]> Git Repo - linux.git/blob - net/tls/tls_main.c
tls: Add rx inline crypto offload
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <[email protected]>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48
49 enum {
50         TLSV4,
51         TLSV6,
52         TLS_NUM_PROTS,
53 };
54
55 static struct proto *saved_tcpv6_prot;
56 static DEFINE_MUTEX(tcpv6_prot_mutex);
57 static LIST_HEAD(device_list);
58 static DEFINE_MUTEX(device_mutex);
59 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
60 static struct proto_ops tls_sw_proto_ops;
61
62 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
63 {
64         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
65
66         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
67 }
68
69 int wait_on_pending_writer(struct sock *sk, long *timeo)
70 {
71         int rc = 0;
72         DEFINE_WAIT_FUNC(wait, woken_wake_function);
73
74         add_wait_queue(sk_sleep(sk), &wait);
75         while (1) {
76                 if (!*timeo) {
77                         rc = -EAGAIN;
78                         break;
79                 }
80
81                 if (signal_pending(current)) {
82                         rc = sock_intr_errno(*timeo);
83                         break;
84                 }
85
86                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
87                         break;
88         }
89         remove_wait_queue(sk_sleep(sk), &wait);
90         return rc;
91 }
92
93 int tls_push_sg(struct sock *sk,
94                 struct tls_context *ctx,
95                 struct scatterlist *sg,
96                 u16 first_offset,
97                 int flags)
98 {
99         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
100         int ret = 0;
101         struct page *p;
102         size_t size;
103         int offset = first_offset;
104
105         size = sg->length - offset;
106         offset += sg->offset;
107
108         ctx->in_tcp_sendpages = true;
109         while (1) {
110                 if (sg_is_last(sg))
111                         sendpage_flags = flags;
112
113                 /* is sending application-limited? */
114                 tcp_rate_check_app_limited(sk);
115                 p = sg_page(sg);
116 retry:
117                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
118
119                 if (ret != size) {
120                         if (ret > 0) {
121                                 offset += ret;
122                                 size -= ret;
123                                 goto retry;
124                         }
125
126                         offset -= sg->offset;
127                         ctx->partially_sent_offset = offset;
128                         ctx->partially_sent_record = (void *)sg;
129                         ctx->in_tcp_sendpages = false;
130                         return ret;
131                 }
132
133                 put_page(p);
134                 sk_mem_uncharge(sk, sg->length);
135                 sg = sg_next(sg);
136                 if (!sg)
137                         break;
138
139                 offset = sg->offset;
140                 size = sg->length;
141         }
142
143         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
144         ctx->in_tcp_sendpages = false;
145         ctx->sk_write_space(sk);
146
147         return 0;
148 }
149
150 static int tls_handle_open_record(struct sock *sk, int flags)
151 {
152         struct tls_context *ctx = tls_get_ctx(sk);
153
154         if (tls_is_pending_open_record(ctx))
155                 return ctx->push_pending_record(sk, flags);
156
157         return 0;
158 }
159
160 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
161                       unsigned char *record_type)
162 {
163         struct cmsghdr *cmsg;
164         int rc = -EINVAL;
165
166         for_each_cmsghdr(cmsg, msg) {
167                 if (!CMSG_OK(msg, cmsg))
168                         return -EINVAL;
169                 if (cmsg->cmsg_level != SOL_TLS)
170                         continue;
171
172                 switch (cmsg->cmsg_type) {
173                 case TLS_SET_RECORD_TYPE:
174                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
175                                 return -EINVAL;
176
177                         if (msg->msg_flags & MSG_MORE)
178                                 return -EINVAL;
179
180                         rc = tls_handle_open_record(sk, msg->msg_flags);
181                         if (rc)
182                                 return rc;
183
184                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
185                         rc = 0;
186                         break;
187                 default:
188                         return -EINVAL;
189                 }
190         }
191
192         return rc;
193 }
194
195 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
196                                    int flags, long *timeo)
197 {
198         struct scatterlist *sg;
199         u16 offset;
200
201         if (!tls_is_partially_sent_record(ctx))
202                 return ctx->push_pending_record(sk, flags);
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 static void tls_write_space(struct sock *sk)
212 {
213         struct tls_context *ctx = tls_get_ctx(sk);
214
215         /* We are already sending pages, ignore notification */
216         if (ctx->in_tcp_sendpages)
217                 return;
218
219         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
220                 gfp_t sk_allocation = sk->sk_allocation;
221                 int rc;
222                 long timeo = 0;
223
224                 sk->sk_allocation = GFP_ATOMIC;
225                 rc = tls_push_pending_closed_record(sk, ctx,
226                                                     MSG_DONTWAIT |
