1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
158 #include "net-sysfs.h"
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
192 static DEFINE_MUTEX(ifalias_mutex);
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 static DECLARE_RWSEM(devnet_rename_sem);
202 static inline void dev_base_seq_inc(struct net *net)
204 while (++net->dev_base_seq == 0)
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
257 struct netdev_name_node *name_node;
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
271 struct netdev_name_node *name_node;
273 name_node = netdev_name_node_alloc(dev, dev->name);
276 INIT_LIST_HEAD(&name_node->list);
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 hlist_del_rcu(&name_node->hlist);
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
321 bool netdev_name_in_use(struct net *net, const char *name)
323 return netdev_name_node_lookup(net, name);
325 EXPORT_SYMBOL(netdev_name_in_use);
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
332 name_node = netdev_name_node_lookup(net, name);
335 name_node = netdev_name_node_alloc(dev, name);
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
357 name_node = netdev_name_node_lookup(net, name);
360 /* lookup might have found our primary name or a name belonging
363 if (name_node == dev->name_node || name_node->dev != dev)
366 netdev_name_node_del(name_node);
368 __netdev_name_node_alt_destroy(name_node);
373 static void netdev_name_node_alt_flush(struct net_device *dev)
375 struct netdev_name_node *name_node, *tmp;
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
402 dev_base_seq_inc(net);
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
408 static void unlist_netdevice(struct net_device *dev, bool lock)
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
415 xa_erase(&net->dev_by_index, dev->ifindex);
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
420 /* Unlink dev from the device chain */
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
427 write_unlock(&dev_base_lock);
429 dev_base_seq_inc(dev_net(dev));
436 static RAW_NOTIFIER_HEAD(netdev_chain);
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
446 #ifdef CONFIG_LOCKDEP
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 /*******************************************************************************
531 * Protocol management and registration routines
533 *******************************************************************************/
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
574 void dev_add_pack(struct packet_type *pt)
576 struct list_head *head = ptype_head(pt);
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
582 EXPORT_SYMBOL(dev_add_pack);
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
597 void __dev_remove_pack(struct packet_type *pt)
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
602 spin_lock(&ptype_lock);
604 list_for_each_entry(pt1, head, list) {
606 list_del_rcu(&pt->list);
611 pr_warn("dev_remove_pack: %p not found\n", pt);
613 spin_unlock(&ptype_lock);
615 EXPORT_SYMBOL(__dev_remove_pack);
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
626 * This call sleeps to guarantee that no CPU is looking at the packet
629 void dev_remove_pack(struct packet_type *pt)
631 __dev_remove_pack(pt);
635 EXPORT_SYMBOL(dev_remove_pack);
638 /*******************************************************************************
640 * Device Interface Subroutines
642 *******************************************************************************/
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
652 int dev_get_iflink(const struct net_device *dev)
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
659 EXPORT_SYMBOL(dev_get_iflink);
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
672 struct ip_tunnel_info *info;
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
677 info = skb_tunnel_info_unclone(skb);
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
689 int k = stack->num_paths++;
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
694 return &stack->path[k];
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
704 struct net_device_path *path;
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
711 path = dev_fwd_path(stack);
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
727 path = dev_fwd_path(stack);
730 path->type = DEV_PATH_ETHERNET;
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
751 struct netdev_name_node *node_name;
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
756 EXPORT_SYMBOL(__dev_get_by_name);
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
772 struct netdev_name_node *node_name;
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
782 struct net_device *dev;
785 dev = dev_get_by_name_rcu(net, name);
790 EXPORT_SYMBOL(dev_get_by_name);
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
808 struct net_device *dev;
810 dev = dev_get_by_name(net, name);
812 netdev_tracker_alloc(dev, tracker, gfp);
815 EXPORT_SYMBOL(netdev_get_by_name);
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
840 EXPORT_SYMBOL(__dev_get_by_index);
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
869 struct net_device *dev;
872 dev = dev_get_by_index_rcu(net, ifindex);
877 EXPORT_SYMBOL(dev_get_by_index);
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
894 struct net_device *dev;
896 dev = dev_get_by_index(net, ifindex);
898 netdev_tracker_alloc(dev, tracker, gfp);
901 EXPORT_SYMBOL(netdev_get_by_index);
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
915 struct napi_struct *napi;
917 WARN_ON_ONCE(!rcu_read_lock_held());
919 if (napi_id < MIN_NAPI_ID)
922 napi = napi_by_id(napi_id);
924 return napi ? napi->dev : NULL;
926 EXPORT_SYMBOL(dev_get_by_napi_id);
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
934 int netdev_get_name(struct net *net, char *name, int ifindex)
936 struct net_device *dev;
939 down_read(&devnet_rename_sem);
942 dev = dev_get_by_index_rcu(net, ifindex);
948 strcpy(name, dev->name);
953 up_read(&devnet_rename_sem);
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
974 struct net_device *dev;
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
987 struct net_device *dev, *ret = NULL;
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1015 struct net_device *dev, *ret;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1038 bool dev_valid_name(const char *name)
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1048 if (*name == '/' || *name == ':' || isspace(*name))
1054 EXPORT_SYMBOL(dev_valid_name);
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @res: result name string
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1080 /* Verify the string as this thing may have come from the user.
1081 * There must be one "%d" and no other "%" characters.
1083 p = strchr(name, '%');
1084 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1087 /* Use one page as a bit array of possible slots */
1088 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1092 for_each_netdev(net, d) {
1093 struct netdev_name_node *name_node;
1095 netdev_for_each_altname(d, name_node) {
1096 if (!sscanf(name_node->name, name, &i))
1098 if (i < 0 || i >= max_netdevices)
1101 /* avoid cases where sscanf is not exact inverse of printf */
1102 snprintf(buf, IFNAMSIZ, name, i);
1103 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104 __set_bit(i, inuse);
1106 if (!sscanf(d->name, name, &i))
1108 if (i < 0 || i >= max_netdevices)
1111 /* avoid cases where sscanf is not exact inverse of printf */
1112 snprintf(buf, IFNAMSIZ, name, i);
1113 if (!strncmp(buf, d->name, IFNAMSIZ))
1114 __set_bit(i, inuse);
1117 i = find_first_zero_bit(inuse, max_netdevices);
1119 if (i == max_netdevices)
1122 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1123 strscpy(buf, name, IFNAMSIZ);
1124 snprintf(res, IFNAMSIZ, buf, i);
1128 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1129 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1130 const char *want_name, char *out_name,
1133 if (!dev_valid_name(want_name))
1136 if (strchr(want_name, '%'))
1137 return __dev_alloc_name(net, want_name, out_name);
1139 if (netdev_name_in_use(net, want_name))
1141 if (out_name != want_name)
1142 strscpy(out_name, want_name, IFNAMSIZ);
1147 * dev_alloc_name - allocate a name for a device
1149 * @name: name format string
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1160 int dev_alloc_name(struct net_device *dev, const char *name)
1162 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1164 EXPORT_SYMBOL(dev_alloc_name);
1166 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1171 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1172 return ret < 0 ? ret : 0;
1176 * dev_change_name - change name of a device
1178 * @newname: name (or format string) must be at least IFNAMSIZ
1180 * Change name of a device, can pass format strings "eth%d".
1183 int dev_change_name(struct net_device *dev, const char *newname)
1185 unsigned char old_assign_type;
1186 char oldname[IFNAMSIZ];
1192 BUG_ON(!dev_net(dev));
1196 down_write(&devnet_rename_sem);
1198 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1199 up_write(&devnet_rename_sem);
1203 memcpy(oldname, dev->name, IFNAMSIZ);
1205 err = dev_get_valid_name(net, dev, newname);
1207 up_write(&devnet_rename_sem);
1211 if (oldname[0] && !strchr(oldname, '%'))
1212 netdev_info(dev, "renamed from %s%s\n", oldname,
1213 dev->flags & IFF_UP ? " (while UP)" : "");
1215 old_assign_type = dev->name_assign_type;
1216 dev->name_assign_type = NET_NAME_RENAMED;
1219 ret = device_rename(&dev->dev, dev->name);
1221 memcpy(dev->name, oldname, IFNAMSIZ);
1222 dev->name_assign_type = old_assign_type;
1223 up_write(&devnet_rename_sem);
1227 up_write(&devnet_rename_sem);
1229 netdev_adjacent_rename_links(dev, oldname);
1231 write_lock(&dev_base_lock);
1232 netdev_name_node_del(dev->name_node);
1233 write_unlock(&dev_base_lock);
1237 write_lock(&dev_base_lock);
1238 netdev_name_node_add(net, dev->name_node);
1239 write_unlock(&dev_base_lock);
1241 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 ret = notifier_to_errno(ret);
1245 /* err >= 0 after dev_alloc_name() or stores the first errno */
1248 down_write(&devnet_rename_sem);
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 memcpy(oldname, newname, IFNAMSIZ);
1251 dev->name_assign_type = old_assign_type;
1252 old_assign_type = NET_NAME_RENAMED;
1255 netdev_err(dev, "name change rollback failed: %d\n",
1264 * dev_set_alias - change ifalias of a device
1266 * @alias: name up to IFALIASZ
1267 * @len: limit of bytes to copy from info
1269 * Set ifalias for a device,
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1273 struct dev_ifalias *new_alias = NULL;
1275 if (len >= IFALIASZ)
1279 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 memcpy(new_alias->ifalias, alias, len);
1284 new_alias->ifalias[len] = 0;
1287 mutex_lock(&ifalias_mutex);
1288 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1289 mutex_is_locked(&ifalias_mutex));
1290 mutex_unlock(&ifalias_mutex);
1293 kfree_rcu(new_alias, rcuhead);
1297 EXPORT_SYMBOL(dev_set_alias);
1300 * dev_get_alias - get ifalias of a device
1302 * @name: buffer to store name of ifalias
1303 * @len: size of buffer
1305 * get ifalias for a device. Caller must make sure dev cannot go
1306 * away, e.g. rcu read lock or own a reference count to device.
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1310 const struct dev_ifalias *alias;
1314 alias = rcu_dereference(dev->ifalias);
1316 ret = snprintf(name, len, "%s", alias->ifalias);
1323 * netdev_features_change - device changes features
1324 * @dev: device to cause notification
1326 * Called to indicate a device has changed features.
1328 void netdev_features_change(struct net_device *dev)
1330 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1332 EXPORT_SYMBOL(netdev_features_change);
1335 * netdev_state_change - device changes state
1336 * @dev: device to cause notification
1338 * Called to indicate a device has changed state. This function calls
1339 * the notifier chains for netdev_chain and sends a NEWLINK message
1340 * to the routing socket.
1342 void netdev_state_change(struct net_device *dev)
1344 if (dev->flags & IFF_UP) {
1345 struct netdev_notifier_change_info change_info = {
1349 call_netdevice_notifiers_info(NETDEV_CHANGE,
1351 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1354 EXPORT_SYMBOL(netdev_state_change);
1357 * __netdev_notify_peers - notify network peers about existence of @dev,
1358 * to be called when rtnl lock is already held.
1359 * @dev: network device
1361 * Generate traffic such that interested network peers are aware of
1362 * @dev, such as by generating a gratuitous ARP. This may be used when
1363 * a device wants to inform the rest of the network about some sort of
1364 * reconfiguration such as a failover event or virtual machine
1367 void __netdev_notify_peers(struct net_device *dev)
1370 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1371 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1373 EXPORT_SYMBOL(__netdev_notify_peers);
1376 * netdev_notify_peers - notify network peers about existence of @dev
1377 * @dev: network device
1379 * Generate traffic such that interested network peers are aware of
1380 * @dev, such as by generating a gratuitous ARP. This may be used when
1381 * a device wants to inform the rest of the network about some sort of
1382 * reconfiguration such as a failover event or virtual machine
1385 void netdev_notify_peers(struct net_device *dev)
1388 __netdev_notify_peers(dev);
1391 EXPORT_SYMBOL(netdev_notify_peers);
1393 static int napi_threaded_poll(void *data);
1395 static int napi_kthread_create(struct napi_struct *n)
1399 /* Create and wake up the kthread once to put it in
1400 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1401 * warning and work with loadavg.
1403 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1404 n->dev->name, n->napi_id);
1405 if (IS_ERR(n->thread)) {
1406 err = PTR_ERR(n->thread);
1407 pr_err("kthread_run failed with err %d\n", err);
1414 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1416 const struct net_device_ops *ops = dev->netdev_ops;
1420 dev_addr_check(dev);
1422 if (!netif_device_present(dev)) {
1423 /* may be detached because parent is runtime-suspended */
1424 if (dev->dev.parent)
1425 pm_runtime_resume(dev->dev.parent);
1426 if (!netif_device_present(dev))
1430 /* Block netpoll from trying to do any rx path servicing.
1431 * If we don't do this there is a chance ndo_poll_controller
1432 * or ndo_poll may be running while we open the device
1434 netpoll_poll_disable(dev);
1436 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1437 ret = notifier_to_errno(ret);
1441 set_bit(__LINK_STATE_START, &dev->state);
1443 if (ops->ndo_validate_addr)
1444 ret = ops->ndo_validate_addr(dev);
1446 if (!ret && ops->ndo_open)
1447 ret = ops->ndo_open(dev);
1449 netpoll_poll_enable(dev);
1452 clear_bit(__LINK_STATE_START, &dev->state);
1454 dev->flags |= IFF_UP;
1455 dev_set_rx_mode(dev);
1457 add_device_randomness(dev->dev_addr, dev->addr_len);
1464 * dev_open - prepare an interface for use.
1465 * @dev: device to open
1466 * @extack: netlink extended ack
1468 * Takes a device from down to up state. The device's private open
1469 * function is invoked and then the multicast lists are loaded. Finally
1470 * the device is moved into the up state and a %NETDEV_UP message is
1471 * sent to the netdev notifier chain.
1473 * Calling this function on an active interface is a nop. On a failure
1474 * a negative errno code is returned.
1476 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480 if (dev->flags & IFF_UP)
1483 ret = __dev_open(dev, extack);
1487 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1488 call_netdevice_notifiers(NETDEV_UP, dev);
1492 EXPORT_SYMBOL(dev_open);
1494 static void __dev_close_many(struct list_head *head)
1496 struct net_device *dev;
1501 list_for_each_entry(dev, head, close_list) {
1502 /* Temporarily disable netpoll until the interface is down */
1503 netpoll_poll_disable(dev);
1505 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1507 clear_bit(__LINK_STATE_START, &dev->state);
1509 /* Synchronize to scheduled poll. We cannot touch poll list, it
1510 * can be even on different cpu. So just clear netif_running().
1512 * dev->stop() will invoke napi_disable() on all of it's
1513 * napi_struct instances on this device.
1515 smp_mb__after_atomic(); /* Commit netif_running(). */
1518 dev_deactivate_many(head);
1520 list_for_each_entry(dev, head, close_list) {
1521 const struct net_device_ops *ops = dev->netdev_ops;
1524 * Call the device specific close. This cannot fail.
1525 * Only if device is UP
1527 * We allow it to be called even after a DETACH hot-plug
1533 dev->flags &= ~IFF_UP;
1534 netpoll_poll_enable(dev);
1538 static void __dev_close(struct net_device *dev)
1542 list_add(&dev->close_list, &single);
1543 __dev_close_many(&single);
1547 void dev_close_many(struct list_head *head, bool unlink)
1549 struct net_device *dev, *tmp;
1551 /* Remove the devices that don't need to be closed */
1552 list_for_each_entry_safe(dev, tmp, head, close_list)
1553 if (!(dev->flags & IFF_UP))
1554 list_del_init(&dev->close_list);
1556 __dev_close_many(head);
1558 list_for_each_entry_safe(dev, tmp, head, close_list) {
1559 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1560 call_netdevice_notifiers(NETDEV_DOWN, dev);
1562 list_del_init(&dev->close_list);
1565 EXPORT_SYMBOL(dev_close_many);
1568 * dev_close - shutdown an interface.
1569 * @dev: device to shutdown
1571 * This function moves an active device into down state. A
1572 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1573 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1576 void dev_close(struct net_device *dev)
1578 if (dev->flags & IFF_UP) {
1581 list_add(&dev->close_list, &single);
1582 dev_close_many(&single, true);
1586 EXPORT_SYMBOL(dev_close);
1590 * dev_disable_lro - disable Large Receive Offload on a device
1593 * Disable Large Receive Offload (LRO) on a net device. Must be
1594 * called under RTNL. This is needed if received packets may be
1595 * forwarded to another interface.
1597 void dev_disable_lro(struct net_device *dev)
1599 struct net_device *lower_dev;
1600 struct list_head *iter;
1602 dev->wanted_features &= ~NETIF_F_LRO;
1603 netdev_update_features(dev);
1605 if (unlikely(dev->features & NETIF_F_LRO))
1606 netdev_WARN(dev, "failed to disable LRO!\n");
1608 netdev_for_each_lower_dev(dev, lower_dev, iter)
1609 dev_disable_lro(lower_dev);
1611 EXPORT_SYMBOL(dev_disable_lro);
1614 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1617 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1618 * called under RTNL. This is needed if Generic XDP is installed on
1621 static void dev_disable_gro_hw(struct net_device *dev)
1623 dev->wanted_features &= ~NETIF_F_GRO_HW;
1624 netdev_update_features(dev);
1626 if (unlikely(dev->features & NETIF_F_GRO_HW))
1627 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1630 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1633 case NETDEV_##val: \
1634 return "NETDEV_" __stringify(val);
1636 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1637 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1638 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1639 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1640 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1641 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1642 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1643 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1644 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1645 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1646 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650 return "UNKNOWN_NETDEV_EVENT";
1652 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1654 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1655 struct net_device *dev)
1657 struct netdev_notifier_info info = {
1661 return nb->notifier_call(nb, val, &info);
1664 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1665 struct net_device *dev)
1669 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1670 err = notifier_to_errno(err);
1674 if (!(dev->flags & IFF_UP))
1677 call_netdevice_notifier(nb, NETDEV_UP, dev);
1681 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1682 struct net_device *dev)
1684 if (dev->flags & IFF_UP) {
1685 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1687 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1689 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1692 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1695 struct net_device *dev;
1698 for_each_netdev(net, dev) {
1699 err = call_netdevice_register_notifiers(nb, dev);
1706 for_each_netdev_continue_reverse(net, dev)
1707 call_netdevice_unregister_notifiers(nb, dev);
1711 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1714 struct net_device *dev;
1716 for_each_netdev(net, dev)
1717 call_netdevice_unregister_notifiers(nb, dev);
1720 static int dev_boot_phase = 1;
1723 * register_netdevice_notifier - register a network notifier block
1726 * Register a notifier to be called when network device events occur.
1727 * The notifier passed is linked into the kernel structures and must
1728 * not be reused until it has been unregistered. A negative errno code
1729 * is returned on a failure.
1731 * When registered all registration and up events are replayed
1732 * to the new notifier to allow device to have a race free
1733 * view of the network device list.
1736 int register_netdevice_notifier(struct notifier_block *nb)
1741 /* Close race with setup_net() and cleanup_net() */
1742 down_write(&pernet_ops_rwsem);
1744 err = raw_notifier_chain_register(&netdev_chain, nb);
1750 err = call_netdevice_register_net_notifiers(nb, net);
1757 up_write(&pernet_ops_rwsem);
1761 for_each_net_continue_reverse(net)
1762 call_netdevice_unregister_net_notifiers(nb, net);
1764 raw_notifier_chain_unregister(&netdev_chain, nb);
1767 EXPORT_SYMBOL(register_netdevice_notifier);
1770 * unregister_netdevice_notifier - unregister a network notifier block
1773 * Unregister a notifier previously registered by
1774 * register_netdevice_notifier(). The notifier is unlinked into the
1775 * kernel structures and may then be reused. A negative errno code
1776 * is returned on a failure.
1778 * After unregistering unregister and down device events are synthesized
1779 * for all devices on the device list to the removed notifier to remove
1780 * the need for special case cleanup code.
1783 int unregister_netdevice_notifier(struct notifier_block *nb)
1788 /* Close race with setup_net() and cleanup_net() */
1789 down_write(&pernet_ops_rwsem);
1791 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1796 call_netdevice_unregister_net_notifiers(nb, net);
1800 up_write(&pernet_ops_rwsem);
1803 EXPORT_SYMBOL(unregister_netdevice_notifier);
1805 static int __register_netdevice_notifier_net(struct net *net,
1806 struct notifier_block *nb,
1807 bool ignore_call_fail)
1811 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1817 err = call_netdevice_register_net_notifiers(nb, net);
1818 if (err && !ignore_call_fail)
1819 goto chain_unregister;
1824 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828 static int __unregister_netdevice_notifier_net(struct net *net,
1829 struct notifier_block *nb)
1833 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837 call_netdevice_unregister_net_notifiers(nb, net);
1842 * register_netdevice_notifier_net - register a per-netns network notifier block
1843 * @net: network namespace
1846 * Register a notifier to be called when network device events occur.
1847 * The notifier passed is linked into the kernel structures and must
1848 * not be reused until it has been unregistered. A negative errno code
1849 * is returned on a failure.
1851 * When registered all registration and up events are replayed
1852 * to the new notifier to allow device to have a race free
1853 * view of the network device list.
1856 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1861 err = __register_netdevice_notifier_net(net, nb, false);
1865 EXPORT_SYMBOL(register_netdevice_notifier_net);
1868 * unregister_netdevice_notifier_net - unregister a per-netns
1869 * network notifier block
1870 * @net: network namespace
1873 * Unregister a notifier previously registered by
1874 * register_netdevice_notifier_net(). The notifier is unlinked from the
1875 * kernel structures and may then be reused. A negative errno code
1876 * is returned on a failure.
1878 * After unregistering unregister and down device events are synthesized
1879 * for all devices on the device list to the removed notifier to remove
1880 * the need for special case cleanup code.
1883 int unregister_netdevice_notifier_net(struct net *net,
1884 struct notifier_block *nb)
1889 err = __unregister_netdevice_notifier_net(net, nb);
1893 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1895 static void __move_netdevice_notifier_net(struct net *src_net,
1896 struct net *dst_net,
1897 struct notifier_block *nb)
1899 __unregister_netdevice_notifier_net(src_net, nb);
1900 __register_netdevice_notifier_net(dst_net, nb, true);
1903 int register_netdevice_notifier_dev_net(struct net_device *dev,
1904 struct notifier_block *nb,
1905 struct netdev_net_notifier *nn)
1910 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1913 list_add(&nn->list, &dev->net_notifier_list);
1918 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1920 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1921 struct notifier_block *nb,
1922 struct netdev_net_notifier *nn)
1927 list_del(&nn->list);
1928 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1934 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1937 struct netdev_net_notifier *nn;
1939 list_for_each_entry(nn, &dev->net_notifier_list, list)
1940 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944 * call_netdevice_notifiers_info - call all network notifier blocks
1945 * @val: value passed unmodified to notifier function
1946 * @info: notifier information data
1948 * Call all network notifier blocks. Parameters and return value
1949 * are as for raw_notifier_call_chain().
1952 int call_netdevice_notifiers_info(unsigned long val,
1953 struct netdev_notifier_info *info)
1955 struct net *net = dev_net(info->dev);
1960 /* Run per-netns notifier block chain first, then run the global one.
1961 * Hopefully, one day, the global one is going to be removed after
1962 * all notifier block registrators get converted to be per-netns.
1964 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1965 if (ret & NOTIFY_STOP_MASK)
1967 return raw_notifier_call_chain(&netdev_chain, val, info);
1971 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1972 * for and rollback on error
1973 * @val_up: value passed unmodified to notifier function
1974 * @val_down: value passed unmodified to the notifier function when
1975 * recovering from an error on @val_up
1976 * @info: notifier information data
1978 * Call all per-netns network notifier blocks, but not notifier blocks on
1979 * the global notifier chain. Parameters and return value are as for
1980 * raw_notifier_call_chain_robust().
1984 call_netdevice_notifiers_info_robust(unsigned long val_up,
1985 unsigned long val_down,
1986 struct netdev_notifier_info *info)
1988 struct net *net = dev_net(info->dev);
1992 return raw_notifier_call_chain_robust(&net->netdev_chain,
1993 val_up, val_down, info);
1996 static int call_netdevice_notifiers_extack(unsigned long val,
1997 struct net_device *dev,
1998 struct netlink_ext_ack *extack)
2000 struct netdev_notifier_info info = {
2005 return call_netdevice_notifiers_info(val, &info);
2009 * call_netdevice_notifiers - call all network notifier blocks
2010 * @val: value passed unmodified to notifier function
2011 * @dev: net_device pointer passed unmodified to notifier function
2013 * Call all network notifier blocks. Parameters and return value
2014 * are as for raw_notifier_call_chain().
2017 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2019 return call_netdevice_notifiers_extack(val, dev, NULL);
2021 EXPORT_SYMBOL(call_netdevice_notifiers);
2024 * call_netdevice_notifiers_mtu - call all network notifier blocks
2025 * @val: value passed unmodified to notifier function
2026 * @dev: net_device pointer passed unmodified to notifier function
2027 * @arg: additional u32 argument passed to the notifier function
2029 * Call all network notifier blocks. Parameters and return value
2030 * are as for raw_notifier_call_chain().
2032 static int call_netdevice_notifiers_mtu(unsigned long val,
2033 struct net_device *dev, u32 arg)
2035 struct netdev_notifier_info_ext info = {
2040 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2042 return call_netdevice_notifiers_info(val, &info.info);
2045 #ifdef CONFIG_NET_INGRESS
2046 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2048 void net_inc_ingress_queue(void)
2050 static_branch_inc(&ingress_needed_key);
2052 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2054 void net_dec_ingress_queue(void)
2056 static_branch_dec(&ingress_needed_key);
2058 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2061 #ifdef CONFIG_NET_EGRESS
2062 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2064 void net_inc_egress_queue(void)
2066 static_branch_inc(&egress_needed_key);
2068 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2070 void net_dec_egress_queue(void)
2072 static_branch_dec(&egress_needed_key);
2074 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2077 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2078 EXPORT_SYMBOL(netstamp_needed_key);
2079 #ifdef CONFIG_JUMP_LABEL
2080 static atomic_t netstamp_needed_deferred;
2081 static atomic_t netstamp_wanted;
2082 static void netstamp_clear(struct work_struct *work)
2084 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087 wanted = atomic_add_return(deferred, &netstamp_wanted);
2089 static_branch_enable(&netstamp_needed_key);
2091 static_branch_disable(&netstamp_needed_key);
2093 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 void net_enable_timestamp(void)
2098 #ifdef CONFIG_JUMP_LABEL
2099 int wanted = atomic_read(&netstamp_wanted);
2101 while (wanted > 0) {
2102 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2105 atomic_inc(&netstamp_needed_deferred);
2106 schedule_work(&netstamp_work);
2108 static_branch_inc(&netstamp_needed_key);
2111 EXPORT_SYMBOL(net_enable_timestamp);
2113 void net_disable_timestamp(void)
2115 #ifdef CONFIG_JUMP_LABEL
2116 int wanted = atomic_read(&netstamp_wanted);
2118 while (wanted > 1) {
2119 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2122 atomic_dec(&netstamp_needed_deferred);
2123 schedule_work(&netstamp_work);
2125 static_branch_dec(&netstamp_needed_key);
2128 EXPORT_SYMBOL(net_disable_timestamp);
2130 static inline void net_timestamp_set(struct sk_buff *skb)
2133 skb->mono_delivery_time = 0;
2134 if (static_branch_unlikely(&netstamp_needed_key))
2135 skb->tstamp = ktime_get_real();
2138 #define net_timestamp_check(COND, SKB) \
2139 if (static_branch_unlikely(&netstamp_needed_key)) { \
2140 if ((COND) && !(SKB)->tstamp) \
2141 (SKB)->tstamp = ktime_get_real(); \
2144 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2146 return __is_skb_forwardable(dev, skb, true);
2148 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2150 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2153 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2156 skb->protocol = eth_type_trans(skb, dev);
2157 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2163 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 return __dev_forward_skb2(dev, skb, true);
2167 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2170 * dev_forward_skb - loopback an skb to another netif
2172 * @dev: destination network device
2173 * @skb: buffer to forward
2176 * NET_RX_SUCCESS (no congestion)
2177 * NET_RX_DROP (packet was dropped, but freed)
2179 * dev_forward_skb can be used for injecting an skb from the
2180 * start_xmit function of one device into the receive queue
2181 * of another device.
