PROMISC |
8550                                 IFF_ALLMULTI |
8551                                 IFF_RUNNING |
8552                                 IFF_LOWER_UP |
8553                                 IFF_DORMANT)) |
8554                 (dev->gflags & (IFF_PROMISC |
8555                                 IFF_ALLMULTI));
8556
8557         if (netif_running(dev)) {
8558                 if (netif_oper_up(dev))
8559                         flags |= IFF_RUNNING;
8560                 if (netif_carrier_ok(dev))
8561                         flags |= IFF_LOWER_UP;
8562                 if (netif_dormant(dev))
8563                         flags |= IFF_DORMANT;
8564         }
8565
8566         return flags;
8567 }
8568 EXPORT_SYMBOL(dev_get_flags);
8569
8570 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8571                        struct netlink_ext_ack *extack)
8572 {
8573         unsigned int old_flags = dev->flags;
8574         int ret;
8575
8576         ASSERT_RTNL();
8577
8578         /*
8579          *      Set the flags on our device.
8580          */
8581
8582         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8583                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8584                                IFF_AUTOMEDIA)) |
8585                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8586                                     IFF_ALLMULTI));
8587
8588         /*
8589          *      Load in the correct multicast list now the flags have changed.
8590          */
8591
8592         if ((old_flags ^ flags) & IFF_MULTICAST)
8593                 dev_change_rx_flags(dev, IFF_MULTICAST);
8594
8595         dev_set_rx_mode(dev);
8596
8597         /*
8598          *      Have we downed the interface. We handle IFF_UP ourselves
8599          *      according to user attempts to set it, rather than blindly
8600          *      setting it.
8601          */
8602
8603         ret = 0;
8604         if ((old_flags ^ flags) & IFF_UP) {
8605                 if (old_flags & IFF_UP)
8606                         __dev_close(dev);
8607                 else
8608                         ret = __dev_open(dev, extack);
8609         }
8610
8611         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8612                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8613                 unsigned int old_flags = dev->flags;
8614
8615                 dev->gflags ^= IFF_PROMISC;
8616
8617                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8618                         if (dev->flags != old_flags)
8619                                 dev_set_rx_mode(dev);
8620         }
8621
8622         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8623          * is important. Some (broken) drivers set IFF_PROMISC, when
8624          * IFF_ALLMULTI is requested not asking us and not reporting.
8625          */
8626         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8627                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8628
8629                 dev->gflags ^= IFF_ALLMULTI;
8630                 __dev_set_allmulti(dev, inc, false);
8631         }
8632
8633         return ret;
8634 }
8635
8636 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8637                         unsigned int gchanges, u32 portid,
8638                         const struct nlmsghdr *nlh)
8639 {
8640         unsigned int changes = dev->flags ^ old_flags;
8641
8642         if (gchanges)
8643                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8644
8645         if (changes & IFF_UP) {
8646                 if (dev->flags & IFF_UP)
8647                         call_netdevice_notifiers(NETDEV_UP, dev);
8648                 else
8649                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8650         }
8651
8652         if (dev->flags & IFF_UP &&
8653             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8654                 struct netdev_notifier_change_info change_info = {
8655                         .info = {
8656                                 .dev = dev,
8657                         },
8658                         .flags_changed = changes,
8659                 };
8660
8661                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8662         }
8663 }
8664
8665 /**
8666  *      dev_change_flags - change device settings
8667  *      @dev: device
8668  *      @flags: device state flags
8669  *      @extack: netlink extended ack
8670  *
8671  *      Change settings on device based state flags. The flags are
8672  *      in the userspace exported format.
8673  */
8674 int dev_change_flags(struct net_device *dev, unsigned int flags,
8675                      struct netlink_ext_ack *extack)
8676 {
8677         int ret;
8678         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8679
8680         ret = __dev_change_flags(dev, flags, extack);
8681         if (ret < 0)
8682                 return ret;
8683
8684         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8685         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8686         return ret;
8687 }
8688 EXPORT_SYMBOL(dev_change_flags);
8689
8690 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8691 {
8692         const struct net_device_ops *ops = dev->netdev_ops;
8693
8694         if (ops->ndo_change_mtu)
8695                 return ops->ndo_change_mtu(dev, new_mtu);
8696
8697         /* Pairs with all the lockless reads of dev->mtu in the stack */
8698         WRITE_ONCE(dev->mtu, new_mtu);
8699         return 0;
8700 }
8701 EXPORT_SYMBOL(__dev_set_mtu);
8702
8703 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8704                      struct netlink_ext_ack *extack)
8705 {
8706         /* MTU must be positive, and in range */
8707         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8708                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8709                 return -EINVAL;
8710         }
8711
8712         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8713                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8714                 return -EINVAL;
8715         }
8716         return 0;
8717 }
8718
8719 /**
8720  *      dev_set_mtu_ext - Change maximum transfer unit
8721  *      @dev: device
8722  *      @new_mtu: new transfer unit
8723  *      @extack: netlink extended ack
8724  *
8725  *      Change the maximum transfer size of the network device.
8726  */
8727 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8728                     struct netlink_ext_ack *extack)
8729 {
8730         int err, orig_mtu;
8731
8732         if (new_mtu == dev->mtu)
8733                 return 0;
8734
8735         err = dev_validate_mtu(dev, new_mtu, extack);
8736         if (err)
8737                 return err;
8738
8739         if (!netif_device_present(dev))
8740                 return -ENODEV;
8741
8742         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8743         err = notifier_to_errno(err);
8744         if (err)
8745                 return err;
8746
8747         orig_mtu = dev->mtu;
8748         err = __dev_set_mtu(dev, new_mtu);
8749
8750         if (!err) {
8751                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8752                                                    orig_mtu);
8753                 err = notifier_to_errno(err);
8754                 if (err) {
8755                         /* setting mtu back and notifying everyone again,
8756                          * so that they have a chance to revert changes.
8757                          */
8758                         __dev_set_mtu(dev, orig_mtu);
8759                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8760                                                      new_mtu);
8761                 }
8762         }
8763         return err;
8764 }
8765
8766 int dev_set_mtu(struct net_device *dev, int new_mtu)
8767 {
8768         struct netlink_ext_ack extack;
8769         int err;
8770
8771         memset(&extack, 0, sizeof(extack));
8772         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8773         if (err && extack._msg)
8774                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8775         return err;
8776 }
8777 EXPORT_SYMBOL(dev_set_mtu);
8778
8779 /**
8780  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8781  *      @dev: device
8782  *      @new_len: new tx queue length
8783  */
8784 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8785 {
8786         unsigned int orig_len = dev->tx_queue_len;
8787         int res;
8788
8789         if (new_len != (unsigned int)new_len)
8790                 return -ERANGE;
8791
8792         if (new_len != orig_len) {
8793                 dev->tx_queue_len = new_len;
8794                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8795                 res = notifier_to_errno(res);
8796                 if (res)
8797                         goto err_rollback;
8798                 res = dev_qdisc_change_tx_queue_len(dev);
8799                 if (res)
8800                         goto err_rollback;
8801         }
8802
8803         return 0;
8804
8805 err_rollback:
8806         netdev_err(dev, "refused to change device tx_queue_len\n");
8807         dev->tx_queue_len = orig_len;
8808         return res;
8809 }
8810
8811 /**
8812  *      dev_set_group - Change group this device belongs to
8813  *      @dev: device
8814  *      @new_group: group this device should belong to
8815  */
8816 void dev_set_group(struct net_device *dev, int new_group)
8817 {
8818         dev->group = new_group;
8819 }
8820
8821 /**
8822  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8823  *      @dev: device
8824  *      @addr: new address
8825  *      @extack: netlink extended ack
8826  */
8827 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8828                               struct netlink_ext_ack *extack)
8829 {
8830         struct netdev_notifier_pre_changeaddr_info info = {
8831                 .info.dev = dev,
8832                 .info.extack = extack,
8833                 .dev_addr = addr,
8834         };
8835         int rc;
8836
8837         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8838         return notifier_to_errno(rc);
8839 }
8840 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8841
8842 /**
8843  *      dev_set_mac_address - Change Media Access Control Address
8844  *      @dev: device
8845  *      @sa: new address
8846  *      @extack: netlink extended ack
8847  *
8848  *      Change the hardware (MAC) address of the device
8849  */
8850 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8851                         struct netlink_ext_ack *extack)
8852 {
8853         const struct net_device_ops *ops = dev->netdev_ops;
8854         int err;
8855
8856         if (!ops->ndo_set_mac_address)
8857                 return -EOPNOTSUPP;
8858         if (sa->sa_family != dev->type)
8859                 return -EINVAL;
8860         if (!netif_device_present(dev))
8861                 return -ENODEV;
8862         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8863         if (err)
8864                 return err;
8865         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8866                 err = ops->ndo_set_mac_address(dev, sa);
8867                 if (err)
8868                         return err;
8869         }
8870         dev->addr_assign_type = NET_ADDR_SET;
8871         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8872         add_device_randomness(dev->dev_addr, dev->addr_len);
8873         return 0;
8874 }
8875 EXPORT_SYMBOL(dev_set_mac_address);
8876
8877 static DECLARE_RWSEM(dev_addr_sem);
8878
8879 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8880                              struct netlink_ext_ack *extack)
8881 {
8882         int ret;
8883
8884         down_write(&dev_addr_sem);
8885         ret = dev_set_mac_address(dev, sa, extack);
8886         up_write(&dev_addr_sem);
8887         return ret;
8888 }
8889 EXPORT_SYMBOL(dev_set_mac_address_user);
8890
8891 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8892 {
8893         size_t size = sizeof(sa->sa_data_min);
8894         struct net_device *dev;
8895         int ret = 0;
8896
8897         down_read(&dev_addr_sem);
8898         rcu_read_lock();
8899
8900         dev = dev_get_by_name_rcu(net, dev_name);
8901         if (!dev) {
8902                 ret = -ENODEV;
8903                 goto unlock;
8904         }
8905         if (!dev->addr_len)
8906                 memset(sa->sa_data, 0, size);
8907         else
8908                 memcpy(sa->sa_data, dev->dev_addr,
8909                        min_t(size_t, size, dev->addr_len));
8910         sa->sa_family = dev->type;
8911
8912 unlock:
8913         rcu_read_unlock();
8914         up_read(&dev_addr_sem);
8915         return ret;
8916 }
8917 EXPORT_SYMBOL(dev_get_mac_address);
8918
8919 /**
8920  *      dev_change_carrier - Change device carrier
8921  *      @dev: device
8922  *      @new_carrier: new value
8923  *
8924  *      Change device carrier
8925  */
8926 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8927 {
8928         const struct net_device_ops *ops = dev->netdev_ops;
8929
8930         if (!ops->ndo_change_carrier)
8931                 return -EOPNOTSUPP;
8932         if (!netif_device_present(dev))
8933                 return -ENODEV;
8934         return ops->ndo_change_carrier(dev, new_carrier);
8935 }
8936
8937 /**
8938  *      dev_get_phys_port_id - Get device physical port ID
8939  *      @dev: device
8940  *      @ppid: port ID
8941  *
8942  *      Get device physical port ID
8943  */
8944 int dev_get_phys_port_id(struct net_device *dev,
8945                          struct netdev_phys_item_id *ppid)
8946 {
8947         const struct net_device_ops *ops = dev->netdev_ops;
8948
8949         if (!ops->ndo_get_phys_port_id)
8950                 return -EOPNOTSUPP;
8951         return ops->ndo_get_phys_port_id(dev, ppid);
8952 }
8953
8954 /**
8955  *      dev_get_phys_port_name - Get device physical port name
8956  *      @dev: device
8957  *      @name: port name
8958  *      @len: limit of bytes to copy to name
8959  *
8960  *      Get device physical port name
8961  */
8962 int dev_get_phys_port_name(struct net_device *dev,
8963                            char *name, size_t len)
8964 {
8965         const struct net_device_ops *ops = dev->netdev_ops;
8966         int err;
8967
8968         if (ops->ndo_get_phys_port_name) {
8969                 err = ops->ndo_get_phys_port_name(dev, name, len);
8970                 if (err != -EOPNOTSUPP)
8971                         return err;
8972         }
8973         return devlink_compat_phys_port_name_get(dev, name, len);
8974 }
8975
8976 /**
8977  *      dev_get_port_parent_id - Get the device's port parent identifier
8978  *      @dev: network device
8979  *      @ppid: pointer to a storage for the port's parent identifier
8980  *      @recurse: allow/disallow recursion to lower devices
8981  *
8982  *      Get the devices's port parent identifier
8983  */
8984 int dev_get_port_parent_id(struct net_device *dev,
8985                            struct netdev_phys_item_id *ppid,
8986                            bool recurse)
8987 {
8988         const struct net_device_ops *ops = dev->netdev_ops;
8989         struct netdev_phys_item_id first = { };
8990         struct net_device *lower_dev;
8991         struct list_head *iter;
8992         int err;
8993
8994         if (ops->ndo_get_port_parent_id) {
8995                 err = ops->ndo_get_port_parent_id(dev, ppid);
8996                 if (err != -EOPNOTSUPP)
8997                         return err;
8998         }
8999
9000         err = devlink_compat_switch_id_get(dev, ppid);
9001         if (!recurse || err != -EOPNOTSUPP)
9002                 return err;
9003
9004         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9005                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9006                 if (err)
9007                         break;
9008                 if (!first.id_len)
9009                         first = *ppid;
9010                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9011                         return -EOPNOTSUPP;
9012         }
9013
9014         return err;
9015 }
9016 EXPORT_SYMBOL(dev_get_port_parent_id);
9017
9018 /**
9019  *      netdev_port_same_parent_id - Indicate if two network devices have
9020  *      the same port parent identifier
9021  *      @a: first network device
9022  *      @b: second network device
9023  */
9024 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9025 {
9026         struct netdev_phys_item_id a_id = { };
9027         struct netdev_phys_item_id b_id = { };
9028
9029         if (dev_get_port_parent_id(a, &a_id, true) ||
9030             dev_get_port_parent_id(b, &b_id, true))
9031                 return false;
9032
9033         return netdev_phys_item_id_same(&a_id, &b_id);
9034 }
9035 EXPORT_SYMBOL(netdev_port_same_parent_id);
9036
9037 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9038 {
9039 #if IS_ENABLED(CONFIG_DPLL)
9040         rtnl_lock();
9041         dev->dpll_pin = dpll_pin;
9042         rtnl_unlock();
9043 #endif
9044 }
9045
9046 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9047 {
9048         WARN_ON(!dpll_pin);
9049         netdev_dpll_pin_assign(dev, dpll_pin);
9050 }
9051 EXPORT_SYMBOL(netdev_dpll_pin_set);
9052
9053 void netdev_dpll_pin_clear(struct net_device *dev)
9054 {
9055         netdev_dpll_pin_assign(dev, NULL);
9056 }
9057 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9058
9059 /**
9060  *      dev_change_proto_down - set carrier according to proto_down.
