4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/init.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
36 struct block_device bdev;
37 struct inode vfs_inode;
40 static const struct address_space_operations def_blk_aops;
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
44 return container_of(inode, struct bdev_inode, vfs_inode);
47 struct block_device *I_BDEV(struct inode *inode)
49 return &BDEV_I(inode)->bdev;
51 EXPORT_SYMBOL(I_BDEV);
53 static void bdev_write_inode(struct block_device *bdev)
55 struct inode *inode = bdev->bd_inode;
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
68 spin_lock(&inode->i_lock);
70 spin_unlock(&inode->i_lock);
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
82 truncate_inode_pages(mapping, 0);
84 EXPORT_SYMBOL(kill_bdev);
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
91 if (mapping->nrpages == 0)
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
100 cleancache_invalidate_inode(mapping);
102 EXPORT_SYMBOL(invalidate_bdev);
104 int set_blocksize(struct block_device *bdev, int size)
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
124 EXPORT_SYMBOL(set_blocksize);
126 int sb_set_blocksize(struct super_block *sb, int size)
128 if (set_blocksize(sb->s_bdev, size))
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
137 EXPORT_SYMBOL(sb_set_blocksize);
139 int sb_min_blocksize(struct super_block *sb, int size)
141 int minsize = bdev_logical_block_size(sb->s_bdev);
144 return sb_set_blocksize(sb, size);
147 EXPORT_SYMBOL(sb_min_blocksize);
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
159 static struct inode *bdev_file_inode(struct file *file)
161 return file->f_mapping->host;
165 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
167 struct file *file = iocb->ki_filp;
168 struct inode *inode = bdev_file_inode(file);
171 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
172 NULL, DIO_SKIP_DIO_COUNT);
173 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
174 blkdev_get_block, NULL, NULL,
178 int __sync_blockdev(struct block_device *bdev, int wait)
183 return filemap_flush(bdev->bd_inode->i_mapping);
184 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
188 * Write out and wait upon all the dirty data associated with a block
189 * device via its mapping. Does not take the superblock lock.
191 int sync_blockdev(struct block_device *bdev)
193 return __sync_blockdev(bdev, 1);
195 EXPORT_SYMBOL(sync_blockdev);
198 * Write out and wait upon all dirty data associated with this
199 * device. Filesystem data as well as the underlying block
200 * device. Takes the superblock lock.
202 int fsync_bdev(struct block_device *bdev)
204 struct super_block *sb = get_super(bdev);
206 int res = sync_filesystem(sb);
210 return sync_blockdev(bdev);
212 EXPORT_SYMBOL(fsync_bdev);
215 * freeze_bdev -- lock a filesystem and force it into a consistent state
216 * @bdev: blockdevice to lock
218 * If a superblock is found on this device, we take the s_umount semaphore
219 * on it to make sure nobody unmounts until the snapshot creation is done.
220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
226 struct super_block *freeze_bdev(struct block_device *bdev)
228 struct super_block *sb;
231 mutex_lock(&bdev->bd_fsfreeze_mutex);
232 if (++bdev->bd_fsfreeze_count > 1) {
234 * We don't even need to grab a reference - the first call
235 * to freeze_bdev grab an active reference and only the last
236 * thaw_bdev drops it.
238 sb = get_super(bdev);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
244 sb = get_active_super(bdev);
247 if (sb->s_op->freeze_super)
248 error = sb->s_op->freeze_super(sb);
250 error = freeze_super(sb);
252 deactivate_super(sb);
253 bdev->bd_fsfreeze_count--;
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return ERR_PTR(error);
257 deactivate_super(sb);
260 mutex_unlock(&bdev->bd_fsfreeze_mutex);
261 return sb; /* thaw_bdev releases s->s_umount */
263 EXPORT_SYMBOL(freeze_bdev);
266 * thaw_bdev -- unlock filesystem
267 * @bdev: blockdevice to unlock
268 * @sb: associated superblock
270 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
272 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
276 mutex_lock(&bdev->bd_fsfreeze_mutex);
277 if (!bdev->bd_fsfreeze_count)
281 if (--bdev->bd_fsfreeze_count > 0)
287 if (sb->s_op->thaw_super)
288 error = sb->s_op->thaw_super(sb);
290 error = thaw_super(sb);
292 bdev->bd_fsfreeze_count++;
293 mutex_unlock(&bdev->bd_fsfreeze_mutex);
297 mutex_unlock(&bdev->bd_fsfreeze_mutex);
300 EXPORT_SYMBOL(thaw_bdev);
302 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
304 return block_write_full_page(page, blkdev_get_block, wbc);
307 static int blkdev_readpage(struct file * file, struct page * page)
309 return block_read_full_page(page, blkdev_get_block);
312 static int blkdev_readpages(struct file *file, struct address_space *mapping,
313 struct list_head *pages, unsigned nr_pages)
315 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
318 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
319 loff_t pos, unsigned len, unsigned flags,
320 struct page **pagep, void **fsdata)
322 return block_write_begin(mapping, pos, len, flags, pagep,
326 static int blkdev_write_end(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct page *page, void *fsdata)
331 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
334 page_cache_release(page);
341 * for a block special file file_inode(file)->i_size is zero
342 * so we compute the size by hand (just as in block_read/write above)
344 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
346 struct inode *bd_inode = bdev_file_inode(file);
349 mutex_lock(&bd_inode->i_mutex);
350 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
351 mutex_unlock(&bd_inode->i_mutex);
355 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
357 struct inode *bd_inode = bdev_file_inode(filp);
358 struct block_device *bdev = I_BDEV(bd_inode);
361 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
366 * There is no need to serialise calls to blkdev_issue_flush with
367 * i_mutex and doing so causes performance issues with concurrent
368 * O_SYNC writers to a block device.