2183 * The receiving device may be in another namespace, so
2184 * we have to clear all information in the skb that could
2185 * impact namespace isolation.
2187 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2189 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2191 EXPORT_SYMBOL_GPL(dev_forward_skb);
2193 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2195 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2198 static inline int deliver_skb(struct sk_buff *skb,
2199 struct packet_type *pt_prev,
2200 struct net_device *orig_dev)
2202 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2204 refcount_inc(&skb->users);
2205 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2208 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2209 struct packet_type **pt,
2210 struct net_device *orig_dev,
2212 struct list_head *ptype_list)
2214 struct packet_type *ptype, *pt_prev = *pt;
2216 list_for_each_entry_rcu(ptype, ptype_list, list) {
2217 if (ptype->type != type)
2220 deliver_skb(skb, pt_prev, orig_dev);
2226 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2228 if (!ptype->af_packet_priv || !skb->sk)
2231 if (ptype->id_match)
2232 return ptype->id_match(ptype, skb->sk);
2233 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2240 * dev_nit_active - return true if any network interface taps are in use
2242 * @dev: network device to check for the presence of taps
2244 bool dev_nit_active(struct net_device *dev)
2246 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2248 EXPORT_SYMBOL_GPL(dev_nit_active);
2251 * Support routine. Sends outgoing frames to any network
2252 * taps currently in use.
2255 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2257 struct packet_type *ptype;
2258 struct sk_buff *skb2 = NULL;
2259 struct packet_type *pt_prev = NULL;
2260 struct list_head *ptype_list = &ptype_all;
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->ignore_outgoing)
2268 /* Never send packets back to the socket
2271 if (skb_loop_sk(ptype, skb))
2275 deliver_skb(skb2, pt_prev, skb->dev);
2280 /* need to clone skb, done only once */
2281 skb2 = skb_clone(skb, GFP_ATOMIC);
2285 net_timestamp_set(skb2);
2287 /* skb->nh should be correctly
2288 * set by sender, so that the second statement is
2289 * just protection against buggy protocols.
2291 skb_reset_mac_header(skb2);
2293 if (skb_network_header(skb2) < skb2->data ||
2294 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2295 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2296 ntohs(skb2->protocol),
2298 skb_reset_network_header(skb2);
2301 skb2->transport_header = skb2->network_header;
2302 skb2->pkt_type = PACKET_OUTGOING;
2306 if (ptype_list == &ptype_all) {
2307 ptype_list = &dev->ptype_all;
2312 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2313 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2319 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2322 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2323 * @dev: Network device
2324 * @txq: number of queues available
2326 * If real_num_tx_queues is changed the tc mappings may no longer be
2327 * valid. To resolve this verify the tc mapping remains valid and if
2328 * not NULL the mapping. With no priorities mapping to this
2329 * offset/count pair it will no longer be used. In the worst case TC0
2330 * is invalid nothing can be done so disable priority mappings. If is
2331 * expected that drivers will fix this mapping if they can before
2332 * calling netif_set_real_num_tx_queues.
2334 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2337 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2339 /* If TC0 is invalidated disable TC mapping */
2340 if (tc->offset + tc->count > txq) {
2341 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2346 /* Invalidated prio to tc mappings set to TC0 */
2347 for (i = 1; i < TC_BITMASK + 1; i++) {
2348 int q = netdev_get_prio_tc_map(dev, i);
2350 tc = &dev->tc_to_txq[q];
2351 if (tc->offset + tc->count > txq) {
2352 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2354 netdev_set_prio_tc_map(dev, i, 0);
2359 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2362 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2365 /* walk through the TCs and see if it falls into any of them */
2366 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2367 if ((txq - tc->offset) < tc->count)
2371 /* didn't find it, just return -1 to indicate no match */
2377 EXPORT_SYMBOL(netdev_txq_to_tc);
2380 static struct static_key xps_needed __read_mostly;
2381 static struct static_key xps_rxqs_needed __read_mostly;
2382 static DEFINE_MUTEX(xps_map_mutex);
2383 #define xmap_dereference(P) \
2384 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2386 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2387 struct xps_dev_maps *old_maps, int tci, u16 index)
2389 struct xps_map *map = NULL;
2392 map = xmap_dereference(dev_maps->attr_map[tci]);
2396 for (pos = map->len; pos--;) {
2397 if (map->queues[pos] != index)
2401 map->queues[pos] = map->queues[--map->len];
2406 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2407 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2408 kfree_rcu(map, rcu);
2415 static bool remove_xps_queue_cpu(struct net_device *dev,
2416 struct xps_dev_maps *dev_maps,
2417 int cpu, u16 offset, u16 count)
2419 int num_tc = dev_maps->num_tc;
2420 bool active = false;
2423 for (tci = cpu * num_tc; num_tc--; tci++) {
2426 for (i = count, j = offset; i--; j++) {
2427 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2437 static void reset_xps_maps(struct net_device *dev,
2438 struct xps_dev_maps *dev_maps,
2439 enum xps_map_type type)
2441 static_key_slow_dec_cpuslocked(&xps_needed);
2442 if (type == XPS_RXQS)
2443 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2445 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2447 kfree_rcu(dev_maps, rcu);
2450 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2451 u16 offset, u16 count)
2453 struct xps_dev_maps *dev_maps;
2454 bool active = false;
2457 dev_maps = xmap_dereference(dev->xps_maps[type]);
2461 for (j = 0; j < dev_maps->nr_ids; j++)
2462 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2464 reset_xps_maps(dev, dev_maps, type);
2466 if (type == XPS_CPUS) {
2467 for (i = offset + (count - 1); count--; i--)
2468 netdev_queue_numa_node_write(
2469 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2476 if (!static_key_false(&xps_needed))
2480 mutex_lock(&xps_map_mutex);
2482 if (static_key_false(&xps_rxqs_needed))
2483 clean_xps_maps(dev, XPS_RXQS, offset, count);
2485 clean_xps_maps(dev, XPS_CPUS, offset, count);
2487 mutex_unlock(&xps_map_mutex);
2491 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2493 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2496 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2497 u16 index, bool is_rxqs_map)
2499 struct xps_map *new_map;
2500 int alloc_len = XPS_MIN_MAP_ALLOC;
2503 for (pos = 0; map && pos < map->len; pos++) {
2504 if (map->queues[pos] != index)
2509 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2511 if (pos < map->alloc_len)
2514 alloc_len = map->alloc_len * 2;
2517 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2523 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2524 cpu_to_node(attr_index));
2528 for (i = 0; i < pos; i++)
2529 new_map->queues[i] = map->queues[i];
2530 new_map->alloc_len = alloc_len;
2536 /* Copy xps maps at a given index */
2537 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2538 struct xps_dev_maps *new_dev_maps, int index,
2539 int tc, bool skip_tc)
2541 int i, tci = index * dev_maps->num_tc;
2542 struct xps_map *map;
2544 /* copy maps belonging to foreign traffic classes */
2545 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2546 if (i == tc && skip_tc)
2549 /* fill in the new device map from the old device map */
2550 map = xmap_dereference(dev_maps->attr_map[tci]);
2551 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555 /* Must be called under cpus_read_lock */
2556 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2557 u16 index, enum xps_map_type type)
2559 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2560 const unsigned long *online_mask = NULL;
2561 bool active = false, copy = false;
2562 int i, j, tci, numa_node_id = -2;
2563 int maps_sz, num_tc = 1, tc = 0;
2564 struct xps_map *map, *new_map;
2565 unsigned int nr_ids;
2567 WARN_ON_ONCE(index >= dev->num_tx_queues);
2570 /* Do not allow XPS on subordinate device directly */
2571 num_tc = dev->num_tc;
2575 /* If queue belongs to subordinate dev use its map */
2576 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2578 tc = netdev_txq_to_tc(dev, index);
2583 mutex_lock(&xps_map_mutex);
2585 dev_maps = xmap_dereference(dev->xps_maps[type]);
2586 if (type == XPS_RXQS) {
2587 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2588 nr_ids = dev->num_rx_queues;
2590 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2591 if (num_possible_cpus() > 1)
2592 online_mask = cpumask_bits(cpu_online_mask);
2593 nr_ids = nr_cpu_ids;
2596 if (maps_sz < L1_CACHE_BYTES)
2597 maps_sz = L1_CACHE_BYTES;
2599 /* The old dev_maps could be larger or smaller than the one we're
2600 * setting up now, as dev->num_tc or nr_ids could have been updated in
2601 * between. We could try to be smart, but let's be safe instead and only
2602 * copy foreign traffic classes if the two map sizes match.
2605 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2608 /* allocate memory for queue storage */
2609 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2611 if (!new_dev_maps) {
2612 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2613 if (!new_dev_maps) {
2614 mutex_unlock(&xps_map_mutex);
2618 new_dev_maps->nr_ids = nr_ids;
2619 new_dev_maps->num_tc = num_tc;
2622 tci = j * num_tc + tc;
2623 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2625 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633 goto out_no_new_maps;
2636 /* Increment static keys at most once per type */
2637 static_key_slow_inc_cpuslocked(&xps_needed);
2638 if (type == XPS_RXQS)
2639 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2642 for (j = 0; j < nr_ids; j++) {
2643 bool skip_tc = false;
2645 tci = j * num_tc + tc;
2646 if (netif_attr_test_mask(j, mask, nr_ids) &&
2647 netif_attr_test_online(j, online_mask, nr_ids)) {
2648 /* add tx-queue to CPU/rx-queue maps */
2653 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2654 while ((pos < map->len) && (map->queues[pos] != index))
2657 if (pos == map->len)
2658 map->queues[map->len++] = index;
2660 if (type == XPS_CPUS) {
2661 if (numa_node_id == -2)
2662 numa_node_id = cpu_to_node(j);
2663 else if (numa_node_id != cpu_to_node(j))
2670 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2676 /* Cleanup old maps */
2678 goto out_no_old_maps;
2680 for (j = 0; j < dev_maps->nr_ids; j++) {
2681 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2682 map = xmap_dereference(dev_maps->attr_map[tci]);
2687 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2692 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2693 kfree_rcu(map, rcu);
2697 old_dev_maps = dev_maps;
2700 dev_maps = new_dev_maps;
2704 if (type == XPS_CPUS)
2705 /* update Tx queue numa node */
2706 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2707 (numa_node_id >= 0) ?
2708 numa_node_id : NUMA_NO_NODE);
2713 /* removes tx-queue from unused CPUs/rx-queues */
2714 for (j = 0; j < dev_maps->nr_ids; j++) {
2715 tci = j * dev_maps->num_tc;
2717 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2719 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2720 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2723 active |= remove_xps_queue(dev_maps,
2724 copy ? old_dev_maps : NULL,
2730 kfree_rcu(old_dev_maps, rcu);
2732 /* free map if not active */
2734 reset_xps_maps(dev, dev_maps, type);
2737 mutex_unlock(&xps_map_mutex);
2741 /* remove any maps that we added */
2742 for (j = 0; j < nr_ids; j++) {
2743 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2744 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2746 xmap_dereference(dev_maps->attr_map[tci]) :
2748 if (new_map && new_map != map)
2753 mutex_unlock(&xps_map_mutex);
2755 kfree(new_dev_maps);
2758 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2760 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2766 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2771 EXPORT_SYMBOL(netif_set_xps_queue);
2774 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2776 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2778 /* Unbind any subordinate channels */
2779 while (txq-- != &dev->_tx[0]) {
2781 netdev_unbind_sb_channel(dev, txq->sb_dev);
2785 void netdev_reset_tc(struct net_device *dev)
2788 netif_reset_xps_queues_gt(dev, 0);
2790 netdev_unbind_all_sb_channels(dev);
2792 /* Reset TC configuration of device */
2794 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2795 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2797 EXPORT_SYMBOL(netdev_reset_tc);
2799 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2801 if (tc >= dev->num_tc)
2805 netif_reset_xps_queues(dev, offset, count);
2807 dev->tc_to_txq[tc].count = count;
2808 dev->tc_to_txq[tc].offset = offset;
2811 EXPORT_SYMBOL(netdev_set_tc_queue);
2813 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2815 if (num_tc > TC_MAX_QUEUE)
2819 netif_reset_xps_queues_gt(dev, 0);
2821 netdev_unbind_all_sb_channels(dev);
2823 dev->num_tc = num_tc;
2826 EXPORT_SYMBOL(netdev_set_num_tc);
2828 void netdev_unbind_sb_channel(struct net_device *dev,
2829 struct net_device *sb_dev)
2831 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2834 netif_reset_xps_queues_gt(sb_dev, 0);
2836 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2837 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2839 while (txq-- != &dev->_tx[0]) {
2840 if (txq->sb_dev == sb_dev)
2844 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2846 int netdev_bind_sb_channel_queue(struct net_device *dev,
2847 struct net_device *sb_dev,
2848 u8 tc, u16 count, u16 offset)
2850 /* Make certain the sb_dev and dev are already configured */
2851 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2854 /* We cannot hand out queues we don't have */
2855 if ((offset + count) > dev->real_num_tx_queues)
2858 /* Record the mapping */
2859 sb_dev->tc_to_txq[tc].count = count;
2860 sb_dev->tc_to_txq[tc].offset = offset;
2862 /* Provide a way for Tx queue to find the tc_to_txq map or
2863 * XPS map for itself.
2866 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2872 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2874 /* Do not use a multiqueue device to represent a subordinate channel */
2875 if (netif_is_multiqueue(dev))
2878 /* We allow channels 1 - 32767 to be used for subordinate channels.
2879 * Channel 0 is meant to be "native" mode and used only to represent
2880 * the main root device. We allow writing 0 to reset the device back
2881 * to normal mode after being used as a subordinate channel.
2883 if (channel > S16_MAX)
2886 dev->num_tc = -channel;
2890 EXPORT_SYMBOL(netdev_set_sb_channel);
2893 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2894 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2896 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2901 disabling = txq < dev->real_num_tx_queues;
2903 if (txq < 1 || txq > dev->num_tx_queues)
2906 if (dev->reg_state == NETREG_REGISTERED ||
2907 dev->reg_state == NETREG_UNREGISTERING) {
2910 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2916 netif_setup_tc(dev, txq);
2918 dev_qdisc_change_real_num_tx(dev, txq);
2920 dev->real_num_tx_queues = txq;
2924 qdisc_reset_all_tx_gt(dev, txq);
2926 netif_reset_xps_queues_gt(dev, txq);
2930 dev->real_num_tx_queues = txq;
2935 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939 * netif_set_real_num_rx_queues - set actual number of RX queues used
2940 * @dev: Network device
2941 * @rxq: Actual number of RX queues
2943 * This must be called either with the rtnl_lock held or before
2944 * registration of the net device. Returns 0 on success, or a
2945 * negative error code. If called before registration, it always
2948 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952 if (rxq < 1 || rxq > dev->num_rx_queues)
2955 if (dev->reg_state == NETREG_REGISTERED) {
2958 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2964 dev->real_num_rx_queues = rxq;
2967 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971 * netif_set_real_num_queues - set actual number of RX and TX queues used
2972 * @dev: Network device
2973 * @txq: Actual number of TX queues
2974 * @rxq: Actual number of RX queues
2976 * Set the real number of both TX and RX queues.
2977 * Does nothing if the number of queues is already correct.
2979 int netif_set_real_num_queues(struct net_device *dev,
2980 unsigned int txq, unsigned int rxq)
2982 unsigned int old_rxq = dev->real_num_rx_queues;
2985 if (txq < 1 || txq > dev->num_tx_queues ||
2986 rxq < 1 || rxq > dev->num_rx_queues)
2989 /* Start from increases, so the error path only does decreases -
2990 * decreases can't fail.
2992 if (rxq > dev->real_num_rx_queues) {
2993 err = netif_set_real_num_rx_queues(dev, rxq);
2997 if (txq > dev->real_num_tx_queues) {
2998 err = netif_set_real_num_tx_queues(dev, txq);
3002 if (rxq < dev->real_num_rx_queues)
3003 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3004 if (txq < dev->real_num_tx_queues)
3005 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3012 EXPORT_SYMBOL(netif_set_real_num_queues);
3015 * netif_set_tso_max_size() - set the max size of TSO frames supported
3016 * @dev: netdev to update
3017 * @size: max skb->len of a TSO frame
3019 * Set the limit on the size of TSO super-frames the device can handle.
3020 * Unless explicitly set the stack will assume the value of
3021 * %GSO_LEGACY_MAX_SIZE.
3023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3025 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3026 if (size < READ_ONCE(dev->gso_max_size))
3027 netif_set_gso_max_size(dev, size);
3028 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3029 netif_set_gso_ipv4_max_size(dev, size);
3031 EXPORT_SYMBOL(netif_set_tso_max_size);
3034 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3035 * @dev: netdev to update
3036 * @segs: max number of TCP segments
3038 * Set the limit on the number of TCP segments the device can generate from
3039 * a single TSO super-frame.
3040 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3042 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3044 dev->tso_max_segs = segs;
3045 if (segs < READ_ONCE(dev->gso_max_segs))
3046 netif_set_gso_max_segs(dev, segs);
3048 EXPORT_SYMBOL(netif_set_tso_max_segs);
3051 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3052 * @to: netdev to update
3053 * @from: netdev from which to copy the limits
3055 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3057 netif_set_tso_max_size(to, from->tso_max_size);
3058 netif_set_tso_max_segs(to, from->tso_max_segs);
3060 EXPORT_SYMBOL(netif_inherit_tso_max);
3063 * netif_get_num_default_rss_queues - default number of RSS queues
3065 * Default value is the number of physical cores if there are only 1 or 2, or
3066 * divided by 2 if there are more.
3068 int netif_get_num_default_rss_queues(void)
3073 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3076 cpumask_copy(cpus, cpu_online_mask);
3077 for_each_cpu(cpu, cpus) {
3079 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3081 free_cpumask_var(cpus);
3083 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3085 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3087 static void __netif_reschedule(struct Qdisc *q)
3089 struct softnet_data *sd;
3090 unsigned long flags;
3092 local_irq_save(flags);
3093 sd = this_cpu_ptr(&softnet_data);
3094 q->next_sched = NULL;
3095 *sd->output_queue_tailp = q;
3096 sd->output_queue_tailp = &q->next_sched;
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
3101 void __netif_schedule(struct Qdisc *q)
3103 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3104 __netif_reschedule(q);
3106 EXPORT_SYMBOL(__netif_schedule);
3108 struct dev_kfree_skb_cb {
3109 enum skb_drop_reason reason;
3112 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3114 return (struct dev_kfree_skb_cb *)skb->cb;
3117 void netif_schedule_queue(struct netdev_queue *txq)
3120 if (!netif_xmit_stopped(txq)) {
3121 struct Qdisc *q = rcu_dereference(txq->qdisc);
3123 __netif_schedule(q);
3127 EXPORT_SYMBOL(netif_schedule_queue);
3129 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3131 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135 q = rcu_dereference(dev_queue->qdisc);
3136 __netif_schedule(q);
3140 EXPORT_SYMBOL(netif_tx_wake_queue);
3142 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3144 unsigned long flags;
3149 if (likely(refcount_read(&skb->users) == 1)) {
3151 refcount_set(&skb->users, 0);
3152 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3155 get_kfree_skb_cb(skb)->reason = reason;
3156 local_irq_save(flags);
3157 skb->next = __this_cpu_read(softnet_data.completion_queue);
3158 __this_cpu_write(softnet_data.completion_queue, skb);
3159 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160 local_irq_restore(flags);
3162 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3166 if (in_hardirq() || irqs_disabled())
3167 dev_kfree_skb_irq_reason(skb, reason);
3169 kfree_skb_reason(skb, reason);
3171 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175 * netif_device_detach - mark device as removed
3176 * @dev: network device
3178 * Mark device as removed from system and therefore no longer available.
3180 void netif_device_detach(struct net_device *dev)
3182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183 netif_running(dev)) {
3184 netif_tx_stop_all_queues(dev);
3187 EXPORT_SYMBOL(netif_device_detach);
3190 * netif_device_attach - mark device as attached
3191 * @dev: network device
3193 * Mark device as attached from system and restart if needed.
3195 void netif_device_attach(struct net_device *dev)
3197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198 netif_running(dev)) {
3199 netif_tx_wake_all_queues(dev);
3200 __netdev_watchdog_up(dev);
3203 EXPORT_SYMBOL(netif_device_attach);
3206 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3207 * to be used as a distribution range.
3209 static u16 skb_tx_hash(const struct net_device *dev,
3210 const struct net_device *sb_dev,
3211 struct sk_buff *skb)
3215 u16 qcount = dev->real_num_tx_queues;
3218 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3220 qoffset = sb_dev->tc_to_txq[tc].offset;
3221 qcount = sb_dev->tc_to_txq[tc].count;
3222 if (unlikely(!qcount)) {
3223 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3224 sb_dev->name, qoffset, tc);
3226 qcount = dev->real_num_tx_queues;
3230 if (skb_rx_queue_recorded(skb)) {
3231 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3232 hash = skb_get_rx_queue(skb);
3233 if (hash >= qoffset)
3235 while (unlikely(hash >= qcount))
3237 return hash + qoffset;
3240 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3243 void skb_warn_bad_offload(const struct sk_buff *skb)
3245 static const netdev_features_t null_features;
3246 struct net_device *dev = skb->dev;
3247 const char *name = "";
3249 if (!net_ratelimit())
3253 if (dev->dev.parent)
3254 name = dev_driver_string(dev->dev.parent);
3256 name = netdev_name(dev);
3258 skb_dump(KERN_WARNING, skb, false);
3259 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3260 name, dev ? &dev->features : &null_features,
3261 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265 * Invalidate hardware checksum when packet is to be mangled, and
3266 * complete checksum manually on outgoing path.
3268 int skb_checksum_help(struct sk_buff *skb)
3271 int ret = 0, offset;
3273 if (skb->ip_summed == CHECKSUM_COMPLETE)
3274 goto out_set_summed;
3276 if (unlikely(skb_is_gso(skb))) {
3277 skb_warn_bad_offload(skb);
3281 /* Before computing a checksum, we should make sure no frag could
3282 * be modified by an external entity : checksum could be wrong.
3284 if (skb_has_shared_frag(skb)) {
3285 ret = __skb_linearize(skb);
3290 offset = skb_checksum_start_offset(skb);
3292 if (unlikely(offset >= skb_headlen(skb))) {
3293 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3294 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3295 offset, skb_headlen(skb));
3298 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3300 offset += skb->csum_offset;
3301 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3302 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3303 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3304 offset + sizeof(__sum16), skb_headlen(skb));
3307 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3311 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3313 skb->ip_summed = CHECKSUM_NONE;
3317 EXPORT_SYMBOL(skb_checksum_help);
3319 int skb_crc32c_csum_help(struct sk_buff *skb)
3322 int ret = 0, offset, start;
3324 if (skb->ip_summed != CHECKSUM_PARTIAL)
3327 if (unlikely(skb_is_gso(skb)))
3330 /* Before computing a checksum, we should make sure no frag could
3331 * be modified by an external entity : checksum could be wrong.
3333 if (unlikely(skb_has_shared_frag(skb))) {
3334 ret = __skb_linearize(skb);
3338 start = skb_checksum_start_offset(skb);
3339 offset = start + offsetof(struct sctphdr, checksum);
3340 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3345 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3349 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3350 skb->len - start, ~(__u32)0,
3352 *(__le32 *)(skb->data + offset) = crc32c_csum;
3353 skb_reset_csum_not_inet(skb);
3358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3360 __be16 type = skb->protocol;
3362 /* Tunnel gso handlers can set protocol to ethernet. */
3363 if (type == htons(ETH_P_TEB)) {
3366 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3369 eth = (struct ethhdr *)skb->data;
3370 type = eth->h_proto;
3373 return vlan_get_protocol_and_depth(skb, type, depth);
3377 /* Take action when hardware reception checksum errors are detected. */
3379 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3381 netdev_err(dev, "hw csum failure\n");
3382 skb_dump(KERN_ERR, skb, true);
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3388 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3390 EXPORT_SYMBOL(netdev_rx_csum_fault);
3393 /* XXX: check that highmem exists at all on the given machine. */
3394 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3396 #ifdef CONFIG_HIGHMEM
3399 if (!(dev->features & NETIF_F_HIGHDMA)) {
3400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3403 if (PageHighMem(skb_frag_page(frag)))
3411 /* If MPLS offload request, verify we are testing hardware MPLS features
3412 * instead of standard features for the netdev.
3414 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 netdev_features_t features,
3419 if (eth_p_mpls(type))
3420 features &= skb->dev->mpls_features;
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426 netdev_features_t features,
3433 static netdev_features_t harmonize_features(struct sk_buff *skb,
3434 netdev_features_t features)
3438 type = skb_network_protocol(skb, NULL);
3439 features = net_mpls_features(skb, features, type);
3441 if (skb->ip_summed != CHECKSUM_NONE &&
3442 !can_checksum_protocol(features, type)) {
3443 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3445 if (illegal_highdma(skb->dev, skb))
3446 features &= ~NETIF_F_SG;
3451 netdev_features_t passthru_features_check(struct sk_buff *skb,
3452 struct net_device *dev,
3453 netdev_features_t features)
3457 EXPORT_SYMBOL(passthru_features_check);
3459 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3460 struct net_device *dev,
3461 netdev_features_t features)
3463 return vlan_features_check(skb, features);
3466 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3467 struct net_device *dev,
3468 netdev_features_t features)
3470 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3472 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3473 return features & ~NETIF_F_GSO_MASK;
3475 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3476 return features & ~NETIF_F_GSO_MASK;
3478 if (!skb_shinfo(skb)->gso_type) {
3479 skb_warn_bad_offload(skb);
3480 return features & ~NETIF_F_GSO_MASK;
3483 /* Support for GSO partial features requires software
3484 * intervention before we can actually process the packets
3485 * so we need to strip support for any partial features now
3486 * and we can pull them back in after we have partially
3487 * segmented the frame.
3489 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 features &= ~dev->gso_partial_features;
3492 /* Make sure to clear the IPv4 ID mangling feature if the
3493 * IPv4 header has the potential to be fragmented.
3495 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 struct iphdr *iph = skb->encapsulation ?
3497 inner_ip_hdr(skb) : ip_hdr(skb);
3499 if (!(iph->frag_off & htons(IP_DF)))
3500 features &= ~NETIF_F_TSO_MANGLEID;
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3508 struct net_device *dev = skb->dev;
3509 netdev_features_t features = dev->features;
3511 if (skb_is_gso(skb))
3512 features = gso_features_check(skb, dev, features);
3514 /* If encapsulation offload request, verify we are testing
3515 * hardware encapsulation features instead of standard
3516 * features for the netdev
3518 if (skb->encapsulation)
3519 features &= dev->hw_enc_features;
3521 if (skb_vlan_tagged(skb))
3522 features = netdev_intersect_features(features,
3523 dev->vlan_features |
3524 NETIF_F_HW_VLAN_CTAG_TX |
3525 NETIF_F_HW_VLAN_STAG_TX);
3527 if (dev->netdev_ops->ndo_features_check)
3528 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3531 features &= dflt_features_check(skb, dev, features);
3533 return harmonize_features(skb, features);
3535 EXPORT_SYMBOL(netif_skb_features);
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 struct netdev_queue *txq, bool more)
3543 if (dev_nit_active(dev))
3544 dev_queue_xmit_nit(skb, dev);
3547 trace_net_dev_start_xmit(skb, dev);
3548 rc = netdev_start_xmit(skb, dev, txq, more);
3549 trace_net_dev_xmit(skb, rc, dev, len);
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555 struct netdev_queue *txq, int *ret)
3557 struct sk_buff *skb = first;
3558 int rc = NETDEV_TX_OK;
3561 struct sk_buff *next = skb->next;
3563 skb_mark_not_on_list(skb);
3564 rc = xmit_one(skb, dev, txq, next != NULL);
3565 if (unlikely(!dev_xmit_complete(rc))) {
3571 if (netif_tx_queue_stopped(txq) && skb) {
3572 rc = NETDEV_TX_BUSY;
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583 netdev_features_t features)
3585 if (skb_vlan_tag_present(skb) &&
3586 !vlan_hw_offload_capable(features, skb->vlan_proto))
3587 skb = __vlan_hwaccel_push_inside(skb);
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592 const netdev_features_t features)
3594 if (unlikely(skb_csum_is_sctp(skb)))
3595 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596 skb_crc32c_csum_help(skb);
3598 if (features & NETIF_F_HW_CSUM)
3601 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602 switch (skb->csum_offset) {
3603 case offsetof(struct tcphdr, check):
3604 case offsetof(struct udphdr, check):
3609 return skb_checksum_help(skb);
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3615 netdev_features_t features;
3617 features = netif_skb_features(skb);
3618 skb = validate_xmit_vlan(skb, features);
3622 skb = sk_validate_xmit_skb(skb, dev);
3626 if (netif_needs_gso(skb, features)) {
3627 struct sk_buff *segs;
3629 segs = skb_gso_segment(skb, features);
3637 if (skb_needs_linearize(skb, features) &&
3638 __skb_linearize(skb))
3641 /* If packet is not checksummed and device does not
3642 * support checksumming for this protocol, complete
3643 * checksumming here.