9061  *
9062  *      @dev: device
9063  *      @proto_down: new value
9064  */
9065 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9066 {
9067         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9068                 return -EOPNOTSUPP;
9069         if (!netif_device_present(dev))
9070                 return -ENODEV;
9071         if (proto_down)
9072                 netif_carrier_off(dev);
9073         else
9074                 netif_carrier_on(dev);
9075         dev->proto_down = proto_down;
9076         return 0;
9077 }
9078
9079 /**
9080  *      dev_change_proto_down_reason - proto down reason
9081  *
9082  *      @dev: device
9083  *      @mask: proto down mask
9084  *      @value: proto down value
9085  */
9086 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9087                                   u32 value)
9088 {
9089         int b;
9090
9091         if (!mask) {
9092                 dev->proto_down_reason = value;
9093         } else {
9094                 for_each_set_bit(b, &mask, 32) {
9095                         if (value & (1 << b))
9096                                 dev->proto_down_reason |= BIT(b);
9097                         else
9098                                 dev->proto_down_reason &= ~BIT(b);
9099                 }
9100         }
9101 }
9102
9103 struct bpf_xdp_link {
9104         struct bpf_link link;
9105         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9106         int flags;
9107 };
9108
9109 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9110 {
9111         if (flags & XDP_FLAGS_HW_MODE)
9112                 return XDP_MODE_HW;
9113         if (flags & XDP_FLAGS_DRV_MODE)
9114                 return XDP_MODE_DRV;
9115         if (flags & XDP_FLAGS_SKB_MODE)
9116                 return XDP_MODE_SKB;
9117         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9118 }
9119
9120 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9121 {
9122         switch (mode) {
9123         case XDP_MODE_SKB:
9124                 return generic_xdp_install;
9125         case XDP_MODE_DRV:
9126         case XDP_MODE_HW:
9127                 return dev->netdev_ops->ndo_bpf;
9128         default:
9129                 return NULL;
9130         }
9131 }
9132
9133 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9134                                          enum bpf_xdp_mode mode)
9135 {
9136         return dev->xdp_state[mode].link;
9137 }
9138
9139 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9140                                      enum bpf_xdp_mode mode)
9141 {
9142         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9143
9144         if (link)
9145                 return link->link.prog;
9146         return dev->xdp_state[mode].prog;
9147 }
9148
9149 u8 dev_xdp_prog_count(struct net_device *dev)
9150 {
9151         u8 count = 0;
9152         int i;
9153
9154         for (i = 0; i < __MAX_XDP_MODE; i++)
9155                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9156                         count++;
9157         return count;
9158 }
9159 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9160
9161 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9162 {
9163         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9164
9165         return prog ? prog->aux->id : 0;
9166 }
9167
9168 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9169                              struct bpf_xdp_link *link)
9170 {
9171         dev->xdp_state[mode].link = link;
9172         dev->xdp_state[mode].prog = NULL;
9173 }
9174
9175 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9176                              struct bpf_prog *prog)
9177 {
9178         dev->xdp_state[mode].link = NULL;
9179         dev->xdp_state[mode].prog = prog;
9180 }
9181
9182 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9183                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9184                            u32 flags, struct bpf_prog *prog)
9185 {
9186         struct netdev_bpf xdp;
9187         int err;
9188
9189         memset(&xdp, 0, sizeof(xdp));
9190         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9191         xdp.extack = extack;
9192         xdp.flags = flags;
9193         xdp.prog = prog;
9194
9195         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9196          * "moved" into driver), so they don't increment it on their own, but
9197          * they do decrement refcnt when program is detached or replaced.
9198          * Given net_device also owns link/prog, we need to bump refcnt here
9199          * to prevent drivers from underflowing it.
9200          */
9201         if (prog)
9202                 bpf_prog_inc(prog);
9203         err = bpf_op(dev, &xdp);
9204         if (err) {
9205                 if (prog)
9206                         bpf_prog_put(prog);
9207                 return err;
9208         }
9209
9210         if (mode != XDP_MODE_HW)
9211                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9212
9213         return 0;
9214 }
9215
9216 static void dev_xdp_uninstall(struct net_device *dev)
9217 {
9218         struct bpf_xdp_link *link;
9219         struct bpf_prog *prog;
9220         enum bpf_xdp_mode mode;
9221         bpf_op_t bpf_op;
9222
9223         ASSERT_RTNL();
9224
9225         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9226                 prog = dev_xdp_prog(dev, mode);
9227                 if (!prog)
9228                         continue;
9229
9230                 bpf_op = dev_xdp_bpf_op(dev, mode);
9231                 if (!bpf_op)
9232                         continue;
9233
9234                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9235
9236                 /* auto-detach link from net device */
9237                 link = dev_xdp_link(dev, mode);
9238                 if (link)
9239                         link->dev = NULL;
9240                 else
9241                         bpf_prog_put(prog);
9242
9243                 dev_xdp_set_link(dev, mode, NULL);
9244         }
9245 }
9246
9247 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9248                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9249                           struct bpf_prog *old_prog, u32 flags)
9250 {
9251         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9252         struct bpf_prog *cur_prog;
9253         struct net_device *upper;
9254         struct list_head *iter;
9255         enum bpf_xdp_mode mode;
9256         bpf_op_t bpf_op;
9257         int err;
9258
9259         ASSERT_RTNL();
9260
9261         /* either link or prog attachment, never both */
9262         if (link && (new_prog || old_prog))
9263                 return -EINVAL;
9264         /* link supports only XDP mode flags */
9265         if (link && (flags & ~XDP_FLAGS_MODES)) {
9266                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9267                 return -EINVAL;
9268         }
9269         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9270         if (num_modes > 1) {
9271                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9272                 return -EINVAL;
9273         }
9274         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9275         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9276                 NL_SET_ERR_MSG(extack,
9277                                "More than one program loaded, unset mode is ambiguous");
9278                 return -EINVAL;
9279         }
9280         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9281         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9282                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9283                 return -EINVAL;
9284         }
9285
9286         mode = dev_xdp_mode(dev, flags);
9287         /* can't replace attached link */
9288         if (dev_xdp_link(dev, mode)) {
9289                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9290                 return -EBUSY;
9291         }
9292
9293         /* don't allow if an upper device already has a program */
9294         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9295                 if (dev_xdp_prog_count(upper) > 0) {
9296                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9297                         return -EEXIST;
9298                 }
9299         }
9300
9301         cur_prog = dev_xdp_prog(dev, mode);
9302         /* can't replace attached prog with link */
9303         if (link && cur_prog) {
9304                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9305                 return -EBUSY;
9306         }
9307         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9308                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9309                 return -EEXIST;
9310         }
9311
9312         /* put effective new program into new_prog */
9313         if (link)
9314                 new_prog = link->link.prog;
9315
9316         if (new_prog) {
9317                 bool offload = mode == XDP_MODE_HW;
9318                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9319                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9320
9321                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9322                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9323                         return -EBUSY;
9324                 }
9325                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9326                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9327                         return -EEXIST;
9328                 }
9329                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9330                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9331                         return -EINVAL;
9332                 }
9333                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9334                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9335                         return -EINVAL;
9336                 }
9337                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9338                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9339                         return -EINVAL;
9340                 }
9341                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9342                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9343                         return -EINVAL;
9344                 }
9345         }
9346
9347         /* don't call drivers if the effective program didn't change */
9348         if (new_prog != cur_prog) {
9349                 bpf_op = dev_xdp_bpf_op(dev, mode);
9350                 if (!bpf_op) {
9351                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9352                         return -EOPNOTSUPP;
9353                 }
9354
9355                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9356                 if (err)
9357                         return err;
9358         }
9359
9360         if (link)
9361                 dev_xdp_set_link(dev, mode, link);
9362         else
9363                 dev_xdp_set_prog(dev, mode, new_prog);
9364         if (cur_prog)
9365                 bpf_prog_put(cur_prog);
9366
9367         return 0;
9368 }
9369
9370 static int dev_xdp_attach_link(struct net_device *dev,
9371                                struct netlink_ext_ack *extack,
9372                                struct bpf_xdp_link *link)
9373 {
9374         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9375 }
9376
9377 static int dev_xdp_detach_link(struct net_device *dev,
9378                                struct netlink_ext_ack *extack,
9379                                struct bpf_xdp_link *link)
9380 {
9381         enum bpf_xdp_mode mode;
9382         bpf_op_t bpf_op;
9383
9384         ASSERT_RTNL();
9385
9386         mode = dev_xdp_mode(dev, link->flags);
9387         if (dev_xdp_link(dev, mode) != link)
9388                 return -EINVAL;
9389
9390         bpf_op = dev_xdp_bpf_op(dev, mode);
9391         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9392         dev_xdp_set_link(dev, mode, NULL);
9393         return 0;
9394 }
9395
9396 static void bpf_xdp_link_release(struct bpf_link *link)
9397 {
9398         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9399
9400         rtnl_lock();
9401
9402         /* if racing with net_device's tear down, xdp_link->dev might be
9403          * already NULL, in which case link was already auto-detached
9404          */
9405         if (xdp_link->dev) {
9406                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9407                 xdp_link->dev = NULL;
9408         }
9409
9410         rtnl_unlock();
9411 }
9412
9413 static int bpf_xdp_link_detach(struct bpf_link *link)
9414 {
9415         bpf_xdp_link_release(link);
9416         return 0;
9417 }
9418
9419 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9420 {
9421         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9422
9423         kfree(xdp_link);
9424 }
9425
9426 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9427                                      struct seq_file *seq)
9428 {
9429         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9430         u32 ifindex = 0;
9431
9432         rtnl_lock();
9433         if (xdp_link->dev)
9434                 ifindex = xdp_link->dev->ifindex;
9435         rtnl_unlock();
9436
9437         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9438 }
9439
9440 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9441                                        struct bpf_link_info *info)
9442 {
9443         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9444         u32 ifindex = 0;
9445
9446         rtnl_lock();
9447         if (xdp_link->dev)
9448                 ifindex = xdp_link->dev->ifindex;
9449         rtnl_unlock();
9450
9451         info->xdp.ifindex = ifindex;
9452         return 0;
9453 }
9454
9455 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9456                                struct bpf_prog *old_prog)
9457 {
9458         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9459         enum bpf_xdp_mode mode;
9460         bpf_op_t bpf_op;
9461         int err = 0;
9462
9463         rtnl_lock();
9464
9465         /* link might have been auto-released already, so fail */
9466         if (!xdp_link->dev) {
9467                 err = -ENOLINK;
9468                 goto out_unlock;
9469         }
9470
9471         if (old_prog && link->prog != old_prog) {
9472                 err = -EPERM;
9473                 goto out_unlock;
9474         }
9475         old_prog = link->prog;
9476         if (old_prog->type != new_prog->type ||
9477             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9478                 err = -EINVAL;