370 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
371 if (error == -EOPNOTSUPP)
376 EXPORT_SYMBOL(blkdev_fsync);
379 * bdev_read_page() - Start reading a page from a block device
380 * @bdev: The device to read the page from
381 * @sector: The offset on the device to read the page to (need not be aligned)
382 * @page: The page to read
384 * On entry, the page should be locked. It will be unlocked when the page
385 * has been read. If the block driver implements rw_page synchronously,
386 * that will be true on exit from this function, but it need not be.
388 * Errors returned by this function are usually "soft", eg out of memory, or
389 * queue full; callers should try a different route to read this page rather
390 * than propagate an error back up the stack.
392 * Return: negative errno if an error occurs, 0 if submission was successful.
394 int bdev_read_page(struct block_device *bdev, sector_t sector,
397 const struct block_device_operations *ops = bdev->bd_disk->fops;
398 int result = -EOPNOTSUPP;
400 if (!ops->rw_page || bdev_get_integrity(bdev))
403 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
406 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
407 blk_queue_exit(bdev->bd_queue);
410 EXPORT_SYMBOL_GPL(bdev_read_page);
413 * bdev_write_page() - Start writing a page to a block device
414 * @bdev: The device to write the page to
415 * @sector: The offset on the device to write the page to (need not be aligned)
416 * @page: The page to write
417 * @wbc: The writeback_control for the write
419 * On entry, the page should be locked and not currently under writeback.
420 * On exit, if the write started successfully, the page will be unlocked and
421 * under writeback. If the write failed already (eg the driver failed to
422 * queue the page to the device), the page will still be locked. If the
423 * caller is a ->writepage implementation, it will need to unlock the page.
425 * Errors returned by this function are usually "soft", eg out of memory, or
426 * queue full; callers should try a different route to write this page rather
427 * than propagate an error back up the stack.
429 * Return: negative errno if an error occurs, 0 if submission was successful.
431 int bdev_write_page(struct block_device *bdev, sector_t sector,
432 struct page *page, struct writeback_control *wbc)
435 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
436 const struct block_device_operations *ops = bdev->bd_disk->fops;
438 if (!ops->rw_page || bdev_get_integrity(bdev))
440 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
444 set_page_writeback(page);
445 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
447 end_page_writeback(page);
450 blk_queue_exit(bdev->bd_queue);
453 EXPORT_SYMBOL_GPL(bdev_write_page);
456 * bdev_direct_access() - Get the address for directly-accessibly memory
457 * @bdev: The device containing the memory
458 * @sector: The offset within the device
459 * @addr: Where to put the address of the memory
460 * @pfn: The Page Frame Number for the memory
461 * @size: The number of bytes requested
463 * If a block device is made up of directly addressable memory, this function
464 * will tell the caller the PFN and the address of the memory. The address
465 * may be directly dereferenced within the kernel without the need to call
466 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
469 * Return: negative errno if an error occurs, otherwise the number of bytes
470 * accessible at this address.
472 long bdev_direct_access(struct block_device *bdev, sector_t sector,
473 void __pmem **addr, unsigned long *pfn, long size)
476 const struct block_device_operations *ops = bdev->bd_disk->fops;
479 * The device driver is allowed to sleep, in order to make the
480 * memory directly accessible.
486 if (!ops->direct_access)
488 if ((sector + DIV_ROUND_UP(size, 512)) >
489 part_nr_sects_read(bdev->bd_part))
491 sector += get_start_sect(bdev);
492 if (sector % (PAGE_SIZE / 512))
494 avail = ops->direct_access(bdev, sector, addr, pfn);
497 return min(avail, size);
499 EXPORT_SYMBOL_GPL(bdev_direct_access);
505 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
506 static struct kmem_cache * bdev_cachep __read_mostly;
508 static struct inode *bdev_alloc_inode(struct super_block *sb)
510 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
513 return &ei->vfs_inode;
516 static void bdev_i_callback(struct rcu_head *head)
518 struct inode *inode = container_of(head, struct inode, i_rcu);
519 struct bdev_inode *bdi = BDEV_I(inode);
521 kmem_cache_free(bdev_cachep, bdi);
524 static void bdev_destroy_inode(struct inode *inode)
526 call_rcu(&inode->i_rcu, bdev_i_callback);
529 static void init_once(void *foo)
531 struct bdev_inode *ei = (struct bdev_inode *) foo;
532 struct block_device *bdev = &ei->bdev;
534 memset(bdev, 0, sizeof(*bdev));
535 mutex_init(&bdev->bd_mutex);
536 INIT_LIST_HEAD(&bdev->bd_inodes);
537 INIT_LIST_HEAD(&bdev->bd_list);
539 INIT_LIST_HEAD(&bdev->bd_holder_disks);
541 inode_init_once(&ei->vfs_inode);
542 /* Initialize mutex for freeze. */
543 mutex_init(&bdev->bd_fsfreeze_mutex);
546 static inline void __bd_forget(struct inode *inode)
548 list_del_init(&inode->i_devices);
549 inode->i_bdev = NULL;
550 inode->i_mapping = &inode->i_data;
553 static void bdev_evict_inode(struct inode *inode)
555 struct block_device *bdev = &BDEV_I(inode)->bdev;
557 truncate_inode_pages_final(&inode->i_data);
558 invalidate_inode_buffers(inode); /* is it needed here? */
560 spin_lock(&bdev_lock);
561 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
562 __bd_forget(list_entry(p, struct inode, i_devices));
564 list_del_init(&bdev->bd_list);
565 spin_unlock(&bdev_lock);
568 static const struct super_operations bdev_sops = {
569 .statfs = simple_statfs,
570 .alloc_inode = bdev_alloc_inode,
571 .destroy_inode = bdev_destroy_inode,
572 .drop_inode = generic_delete_inode,
573 .evict_inode = bdev_evict_inode,
576 static struct dentry *bd_mount(struct file_system_type *fs_type,
577 int flags, const char *dev_name, void *data)
579 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
582 static struct file_system_type bd_type = {
585 .kill_sb = kill_anon_super,
588 struct super_block *blockdev_superblock __read_mostly;
589 EXPORT_SYMBOL_GPL(blockdev_superblock);
591 void __init bdev_cache_init(void)
594 static struct vfsmount *bd_mnt;
596 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
597 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
598 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
600 err = register_filesystem(&bd_type);
602 panic("Cannot register bdev pseudo-fs");
603 bd_mnt = kern_mount(&bd_type);
605 panic("Cannot create bdev pseudo-fs");
606 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
610 * Most likely _very_ bad one - but then it's hardly critical for small
611 * /dev and can be fixed when somebody will need really large one.