3645 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646 if (skb->encapsulation)
3647 skb_set_inner_transport_header(skb,
3648 skb_checksum_start_offset(skb));
3650 skb_set_transport_header(skb,
3651 skb_checksum_start_offset(skb));
3652 if (skb_csum_hwoffload_help(skb, features))
3657 skb = validate_xmit_xfrm(skb, features, again);
3664 dev_core_stats_tx_dropped_inc(dev);
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3670 struct sk_buff *next, *head = NULL, *tail;
3672 for (; skb != NULL; skb = next) {
3674 skb_mark_not_on_list(skb);
3676 /* in case skb wont be segmented, point to itself */
3679 skb = validate_xmit_skb(skb, dev, again);
3687 /* If skb was segmented, skb->prev points to
3688 * the last segment. If not, it still contains skb.
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3698 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3700 qdisc_skb_cb(skb)->pkt_len = skb->len;
3702 /* To get more precise estimation of bytes sent on wire,
3703 * we add to pkt_len the headers size of all segments
3705 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706 u16 gso_segs = shinfo->gso_segs;
3707 unsigned int hdr_len;
3709 /* mac layer + network layer */
3710 hdr_len = skb_transport_offset(skb);
3712 /* + transport layer */
3713 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714 const struct tcphdr *th;
3715 struct tcphdr _tcphdr;
3717 th = skb_header_pointer(skb, hdr_len,
3718 sizeof(_tcphdr), &_tcphdr);
3720 hdr_len += __tcp_hdrlen(th);
3722 struct udphdr _udphdr;
3724 if (skb_header_pointer(skb, hdr_len,
3725 sizeof(_udphdr), &_udphdr))
3726 hdr_len += sizeof(struct udphdr);
3729 if (shinfo->gso_type & SKB_GSO_DODGY)
3730 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738 struct sk_buff **to_free,
3739 struct netdev_queue *txq)
3743 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744 if (rc == NET_XMIT_SUCCESS)
3745 trace_qdisc_enqueue(q, txq, skb);
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750 struct net_device *dev,
3751 struct netdev_queue *txq)
3753 spinlock_t *root_lock = qdisc_lock(q);
3754 struct sk_buff *to_free = NULL;
3758 qdisc_calculate_pkt_len(skb, q);
3760 if (q->flags & TCQ_F_NOLOCK) {
3761 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762 qdisc_run_begin(q)) {
3763 /* Retest nolock_qdisc_is_empty() within the protection
3764 * of q->seqlock to protect from racing with requeuing.
3766 if (unlikely(!nolock_qdisc_is_empty(q))) {
3767 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3774 qdisc_bstats_cpu_update(q, skb);
3775 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776 !nolock_qdisc_is_empty(q))
3780 return NET_XMIT_SUCCESS;
3783 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3787 if (unlikely(to_free))
3788 kfree_skb_list_reason(to_free,
3789 SKB_DROP_REASON_QDISC_DROP);
3794 * Heuristic to force contended enqueues to serialize on a
3795 * separate lock before trying to get qdisc main lock.
3796 * This permits qdisc->running owner to get the lock more
3797 * often and dequeue packets faster.
3798 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799 * and then other tasks will only enqueue packets. The packets will be
3800 * sent after the qdisc owner is scheduled again. To prevent this
3801 * scenario the task always serialize on the lock.
3803 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804 if (unlikely(contended))
3805 spin_lock(&q->busylock);
3807 spin_lock(root_lock);
3808 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809 __qdisc_drop(skb, &to_free);
3811 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812 qdisc_run_begin(q)) {
3814 * This is a work-conserving queue; there are no old skbs
3815 * waiting to be sent out; and the qdisc is not running -
3816 * xmit the skb directly.
3819 qdisc_bstats_update(q, skb);
3821 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822 if (unlikely(contended)) {
3823 spin_unlock(&q->busylock);
3830 rc = NET_XMIT_SUCCESS;
3832 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833 if (qdisc_run_begin(q)) {
3834 if (unlikely(contended)) {
3835 spin_unlock(&q->busylock);
3842 spin_unlock(root_lock);
3843 if (unlikely(to_free))
3844 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845 if (unlikely(contended))
3846 spin_unlock(&q->busylock);
3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851 static void skb_update_prio(struct sk_buff *skb)
3853 const struct netprio_map *map;
3854 const struct sock *sk;
3855 unsigned int prioidx;
3859 map = rcu_dereference_bh(skb->dev->priomap);
3862 sk = skb_to_full_sk(skb);
3866 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3868 if (prioidx < map->priomap_len)
3869 skb->priority = map->priomap[prioidx];
3872 #define skb_update_prio(skb)
3876 * dev_loopback_xmit - loop back @skb
3877 * @net: network namespace this loopback is happening in
3878 * @sk: sk needed to be a netfilter okfn
3879 * @skb: buffer to transmit
3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3883 skb_reset_mac_header(skb);
3884 __skb_pull(skb, skb_network_offset(skb));
3885 skb->pkt_type = PACKET_LOOPBACK;
3886 if (skb->ip_summed == CHECKSUM_NONE)
3887 skb->ip_summed = CHECKSUM_UNNECESSARY;
3888 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3893 EXPORT_SYMBOL(dev_loopback_xmit);
3895 #ifdef CONFIG_NET_EGRESS
3896 static struct netdev_queue *
3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3899 int qm = skb_get_queue_mapping(skb);
3901 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3904 static bool netdev_xmit_txqueue_skipped(void)
3906 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3909 void netdev_xmit_skip_txqueue(bool skip)
3911 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914 #endif /* CONFIG_NET_EGRESS */
3916 #ifdef CONFIG_NET_XGRESS
3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3918 enum skb_drop_reason *drop_reason)
3920 int ret = TC_ACT_UNSPEC;
3921 #ifdef CONFIG_NET_CLS_ACT
3922 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3923 struct tcf_result res;
3928 tc_skb_cb(skb)->mru = 0;
3929 tc_skb_cb(skb)->post_ct = false;
3930 res.drop_reason = *drop_reason;
3932 mini_qdisc_bstats_cpu_update(miniq, skb);
3933 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3934 /* Only tcf related quirks below. */
3937 *drop_reason = res.drop_reason;
3938 mini_qdisc_qstats_cpu_drop(miniq);
3941 case TC_ACT_RECLASSIFY:
3942 skb->tc_index = TC_H_MIN(res.classid);
3945 #endif /* CONFIG_NET_CLS_ACT */
3949 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3953 static_branch_inc(&tcx_needed_key);
3958 static_branch_dec(&tcx_needed_key);
3961 static __always_inline enum tcx_action_base
3962 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3963 const bool needs_mac)
3965 const struct bpf_mprog_fp *fp;
3966 const struct bpf_prog *prog;
3970 __skb_push(skb, skb->mac_len);
3971 bpf_mprog_foreach_prog(entry, fp, prog) {
3972 bpf_compute_data_pointers(skb);
3973 ret = bpf_prog_run(prog, skb);
3974 if (ret != TCX_NEXT)
3978 __skb_pull(skb, skb->mac_len);
3979 return tcx_action_code(skb, ret);
3982 static __always_inline struct sk_buff *
3983 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3984 struct net_device *orig_dev, bool *another)
3986 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3987 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3993 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3997 qdisc_skb_cb(skb)->pkt_len = skb->len;
3998 tcx_set_ingress(skb, true);
4000 if (static_branch_unlikely(&tcx_needed_key)) {
4001 sch_ret = tcx_run(entry, skb, true);
4002 if (sch_ret != TC_ACT_UNSPEC)
4003 goto ingress_verdict;
4005 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4008 case TC_ACT_REDIRECT:
4009 /* skb_mac_header check was done by BPF, so we can safely
4010 * push the L2 header back before redirecting to another
4013 __skb_push(skb, skb->mac_len);
4014 if (skb_do_redirect(skb) == -EAGAIN) {
4015 __skb_pull(skb, skb->mac_len);
4019 *ret = NET_RX_SUCCESS;
4022 kfree_skb_reason(skb, drop_reason);
4025 /* used by tc_run */
4031 case TC_ACT_CONSUMED:
4032 *ret = NET_RX_SUCCESS;
4039 static __always_inline struct sk_buff *
4040 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4042 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4043 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4049 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4050 * already set by the caller.
4052 if (static_branch_unlikely(&tcx_needed_key)) {
4053 sch_ret = tcx_run(entry, skb, false);
4054 if (sch_ret != TC_ACT_UNSPEC)
4055 goto egress_verdict;
4057 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4060 case TC_ACT_REDIRECT:
4061 /* No need to push/pop skb's mac_header here on egress! */
4062 skb_do_redirect(skb);
4063 *ret = NET_XMIT_SUCCESS;
4066 kfree_skb_reason(skb, drop_reason);
4067 *ret = NET_XMIT_DROP;
4069 /* used by tc_run */
4075 case TC_ACT_CONSUMED:
4076 *ret = NET_XMIT_SUCCESS;
4083 static __always_inline struct sk_buff *
4084 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4085 struct net_device *orig_dev, bool *another)
4090 static __always_inline struct sk_buff *
4091 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4095 #endif /* CONFIG_NET_XGRESS */
4098 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4099 struct xps_dev_maps *dev_maps, unsigned int tci)
4101 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4102 struct xps_map *map;
4103 int queue_index = -1;
4105 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4108 tci *= dev_maps->num_tc;
4111 map = rcu_dereference(dev_maps->attr_map[tci]);
4114 queue_index = map->queues[0];
4116 queue_index = map->queues[reciprocal_scale(
4117 skb_get_hash(skb), map->len)];
4118 if (unlikely(queue_index >= dev->real_num_tx_queues))
4125 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4126 struct sk_buff *skb)
4129 struct xps_dev_maps *dev_maps;
4130 struct sock *sk = skb->sk;
4131 int queue_index = -1;
4133 if (!static_key_false(&xps_needed))
4137 if (!static_key_false(&xps_rxqs_needed))
4140 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4142 int tci = sk_rx_queue_get(sk);
4145 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4150 if (queue_index < 0) {
4151 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4153 unsigned int tci = skb->sender_cpu - 1;
4155 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4167 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4168 struct net_device *sb_dev)
4172 EXPORT_SYMBOL(dev_pick_tx_zero);
4174 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4175 struct net_device *sb_dev)
4177 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4179 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4181 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4182 struct net_device *sb_dev)
4184 struct sock *sk = skb->sk;
4185 int queue_index = sk_tx_queue_get(sk);
4187 sb_dev = sb_dev ? : dev;
4189 if (queue_index < 0 || skb->ooo_okay ||
4190 queue_index >= dev->real_num_tx_queues) {
4191 int new_index = get_xps_queue(dev, sb_dev, skb);
4194 new_index = skb_tx_hash(dev, sb_dev, skb);
4196 if (queue_index != new_index && sk &&
4198 rcu_access_pointer(sk->sk_dst_cache))
4199 sk_tx_queue_set(sk, new_index);
4201 queue_index = new_index;
4206 EXPORT_SYMBOL(netdev_pick_tx);
4208 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4209 struct sk_buff *skb,
4210 struct net_device *sb_dev)
4212 int queue_index = 0;
4215 u32 sender_cpu = skb->sender_cpu - 1;
4217 if (sender_cpu >= (u32)NR_CPUS)
4218 skb->sender_cpu = raw_smp_processor_id() + 1;
4221 if (dev->real_num_tx_queues != 1) {
4222 const struct net_device_ops *ops = dev->netdev_ops;
4224 if (ops->ndo_select_queue)
4225 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4227 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4229 queue_index = netdev_cap_txqueue(dev, queue_index);
4232 skb_set_queue_mapping(skb, queue_index);
4233 return netdev_get_tx_queue(dev, queue_index);
4237 * __dev_queue_xmit() - transmit a buffer
4238 * @skb: buffer to transmit
4239 * @sb_dev: suboordinate device used for L2 forwarding offload
4241 * Queue a buffer for transmission to a network device. The caller must
4242 * have set the device and priority and built the buffer before calling
4243 * this function. The function can be called from an interrupt.
4245 * When calling this method, interrupts MUST be enabled. This is because
4246 * the BH enable code must have IRQs enabled so that it will not deadlock.
4248 * Regardless of the return value, the skb is consumed, so it is currently
4249 * difficult to retry a send to this method. (You can bump the ref count
4250 * before sending to hold a reference for retry if you are careful.)
4253 * * 0 - buffer successfully transmitted
4254 * * positive qdisc return code - NET_XMIT_DROP etc.
4255 * * negative errno - other errors
4257 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4259 struct net_device *dev = skb->dev;
4260 struct netdev_queue *txq = NULL;
4265 skb_reset_mac_header(skb);
4266 skb_assert_len(skb);
4268 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4269 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4271 /* Disable soft irqs for various locks below. Also
4272 * stops preemption for RCU.
4276 skb_update_prio(skb);
4278 qdisc_pkt_len_init(skb);
4279 tcx_set_ingress(skb, false);
4280 #ifdef CONFIG_NET_EGRESS
4281 if (static_branch_unlikely(&egress_needed_key)) {
4282 if (nf_hook_egress_active()) {
4283 skb = nf_hook_egress(skb, &rc, dev);
4288 netdev_xmit_skip_txqueue(false);
4290 nf_skip_egress(skb, true);
4291 skb = sch_handle_egress(skb, &rc, dev);
4294 nf_skip_egress(skb, false);
4296 if (netdev_xmit_txqueue_skipped())
4297 txq = netdev_tx_queue_mapping(dev, skb);
4300 /* If device/qdisc don't need skb->dst, release it right now while
4301 * its hot in this cpu cache.
4303 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4309 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4311 q = rcu_dereference_bh(txq->qdisc);
4313 trace_net_dev_queue(skb);
4315 rc = __dev_xmit_skb(skb, q, dev, txq);
4319 /* The device has no queue. Common case for software devices:
4320 * loopback, all the sorts of tunnels...
4322 * Really, it is unlikely that netif_tx_lock protection is necessary
4323 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4325 * However, it is possible, that they rely on protection
4328 * Check this and shot the lock. It is not prone from deadlocks.
4329 *Either shot noqueue qdisc, it is even simpler 8)
4331 if (dev->flags & IFF_UP) {
4332 int cpu = smp_processor_id(); /* ok because BHs are off */
4334 /* Other cpus might concurrently change txq->xmit_lock_owner
4335 * to -1 or to their cpu id, but not to our id.
4337 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4338 if (dev_xmit_recursion())
4339 goto recursion_alert;
4341 skb = validate_xmit_skb(skb, dev, &again);
4345 HARD_TX_LOCK(dev, txq, cpu);
4347 if (!netif_xmit_stopped(txq)) {
4348 dev_xmit_recursion_inc();
4349 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4350 dev_xmit_recursion_dec();
4351 if (dev_xmit_complete(rc)) {
4352 HARD_TX_UNLOCK(dev, txq);
4356 HARD_TX_UNLOCK(dev, txq);
4357 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4360 /* Recursion is detected! It is possible,
4364 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4370 rcu_read_unlock_bh();
4372 dev_core_stats_tx_dropped_inc(dev);
4373 kfree_skb_list(skb);
4376 rcu_read_unlock_bh();
4379 EXPORT_SYMBOL(__dev_queue_xmit);
4381 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4383 struct net_device *dev = skb->dev;
4384 struct sk_buff *orig_skb = skb;
4385 struct netdev_queue *txq;
4386 int ret = NETDEV_TX_BUSY;
4389 if (unlikely(!netif_running(dev) ||
4390 !netif_carrier_ok(dev)))
4393 skb = validate_xmit_skb_list(skb, dev, &again);
4394 if (skb != orig_skb)
4397 skb_set_queue_mapping(skb, queue_id);
4398 txq = skb_get_tx_queue(dev, skb);
4402 dev_xmit_recursion_inc();
4403 HARD_TX_LOCK(dev, txq, smp_processor_id());
4404 if (!netif_xmit_frozen_or_drv_stopped(txq))
4405 ret = netdev_start_xmit(skb, dev, txq, false);
4406 HARD_TX_UNLOCK(dev, txq);
4407 dev_xmit_recursion_dec();
4412 dev_core_stats_tx_dropped_inc(dev);
4413 kfree_skb_list(skb);
4414 return NET_XMIT_DROP;
4416 EXPORT_SYMBOL(__dev_direct_xmit);
4418 /*************************************************************************
4420 *************************************************************************/
4422 int netdev_max_backlog __read_mostly = 1000;
4423 EXPORT_SYMBOL(netdev_max_backlog);
4425 int netdev_tstamp_prequeue __read_mostly = 1;
4426 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4427 int netdev_budget __read_mostly = 300;
4428 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4429 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4430 int weight_p __read_mostly = 64; /* old backlog weight */
4431 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4432 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4433 int dev_rx_weight __read_mostly = 64;
4434 int dev_tx_weight __read_mostly = 64;
4436 /* Called with irq disabled */
4437 static inline void ____napi_schedule(struct softnet_data *sd,
4438 struct napi_struct *napi)
4440 struct task_struct *thread;
4442 lockdep_assert_irqs_disabled();
4444 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4445 /* Paired with smp_mb__before_atomic() in
4446 * napi_enable()/dev_set_threaded().
4447 * Use READ_ONCE() to guarantee a complete
4448 * read on napi->thread. Only call
4449 * wake_up_process() when it's not NULL.
4451 thread = READ_ONCE(napi->thread);
4453 /* Avoid doing set_bit() if the thread is in
4454 * INTERRUPTIBLE state, cause napi_thread_wait()
4455 * makes sure to proceed with napi polling
4456 * if the thread is explicitly woken from here.
4458 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4459 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4460 wake_up_process(thread);
4465 list_add_tail(&napi->poll_list, &sd->poll_list);
4466 WRITE_ONCE(napi->list_owner, smp_processor_id());
4467 /* If not called from net_rx_action()
4468 * we have to raise NET_RX_SOFTIRQ.
4470 if (!sd->in_net_rx_action)
4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4476 /* One global table that all flow-based protocols share. */
4477 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4478 EXPORT_SYMBOL(rps_sock_flow_table);
4479 u32 rps_cpu_mask __read_mostly;
4480 EXPORT_SYMBOL(rps_cpu_mask);
4482 struct static_key_false rps_needed __read_mostly;
4483 EXPORT_SYMBOL(rps_needed);
4484 struct static_key_false rfs_needed __read_mostly;
4485 EXPORT_SYMBOL(rfs_needed);
4487 static struct rps_dev_flow *
4488 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4489 struct rps_dev_flow *rflow, u16 next_cpu)
4491 if (next_cpu < nr_cpu_ids) {
4492 #ifdef CONFIG_RFS_ACCEL
4493 struct netdev_rx_queue *rxqueue;
4494 struct rps_dev_flow_table *flow_table;
4495 struct rps_dev_flow *old_rflow;
4500 /* Should we steer this flow to a different hardware queue? */
4501 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4502 !(dev->features & NETIF_F_NTUPLE))
4504 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4505 if (rxq_index == skb_get_rx_queue(skb))
4508 rxqueue = dev->_rx + rxq_index;
4509 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512 flow_id = skb_get_hash(skb) & flow_table->mask;
4513 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4514 rxq_index, flow_id);
4518 rflow = &flow_table->flows[flow_id];
4520 if (old_rflow->filter == rflow->filter)
4521 old_rflow->filter = RPS_NO_FILTER;
4525 per_cpu(softnet_data, next_cpu).input_queue_head;
4528 rflow->cpu = next_cpu;
4533 * get_rps_cpu is called from netif_receive_skb and returns the target
4534 * CPU from the RPS map of the receiving queue for a given skb.
4535 * rcu_read_lock must be held on entry.
4537 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4538 struct rps_dev_flow **rflowp)
4540 const struct rps_sock_flow_table *sock_flow_table;
4541 struct netdev_rx_queue *rxqueue = dev->_rx;
4542 struct rps_dev_flow_table *flow_table;
4543 struct rps_map *map;
4548 if (skb_rx_queue_recorded(skb)) {
4549 u16 index = skb_get_rx_queue(skb);
4551 if (unlikely(index >= dev->real_num_rx_queues)) {
4552 WARN_ONCE(dev->real_num_rx_queues > 1,
4553 "%s received packet on queue %u, but number "
4554 "of RX queues is %u\n",
4555 dev->name, index, dev->real_num_rx_queues);
4561 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4563 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4564 map = rcu_dereference(rxqueue->rps_map);
4565 if (!flow_table && !map)
4568 skb_reset_network_header(skb);
4569 hash = skb_get_hash(skb);
4573 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4574 if (flow_table && sock_flow_table) {
4575 struct rps_dev_flow *rflow;
4579 /* First check into global flow table if there is a match.
4580 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4582 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4583 if ((ident ^ hash) & ~rps_cpu_mask)
4586 next_cpu = ident & rps_cpu_mask;
4588 /* OK, now we know there is a match,
4589 * we can look at the local (per receive queue) flow table
4591 rflow = &flow_table->flows[hash & flow_table->mask];
4595 * If the desired CPU (where last recvmsg was done) is
4596 * different from current CPU (one in the rx-queue flow
4597 * table entry), switch if one of the following holds:
4598 * - Current CPU is unset (>= nr_cpu_ids).
4599 * - Current CPU is offline.
4600 * - The current CPU's queue tail has advanced beyond the
4601 * last packet that was enqueued using this table entry.
4602 * This guarantees that all previous packets for the flow
4603 * have been dequeued, thus preserving in order delivery.
4605 if (unlikely(tcpu != next_cpu) &&
4606 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4607 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4608 rflow->last_qtail)) >= 0)) {
4610 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4613 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4623 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4624 if (cpu_online(tcpu)) {
4634 #ifdef CONFIG_RFS_ACCEL
4637 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4638 * @dev: Device on which the filter was set
4639 * @rxq_index: RX queue index
4640 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4641 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4643 * Drivers that implement ndo_rx_flow_steer() should periodically call
4644 * this function for each installed filter and remove the filters for
4645 * which it returns %true.
4647 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4648 u32 flow_id, u16 filter_id)
4650 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4651 struct rps_dev_flow_table *flow_table;
4652 struct rps_dev_flow *rflow;
4657 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4658 if (flow_table && flow_id <= flow_table->mask) {
4659 rflow = &flow_table->flows[flow_id];
4660 cpu = READ_ONCE(rflow->cpu);
4661 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4662 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4663 rflow->last_qtail) <
4664 (int)(10 * flow_table->mask)))
4670 EXPORT_SYMBOL(rps_may_expire_flow);
4672 #endif /* CONFIG_RFS_ACCEL */
4674 /* Called from hardirq (IPI) context */
4675 static void rps_trigger_softirq(void *data)
4677 struct softnet_data *sd = data;
4679 ____napi_schedule(sd, &sd->backlog);
4683 #endif /* CONFIG_RPS */
4685 /* Called from hardirq (IPI) context */
4686 static void trigger_rx_softirq(void *data)
4688 struct softnet_data *sd = data;
4690 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4691 smp_store_release(&sd->defer_ipi_scheduled, 0);
4695 * After we queued a packet into sd->input_pkt_queue,
4696 * we need to make sure this queue is serviced soon.
4698 * - If this is another cpu queue, link it to our rps_ipi_list,
4699 * and make sure we will process rps_ipi_list from net_rx_action().
4701 * - If this is our own queue, NAPI schedule our backlog.
4702 * Note that this also raises NET_RX_SOFTIRQ.
4704 static void napi_schedule_rps(struct softnet_data *sd)
4706 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4710 sd->rps_ipi_next = mysd->rps_ipi_list;
4711 mysd->rps_ipi_list = sd;
4713 /* If not called from net_rx_action() or napi_threaded_poll()
4714 * we have to raise NET_RX_SOFTIRQ.
4716 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4717 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4720 #endif /* CONFIG_RPS */
4721 __napi_schedule_irqoff(&mysd->backlog);
4724 #ifdef CONFIG_NET_FLOW_LIMIT
4725 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4728 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4730 #ifdef CONFIG_NET_FLOW_LIMIT
4731 struct sd_flow_limit *fl;
4732 struct softnet_data *sd;
4733 unsigned int old_flow, new_flow;
4735 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4738 sd = this_cpu_ptr(&softnet_data);
4741 fl = rcu_dereference(sd->flow_limit);
4743 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4744 old_flow = fl->history[fl->history_head];
4745 fl->history[fl->history_head] = new_flow;
4748 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4750 if (likely(fl->buckets[old_flow]))
4751 fl->buckets[old_flow]--;
4753 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4765 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4766 * queue (may be a remote CPU queue).
4768 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4769 unsigned int *qtail)
4771 enum skb_drop_reason reason;
4772 struct softnet_data *sd;
4773 unsigned long flags;
4776 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4777 sd = &per_cpu(softnet_data, cpu);
4779 rps_lock_irqsave(sd, &flags);
4780 if (!netif_running(skb->dev))
4782 qlen = skb_queue_len(&sd->input_pkt_queue);
4783 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4786 __skb_queue_tail(&sd->input_pkt_queue, skb);
4787 input_queue_tail_incr_save(sd, qtail);
4788 rps_unlock_irq_restore(sd, &flags);
4789 return NET_RX_SUCCESS;
4792 /* Schedule NAPI for backlog device
4793 * We can use non atomic operation since we own the queue lock
4795 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4796 napi_schedule_rps(sd);
4799 reason = SKB_DROP_REASON_CPU_BACKLOG;
4803 rps_unlock_irq_restore(sd, &flags);
4805 dev_core_stats_rx_dropped_inc(skb->dev);
4806 kfree_skb_reason(skb, reason);
4810 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4812 struct net_device *dev = skb->dev;
4813 struct netdev_rx_queue *rxqueue;
4817 if (skb_rx_queue_recorded(skb)) {
4818 u16 index = skb_get_rx_queue(skb);
4820 if (unlikely(index >= dev->real_num_rx_queues)) {
4821 WARN_ONCE(dev->real_num_rx_queues > 1,
4822 "%s received packet on queue %u, but number "
4823 "of RX queues is %u\n",
4824 dev->name, index, dev->real_num_rx_queues);
4826 return rxqueue; /* Return first rxqueue */
4833 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4834 struct bpf_prog *xdp_prog)
4836 void *orig_data, *orig_data_end, *hard_start;
4837 struct netdev_rx_queue *rxqueue;
4838 bool orig_bcast, orig_host;
4839 u32 mac_len, frame_sz;
4840 __be16 orig_eth_type;
4845 /* The XDP program wants to see the packet starting at the MAC
4848 mac_len = skb->data - skb_mac_header(skb);
4849 hard_start = skb->data - skb_headroom(skb);
4851 /* SKB "head" area always have tailroom for skb_shared_info */
4852 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4853 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4855 rxqueue = netif_get_rxqueue(skb);
4856 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4857 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4858 skb_headlen(skb) + mac_len, true);
4860 orig_data_end = xdp->data_end;
4861 orig_data = xdp->data;
4862 eth = (struct ethhdr *)xdp->data;
4863 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4864 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4865 orig_eth_type = eth->h_proto;
4867 act = bpf_prog_run_xdp(xdp_prog, xdp);
4869 /* check if bpf_xdp_adjust_head was used */
4870 off = xdp->data - orig_data;
4873 __skb_pull(skb, off);
4875 __skb_push(skb, -off);
4877 skb->mac_header += off;
4878 skb_reset_network_header(skb);
4881 /* check if bpf_xdp_adjust_tail was used */
4882 off = xdp->data_end - orig_data_end;
4884 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4885 skb->len += off; /* positive on grow, negative on shrink */
4888 /* check if XDP changed eth hdr such SKB needs update */
4889 eth = (struct ethhdr *)xdp->data;
4890 if ((orig_eth_type != eth->h_proto) ||
4891 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4892 skb->dev->dev_addr)) ||
4893 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4894 __skb_push(skb, ETH_HLEN);
4895 skb->pkt_type = PACKET_HOST;
4896 skb->protocol = eth_type_trans(skb, skb->dev);
4899 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4900 * before calling us again on redirect path. We do not call do_redirect
4901 * as we leave that up to the caller.