227                                                     MSG_NOSIGNAL,
228                                                     &timeo);
229                 sk->sk_allocation = sk_allocation;
230
231                 if (rc < 0)
232                         return;
233         }
234
235         ctx->sk_write_space(sk);
236 }
237
238 static void tls_sk_proto_close(struct sock *sk, long timeout)
239 {
240         struct tls_context *ctx = tls_get_ctx(sk);
241         long timeo = sock_sndtimeo(sk, 0);
242         void (*sk_proto_close)(struct sock *sk, long timeout);
243         bool free_ctx = false;
244
245         lock_sock(sk);
246         sk_proto_close = ctx->sk_proto_close;
247
248         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
249             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
250                 free_ctx = true;
251                 goto skip_tx_cleanup;
252         }
253
254         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
255                 tls_handle_open_record(sk, 0);
256
257         if (ctx->partially_sent_record) {
258                 struct scatterlist *sg = ctx->partially_sent_record;
259
260                 while (1) {
261                         put_page(sg_page(sg));
262                         sk_mem_uncharge(sk, sg->length);
263
264                         if (sg_is_last(sg))
265                                 break;
266                         sg++;
267                 }
268         }
269
270         /* We need these for tls_sw_fallback handling of other packets */
271         if (ctx->tx_conf == TLS_SW) {
272                 kfree(ctx->tx.rec_seq);
273                 kfree(ctx->tx.iv);
274                 tls_sw_free_resources_tx(sk);
275         }
276
277         if (ctx->rx_conf == TLS_SW) {
278                 kfree(ctx->rx.rec_seq);
279                 kfree(ctx->rx.iv);
280                 tls_sw_free_resources_rx(sk);
281         }
282
283 #ifdef CONFIG_TLS_DEVICE
284         if (ctx->rx_conf == TLS_HW)
285                 tls_device_offload_cleanup_rx(sk);
286
287         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
288 #else
289         {
290 #endif
291                 kfree(ctx);
292                 ctx = NULL;
293         }
294
295 skip_tx_cleanup:
296         release_sock(sk);
297         sk_proto_close(sk, timeout);
298         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
299          * for sk->sk_prot->unhash [tls_hw_unhash]
300          */
301         if (free_ctx)
302                 kfree(ctx);
303 }
304
305 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
306                                 int __user *optlen)
307 {
308         int rc = 0;
309         struct tls_context *ctx = tls_get_ctx(sk);
310         struct tls_crypto_info *crypto_info;
311         int len;
312
313         if (get_user(len, optlen))
314                 return -EFAULT;
315
316         if (!optval || (len < sizeof(*crypto_info))) {
317                 rc = -EINVAL;
318                 goto out;
319         }
320
321         if (!ctx) {
322                 rc = -EBUSY;
323                 goto out;
324         }
325
326         /* get user crypto info */
327         crypto_info = &ctx->crypto_send;
328
329         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
330                 rc = -EBUSY;
331                 goto out;
332         }
333
334         if (len == sizeof(*crypto_info)) {
335                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
336                         rc = -EFAULT;
337                 goto out;
338         }
339
340         switch (crypto_info->cipher_type) {
341         case TLS_CIPHER_AES_GCM_128: {
342                 struct tls12_crypto_info_aes_gcm_128 *
343                   crypto_info_aes_gcm_128 =
344                   container_of(crypto_info,
345                                struct tls12_crypto_info_aes_gcm_128,
346                                info);
347
348                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
349                         rc = -EINVAL;
350                         goto out;
351                 }
352                 lock_sock(sk);
353                 memcpy(crypto_info_aes_gcm_128->iv,
354                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
355                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
356                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
357                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
358                 release_sock(sk);
359                 if (copy_to_user(optval,
360                                  crypto_info_aes_gcm_128,
361                                  sizeof(*crypto_info_aes_gcm_128)))
362                         rc = -EFAULT;
363                 break;
364         }
365         default:
366                 rc = -EINVAL;
367         }
368
369 out:
370         return rc;
371 }
372
373 static int do_tls_getsockopt(struct sock *sk, int optname,
374                              char __user *optval, int __user *optlen)
375 {
376         int rc = 0;
377
378         switch (optname) {
379         case TLS_TX:
380                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
381                 break;
382         default:
383                 rc = -ENOPROTOOPT;
384                 break;
385         }
386         return rc;
387 }
388
389 static int tls_getsockopt(struct sock *sk, int level, int optname,
390                           char __user *optval, int __user *optlen)
391 {
392         struct tls_context *ctx = tls_get_ctx(sk);
393
394         if (level != SOL_TLS)
395                 return ctx->getsockopt(sk, level, optname, optval, optlen);
396
397         return do_tls_getsockopt(sk, optname, optval, optlen);
398 }
399