612 * Keep in mind that it will be fed through icache hash function too.
614 static inline unsigned long hash(dev_t dev)
616 return MAJOR(dev)+MINOR(dev);
619 static int bdev_test(struct inode *inode, void *data)
621 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
624 static int bdev_set(struct inode *inode, void *data)
626 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
630 static LIST_HEAD(all_bdevs);
632 struct block_device *bdget(dev_t dev)
634 struct block_device *bdev;
637 inode = iget5_locked(blockdev_superblock, hash(dev),
638 bdev_test, bdev_set, &dev);
643 bdev = &BDEV_I(inode)->bdev;
645 if (inode->i_state & I_NEW) {
646 bdev->bd_contains = NULL;
647 bdev->bd_super = NULL;
648 bdev->bd_inode = inode;
649 bdev->bd_block_size = (1 << inode->i_blkbits);
650 bdev->bd_part_count = 0;
651 bdev->bd_invalidated = 0;
652 inode->i_mode = S_IFBLK;
654 inode->i_bdev = bdev;
655 inode->i_data.a_ops = &def_blk_aops;
656 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
657 spin_lock(&bdev_lock);
658 list_add(&bdev->bd_list, &all_bdevs);
659 spin_unlock(&bdev_lock);
660 unlock_new_inode(inode);
665 EXPORT_SYMBOL(bdget);
668 * bdgrab -- Grab a reference to an already referenced block device
669 * @bdev: Block device to grab a reference to.
671 struct block_device *bdgrab(struct block_device *bdev)
673 ihold(bdev->bd_inode);
676 EXPORT_SYMBOL(bdgrab);
678 long nr_blockdev_pages(void)
680 struct block_device *bdev;
682 spin_lock(&bdev_lock);
683 list_for_each_entry(bdev, &all_bdevs, bd_list) {
684 ret += bdev->bd_inode->i_mapping->nrpages;
686 spin_unlock(&bdev_lock);
690 void bdput(struct block_device *bdev)
692 iput(bdev->bd_inode);
695 EXPORT_SYMBOL(bdput);
697 static struct block_device *bd_acquire(struct inode *inode)
699 struct block_device *bdev;
701 spin_lock(&bdev_lock);
702 bdev = inode->i_bdev;
704 ihold(bdev->bd_inode);
705 spin_unlock(&bdev_lock);
708 spin_unlock(&bdev_lock);
710 bdev = bdget(inode->i_rdev);
712 spin_lock(&bdev_lock);
713 if (!inode->i_bdev) {
715 * We take an additional reference to bd_inode,
716 * and it's released in clear_inode() of inode.
717 * So, we can access it via ->i_mapping always
720 ihold(bdev->bd_inode);
721 inode->i_bdev = bdev;
722 inode->i_mapping = bdev->bd_inode->i_mapping;
723 list_add(&inode->i_devices, &bdev->bd_inodes);
725 spin_unlock(&bdev_lock);
730 /* Call when you free inode */
732 void bd_forget(struct inode *inode)
734 struct block_device *bdev = NULL;
736 spin_lock(&bdev_lock);
737 if (!sb_is_blkdev_sb(inode->i_sb))
738 bdev = inode->i_bdev;
740 spin_unlock(&bdev_lock);
743 iput(bdev->bd_inode);
747 * bd_may_claim - test whether a block device can be claimed
748 * @bdev: block device of interest
749 * @whole: whole block device containing @bdev, may equal @bdev
750 * @holder: holder trying to claim @bdev
752 * Test whether @bdev can be claimed by @holder.
755 * spin_lock(&bdev_lock).
758 * %true if @bdev can be claimed, %false otherwise.