4903 * Caller is responsible for managing lifetime of skb (i.e. calling
4904 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4909 __skb_push(skb, mac_len);
4912 metalen = xdp->data - xdp->data_meta;
4914 skb_metadata_set(skb, metalen);
4921 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4922 struct xdp_buff *xdp,
4923 struct bpf_prog *xdp_prog)
4927 /* Reinjected packets coming from act_mirred or similar should
4928 * not get XDP generic processing.
4930 if (skb_is_redirected(skb))
4933 /* XDP packets must be linear and must have sufficient headroom
4934 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4935 * native XDP provides, thus we need to do it here as well.
4937 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4938 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4939 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4940 int troom = skb->tail + skb->data_len - skb->end;
4942 /* In case we have to go down the path and also linearize,
4943 * then lets do the pskb_expand_head() work just once here.
4945 if (pskb_expand_head(skb,
4946 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4947 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4949 if (skb_linearize(skb))
4953 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4960 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4963 trace_xdp_exception(skb->dev, xdp_prog, act);
4974 /* When doing generic XDP we have to bypass the qdisc layer and the
4975 * network taps in order to match in-driver-XDP behavior. This also means
4976 * that XDP packets are able to starve other packets going through a qdisc,
4977 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4978 * queues, so they do not have this starvation issue.
4980 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4982 struct net_device *dev = skb->dev;
4983 struct netdev_queue *txq;
4984 bool free_skb = true;
4987 txq = netdev_core_pick_tx(dev, skb, NULL);
4988 cpu = smp_processor_id();
4989 HARD_TX_LOCK(dev, txq, cpu);
4990 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4991 rc = netdev_start_xmit(skb, dev, txq, 0);
4992 if (dev_xmit_complete(rc))
4995 HARD_TX_UNLOCK(dev, txq);
4997 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4998 dev_core_stats_tx_dropped_inc(dev);
5003 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5005 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5008 struct xdp_buff xdp;
5012 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5013 if (act != XDP_PASS) {
5016 err = xdp_do_generic_redirect(skb->dev, skb,
5022 generic_xdp_tx(skb, xdp_prog);
5030 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5033 EXPORT_SYMBOL_GPL(do_xdp_generic);
5035 static int netif_rx_internal(struct sk_buff *skb)
5039 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5041 trace_netif_rx(skb);
5044 if (static_branch_unlikely(&rps_needed)) {
5045 struct rps_dev_flow voidflow, *rflow = &voidflow;
5050 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5052 cpu = smp_processor_id();
5054 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5062 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5068 * __netif_rx - Slightly optimized version of netif_rx
5069 * @skb: buffer to post
5071 * This behaves as netif_rx except that it does not disable bottom halves.
5072 * As a result this function may only be invoked from the interrupt context
5073 * (either hard or soft interrupt).
5075 int __netif_rx(struct sk_buff *skb)
5079 lockdep_assert_once(hardirq_count() | softirq_count());
5081 trace_netif_rx_entry(skb);
5082 ret = netif_rx_internal(skb);
5083 trace_netif_rx_exit(ret);
5086 EXPORT_SYMBOL(__netif_rx);
5089 * netif_rx - post buffer to the network code
5090 * @skb: buffer to post
5092 * This function receives a packet from a device driver and queues it for
5093 * the upper (protocol) levels to process via the backlog NAPI device. It
5094 * always succeeds. The buffer may be dropped during processing for
5095 * congestion control or by the protocol layers.
5096 * The network buffer is passed via the backlog NAPI device. Modern NIC
5097 * driver should use NAPI and GRO.
5098 * This function can used from interrupt and from process context. The
5099 * caller from process context must not disable interrupts before invoking
5103 * NET_RX_SUCCESS (no congestion)
5104 * NET_RX_DROP (packet was dropped)
5107 int netif_rx(struct sk_buff *skb)
5109 bool need_bh_off = !(hardirq_count() | softirq_count());
5114 trace_netif_rx_entry(skb);
5115 ret = netif_rx_internal(skb);
5116 trace_netif_rx_exit(ret);
5121 EXPORT_SYMBOL(netif_rx);
5123 static __latent_entropy void net_tx_action(struct softirq_action *h)
5125 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5127 if (sd->completion_queue) {
5128 struct sk_buff *clist;
5130 local_irq_disable();
5131 clist = sd->completion_queue;
5132 sd->completion_queue = NULL;
5136 struct sk_buff *skb = clist;
5138 clist = clist->next;
5140 WARN_ON(refcount_read(&skb->users));
5141 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5142 trace_consume_skb(skb, net_tx_action);
5144 trace_kfree_skb(skb, net_tx_action,
5145 get_kfree_skb_cb(skb)->reason);
5147 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5150 __napi_kfree_skb(skb,
5151 get_kfree_skb_cb(skb)->reason);
5155 if (sd->output_queue) {
5158 local_irq_disable();
5159 head = sd->output_queue;
5160 sd->output_queue = NULL;
5161 sd->output_queue_tailp = &sd->output_queue;
5167 struct Qdisc *q = head;
5168 spinlock_t *root_lock = NULL;
5170 head = head->next_sched;
5172 /* We need to make sure head->next_sched is read
5173 * before clearing __QDISC_STATE_SCHED
5175 smp_mb__before_atomic();
5177 if (!(q->flags & TCQ_F_NOLOCK)) {
5178 root_lock = qdisc_lock(q);
5179 spin_lock(root_lock);
5180 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5182 /* There is a synchronize_net() between
5183 * STATE_DEACTIVATED flag being set and
5184 * qdisc_reset()/some_qdisc_is_busy() in
5185 * dev_deactivate(), so we can safely bail out
5186 * early here to avoid data race between
5187 * qdisc_deactivate() and some_qdisc_is_busy()
5188 * for lockless qdisc.
5190 clear_bit(__QDISC_STATE_SCHED, &q->state);
5194 clear_bit(__QDISC_STATE_SCHED, &q->state);
5197 spin_unlock(root_lock);
5203 xfrm_dev_backlog(sd);
5206 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5207 /* This hook is defined here for ATM LANE */
5208 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5209 unsigned char *addr) __read_mostly;
5210 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5214 * netdev_is_rx_handler_busy - check if receive handler is registered
5215 * @dev: device to check
5217 * Check if a receive handler is already registered for a given device.
5218 * Return true if there one.
5220 * The caller must hold the rtnl_mutex.
5222 bool netdev_is_rx_handler_busy(struct net_device *dev)
5225 return dev && rtnl_dereference(dev->rx_handler);
5227 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5230 * netdev_rx_handler_register - register receive handler
5231 * @dev: device to register a handler for
5232 * @rx_handler: receive handler to register
5233 * @rx_handler_data: data pointer that is used by rx handler
5235 * Register a receive handler for a device. This handler will then be
5236 * called from __netif_receive_skb. A negative errno code is returned
5239 * The caller must hold the rtnl_mutex.
5241 * For a general description of rx_handler, see enum rx_handler_result.
5243 int netdev_rx_handler_register(struct net_device *dev,
5244 rx_handler_func_t *rx_handler,
5245 void *rx_handler_data)
5247 if (netdev_is_rx_handler_busy(dev))
5250 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5253 /* Note: rx_handler_data must be set before rx_handler */
5254 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5255 rcu_assign_pointer(dev->rx_handler, rx_handler);
5259 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5262 * netdev_rx_handler_unregister - unregister receive handler
5263 * @dev: device to unregister a handler from
5265 * Unregister a receive handler from a device.
5267 * The caller must hold the rtnl_mutex.
5269 void netdev_rx_handler_unregister(struct net_device *dev)
5273 RCU_INIT_POINTER(dev->rx_handler, NULL);
5274 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5275 * section has a guarantee to see a non NULL rx_handler_data
5279 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5281 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5284 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5285 * the special handling of PFMEMALLOC skbs.
5287 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5289 switch (skb->protocol) {
5290 case htons(ETH_P_ARP):
5291 case htons(ETH_P_IP):
5292 case htons(ETH_P_IPV6):
5293 case htons(ETH_P_8021Q):
5294 case htons(ETH_P_8021AD):
5301 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5302 int *ret, struct net_device *orig_dev)
5304 if (nf_hook_ingress_active(skb)) {
5308 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5313 ingress_retval = nf_hook_ingress(skb);
5315 return ingress_retval;
5320 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5321 struct packet_type **ppt_prev)
5323 struct packet_type *ptype, *pt_prev;
5324 rx_handler_func_t *rx_handler;
5325 struct sk_buff *skb = *pskb;
5326 struct net_device *orig_dev;
5327 bool deliver_exact = false;
5328 int ret = NET_RX_DROP;
5331 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5333 trace_netif_receive_skb(skb);
5335 orig_dev = skb->dev;
5337 skb_reset_network_header(skb);
5338 if (!skb_transport_header_was_set(skb))
5339 skb_reset_transport_header(skb);
5340 skb_reset_mac_len(skb);
5345 skb->skb_iif = skb->dev->ifindex;
5347 __this_cpu_inc(softnet_data.processed);
5349 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5353 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5356 if (ret2 != XDP_PASS) {
5362 if (eth_type_vlan(skb->protocol)) {
5363 skb = skb_vlan_untag(skb);
5368 if (skb_skip_tc_classify(skb))
5374 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5376 ret = deliver_skb(skb, pt_prev, orig_dev);
5380 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5382 ret = deliver_skb(skb, pt_prev, orig_dev);
5387 #ifdef CONFIG_NET_INGRESS
5388 if (static_branch_unlikely(&ingress_needed_key)) {
5389 bool another = false;
5391 nf_skip_egress(skb, true);
5392 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5399 nf_skip_egress(skb, false);
5400 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5404 skb_reset_redirect(skb);
5406 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5409 if (skb_vlan_tag_present(skb)) {
5411 ret = deliver_skb(skb, pt_prev, orig_dev);
5414 if (vlan_do_receive(&skb))
5416 else if (unlikely(!skb))
5420 rx_handler = rcu_dereference(skb->dev->rx_handler);
5423 ret = deliver_skb(skb, pt_prev, orig_dev);
5426 switch (rx_handler(&skb)) {
5427 case RX_HANDLER_CONSUMED:
5428 ret = NET_RX_SUCCESS;
5430 case RX_HANDLER_ANOTHER:
5432 case RX_HANDLER_EXACT:
5433 deliver_exact = true;
5435 case RX_HANDLER_PASS:
5442 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5444 if (skb_vlan_tag_get_id(skb)) {
5445 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5448 skb->pkt_type = PACKET_OTHERHOST;
5449 } else if (eth_type_vlan(skb->protocol)) {
5450 /* Outer header is 802.1P with vlan 0, inner header is
5451 * 802.1Q or 802.1AD and vlan_do_receive() above could
5452 * not find vlan dev for vlan id 0.
5454 __vlan_hwaccel_clear_tag(skb);
5455 skb = skb_vlan_untag(skb);
5458 if (vlan_do_receive(&skb))
5459 /* After stripping off 802.1P header with vlan 0
5460 * vlan dev is found for inner header.
5463 else if (unlikely(!skb))
5466 /* We have stripped outer 802.1P vlan 0 header.
5467 * But could not find vlan dev.
5468 * check again for vlan id to set OTHERHOST.
5472 /* Note: we might in the future use prio bits
5473 * and set skb->priority like in vlan_do_receive()
5474 * For the time being, just ignore Priority Code Point
5476 __vlan_hwaccel_clear_tag(skb);
5479 type = skb->protocol;
5481 /* deliver only exact match when indicated */
5482 if (likely(!deliver_exact)) {
5483 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 &ptype_base[ntohs(type) &
5488 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5489 &orig_dev->ptype_specific);
5491 if (unlikely(skb->dev != orig_dev)) {
5492 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5493 &skb->dev->ptype_specific);
5497 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5499 *ppt_prev = pt_prev;
5503 dev_core_stats_rx_dropped_inc(skb->dev);
5505 dev_core_stats_rx_nohandler_inc(skb->dev);
5506 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5507 /* Jamal, now you will not able to escape explaining
5508 * me how you were going to use this. :-)
5514 /* The invariant here is that if *ppt_prev is not NULL
5515 * then skb should also be non-NULL.
5517 * Apparently *ppt_prev assignment above holds this invariant due to
5518 * skb dereferencing near it.
5524 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5526 struct net_device *orig_dev = skb->dev;
5527 struct packet_type *pt_prev = NULL;
5530 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5532 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5533 skb->dev, pt_prev, orig_dev);
5538 * netif_receive_skb_core - special purpose version of netif_receive_skb
5539 * @skb: buffer to process
5541 * More direct receive version of netif_receive_skb(). It should
5542 * only be used by callers that have a need to skip RPS and Generic XDP.
5543 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5545 * This function may only be called from softirq context and interrupts
5546 * should be enabled.
5548 * Return values (usually ignored):
5549 * NET_RX_SUCCESS: no congestion
5550 * NET_RX_DROP: packet was dropped
5552 int netif_receive_skb_core(struct sk_buff *skb)
5557 ret = __netif_receive_skb_one_core(skb, false);
5562 EXPORT_SYMBOL(netif_receive_skb_core);
5564 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5565 struct packet_type *pt_prev,
5566 struct net_device *orig_dev)
5568 struct sk_buff *skb, *next;
5572 if (list_empty(head))
5574 if (pt_prev->list_func != NULL)
5575 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5576 ip_list_rcv, head, pt_prev, orig_dev);
5578 list_for_each_entry_safe(skb, next, head, list) {
5579 skb_list_del_init(skb);
5580 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5584 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5586 /* Fast-path assumptions:
5587 * - There is no RX handler.
5588 * - Only one packet_type matches.
5589 * If either of these fails, we will end up doing some per-packet
5590 * processing in-line, then handling the 'last ptype' for the whole
5591 * sublist. This can't cause out-of-order delivery to any single ptype,
5592 * because the 'last ptype' must be constant across the sublist, and all
5593 * other ptypes are handled per-packet.
5595 /* Current (common) ptype of sublist */
5596 struct packet_type *pt_curr = NULL;
5597 /* Current (common) orig_dev of sublist */
5598 struct net_device *od_curr = NULL;
5599 struct list_head sublist;
5600 struct sk_buff *skb, *next;
5602 INIT_LIST_HEAD(&sublist);
5603 list_for_each_entry_safe(skb, next, head, list) {
5604 struct net_device *orig_dev = skb->dev;
5605 struct packet_type *pt_prev = NULL;
5607 skb_list_del_init(skb);
5608 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5611 if (pt_curr != pt_prev || od_curr != orig_dev) {
5612 /* dispatch old sublist */
5613 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5614 /* start new sublist */
5615 INIT_LIST_HEAD(&sublist);
5619 list_add_tail(&skb->list, &sublist);
5622 /* dispatch final sublist */
5623 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626 static int __netif_receive_skb(struct sk_buff *skb)
5630 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5631 unsigned int noreclaim_flag;
5634 * PFMEMALLOC skbs are special, they should
5635 * - be delivered to SOCK_MEMALLOC sockets only
5636 * - stay away from userspace
5637 * - have bounded memory usage
5639 * Use PF_MEMALLOC as this saves us from propagating the allocation
5640 * context down to all allocation sites.
5642 noreclaim_flag = memalloc_noreclaim_save();
5643 ret = __netif_receive_skb_one_core(skb, true);
5644 memalloc_noreclaim_restore(noreclaim_flag);
5646 ret = __netif_receive_skb_one_core(skb, false);
5651 static void __netif_receive_skb_list(struct list_head *head)
5653 unsigned long noreclaim_flag = 0;
5654 struct sk_buff *skb, *next;
5655 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5657 list_for_each_entry_safe(skb, next, head, list) {
5658 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5659 struct list_head sublist;
5661 /* Handle the previous sublist */
5662 list_cut_before(&sublist, head, &skb->list);
5663 if (!list_empty(&sublist))
5664 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5665 pfmemalloc = !pfmemalloc;
5666 /* See comments in __netif_receive_skb */
5668 noreclaim_flag = memalloc_noreclaim_save();
5670 memalloc_noreclaim_restore(noreclaim_flag);
5673 /* Handle the remaining sublist */
5674 if (!list_empty(head))
5675 __netif_receive_skb_list_core(head, pfmemalloc);
5676 /* Restore pflags */
5678 memalloc_noreclaim_restore(noreclaim_flag);
5681 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5683 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5684 struct bpf_prog *new = xdp->prog;
5687 switch (xdp->command) {
5688 case XDP_SETUP_PROG:
5689 rcu_assign_pointer(dev->xdp_prog, new);
5694 static_branch_dec(&generic_xdp_needed_key);
5695 } else if (new && !old) {
5696 static_branch_inc(&generic_xdp_needed_key);
5697 dev_disable_lro(dev);
5698 dev_disable_gro_hw(dev);
5710 static int netif_receive_skb_internal(struct sk_buff *skb)
5714 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5716 if (skb_defer_rx_timestamp(skb))
5717 return NET_RX_SUCCESS;
5721 if (static_branch_unlikely(&rps_needed)) {
5722 struct rps_dev_flow voidflow, *rflow = &voidflow;
5723 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5732 ret = __netif_receive_skb(skb);
5737 void netif_receive_skb_list_internal(struct list_head *head)
5739 struct sk_buff *skb, *next;
5740 struct list_head sublist;
5742 INIT_LIST_HEAD(&sublist);
5743 list_for_each_entry_safe(skb, next, head, list) {
5744 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5745 skb_list_del_init(skb);
5746 if (!skb_defer_rx_timestamp(skb))
5747 list_add_tail(&skb->list, &sublist);
5749 list_splice_init(&sublist, head);
5753 if (static_branch_unlikely(&rps_needed)) {
5754 list_for_each_entry_safe(skb, next, head, list) {
5755 struct rps_dev_flow voidflow, *rflow = &voidflow;
5756 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5759 /* Will be handled, remove from list */
5760 skb_list_del_init(skb);
5761 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5766 __netif_receive_skb_list(head);
5771 * netif_receive_skb - process receive buffer from network
5772 * @skb: buffer to process
5774 * netif_receive_skb() is the main receive data processing function.
5775 * It always succeeds. The buffer may be dropped during processing
5776 * for congestion control or by the protocol layers.
5778 * This function may only be called from softirq context and interrupts
5779 * should be enabled.
5781 * Return values (usually ignored):
5782 * NET_RX_SUCCESS: no congestion
5783 * NET_RX_DROP: packet was dropped
5785 int netif_receive_skb(struct sk_buff *skb)
5789 trace_netif_receive_skb_entry(skb);
5791 ret = netif_receive_skb_internal(skb);
5792 trace_netif_receive_skb_exit(ret);
5796 EXPORT_SYMBOL(netif_receive_skb);
5799 * netif_receive_skb_list - process many receive buffers from network
5800 * @head: list of skbs to process.
5802 * Since return value of netif_receive_skb() is normally ignored, and
5803 * wouldn't be meaningful for a list, this function returns void.
5805 * This function may only be called from softirq context and interrupts
5806 * should be enabled.
5808 void netif_receive_skb_list(struct list_head *head)
5810 struct sk_buff *skb;
5812 if (list_empty(head))
5814 if (trace_netif_receive_skb_list_entry_enabled()) {
5815 list_for_each_entry(skb, head, list)
5816 trace_netif_receive_skb_list_entry(skb);
5818 netif_receive_skb_list_internal(head);
5819 trace_netif_receive_skb_list_exit(0);
5821 EXPORT_SYMBOL(netif_receive_skb_list);
5823 static DEFINE_PER_CPU(struct work_struct, flush_works);
5825 /* Network device is going away, flush any packets still pending */
5826 static void flush_backlog(struct work_struct *work)
5828 struct sk_buff *skb, *tmp;
5829 struct softnet_data *sd;
5832 sd = this_cpu_ptr(&softnet_data);
5834 rps_lock_irq_disable(sd);
5835 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5836 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5837 __skb_unlink(skb, &sd->input_pkt_queue);
5838 dev_kfree_skb_irq(skb);
5839 input_queue_head_incr(sd);
5842 rps_unlock_irq_enable(sd);
5844 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5845 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5846 __skb_unlink(skb, &sd->process_queue);
5848 input_queue_head_incr(sd);
5854 static bool flush_required(int cpu)
5856 #if IS_ENABLED(CONFIG_RPS)
5857 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5860 rps_lock_irq_disable(sd);
5862 /* as insertion into process_queue happens with the rps lock held,
5863 * process_queue access may race only with dequeue
5865 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5866 !skb_queue_empty_lockless(&sd->process_queue);
5867 rps_unlock_irq_enable(sd);
5871 /* without RPS we can't safely check input_pkt_queue: during a
5872 * concurrent remote skb_queue_splice() we can detect as empty both
5873 * input_pkt_queue and process_queue even if the latter could end-up
5874 * containing a lot of packets.
5879 static void flush_all_backlogs(void)
5881 static cpumask_t flush_cpus;
5884 /* since we are under rtnl lock protection we can use static data
5885 * for the cpumask and avoid allocating on stack the possibly
5892 cpumask_clear(&flush_cpus);
5893 for_each_online_cpu(cpu) {
5894 if (flush_required(cpu)) {
5895 queue_work_on(cpu, system_highpri_wq,
5896 per_cpu_ptr(&flush_works, cpu));
5897 cpumask_set_cpu(cpu, &flush_cpus);
5901 /* we can have in flight packet[s] on the cpus we are not flushing,
5902 * synchronize_net() in unregister_netdevice_many() will take care of
5905 for_each_cpu(cpu, &flush_cpus)
5906 flush_work(per_cpu_ptr(&flush_works, cpu));
5911 static void net_rps_send_ipi(struct softnet_data *remsd)
5915 struct softnet_data *next = remsd->rps_ipi_next;
5917 if (cpu_online(remsd->cpu))
5918 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5925 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5926 * Note: called with local irq disabled, but exits with local irq enabled.
5928 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5931 struct softnet_data *remsd = sd->rps_ipi_list;
5934 sd->rps_ipi_list = NULL;
5938 /* Send pending IPI's to kick RPS processing on remote cpus. */
5939 net_rps_send_ipi(remsd);
5945 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5948 return sd->rps_ipi_list != NULL;
5954 static int process_backlog(struct napi_struct *napi, int quota)
5956 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5960 /* Check if we have pending ipi, its better to send them now,
5961 * not waiting net_rx_action() end.
5963 if (sd_has_rps_ipi_waiting(sd)) {
5964 local_irq_disable();
5965 net_rps_action_and_irq_enable(sd);
5968 napi->weight = READ_ONCE(dev_rx_weight);
5970 struct sk_buff *skb;
5972 while ((skb = __skb_dequeue(&sd->process_queue))) {
5974 __netif_receive_skb(skb);
5976 input_queue_head_incr(sd);
5977 if (++work >= quota)
5982 rps_lock_irq_disable(sd);
5983 if (skb_queue_empty(&sd->input_pkt_queue)) {
5985 * Inline a custom version of __napi_complete().
5986 * only current cpu owns and manipulates this napi,
5987 * and NAPI_STATE_SCHED is the only possible flag set
5989 * We can use a plain write instead of clear_bit(),
5990 * and we dont need an smp_mb() memory barrier.
5995 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5996 &sd->process_queue);
5998 rps_unlock_irq_enable(sd);
6005 * __napi_schedule - schedule for receive
6006 * @n: entry to schedule
6008 * The entry's receive function will be scheduled to run.
6009 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6011 void __napi_schedule(struct napi_struct *n)
6013 unsigned long flags;
6015 local_irq_save(flags);
6016 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 local_irq_restore(flags);
6019 EXPORT_SYMBOL(__napi_schedule);
6022 * napi_schedule_prep - check if napi can be scheduled
6025 * Test if NAPI routine is already running, and if not mark
6026 * it as running. This is used as a condition variable to
6027 * insure only one NAPI poll instance runs. We also make
6028 * sure there is no pending NAPI disable.
6030 bool napi_schedule_prep(struct napi_struct *n)
6032 unsigned long new, val = READ_ONCE(n->state);
6035 if (unlikely(val & NAPIF_STATE_DISABLE))
6037 new = val | NAPIF_STATE_SCHED;
6039 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6040 * This was suggested by Alexander Duyck, as compiler
6041 * emits better code than :
6042 * if (val & NAPIF_STATE_SCHED)
6043 * new |= NAPIF_STATE_MISSED;
6045 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6047 } while (!try_cmpxchg(&n->state, &val, new));
6049 return !(val & NAPIF_STATE_SCHED);
6051 EXPORT_SYMBOL(napi_schedule_prep);
6054 * __napi_schedule_irqoff - schedule for receive
6055 * @n: entry to schedule
6057 * Variant of __napi_schedule() assuming hard irqs are masked.
6059 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6060 * because the interrupt disabled assumption might not be true
6061 * due to force-threaded interrupts and spinlock substitution.
6063 void __napi_schedule_irqoff(struct napi_struct *n)
6065 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6066 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6070 EXPORT_SYMBOL(__napi_schedule_irqoff);
6072 bool napi_complete_done(struct napi_struct *n, int work_done)
6074 unsigned long flags, val, new, timeout = 0;
6078 * 1) Don't let napi dequeue from the cpu poll list
6079 * just in case its running on a different cpu.
6080 * 2) If we are busy polling, do nothing here, we have
6081 * the guarantee we will be called later.
6083 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6084 NAPIF_STATE_IN_BUSY_POLL)))
6089 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6092 if (n->defer_hard_irqs_count > 0) {
6093 n->defer_hard_irqs_count--;
6094 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6098 if (n->gro_bitmask) {
6099 /* When the NAPI instance uses a timeout and keeps postponing
6100 * it, we need to bound somehow the time packets are kept in
6103 napi_gro_flush(n, !!timeout);
6108 if (unlikely(!list_empty(&n->poll_list))) {
6109 /* If n->poll_list is not empty, we need to mask irqs */
6110 local_irq_save(flags);
6111 list_del_init(&n->poll_list);
6112 local_irq_restore(flags);
6114 WRITE_ONCE(n->list_owner, -1);
6116 val = READ_ONCE(n->state);
6118 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6120 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6121 NAPIF_STATE_SCHED_THREADED |
6122 NAPIF_STATE_PREFER_BUSY_POLL);
6124 /* If STATE_MISSED was set, leave STATE_SCHED set,
6125 * because we will call napi->poll() one more time.
6126 * This C code was suggested by Alexander Duyck to help gcc.
6128 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6130 } while (!try_cmpxchg(&n->state, &val, new));
6132 if (unlikely(val & NAPIF_STATE_MISSED)) {
6138 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6139 HRTIMER_MODE_REL_PINNED);
6142 EXPORT_SYMBOL(napi_complete_done);
6144 /* must be called under rcu_read_lock(), as we dont take a reference */
6145 static struct napi_struct *napi_by_id(unsigned int napi_id)
6147 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6148 struct napi_struct *napi;
6150 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6151 if (napi->napi_id == napi_id)
6157 #if defined(CONFIG_NET_RX_BUSY_POLL)
6159 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6161 if (!skip_schedule) {
6162 gro_normal_list(napi);
6163 __napi_schedule(napi);
6167 if (napi->gro_bitmask) {
6168 /* flush too old packets
6169 * If HZ < 1000, flush all packets.
