1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
18 #define EXTN_FLAG_SENSOR_ID BIT(7)
20 #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
22 #define OCC_STATE_SAFE 4
23 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
25 #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
27 #define OCC_TEMP_SENSOR_FAULT 0xFF
29 #define OCC_FRU_TYPE_VRM 3
31 /* OCC sensor type and version definitions */
33 struct temp_sensor_1 {
38 struct temp_sensor_2 {
44 struct freq_sensor_1 {
49 struct freq_sensor_2 {
54 struct power_sensor_1 {
61 struct power_sensor_2 {
71 struct power_sensor_data {
77 struct power_sensor_data_and_time {
84 struct power_sensor_a0 {
86 struct power_sensor_data_and_time system;
88 struct power_sensor_data_and_time proc;
89 struct power_sensor_data vdd;
90 struct power_sensor_data vdn;
93 struct caps_sensor_2 {
103 struct caps_sensor_3 {
114 struct extended_sensor {
124 static int occ_poll(struct occ *occ)
127 u16 checksum = occ->poll_cmd_data + 1;
129 struct occ_poll_response_header *header;
132 cmd[0] = 0; /* sequence number */
133 cmd[1] = 0; /* cmd type */
134 cmd[2] = 0; /* data length msb */
135 cmd[3] = 1; /* data length lsb */
136 cmd[4] = occ->poll_cmd_data; /* data */
137 cmd[5] = checksum >> 8; /* checksum msb */
138 cmd[6] = checksum & 0xFF; /* checksum lsb */
141 /* mutex should already be locked if necessary */
142 rc = occ->send_cmd(occ, cmd);
144 occ->last_error = rc;
145 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
151 /* clear error since communication was successful */
152 occ->error_count = 0;
156 /* check for safe state */
157 header = (struct occ_poll_response_header *)occ->resp.data;
158 if (header->occ_state == OCC_STATE_SAFE) {
159 if (occ->last_safe) {
160 if (time_after(jiffies,
161 occ->last_safe + OCC_SAFE_TIMEOUT))
162 occ->error = -EHOSTDOWN;
164 occ->last_safe = jiffies;
171 occ_sysfs_poll_done(occ);
175 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
180 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
187 memcpy(&cmd[4], &user_power_cap_be, 2);
189 checksum += cmd[4] + cmd[5];
190 cmd[6] = checksum >> 8;
191 cmd[7] = checksum & 0xFF;
193 rc = mutex_lock_interruptible(&occ->lock);
197 rc = occ->send_cmd(occ, cmd);
199 mutex_unlock(&occ->lock);
204 int occ_update_response(struct occ *occ)
206 int rc = mutex_lock_interruptible(&occ->lock);
211 /* limit the maximum rate of polling the OCC */
212 if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
214 occ->last_update = jiffies;
216 rc = occ->last_error;
219 mutex_unlock(&occ->lock);
223 static ssize_t occ_show_temp_1(struct device *dev,
224 struct device_attribute *attr, char *buf)
228 struct temp_sensor_1 *temp;
229 struct occ *occ = dev_get_drvdata(dev);
230 struct occ_sensors *sensors = &occ->sensors;
231 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
233 rc = occ_update_response(occ);
237 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
241 val = get_unaligned_be16(&temp->sensor_id);
245 * If a sensor reading has expired and couldn't be refreshed,
246 * OCC returns 0xFFFF for that sensor.