760 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
763 if (bdev->bd_holder == holder)
764 return true; /* already a holder */
765 else if (bdev->bd_holder != NULL)
766 return false; /* held by someone else */
767 else if (bdev->bd_contains == bdev)
768 return true; /* is a whole device which isn't held */
770 else if (whole->bd_holder == bd_may_claim)
771 return true; /* is a partition of a device that is being partitioned */
772 else if (whole->bd_holder != NULL)
773 return false; /* is a partition of a held device */
775 return true; /* is a partition of an un-held device */
779 * bd_prepare_to_claim - prepare to claim a block device
780 * @bdev: block device of interest
781 * @whole: the whole device containing @bdev, may equal @bdev
782 * @holder: holder trying to claim @bdev
784 * Prepare to claim @bdev. This function fails if @bdev is already
785 * claimed by another holder and waits if another claiming is in
786 * progress. This function doesn't actually claim. On successful
787 * return, the caller has ownership of bd_claiming and bd_holder[s].
790 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
794 * 0 if @bdev can be claimed, -EBUSY otherwise.
796 static int bd_prepare_to_claim(struct block_device *bdev,
797 struct block_device *whole, void *holder)
800 /* if someone else claimed, fail */
801 if (!bd_may_claim(bdev, whole, holder))
804 /* if claiming is already in progress, wait for it to finish */
805 if (whole->bd_claiming) {
806 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
809 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
810 spin_unlock(&bdev_lock);
812 finish_wait(wq, &wait);
813 spin_lock(&bdev_lock);
822 * bd_start_claiming - start claiming a block device
823 * @bdev: block device of interest
824 * @holder: holder trying to claim @bdev
826 * @bdev is about to be opened exclusively. Check @bdev can be opened
827 * exclusively and mark that an exclusive open is in progress. Each
828 * successful call to this function must be matched with a call to
829 * either bd_finish_claiming() or bd_abort_claiming() (which do not
832 * This function is used to gain exclusive access to the block device
833 * without actually causing other exclusive open attempts to fail. It
834 * should be used when the open sequence itself requires exclusive
835 * access but may subsequently fail.
841 * Pointer to the block device containing @bdev on success, ERR_PTR()
844 static struct block_device *bd_start_claiming(struct block_device *bdev,
847 struct gendisk *disk;
848 struct block_device *whole;
854 * @bdev might not have been initialized properly yet, look up
855 * and grab the outer block device the hard way.
857 disk = get_gendisk(bdev->bd_dev, &partno);
859 return ERR_PTR(-ENXIO);
862 * Normally, @bdev should equal what's returned from bdget_disk()
863 * if partno is 0; however, some drivers (floppy) use multiple
864 * bdev's for the same physical device and @bdev may be one of the
865 * aliases. Keep @bdev if partno is 0. This means claimer
866 * tracking is broken for those devices but it has always been that
870 whole = bdget_disk(disk, 0);
872 whole = bdgrab(bdev);
874 module_put(disk->fops->owner);
877 return ERR_PTR(-ENOMEM);
879 /* prepare to claim, if successful, mark claiming in progress */
880 spin_lock(&bdev_lock);
882 err = bd_prepare_to_claim(bdev, whole, holder);
884 whole->bd_claiming = holder;
885 spin_unlock(&bdev_lock);
888 spin_unlock(&bdev_lock);
895 struct bd_holder_disk {
896 struct list_head list;
897 struct gendisk *disk;
901 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
902 struct gendisk *disk)
904 struct bd_holder_disk *holder;
906 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
907 if (holder->disk == disk)
912 static int add_symlink(struct kobject *from, struct kobject *to)
914 return sysfs_create_link(from, to, kobject_name(to));
917 static void del_symlink(struct kobject *from, struct kobject *to)
919 sysfs_remove_link(from, kobject_name(to));
923 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
924 * @bdev: the claimed slave bdev
925 * @disk: the holding disk
927 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
929 * This functions creates the following sysfs symlinks.
931 * - from "slaves" directory of the holder @disk to the claimed @bdev
932 * - from "holders" directory of the @bdev to the holder @disk
934 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
935 * passed to bd_link_disk_holder(), then:
937 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
938 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
940 * The caller must have claimed @bdev before calling this function and
941 * ensure that both @bdev and @disk are valid during the creation and
942 * lifetime of these symlinks.
948 * 0 on success, -errno on failure.
950 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
952 struct bd_holder_disk *holder;
955 mutex_lock(&bdev->bd_mutex);
957 WARN_ON_ONCE(!bdev->bd_holder);
959 /* FIXME: remove the following once add_disk() handles errors */
960 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
963 holder = bd_find_holder_disk(bdev, disk);
969 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
975 INIT_LIST_HEAD(&holder->list);
979 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
983 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
987 * bdev could be deleted beneath us which would implicitly destroy
988 * the holder directory. Hold on to it.
990 kobject_get(bdev->bd_part->holder_dir);
992 list_add(&holder->list, &bdev->bd_holder_disks);
996 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1000 mutex_unlock(&bdev->bd_mutex);
1003 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1006 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1007 * @bdev: the calimed slave bdev
1008 * @disk: the holding disk
1010 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1015 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1017 struct bd_holder_disk *holder;
1019 mutex_lock(&bdev->bd_mutex);
1021 holder = bd_find_holder_disk(bdev, disk);
1023 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1024 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1025 del_symlink(bdev->bd_part->holder_dir,
1026 &disk_to_dev(disk)->kobj);
1027 kobject_put(bdev->bd_part->holder_dir);
1028 list_del_init(&holder->list);
1032 mutex_unlock(&bdev->bd_mutex);
1034 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1038 * flush_disk - invalidates all buffer-cache entries on a disk
1040 * @bdev: struct block device to be flushed
1041 * @kill_dirty: flag to guide handling of dirty inodes
1043 * Invalidates all buffer-cache entries on a disk. It should be called
1044 * when a disk has been changed -- either by a media change or online
1047 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1049 if (__invalidate_device(bdev, kill_dirty)) {
1050 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1051 "resized disk %s\n",
1052 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1057 if (disk_part_scan_enabled(bdev->bd_disk))
1058 bdev->bd_invalidated = 1;
1062 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1063 * @disk: struct gendisk to check
1064 * @bdev: struct bdev to adjust.