6171 napi_gro_flush(napi, HZ >= 1000);
6174 gro_normal_list(napi);
6175 clear_bit(NAPI_STATE_SCHED, &napi->state);
6178 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6181 bool skip_schedule = false;
6182 unsigned long timeout;
6185 /* Busy polling means there is a high chance device driver hard irq
6186 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6187 * set in napi_schedule_prep().
6188 * Since we are about to call napi->poll() once more, we can safely
6189 * clear NAPI_STATE_MISSED.
6191 * Note: x86 could use a single "lock and ..." instruction
6192 * to perform these two clear_bit()
6194 clear_bit(NAPI_STATE_MISSED, &napi->state);
6195 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6199 if (prefer_busy_poll) {
6200 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6201 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6202 if (napi->defer_hard_irqs_count && timeout) {
6203 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6204 skip_schedule = true;
6208 /* All we really want here is to re-enable device interrupts.
6209 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6211 rc = napi->poll(napi, budget);
6212 /* We can't gro_normal_list() here, because napi->poll() might have
6213 * rearmed the napi (napi_complete_done()) in which case it could
6214 * already be running on another CPU.
6216 trace_napi_poll(napi, rc, budget);
6217 netpoll_poll_unlock(have_poll_lock);
6219 __busy_poll_stop(napi, skip_schedule);
6223 void napi_busy_loop(unsigned int napi_id,
6224 bool (*loop_end)(void *, unsigned long),
6225 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6227 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6228 int (*napi_poll)(struct napi_struct *napi, int budget);
6229 void *have_poll_lock = NULL;
6230 struct napi_struct *napi;
6237 napi = napi_by_id(napi_id);
6241 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6248 unsigned long val = READ_ONCE(napi->state);
6250 /* If multiple threads are competing for this napi,
6251 * we avoid dirtying napi->state as much as we can.
6253 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6254 NAPIF_STATE_IN_BUSY_POLL)) {
6255 if (prefer_busy_poll)
6256 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259 if (cmpxchg(&napi->state, val,
6260 val | NAPIF_STATE_IN_BUSY_POLL |
6261 NAPIF_STATE_SCHED) != val) {
6262 if (prefer_busy_poll)
6263 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6266 have_poll_lock = netpoll_poll_lock(napi);
6267 napi_poll = napi->poll;
6269 work = napi_poll(napi, budget);
6270 trace_napi_poll(napi, work, budget);
6271 gro_normal_list(napi);
6274 __NET_ADD_STATS(dev_net(napi->dev),
6275 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6278 if (!loop_end || loop_end(loop_end_arg, start_time))
6281 if (unlikely(need_resched())) {
6283 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6284 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6288 if (loop_end(loop_end_arg, start_time))
6295 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6296 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6301 EXPORT_SYMBOL(napi_busy_loop);
6303 #endif /* CONFIG_NET_RX_BUSY_POLL */
6305 static void napi_hash_add(struct napi_struct *napi)
6307 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6310 spin_lock(&napi_hash_lock);
6312 /* 0..NR_CPUS range is reserved for sender_cpu use */
6314 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6315 napi_gen_id = MIN_NAPI_ID;
6316 } while (napi_by_id(napi_gen_id));
6317 napi->napi_id = napi_gen_id;
6319 hlist_add_head_rcu(&napi->napi_hash_node,
6320 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6322 spin_unlock(&napi_hash_lock);
6325 /* Warning : caller is responsible to make sure rcu grace period
6326 * is respected before freeing memory containing @napi
6328 static void napi_hash_del(struct napi_struct *napi)
6330 spin_lock(&napi_hash_lock);
6332 hlist_del_init_rcu(&napi->napi_hash_node);
6334 spin_unlock(&napi_hash_lock);
6337 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6339 struct napi_struct *napi;
6341 napi = container_of(timer, struct napi_struct, timer);
6343 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6344 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6346 if (!napi_disable_pending(napi) &&
6347 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6348 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6349 __napi_schedule_irqoff(napi);
6352 return HRTIMER_NORESTART;
6355 static void init_gro_hash(struct napi_struct *napi)
6359 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6360 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6361 napi->gro_hash[i].count = 0;
6363 napi->gro_bitmask = 0;
6366 int dev_set_threaded(struct net_device *dev, bool threaded)
6368 struct napi_struct *napi;
6371 if (dev->threaded == threaded)
6375 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6376 if (!napi->thread) {
6377 err = napi_kthread_create(napi);
6386 dev->threaded = threaded;
6388 /* Make sure kthread is created before THREADED bit
6391 smp_mb__before_atomic();
6393 /* Setting/unsetting threaded mode on a napi might not immediately
6394 * take effect, if the current napi instance is actively being
6395 * polled. In this case, the switch between threaded mode and
6396 * softirq mode will happen in the next round of napi_schedule().
6397 * This should not cause hiccups/stalls to the live traffic.
6399 list_for_each_entry(napi, &dev->napi_list, dev_list)
6400 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6404 EXPORT_SYMBOL(dev_set_threaded);
6406 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6407 int (*poll)(struct napi_struct *, int), int weight)
6409 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6412 INIT_LIST_HEAD(&napi->poll_list);
6413 INIT_HLIST_NODE(&napi->napi_hash_node);
6414 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6415 napi->timer.function = napi_watchdog;
6416 init_gro_hash(napi);
6418 INIT_LIST_HEAD(&napi->rx_list);
6421 if (weight > NAPI_POLL_WEIGHT)
6422 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6424 napi->weight = weight;
6426 #ifdef CONFIG_NETPOLL
6427 napi->poll_owner = -1;
6429 napi->list_owner = -1;
6430 set_bit(NAPI_STATE_SCHED, &napi->state);
6431 set_bit(NAPI_STATE_NPSVC, &napi->state);
6432 list_add_rcu(&napi->dev_list, &dev->napi_list);
6433 napi_hash_add(napi);
6434 napi_get_frags_check(napi);
6435 /* Create kthread for this napi if dev->threaded is set.
6436 * Clear dev->threaded if kthread creation failed so that
6437 * threaded mode will not be enabled in napi_enable().
6439 if (dev->threaded && napi_kthread_create(napi))
6442 EXPORT_SYMBOL(netif_napi_add_weight);
6444 void napi_disable(struct napi_struct *n)
6446 unsigned long val, new;
6449 set_bit(NAPI_STATE_DISABLE, &n->state);
6451 val = READ_ONCE(n->state);
6453 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6454 usleep_range(20, 200);
6455 val = READ_ONCE(n->state);
6458 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6459 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6460 } while (!try_cmpxchg(&n->state, &val, new));
6462 hrtimer_cancel(&n->timer);
6464 clear_bit(NAPI_STATE_DISABLE, &n->state);
6466 EXPORT_SYMBOL(napi_disable);
6469 * napi_enable - enable NAPI scheduling
6472 * Resume NAPI from being scheduled on this context.
6473 * Must be paired with napi_disable.
6475 void napi_enable(struct napi_struct *n)
6477 unsigned long new, val = READ_ONCE(n->state);
6480 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6482 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6483 if (n->dev->threaded && n->thread)
6484 new |= NAPIF_STATE_THREADED;
6485 } while (!try_cmpxchg(&n->state, &val, new));
6487 EXPORT_SYMBOL(napi_enable);
6489 static void flush_gro_hash(struct napi_struct *napi)
6493 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6494 struct sk_buff *skb, *n;
6496 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6498 napi->gro_hash[i].count = 0;
6502 /* Must be called in process context */
6503 void __netif_napi_del(struct napi_struct *napi)
6505 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6508 napi_hash_del(napi);
6509 list_del_rcu(&napi->dev_list);
6510 napi_free_frags(napi);
6512 flush_gro_hash(napi);
6513 napi->gro_bitmask = 0;
6516 kthread_stop(napi->thread);
6517 napi->thread = NULL;
6520 EXPORT_SYMBOL(__netif_napi_del);
6522 static int __napi_poll(struct napi_struct *n, bool *repoll)
6528 /* This NAPI_STATE_SCHED test is for avoiding a race
6529 * with netpoll's poll_napi(). Only the entity which
6530 * obtains the lock and sees NAPI_STATE_SCHED set will
6531 * actually make the ->poll() call. Therefore we avoid
6532 * accidentally calling ->poll() when NAPI is not scheduled.
6535 if (napi_is_scheduled(n)) {
6536 work = n->poll(n, weight);
6537 trace_napi_poll(n, work, weight);
6539 xdp_do_check_flushed(n);
6542 if (unlikely(work > weight))
6543 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6544 n->poll, work, weight);
6546 if (likely(work < weight))
6549 /* Drivers must not modify the NAPI state if they
6550 * consume the entire weight. In such cases this code
6551 * still "owns" the NAPI instance and therefore can
6552 * move the instance around on the list at-will.
6554 if (unlikely(napi_disable_pending(n))) {
6559 /* The NAPI context has more processing work, but busy-polling
6560 * is preferred. Exit early.
6562 if (napi_prefer_busy_poll(n)) {
6563 if (napi_complete_done(n, work)) {
6564 /* If timeout is not set, we need to make sure
6565 * that the NAPI is re-scheduled.
6572 if (n->gro_bitmask) {
6573 /* flush too old packets
6574 * If HZ < 1000, flush all packets.
6576 napi_gro_flush(n, HZ >= 1000);
6581 /* Some drivers may have called napi_schedule
6582 * prior to exhausting their budget.
6584 if (unlikely(!list_empty(&n->poll_list))) {
6585 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6586 n->dev ? n->dev->name : "backlog");
6595 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6597 bool do_repoll = false;
6601 list_del_init(&n->poll_list);
6603 have = netpoll_poll_lock(n);
6605 work = __napi_poll(n, &do_repoll);
6608 list_add_tail(&n->poll_list, repoll);
6610 netpoll_poll_unlock(have);
6615 static int napi_thread_wait(struct napi_struct *napi)
6619 set_current_state(TASK_INTERRUPTIBLE);
6621 while (!kthread_should_stop()) {
6622 /* Testing SCHED_THREADED bit here to make sure the current
6623 * kthread owns this napi and could poll on this napi.
6624 * Testing SCHED bit is not enough because SCHED bit might be
6625 * set by some other busy poll thread or by napi_disable().
6627 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6628 WARN_ON(!list_empty(&napi->poll_list));
6629 __set_current_state(TASK_RUNNING);
6634 /* woken being true indicates this thread owns this napi. */
6636 set_current_state(TASK_INTERRUPTIBLE);
6638 __set_current_state(TASK_RUNNING);
6643 static void skb_defer_free_flush(struct softnet_data *sd)
6645 struct sk_buff *skb, *next;
6647 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6648 if (!READ_ONCE(sd->defer_list))
6651 spin_lock(&sd->defer_lock);
6652 skb = sd->defer_list;
6653 sd->defer_list = NULL;
6654 sd->defer_count = 0;
6655 spin_unlock(&sd->defer_lock);
6657 while (skb != NULL) {
6659 napi_consume_skb(skb, 1);
6664 static int napi_threaded_poll(void *data)
6666 struct napi_struct *napi = data;
6667 struct softnet_data *sd;
6670 while (!napi_thread_wait(napi)) {
6672 bool repoll = false;
6675 sd = this_cpu_ptr(&softnet_data);
6676 sd->in_napi_threaded_poll = true;
6678 have = netpoll_poll_lock(napi);
6679 __napi_poll(napi, &repoll);
6680 netpoll_poll_unlock(have);
6682 sd->in_napi_threaded_poll = false;
6685 if (sd_has_rps_ipi_waiting(sd)) {
6686 local_irq_disable();
6687 net_rps_action_and_irq_enable(sd);
6689 skb_defer_free_flush(sd);
6701 static __latent_entropy void net_rx_action(struct softirq_action *h)
6703 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6704 unsigned long time_limit = jiffies +
6705 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6706 int budget = READ_ONCE(netdev_budget);
6711 sd->in_net_rx_action = true;
6712 local_irq_disable();
6713 list_splice_init(&sd->poll_list, &list);
6717 struct napi_struct *n;
6719 skb_defer_free_flush(sd);
6721 if (list_empty(&list)) {
6722 if (list_empty(&repoll)) {
6723 sd->in_net_rx_action = false;
6725 /* We need to check if ____napi_schedule()
6726 * had refilled poll_list while
6727 * sd->in_net_rx_action was true.
6729 if (!list_empty(&sd->poll_list))
6731 if (!sd_has_rps_ipi_waiting(sd))
6737 n = list_first_entry(&list, struct napi_struct, poll_list);
6738 budget -= napi_poll(n, &repoll);
6740 /* If softirq window is exhausted then punt.
6741 * Allow this to run for 2 jiffies since which will allow
6742 * an average latency of 1.5/HZ.
6744 if (unlikely(budget <= 0 ||
6745 time_after_eq(jiffies, time_limit))) {
6751 local_irq_disable();
6753 list_splice_tail_init(&sd->poll_list, &list);
6754 list_splice_tail(&repoll, &list);
6755 list_splice(&list, &sd->poll_list);
6756 if (!list_empty(&sd->poll_list))
6757 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6759 sd->in_net_rx_action = false;
6761 net_rps_action_and_irq_enable(sd);
6765 struct netdev_adjacent {
6766 struct net_device *dev;
6767 netdevice_tracker dev_tracker;
6769 /* upper master flag, there can only be one master device per list */
6772 /* lookup ignore flag */
6775 /* counter for the number of times this device was added to us */
6778 /* private field for the users */
6781 struct list_head list;
6782 struct rcu_head rcu;
6785 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6786 struct list_head *adj_list)
6788 struct netdev_adjacent *adj;
6790 list_for_each_entry(adj, adj_list, list) {
6791 if (adj->dev == adj_dev)
6797 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6798 struct netdev_nested_priv *priv)
6800 struct net_device *dev = (struct net_device *)priv->data;
6802 return upper_dev == dev;
6806 * netdev_has_upper_dev - Check if device is linked to an upper device
6808 * @upper_dev: upper device to check
6810 * Find out if a device is linked to specified upper device and return true
6811 * in case it is. Note that this checks only immediate upper device,
6812 * not through a complete stack of devices. The caller must hold the RTNL lock.
6814 bool netdev_has_upper_dev(struct net_device *dev,
6815 struct net_device *upper_dev)
6817 struct netdev_nested_priv priv = {
6818 .data = (void *)upper_dev,
6823 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6826 EXPORT_SYMBOL(netdev_has_upper_dev);
6829 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6831 * @upper_dev: upper device to check
6833 * Find out if a device is linked to specified upper device and return true
6834 * in case it is. Note that this checks the entire upper device chain.
6835 * The caller must hold rcu lock.
6838 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6839 struct net_device *upper_dev)
6841 struct netdev_nested_priv priv = {
6842 .data = (void *)upper_dev,
6845 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6848 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6851 * netdev_has_any_upper_dev - Check if device is linked to some device
6854 * Find out if a device is linked to an upper device and return true in case
6855 * it is. The caller must hold the RTNL lock.
6857 bool netdev_has_any_upper_dev(struct net_device *dev)
6861 return !list_empty(&dev->adj_list.upper);
6863 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6866 * netdev_master_upper_dev_get - Get master upper device
6869 * Find a master upper device and return pointer to it or NULL in case
6870 * it's not there. The caller must hold the RTNL lock.
6872 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6874 struct netdev_adjacent *upper;
6878 if (list_empty(&dev->adj_list.upper))
6881 upper = list_first_entry(&dev->adj_list.upper,
6882 struct netdev_adjacent, list);
6883 if (likely(upper->master))
6887 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6889 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6891 struct netdev_adjacent *upper;
6895 if (list_empty(&dev->adj_list.upper))
6898 upper = list_first_entry(&dev->adj_list.upper,
6899 struct netdev_adjacent, list);
6900 if (likely(upper->master) && !upper->ignore)
6906 * netdev_has_any_lower_dev - Check if device is linked to some device
6909 * Find out if a device is linked to a lower device and return true in case
6910 * it is. The caller must hold the RTNL lock.
6912 static bool netdev_has_any_lower_dev(struct net_device *dev)
6916 return !list_empty(&dev->adj_list.lower);
6919 void *netdev_adjacent_get_private(struct list_head *adj_list)
6921 struct netdev_adjacent *adj;
6923 adj = list_entry(adj_list, struct netdev_adjacent, list);
6925 return adj->private;
6927 EXPORT_SYMBOL(netdev_adjacent_get_private);
6930 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6932 * @iter: list_head ** of the current position
6934 * Gets the next device from the dev's upper list, starting from iter
6935 * position. The caller must hold RCU read lock.
6937 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6938 struct list_head **iter)
6940 struct netdev_adjacent *upper;
6942 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6944 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6946 if (&upper->list == &dev->adj_list.upper)
6949 *iter = &upper->list;
6953 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6955 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6956 struct list_head **iter,
6959 struct netdev_adjacent *upper;
6961 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6963 if (&upper->list == &dev->adj_list.upper)
6966 *iter = &upper->list;
6967 *ignore = upper->ignore;
6972 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6973 struct list_head **iter)
6975 struct netdev_adjacent *upper;
6977 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6979 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6981 if (&upper->list == &dev->adj_list.upper)
6984 *iter = &upper->list;
6989 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6990 int (*fn)(struct net_device *dev,
6991 struct netdev_nested_priv *priv),
6992 struct netdev_nested_priv *priv)
6994 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6995 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7000 iter = &dev->adj_list.upper;
7004 ret = fn(now, priv);
7011 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7018 niter = &udev->adj_list.upper;
7019 dev_stack[cur] = now;
7020 iter_stack[cur++] = iter;
7027 next = dev_stack[--cur];
7028 niter = iter_stack[cur];
7038 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7039 int (*fn)(struct net_device *dev,
7040 struct netdev_nested_priv *priv),
7041 struct netdev_nested_priv *priv)
7043 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7048 iter = &dev->adj_list.upper;
7052 ret = fn(now, priv);
7059 udev = netdev_next_upper_dev_rcu(now, &iter);
7064 niter = &udev->adj_list.upper;
7065 dev_stack[cur] = now;
7066 iter_stack[cur++] = iter;
7073 next = dev_stack[--cur];
7074 niter = iter_stack[cur];
7083 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7085 static bool __netdev_has_upper_dev(struct net_device *dev,
7086 struct net_device *upper_dev)
7088 struct netdev_nested_priv priv = {
7090 .data = (void *)upper_dev,
7095 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7100 * netdev_lower_get_next_private - Get the next ->private from the
7101 * lower neighbour list
7103 * @iter: list_head ** of the current position
7105 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7106 * list, starting from iter position. The caller must hold either hold the
7107 * RTNL lock or its own locking that guarantees that the neighbour lower
7108 * list will remain unchanged.
7110 void *netdev_lower_get_next_private(struct net_device *dev,
7111 struct list_head **iter)
7113 struct netdev_adjacent *lower;
7115 lower = list_entry(*iter, struct netdev_adjacent, list);
7117 if (&lower->list == &dev->adj_list.lower)
7120 *iter = lower->list.next;
7122 return lower->private;
7124 EXPORT_SYMBOL(netdev_lower_get_next_private);
7127 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7128 * lower neighbour list, RCU
7131 * @iter: list_head ** of the current position
7133 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7134 * list, starting from iter position. The caller must hold RCU read lock.
7136 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7137 struct list_head **iter)
7139 struct netdev_adjacent *lower;
7141 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7143 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7145 if (&lower->list == &dev->adj_list.lower)
7148 *iter = &lower->list;
7150 return lower->private;
7152 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7155 * netdev_lower_get_next - Get the next device from the lower neighbour
7158 * @iter: list_head ** of the current position
7160 * Gets the next netdev_adjacent from the dev's lower neighbour
7161 * list, starting from iter position. The caller must hold RTNL lock or
7162 * its own locking that guarantees that the neighbour lower
7163 * list will remain unchanged.
7165 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7167 struct netdev_adjacent *lower;
7169 lower = list_entry(*iter, struct netdev_adjacent, list);
7171 if (&lower->list == &dev->adj_list.lower)
7174 *iter = lower->list.next;
7178 EXPORT_SYMBOL(netdev_lower_get_next);
7180 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7181 struct list_head **iter)
7183 struct netdev_adjacent *lower;
7185 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7187 if (&lower->list == &dev->adj_list.lower)
7190 *iter = &lower->list;
7195 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7196 struct list_head **iter,
7199 struct netdev_adjacent *lower;
7201 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7203 if (&lower->list == &dev->adj_list.lower)
7206 *iter = &lower->list;
7207 *ignore = lower->ignore;
7212 int netdev_walk_all_lower_dev(struct net_device *dev,
7213 int (*fn)(struct net_device *dev,
7214 struct netdev_nested_priv *priv),
7215 struct netdev_nested_priv *priv)
7217 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7218 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7222 iter = &dev->adj_list.lower;
7226 ret = fn(now, priv);
7233 ldev = netdev_next_lower_dev(now, &iter);
7238 niter = &ldev->adj_list.lower;
7239 dev_stack[cur] = now;
7240 iter_stack[cur++] = iter;
7247 next = dev_stack[--cur];
7248 niter = iter_stack[cur];
7257 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7259 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7260 int (*fn)(struct net_device *dev,
7261 struct netdev_nested_priv *priv),
7262 struct netdev_nested_priv *priv)
7264 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7265 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270 iter = &dev->adj_list.lower;
7274 ret = fn(now, priv);
7281 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7288 niter = &ldev->adj_list.lower;
7289 dev_stack[cur] = now;
7290 iter_stack[cur++] = iter;
7297 next = dev_stack[--cur];
7298 niter = iter_stack[cur];
7308 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7309 struct list_head **iter)
7311 struct netdev_adjacent *lower;
7313 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7314 if (&lower->list == &dev->adj_list.lower)
7317 *iter = &lower->list;
7321 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7323 static u8 __netdev_upper_depth(struct net_device *dev)
7325 struct net_device *udev;
7326 struct list_head *iter;
7330 for (iter = &dev->adj_list.upper,
7331 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7333 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7336 if (max_depth < udev->upper_level)
7337 max_depth = udev->upper_level;
7343 static u8 __netdev_lower_depth(struct net_device *dev)
7345 struct net_device *ldev;
7346 struct list_head *iter;
7350 for (iter = &dev->adj_list.lower,
7351 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7353 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7356 if (max_depth < ldev->lower_level)
7357 max_depth = ldev->lower_level;
7363 static int __netdev_update_upper_level(struct net_device *dev,
7364 struct netdev_nested_priv *__unused)
7366 dev->upper_level = __netdev_upper_depth(dev) + 1;
7370 #ifdef CONFIG_LOCKDEP
7371 static LIST_HEAD(net_unlink_list);
7373 static void net_unlink_todo(struct net_device *dev)
7375 if (list_empty(&dev->unlink_list))
7376 list_add_tail(&dev->unlink_list, &net_unlink_list);
7380 static int __netdev_update_lower_level(struct net_device *dev,
7381 struct netdev_nested_priv *priv)
7383 dev->lower_level = __netdev_lower_depth(dev) + 1;
7385 #ifdef CONFIG_LOCKDEP
7389 if (priv->flags & NESTED_SYNC_IMM)
7390 dev->nested_level = dev->lower_level - 1;
7391 if (priv->flags & NESTED_SYNC_TODO)
7392 net_unlink_todo(dev);
7397 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7398 int (*fn)(struct net_device *dev,
7399 struct netdev_nested_priv *priv),
7400 struct netdev_nested_priv *priv)
7402 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7403 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7407 iter = &dev->adj_list.lower;
7411 ret = fn(now, priv);
7418 ldev = netdev_next_lower_dev_rcu(now, &iter);
7423 niter = &ldev->adj_list.lower;
7424 dev_stack[cur] = now;
7425 iter_stack[cur++] = iter;
7432 next = dev_stack[--cur];
7433 niter = iter_stack[cur];
7442 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7445 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7446 * lower neighbour list, RCU
7450 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7451 * list. The caller must hold RCU read lock.
7453 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7455 struct netdev_adjacent *lower;
7457 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7458 struct netdev_adjacent, list);
7460 return lower->private;
7463 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7466 * netdev_master_upper_dev_get_rcu - Get master upper device
7469 * Find a master upper device and return pointer to it or NULL in case
7470 * it's not there. The caller must hold the RCU read lock.
7472 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7474 struct netdev_adjacent *upper;
7476 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7477 struct netdev_adjacent, list);
7478 if (upper && likely(upper->master))
7482 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7484 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7485 struct net_device *adj_dev,
7486 struct list_head *dev_list)
7488 char linkname[IFNAMSIZ+7];
7490 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7491 "upper_%s" : "lower_%s", adj_dev->name);
7492 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7495 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7497 struct list_head *dev_list)
7499 char linkname[IFNAMSIZ+7];
7501 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7502 "upper_%s" : "lower_%s", name);
7503 sysfs_remove_link(&(dev->dev.kobj), linkname);
7506 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7507 struct net_device *adj_dev,
7508 struct list_head *dev_list)
7510 return (dev_list == &dev->adj_list.upper ||
7511 dev_list == &dev->adj_list.lower) &&
7512 net_eq(dev_net(dev), dev_net(adj_dev));
7515 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7516 struct net_device *adj_dev,
7517 struct list_head *dev_list,
7518 void *private, bool master)
7520 struct netdev_adjacent *adj;
7523 adj = __netdev_find_adj(adj_dev, dev_list);
7527 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7528 dev->name, adj_dev->name, adj->ref_nr);
7533 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7538 adj->master = master;
7540 adj->private = private;
7541 adj->ignore = false;
7542 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7544 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7545 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7547 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7548 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7553 /* Ensure that master link is always the first item in list. */
7555 ret = sysfs_create_link(&(dev->dev.kobj),
7556 &(adj_dev->dev.kobj), "master");
7558 goto remove_symlinks;
7560 list_add_rcu(&adj->list, dev_list);
7562 list_add_tail_rcu(&adj->list, dev_list);
7568 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7569 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7571 netdev_put(adj_dev, &adj->dev_tracker);
7577 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7578 struct net_device *adj_dev,
7580 struct list_head *dev_list)
7582 struct netdev_adjacent *adj;
7584 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7585 dev->name, adj_dev->name, ref_nr);
7587 adj = __netdev_find_adj(adj_dev, dev_list);
7590 pr_err("Adjacency does not exist for device %s from %s\n",
7591 dev->name, adj_dev->name);
7596 if (adj->ref_nr > ref_nr) {
7597 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7598 dev->name, adj_dev->name, ref_nr,
7599 adj->ref_nr - ref_nr);
7600 adj->ref_nr -= ref_nr;
7605 sysfs_remove_link(&(dev->dev.kobj), "master");
7607 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7608 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7610 list_del_rcu(&adj->list);
7611 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7612 adj_dev->name, dev->name, adj_dev->name);
7613 netdev_put(adj_dev, &adj->dev_tracker);
7614 kfree_rcu(adj, rcu);
7617 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7618 struct net_device *upper_dev,
7619 struct list_head *up_list,
7620 struct list_head *down_list,
7621 void *private, bool master)
7625 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7630 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7633 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7640 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7641 struct net_device *upper_dev,
7643 struct list_head *up_list,
7644 struct list_head *down_list)
7646 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7647 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7650 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7651 struct net_device *upper_dev,
7652 void *private, bool master)
7654 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7655 &dev->adj_list.upper,
7656 &upper_dev->adj_list.lower,
7660 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7661 struct net_device *upper_dev)
7663 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7664 &dev->adj_list.upper,
7665 &upper_dev->adj_list.lower);
7668 static int __netdev_upper_dev_link(struct net_device *dev,
7669 struct net_device *upper_dev, bool master,
7670 void *upper_priv, void *upper_info,
7671 struct netdev_nested_priv *priv,
7672 struct netlink_ext_ack *extack)
7674 struct netdev_notifier_changeupper_info changeupper_info = {
7679 .upper_dev = upper_dev,
7682 .upper_info = upper_info,
7684 struct net_device *master_dev;
7689 if (dev == upper_dev)
7692 /* To prevent loops, check if dev is not upper device to upper_dev. */
7693 if (__netdev_has_upper_dev(upper_dev, dev))
7696 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7700 if (__netdev_has_upper_dev(dev, upper_dev))
7703 master_dev = __netdev_master_upper_dev_get(dev);
7705 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7708 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7709 &changeupper_info.info);
7710 ret = notifier_to_errno(ret);
7714 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7719 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7720 &changeupper_info.info);
7721 ret = notifier_to_errno(ret);
7725 __netdev_update_upper_level(dev, NULL);
7726 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7728 __netdev_update_lower_level(upper_dev, priv);
7729 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7735 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7741 * netdev_upper_dev_link - Add a link to the upper device
7743 * @upper_dev: new upper device
7744 * @extack: netlink extended ack
7746 * Adds a link to device which is upper to this one. The caller must hold
7747 * the RTNL lock. On a failure a negative errno code is returned.