9479                 goto out_unlock;
9480         }
9481
9482         if (old_prog == new_prog) {
9483                 /* no-op, don't disturb drivers */
9484                 bpf_prog_put(new_prog);
9485                 goto out_unlock;
9486         }
9487
9488         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9489         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9490         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9491                               xdp_link->flags, new_prog);
9492         if (err)
9493                 goto out_unlock;
9494
9495         old_prog = xchg(&link->prog, new_prog);
9496         bpf_prog_put(old_prog);
9497
9498 out_unlock:
9499         rtnl_unlock();
9500         return err;
9501 }
9502
9503 static const struct bpf_link_ops bpf_xdp_link_lops = {
9504         .release = bpf_xdp_link_release,
9505         .dealloc = bpf_xdp_link_dealloc,
9506         .detach = bpf_xdp_link_detach,
9507         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9508         .fill_link_info = bpf_xdp_link_fill_link_info,
9509         .update_prog = bpf_xdp_link_update,
9510 };
9511
9512 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9513 {
9514         struct net *net = current->nsproxy->net_ns;
9515         struct bpf_link_primer link_primer;
9516         struct netlink_ext_ack extack = {};
9517         struct bpf_xdp_link *link;
9518         struct net_device *dev;
9519         int err, fd;
9520
9521         rtnl_lock();
9522         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9523         if (!dev) {
9524                 rtnl_unlock();
9525                 return -EINVAL;
9526         }
9527
9528         link = kzalloc(sizeof(*link), GFP_USER);
9529         if (!link) {
9530                 err = -ENOMEM;
9531                 goto unlock;
9532         }
9533
9534         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9535         link->dev = dev;
9536         link->flags = attr->link_create.flags;
9537
9538         err = bpf_link_prime(&link->link, &link_primer);
9539         if (err) {
9540                 kfree(link);
9541                 goto unlock;
9542         }
9543
9544         err = dev_xdp_attach_link(dev, &extack, link);
9545         rtnl_unlock();
9546
9547         if (err) {
9548                 link->dev = NULL;
9549                 bpf_link_cleanup(&link_primer);
9550                 trace_bpf_xdp_link_attach_failed(extack._msg);
9551                 goto out_put_dev;
9552         }
9553
9554         fd = bpf_link_settle(&link_primer);
9555         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9556         dev_put(dev);
9557         return fd;
9558
9559 unlock:
9560         rtnl_unlock();
9561
9562 out_put_dev:
9563         dev_put(dev);
9564         return err;
9565 }
9566
9567 /**
9568  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9569  *      @dev: device
9570  *      @extack: netlink extended ack
9571  *      @fd: new program fd or negative value to clear
9572  *      @expected_fd: old program fd that userspace expects to replace or clear
9573  *      @flags: xdp-related flags
9574  *
9575  *      Set or clear a bpf program for a device
9576  */
9577 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9578                       int fd, int expected_fd, u32 flags)
9579 {
9580         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9581         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9582         int err;
9583
9584         ASSERT_RTNL();
9585
9586         if (fd >= 0) {
9587                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9588                                                  mode != XDP_MODE_SKB);
9589                 if (IS_ERR(new_prog))
9590                         return PTR_ERR(new_prog);
9591         }
9592
9593         if (expected_fd >= 0) {
9594                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9595                                                  mode != XDP_MODE_SKB);
9596                 if (IS_ERR(old_prog)) {
9597                         err = PTR_ERR(old_prog);
9598                         old_prog = NULL;
9599                         goto err_out;
9600                 }
9601         }
9602
9603         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9604
9605 err_out:
9606         if (err && new_prog)
9607                 bpf_prog_put(new_prog);
9608         if (old_prog)
9609                 bpf_prog_put(old_prog);
9610         return err;
9611 }
9612
9613 /**
9614  * dev_index_reserve() - allocate an ifindex in a namespace
9615  * @net: the applicable net namespace
9616  * @ifindex: requested ifindex, pass %0 to get one allocated
9617  *
9618  * Allocate a ifindex for a new device. Caller must either use the ifindex
9619  * to store the device (via list_netdevice()) or call dev_index_release()
9620  * to give the index up.
9621  *
9622  * Return: a suitable unique value for a new device interface number or -errno.
9623  */
9624 static int dev_index_reserve(struct net *net, u32 ifindex)
9625 {
9626         int err;
9627
9628         if (ifindex > INT_MAX) {
9629                 DEBUG_NET_WARN_ON_ONCE(1);
9630                 return -EINVAL;
9631         }
9632
9633         if (!ifindex)
9634                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9635                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9636         else
9637                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9638         if (err < 0)
9639                 return err;
9640
9641         return ifindex;
9642 }
9643
9644 static void dev_index_release(struct net *net, int ifindex)
9645 {
9646         /* Expect only unused indexes, unlist_netdevice() removes the used */
9647         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9648 }
9649
9650 /* Delayed registration/unregisteration */
9651 LIST_HEAD(net_todo_list);
9652 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9653
9654 static void net_set_todo(struct net_device *dev)
9655 {
9656         list_add_tail(&dev->todo_list, &net_todo_list);
9657         atomic_inc(&dev_net(dev)->dev_unreg_count);
9658 }
9659
9660 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9661         struct net_device *upper, netdev_features_t features)
9662 {
9663         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9664         netdev_features_t feature;
9665         int feature_bit;
9666
9667         for_each_netdev_feature(upper_disables, feature_bit) {
9668                 feature = __NETIF_F_BIT(feature_bit);
9669                 if (!(upper->wanted_features & feature)
9670                     && (features & feature)) {
9671                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9672                                    &feature, upper->name);
9673                         features &= ~feature;
9674                 }
9675         }
9676
9677         return features;
9678 }
9679
9680 static void netdev_sync_lower_features(struct net_device *upper,
9681         struct net_device *lower, netdev_features_t features)
9682 {
9683         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9684         netdev_features_t feature;
9685         int feature_bit;
9686
9687         for_each_netdev_feature(upper_disables, feature_bit) {
9688                 feature = __NETIF_F_BIT(feature_bit);
9689                 if (!(features & feature) && (lower->features & feature)) {
9690                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9691                                    &feature, lower->name);
9692                         lower->wanted_features &= ~feature;
9693                         __netdev_update_features(lower);
9694
9695                         if (unlikely(lower->features & feature))
9696                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9697                                             &feature, lower->name);
9698                         else
9699                                 netdev_features_change(lower);
9700                 }
9701         }
9702 }
9703
9704 static netdev_features_t netdev_fix_features(struct net_device *dev,
9705         netdev_features_t features)
9706 {
9707         /* Fix illegal checksum combinations */
9708         if ((features & NETIF_F_HW_CSUM) &&
9709             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9710                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9711                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9712         }
9713
9714         /* TSO requires that SG is present as well. */
9715         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9716                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9717                 features &= ~NETIF_F_ALL_TSO;
9718         }
9719
9720         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9721                                         !(features & NETIF_F_IP_CSUM)) {
9722                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9723                 features &= ~NETIF_F_TSO;
9724                 features &= ~NETIF_F_TSO_ECN;
9725         }
9726
9727         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9728                                          !(features & NETIF_F_IPV6_CSUM)) {
9729                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9730                 features &= ~NETIF_F_TSO6;
9731         }
9732
9733         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9734         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9735                 features &= ~NETIF_F_TSO_MANGLEID;
9736
9737         /* TSO ECN requires that TSO is present as well. */
9738         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9739                 features &= ~NETIF_F_TSO_ECN;
9740
9741         /* Software GSO depends on SG. */
9742         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9743                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9744                 features &= ~NETIF_F_GSO;
9745         }
9746
9747         /* GSO partial features require GSO partial be set */
9748         if ((features & dev->gso_partial_features) &&
9749             !(features & NETIF_F_GSO_PARTIAL)) {
9750                 netdev_dbg(dev,
9751                            "Dropping partially supported GSO features since no GSO partial.\n");
9752                 features &= ~dev->gso_partial_features;
9753         }
9754
9755         if (!(features & NETIF_F_RXCSUM)) {
9756                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9757                  * successfully merged by hardware must also have the
9758                  * checksum verified by hardware.  If the user does not
9759                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9760                  */
9761                 if (features & NETIF_F_GRO_HW) {
9762                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9763                         features &= ~NETIF_F_GRO_HW;
9764                 }
9765         }
9766
9767         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9768         if (features & NETIF_F_RXFCS) {
9769                 if (features & NETIF_F_LRO) {
9770                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9771                         features &= ~NETIF_F_LRO;
9772                 }
9773
9774                 if (features & NETIF_F_GRO_HW) {
9775                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9776                         features &= ~NETIF_F_GRO_HW;
9777                 }
9778         }
9779
9780         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9781                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9782                 features &= ~NETIF_F_LRO;
9783         }
9784
9785         if (features & NETIF_F_HW_TLS_TX) {
9786                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9787                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9788                 bool hw_csum = features & NETIF_F_HW_CSUM;
9789
9790                 if (!ip_csum && !hw_csum) {
9791                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9792                         features &= ~NETIF_F_HW_TLS_TX;
9793                 }
9794         }
9795
9796         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9797                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9798                 features &= ~NETIF_F_HW_TLS_RX;
9799         }
9800
9801         return features;
9802 }
9803
9804 int __netdev_update_features(struct net_device *dev)
9805 {
9806         struct net_device *upper, *lower;
9807         netdev_features_t features;
9808         struct list_head *iter;
9809         int err = -1;
9810
9811         ASSERT_RTNL();
9812
9813         features = netdev_get_wanted_features(dev);
9814
9815         if (dev->netdev_ops->ndo_fix_features)
9816                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9817
9818         /* driver might be less strict about feature dependencies */
9819         features = netdev_fix_features(dev, features);
9820
9821         /* some features can't be enabled if they're off on an upper device */
9822         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9823                 features = netdev_sync_upper_features(dev, upper, features);
9824
9825         if (dev->features == features)
9826                 goto sync_lower;
9827
9828         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9829                 &dev->features, &features);
9830
9831         if (dev->netdev_ops->ndo_set_features)
9832                 err = dev->netdev_ops->ndo_set_features(dev, features);
9833         else
9834                 err = 0;
9835
9836         if (unlikely(err < 0)) {
9837                 netdev_err(dev,
9838                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9839                         err, &features, &dev->features);
9840                 /* return non-0 since some features might have changed and
9841                  * it's better to fire a spurious notification than miss it
9842                  */
9843                 return -1;
9844         }
9845
9846 sync_lower:
9847         /* some features must be disabled on lower devices when disabled
9848          * on an upper device (think: bonding master or bridge)
9849          */
9850         netdev_for_each_lower_dev(dev, lower, iter)
9851                 netdev_sync_lower_features(dev, lower, features);
9852
9853         if (!err) {
9854                 netdev_features_t diff = features ^ dev->features;
9855
9856                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9857                         /* udp_tunnel_{get,drop}_rx_info both need
9858                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9859                          * device, or they won't do anything.