248 if (temp->value == 0xFFFF)
250 val = get_unaligned_be16(&temp->value) * 1000;
256 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
259 static ssize_t occ_show_temp_2(struct device *dev,
260 struct device_attribute *attr, char *buf)
264 struct temp_sensor_2 *temp;
265 struct occ *occ = dev_get_drvdata(dev);
266 struct occ_sensors *sensors = &occ->sensors;
267 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
269 rc = occ_update_response(occ);
273 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
277 val = get_unaligned_be32(&temp->sensor_id);
281 if (val == OCC_TEMP_SENSOR_FAULT)
285 * VRM doesn't return temperature, only alarm bit. This
286 * attribute maps to tempX_alarm instead of tempX_input for
289 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
290 /* sensor not ready */
298 val = temp->fru_type;
301 val = temp->value == OCC_TEMP_SENSOR_FAULT;
307 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
310 static ssize_t occ_show_freq_1(struct device *dev,
311 struct device_attribute *attr, char *buf)
315 struct freq_sensor_1 *freq;
316 struct occ *occ = dev_get_drvdata(dev);
317 struct occ_sensors *sensors = &occ->sensors;
318 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
320 rc = occ_update_response(occ);
324 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
328 val = get_unaligned_be16(&freq->sensor_id);
331 val = get_unaligned_be16(&freq->value);
337 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
340 static ssize_t occ_show_freq_2(struct device *dev,
341 struct device_attribute *attr, char *buf)
345 struct freq_sensor_2 *freq;
346 struct occ *occ = dev_get_drvdata(dev);
347 struct occ_sensors *sensors = &occ->sensors;
348 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
350 rc = occ_update_response(occ);
354 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
358 val = get_unaligned_be32(&freq->sensor_id);
361 val = get_unaligned_be16(&freq->value);
367 return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
370 static ssize_t occ_show_power_1(struct device *dev,
371 struct device_attribute *attr, char *buf)
375 struct power_sensor_1 *power;
376 struct occ *occ = dev_get_drvdata(dev);
377 struct occ_sensors *sensors = &occ->sensors;
378 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
380 rc = occ_update_response(occ);
384 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
388 val = get_unaligned_be16(&power->sensor_id);
391 val = get_unaligned_be32(&power->accumulator) /
392 get_unaligned_be32(&power->update_tag);
396 val = (u64)get_unaligned_be32(&power->update_tag) *
397 occ->powr_sample_time_us;
400 val = get_unaligned_be16(&power->value) * 1000000ULL;
406 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
409 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
411 return div64_u64(get_unaligned_be64(accum) * 1000000ULL,
412 get_unaligned_be32(samples));
415 static ssize_t occ_show_power_2(struct device *dev,
416 struct device_attribute *attr, char *buf)
420 struct power_sensor_2 *power;
421 struct occ *occ = dev_get_drvdata(dev);
422 struct occ_sensors *sensors = &occ->sensors;
423 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
425 rc = occ_update_response(occ);
429 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
433 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
434 get_unaligned_be32(&power->sensor_id),
435 power->function_id, power->apss_channel);
437 val = occ_get_powr_avg(&power->accumulator,
441 val = (u64)get_unaligned_be32(&power->update_tag) *
442 occ->powr_sample_time_us;
445 val = get_unaligned_be16(&power->value) * 1000000ULL;
451 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
454 static ssize_t occ_show_power_a0(struct device *dev,
455 struct device_attribute *attr, char *buf)
459 struct power_sensor_a0 *power;
460 struct occ *occ = dev_get_drvdata(dev);
461 struct occ_sensors *sensors = &occ->sensors;
462 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
464 rc = occ_update_response(occ);
468 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
472 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
473 get_unaligned_be32(&power->sensor_id));
475 val = occ_get_powr_avg(&power->system.accumulator,
476 &power->system.update_tag);
479 val = (u64)get_unaligned_be32(&power->system.update_tag) *
480 occ->powr_sample_time_us;
483 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
486 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
487 get_unaligned_be32(&power->sensor_id));
489 val = occ_get_powr_avg(&power->proc.accumulator,
490 &power->proc.update_tag);
493 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
494 occ->powr_sample_time_us;
497 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
500 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
501 get_unaligned_be32(&power->sensor_id));
503 val = occ_get_powr_avg(&power->vdd.accumulator,
504 &power->vdd.update_tag);
507 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
508 occ->powr_sample_time_us;
511 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
514 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
515 get_unaligned_be32(&power->sensor_id));
517 val = occ_get_powr_avg(&power->vdn.accumulator,
518 &power->vdn.update_tag);
521 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
522 occ->powr_sample_time_us;
525 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
531 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
534 static ssize_t occ_show_caps_1_2(struct device *dev,
535 struct device_attribute *attr, char *buf)
539 struct caps_sensor_2 *caps;
540 struct occ *occ = dev_get_drvdata(dev);
541 struct occ_sensors *sensors = &occ->sensors;
542 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
544 rc = occ_update_response(occ);
548 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
552 return snprintf(buf, PAGE_SIZE - 1, "system\n");
554 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
557 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
560 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
563 val = get_unaligned_be16(&caps->max) * 1000000ULL;