7748 * On success the reference counts are adjusted and the function
7751 int netdev_upper_dev_link(struct net_device *dev,
7752 struct net_device *upper_dev,
7753 struct netlink_ext_ack *extack)
7755 struct netdev_nested_priv priv = {
7756 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7760 return __netdev_upper_dev_link(dev, upper_dev, false,
7761 NULL, NULL, &priv, extack);
7763 EXPORT_SYMBOL(netdev_upper_dev_link);
7766 * netdev_master_upper_dev_link - Add a master link to the upper device
7768 * @upper_dev: new upper device
7769 * @upper_priv: upper device private
7770 * @upper_info: upper info to be passed down via notifier
7771 * @extack: netlink extended ack
7773 * Adds a link to device which is upper to this one. In this case, only
7774 * one master upper device can be linked, although other non-master devices
7775 * might be linked as well. The caller must hold the RTNL lock.
7776 * On a failure a negative errno code is returned. On success the reference
7777 * counts are adjusted and the function returns zero.
7779 int netdev_master_upper_dev_link(struct net_device *dev,
7780 struct net_device *upper_dev,
7781 void *upper_priv, void *upper_info,
7782 struct netlink_ext_ack *extack)
7784 struct netdev_nested_priv priv = {
7785 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7789 return __netdev_upper_dev_link(dev, upper_dev, true,
7790 upper_priv, upper_info, &priv, extack);
7792 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7794 static void __netdev_upper_dev_unlink(struct net_device *dev,
7795 struct net_device *upper_dev,
7796 struct netdev_nested_priv *priv)
7798 struct netdev_notifier_changeupper_info changeupper_info = {
7802 .upper_dev = upper_dev,
7808 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7810 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7811 &changeupper_info.info);
7813 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7815 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7816 &changeupper_info.info);
7818 __netdev_update_upper_level(dev, NULL);
7819 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7821 __netdev_update_lower_level(upper_dev, priv);
7822 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7827 * netdev_upper_dev_unlink - Removes a link to upper device
7829 * @upper_dev: new upper device
7831 * Removes a link to device which is upper to this one. The caller must hold
7834 void netdev_upper_dev_unlink(struct net_device *dev,
7835 struct net_device *upper_dev)
7837 struct netdev_nested_priv priv = {
7838 .flags = NESTED_SYNC_TODO,
7842 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7844 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7846 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7847 struct net_device *lower_dev,
7850 struct netdev_adjacent *adj;
7852 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7856 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7861 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7862 struct net_device *lower_dev)
7864 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7867 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7868 struct net_device *lower_dev)
7870 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7873 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7874 struct net_device *new_dev,
7875 struct net_device *dev,
7876 struct netlink_ext_ack *extack)
7878 struct netdev_nested_priv priv = {
7887 if (old_dev && new_dev != old_dev)
7888 netdev_adjacent_dev_disable(dev, old_dev);
7889 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7892 if (old_dev && new_dev != old_dev)
7893 netdev_adjacent_dev_enable(dev, old_dev);
7899 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7901 void netdev_adjacent_change_commit(struct net_device *old_dev,
7902 struct net_device *new_dev,
7903 struct net_device *dev)
7905 struct netdev_nested_priv priv = {
7906 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7910 if (!new_dev || !old_dev)
7913 if (new_dev == old_dev)
7916 netdev_adjacent_dev_enable(dev, old_dev);
7917 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7919 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7921 void netdev_adjacent_change_abort(struct net_device *old_dev,
7922 struct net_device *new_dev,
7923 struct net_device *dev)
7925 struct netdev_nested_priv priv = {
7933 if (old_dev && new_dev != old_dev)
7934 netdev_adjacent_dev_enable(dev, old_dev);
7936 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7938 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7941 * netdev_bonding_info_change - Dispatch event about slave change
7943 * @bonding_info: info to dispatch
7945 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7946 * The caller must hold the RTNL lock.
7948 void netdev_bonding_info_change(struct net_device *dev,
7949 struct netdev_bonding_info *bonding_info)
7951 struct netdev_notifier_bonding_info info = {
7955 memcpy(&info.bonding_info, bonding_info,
7956 sizeof(struct netdev_bonding_info));
7957 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7960 EXPORT_SYMBOL(netdev_bonding_info_change);
7962 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7963 struct netlink_ext_ack *extack)
7965 struct netdev_notifier_offload_xstats_info info = {
7967 .info.extack = extack,
7968 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7973 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7975 if (!dev->offload_xstats_l3)
7978 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7979 NETDEV_OFFLOAD_XSTATS_DISABLE,
7981 err = notifier_to_errno(rc);
7988 kfree(dev->offload_xstats_l3);
7989 dev->offload_xstats_l3 = NULL;
7993 int netdev_offload_xstats_enable(struct net_device *dev,
7994 enum netdev_offload_xstats_type type,
7995 struct netlink_ext_ack *extack)
7999 if (netdev_offload_xstats_enabled(dev, type))
8003 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8004 return netdev_offload_xstats_enable_l3(dev, extack);
8010 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8012 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8014 struct netdev_notifier_offload_xstats_info info = {
8016 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8019 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8021 kfree(dev->offload_xstats_l3);
8022 dev->offload_xstats_l3 = NULL;
8025 int netdev_offload_xstats_disable(struct net_device *dev,
8026 enum netdev_offload_xstats_type type)
8030 if (!netdev_offload_xstats_enabled(dev, type))
8034 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8035 netdev_offload_xstats_disable_l3(dev);
8042 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8044 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8046 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8049 static struct rtnl_hw_stats64 *
8050 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8051 enum netdev_offload_xstats_type type)
8054 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8055 return dev->offload_xstats_l3;
8062 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8063 enum netdev_offload_xstats_type type)
8067 return netdev_offload_xstats_get_ptr(dev, type);
8069 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8071 struct netdev_notifier_offload_xstats_ru {
8075 struct netdev_notifier_offload_xstats_rd {
8076 struct rtnl_hw_stats64 stats;
8080 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8081 const struct rtnl_hw_stats64 *src)
8083 dest->rx_packets += src->rx_packets;
8084 dest->tx_packets += src->tx_packets;
8085 dest->rx_bytes += src->rx_bytes;
8086 dest->tx_bytes += src->tx_bytes;
8087 dest->rx_errors += src->rx_errors;
8088 dest->tx_errors += src->tx_errors;
8089 dest->rx_dropped += src->rx_dropped;
8090 dest->tx_dropped += src->tx_dropped;
8091 dest->multicast += src->multicast;
8094 static int netdev_offload_xstats_get_used(struct net_device *dev,
8095 enum netdev_offload_xstats_type type,
8097 struct netlink_ext_ack *extack)
8099 struct netdev_notifier_offload_xstats_ru report_used = {};
8100 struct netdev_notifier_offload_xstats_info info = {
8102 .info.extack = extack,
8104 .report_used = &report_used,
8108 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8109 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8111 *p_used = report_used.used;
8112 return notifier_to_errno(rc);
8115 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8116 enum netdev_offload_xstats_type type,
8117 struct rtnl_hw_stats64 *p_stats,
8119 struct netlink_ext_ack *extack)
8121 struct netdev_notifier_offload_xstats_rd report_delta = {};
8122 struct netdev_notifier_offload_xstats_info info = {
8124 .info.extack = extack,
8126 .report_delta = &report_delta,
8128 struct rtnl_hw_stats64 *stats;
8131 stats = netdev_offload_xstats_get_ptr(dev, type);
8132 if (WARN_ON(!stats))
8135 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8138 /* Cache whatever we got, even if there was an error, otherwise the
8139 * successful stats retrievals would get lost.
8141 netdev_hw_stats64_add(stats, &report_delta.stats);
8145 *p_used = report_delta.used;
8147 return notifier_to_errno(rc);
8150 int netdev_offload_xstats_get(struct net_device *dev,
8151 enum netdev_offload_xstats_type type,
8152 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8153 struct netlink_ext_ack *extack)
8158 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8161 return netdev_offload_xstats_get_used(dev, type, p_used,
8164 EXPORT_SYMBOL(netdev_offload_xstats_get);
8167 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8168 const struct rtnl_hw_stats64 *stats)
8170 report_delta->used = true;
8171 netdev_hw_stats64_add(&report_delta->stats, stats);
8173 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8176 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8178 report_used->used = true;
8180 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8182 void netdev_offload_xstats_push_delta(struct net_device *dev,
8183 enum netdev_offload_xstats_type type,
8184 const struct rtnl_hw_stats64 *p_stats)
8186 struct rtnl_hw_stats64 *stats;
8190 stats = netdev_offload_xstats_get_ptr(dev, type);
8191 if (WARN_ON(!stats))
8194 netdev_hw_stats64_add(stats, p_stats);
8196 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8199 * netdev_get_xmit_slave - Get the xmit slave of master device
8202 * @all_slaves: assume all the slaves are active
8204 * The reference counters are not incremented so the caller must be
8205 * careful with locks. The caller must hold RCU lock.
8206 * %NULL is returned if no slave is found.
8209 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8210 struct sk_buff *skb,
8213 const struct net_device_ops *ops = dev->netdev_ops;
8215 if (!ops->ndo_get_xmit_slave)
8217 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8219 EXPORT_SYMBOL(netdev_get_xmit_slave);
8221 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8224 const struct net_device_ops *ops = dev->netdev_ops;
8226 if (!ops->ndo_sk_get_lower_dev)
8228 return ops->ndo_sk_get_lower_dev(dev, sk);
8232 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8236 * %NULL is returned if no lower device is found.
8239 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8242 struct net_device *lower;
8244 lower = netdev_sk_get_lower_dev(dev, sk);
8247 lower = netdev_sk_get_lower_dev(dev, sk);
8252 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8254 static void netdev_adjacent_add_links(struct net_device *dev)
8256 struct netdev_adjacent *iter;
8258 struct net *net = dev_net(dev);
8260 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8261 if (!net_eq(net, dev_net(iter->dev)))
8263 netdev_adjacent_sysfs_add(iter->dev, dev,
8264 &iter->dev->adj_list.lower);
8265 netdev_adjacent_sysfs_add(dev, iter->dev,
8266 &dev->adj_list.upper);
8269 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8270 if (!net_eq(net, dev_net(iter->dev)))
8272 netdev_adjacent_sysfs_add(iter->dev, dev,
8273 &iter->dev->adj_list.upper);
8274 netdev_adjacent_sysfs_add(dev, iter->dev,
8275 &dev->adj_list.lower);
8279 static void netdev_adjacent_del_links(struct net_device *dev)
8281 struct netdev_adjacent *iter;
8283 struct net *net = dev_net(dev);
8285 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8286 if (!net_eq(net, dev_net(iter->dev)))
8288 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8289 &iter->dev->adj_list.lower);
8290 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8291 &dev->adj_list.upper);
8294 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8295 if (!net_eq(net, dev_net(iter->dev)))
8297 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8298 &iter->dev->adj_list.upper);
8299 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8300 &dev->adj_list.lower);
8304 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8306 struct netdev_adjacent *iter;
8308 struct net *net = dev_net(dev);
8310 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8311 if (!net_eq(net, dev_net(iter->dev)))
8313 netdev_adjacent_sysfs_del(iter->dev, oldname,
8314 &iter->dev->adj_list.lower);
8315 netdev_adjacent_sysfs_add(iter->dev, dev,
8316 &iter->dev->adj_list.lower);
8319 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8320 if (!net_eq(net, dev_net(iter->dev)))
8322 netdev_adjacent_sysfs_del(iter->dev, oldname,
8323 &iter->dev->adj_list.upper);
8324 netdev_adjacent_sysfs_add(iter->dev, dev,
8325 &iter->dev->adj_list.upper);
8329 void *netdev_lower_dev_get_private(struct net_device *dev,
8330 struct net_device *lower_dev)
8332 struct netdev_adjacent *lower;
8336 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8340 return lower->private;
8342 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8346 * netdev_lower_state_changed - Dispatch event about lower device state change
8347 * @lower_dev: device
8348 * @lower_state_info: state to dispatch
8350 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8351 * The caller must hold the RTNL lock.
8353 void netdev_lower_state_changed(struct net_device *lower_dev,
8354 void *lower_state_info)
8356 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8357 .info.dev = lower_dev,
8361 changelowerstate_info.lower_state_info = lower_state_info;
8362 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8363 &changelowerstate_info.info);
8365 EXPORT_SYMBOL(netdev_lower_state_changed);
8367 static void dev_change_rx_flags(struct net_device *dev, int flags)
8369 const struct net_device_ops *ops = dev->netdev_ops;
8371 if (ops->ndo_change_rx_flags)
8372 ops->ndo_change_rx_flags(dev, flags);
8375 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8377 unsigned int old_flags = dev->flags;
8383 dev->flags |= IFF_PROMISC;
8384 dev->promiscuity += inc;
8385 if (dev->promiscuity == 0) {
8388 * If inc causes overflow, untouch promisc and return error.
8391 dev->flags &= ~IFF_PROMISC;
8393 dev->promiscuity -= inc;
8394 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8398 if (dev->flags != old_flags) {
8399 netdev_info(dev, "%s promiscuous mode\n",
8400 dev->flags & IFF_PROMISC ? "entered" : "left");
8401 if (audit_enabled) {
8402 current_uid_gid(&uid, &gid);
8403 audit_log(audit_context(), GFP_ATOMIC,
8404 AUDIT_ANOM_PROMISCUOUS,
8405 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8406 dev->name, (dev->flags & IFF_PROMISC),
8407 (old_flags & IFF_PROMISC),
8408 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8409 from_kuid(&init_user_ns, uid),
8410 from_kgid(&init_user_ns, gid),
8411 audit_get_sessionid(current));
8414 dev_change_rx_flags(dev, IFF_PROMISC);
8417 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8422 * dev_set_promiscuity - update promiscuity count on a device
8426 * Add or remove promiscuity from a device. While the count in the device
8427 * remains above zero the interface remains promiscuous. Once it hits zero
8428 * the device reverts back to normal filtering operation. A negative inc
8429 * value is used to drop promiscuity on the device.
8430 * Return 0 if successful or a negative errno code on error.
8432 int dev_set_promiscuity(struct net_device *dev, int inc)
8434 unsigned int old_flags = dev->flags;
8437 err = __dev_set_promiscuity(dev, inc, true);
8440 if (dev->flags != old_flags)
8441 dev_set_rx_mode(dev);
8444 EXPORT_SYMBOL(dev_set_promiscuity);
8446 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8448 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8452 dev->flags |= IFF_ALLMULTI;
8453 dev->allmulti += inc;
8454 if (dev->allmulti == 0) {
8457 * If inc causes overflow, untouch allmulti and return error.
8460 dev->flags &= ~IFF_ALLMULTI;
8462 dev->allmulti -= inc;
8463 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8467 if (dev->flags ^ old_flags) {
8468 netdev_info(dev, "%s allmulticast mode\n",
8469 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8470 dev_change_rx_flags(dev, IFF_ALLMULTI);
8471 dev_set_rx_mode(dev);
8473 __dev_notify_flags(dev, old_flags,
8474 dev->gflags ^ old_gflags, 0, NULL);
8480 * dev_set_allmulti - update allmulti count on a device
8484 * Add or remove reception of all multicast frames to a device. While the
8485 * count in the device remains above zero the interface remains listening
8486 * to all interfaces. Once it hits zero the device reverts back to normal
8487 * filtering operation. A negative @inc value is used to drop the counter
8488 * when releasing a resource needing all multicasts.
8489 * Return 0 if successful or a negative errno code on error.
8492 int dev_set_allmulti(struct net_device *dev, int inc)
8494 return __dev_set_allmulti(dev, inc, true);
8496 EXPORT_SYMBOL(dev_set_allmulti);
8499 * Upload unicast and multicast address lists to device and
8500 * configure RX filtering. When the device doesn't support unicast
8501 * filtering it is put in promiscuous mode while unicast addresses
8504 void __dev_set_rx_mode(struct net_device *dev)
8506 const struct net_device_ops *ops = dev->netdev_ops;
8508 /* dev_open will call this function so the list will stay sane. */
8509 if (!(dev->flags&IFF_UP))
8512 if (!netif_device_present(dev))
8515 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8516 /* Unicast addresses changes may only happen under the rtnl,
8517 * therefore calling __dev_set_promiscuity here is safe.
8519 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8520 __dev_set_promiscuity(dev, 1, false);
8521 dev->uc_promisc = true;
8522 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8523 __dev_set_promiscuity(dev, -1, false);
8524 dev->uc_promisc = false;
8528 if (ops->ndo_set_rx_mode)
8529 ops->ndo_set_rx_mode(dev);
8532 void dev_set_rx_mode(struct net_device *dev)
8534 netif_addr_lock_bh(dev);
8535 __dev_set_rx_mode(dev);
8536 netif_addr_unlock_bh(dev);
8540 * dev_get_flags - get flags reported to userspace
8543 * Get the combination of flag bits exported through APIs to userspace.
8545 unsigned int dev_get_flags(const struct net_device *dev)
8549 flags = (dev->flags & ~(IFF_PROMISC |
8554 (dev->gflags & (IFF_PROMISC |
8557 if (netif_running(dev)) {
8558 if (netif_oper_up(dev))
8559 flags |= IFF_RUNNING;
8560 if (netif_carrier_ok(dev))
8561 flags |= IFF_LOWER_UP;
8562 if (netif_dormant(dev))
8563 flags |= IFF_DORMANT;
8568 EXPORT_SYMBOL(dev_get_flags);
8570 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8571 struct netlink_ext_ack *extack)
8573 unsigned int old_flags = dev->flags;
8579 * Set the flags on our device.
8582 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8583 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8585 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8589 * Load in the correct multicast list now the flags have changed.
8592 if ((old_flags ^ flags) & IFF_MULTICAST)
8593 dev_change_rx_flags(dev, IFF_MULTICAST);
8595 dev_set_rx_mode(dev);
8598 * Have we downed the interface. We handle IFF_UP ourselves
8599 * according to user attempts to set it, rather than blindly
8604 if ((old_flags ^ flags) & IFF_UP) {
8605 if (old_flags & IFF_UP)
8608 ret = __dev_open(dev, extack);
8611 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8612 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8613 unsigned int old_flags = dev->flags;
8615 dev->gflags ^= IFF_PROMISC;
8617 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8618 if (dev->flags != old_flags)
8619 dev_set_rx_mode(dev);
8622 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8623 * is important. Some (broken) drivers set IFF_PROMISC, when
8624 * IFF_ALLMULTI is requested not asking us and not reporting.
8626 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8627 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8629 dev->gflags ^= IFF_ALLMULTI;
8630 __dev_set_allmulti(dev, inc, false);
8636 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8637 unsigned int gchanges, u32 portid,
8638 const struct nlmsghdr *nlh)
8640 unsigned int changes = dev->flags ^ old_flags;
8643 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8645 if (changes & IFF_UP) {
8646 if (dev->flags & IFF_UP)
8647 call_netdevice_notifiers(NETDEV_UP, dev);
8649 call_netdevice_notifiers(NETDEV_DOWN, dev);
8652 if (dev->flags & IFF_UP &&
8653 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8654 struct netdev_notifier_change_info change_info = {
8658 .flags_changed = changes,
8661 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8666 * dev_change_flags - change device settings
8668 * @flags: device state flags
8669 * @extack: netlink extended ack
8671 * Change settings on device based state flags. The flags are
8672 * in the userspace exported format.
8674 int dev_change_flags(struct net_device *dev, unsigned int flags,
8675 struct netlink_ext_ack *extack)
8678 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8680 ret = __dev_change_flags(dev, flags, extack);
8684 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8685 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8688 EXPORT_SYMBOL(dev_change_flags);
8690 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8692 const struct net_device_ops *ops = dev->netdev_ops;
8694 if (ops->ndo_change_mtu)
8695 return ops->ndo_change_mtu(dev, new_mtu);
8697 /* Pairs with all the lockless reads of dev->mtu in the stack */
8698 WRITE_ONCE(dev->mtu, new_mtu);
8701 EXPORT_SYMBOL(__dev_set_mtu);
8703 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8704 struct netlink_ext_ack *extack)
8706 /* MTU must be positive, and in range */
8707 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8708 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8712 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8713 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8720 * dev_set_mtu_ext - Change maximum transfer unit
8722 * @new_mtu: new transfer unit
8723 * @extack: netlink extended ack
8725 * Change the maximum transfer size of the network device.
8727 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8728 struct netlink_ext_ack *extack)
8732 if (new_mtu == dev->mtu)
8735 err = dev_validate_mtu(dev, new_mtu, extack);
8739 if (!netif_device_present(dev))
8742 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8743 err = notifier_to_errno(err);
8747 orig_mtu = dev->mtu;
8748 err = __dev_set_mtu(dev, new_mtu);
8751 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8753 err = notifier_to_errno(err);
8755 /* setting mtu back and notifying everyone again,
8756 * so that they have a chance to revert changes.
8758 __dev_set_mtu(dev, orig_mtu);
8759 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8766 int dev_set_mtu(struct net_device *dev, int new_mtu)
8768 struct netlink_ext_ack extack;
8771 memset(&extack, 0, sizeof(extack));
8772 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8773 if (err && extack._msg)
8774 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8777 EXPORT_SYMBOL(dev_set_mtu);
8780 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8782 * @new_len: new tx queue length
8784 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8786 unsigned int orig_len = dev->tx_queue_len;
8789 if (new_len != (unsigned int)new_len)
8792 if (new_len != orig_len) {
8793 dev->tx_queue_len = new_len;
8794 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8795 res = notifier_to_errno(res);
8798 res = dev_qdisc_change_tx_queue_len(dev);
8806 netdev_err(dev, "refused to change device tx_queue_len\n");
8807 dev->tx_queue_len = orig_len;
8812 * dev_set_group - Change group this device belongs to
8814 * @new_group: group this device should belong to
8816 void dev_set_group(struct net_device *dev, int new_group)
8818 dev->group = new_group;
8822 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8824 * @addr: new address
8825 * @extack: netlink extended ack
8827 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8828 struct netlink_ext_ack *extack)
8830 struct netdev_notifier_pre_changeaddr_info info = {
8832 .info.extack = extack,
8837 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8838 return notifier_to_errno(rc);
8840 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8843 * dev_set_mac_address - Change Media Access Control Address
8846 * @extack: netlink extended ack
8848 * Change the hardware (MAC) address of the device
8850 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8851 struct netlink_ext_ack *extack)
8853 const struct net_device_ops *ops = dev->netdev_ops;
8856 if (!ops->ndo_set_mac_address)
8858 if (sa->sa_family != dev->type)
8860 if (!netif_device_present(dev))
8862 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8865 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8866 err = ops->ndo_set_mac_address(dev, sa);
8870 dev->addr_assign_type = NET_ADDR_SET;
8871 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8872 add_device_randomness(dev->dev_addr, dev->addr_len);
8875 EXPORT_SYMBOL(dev_set_mac_address);
8877 static DECLARE_RWSEM(dev_addr_sem);
8879 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8880 struct netlink_ext_ack *extack)
8884 down_write(&dev_addr_sem);
8885 ret = dev_set_mac_address(dev, sa, extack);
8886 up_write(&dev_addr_sem);
8889 EXPORT_SYMBOL(dev_set_mac_address_user);
8891 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8893 size_t size = sizeof(sa->sa_data_min);
8894 struct net_device *dev;
8897 down_read(&dev_addr_sem);
8900 dev = dev_get_by_name_rcu(net, dev_name);
8906 memset(sa->sa_data, 0, size);
8908 memcpy(sa->sa_data, dev->dev_addr,
8909 min_t(size_t, size, dev->addr_len));
8910 sa->sa_family = dev->type;
8914 up_read(&dev_addr_sem);
8917 EXPORT_SYMBOL(dev_get_mac_address);
8920 * dev_change_carrier - Change device carrier
8922 * @new_carrier: new value
8924 * Change device carrier
8926 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8928 const struct net_device_ops *ops = dev->netdev_ops;
8930 if (!ops->ndo_change_carrier)
8932 if (!netif_device_present(dev))
8934 return ops->ndo_change_carrier(dev, new_carrier);
8938 * dev_get_phys_port_id - Get device physical port ID
8942 * Get device physical port ID
8944 int dev_get_phys_port_id(struct net_device *dev,
8945 struct netdev_phys_item_id *ppid)
8947 const struct net_device_ops *ops = dev->netdev_ops;
8949 if (!ops->ndo_get_phys_port_id)
8951 return ops->ndo_get_phys_port_id(dev, ppid);
8955 * dev_get_phys_port_name - Get device physical port name
8958 * @len: limit of bytes to copy to name
8960 * Get device physical port name
8962 int dev_get_phys_port_name(struct net_device *dev,
8963 char *name, size_t len)
8965 const struct net_device_ops *ops = dev->netdev_ops;
8968 if (ops->ndo_get_phys_port_name) {
8969 err = ops->ndo_get_phys_port_name(dev, name, len);
8970 if (err != -EOPNOTSUPP)
8973 return devlink_compat_phys_port_name_get(dev, name, len);
8977 * dev_get_port_parent_id - Get the device's port parent identifier
8978 * @dev: network device
8979 * @ppid: pointer to a storage for the port's parent identifier
8980 * @recurse: allow/disallow recursion to lower devices
8982 * Get the devices's port parent identifier
8984 int dev_get_port_parent_id(struct net_device *dev,
8985 struct netdev_phys_item_id *ppid,
8988 const struct net_device_ops *ops = dev->netdev_ops;
8989 struct netdev_phys_item_id first = { };
8990 struct net_device *lower_dev;
8991 struct list_head *iter;
8994 if (ops->ndo_get_port_parent_id) {
8995 err = ops->ndo_get_port_parent_id(dev, ppid);
8996 if (err != -EOPNOTSUPP)
9000 err = devlink_compat_switch_id_get(dev, ppid);
9001 if (!recurse || err != -EOPNOTSUPP)
9004 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9005 err = dev_get_port_parent_id(lower_dev, ppid, true);
9010 else if (memcmp(&first, ppid, sizeof(*ppid)))
9016 EXPORT_SYMBOL(dev_get_port_parent_id);
9019 * netdev_port_same_parent_id - Indicate if two network devices have
9020 * the same port parent identifier
9021 * @a: first network device
9022 * @b: second network device
9024 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9026 struct netdev_phys_item_id a_id = { };
9027 struct netdev_phys_item_id b_id = { };
9029 if (dev_get_port_parent_id(a, &a_id, true) ||
9030 dev_get_port_parent_id(b, &b_id, true))
9033 return netdev_phys_item_id_same(&a_id, &b_id);
9035 EXPORT_SYMBOL(netdev_port_same_parent_id);
9037 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9039 #if IS_ENABLED(CONFIG_DPLL)
9041 dev->dpll_pin = dpll_pin;
9046 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9049 netdev_dpll_pin_assign(dev, dpll_pin);
9051 EXPORT_SYMBOL(netdev_dpll_pin_set);
9053 void netdev_dpll_pin_clear(struct net_device *dev)
9055 netdev_dpll_pin_assign(dev, NULL);
9057 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9060 * dev_change_proto_down - set carrier according to proto_down.