9860                          * Thus we need to update dev->features
9861                          * *before* calling udp_tunnel_get_rx_info,
9862                          * but *after* calling udp_tunnel_drop_rx_info.
9863                          */
9864                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9865                                 dev->features = features;
9866                                 udp_tunnel_get_rx_info(dev);
9867                         } else {
9868                                 udp_tunnel_drop_rx_info(dev);
9869                         }
9870                 }
9871
9872                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874                                 dev->features = features;
9875                                 err |= vlan_get_rx_ctag_filter_info(dev);
9876                         } else {
9877                                 vlan_drop_rx_ctag_filter_info(dev);
9878                         }
9879                 }
9880
9881                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9882                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9883                                 dev->features = features;
9884                                 err |= vlan_get_rx_stag_filter_info(dev);
9885                         } else {
9886                                 vlan_drop_rx_stag_filter_info(dev);
9887                         }
9888                 }
9889
9890                 dev->features = features;
9891         }
9892
9893         return err < 0 ? 0 : 1;
9894 }
9895
9896 /**
9897  *      netdev_update_features - recalculate device features
9898  *      @dev: the device to check
9899  *
9900  *      Recalculate dev->features set and send notifications if it
9901  *      has changed. Should be called after driver or hardware dependent
9902  *      conditions might have changed that influence the features.
9903  */
9904 void netdev_update_features(struct net_device *dev)
9905 {
9906         if (__netdev_update_features(dev))
9907                 netdev_features_change(dev);
9908 }
9909 EXPORT_SYMBOL(netdev_update_features);
9910
9911 /**
9912  *      netdev_change_features - recalculate device features
9913  *      @dev: the device to check
9914  *
9915  *      Recalculate dev->features set and send notifications even
9916  *      if they have not changed. Should be called instead of
9917  *      netdev_update_features() if also dev->vlan_features might
9918  *      have changed to allow the changes to be propagated to stacked
9919  *      VLAN devices.
9920  */
9921 void netdev_change_features(struct net_device *dev)
9922 {
9923         __netdev_update_features(dev);
9924         netdev_features_change(dev);
9925 }
9926 EXPORT_SYMBOL(netdev_change_features);
9927
9928 /**
9929  *      netif_stacked_transfer_operstate -      transfer operstate
9930  *      @rootdev: the root or lower level device to transfer state from
9931  *      @dev: the device to transfer operstate to
9932  *
9933  *      Transfer operational state from root to device. This is normally
9934  *      called when a stacking relationship exists between the root
9935  *      device and the device(a leaf device).
9936  */
9937 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9938                                         struct net_device *dev)
9939 {
9940         if (rootdev->operstate == IF_OPER_DORMANT)
9941                 netif_dormant_on(dev);
9942         else
9943                 netif_dormant_off(dev);
9944
9945         if (rootdev->operstate == IF_OPER_TESTING)
9946                 netif_testing_on(dev);
9947         else
9948                 netif_testing_off(dev);
9949
9950         if (netif_carrier_ok(rootdev))
9951                 netif_carrier_on(dev);
9952         else
9953                 netif_carrier_off(dev);
9954 }
9955 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9956
9957 static int netif_alloc_rx_queues(struct net_device *dev)
9958 {
9959         unsigned int i, count = dev->num_rx_queues;
9960         struct netdev_rx_queue *rx;
9961         size_t sz = count * sizeof(*rx);
9962         int err = 0;
9963
9964         BUG_ON(count < 1);
9965
9966         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9967         if (!rx)
9968                 return -ENOMEM;
9969
9970         dev->_rx = rx;
9971
9972         for (i = 0; i < count; i++) {
9973                 rx[i].dev = dev;
9974
9975                 /* XDP RX-queue setup */
9976                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9977                 if (err < 0)
9978                         goto err_rxq_info;
9979         }
9980         return 0;
9981
9982 err_rxq_info:
9983         /* Rollback successful reg's and free other resources */
9984         while (i--)
9985                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9986         kvfree(dev->_rx);
9987         dev->_rx = NULL;
9988         return err;
9989 }
9990
9991 static void netif_free_rx_queues(struct net_device *dev)
9992 {
9993         unsigned int i, count = dev->num_rx_queues;
9994
9995         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9996         if (!dev->_rx)
9997                 return;
9998
9999         for (i = 0; i < count; i++)
10000                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10001
10002         kvfree(dev->_rx);
10003 }
10004
10005 static void netdev_init_one_queue(struct net_device *dev,
10006                                   struct netdev_queue *queue, void *_unused)
10007 {
10008         /* Initialize queue lock */
10009         spin_lock_init(&queue->_xmit_lock);
10010         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10011         queue->xmit_lock_owner = -1;
10012         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10013         queue->dev = dev;
10014 #ifdef CONFIG_BQL
10015         dql_init(&queue->dql, HZ);
10016 #endif
10017 }
10018
10019 static void netif_free_tx_queues(struct net_device *dev)
10020 {
10021         kvfree(dev->_tx);
10022 }
10023
10024 static int netif_alloc_netdev_queues(struct net_device *dev)
10025 {
10026         unsigned int count = dev->num_tx_queues;
10027         struct netdev_queue *tx;
10028         size_t sz = count * sizeof(*tx);
10029
10030         if (count < 1 || count > 0xffff)
10031                 return -EINVAL;
10032
10033         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10034         if (!tx)
10035                 return -ENOMEM;
10036
10037         dev->_tx = tx;
10038
10039         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10040         spin_lock_init(&dev->tx_global_lock);
10041
10042         return 0;
10043 }
10044
10045 void netif_tx_stop_all_queues(struct net_device *dev)
10046 {
10047         unsigned int i;
10048
10049         for (i = 0; i < dev->num_tx_queues; i++) {
10050                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10051
10052                 netif_tx_stop_queue(txq);
10053         }
10054 }
10055 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10056
10057 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10058 {
10059         void __percpu *v;
10060
10061         /* Drivers implementing ndo_get_peer_dev must support tstat
10062          * accounting, so that skb_do_redirect() can bump the dev's
10063          * RX stats upon network namespace switch.
10064          */
10065         if (dev->netdev_ops->ndo_get_peer_dev &&
10066             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10067                 return -EOPNOTSUPP;
10068
10069         switch (dev->pcpu_stat_type) {
10070         case NETDEV_PCPU_STAT_NONE:
10071                 return 0;
10072         case NETDEV_PCPU_STAT_LSTATS:
10073                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10074                 break;
10075         case NETDEV_PCPU_STAT_TSTATS:
10076                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10077                 break;
10078         case NETDEV_PCPU_STAT_DSTATS:
10079                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10080                 break;
10081         default:
10082                 return -EINVAL;
10083         }
10084
10085         return v ? 0 : -ENOMEM;
10086 }
10087
10088 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10089 {
10090         switch (dev->pcpu_stat_type) {
10091         case NETDEV_PCPU_STAT_NONE:
10092                 return;
10093         case NETDEV_PCPU_STAT_LSTATS:
10094                 free_percpu(dev->lstats);
10095                 break;
10096         case NETDEV_PCPU_STAT_TSTATS:
10097                 free_percpu(dev->tstats);
10098                 break;
10099         case NETDEV_PCPU_STAT_DSTATS:
10100                 free_percpu(dev->dstats);
10101                 break;
10102         }
10103 }
10104
10105 /**
10106  * register_netdevice() - register a network device
10107  * @dev: device to register
10108  *
10109  * Take a prepared network device structure and make it externally accessible.
10110  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10111  * Callers must hold the rtnl lock - you may want register_netdev()
10112  * instead of this.
10113  */
10114 int register_netdevice(struct net_device *dev)
10115 {
10116         int ret;
10117         struct net *net = dev_net(dev);
10118
10119         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10120                      NETDEV_FEATURE_COUNT);
10121         BUG_ON(dev_boot_phase);
10122         ASSERT_RTNL();
10123
10124         might_sleep();
10125
10126         /* When net_device's are persistent, this will be fatal. */
10127         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10128         BUG_ON(!net);
10129
10130         ret = ethtool_check_ops(dev->ethtool_ops);
10131         if (ret)
10132                 return ret;
10133
10134         spin_lock_init(&dev->addr_list_lock);
10135         netdev_set_addr_lockdep_class(dev);
10136
10137         ret = dev_get_valid_name(net, dev, dev->name);
10138         if (ret < 0)
10139                 goto out;
10140
10141         ret = -ENOMEM;
10142         dev->name_node = netdev_name_node_head_alloc(dev);
10143         if (!dev->name_node)
10144                 goto out;
10145
10146         /* Init, if this function is available */
10147         if (dev->netdev_ops->ndo_init) {
10148                 ret = dev->netdev_ops->ndo_init(dev);
10149                 if (ret) {
10150                         if (ret > 0)
10151                                 ret = -EIO;
10152                         goto err_free_name;
10153                 }
10154         }
10155
10156         if (((dev->hw_features | dev->features) &
10157              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10158             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10159              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10160                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10161                 ret = -EINVAL;
10162                 goto err_uninit;
10163         }
10164
10165         ret = netdev_do_alloc_pcpu_stats(dev);
10166         if (ret)
10167                 goto err_uninit;
10168
10169         ret = dev_index_reserve(net, dev->ifindex);
10170         if (ret < 0)
10171                 goto err_free_pcpu;
10172         dev->ifindex = ret;
10173
10174         /* Transfer changeable features to wanted_features and enable
10175          * software offloads (GSO and GRO).
10176          */
10177         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10178         dev->features |= NETIF_F_SOFT_FEATURES;
10179
10180         if (dev->udp_tunnel_nic_info) {
10181                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10182                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10183         }
10184
10185         dev->wanted_features = dev->features & dev->hw_features;
10186
10187         if (!(dev->flags & IFF_LOOPBACK))
10188                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10189
10190         /* If IPv4 TCP segmentation offload is supported we should also
10191          * allow the device to enable segmenting the frame with the option
10192          * of ignoring a static IP ID value.  This doesn't enable the
10193          * feature itself but allows the user to enable it later.