1066 * This routine checks to see if the bdev size does not match the disk size
1067 * and adjusts it if it differs.
1069 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1071 loff_t disk_size, bdev_size;
1073 disk_size = (loff_t)get_capacity(disk) << 9;
1074 bdev_size = i_size_read(bdev->bd_inode);
1075 if (disk_size != bdev_size) {
1077 "%s: detected capacity change from %lld to %lld\n",
1078 disk->disk_name, bdev_size, disk_size);
1079 i_size_write(bdev->bd_inode, disk_size);
1080 flush_disk(bdev, false);
1083 EXPORT_SYMBOL(check_disk_size_change);
1086 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1087 * @disk: struct gendisk to be revalidated
1089 * This routine is a wrapper for lower-level driver's revalidate_disk
1090 * call-backs. It is used to do common pre and post operations needed
1091 * for all revalidate_disk operations.
1093 int revalidate_disk(struct gendisk *disk)
1095 struct block_device *bdev;
1098 if (disk->fops->revalidate_disk)
1099 ret = disk->fops->revalidate_disk(disk);
1100 blk_integrity_revalidate(disk);
1101 bdev = bdget_disk(disk, 0);
1105 mutex_lock(&bdev->bd_mutex);
1106 check_disk_size_change(disk, bdev);
1107 bdev->bd_invalidated = 0;
1108 mutex_unlock(&bdev->bd_mutex);
1112 EXPORT_SYMBOL(revalidate_disk);
1115 * This routine checks whether a removable media has been changed,
1116 * and invalidates all buffer-cache-entries in that case. This
1117 * is a relatively slow routine, so we have to try to minimize using
1118 * it. Thus it is called only upon a 'mount' or 'open'. This
1119 * is the best way of combining speed and utility, I think.
1120 * People changing diskettes in the middle of an operation deserve
1123 int check_disk_change(struct block_device *bdev)
1125 struct gendisk *disk = bdev->bd_disk;
1126 const struct block_device_operations *bdops = disk->fops;
1127 unsigned int events;
1129 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1130 DISK_EVENT_EJECT_REQUEST);
1131 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1134 flush_disk(bdev, true);
1135 if (bdops->revalidate_disk)
1136 bdops->revalidate_disk(bdev->bd_disk);
1140 EXPORT_SYMBOL(check_disk_change);
1142 void bd_set_size(struct block_device *bdev, loff_t size)
1144 unsigned bsize = bdev_logical_block_size(bdev);
1146 mutex_lock(&bdev->bd_inode->i_mutex);
1147 i_size_write(bdev->bd_inode, size);
1148 mutex_unlock(&bdev->bd_inode->i_mutex);
1149 while (bsize < PAGE_CACHE_SIZE) {
1154 bdev->bd_block_size = bsize;
1155 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1157 EXPORT_SYMBOL(bd_set_size);
1159 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1164 * mutex_lock(part->bd_mutex)
1165 * mutex_lock_nested(whole->bd_mutex, 1)
1168 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1170 struct gendisk *disk;
1171 struct module *owner;
1176 if (mode & FMODE_READ)
1178 if (mode & FMODE_WRITE)
1181 * hooks: /n/, see "layering violations".
1184 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1194 disk = get_gendisk(bdev->bd_dev, &partno);
1197 owner = disk->fops->owner;
1199 disk_block_events(disk);
1200 mutex_lock_nested(&bdev->bd_mutex, for_part);
1201 if (!bdev->bd_openers) {
1202 bdev->bd_disk = disk;
1203 bdev->bd_queue = disk->queue;
1204 bdev->bd_contains = bdev;
1205 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1208 bdev->bd_part = disk_get_part(disk, partno);
1213 if (disk->fops->open) {
1214 ret = disk->fops->open(bdev, mode);
1215 if (ret == -ERESTARTSYS) {
1216 /* Lost a race with 'disk' being
1217 * deleted, try again.
1220 disk_put_part(bdev->bd_part);
1221 bdev->bd_part = NULL;
1222 bdev->bd_disk = NULL;
1223 bdev->bd_queue = NULL;
1224 mutex_unlock(&bdev->bd_mutex);
1225 disk_unblock_events(disk);
1233 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1234 if (!blkdev_dax_capable(bdev))
1235 bdev->bd_inode->i_flags &= ~S_DAX;
1239 * If the device is invalidated, rescan partition
1240 * if open succeeded or failed with -ENOMEDIUM.
1241 * The latter is necessary to prevent ghost
1242 * partitions on a removed medium.