566 val = get_unaligned_be16(&caps->min) * 1000000ULL;
569 val = get_unaligned_be16(&caps->user) * 1000000ULL;
572 if (occ->sensors.caps.version == 1)
575 val = caps->user_source;
581 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
584 static ssize_t occ_show_caps_3(struct device *dev,
585 struct device_attribute *attr, char *buf)
589 struct caps_sensor_3 *caps;
590 struct occ *occ = dev_get_drvdata(dev);
591 struct occ_sensors *sensors = &occ->sensors;
592 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
594 rc = occ_update_response(occ);
598 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
602 return snprintf(buf, PAGE_SIZE - 1, "system\n");
604 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
607 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
610 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
613 val = get_unaligned_be16(&caps->max) * 1000000ULL;
616 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
619 val = get_unaligned_be16(&caps->user) * 1000000ULL;
622 val = caps->user_source;
628 return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
631 static ssize_t occ_store_caps_user(struct device *dev,
632 struct device_attribute *attr,
633 const char *buf, size_t count)
637 unsigned long long value;
638 struct occ *occ = dev_get_drvdata(dev);
640 rc = kstrtoull(buf, 0, &value);
644 user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
646 rc = occ_set_user_power_cap(occ, user_power_cap);
653 static ssize_t occ_show_extended(struct device *dev,
654 struct device_attribute *attr, char *buf)
657 struct extended_sensor *extn;
658 struct occ *occ = dev_get_drvdata(dev);
659 struct occ_sensors *sensors = &occ->sensors;
660 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
662 rc = occ_update_response(occ);
666 extn = ((struct extended_sensor *)sensors->extended.data) +
671 if (extn->flags & EXTN_FLAG_SENSOR_ID)
672 rc = snprintf(buf, PAGE_SIZE - 1, "%u",
673 get_unaligned_be32(&extn->sensor_id));
675 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
676 extn->name[0], extn->name[1],
677 extn->name[2], extn->name[3]);
680 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
683 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
684 extn->data[0], extn->data[1], extn->data[2],
685 extn->data[3], extn->data[4], extn->data[5]);
695 * Some helper macros to make it easier to define an occ_attribute. Since these
696 * are dynamically allocated, we shouldn't use the existing kernel macros which
697 * stringify the name argument.
699 #define ATTR_OCC(_name, _mode, _show, _store) { \
702 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
708 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
709 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
714 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
715 ((struct sensor_device_attribute_2) \
716 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
719 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
720 * use our own instead of the built-in hwmon attribute types.
722 static int occ_setup_sensor_attrs(struct occ *occ)
724 unsigned int i, s, num_attrs = 0;
725 struct device *dev = occ->bus_dev;
726 struct occ_sensors *sensors = &occ->sensors;
727 struct occ_attribute *attr;
728 struct temp_sensor_2 *temp;
729 ssize_t (*show_temp)(struct device *, struct device_attribute *,
730 char *) = occ_show_temp_1;
731 ssize_t (*show_freq)(struct device *, struct device_attribute *,
732 char *) = occ_show_freq_1;
733 ssize_t (*show_power)(struct device *, struct device_attribute *,
734 char *) = occ_show_power_1;
735 ssize_t (*show_caps)(struct device *, struct device_attribute *,
736 char *) = occ_show_caps_1_2;
738 switch (sensors->temp.version) {
740 num_attrs += (sensors->temp.num_sensors * 2);
743 num_attrs += (sensors->temp.num_sensors * 4);
744 show_temp = occ_show_temp_2;
747 sensors->temp.num_sensors = 0;
750 switch (sensors->freq.version) {
752 show_freq = occ_show_freq_2;
755 num_attrs += (sensors->freq.num_sensors * 2);
758 sensors->freq.num_sensors = 0;
761 switch (sensors->power.version) {
763 show_power = occ_show_power_2;
766 num_attrs += (sensors->power.num_sensors * 4);
769 num_attrs += (sensors->power.num_sensors * 16);
770 show_power = occ_show_power_a0;
773 sensors->power.num_sensors = 0;
776 switch (sensors->caps.version) {
778 num_attrs += (sensors->caps.num_sensors * 7);
781 show_caps = occ_show_caps_3;
784 num_attrs += (sensors->caps.num_sensors * 8);
787 sensors->caps.num_sensors = 0;
790 switch (sensors->extended.version) {
792 num_attrs += (sensors->extended.num_sensors * 3);
795 sensors->extended.num_sensors = 0;
798 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
803 /* null-terminated list */
804 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
805 num_attrs + 1, GFP_KERNEL);
806 if (!occ->group.attrs)
811 for (i = 0; i < sensors->temp.num_sensors; ++i) {
813 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
815 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
816 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
820 if (sensors->temp.version > 1 &&
821 temp->fru_type == OCC_FRU_TYPE_VRM) {
822 snprintf(attr->name, sizeof(attr->name),
825 snprintf(attr->name, sizeof(attr->name),
829 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
833 if (sensors->temp.version > 1) {
834 snprintf(attr->name, sizeof(attr->name),
835 "temp%d_fru_type", s);
836 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
837 show_temp, NULL, 2, i);
840 snprintf(attr->name, sizeof(attr->name),
842 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
843 show_temp, NULL, 3, i);
848 for (i = 0; i < sensors->freq.num_sensors; ++i) {
851 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
852 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
856 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
857 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
862 if (sensors->power.version == 0xA0) {
864 * Special case for many-attribute power sensor. Split it into
865 * a sensor number per power type, emulating several sensors.