10194          */
10195         if (dev->hw_features & NETIF_F_TSO)
10196                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10197         if (dev->vlan_features & NETIF_F_TSO)
10198                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10199         if (dev->mpls_features & NETIF_F_TSO)
10200                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10201         if (dev->hw_enc_features & NETIF_F_TSO)
10202                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10203
10204         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10205          */
10206         dev->vlan_features |= NETIF_F_HIGHDMA;
10207
10208         /* Make NETIF_F_SG inheritable to tunnel devices.
10209          */
10210         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10211
10212         /* Make NETIF_F_SG inheritable to MPLS.
10213          */
10214         dev->mpls_features |= NETIF_F_SG;
10215
10216         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10217         ret = notifier_to_errno(ret);
10218         if (ret)
10219                 goto err_ifindex_release;
10220
10221         ret = netdev_register_kobject(dev);
10222         write_lock(&dev_base_lock);
10223         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10224         write_unlock(&dev_base_lock);
10225         if (ret)
10226                 goto err_uninit_notify;
10227
10228         __netdev_update_features(dev);
10229
10230         /*
10231          *      Default initial state at registry is that the
10232          *      device is present.
10233          */
10234
10235         set_bit(__LINK_STATE_PRESENT, &dev->state);
10236
10237         linkwatch_init_dev(dev);
10238
10239         dev_init_scheduler(dev);
10240
10241         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10242         list_netdevice(dev);
10243
10244         add_device_randomness(dev->dev_addr, dev->addr_len);
10245
10246         /* If the device has permanent device address, driver should
10247          * set dev_addr and also addr_assign_type should be set to
10248          * NET_ADDR_PERM (default value).
10249          */
10250         if (dev->addr_assign_type == NET_ADDR_PERM)
10251                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10252
10253         /* Notify protocols, that a new device appeared. */
10254         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10255         ret = notifier_to_errno(ret);
10256         if (ret) {
10257                 /* Expect explicit free_netdev() on failure */
10258                 dev->needs_free_netdev = false;
10259                 unregister_netdevice_queue(dev, NULL);
10260                 goto out;
10261         }
10262         /*
10263          *      Prevent userspace races by waiting until the network
10264          *      device is fully setup before sending notifications.
10265          */
10266         if (!dev->rtnl_link_ops ||
10267             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10268                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10269
10270 out:
10271         return ret;
10272
10273 err_uninit_notify:
10274         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10275 err_ifindex_release:
10276         dev_index_release(net, dev->ifindex);
10277 err_free_pcpu:
10278         netdev_do_free_pcpu_stats(dev);
10279 err_uninit:
10280         if (dev->netdev_ops->ndo_uninit)
10281                 dev->netdev_ops->ndo_uninit(dev);
10282         if (dev->priv_destructor)
10283                 dev->priv_destructor(dev);
10284 err_free_name:
10285         netdev_name_node_free(dev->name_node);
10286         goto out;
10287 }
10288 EXPORT_SYMBOL(register_netdevice);
10289
10290 /**
10291  *      init_dummy_netdev       - init a dummy network device for NAPI
10292  *      @dev: device to init
10293  *
10294  *      This takes a network device structure and initialize the minimum
10295  *      amount of fields so it can be used to schedule NAPI polls without
10296  *      registering a full blown interface. This is to be used by drivers
10297  *      that need to tie several hardware interfaces to a single NAPI
10298  *      poll scheduler due to HW limitations.
10299  */
10300 int init_dummy_netdev(struct net_device *dev)
10301 {
10302         /* Clear everything. Note we don't initialize spinlocks
10303          * are they aren't supposed to be taken by any of the
10304          * NAPI code and this dummy netdev is supposed to be
10305          * only ever used for NAPI polls
10306          */
10307         memset(dev, 0, sizeof(struct net_device));
10308
10309         /* make sure we BUG if trying to hit standard
10310          * register/unregister code path
10311          */
10312         dev->reg_state = NETREG_DUMMY;
10313
10314         /* NAPI wants this */
10315         INIT_LIST_HEAD(&dev->napi_list);
10316
10317         /* a dummy interface is started by default */
10318         set_bit(__LINK_STATE_PRESENT, &dev->state);
10319         set_bit(__LINK_STATE_START, &dev->state);
10320
10321         /* napi_busy_loop stats accounting wants this */
10322         dev_net_set(dev, &init_net);
10323
10324         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10325          * because users of this 'device' dont need to change
10326          * its refcount.
10327          */
10328
10329         return 0;
10330 }
10331 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10332
10333
10334 /**
10335  *      register_netdev - register a network device
10336  *      @dev: device to register
10337  *
10338  *      Take a completed network device structure and add it to the kernel
10339  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10340  *      chain. 0 is returned on success. A negative errno code is returned
10341  *      on a failure to set up the device, or if the name is a duplicate.
10342  *
10343  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10344  *      and expands the device name if you passed a format string to
10345  *      alloc_netdev.
10346  */
10347 int register_netdev(struct net_device *dev)
10348 {
10349         int err;
10350
10351         if (rtnl_lock_killable())
10352                 return -EINTR;
10353         err = register_netdevice(dev);
10354         rtnl_unlock();
10355         return err;
10356 }
10357 EXPORT_SYMBOL(register_netdev);
10358
10359 int netdev_refcnt_read(const struct net_device *dev)
10360 {
10361 #ifdef CONFIG_PCPU_DEV_REFCNT
10362         int i, refcnt = 0;
10363
10364         for_each_possible_cpu(i)
10365                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10366         return refcnt;
10367 #else
10368         return refcount_read(&dev->dev_refcnt);
10369 #endif
10370 }
10371 EXPORT_SYMBOL(netdev_refcnt_read);
10372
10373 int netdev_unregister_timeout_secs __read_mostly = 10;
10374
10375 #define WAIT_REFS_MIN_MSECS 1
10376 #define WAIT_REFS_MAX_MSECS 250
10377 /**
10378  * netdev_wait_allrefs_any - wait until all references are gone.
10379  * @list: list of net_devices to wait on
10380  *
10381  * This is called when unregistering network devices.
10382  *
10383  * Any protocol or device that holds a reference should register
10384  * for netdevice notification, and cleanup and put back the
10385  * reference if they receive an UNREGISTER event.
10386  * We can get stuck here if buggy protocols don't correctly
10387  * call dev_put.
10388  */
10389 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10390 {
10391         unsigned long rebroadcast_time, warning_time;
10392         struct net_device *dev;
10393         int wait = 0;
10394
10395         rebroadcast_time = warning_time = jiffies;
10396
10397         list_for_each_entry(dev, list, todo_list)
10398                 if (netdev_refcnt_read(dev) == 1)
10399                         return dev;
10400
10401         while (true) {
10402                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10403                         rtnl_lock();
10404
10405                         /* Rebroadcast unregister notification */
10406                         list_for_each_entry(dev, list, todo_list)
10407                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10408
10409                         __rtnl_unlock();
10410                         rcu_barrier();
10411                         rtnl_lock();
10412
10413                         list_for_each_entry(dev, list, todo_list)
10414                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10415                                              &dev->state)) {
10416                                         /* We must not have linkwatch events
10417                                          * pending on unregister. If this
10418                                          * happens, we simply run the queue
10419                                          * unscheduled, resulting in a noop
10420                                          * for this device.
10421                                          */
10422                                         linkwatch_run_queue();
10423                                         break;
10424                                 }
10425
10426                         __rtnl_unlock();
10427
10428                         rebroadcast_time = jiffies;
10429                 }
10430
10431                 if (!wait) {
10432                         rcu_barrier();
10433                         wait = WAIT_REFS_MIN_MSECS;
10434                 } else {
10435                         msleep(wait);
10436                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10437                 }
10438
10439                 list_for_each_entry(dev, list, todo_list)
10440                         if (netdev_refcnt_read(dev) == 1)
10441                                 return dev;
10442
10443                 if (time_after(jiffies, warning_time +
10444                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10445                         list_for_each_entry(dev, list, todo_list) {
10446                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10447                                          dev->name, netdev_refcnt_read(dev));
10448                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10449                         }
10450
10451                         warning_time = jiffies;
10452                 }
10453         }
10454 }
10455
10456 /* The sequence is:
10457  *
10458  *      rtnl_lock();
10459  *      ...
10460  *      register_netdevice(x1);
10461  *      register_netdevice(x2);
10462  *      ...
10463  *      unregister_netdevice(y1);
10464  *      unregister_netdevice(y2);
10465  *      ...
10466  *      rtnl_unlock();
10467  *      free_netdev(y1);
10468  *      free_netdev(y2);
10469  *
10470  * We are invoked by rtnl_unlock().
10471  * This allows us to deal with problems:
10472  * 1) We can delete sysfs objects which invoke hotplug
10473  *    without deadlocking with linkwatch via keventd.
10474  * 2) Since we run with the RTNL semaphore not held, we can sleep
10475  *    safely in order to wait for the netdev refcnt to drop to zero.
10476  *
10477  * We must not return until all unregister events added during
10478  * the interval the lock was held have been completed.
10479  */
10480 void netdev_run_todo(void)
10481 {
10482         struct net_device *dev, *tmp;
10483         struct list_head list;
10484 #ifdef CONFIG_LOCKDEP
10485         struct list_head unlink_list;
10486
10487         list_replace_init(&net_unlink_list, &unlink_list);
10488
10489         while (!list_empty(&unlink_list)) {
10490                 struct net_device *dev = list_first_entry(&unlink_list,
10491                                                           struct net_device,
10492                                                           unlink_list);
10493                 list_del_init(&dev->unlink_list);
10494                 dev->nested_level = dev->lower_level - 1;
10495         }
10496 #endif
10497
10498         /* Snapshot list, allow later requests */
10499         list_replace_init(&net_todo_list, &list);
10500
10501         __rtnl_unlock();
10502
10503         /* Wait for rcu callbacks to finish before next phase */
10504         if (!list_empty(&list))
10505                 rcu_barrier();
10506
10507         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10508                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10509                         netdev_WARN(dev, "run_todo but not unregistering\n");
10510                         list_del(&dev->todo_list);
10511                         continue;
10512                 }
10513
10514                 write_lock(&dev_base_lock);
10515                 dev->reg_state = NETREG_UNREGISTERED;
10516                 write_unlock(&dev_base_lock);
10517                 linkwatch_forget_dev(dev);
10518         }
10519
10520         while (!list_empty(&list)) {
10521                 dev = netdev_wait_allrefs_any(&list);
10522                 list_del(&dev->todo_list);
10523
10524                 /* paranoia */
10525                 BUG_ON(netdev_refcnt_read(dev) != 1);
10526                 BUG_ON(!list_empty(&dev->ptype_all));
10527                 BUG_ON(!list_empty(&dev->ptype_specific));
10528                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10529                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10530
10531                 netdev_do_free_pcpu_stats(dev);
10532                 if (dev->priv_destructor)
10533                         dev->priv_destructor(dev);
10534                 if (dev->needs_free_netdev)
10535                         free_netdev(dev);
10536
10537                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10538                         wake_up(&netdev_unregistering_wq);
10539
10540                 /* Free network device */
10541                 kobject_put(&dev->dev.kobj);
10542         }
10543 }
10544
10545 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10546  * all the same fields in the same order as net_device_stats, with only
10547  * the type differing, but rtnl_link_stats64 may have additional fields
10548  * at the end for newer counters.