1244 if (bdev->bd_invalidated) {
1246 rescan_partitions(disk, bdev);
1247 else if (ret == -ENOMEDIUM)
1248 invalidate_partitions(disk, bdev);
1254 struct block_device *whole;
1255 whole = bdget_disk(disk, 0);
1260 ret = __blkdev_get(whole, mode, 1);
1263 bdev->bd_contains = whole;
1264 bdev->bd_part = disk_get_part(disk, partno);
1265 if (!(disk->flags & GENHD_FL_UP) ||
1266 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1270 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1271 if (!blkdev_dax_capable(bdev))
1272 bdev->bd_inode->i_flags &= ~S_DAX;
1275 if (bdev->bd_contains == bdev) {
1277 if (bdev->bd_disk->fops->open)
1278 ret = bdev->bd_disk->fops->open(bdev, mode);
1279 /* the same as first opener case, read comment there */
1280 if (bdev->bd_invalidated) {
1282 rescan_partitions(bdev->bd_disk, bdev);
1283 else if (ret == -ENOMEDIUM)
1284 invalidate_partitions(bdev->bd_disk, bdev);
1287 goto out_unlock_bdev;
1289 /* only one opener holds refs to the module and disk */
1295 bdev->bd_part_count++;
1296 mutex_unlock(&bdev->bd_mutex);
1297 disk_unblock_events(disk);
1301 disk_put_part(bdev->bd_part);
1302 bdev->bd_disk = NULL;
1303 bdev->bd_part = NULL;
1304 bdev->bd_queue = NULL;
1305 if (bdev != bdev->bd_contains)
1306 __blkdev_put(bdev->bd_contains, mode, 1);
1307 bdev->bd_contains = NULL;
1309 mutex_unlock(&bdev->bd_mutex);
1310 disk_unblock_events(disk);
1320 * blkdev_get - open a block device
1321 * @bdev: block_device to open
1322 * @mode: FMODE_* mask
1323 * @holder: exclusive holder identifier
1325 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1326 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1327 * @holder is invalid. Exclusive opens may nest for the same @holder.
1329 * On success, the reference count of @bdev is unchanged. On failure,
1336 * 0 on success, -errno on failure.
1338 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1340 struct block_device *whole = NULL;
1343 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1345 if ((mode & FMODE_EXCL) && holder) {
1346 whole = bd_start_claiming(bdev, holder);
1347 if (IS_ERR(whole)) {
1349 return PTR_ERR(whole);
1353 res = __blkdev_get(bdev, mode, 0);
1356 struct gendisk *disk = whole->bd_disk;
1358 /* finish claiming */
1359 mutex_lock(&bdev->bd_mutex);
1360 spin_lock(&bdev_lock);
1363 BUG_ON(!bd_may_claim(bdev, whole, holder));
1365 * Note that for a whole device bd_holders
1366 * will be incremented twice, and bd_holder
1367 * will be set to bd_may_claim before being
1370 whole->bd_holders++;
1371 whole->bd_holder = bd_may_claim;
1373 bdev->bd_holder = holder;
1376 /* tell others that we're done */
1377 BUG_ON(whole->bd_claiming != holder);
1378 whole->bd_claiming = NULL;
1379 wake_up_bit(&whole->bd_claiming, 0);
1381 spin_unlock(&bdev_lock);
1384 * Block event polling for write claims if requested. Any
1385 * write holder makes the write_holder state stick until
1386 * all are released. This is good enough and tracking
1387 * individual writeable reference is too fragile given the
1388 * way @mode is used in blkdev_get/put().
1390 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1391 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1392 bdev->bd_write_holder = true;
1393 disk_block_events(disk);
1396 mutex_unlock(&bdev->bd_mutex);
1402 EXPORT_SYMBOL(blkdev_get);
1405 * blkdev_get_by_path - open a block device by name
1406 * @path: path to the block device to open
1407 * @mode: FMODE_* mask
1408 * @holder: exclusive holder identifier
1410 * Open the blockdevice described by the device file at @path. @mode
1411 * and @holder are identical to blkdev_get().
1413 * On success, the returned block_device has reference count of one.
1419 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1421 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 struct block_device *bdev;
1427 bdev = lookup_bdev(path);
1431 err = blkdev_get(bdev, mode, holder);
1433 return ERR_PTR(err);
1435 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1436 blkdev_put(bdev, mode);
1437 return ERR_PTR(-EACCES);
1442 EXPORT_SYMBOL(blkdev_get_by_path);
1445 * blkdev_get_by_dev - open a block device by device number
1446 * @dev: device number of block device to open
1447 * @mode: FMODE_* mask
1448 * @holder: exclusive holder identifier
1450 * Open the blockdevice described by device number @dev. @mode and
1451 * @holder are identical to blkdev_get().
1453 * Use it ONLY if you really do not have anything better - i.e. when
1454 * you are behind a truly sucky interface and all you are given is a
1455 * device number. _Never_ to be used for internal purposes. If you
1456 * ever need it - reconsider your API.
1458 * On success, the returned block_device has reference count of one.
1464 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1466 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1468 struct block_device *bdev;
1473 return ERR_PTR(-ENOMEM);
1475 err = blkdev_get(bdev, mode, holder);
1477 return ERR_PTR(err);
1481 EXPORT_SYMBOL(blkdev_get_by_dev);
1483 static int blkdev_open(struct inode * inode, struct file * filp)
1485 struct block_device *bdev;
1488 * Preserve backwards compatibility and allow large file access
1489 * even if userspace doesn't ask for it explicitly. Some mkfs
1490 * binary needs it. We might want to drop this workaround
1491 * during an unstable branch.