400 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
401                                   unsigned int optlen, int tx)
402 {
403         struct tls_crypto_info *crypto_info;
404         struct tls_context *ctx = tls_get_ctx(sk);
405         int rc = 0;
406         int conf;
407
408         if (!optval || (optlen < sizeof(*crypto_info))) {
409                 rc = -EINVAL;
410                 goto out;
411         }
412
413         if (tx)
414                 crypto_info = &ctx->crypto_send;
415         else
416                 crypto_info = &ctx->crypto_recv;
417
418         /* Currently we don't support set crypto info more than one time */
419         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
420                 rc = -EBUSY;
421                 goto out;
422         }
423
424         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
425         if (rc) {
426                 rc = -EFAULT;
427                 goto err_crypto_info;
428         }
429
430         /* check version */
431         if (crypto_info->version != TLS_1_2_VERSION) {
432                 rc = -ENOTSUPP;
433                 goto err_crypto_info;
434         }
435
436         switch (crypto_info->cipher_type) {
437         case TLS_CIPHER_AES_GCM_128: {
438                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
439                         rc = -EINVAL;
440                         goto err_crypto_info;
441                 }
442                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
443                                     optlen - sizeof(*crypto_info));
444                 if (rc) {
445                         rc = -EFAULT;
446                         goto err_crypto_info;
447                 }
448                 break;
449         }
450         default:
451                 rc = -EINVAL;
452                 goto err_crypto_info;
453         }
454
455         if (tx) {
456 #ifdef CONFIG_TLS_DEVICE
457                 rc = tls_set_device_offload(sk, ctx);
458                 conf = TLS_HW;
459                 if (rc) {
460 #else
461                 {
462 #endif
463                         rc = tls_set_sw_offload(sk, ctx, 1);
464                         conf = TLS_SW;
465                 }
466         } else {
467 #ifdef CONFIG_TLS_DEVICE
468                 rc = tls_set_device_offload_rx(sk, ctx);
469                 conf = TLS_HW;
470                 if (rc) {
471 #else
472                 {
473 #endif
474                         rc = tls_set_sw_offload(sk, ctx, 0);
475                         conf = TLS_SW;
476                 }
477         }
478
479         if (rc)
480                 goto err_crypto_info;
481
482         if (tx)
483                 ctx->tx_conf = conf;
484         else
485                 ctx->rx_conf = conf;
486         update_sk_prot(sk, ctx);
487         if (tx) {
488                 ctx->sk_write_space = sk->sk_write_space;
489                 sk->sk_write_space = tls_write_space;
490         } else {
491                 sk->sk_socket->ops = &tls_sw_proto_ops;
492         }
493         goto out;
494
495 err_crypto_info:
496         memset(crypto_info, 0, sizeof(*crypto_info));
497 out:
498         return rc;
499 }
500
501 static int do_tls_setsockopt(struct sock *sk, int optname,
502                              char __user *optval, unsigned int optlen)
503 {
504         int rc = 0;
505
506         switch (optname) {
507         case TLS_TX:
508         case TLS_RX:
509                 lock_sock(sk);
510                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
511                                             optname == TLS_TX);
512                 release_sock(sk);
513                 break;
514         default:
515                 rc = -ENOPROTOOPT;
516                 break;
517         }
518         return rc;
519 }
520
521 static int tls_setsockopt(struct sock *sk, int level, int optname,
522                           char __user *optval, unsigned int optlen)
523 {
524         struct tls_context *ctx = tls_get_ctx(sk);
525
526         if (level != SOL_TLS)
527                 return ctx->setsockopt(sk, level, optname, optval, optlen);
528
529         return do_tls_setsockopt(sk, optname, optval, optlen);
530 }
531
532 static struct tls_context *create_ctx(struct sock *sk)
533 {
534         struct inet_connection_sock *icsk = inet_csk(sk);
535         struct tls_context *ctx;
536
537         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
538         if (!ctx)
539                 return NULL;
540
541         icsk->icsk_ulp_data = ctx;
542         return ctx;
543 }
544
545 static int tls_hw_prot(struct sock *sk)
546 {
547         struct tls_context *ctx;
548         struct tls_device *dev;
549         int rc = 0;
550
551         mutex_lock(&device_mutex);
552         list_for_each_entry(dev, &device_list, dev_list) {
553                 if (dev->feature && dev->feature(dev)) {
554                         ctx = create_ctx(sk);
555                         if (!ctx)
556                                 goto out;
557
558                         ctx->hash = sk->sk_prot->hash;
559                         ctx->unhash = sk->sk_prot->unhash;
560                         ctx->sk_proto_close = sk->sk_prot->close;
561                         ctx->rx_conf = TLS_HW_RECORD;
562                         ctx->tx_conf = TLS_HW_RECORD;
563                         update_sk_prot(sk, ctx);
564                         rc = 1;
565                         break;
566                 }
567         }
568 out:
569         mutex_unlock(&device_mutex);
570         return rc;
571 }
572
573 static void tls_hw_unhash(struct sock *sk)
574 {
575         struct tls_context *ctx = tls_get_ctx(sk);
576         struct tls_device *dev;
577
578         mutex_lock(&device_mutex);
579         list_for_each_entry(dev, &device_list, dev_list) {