10549  */
10550 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10551                              const struct net_device_stats *netdev_stats)
10552 {
10553         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10554         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10555         u64 *dst = (u64 *)stats64;
10556
10557         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10558         for (i = 0; i < n; i++)
10559                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10560         /* zero out counters that only exist in rtnl_link_stats64 */
10561         memset((char *)stats64 + n * sizeof(u64), 0,
10562                sizeof(*stats64) - n * sizeof(u64));
10563 }
10564 EXPORT_SYMBOL(netdev_stats_to_stats64);
10565
10566 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10567                 struct net_device *dev)
10568 {
10569         struct net_device_core_stats __percpu *p;
10570
10571         p = alloc_percpu_gfp(struct net_device_core_stats,
10572                              GFP_ATOMIC | __GFP_NOWARN);
10573
10574         if (p && cmpxchg(&dev->core_stats, NULL, p))
10575                 free_percpu(p);
10576
10577         /* This READ_ONCE() pairs with the cmpxchg() above */
10578         return READ_ONCE(dev->core_stats);
10579 }
10580
10581 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10582 {
10583         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10584         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10585         unsigned long __percpu *field;
10586
10587         if (unlikely(!p)) {
10588                 p = netdev_core_stats_alloc(dev);
10589                 if (!p)
10590                         return;
10591         }
10592
10593         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10594         this_cpu_inc(*field);
10595 }
10596 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10597
10598 /**
10599  *      dev_get_stats   - get network device statistics
10600  *      @dev: device to get statistics from
10601  *      @storage: place to store stats
10602  *
10603  *      Get network statistics from device. Return @storage.
10604  *      The device driver may provide its own method by setting
10605  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10606  *      otherwise the internal statistics structure is used.
10607  */
10608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10609                                         struct rtnl_link_stats64 *storage)
10610 {
10611         const struct net_device_ops *ops = dev->netdev_ops;
10612         const struct net_device_core_stats __percpu *p;
10613
10614         if (ops->ndo_get_stats64) {
10615                 memset(storage, 0, sizeof(*storage));
10616                 ops->ndo_get_stats64(dev, storage);
10617         } else if (ops->ndo_get_stats) {
10618                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10619         } else {
10620                 netdev_stats_to_stats64(storage, &dev->stats);
10621         }
10622
10623         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10624         p = READ_ONCE(dev->core_stats);
10625         if (p) {
10626                 const struct net_device_core_stats *core_stats;
10627                 int i;
10628
10629                 for_each_possible_cpu(i) {
10630                         core_stats = per_cpu_ptr(p, i);
10631                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10632                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10633                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10634                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10635                 }
10636         }
10637         return storage;
10638 }
10639 EXPORT_SYMBOL(dev_get_stats);
10640
10641 /**
10642  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10643  *      @s: place to store stats
10644  *      @netstats: per-cpu network stats to read from
10645  *
10646  *      Read per-cpu network statistics and populate the related fields in @s.
10647  */
10648 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10649                            const struct pcpu_sw_netstats __percpu *netstats)
10650 {
10651         int cpu;
10652
10653         for_each_possible_cpu(cpu) {
10654                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10655                 const struct pcpu_sw_netstats *stats;
10656                 unsigned int start;
10657
10658                 stats = per_cpu_ptr(netstats, cpu);
10659                 do {
10660                         start = u64_stats_fetch_begin(&stats->syncp);
10661                         rx_packets = u64_stats_read(&stats->rx_packets);
10662                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10663                         tx_packets = u64_stats_read(&stats->tx_packets);
10664                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10665                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10666
10667                 s->rx_packets += rx_packets;
10668                 s->rx_bytes   += rx_bytes;
10669                 s->tx_packets += tx_packets;
10670                 s->tx_bytes   += tx_bytes;
10671         }
10672 }
10673 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10674
10675 /**
10676  *      dev_get_tstats64 - ndo_get_stats64 implementation
10677  *      @dev: device to get statistics from
10678  *      @s: place to store stats
10679  *
10680  *      Populate @s from dev->stats and dev->tstats. Can be used as
10681  *      ndo_get_stats64() callback.
10682  */
10683 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10684 {
10685         netdev_stats_to_stats64(s, &dev->stats);
10686         dev_fetch_sw_netstats(s, dev->tstats);
10687 }
10688 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10689
10690 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10691 {
10692         struct netdev_queue *queue = dev_ingress_queue(dev);
10693
10694 #ifdef CONFIG_NET_CLS_ACT
10695         if (queue)
10696                 return queue;
10697         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10698         if (!queue)
10699                 return NULL;
10700         netdev_init_one_queue(dev, queue, NULL);
10701         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10702         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10703         rcu_assign_pointer(dev->ingress_queue, queue);
10704 #endif
10705         return queue;
10706 }
10707
10708 static const struct ethtool_ops default_ethtool_ops;
10709
10710 void netdev_set_default_ethtool_ops(struct net_device *dev,
10711                                     const struct ethtool_ops *ops)
10712 {
10713         if (dev->ethtool_ops == &default_ethtool_ops)
10714                 dev->ethtool_ops = ops;
10715 }
10716 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10717
10718 /**
10719  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10720  * @dev: netdev to enable the IRQ coalescing on
10721  *
10722  * Sets a conservative default for SW IRQ coalescing. Users can use
10723  * sysfs attributes to override the default values.
10724  */
10725 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10726 {
10727         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10728
10729         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10730                 dev->gro_flush_timeout = 20000;
10731                 dev->napi_defer_hard_irqs = 1;
10732         }
10733 }
10734 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10735
10736 void netdev_freemem(struct net_device *dev)
10737 {
10738         char *addr = (char *)dev - dev->padded;
10739
10740         kvfree(addr);
10741 }
10742
10743 /**
10744  * alloc_netdev_mqs - allocate network device
10745  * @sizeof_priv: size of private data to allocate space for
10746  * @name: device name format string
10747  * @name_assign_type: origin of device name
10748  * @setup: callback to initialize device
10749  * @txqs: the number of TX subqueues to allocate
10750  * @rxqs: the number of RX subqueues to allocate
10751  *
10752  * Allocates a struct net_device with private data area for driver use
10753  * and performs basic initialization.  Also allocates subqueue structs
10754  * for each queue on the device.
10755  */
10756 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10757                 unsigned char name_assign_type,
10758                 void (*setup)(struct net_device *),
10759                 unsigned int txqs, unsigned int rxqs)
10760 {
10761         struct net_device *dev;
10762         unsigned int alloc_size;
10763         struct net_device *p;
10764
10765         BUG_ON(strlen(name) >= sizeof(dev->name));
10766
10767         if (txqs < 1) {
10768                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10769                 return NULL;
10770         }
10771
10772         if (rxqs < 1) {
10773                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10774                 return NULL;
10775         }
10776
10777         alloc_size = sizeof(struct net_device);
10778         if (sizeof_priv) {
10779                 /* ensure 32-byte alignment of private area */
10780                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10781                 alloc_size += sizeof_priv;
10782         }
10783         /* ensure 32-byte alignment of whole construct */
10784         alloc_size += NETDEV_ALIGN - 1;
10785
10786         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10787         if (!p)
10788                 return NULL;
10789
10790         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10791         dev->padded = (char *)dev - (char *)p;
10792
10793         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10794 #ifdef CONFIG_PCPU_DEV_REFCNT
10795         dev->pcpu_refcnt = alloc_percpu(int);
10796         if (!dev->pcpu_refcnt)
10797                 goto free_dev;
10798         __dev_hold(dev);
10799 #else
10800         refcount_set(&dev->dev_refcnt, 1);
10801 #endif
10802
10803         if (dev_addr_init(dev))
10804                 goto free_pcpu;
10805
10806         dev_mc_init(dev);
10807         dev_uc_init(dev);
10808
10809         dev_net_set(dev, &init_net);
10810
10811         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10812         dev->xdp_zc_max_segs = 1;
10813         dev->gso_max_segs = GSO_MAX_SEGS;
10814         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10815         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10816         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10817         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10818         dev->tso_max_segs = TSO_MAX_SEGS;
10819         dev->upper_level = 1;
10820         dev->lower_level = 1;
10821 #ifdef CONFIG_LOCKDEP
10822         dev->nested_level = 0;
10823         INIT_LIST_HEAD(&dev->unlink_list);
10824 #endif
10825
10826         INIT_LIST_HEAD(&dev->napi_list);
10827         INIT_LIST_HEAD(&dev->unreg_list);
10828         INIT_LIST_HEAD(&dev->close_list);
10829         INIT_LIST_HEAD(&dev->link_watch_list);
10830         INIT_LIST_HEAD(&dev->adj_list.upper);
10831         INIT_LIST_HEAD(&dev->adj_list.lower);
10832         INIT_LIST_HEAD(&dev->ptype_all);
10833         INIT_LIST_HEAD(&dev->ptype_specific);
10834         INIT_LIST_HEAD(&dev->net_notifier_list);
10835 #ifdef CONFIG_NET_SCHED
10836         hash_init(dev->qdisc_hash);
10837 #endif
10838         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10839         setup(dev);
10840
10841         if (!dev->tx_queue_len) {
10842                 dev->priv_flags |= IFF_NO_QUEUE;
10843                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10844         }
10845
10846         dev->num_tx_queues = txqs;
10847         dev->real_num_tx_queues = txqs;
10848         if (netif_alloc_netdev_queues(dev))
10849                 goto free_all;
10850
10851         dev->num_rx_queues = rxqs;
10852         dev->real_num_rx_queues = rxqs;
10853         if (netif_alloc_rx_queues(dev))
10854                 goto free_all;
10855
10856         strcpy(dev->name, name);
10857         dev->name_assign_type = name_assign_type;
10858         dev->group = INIT_NETDEV_GROUP;
10859         if (!dev->ethtool_ops)
10860                 dev->ethtool_ops = &default_ethtool_ops;
10861
10862         nf_hook_netdev_init(dev);
10863
10864         return dev;
10865
10866 free_all:
10867         free_netdev(dev);
10868         return NULL;
10869
10870 free_pcpu:
10871 #ifdef CONFIG_PCPU_DEV_REFCNT
10872         free_percpu(dev->pcpu_refcnt);
10873 free_dev:
10874 #endif
10875         netdev_freemem(dev);
10876         return NULL;
10877 }
10878 EXPORT_SYMBOL(alloc_netdev_mqs);
10879
10880 /**
10881  * free_netdev - free network device
10882  * @dev: device
10883  *
10884  * This function does the last stage of destroying an allocated device
10885  * interface. The reference to the device object is released. If this
10886  * is the last reference then it will be freed.Must be called in process
10887  * context.
10888  */
10889 void free_netdev(struct net_device *dev)
10890 {
10891         struct napi_struct *p, *n;
10892
10893         might_sleep();
10894
10895         /* When called immediately after register_netdevice() failed the unwind
10896          * handling may still be dismantling the device. Handle that case by
10897          * deferring the free.
10898          */
10899         if (dev->reg_state == NETREG_UNREGISTERING) {
10900                 ASSERT_RTNL();
10901                 dev->needs_free_netdev = true;
10902                 return;
10903         }
10904
10905         netif_free_tx_queues(dev);
10906         netif_free_rx_queues(dev);
10907
10908         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10909
10910         /* Flush device addresses */
10911         dev_addr_flush(dev);
10912
10913         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10914                 netif_napi_del(p);
10915
10916         ref_tracker_dir_exit(&dev->refcnt_tracker);
10917 #ifdef CONFIG_PCPU_DEV_REFCNT
10918         free_percpu(dev->pcpu_refcnt);
10919         dev->pcpu_refcnt = NULL;
10920 #endif
10921         free_percpu(dev->core_stats);
10922         dev->core_stats = NULL;
10923         free_percpu(dev->xdp_bulkq);
10924         dev->xdp_bulkq = NULL;
10925
10926         /*  Compatibility with error handling in drivers */
10927         if (dev->reg_state == NETREG_UNINITIALIZED) {
10928                 netdev_freemem(dev);
10929                 return;
10930         }
10931
10932         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10933         dev->reg_state = NETREG_RELEASED;
10934
10935         /* will free via device release */
10936         put_device(&dev->dev);
10937 }
10938 EXPORT_SYMBOL(free_netdev);
10939
10940 /**
10941  *      synchronize_net -  Synchronize with packet receive processing
10942  *
10943  *      Wait for packets currently being received to be done.