1493 filp->f_flags |= O_LARGEFILE;
1495 if (filp->f_flags & O_NDELAY)
1496 filp->f_mode |= FMODE_NDELAY;
1497 if (filp->f_flags & O_EXCL)
1498 filp->f_mode |= FMODE_EXCL;
1499 if ((filp->f_flags & O_ACCMODE) == 3)
1500 filp->f_mode |= FMODE_WRITE_IOCTL;
1502 bdev = bd_acquire(inode);
1506 filp->f_mapping = bdev->bd_inode->i_mapping;
1508 return blkdev_get(bdev, filp->f_mode, filp);
1511 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1513 struct gendisk *disk = bdev->bd_disk;
1514 struct block_device *victim = NULL;
1516 mutex_lock_nested(&bdev->bd_mutex, for_part);
1518 bdev->bd_part_count--;
1520 if (!--bdev->bd_openers) {
1521 WARN_ON_ONCE(bdev->bd_holders);
1522 sync_blockdev(bdev);
1525 bdev_write_inode(bdev);
1527 * Detaching bdev inode from its wb in __destroy_inode()
1528 * is too late: the queue which embeds its bdi (along with
1529 * root wb) can be gone as soon as we put_disk() below.
1531 inode_detach_wb(bdev->bd_inode);
1533 if (bdev->bd_contains == bdev) {
1534 if (disk->fops->release)
1535 disk->fops->release(disk, mode);
1537 if (!bdev->bd_openers) {
1538 struct module *owner = disk->fops->owner;
1540 disk_put_part(bdev->bd_part);
1541 bdev->bd_part = NULL;
1542 bdev->bd_disk = NULL;
1543 if (bdev != bdev->bd_contains)
1544 victim = bdev->bd_contains;
1545 bdev->bd_contains = NULL;
1550 mutex_unlock(&bdev->bd_mutex);
1553 __blkdev_put(victim, mode, 1);
1556 void blkdev_put(struct block_device *bdev, fmode_t mode)
1558 mutex_lock(&bdev->bd_mutex);
1560 if (mode & FMODE_EXCL) {
1564 * Release a claim on the device. The holder fields
1565 * are protected with bdev_lock. bd_mutex is to
1566 * synchronize disk_holder unlinking.
1568 spin_lock(&bdev_lock);
1570 WARN_ON_ONCE(--bdev->bd_holders < 0);
1571 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1573 /* bd_contains might point to self, check in a separate step */
1574 if ((bdev_free = !bdev->bd_holders))
1575 bdev->bd_holder = NULL;
1576 if (!bdev->bd_contains->bd_holders)
1577 bdev->bd_contains->bd_holder = NULL;
1579 spin_unlock(&bdev_lock);
1582 * If this was the last claim, remove holder link and
1583 * unblock evpoll if it was a write holder.
1585 if (bdev_free && bdev->bd_write_holder) {
1586 disk_unblock_events(bdev->bd_disk);
1587 bdev->bd_write_holder = false;
1592 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1593 * event. This is to ensure detection of media removal commanded
1594 * from userland - e.g. eject(1).
1596 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1598 mutex_unlock(&bdev->bd_mutex);
1600 __blkdev_put(bdev, mode, 0);
1602 EXPORT_SYMBOL(blkdev_put);
1604 static int blkdev_close(struct inode * inode, struct file * filp)
1606 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1607 blkdev_put(bdev, filp->f_mode);
1611 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1613 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1614 fmode_t mode = file->f_mode;
1617 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1618 * to updated it before every ioctl.
1620 if (file->f_flags & O_NDELAY)
1621 mode |= FMODE_NDELAY;
1623 mode &= ~FMODE_NDELAY;
1625 return blkdev_ioctl(bdev, mode, cmd, arg);
1629 * Write data to the block device. Only intended for the block device itself
1630 * and the raw driver which basically is a fake block device.
1632 * Does not take i_mutex for the write and thus is not for general purpose
1635 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1637 struct file *file = iocb->ki_filp;
1638 struct inode *bd_inode = bdev_file_inode(file);
1639 loff_t size = i_size_read(bd_inode);
1640 struct blk_plug plug;
1643 if (bdev_read_only(I_BDEV(bd_inode)))
1646 if (!iov_iter_count(from))
1649 if (iocb->ki_pos >= size)
1652 iov_iter_truncate(from, size - iocb->ki_pos);
1654 blk_start_plug(&plug);
1655 ret = __generic_file_write_iter(iocb, from);
1658 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1662 blk_finish_plug(&plug);
1665 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1667 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1669 struct file *file = iocb->ki_filp;
1670 struct inode *bd_inode = bdev_file_inode(file);
1671 loff_t size = i_size_read(bd_inode);
1672 loff_t pos = iocb->ki_pos;
1678 iov_iter_truncate(to, size);
1679 return generic_file_read_iter(iocb, to);
1681 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1684 * Try to release a page associated with block device when the system
1685 * is under memory pressure.
1687 static int blkdev_releasepage(struct page *page, gfp_t wait)
1689 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1691 if (super && super->s_op->bdev_try_to_free_page)
1692 return super->s_op->bdev_try_to_free_page(super, page, wait);
1694 return try_to_free_buffers(page);
1697 static const struct address_space_operations def_blk_aops = {
1698 .readpage = blkdev_readpage,
1699 .readpages = blkdev_readpages,
1700 .writepage = blkdev_writepage,
1701 .write_begin = blkdev_write_begin,
1702 .write_end = blkdev_write_end,
1703 .writepages = generic_writepages,
1704 .releasepage = blkdev_releasepage,
1705 .direct_IO = blkdev_direct_IO,
1706 .is_dirty_writeback = buffer_check_dirty_writeback,
1709 #ifdef CONFIG_FS_DAX
1711 * In the raw block case we do not need to contend with truncation nor
1712 * unwritten file extents. Without those concerns there is no need for
1713 * additional locking beyond the mmap_sem context that these routines
1714 * are already executing under.
1716 * Note, there is no protection if the block device is dynamically
1717 * resized (partition grow/shrink) during a fault. A stable block device
1718 * size is already not enforced in the blkdev_direct_IO path.