580                 if (dev->unhash)
581                         dev->unhash(dev, sk);
582         }
583         mutex_unlock(&device_mutex);
584         ctx->unhash(sk);
585 }
586
587 static int tls_hw_hash(struct sock *sk)
588 {
589         struct tls_context *ctx = tls_get_ctx(sk);
590         struct tls_device *dev;
591         int err;
592
593         err = ctx->hash(sk);
594         mutex_lock(&device_mutex);
595         list_for_each_entry(dev, &device_list, dev_list) {
596                 if (dev->hash)
597                         err |= dev->hash(dev, sk);
598         }
599         mutex_unlock(&device_mutex);
600
601         if (err)
602                 tls_hw_unhash(sk);
603         return err;
604 }
605
606 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
607                          struct proto *base)
608 {
609         prot[TLS_BASE][TLS_BASE] = *base;
610         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
611         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
612         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
613
614         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
615         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
616         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
617
618         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
619         prot[TLS_BASE][TLS_SW].recvmsg          = tls_sw_recvmsg;
620         prot[TLS_BASE][TLS_SW].close            = tls_sk_proto_close;
621
622         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
623         prot[TLS_SW][TLS_SW].recvmsg    = tls_sw_recvmsg;
624         prot[TLS_SW][TLS_SW].close      = tls_sk_proto_close;
625
626 #ifdef CONFIG_TLS_DEVICE
627         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
628         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
629         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
630
631         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
632         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
633         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
634
635         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
636
637         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
638
639         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
640 #endif
641
642         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
643         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
644         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
645         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
646 }
647
648 static int tls_init(struct sock *sk)
649 {
650         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
651         struct tls_context *ctx;
652         int rc = 0;
653
654         if (tls_hw_prot(sk))
655                 goto out;
656
657         /* The TLS ulp is currently supported only for TCP sockets
658          * in ESTABLISHED state.
659          * Supporting sockets in LISTEN state will require us
660          * to modify the accept implementation to clone rather then
661          * share the ulp context.
662          */
663         if (sk->sk_state != TCP_ESTABLISHED)
664                 return -ENOTSUPP;
665
666         /* allocate tls context */
667         ctx = create_ctx(sk);
668         if (!ctx) {
669                 rc = -ENOMEM;
670                 goto out;
671         }
672         ctx->setsockopt = sk->sk_prot->setsockopt;
673         ctx->getsockopt = sk->sk_prot->getsockopt;
674         ctx->sk_proto_close = sk->sk_prot->close;
675
676         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
677         if (ip_ver == TLSV6 &&
678             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
679                 mutex_lock(&tcpv6_prot_mutex);
680                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
681                         build_protos(tls_prots[TLSV6], sk->sk_prot);
682                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
683                 }
684                 mutex_unlock(&tcpv6_prot_mutex);
685         }
686
687         ctx->tx_conf = TLS_BASE;
688         ctx->rx_conf = TLS_BASE;
689         update_sk_prot(sk, ctx);
690 out:
691         return rc;
692 }
693
694 void tls_register_device(struct tls_device *device)
695 {
696         mutex_lock(&device_mutex);
697         list_add_tail(&device->dev_list, &device_list);
698         mutex_unlock(&device_mutex);
699 }
700 EXPORT_SYMBOL(tls_register_device);
701
702 void tls_unregister_device(struct tls_device *device)
703 {
704         mutex_lock(&device_mutex);
705         list_del(&device->dev_list);
706         mutex_unlock(&device_mutex);
707 }
708 EXPORT_SYMBOL(tls_unregister_device);
709
710 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
711         .name                   = "tls",
712         .uid                    = TCP_ULP_TLS,
713         .user_visible           = true,
714         .owner                  = THIS_MODULE,
715         .init                   = tls_init,
716 };
717
718 static int __init tls_register(void)
719 {
720         build_protos(tls_prots[TLSV4], &tcp_prot);
721
722         tls_sw_proto_ops = inet_stream_ops;
723         tls_sw_proto_ops.poll = tls_sw_poll;
724         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
725
726 #ifdef CONFIG_TLS_DEVICE
727         tls_device_init();
728 #endif
729         tcp_register_ulp(&tcp_tls_ulp_ops);
730
731         return 0;
732 }
733
734 static void __exit tls_unregister(void)
735 {
736         tcp_unregister_ulp(&tcp_tls_ulp_ops);
737 #ifdef CONFIG_TLS_DEVICE
738         tls_device_cleanup();
739 #endif
740 }
741
742 module_init(tls_register);
743 module_exit(tls_unregister);
This page took 0.078439 seconds and 4 git commands to generate.