9063 * @proto_down: new value
9065 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9067 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9069 if (!netif_device_present(dev))
9072 netif_carrier_off(dev);
9074 netif_carrier_on(dev);
9075 dev->proto_down = proto_down;
9080 * dev_change_proto_down_reason - proto down reason
9083 * @mask: proto down mask
9084 * @value: proto down value
9086 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9092 dev->proto_down_reason = value;
9094 for_each_set_bit(b, &mask, 32) {
9095 if (value & (1 << b))
9096 dev->proto_down_reason |= BIT(b);
9098 dev->proto_down_reason &= ~BIT(b);
9103 struct bpf_xdp_link {
9104 struct bpf_link link;
9105 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9109 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9111 if (flags & XDP_FLAGS_HW_MODE)
9113 if (flags & XDP_FLAGS_DRV_MODE)
9114 return XDP_MODE_DRV;
9115 if (flags & XDP_FLAGS_SKB_MODE)
9116 return XDP_MODE_SKB;
9117 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9120 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9124 return generic_xdp_install;
9127 return dev->netdev_ops->ndo_bpf;
9133 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9134 enum bpf_xdp_mode mode)
9136 return dev->xdp_state[mode].link;
9139 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9140 enum bpf_xdp_mode mode)
9142 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9145 return link->link.prog;
9146 return dev->xdp_state[mode].prog;
9149 u8 dev_xdp_prog_count(struct net_device *dev)
9154 for (i = 0; i < __MAX_XDP_MODE; i++)
9155 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9159 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9161 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9163 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9165 return prog ? prog->aux->id : 0;
9168 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9169 struct bpf_xdp_link *link)
9171 dev->xdp_state[mode].link = link;
9172 dev->xdp_state[mode].prog = NULL;
9175 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9176 struct bpf_prog *prog)
9178 dev->xdp_state[mode].link = NULL;
9179 dev->xdp_state[mode].prog = prog;
9182 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9183 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9184 u32 flags, struct bpf_prog *prog)
9186 struct netdev_bpf xdp;
9189 memset(&xdp, 0, sizeof(xdp));
9190 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9191 xdp.extack = extack;
9195 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9196 * "moved" into driver), so they don't increment it on their own, but
9197 * they do decrement refcnt when program is detached or replaced.
9198 * Given net_device also owns link/prog, we need to bump refcnt here
9199 * to prevent drivers from underflowing it.
9203 err = bpf_op(dev, &xdp);
9210 if (mode != XDP_MODE_HW)
9211 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9216 static void dev_xdp_uninstall(struct net_device *dev)
9218 struct bpf_xdp_link *link;
9219 struct bpf_prog *prog;
9220 enum bpf_xdp_mode mode;
9225 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9226 prog = dev_xdp_prog(dev, mode);
9230 bpf_op = dev_xdp_bpf_op(dev, mode);
9234 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9236 /* auto-detach link from net device */
9237 link = dev_xdp_link(dev, mode);
9243 dev_xdp_set_link(dev, mode, NULL);
9247 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9248 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9249 struct bpf_prog *old_prog, u32 flags)
9251 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9252 struct bpf_prog *cur_prog;
9253 struct net_device *upper;
9254 struct list_head *iter;
9255 enum bpf_xdp_mode mode;
9261 /* either link or prog attachment, never both */
9262 if (link && (new_prog || old_prog))
9264 /* link supports only XDP mode flags */
9265 if (link && (flags & ~XDP_FLAGS_MODES)) {
9266 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9269 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9270 if (num_modes > 1) {
9271 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9274 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9275 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9276 NL_SET_ERR_MSG(extack,
9277 "More than one program loaded, unset mode is ambiguous");
9280 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9281 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9282 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9286 mode = dev_xdp_mode(dev, flags);
9287 /* can't replace attached link */
9288 if (dev_xdp_link(dev, mode)) {
9289 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9293 /* don't allow if an upper device already has a program */
9294 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9295 if (dev_xdp_prog_count(upper) > 0) {
9296 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9301 cur_prog = dev_xdp_prog(dev, mode);
9302 /* can't replace attached prog with link */
9303 if (link && cur_prog) {
9304 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9307 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9308 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9312 /* put effective new program into new_prog */
9314 new_prog = link->link.prog;
9317 bool offload = mode == XDP_MODE_HW;
9318 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9319 ? XDP_MODE_DRV : XDP_MODE_SKB;
9321 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9322 NL_SET_ERR_MSG(extack, "XDP program already attached");
9325 if (!offload && dev_xdp_prog(dev, other_mode)) {
9326 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9329 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9330 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9333 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9334 NL_SET_ERR_MSG(extack, "Program bound to different device");
9337 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9338 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9341 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9342 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9347 /* don't call drivers if the effective program didn't change */
9348 if (new_prog != cur_prog) {
9349 bpf_op = dev_xdp_bpf_op(dev, mode);
9351 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9355 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9361 dev_xdp_set_link(dev, mode, link);
9363 dev_xdp_set_prog(dev, mode, new_prog);
9365 bpf_prog_put(cur_prog);
9370 static int dev_xdp_attach_link(struct net_device *dev,
9371 struct netlink_ext_ack *extack,
9372 struct bpf_xdp_link *link)
9374 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9377 static int dev_xdp_detach_link(struct net_device *dev,
9378 struct netlink_ext_ack *extack,
9379 struct bpf_xdp_link *link)
9381 enum bpf_xdp_mode mode;
9386 mode = dev_xdp_mode(dev, link->flags);
9387 if (dev_xdp_link(dev, mode) != link)
9390 bpf_op = dev_xdp_bpf_op(dev, mode);
9391 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9392 dev_xdp_set_link(dev, mode, NULL);
9396 static void bpf_xdp_link_release(struct bpf_link *link)
9398 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9402 /* if racing with net_device's tear down, xdp_link->dev might be
9403 * already NULL, in which case link was already auto-detached
9405 if (xdp_link->dev) {
9406 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9407 xdp_link->dev = NULL;
9413 static int bpf_xdp_link_detach(struct bpf_link *link)
9415 bpf_xdp_link_release(link);
9419 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9421 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9426 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9427 struct seq_file *seq)
9429 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9434 ifindex = xdp_link->dev->ifindex;
9437 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9440 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9441 struct bpf_link_info *info)
9443 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9448 ifindex = xdp_link->dev->ifindex;
9451 info->xdp.ifindex = ifindex;
9455 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9456 struct bpf_prog *old_prog)
9458 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9459 enum bpf_xdp_mode mode;
9465 /* link might have been auto-released already, so fail */
9466 if (!xdp_link->dev) {
9471 if (old_prog && link->prog != old_prog) {
9475 old_prog = link->prog;
9476 if (old_prog->type != new_prog->type ||
9477 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9482 if (old_prog == new_prog) {
9483 /* no-op, don't disturb drivers */
9484 bpf_prog_put(new_prog);
9488 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9489 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9490 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9491 xdp_link->flags, new_prog);
9495 old_prog = xchg(&link->prog, new_prog);
9496 bpf_prog_put(old_prog);
9503 static const struct bpf_link_ops bpf_xdp_link_lops = {
9504 .release = bpf_xdp_link_release,
9505 .dealloc = bpf_xdp_link_dealloc,
9506 .detach = bpf_xdp_link_detach,
9507 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9508 .fill_link_info = bpf_xdp_link_fill_link_info,
9509 .update_prog = bpf_xdp_link_update,
9512 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9514 struct net *net = current->nsproxy->net_ns;
9515 struct bpf_link_primer link_primer;
9516 struct netlink_ext_ack extack = {};
9517 struct bpf_xdp_link *link;
9518 struct net_device *dev;
9522 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9528 link = kzalloc(sizeof(*link), GFP_USER);
9534 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9536 link->flags = attr->link_create.flags;
9538 err = bpf_link_prime(&link->link, &link_primer);
9544 err = dev_xdp_attach_link(dev, &extack, link);
9549 bpf_link_cleanup(&link_primer);
9550 trace_bpf_xdp_link_attach_failed(extack._msg);
9554 fd = bpf_link_settle(&link_primer);
9555 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9568 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9570 * @extack: netlink extended ack
9571 * @fd: new program fd or negative value to clear
9572 * @expected_fd: old program fd that userspace expects to replace or clear
9573 * @flags: xdp-related flags
9575 * Set or clear a bpf program for a device
9577 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9578 int fd, int expected_fd, u32 flags)
9580 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9581 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9587 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9588 mode != XDP_MODE_SKB);
9589 if (IS_ERR(new_prog))
9590 return PTR_ERR(new_prog);
9593 if (expected_fd >= 0) {
9594 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9595 mode != XDP_MODE_SKB);
9596 if (IS_ERR(old_prog)) {
9597 err = PTR_ERR(old_prog);
9603 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9606 if (err && new_prog)
9607 bpf_prog_put(new_prog);
9609 bpf_prog_put(old_prog);
9614 * dev_index_reserve() - allocate an ifindex in a namespace
9615 * @net: the applicable net namespace
9616 * @ifindex: requested ifindex, pass %0 to get one allocated
9618 * Allocate a ifindex for a new device. Caller must either use the ifindex
9619 * to store the device (via list_netdevice()) or call dev_index_release()
9620 * to give the index up.
9622 * Return: a suitable unique value for a new device interface number or -errno.
9624 static int dev_index_reserve(struct net *net, u32 ifindex)
9628 if (ifindex > INT_MAX) {
9629 DEBUG_NET_WARN_ON_ONCE(1);
9634 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9635 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9637 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9644 static void dev_index_release(struct net *net, int ifindex)
9646 /* Expect only unused indexes, unlist_netdevice() removes the used */
9647 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9650 /* Delayed registration/unregisteration */
9651 LIST_HEAD(net_todo_list);
9652 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9654 static void net_set_todo(struct net_device *dev)
9656 list_add_tail(&dev->todo_list, &net_todo_list);
9657 atomic_inc(&dev_net(dev)->dev_unreg_count);
9660 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9661 struct net_device *upper, netdev_features_t features)
9663 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9664 netdev_features_t feature;
9667 for_each_netdev_feature(upper_disables, feature_bit) {
9668 feature = __NETIF_F_BIT(feature_bit);
9669 if (!(upper->wanted_features & feature)
9670 && (features & feature)) {
9671 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9672 &feature, upper->name);
9673 features &= ~feature;
9680 static void netdev_sync_lower_features(struct net_device *upper,
9681 struct net_device *lower, netdev_features_t features)
9683 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9684 netdev_features_t feature;
9687 for_each_netdev_feature(upper_disables, feature_bit) {
9688 feature = __NETIF_F_BIT(feature_bit);
9689 if (!(features & feature) && (lower->features & feature)) {
9690 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9691 &feature, lower->name);
9692 lower->wanted_features &= ~feature;
9693 __netdev_update_features(lower);
9695 if (unlikely(lower->features & feature))
9696 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9697 &feature, lower->name);
9699 netdev_features_change(lower);
9704 static netdev_features_t netdev_fix_features(struct net_device *dev,
9705 netdev_features_t features)
9707 /* Fix illegal checksum combinations */
9708 if ((features & NETIF_F_HW_CSUM) &&
9709 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9710 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9711 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9714 /* TSO requires that SG is present as well. */
9715 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9716 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9717 features &= ~NETIF_F_ALL_TSO;
9720 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9721 !(features & NETIF_F_IP_CSUM)) {
9722 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9723 features &= ~NETIF_F_TSO;
9724 features &= ~NETIF_F_TSO_ECN;
9727 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9728 !(features & NETIF_F_IPV6_CSUM)) {
9729 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9730 features &= ~NETIF_F_TSO6;
9733 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9734 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9735 features &= ~NETIF_F_TSO_MANGLEID;
9737 /* TSO ECN requires that TSO is present as well. */
9738 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9739 features &= ~NETIF_F_TSO_ECN;
9741 /* Software GSO depends on SG. */
9742 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9743 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9744 features &= ~NETIF_F_GSO;
9747 /* GSO partial features require GSO partial be set */
9748 if ((features & dev->gso_partial_features) &&
9749 !(features & NETIF_F_GSO_PARTIAL)) {
9751 "Dropping partially supported GSO features since no GSO partial.\n");
9752 features &= ~dev->gso_partial_features;
9755 if (!(features & NETIF_F_RXCSUM)) {
9756 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9757 * successfully merged by hardware must also have the
9758 * checksum verified by hardware. If the user does not
9759 * want to enable RXCSUM, logically, we should disable GRO_HW.
9761 if (features & NETIF_F_GRO_HW) {
9762 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9763 features &= ~NETIF_F_GRO_HW;
9767 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9768 if (features & NETIF_F_RXFCS) {
9769 if (features & NETIF_F_LRO) {
9770 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9771 features &= ~NETIF_F_LRO;
9774 if (features & NETIF_F_GRO_HW) {
9775 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9776 features &= ~NETIF_F_GRO_HW;
9780 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9781 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9782 features &= ~NETIF_F_LRO;
9785 if (features & NETIF_F_HW_TLS_TX) {
9786 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9787 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9788 bool hw_csum = features & NETIF_F_HW_CSUM;
9790 if (!ip_csum && !hw_csum) {
9791 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9792 features &= ~NETIF_F_HW_TLS_TX;
9796 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9797 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9798 features &= ~NETIF_F_HW_TLS_RX;
9804 int __netdev_update_features(struct net_device *dev)
9806 struct net_device *upper, *lower;
9807 netdev_features_t features;
9808 struct list_head *iter;
9813 features = netdev_get_wanted_features(dev);
9815 if (dev->netdev_ops->ndo_fix_features)
9816 features = dev->netdev_ops->ndo_fix_features(dev, features);
9818 /* driver might be less strict about feature dependencies */
9819 features = netdev_fix_features(dev, features);
9821 /* some features can't be enabled if they're off on an upper device */
9822 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9823 features = netdev_sync_upper_features(dev, upper, features);
9825 if (dev->features == features)
9828 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9829 &dev->features, &features);
9831 if (dev->netdev_ops->ndo_set_features)
9832 err = dev->netdev_ops->ndo_set_features(dev, features);
9836 if (unlikely(err < 0)) {
9838 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9839 err, &features, &dev->features);
9840 /* return non-0 since some features might have changed and
9841 * it's better to fire a spurious notification than miss it
9847 /* some features must be disabled on lower devices when disabled
9848 * on an upper device (think: bonding master or bridge)
9850 netdev_for_each_lower_dev(dev, lower, iter)
9851 netdev_sync_lower_features(dev, lower, features);
9854 netdev_features_t diff = features ^ dev->features;
9856 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9857 /* udp_tunnel_{get,drop}_rx_info both need
9858 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9859 * device, or they won't do anything.
9860 * Thus we need to update dev->features
9861 * *before* calling udp_tunnel_get_rx_info,
9862 * but *after* calling udp_tunnel_drop_rx_info.
9864 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9865 dev->features = features;
9866 udp_tunnel_get_rx_info(dev);
9868 udp_tunnel_drop_rx_info(dev);
9872 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874 dev->features = features;
9875 err |= vlan_get_rx_ctag_filter_info(dev);
9877 vlan_drop_rx_ctag_filter_info(dev);
9881 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9882 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9883 dev->features = features;
9884 err |= vlan_get_rx_stag_filter_info(dev);
9886 vlan_drop_rx_stag_filter_info(dev);
9890 dev->features = features;
9893 return err < 0 ? 0 : 1;
9897 * netdev_update_features - recalculate device features
9898 * @dev: the device to check
9900 * Recalculate dev->features set and send notifications if it
9901 * has changed. Should be called after driver or hardware dependent
9902 * conditions might have changed that influence the features.
9904 void netdev_update_features(struct net_device *dev)
9906 if (__netdev_update_features(dev))
9907 netdev_features_change(dev);
9909 EXPORT_SYMBOL(netdev_update_features);
9912 * netdev_change_features - recalculate device features
9913 * @dev: the device to check
9915 * Recalculate dev->features set and send notifications even
9916 * if they have not changed. Should be called instead of
9917 * netdev_update_features() if also dev->vlan_features might
9918 * have changed to allow the changes to be propagated to stacked
9921 void netdev_change_features(struct net_device *dev)
9923 __netdev_update_features(dev);
9924 netdev_features_change(dev);
9926 EXPORT_SYMBOL(netdev_change_features);
9929 * netif_stacked_transfer_operstate - transfer operstate
9930 * @rootdev: the root or lower level device to transfer state from
9931 * @dev: the device to transfer operstate to
9933 * Transfer operational state from root to device. This is normally
9934 * called when a stacking relationship exists between the root
9935 * device and the device(a leaf device).
9937 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9938 struct net_device *dev)
9940 if (rootdev->operstate == IF_OPER_DORMANT)
9941 netif_dormant_on(dev);
9943 netif_dormant_off(dev);
9945 if (rootdev->operstate == IF_OPER_TESTING)
9946 netif_testing_on(dev);
9948 netif_testing_off(dev);
9950 if (netif_carrier_ok(rootdev))
9951 netif_carrier_on(dev);
9953 netif_carrier_off(dev);
9955 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9957 static int netif_alloc_rx_queues(struct net_device *dev)
9959 unsigned int i, count = dev->num_rx_queues;
9960 struct netdev_rx_queue *rx;
9961 size_t sz = count * sizeof(*rx);
9966 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9972 for (i = 0; i < count; i++) {
9975 /* XDP RX-queue setup */
9976 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9983 /* Rollback successful reg's and free other resources */
9985 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9991 static void netif_free_rx_queues(struct net_device *dev)
9993 unsigned int i, count = dev->num_rx_queues;
9995 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9999 for (i = 0; i < count; i++)
10000 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10005 static void netdev_init_one_queue(struct net_device *dev,
10006 struct netdev_queue *queue, void *_unused)
10008 /* Initialize queue lock */
10009 spin_lock_init(&queue->_xmit_lock);
10010 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10011 queue->xmit_lock_owner = -1;
10012 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10015 dql_init(&queue->dql, HZ);
10019 static void netif_free_tx_queues(struct net_device *dev)
10024 static int netif_alloc_netdev_queues(struct net_device *dev)
10026 unsigned int count = dev->num_tx_queues;
10027 struct netdev_queue *tx;
10028 size_t sz = count * sizeof(*tx);
10030 if (count < 1 || count > 0xffff)
10033 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10039 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10040 spin_lock_init(&dev->tx_global_lock);
10045 void netif_tx_stop_all_queues(struct net_device *dev)
10049 for (i = 0; i < dev->num_tx_queues; i++) {
10050 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10052 netif_tx_stop_queue(txq);
10055 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10057 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10061 /* Drivers implementing ndo_get_peer_dev must support tstat
10062 * accounting, so that skb_do_redirect() can bump the dev's
10063 * RX stats upon network namespace switch.
10065 if (dev->netdev_ops->ndo_get_peer_dev &&
10066 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10067 return -EOPNOTSUPP;
10069 switch (dev->pcpu_stat_type) {
10070 case NETDEV_PCPU_STAT_NONE:
10072 case NETDEV_PCPU_STAT_LSTATS:
10073 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10075 case NETDEV_PCPU_STAT_TSTATS:
10076 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10078 case NETDEV_PCPU_STAT_DSTATS:
10079 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10085 return v ? 0 : -ENOMEM;
10088 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10090 switch (dev->pcpu_stat_type) {
10091 case NETDEV_PCPU_STAT_NONE:
10093 case NETDEV_PCPU_STAT_LSTATS:
10094 free_percpu(dev->lstats);
10096 case NETDEV_PCPU_STAT_TSTATS:
10097 free_percpu(dev->tstats);
10099 case NETDEV_PCPU_STAT_DSTATS:
10100 free_percpu(dev->dstats);
10106 * register_netdevice() - register a network device
10107 * @dev: device to register
10109 * Take a prepared network device structure and make it externally accessible.
10110 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10111 * Callers must hold the rtnl lock - you may want register_netdev()
10114 int register_netdevice(struct net_device *dev)
10117 struct net *net = dev_net(dev);
10119 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10120 NETDEV_FEATURE_COUNT);
10121 BUG_ON(dev_boot_phase);
10126 /* When net_device's are persistent, this will be fatal. */
10127 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10130 ret = ethtool_check_ops(dev->ethtool_ops);
10134 spin_lock_init(&dev->addr_list_lock);
10135 netdev_set_addr_lockdep_class(dev);
10137 ret = dev_get_valid_name(net, dev, dev->name);
10142 dev->name_node = netdev_name_node_head_alloc(dev);
10143 if (!dev->name_node)
10146 /* Init, if this function is available */
10147 if (dev->netdev_ops->ndo_init) {
10148 ret = dev->netdev_ops->ndo_init(dev);
10152 goto err_free_name;
10156 if (((dev->hw_features | dev->features) &
10157 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10158 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10159 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10160 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10165 ret = netdev_do_alloc_pcpu_stats(dev);
10169 ret = dev_index_reserve(net, dev->ifindex);
10171 goto err_free_pcpu;
10172 dev->ifindex = ret;
10174 /* Transfer changeable features to wanted_features and enable
10175 * software offloads (GSO and GRO).
10177 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10178 dev->features |= NETIF_F_SOFT_FEATURES;
10180 if (dev->udp_tunnel_nic_info) {
10181 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10182 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10185 dev->wanted_features = dev->features & dev->hw_features;
10187 if (!(dev->flags & IFF_LOOPBACK))
10188 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10190 /* If IPv4 TCP segmentation offload is supported we should also
10191 * allow the device to enable segmenting the frame with the option
10192 * of ignoring a static IP ID value. This doesn't enable the
10193 * feature itself but allows the user to enable it later.
10195 if (dev->hw_features & NETIF_F_TSO)
10196 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10197 if (dev->vlan_features & NETIF_F_TSO)
10198 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10199 if (dev->mpls_features & NETIF_F_TSO)
10200 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10201 if (dev->hw_enc_features & NETIF_F_TSO)
10202 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10204 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10206 dev->vlan_features |= NETIF_F_HIGHDMA;
10208 /* Make NETIF_F_SG inheritable to tunnel devices.
10210 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10212 /* Make NETIF_F_SG inheritable to MPLS.
10214 dev->mpls_features |= NETIF_F_SG;
10216 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10217 ret = notifier_to_errno(ret);
10219 goto err_ifindex_release;
10221 ret = netdev_register_kobject(dev);
10222 write_lock(&dev_base_lock);
10223 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10224 write_unlock(&dev_base_lock);
10226 goto err_uninit_notify;
10228 __netdev_update_features(dev);
10231 * Default initial state at registry is that the
10232 * device is present.
10235 set_bit(__LINK_STATE_PRESENT, &dev->state);
10237 linkwatch_init_dev(dev);
10239 dev_init_scheduler(dev);
10241 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10242 list_netdevice(dev);
10244 add_device_randomness(dev->dev_addr, dev->addr_len);
10246 /* If the device has permanent device address, driver should
10247 * set dev_addr and also addr_assign_type should be set to
10248 * NET_ADDR_PERM (default value).
10250 if (dev->addr_assign_type == NET_ADDR_PERM)
10251 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10253 /* Notify protocols, that a new device appeared. */
10254 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10255 ret = notifier_to_errno(ret);
10257 /* Expect explicit free_netdev() on failure */
10258 dev->needs_free_netdev = false;
10259 unregister_netdevice_queue(dev, NULL);
10263 * Prevent userspace races by waiting until the network
10264 * device is fully setup before sending notifications.
10266 if (!dev->rtnl_link_ops ||
10267 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10268 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10274 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10275 err_ifindex_release:
10276 dev_index_release(net, dev->ifindex);
10278 netdev_do_free_pcpu_stats(dev);
10280 if (dev->netdev_ops->ndo_uninit)
10281 dev->netdev_ops->ndo_uninit(dev);
10282 if (dev->priv_destructor)
10283 dev->priv_destructor(dev);
10285 netdev_name_node_free(dev->name_node);
10288 EXPORT_SYMBOL(register_netdevice);
10291 * init_dummy_netdev - init a dummy network device for NAPI
10292 * @dev: device to init
10294 * This takes a network device structure and initialize the minimum
10295 * amount of fields so it can be used to schedule NAPI polls without
10296 * registering a full blown interface. This is to be used by drivers
10297 * that need to tie several hardware interfaces to a single NAPI
10298 * poll scheduler due to HW limitations.
10300 int init_dummy_netdev(struct net_device *dev)
10302 /* Clear everything. Note we don't initialize spinlocks
10303 * are they aren't supposed to be taken by any of the
10304 * NAPI code and this dummy netdev is supposed to be
10305 * only ever used for NAPI polls
10307 memset(dev, 0, sizeof(struct net_device));
10309 /* make sure we BUG if trying to hit standard
10310 * register/unregister code path
10312 dev->reg_state = NETREG_DUMMY;
10314 /* NAPI wants this */
10315 INIT_LIST_HEAD(&dev->napi_list);
10317 /* a dummy interface is started by default */
10318 set_bit(__LINK_STATE_PRESENT, &dev->state);
10319 set_bit(__LINK_STATE_START, &dev->state);
10321 /* napi_busy_loop stats accounting wants this */
10322 dev_net_set(dev, &init_net);
10324 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10325 * because users of this 'device' dont need to change
10331 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10335 * register_netdev - register a network device
10336 * @dev: device to register
10338 * Take a completed network device structure and add it to the kernel
10339 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10340 * chain. 0 is returned on success. A negative errno code is returned
10341 * on a failure to set up the device, or if the name is a duplicate.
10343 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10344 * and expands the device name if you passed a format string to
10347 int register_netdev(struct net_device *dev)
10351 if (rtnl_lock_killable())
10353 err = register_netdevice(dev);
10357 EXPORT_SYMBOL(register_netdev);
10359 int netdev_refcnt_read(const struct net_device *dev)
10361 #ifdef CONFIG_PCPU_DEV_REFCNT
10364 for_each_possible_cpu(i)
10365 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10368 return refcount_read(&dev->dev_refcnt);
10371 EXPORT_SYMBOL(netdev_refcnt_read);
10373 int netdev_unregister_timeout_secs __read_mostly = 10;
10375 #define WAIT_REFS_MIN_MSECS 1
10376 #define WAIT_REFS_MAX_MSECS 250
10378 * netdev_wait_allrefs_any - wait until all references are gone.
10379 * @list: list of net_devices to wait on
10381 * This is called when unregistering network devices.
10383 * Any protocol or device that holds a reference should register
10384 * for netdevice notification, and cleanup and put back the
10385 * reference if they receive an UNREGISTER event.
10386 * We can get stuck here if buggy protocols don't correctly
10389 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10391 unsigned long rebroadcast_time, warning_time;
10392 struct net_device *dev;
10395 rebroadcast_time = warning_time = jiffies;
10397 list_for_each_entry(dev, list, todo_list)
10398 if (netdev_refcnt_read(dev) == 1)
10402 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10405 /* Rebroadcast unregister notification */
10406 list_for_each_entry(dev, list, todo_list)
10407 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10413 list_for_each_entry(dev, list, todo_list)
10414 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10416 /* We must not have linkwatch events
10417 * pending on unregister. If this
10418 * happens, we simply run the queue
10419 * unscheduled, resulting in a noop
10422 linkwatch_run_queue();
10428 rebroadcast_time = jiffies;
10433 wait = WAIT_REFS_MIN_MSECS;
10436 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10439 list_for_each_entry(dev, list, todo_list)
10440 if (netdev_refcnt_read(dev) == 1)
10443 if (time_after(jiffies, warning_time +
10444 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10445 list_for_each_entry(dev, list, todo_list) {
10446 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10447 dev->name, netdev_refcnt_read(dev));
10448 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10451 warning_time = jiffies;
10456 /* The sequence is:
10460 * register_netdevice(x1);
10461 * register_netdevice(x2);
10463 * unregister_netdevice(y1);
10464 * unregister_netdevice(y2);
10470 * We are invoked by rtnl_unlock().
10471 * This allows us to deal with problems:
10472 * 1) We can delete sysfs objects which invoke hotplug
10473 * without deadlocking with linkwatch via keventd.
10474 * 2) Since we run with the RTNL semaphore not held, we can sleep
10475 * safely in order to wait for the netdev refcnt to drop to zero.
10477 * We must not return until all unregister events added during
10478 * the interval the lock was held have been completed.