1720 * For DAX, it is the responsibility of the block device driver to
1721 * ensure the whole-disk device size is stable while requests are in
1724 * Finally, unlike the filemap_page_mkwrite() case there is no
1725 * filesystem superblock to sync against freezing. We still include a
1726 * pfn_mkwrite callback for dax drivers to receive write fault
1729 static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 return __dax_fault(vma, vmf, blkdev_get_block, NULL);
1734 static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1735 pmd_t *pmd, unsigned int flags)
1737 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL);
1740 static void blkdev_vm_open(struct vm_area_struct *vma)
1742 struct inode *bd_inode = bdev_file_inode(vma->vm_file);
1743 struct block_device *bdev = I_BDEV(bd_inode);
1745 mutex_lock(&bd_inode->i_mutex);
1746 bdev->bd_map_count++;
1747 mutex_unlock(&bd_inode->i_mutex);
1750 static void blkdev_vm_close(struct vm_area_struct *vma)
1752 struct inode *bd_inode = bdev_file_inode(vma->vm_file);
1753 struct block_device *bdev = I_BDEV(bd_inode);
1755 mutex_lock(&bd_inode->i_mutex);
1756 bdev->bd_map_count--;
1757 mutex_unlock(&bd_inode->i_mutex);
1760 static const struct vm_operations_struct blkdev_dax_vm_ops = {
1761 .open = blkdev_vm_open,
1762 .close = blkdev_vm_close,
1763 .fault = blkdev_dax_fault,
1764 .pmd_fault = blkdev_dax_pmd_fault,
1765 .pfn_mkwrite = blkdev_dax_fault,
1768 static const struct vm_operations_struct blkdev_default_vm_ops = {
1769 .open = blkdev_vm_open,
1770 .close = blkdev_vm_close,
1771 .fault = filemap_fault,
1772 .map_pages = filemap_map_pages,
1775 static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1777 struct inode *bd_inode = bdev_file_inode(file);
1778 struct block_device *bdev = I_BDEV(bd_inode);
1780 file_accessed(file);
1781 mutex_lock(&bd_inode->i_mutex);
1782 bdev->bd_map_count++;
1783 if (IS_DAX(bd_inode)) {
1784 vma->vm_ops = &blkdev_dax_vm_ops;
1785 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1787 vma->vm_ops = &blkdev_default_vm_ops;
1789 mutex_unlock(&bd_inode->i_mutex);
1794 #define blkdev_mmap generic_file_mmap
1797 const struct file_operations def_blk_fops = {
1798 .open = blkdev_open,
1799 .release = blkdev_close,
1800 .llseek = block_llseek,
1801 .read_iter = blkdev_read_iter,
1802 .write_iter = blkdev_write_iter,
1803 .mmap = blkdev_mmap,
1804 .fsync = blkdev_fsync,
1805 .unlocked_ioctl = block_ioctl,
1806 #ifdef CONFIG_COMPAT
1807 .compat_ioctl = compat_blkdev_ioctl,
1809 .splice_read = generic_file_splice_read,
1810 .splice_write = iter_file_splice_write,
1813 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1816 mm_segment_t old_fs = get_fs();
1818 res = blkdev_ioctl(bdev, 0, cmd, arg);
1823 EXPORT_SYMBOL(ioctl_by_bdev);
1826 * lookup_bdev - lookup a struct block_device by name
1827 * @pathname: special file representing the block device
1829 * Get a reference to the blockdevice at @pathname in the current
1830 * namespace if possible and return it. Return ERR_PTR(error)
1833 struct block_device *lookup_bdev(const char *pathname)
1835 struct block_device *bdev;
1836 struct inode *inode;
1840 if (!pathname || !*pathname)
1841 return ERR_PTR(-EINVAL);
1843 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1845 return ERR_PTR(error);
1847 inode = d_backing_inode(path.dentry);
1849 if (!S_ISBLK(inode->i_mode))
1852 if (path.mnt->mnt_flags & MNT_NODEV)
1855 bdev = bd_acquire(inode);
1862 bdev = ERR_PTR(error);
1865 EXPORT_SYMBOL(lookup_bdev);
1867 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1869 struct super_block *sb = get_super(bdev);
1874 * no need to lock the super, get_super holds the
1875 * read mutex so the filesystem cannot go away
1876 * under us (->put_super runs with the write lock
1879 shrink_dcache_sb(sb);
1880 res = invalidate_inodes(sb, kill_dirty);
1883 invalidate_bdev(bdev);
1886 EXPORT_SYMBOL(__invalidate_device);
1888 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1890 struct inode *inode, *old_inode = NULL;
1892 spin_lock(&blockdev_superblock->s_inode_list_lock);
1893 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1894 struct address_space *mapping = inode->i_mapping;
1896 spin_lock(&inode->i_lock);
1897 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1898 mapping->nrpages == 0) {
1899 spin_unlock(&inode->i_lock);
1903 spin_unlock(&inode->i_lock);
1904 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1906 * We hold a reference to 'inode' so it couldn't have been
1907 * removed from s_inodes list while we dropped the
1908 * s_inode_list_lock We cannot iput the inode now as we can
1909 * be holding the last reference and we cannot iput it under
1910 * s_inode_list_lock. So we keep the reference and iput it
1916 func(I_BDEV(inode), arg);
1918 spin_lock(&blockdev_superblock->s_inode_list_lock);
1920 spin_unlock(&blockdev_superblock->s_inode_list_lock);