10944  *      Does not block later packets from starting.
10945  */
10946 void synchronize_net(void)
10947 {
10948         might_sleep();
10949         if (rtnl_is_locked())
10950                 synchronize_rcu_expedited();
10951         else
10952                 synchronize_rcu();
10953 }
10954 EXPORT_SYMBOL(synchronize_net);
10955
10956 /**
10957  *      unregister_netdevice_queue - remove device from the kernel
10958  *      @dev: device
10959  *      @head: list
10960  *
10961  *      This function shuts down a device interface and removes it
10962  *      from the kernel tables.
10963  *      If head not NULL, device is queued to be unregistered later.
10964  *
10965  *      Callers must hold the rtnl semaphore.  You may want
10966  *      unregister_netdev() instead of this.
10967  */
10968
10969 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10970 {
10971         ASSERT_RTNL();
10972
10973         if (head) {
10974                 list_move_tail(&dev->unreg_list, head);
10975         } else {
10976                 LIST_HEAD(single);
10977
10978                 list_add(&dev->unreg_list, &single);
10979                 unregister_netdevice_many(&single);
10980         }
10981 }
10982 EXPORT_SYMBOL(unregister_netdevice_queue);
10983
10984 void unregister_netdevice_many_notify(struct list_head *head,
10985                                       u32 portid, const struct nlmsghdr *nlh)
10986 {
10987         struct net_device *dev, *tmp;
10988         LIST_HEAD(close_head);
10989
10990         BUG_ON(dev_boot_phase);
10991         ASSERT_RTNL();
10992
10993         if (list_empty(head))
10994                 return;
10995
10996         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10997                 /* Some devices call without registering
10998                  * for initialization unwind. Remove those
10999                  * devices and proceed with the remaining.
11000                  */
11001                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11002                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11003                                  dev->name, dev);
11004
11005                         WARN_ON(1);
11006                         list_del(&dev->unreg_list);
11007                         continue;
11008                 }
11009                 dev->dismantle = true;
11010                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11011         }
11012
11013         /* If device is running, close it first. */
11014         list_for_each_entry(dev, head, unreg_list)
11015                 list_add_tail(&dev->close_list, &close_head);
11016         dev_close_many(&close_head, true);
11017
11018         list_for_each_entry(dev, head, unreg_list) {
11019                 /* And unlink it from device chain. */
11020                 write_lock(&dev_base_lock);
11021                 unlist_netdevice(dev, false);
11022                 dev->reg_state = NETREG_UNREGISTERING;
11023                 write_unlock(&dev_base_lock);
11024         }
11025         flush_all_backlogs();
11026
11027         synchronize_net();
11028
11029         list_for_each_entry(dev, head, unreg_list) {
11030                 struct sk_buff *skb = NULL;
11031
11032                 /* Shutdown queueing discipline. */
11033                 dev_shutdown(dev);
11034                 dev_tcx_uninstall(dev);
11035                 dev_xdp_uninstall(dev);
11036                 bpf_dev_bound_netdev_unregister(dev);
11037
11038                 netdev_offload_xstats_disable_all(dev);
11039
11040                 /* Notify protocols, that we are about to destroy
11041                  * this device. They should clean all the things.
11042                  */
11043                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11044
11045                 if (!dev->rtnl_link_ops ||
11046                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11047                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11048                                                      GFP_KERNEL, NULL, 0,
11049                                                      portid, nlh);
11050
11051                 /*
11052                  *      Flush the unicast and multicast chains
11053                  */
11054                 dev_uc_flush(dev);
11055                 dev_mc_flush(dev);
11056
11057                 netdev_name_node_alt_flush(dev);
11058                 netdev_name_node_free(dev->name_node);
11059
11060                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11061
11062                 if (dev->netdev_ops->ndo_uninit)
11063                         dev->netdev_ops->ndo_uninit(dev);
11064
11065                 if (skb)
11066                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11067
11068                 /* Notifier chain MUST detach us all upper devices. */
11069                 WARN_ON(netdev_has_any_upper_dev(dev));
11070                 WARN_ON(netdev_has_any_lower_dev(dev));
11071
11072                 /* Remove entries from kobject tree */
11073                 netdev_unregister_kobject(dev);
11074 #ifdef CONFIG_XPS
11075                 /* Remove XPS queueing entries */
11076                 netif_reset_xps_queues_gt(dev, 0);
11077 #endif
11078         }
11079
11080         synchronize_net();
11081
11082         list_for_each_entry(dev, head, unreg_list) {
11083                 netdev_put(dev, &dev->dev_registered_tracker);
11084                 net_set_todo(dev);
11085         }
11086
11087         list_del(head);
11088 }
11089
11090 /**
11091  *      unregister_netdevice_many - unregister many devices
11092  *      @head: list of devices
11093  *
11094  *  Note: As most callers use a stack allocated list_head,
11095  *  we force a list_del() to make sure stack wont be corrupted later.
11096  */
11097 void unregister_netdevice_many(struct list_head *head)
11098 {
11099         unregister_netdevice_many_notify(head, 0, NULL);
11100 }
11101 EXPORT_SYMBOL(unregister_netdevice_many);
11102
11103 /**
11104  *      unregister_netdev - remove device from the kernel
11105  *      @dev: device
11106  *
11107  *      This function shuts down a device interface and removes it
11108  *      from the kernel tables.
11109  *
11110  *      This is just a wrapper for unregister_netdevice that takes
11111  *      the rtnl semaphore.  In general you want to use this and not
11112  *      unregister_netdevice.
11113  */
11114 void unregister_netdev(struct net_device *dev)
11115 {
11116         rtnl_lock();
11117         unregister_netdevice(dev);
11118         rtnl_unlock();
11119 }
11120 EXPORT_SYMBOL(unregister_netdev);
11121
11122 /**
11123  *      __dev_change_net_namespace - move device to different nethost namespace
11124  *      @dev: device
11125  *      @net: network namespace
11126  *      @pat: If not NULL name pattern to try if the current device name
11127  *            is already taken in the destination network namespace.
11128  *      @new_ifindex: If not zero, specifies device index in the target
11129  *                    namespace.
11130  *
11131  *      This function shuts down a device interface and moves it
11132  *      to a new network namespace. On success 0 is returned, on
11133  *      a failure a netagive errno code is returned.
11134  *
11135  *      Callers must hold the rtnl semaphore.
11136  */
11137
11138 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11139                                const char *pat, int new_ifindex)
11140 {
11141         struct netdev_name_node *name_node;
11142         struct net *net_old = dev_net(dev);
11143         char new_name[IFNAMSIZ] = {};
11144         int err, new_nsid;
11145
11146         ASSERT_RTNL();
11147
11148         /* Don't allow namespace local devices to be moved. */
11149         err = -EINVAL;
11150         if (dev->features & NETIF_F_NETNS_LOCAL)
11151                 goto out;
11152
11153         /* Ensure the device has been registrered */
11154         if (dev->reg_state != NETREG_REGISTERED)
11155                 goto out;
11156
11157         /* Get out if there is nothing todo */
11158         err = 0;
11159         if (net_eq(net_old, net))
11160                 goto out;
11161
11162         /* Pick the destination device name, and ensure
11163          * we can use it in the destination network namespace.
11164          */
11165         err = -EEXIST;
11166         if (netdev_name_in_use(net, dev->name)) {
11167                 /* We get here if we can't use the current device name */
11168                 if (!pat)
11169                         goto out;
11170                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11171                 if (err < 0)
11172                         goto out;
11173         }
11174         /* Check that none of the altnames conflicts. */
11175         err = -EEXIST;
11176         netdev_for_each_altname(dev, name_node)
11177                 if (netdev_name_in_use(net, name_node->name))
11178                         goto out;
11179
11180         /* Check that new_ifindex isn't used yet. */
11181         if (new_ifindex) {
11182                 err = dev_index_reserve(net, new_ifindex);
11183                 if (err < 0)
11184                         goto out;
11185         } else {
11186                 /* If there is an ifindex conflict assign a new one */
11187                 err = dev_index_reserve(net, dev->ifindex);
11188                 if (err == -EBUSY)
11189                         err = dev_index_reserve(net, 0);
11190                 if (err < 0)
11191                         goto out;
11192                 new_ifindex = err;
11193         }
11194
11195         /*
11196          * And now a mini version of register_netdevice unregister_netdevice.
11197          */
11198
11199         /* If device is running close it first. */
11200         dev_close(dev);
11201
11202         /* And unlink it from device chain */
11203         unlist_netdevice(dev, true);
11204
11205         synchronize_net();
11206
11207         /* Shutdown queueing discipline. */
11208         dev_shutdown(dev);
11209
11210         /* Notify protocols, that we are about to destroy
11211          * this device. They should clean all the things.
11212          *
11213          * Note that dev->reg_state stays at NETREG_REGISTERED.
11214          * This is wanted because this way 8021q and macvlan know
11215          * the device is just moving and can keep their slaves up.
11216          */
11217         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11218         rcu_barrier();
11219
11220         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11221
11222         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11223                             new_ifindex);
11224
11225         /*
11226          *      Flush the unicast and multicast chains
11227          */
11228         dev_uc_flush(dev);
11229         dev_mc_flush(dev);
11230
11231         /* Send a netdev-removed uevent to the old namespace */
11232         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11233         netdev_adjacent_del_links(dev);
11234
11235         /* Move per-net netdevice notifiers that are following the netdevice */
11236         move_netdevice_notifiers_dev_net(dev, net);
11237
11238         /* Actually switch the network namespace */
11239         dev_net_set(dev, net);
11240         dev->ifindex = new_ifindex;
11241
11242         /* Send a netdev-add uevent to the new namespace */
11243         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11244         netdev_adjacent_add_links(dev);
11245
11246         if (new_name[0]) /* Rename the netdev to prepared name */
11247                 strscpy(dev->name, new_name, IFNAMSIZ);
11248
11249         /* Fixup kobjects */
11250         err = device_rename(&dev->dev, dev->name);
11251         WARN_ON(err);
11252
11253         /* Adapt owner in case owning user namespace of target network
11254          * namespace is different from the original one.
11255          */
11256         err = netdev_change_owner(dev, net_old, net);
11257         WARN_ON(err);
11258
11259         /* Add the device back in the hashes */
11260         list_netdevice(dev);
11261
11262         /* Notify protocols, that a new device appeared. */
11263         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11264
11265         /*
11266          *      Prevent userspace races by waiting until the network
11267          *      device is fully setup before sending notifications.