10480 void netdev_run_todo(void)
10482 struct net_device *dev, *tmp;
10483 struct list_head list;
10484 #ifdef CONFIG_LOCKDEP
10485 struct list_head unlink_list;
10487 list_replace_init(&net_unlink_list, &unlink_list);
10489 while (!list_empty(&unlink_list)) {
10490 struct net_device *dev = list_first_entry(&unlink_list,
10493 list_del_init(&dev->unlink_list);
10494 dev->nested_level = dev->lower_level - 1;
10498 /* Snapshot list, allow later requests */
10499 list_replace_init(&net_todo_list, &list);
10503 /* Wait for rcu callbacks to finish before next phase */
10504 if (!list_empty(&list))
10507 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10508 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10509 netdev_WARN(dev, "run_todo but not unregistering\n");
10510 list_del(&dev->todo_list);
10514 write_lock(&dev_base_lock);
10515 dev->reg_state = NETREG_UNREGISTERED;
10516 write_unlock(&dev_base_lock);
10517 linkwatch_forget_dev(dev);
10520 while (!list_empty(&list)) {
10521 dev = netdev_wait_allrefs_any(&list);
10522 list_del(&dev->todo_list);
10525 BUG_ON(netdev_refcnt_read(dev) != 1);
10526 BUG_ON(!list_empty(&dev->ptype_all));
10527 BUG_ON(!list_empty(&dev->ptype_specific));
10528 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10529 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10531 netdev_do_free_pcpu_stats(dev);
10532 if (dev->priv_destructor)
10533 dev->priv_destructor(dev);
10534 if (dev->needs_free_netdev)
10537 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10538 wake_up(&netdev_unregistering_wq);
10540 /* Free network device */
10541 kobject_put(&dev->dev.kobj);
10545 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10546 * all the same fields in the same order as net_device_stats, with only
10547 * the type differing, but rtnl_link_stats64 may have additional fields
10548 * at the end for newer counters.
10550 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10551 const struct net_device_stats *netdev_stats)
10553 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10554 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10555 u64 *dst = (u64 *)stats64;
10557 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10558 for (i = 0; i < n; i++)
10559 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10560 /* zero out counters that only exist in rtnl_link_stats64 */
10561 memset((char *)stats64 + n * sizeof(u64), 0,
10562 sizeof(*stats64) - n * sizeof(u64));
10564 EXPORT_SYMBOL(netdev_stats_to_stats64);
10566 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10567 struct net_device *dev)
10569 struct net_device_core_stats __percpu *p;
10571 p = alloc_percpu_gfp(struct net_device_core_stats,
10572 GFP_ATOMIC | __GFP_NOWARN);
10574 if (p && cmpxchg(&dev->core_stats, NULL, p))
10577 /* This READ_ONCE() pairs with the cmpxchg() above */
10578 return READ_ONCE(dev->core_stats);
10581 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10583 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10584 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10585 unsigned long __percpu *field;
10587 if (unlikely(!p)) {
10588 p = netdev_core_stats_alloc(dev);
10593 field = (__force unsigned long __percpu *)((__force void *)p + offset);
10594 this_cpu_inc(*field);
10596 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10599 * dev_get_stats - get network device statistics
10600 * @dev: device to get statistics from
10601 * @storage: place to store stats
10603 * Get network statistics from device. Return @storage.
10604 * The device driver may provide its own method by setting
10605 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10606 * otherwise the internal statistics structure is used.
10608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10609 struct rtnl_link_stats64 *storage)
10611 const struct net_device_ops *ops = dev->netdev_ops;
10612 const struct net_device_core_stats __percpu *p;
10614 if (ops->ndo_get_stats64) {
10615 memset(storage, 0, sizeof(*storage));
10616 ops->ndo_get_stats64(dev, storage);
10617 } else if (ops->ndo_get_stats) {
10618 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10620 netdev_stats_to_stats64(storage, &dev->stats);
10623 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10624 p = READ_ONCE(dev->core_stats);
10626 const struct net_device_core_stats *core_stats;
10629 for_each_possible_cpu(i) {
10630 core_stats = per_cpu_ptr(p, i);
10631 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10632 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10633 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10634 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10639 EXPORT_SYMBOL(dev_get_stats);
10642 * dev_fetch_sw_netstats - get per-cpu network device statistics
10643 * @s: place to store stats
10644 * @netstats: per-cpu network stats to read from
10646 * Read per-cpu network statistics and populate the related fields in @s.
10648 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10649 const struct pcpu_sw_netstats __percpu *netstats)
10653 for_each_possible_cpu(cpu) {
10654 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10655 const struct pcpu_sw_netstats *stats;
10656 unsigned int start;
10658 stats = per_cpu_ptr(netstats, cpu);
10660 start = u64_stats_fetch_begin(&stats->syncp);
10661 rx_packets = u64_stats_read(&stats->rx_packets);
10662 rx_bytes = u64_stats_read(&stats->rx_bytes);
10663 tx_packets = u64_stats_read(&stats->tx_packets);
10664 tx_bytes = u64_stats_read(&stats->tx_bytes);
10665 } while (u64_stats_fetch_retry(&stats->syncp, start));
10667 s->rx_packets += rx_packets;
10668 s->rx_bytes += rx_bytes;
10669 s->tx_packets += tx_packets;
10670 s->tx_bytes += tx_bytes;
10673 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10676 * dev_get_tstats64 - ndo_get_stats64 implementation
10677 * @dev: device to get statistics from
10678 * @s: place to store stats
10680 * Populate @s from dev->stats and dev->tstats. Can be used as
10681 * ndo_get_stats64() callback.
10683 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10685 netdev_stats_to_stats64(s, &dev->stats);
10686 dev_fetch_sw_netstats(s, dev->tstats);
10688 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10690 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10692 struct netdev_queue *queue = dev_ingress_queue(dev);
10694 #ifdef CONFIG_NET_CLS_ACT
10697 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10700 netdev_init_one_queue(dev, queue, NULL);
10701 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10702 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10703 rcu_assign_pointer(dev->ingress_queue, queue);
10708 static const struct ethtool_ops default_ethtool_ops;
10710 void netdev_set_default_ethtool_ops(struct net_device *dev,
10711 const struct ethtool_ops *ops)
10713 if (dev->ethtool_ops == &default_ethtool_ops)
10714 dev->ethtool_ops = ops;
10716 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10719 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10720 * @dev: netdev to enable the IRQ coalescing on
10722 * Sets a conservative default for SW IRQ coalescing. Users can use
10723 * sysfs attributes to override the default values.
10725 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10727 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10729 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10730 dev->gro_flush_timeout = 20000;
10731 dev->napi_defer_hard_irqs = 1;
10734 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10736 void netdev_freemem(struct net_device *dev)
10738 char *addr = (char *)dev - dev->padded;
10744 * alloc_netdev_mqs - allocate network device
10745 * @sizeof_priv: size of private data to allocate space for
10746 * @name: device name format string
10747 * @name_assign_type: origin of device name
10748 * @setup: callback to initialize device
10749 * @txqs: the number of TX subqueues to allocate
10750 * @rxqs: the number of RX subqueues to allocate
10752 * Allocates a struct net_device with private data area for driver use
10753 * and performs basic initialization. Also allocates subqueue structs
10754 * for each queue on the device.
10756 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10757 unsigned char name_assign_type,
10758 void (*setup)(struct net_device *),
10759 unsigned int txqs, unsigned int rxqs)
10761 struct net_device *dev;
10762 unsigned int alloc_size;
10763 struct net_device *p;
10765 BUG_ON(strlen(name) >= sizeof(dev->name));
10768 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10773 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10777 alloc_size = sizeof(struct net_device);
10779 /* ensure 32-byte alignment of private area */
10780 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10781 alloc_size += sizeof_priv;
10783 /* ensure 32-byte alignment of whole construct */
10784 alloc_size += NETDEV_ALIGN - 1;
10786 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10790 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10791 dev->padded = (char *)dev - (char *)p;
10793 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10794 #ifdef CONFIG_PCPU_DEV_REFCNT
10795 dev->pcpu_refcnt = alloc_percpu(int);
10796 if (!dev->pcpu_refcnt)
10800 refcount_set(&dev->dev_refcnt, 1);
10803 if (dev_addr_init(dev))
10809 dev_net_set(dev, &init_net);
10811 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10812 dev->xdp_zc_max_segs = 1;
10813 dev->gso_max_segs = GSO_MAX_SEGS;
10814 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10815 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10816 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10817 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10818 dev->tso_max_segs = TSO_MAX_SEGS;
10819 dev->upper_level = 1;
10820 dev->lower_level = 1;
10821 #ifdef CONFIG_LOCKDEP
10822 dev->nested_level = 0;
10823 INIT_LIST_HEAD(&dev->unlink_list);
10826 INIT_LIST_HEAD(&dev->napi_list);
10827 INIT_LIST_HEAD(&dev->unreg_list);
10828 INIT_LIST_HEAD(&dev->close_list);
10829 INIT_LIST_HEAD(&dev->link_watch_list);
10830 INIT_LIST_HEAD(&dev->adj_list.upper);
10831 INIT_LIST_HEAD(&dev->adj_list.lower);
10832 INIT_LIST_HEAD(&dev->ptype_all);
10833 INIT_LIST_HEAD(&dev->ptype_specific);
10834 INIT_LIST_HEAD(&dev->net_notifier_list);
10835 #ifdef CONFIG_NET_SCHED
10836 hash_init(dev->qdisc_hash);
10838 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10841 if (!dev->tx_queue_len) {
10842 dev->priv_flags |= IFF_NO_QUEUE;
10843 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10846 dev->num_tx_queues = txqs;
10847 dev->real_num_tx_queues = txqs;
10848 if (netif_alloc_netdev_queues(dev))
10851 dev->num_rx_queues = rxqs;
10852 dev->real_num_rx_queues = rxqs;
10853 if (netif_alloc_rx_queues(dev))
10856 strcpy(dev->name, name);
10857 dev->name_assign_type = name_assign_type;
10858 dev->group = INIT_NETDEV_GROUP;
10859 if (!dev->ethtool_ops)
10860 dev->ethtool_ops = &default_ethtool_ops;
10862 nf_hook_netdev_init(dev);
10871 #ifdef CONFIG_PCPU_DEV_REFCNT
10872 free_percpu(dev->pcpu_refcnt);
10875 netdev_freemem(dev);
10878 EXPORT_SYMBOL(alloc_netdev_mqs);
10881 * free_netdev - free network device
10884 * This function does the last stage of destroying an allocated device
10885 * interface. The reference to the device object is released. If this
10886 * is the last reference then it will be freed.Must be called in process
10889 void free_netdev(struct net_device *dev)
10891 struct napi_struct *p, *n;
10895 /* When called immediately after register_netdevice() failed the unwind
10896 * handling may still be dismantling the device. Handle that case by
10897 * deferring the free.
10899 if (dev->reg_state == NETREG_UNREGISTERING) {
10901 dev->needs_free_netdev = true;
10905 netif_free_tx_queues(dev);
10906 netif_free_rx_queues(dev);
10908 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10910 /* Flush device addresses */
10911 dev_addr_flush(dev);
10913 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10916 ref_tracker_dir_exit(&dev->refcnt_tracker);
10917 #ifdef CONFIG_PCPU_DEV_REFCNT
10918 free_percpu(dev->pcpu_refcnt);
10919 dev->pcpu_refcnt = NULL;
10921 free_percpu(dev->core_stats);
10922 dev->core_stats = NULL;
10923 free_percpu(dev->xdp_bulkq);
10924 dev->xdp_bulkq = NULL;
10926 /* Compatibility with error handling in drivers */
10927 if (dev->reg_state == NETREG_UNINITIALIZED) {
10928 netdev_freemem(dev);
10932 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10933 dev->reg_state = NETREG_RELEASED;
10935 /* will free via device release */
10936 put_device(&dev->dev);
10938 EXPORT_SYMBOL(free_netdev);
10941 * synchronize_net - Synchronize with packet receive processing
10943 * Wait for packets currently being received to be done.
10944 * Does not block later packets from starting.
10946 void synchronize_net(void)
10949 if (rtnl_is_locked())
10950 synchronize_rcu_expedited();
10954 EXPORT_SYMBOL(synchronize_net);
10957 * unregister_netdevice_queue - remove device from the kernel
10961 * This function shuts down a device interface and removes it
10962 * from the kernel tables.
10963 * If head not NULL, device is queued to be unregistered later.
10965 * Callers must hold the rtnl semaphore. You may want
10966 * unregister_netdev() instead of this.
10969 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10974 list_move_tail(&dev->unreg_list, head);
10978 list_add(&dev->unreg_list, &single);
10979 unregister_netdevice_many(&single);
10982 EXPORT_SYMBOL(unregister_netdevice_queue);
10984 void unregister_netdevice_many_notify(struct list_head *head,
10985 u32 portid, const struct nlmsghdr *nlh)
10987 struct net_device *dev, *tmp;
10988 LIST_HEAD(close_head);
10990 BUG_ON(dev_boot_phase);
10993 if (list_empty(head))
10996 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10997 /* Some devices call without registering
10998 * for initialization unwind. Remove those
10999 * devices and proceed with the remaining.
11001 if (dev->reg_state == NETREG_UNINITIALIZED) {
11002 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11006 list_del(&dev->unreg_list);
11009 dev->dismantle = true;
11010 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11013 /* If device is running, close it first. */
11014 list_for_each_entry(dev, head, unreg_list)
11015 list_add_tail(&dev->close_list, &close_head);
11016 dev_close_many(&close_head, true);
11018 list_for_each_entry(dev, head, unreg_list) {
11019 /* And unlink it from device chain. */
11020 write_lock(&dev_base_lock);
11021 unlist_netdevice(dev, false);
11022 dev->reg_state = NETREG_UNREGISTERING;
11023 write_unlock(&dev_base_lock);
11025 flush_all_backlogs();
11029 list_for_each_entry(dev, head, unreg_list) {
11030 struct sk_buff *skb = NULL;
11032 /* Shutdown queueing discipline. */
11034 dev_tcx_uninstall(dev);
11035 dev_xdp_uninstall(dev);
11036 bpf_dev_bound_netdev_unregister(dev);
11038 netdev_offload_xstats_disable_all(dev);
11040 /* Notify protocols, that we are about to destroy
11041 * this device. They should clean all the things.
11043 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11045 if (!dev->rtnl_link_ops ||
11046 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11047 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11048 GFP_KERNEL, NULL, 0,
11052 * Flush the unicast and multicast chains
11057 netdev_name_node_alt_flush(dev);
11058 netdev_name_node_free(dev->name_node);
11060 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11062 if (dev->netdev_ops->ndo_uninit)
11063 dev->netdev_ops->ndo_uninit(dev);
11066 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11068 /* Notifier chain MUST detach us all upper devices. */
11069 WARN_ON(netdev_has_any_upper_dev(dev));
11070 WARN_ON(netdev_has_any_lower_dev(dev));
11072 /* Remove entries from kobject tree */
11073 netdev_unregister_kobject(dev);
11075 /* Remove XPS queueing entries */
11076 netif_reset_xps_queues_gt(dev, 0);
11082 list_for_each_entry(dev, head, unreg_list) {
11083 netdev_put(dev, &dev->dev_registered_tracker);
11091 * unregister_netdevice_many - unregister many devices
11092 * @head: list of devices
11094 * Note: As most callers use a stack allocated list_head,
11095 * we force a list_del() to make sure stack wont be corrupted later.
11097 void unregister_netdevice_many(struct list_head *head)
11099 unregister_netdevice_many_notify(head, 0, NULL);
11101 EXPORT_SYMBOL(unregister_netdevice_many);
11104 * unregister_netdev - remove device from the kernel
11107 * This function shuts down a device interface and removes it
11108 * from the kernel tables.
11110 * This is just a wrapper for unregister_netdevice that takes
11111 * the rtnl semaphore. In general you want to use this and not
11112 * unregister_netdevice.
11114 void unregister_netdev(struct net_device *dev)
11117 unregister_netdevice(dev);
11120 EXPORT_SYMBOL(unregister_netdev);
11123 * __dev_change_net_namespace - move device to different nethost namespace
11125 * @net: network namespace
11126 * @pat: If not NULL name pattern to try if the current device name
11127 * is already taken in the destination network namespace.
11128 * @new_ifindex: If not zero, specifies device index in the target
11131 * This function shuts down a device interface and moves it
11132 * to a new network namespace. On success 0 is returned, on
11133 * a failure a netagive errno code is returned.
11135 * Callers must hold the rtnl semaphore.
11138 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11139 const char *pat, int new_ifindex)
11141 struct netdev_name_node *name_node;
11142 struct net *net_old = dev_net(dev);
11143 char new_name[IFNAMSIZ] = {};
11148 /* Don't allow namespace local devices to be moved. */
11150 if (dev->features & NETIF_F_NETNS_LOCAL)
11153 /* Ensure the device has been registrered */
11154 if (dev->reg_state != NETREG_REGISTERED)
11157 /* Get out if there is nothing todo */
11159 if (net_eq(net_old, net))
11162 /* Pick the destination device name, and ensure
11163 * we can use it in the destination network namespace.
11166 if (netdev_name_in_use(net, dev->name)) {
11167 /* We get here if we can't use the current device name */
11170 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11174 /* Check that none of the altnames conflicts. */
11176 netdev_for_each_altname(dev, name_node)
11177 if (netdev_name_in_use(net, name_node->name))
11180 /* Check that new_ifindex isn't used yet. */
11182 err = dev_index_reserve(net, new_ifindex);
11186 /* If there is an ifindex conflict assign a new one */
11187 err = dev_index_reserve(net, dev->ifindex);
11189 err = dev_index_reserve(net, 0);
11196 * And now a mini version of register_netdevice unregister_netdevice.
11199 /* If device is running close it first. */
11202 /* And unlink it from device chain */
11203 unlist_netdevice(dev, true);
11207 /* Shutdown queueing discipline. */
11210 /* Notify protocols, that we are about to destroy
11211 * this device. They should clean all the things.
11213 * Note that dev->reg_state stays at NETREG_REGISTERED.
11214 * This is wanted because this way 8021q and macvlan know
11215 * the device is just moving and can keep their slaves up.
11217 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11220 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11222 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11226 * Flush the unicast and multicast chains
11231 /* Send a netdev-removed uevent to the old namespace */
11232 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11233 netdev_adjacent_del_links(dev);
11235 /* Move per-net netdevice notifiers that are following the netdevice */
11236 move_netdevice_notifiers_dev_net(dev, net);
11238 /* Actually switch the network namespace */
11239 dev_net_set(dev, net);
11240 dev->ifindex = new_ifindex;
11242 /* Send a netdev-add uevent to the new namespace */
11243 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11244 netdev_adjacent_add_links(dev);
11246 if (new_name[0]) /* Rename the netdev to prepared name */
11247 strscpy(dev->name, new_name, IFNAMSIZ);
11249 /* Fixup kobjects */
11250 err = device_rename(&dev->dev, dev->name);
11253 /* Adapt owner in case owning user namespace of target network
11254 * namespace is different from the original one.
11256 err = netdev_change_owner(dev, net_old, net);
11259 /* Add the device back in the hashes */
11260 list_netdevice(dev);
11262 /* Notify protocols, that a new device appeared. */
11263 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11266 * Prevent userspace races by waiting until the network
11267 * device is fully setup before sending notifications.
11269 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11276 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11278 static int dev_cpu_dead(unsigned int oldcpu)
11280 struct sk_buff **list_skb;
11281 struct sk_buff *skb;
11283 struct softnet_data *sd, *oldsd, *remsd = NULL;
11285 local_irq_disable();
11286 cpu = smp_processor_id();
11287 sd = &per_cpu(softnet_data, cpu);
11288 oldsd = &per_cpu(softnet_data, oldcpu);
11290 /* Find end of our completion_queue. */
11291 list_skb = &sd->completion_queue;
11293 list_skb = &(*list_skb)->next;
11294 /* Append completion queue from offline CPU. */
11295 *list_skb = oldsd->completion_queue;
11296 oldsd->completion_queue = NULL;
11298 /* Append output queue from offline CPU. */
11299 if (oldsd->output_queue) {
11300 *sd->output_queue_tailp = oldsd->output_queue;
11301 sd->output_queue_tailp = oldsd->output_queue_tailp;
11302 oldsd->output_queue = NULL;
11303 oldsd->output_queue_tailp = &oldsd->output_queue;
11305 /* Append NAPI poll list from offline CPU, with one exception :
11306 * process_backlog() must be called by cpu owning percpu backlog.
11307 * We properly handle process_queue & input_pkt_queue later.
11309 while (!list_empty(&oldsd->poll_list)) {
11310 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11311 struct napi_struct,
11314 list_del_init(&napi->poll_list);
11315 if (napi->poll == process_backlog)
11318 ____napi_schedule(sd, napi);
11321 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11322 local_irq_enable();
11325 remsd = oldsd->rps_ipi_list;
11326 oldsd->rps_ipi_list = NULL;
11328 /* send out pending IPI's on offline CPU */
11329 net_rps_send_ipi(remsd);
11331 /* Process offline CPU's input_pkt_queue */
11332 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11334 input_queue_head_incr(oldsd);
11336 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11338 input_queue_head_incr(oldsd);
11345 * netdev_increment_features - increment feature set by one
11346 * @all: current feature set
11347 * @one: new feature set
11348 * @mask: mask feature set
11350 * Computes a new feature set after adding a device with feature set
11351 * @one to the master device with current feature set @all. Will not
11352 * enable anything that is off in @mask. Returns the new feature set.
11354 netdev_features_t netdev_increment_features(netdev_features_t all,
11355 netdev_features_t one, netdev_features_t mask)
11357 if (mask & NETIF_F_HW_CSUM)
11358 mask |= NETIF_F_CSUM_MASK;
11359 mask |= NETIF_F_VLAN_CHALLENGED;
11361 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11362 all &= one | ~NETIF_F_ALL_FOR_ALL;
11364 /* If one device supports hw checksumming, set for all. */
11365 if (all & NETIF_F_HW_CSUM)
11366 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11370 EXPORT_SYMBOL(netdev_increment_features);
11372 static struct hlist_head * __net_init netdev_create_hash(void)
11375 struct hlist_head *hash;
11377 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11379 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11380 INIT_HLIST_HEAD(&hash[i]);
11385 /* Initialize per network namespace state */
11386 static int __net_init netdev_init(struct net *net)
11388 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11389 8 * sizeof_field(struct napi_struct, gro_bitmask));
11391 INIT_LIST_HEAD(&net->dev_base_head);
11393 net->dev_name_head = netdev_create_hash();
11394 if (net->dev_name_head == NULL)
11397 net->dev_index_head = netdev_create_hash();
11398 if (net->dev_index_head == NULL)
11401 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11403 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11408 kfree(net->dev_name_head);
11414 * netdev_drivername - network driver for the device
11415 * @dev: network device
11417 * Determine network driver for device.
11419 const char *netdev_drivername(const struct net_device *dev)
11421 const struct device_driver *driver;
11422 const struct device *parent;
11423 const char *empty = "";
11425 parent = dev->dev.parent;
11429 driver = parent->driver;
11430 if (driver && driver->name)
11431 return driver->name;
11435 static void __netdev_printk(const char *level, const struct net_device *dev,
11436 struct va_format *vaf)
11438 if (dev && dev->dev.parent) {
11439 dev_printk_emit(level[1] - '0',
11442 dev_driver_string(dev->dev.parent),
11443 dev_name(dev->dev.parent),
11444 netdev_name(dev), netdev_reg_state(dev),
11447 printk("%s%s%s: %pV",
11448 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11450 printk("%s(NULL net_device): %pV", level, vaf);
11454 void netdev_printk(const char *level, const struct net_device *dev,
11455 const char *format, ...)
11457 struct va_format vaf;
11460 va_start(args, format);
11465 __netdev_printk(level, dev, &vaf);
11469 EXPORT_SYMBOL(netdev_printk);
11471 #define define_netdev_printk_level(func, level) \
11472 void func(const struct net_device *dev, const char *fmt, ...) \
11474 struct va_format vaf; \
11477 va_start(args, fmt); \
11482 __netdev_printk(level, dev, &vaf); \
11486 EXPORT_SYMBOL(func);
11488 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11489 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11490 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11491 define_netdev_printk_level(netdev_err, KERN_ERR);
11492 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11493 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11494 define_netdev_printk_level(netdev_info, KERN_INFO);
11496 static void __net_exit netdev_exit(struct net *net)
11498 kfree(net->dev_name_head);
11499 kfree(net->dev_index_head);
11500 xa_destroy(&net->dev_by_index);
11501 if (net != &init_net)
11502 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11505 static struct pernet_operations __net_initdata netdev_net_ops = {
11506 .init = netdev_init,
11507 .exit = netdev_exit,
11510 static void __net_exit default_device_exit_net(struct net *net)
11512 struct net_device *dev, *aux;
11514 * Push all migratable network devices back to the
11515 * initial network namespace
11518 for_each_netdev_safe(net, dev, aux) {
11520 char fb_name[IFNAMSIZ];
11522 /* Ignore unmoveable devices (i.e. loopback) */
11523 if (dev->features & NETIF_F_NETNS_LOCAL)
11526 /* Leave virtual devices for the generic cleanup */
11527 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11530 /* Push remaining network devices to init_net */
11531 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11532 if (netdev_name_in_use(&init_net, fb_name))
11533 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11534 err = dev_change_net_namespace(dev, &init_net, fb_name);
11536 pr_emerg("%s: failed to move %s to init_net: %d\n",
11537 __func__, dev->name, err);
11543 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11545 /* At exit all network devices most be removed from a network
11546 * namespace. Do this in the reverse order of registration.
11547 * Do this across as many network namespaces as possible to
11548 * improve batching efficiency.
11550 struct net_device *dev;
11552 LIST_HEAD(dev_kill_list);
11555 list_for_each_entry(net, net_list, exit_list) {
11556 default_device_exit_net(net);
11560 list_for_each_entry(net, net_list, exit_list) {
11561 for_each_netdev_reverse(net, dev) {
11562 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11563 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11565 unregister_netdevice_queue(dev, &dev_kill_list);
11568 unregister_netdevice_many(&dev_kill_list);
11572 static struct pernet_operations __net_initdata default_device_ops = {
11573 .exit_batch = default_device_exit_batch,
11577 * Initialize the DEV module. At boot time this walks the device list and
11578 * unhooks any devices that fail to initialise (normally hardware not
11579 * present) and leaves us with a valid list of present and active devices.
11584 * This is called single threaded during boot, so no need
11585 * to take the rtnl semaphore.
11587 static int __init net_dev_init(void)
11589 int i, rc = -ENOMEM;
11591 BUG_ON(!dev_boot_phase);
11593 if (dev_proc_init())
11596 if (netdev_kobject_init())
11599 INIT_LIST_HEAD(&ptype_all);
11600 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11601 INIT_LIST_HEAD(&ptype_base[i]);
11603 if (register_pernet_subsys(&netdev_net_ops))
11607 * Initialise the packet receive queues.
11610 for_each_possible_cpu(i) {
11611 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11612 struct softnet_data *sd = &per_cpu(softnet_data, i);
11614 INIT_WORK(flush, flush_backlog);
11616 skb_queue_head_init(&sd->input_pkt_queue);
11617 skb_queue_head_init(&sd->process_queue);
11618 #ifdef CONFIG_XFRM_OFFLOAD
11619 skb_queue_head_init(&sd->xfrm_backlog);
11621 INIT_LIST_HEAD(&sd->poll_list);
11622 sd->output_queue_tailp = &sd->output_queue;
11624 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11627 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11628 spin_lock_init(&sd->defer_lock);
11630 init_gro_hash(&sd->backlog);
11631 sd->backlog.poll = process_backlog;
11632 sd->backlog.weight = weight_p;
11635 dev_boot_phase = 0;
11637 /* The loopback device is special if any other network devices
11638 * is present in a network namespace the loopback device must
11639 * be present. Since we now dynamically allocate and free the
11640 * loopback device ensure this invariant is maintained by
11641 * keeping the loopback device as the first device on the
11642 * list of network devices. Ensuring the loopback devices
11643 * is the first device that appears and the last network device
11646 if (register_pernet_device(&loopback_net_ops))
11649 if (register_pernet_device(&default_device_ops))
11652 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11653 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11655 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11656 NULL, dev_cpu_dead);
11663 subsys_initcall(net_dev_init);