867 for (i = 0; i < sensors->power.num_sensors; ++i) {
873 for (j = 0; j < 4; ++j) {
874 snprintf(attr->name, sizeof(attr->name),
876 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
881 snprintf(attr->name, sizeof(attr->name),
882 "power%d_average", s);
883 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
888 snprintf(attr->name, sizeof(attr->name),
889 "power%d_average_interval", s);
890 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
895 snprintf(attr->name, sizeof(attr->name),
897 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
906 s = (sensors->power.num_sensors * 4) + 1;
908 for (i = 0; i < sensors->power.num_sensors; ++i) {
911 snprintf(attr->name, sizeof(attr->name),
913 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
914 show_power, NULL, 0, i);
917 snprintf(attr->name, sizeof(attr->name),
918 "power%d_average", s);
919 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
920 show_power, NULL, 1, i);
923 snprintf(attr->name, sizeof(attr->name),
924 "power%d_average_interval", s);
925 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
926 show_power, NULL, 2, i);
929 snprintf(attr->name, sizeof(attr->name),
931 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
932 show_power, NULL, 3, i);
936 s = sensors->power.num_sensors + 1;
939 if (sensors->caps.num_sensors >= 1) {
940 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
941 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
945 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
946 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
950 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
951 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
955 snprintf(attr->name, sizeof(attr->name),
956 "power%d_cap_not_redundant", s);
957 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
961 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
962 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
966 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
967 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
971 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
973 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
974 occ_store_caps_user, 6, 0);
977 if (sensors->caps.version > 1) {
978 snprintf(attr->name, sizeof(attr->name),
979 "power%d_cap_user_source", s);
980 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
981 show_caps, NULL, 7, 0);
986 for (i = 0; i < sensors->extended.num_sensors; ++i) {
989 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
990 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
991 occ_show_extended, NULL, 0, i);
994 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
995 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
996 occ_show_extended, NULL, 1, i);
999 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1000 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1001 occ_show_extended, NULL, 2, i);
1005 /* put the sensors in the group */
1006 for (i = 0; i < num_attrs; ++i) {
1007 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1008 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1014 /* only need to do this once at startup, as OCC won't change sensors on us */
1015 static void occ_parse_poll_response(struct occ *occ)
1017 unsigned int i, old_offset, offset = 0, size = 0;
1018 struct occ_sensor *sensor;
1019 struct occ_sensors *sensors = &occ->sensors;
1020 struct occ_response *resp = &occ->resp;
1021 struct occ_poll_response *poll =
1022 (struct occ_poll_response *)&resp->data[0];
1023 struct occ_poll_response_header *header = &poll->header;
1024 struct occ_sensor_data_block *block = &poll->block;
1026 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1027 header->occ_code_level);
1029 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1030 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1031 old_offset = offset;
1032 offset = (block->header.num_sensors *
1033 block->header.sensor_length) + sizeof(block->header);
1036 /* validate all the length/size fields */
1037 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1038 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1042 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1043 old_offset, offset - 1, block->header.eye_catcher,
1044 block->header.num_sensors);
1046 /* match sensor block type */
1047 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1048 sensor = &sensors->temp;
1049 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1050 sensor = &sensors->freq;
1051 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1052 sensor = &sensors->power;
1053 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1054 sensor = &sensors->caps;
1055 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1056 sensor = &sensors->extended;
1058 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1059 block->header.eye_catcher);
1063 sensor->num_sensors = block->header.num_sensors;
1064 sensor->version = block->header.sensor_format;
1065 sensor->data = &block->data;
1068 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1069 sizeof(*header), size + sizeof(*header));
1072 int occ_setup(struct occ *occ, const char *name)
1076 mutex_init(&occ->lock);
1077 occ->groups[0] = &occ->group;
1079 /* no need to lock */
1081 if (rc == -ESHUTDOWN) {
1082 dev_info(occ->bus_dev, "host is not ready\n");
1084 } else if (rc < 0) {
1085 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1090 occ_parse_poll_response(occ);
1092 rc = occ_setup_sensor_attrs(occ);
1094 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1099 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1101 if (IS_ERR(occ->hwmon)) {
1102 rc = PTR_ERR(occ->hwmon);
1103 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1108 rc = occ_setup_sysfs(occ);
1110 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1114 EXPORT_SYMBOL_GPL(occ_setup);
1117 MODULE_DESCRIPTION("Common OCC hwmon code");
1118 MODULE_LICENSE("GPL");