11268          */
11269         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11270
11271         synchronize_net();
11272         err = 0;
11273 out:
11274         return err;
11275 }
11276 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11277
11278 static int dev_cpu_dead(unsigned int oldcpu)
11279 {
11280         struct sk_buff **list_skb;
11281         struct sk_buff *skb;
11282         unsigned int cpu;
11283         struct softnet_data *sd, *oldsd, *remsd = NULL;
11284
11285         local_irq_disable();
11286         cpu = smp_processor_id();
11287         sd = &per_cpu(softnet_data, cpu);
11288         oldsd = &per_cpu(softnet_data, oldcpu);
11289
11290         /* Find end of our completion_queue. */
11291         list_skb = &sd->completion_queue;
11292         while (*list_skb)
11293                 list_skb = &(*list_skb)->next;
11294         /* Append completion queue from offline CPU. */
11295         *list_skb = oldsd->completion_queue;
11296         oldsd->completion_queue = NULL;
11297
11298         /* Append output queue from offline CPU. */
11299         if (oldsd->output_queue) {
11300                 *sd->output_queue_tailp = oldsd->output_queue;
11301                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11302                 oldsd->output_queue = NULL;
11303                 oldsd->output_queue_tailp = &oldsd->output_queue;
11304         }
11305         /* Append NAPI poll list from offline CPU, with one exception :
11306          * process_backlog() must be called by cpu owning percpu backlog.
11307          * We properly handle process_queue & input_pkt_queue later.
11308          */
11309         while (!list_empty(&oldsd->poll_list)) {
11310                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11311                                                             struct napi_struct,
11312                                                             poll_list);
11313
11314                 list_del_init(&napi->poll_list);
11315                 if (napi->poll == process_backlog)
11316                         napi->state = 0;
11317                 else
11318                         ____napi_schedule(sd, napi);
11319         }
11320
11321         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11322         local_irq_enable();
11323
11324 #ifdef CONFIG_RPS
11325         remsd = oldsd->rps_ipi_list;
11326         oldsd->rps_ipi_list = NULL;
11327 #endif
11328         /* send out pending IPI's on offline CPU */
11329         net_rps_send_ipi(remsd);
11330
11331         /* Process offline CPU's input_pkt_queue */
11332         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11333                 netif_rx(skb);
11334                 input_queue_head_incr(oldsd);
11335         }
11336         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11337                 netif_rx(skb);
11338                 input_queue_head_incr(oldsd);
11339         }
11340
11341         return 0;
11342 }
11343
11344 /**
11345  *      netdev_increment_features - increment feature set by one
11346  *      @all: current feature set
11347  *      @one: new feature set
11348  *      @mask: mask feature set
11349  *
11350  *      Computes a new feature set after adding a device with feature set
11351  *      @one to the master device with current feature set @all.  Will not
11352  *      enable anything that is off in @mask. Returns the new feature set.
11353  */
11354 netdev_features_t netdev_increment_features(netdev_features_t all,
11355         netdev_features_t one, netdev_features_t mask)
11356 {
11357         if (mask & NETIF_F_HW_CSUM)
11358                 mask |= NETIF_F_CSUM_MASK;
11359         mask |= NETIF_F_VLAN_CHALLENGED;
11360
11361         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11362         all &= one | ~NETIF_F_ALL_FOR_ALL;
11363
11364         /* If one device supports hw checksumming, set for all. */
11365         if (all & NETIF_F_HW_CSUM)
11366                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11367
11368         return all;
11369 }
11370 EXPORT_SYMBOL(netdev_increment_features);
11371
11372 static struct hlist_head * __net_init netdev_create_hash(void)
11373 {
11374         int i;
11375         struct hlist_head *hash;
11376
11377         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11378         if (hash != NULL)
11379                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11380                         INIT_HLIST_HEAD(&hash[i]);
11381
11382         return hash;
11383 }
11384
11385 /* Initialize per network namespace state */
11386 static int __net_init netdev_init(struct net *net)
11387 {
11388         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11389                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11390
11391         INIT_LIST_HEAD(&net->dev_base_head);
11392
11393         net->dev_name_head = netdev_create_hash();
11394         if (net->dev_name_head == NULL)
11395                 goto err_name;
11396
11397         net->dev_index_head = netdev_create_hash();
11398         if (net->dev_index_head == NULL)
11399                 goto err_idx;
11400
11401         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11402
11403         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11404
11405         return 0;
11406
11407 err_idx:
11408         kfree(net->dev_name_head);
11409 err_name:
11410         return -ENOMEM;
11411 }
11412
11413 /**
11414  *      netdev_drivername - network driver for the device
11415  *      @dev: network device
11416  *
11417  *      Determine network driver for device.
11418  */
11419 const char *netdev_drivername(const struct net_device *dev)
11420 {
11421         const struct device_driver *driver;
11422         const struct device *parent;
11423         const char *empty = "";
11424
11425         parent = dev->dev.parent;
11426         if (!parent)
11427                 return empty;
11428
11429         driver = parent->driver;
11430         if (driver && driver->name)
11431                 return driver->name;
11432         return empty;
11433 }
11434
11435 static void __netdev_printk(const char *level, const struct net_device *dev,
11436                             struct va_format *vaf)
11437 {
11438         if (dev && dev->dev.parent) {
11439                 dev_printk_emit(level[1] - '0',
11440                                 dev->dev.parent,
11441                                 "%s %s %s%s: %pV",
11442                                 dev_driver_string(dev->dev.parent),
11443                                 dev_name(dev->dev.parent),
11444                                 netdev_name(dev), netdev_reg_state(dev),
11445                                 vaf);
11446         } else if (dev) {
11447                 printk("%s%s%s: %pV",
11448                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11449         } else {
11450                 printk("%s(NULL net_device): %pV", level, vaf);
11451         }
11452 }
11453
11454 void netdev_printk(const char *level, const struct net_device *dev,
11455                    const char *format, ...)
11456 {
11457         struct va_format vaf;
11458         va_list args;
11459
11460         va_start(args, format);
11461
11462         vaf.fmt = format;
11463         vaf.va = &args;
11464
11465         __netdev_printk(level, dev, &vaf);
11466
11467         va_end(args);
11468 }
11469 EXPORT_SYMBOL(netdev_printk);
11470
11471 #define define_netdev_printk_level(func, level)                 \
11472 void func(const struct net_device *dev, const char *fmt, ...)   \
11473 {                                                               \
11474         struct va_format vaf;                                   \
11475         va_list args;                                           \
11476                                                                 \
11477         va_start(args, fmt);                                    \
11478                                                                 \
11479         vaf.fmt = fmt;                                          \
11480         vaf.va = &args;                                         \
11481                                                                 \
11482         __netdev_printk(level, dev, &vaf);                      \
11483                                                                 \
11484         va_end(args);                                           \
11485 }                                                               \
11486 EXPORT_SYMBOL(func);
11487
11488 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11489 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11490 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11491 define_netdev_printk_level(netdev_err, KERN_ERR);
11492 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11493 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11494 define_netdev_printk_level(netdev_info, KERN_INFO);
11495
11496 static void __net_exit netdev_exit(struct net *net)
11497 {
11498         kfree(net->dev_name_head);
11499         kfree(net->dev_index_head);
11500         xa_destroy(&net->dev_by_index);
11501         if (net != &init_net)
11502                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11503 }
11504
11505 static struct pernet_operations __net_initdata netdev_net_ops = {
11506         .init = netdev_init,
11507         .exit = netdev_exit,
11508 };
11509
11510 static void __net_exit default_device_exit_net(struct net *net)
11511 {
11512         struct net_device *dev, *aux;
11513         /*
11514          * Push all migratable network devices back to the
11515          * initial network namespace
11516          */
11517         ASSERT_RTNL();
11518         for_each_netdev_safe(net, dev, aux) {
11519                 int err;
11520                 char fb_name[IFNAMSIZ];
11521
11522                 /* Ignore unmoveable devices (i.e. loopback) */
11523                 if (dev->features & NETIF_F_NETNS_LOCAL)
11524                         continue;
11525
11526                 /* Leave virtual devices for the generic cleanup */
11527                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11528                         continue;
11529
11530                 /* Push remaining network devices to init_net */
11531                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11532                 if (netdev_name_in_use(&init_net, fb_name))
11533                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11534                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11535                 if (err) {
11536                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11537                                  __func__, dev->name, err);
11538                         BUG();
11539                 }
11540         }
11541 }
11542
11543 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11544 {
11545         /* At exit all network devices most be removed from a network
11546          * namespace.  Do this in the reverse order of registration.
11547          * Do this across as many network namespaces as possible to
11548          * improve batching efficiency.
11549          */
11550         struct net_device *dev;
11551         struct net *net;
11552         LIST_HEAD(dev_kill_list);
11553
11554         rtnl_lock();
11555         list_for_each_entry(net, net_list, exit_list) {
11556                 default_device_exit_net(net);
11557                 cond_resched();
11558         }
11559
11560         list_for_each_entry(net, net_list, exit_list) {
11561                 for_each_netdev_reverse(net, dev) {
11562                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11563                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11564                         else
11565                                 unregister_netdevice_queue(dev, &dev_kill_list);
11566                 }
11567         }
11568         unregister_netdevice_many(&dev_kill_list);
11569         rtnl_unlock();
11570 }
11571
11572 static struct pernet_operations __net_initdata default_device_ops = {
11573         .exit_batch = default_device_exit_batch,
11574 };
11575
11576 /*
11577  *      Initialize the DEV module. At boot time this walks the device list and
11578  *      unhooks any devices that fail to initialise (normally hardware not
11579  *      present) and leaves us with a valid list of present and active devices.
11580  *
11581  */
11582
11583 /*
11584  *       This is called single threaded during boot, so no need
11585  *       to take the rtnl semaphore.
11586  */
11587 static int __init net_dev_init(void)
11588 {
11589         int i, rc = -ENOMEM;
11590
11591         BUG_ON(!dev_boot_phase);
11592
11593         if (dev_proc_init())
11594                 goto out;
11595
11596         if (netdev_kobject_init())
11597                 goto out;
11598
11599         INIT_LIST_HEAD(&ptype_all);
11600         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11601                 INIT_LIST_HEAD(&ptype_base[i]);
11602
11603         if (register_pernet_subsys(&netdev_net_ops))
11604                 goto out;
11605
11606         /*
11607          *      Initialise the packet receive queues.
11608          */
11609
11610         for_each_possible_cpu(i) {
11611                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11612                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11613
11614                 INIT_WORK(flush, flush_backlog);
11615
11616                 skb_queue_head_init(&sd->input_pkt_queue);
11617                 skb_queue_head_init(&sd->process_queue);
11618 #ifdef CONFIG_XFRM_OFFLOAD
11619                 skb_queue_head_init(&sd->xfrm_backlog);
11620 #endif
11621                 INIT_LIST_HEAD(&sd->poll_list);
11622                 sd->output_queue_tailp = &sd->output_queue;
11623 #ifdef CONFIG_RPS
11624                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11625                 sd->cpu = i;
11626 #endif
11627                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11628                 spin_lock_init(&sd->defer_lock);
11629
11630                 init_gro_hash(&sd->backlog);
11631                 sd->backlog.poll = process_backlog;
11632                 sd->backlog.weight = weight_p;
11633         }
11634
11635         dev_boot_phase = 0;
11636
11637         /* The loopback device is special if any other network devices
11638          * is present in a network namespace the loopback device must
11639          * be present. Since we now dynamically allocate and free the
11640          * loopback device ensure this invariant is maintained by
11641          * keeping the loopback device as the first device on the
11642          * list of network devices.  Ensuring the loopback devices
11643          * is the first device that appears and the last network device
11644          * that disappears.
11645          */
11646         if (register_pernet_device(&loopback_net_ops))
11647                 goto out;
11648
11649         if (register_pernet_device(&default_device_ops))
11650                 goto out;
11651
11652         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11653         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11654
11655         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11656                                        NULL, dev_cpu_dead);
11657         WARN_ON(rc < 0);
11658         rc = 0;
11659 out:
11660         return rc;
11661 }
11662
11663 subsys_initcall(net_dev_init);
This page took 0.68621 seconds and 4 git commands to generate.